Science.gov

Sample records for semi-insulating gaas doped

  1. Depth uniformity of electrical properties and doping limitation in neutron-transmutation-doped semi-insulating GaAs

    SciTech Connect

    Satoh, M.; Kuriyama, K. ); Kawakubo, T. )

    1990-04-01

    Depth uniformity of electrical properties has been evaluated for neutron-transmutation-doped (NTD), semi-insulating GaAs irradiated with thermal neutrons of 1.5{times}10{sup 18} cm{sup {minus}2} by the van der Pauw method combined with iterative etching of the surface. In NTD-GaAs wafers (thickness {similar to}410 {mu}m) annealed for 30 min at 700 {degree}C, the depth profiles of the resistivity, the carrier concentration, and the Hall mobility show constant values of 1{times}10{sup {minus}2} {Omega} cm, 2.0{times}10{sup 17} cm{sup {minus}3}, and 3100 cm{sup 2}/V s, respectively, within an experimental error of 5%. In an annealing process, the redistribution and/or the segregation of NTD impurities is not observed. We also discuss the limitations of low-level NTD in semi-insulating GaAs. It is suggested that the activation of the NTD-impurities below {similar to}1{times}10{sup 16} cm{sup {minus}3} is mainly restricted by the presence of the midgap electron trap (EL2).

  2. The contact and photoconductivity characteristics between Co doped amorphous carbon and GaAs: n-type low-resistivity and semi-insulated high-resistivity GaAs

    NASA Astrophysics Data System (ADS)

    Zhai, Zhangyin; Yu, Hualing; Zuo, Fen; Guo, Chunlian; Chen, Guibin; Zhang, Fengming; Wu, Xiaoshan; Gao, Ju

    2016-06-01

    The Co doped amorphous carbon films (a-C:Co), deposited by pulsed laser deposition, show p-n and ohmic contact characteristics with n-type low resistivity GaAs (L-GaAs) and semi-insulated high-resistivity GaAs (S-GaAs). The photosensitivity enhances for a-C:Co/L-GaAs, while inverse decreases for a-C:Co/S-GaAs heterojunction, respectively. Furthermore, the enhanced photosensitivity for the a-C:Co/L-GaAs/Ag heterojunction also shows deposition temperature dependence behavior, and the optimum deposition temperature is around 500 °C.

  3. GaAs Semi-Insulating Layer for a GaAs Device

    NASA Technical Reports Server (NTRS)

    Sherrill, G.; Mattauch, R. J.

    1986-01-01

    Improved design for GaAs electronic device or integrated circuit designed to operate at cryogenic temperatures, customary SiO2 insulating layer replaced by semi-insulating layer of GaAs. Thermal expansions of device and covering layer therefore match closely, and thermal stresses caused by immersion in cryogenic chamber nearly eliminated.

  4. 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas.

    PubMed

    Hale, P J; Madeo, J; Chin, C; Dhillon, S S; Mangeney, J; Tignon, J; Dani, K M

    2014-10-20

    We demonstrate broadband (20 THz), high electric field, terahertz generation using large area interdigitated antennas fabricated on semi-insulating GaAs. The bandwidth is characterized as a function of incident pulse duration (15-35 fs) and pump energy (2-30 nJ). Broadband spectroscopy of PTFE is shown. Numerical Drude-Lorentz simulations of the generated THz pulses are performed as a function of the excitation pulse duration, showing good agreement with the experimental data. PMID:25401668

  5. Micro-inhomogeneity effects and radiation damage in semi-insulating GaAs radiation detectors

    SciTech Connect

    Bates, R.; O`Shea, V.; Raine, C.; Smith, K.M.; Didziulis, R.; Kazukauskas, V.; Rinkevicius, V.; Storasta, J.; Vaitkus, J.

    1998-06-01

    Thermally-stimulated current (TSC) measurements and a detailed analysis of current-voltage (I-V) characteristics have been made on semi-insulating GaAs (SI-GaAs) Schottky diode particle detectors, fabricated on substrates from several supplies, before and after irradiation with 24 GeV protons and 300 MeV pions. The analysis of I-V characteristics allows the determination of the barrier height and bulk resistance in detectors. Changes observed in I-V characteristics and TSC spectra after irradiation are described and a dislocation-net model of radiation-damaged devices is proposed.

  6. Detection of fast neutrons using detectors based on semi-insulating GaAs

    NASA Astrophysics Data System (ADS)

    Zat'ko, B.; Sedlačková, K.; Dubecký, F.; Boháček, P.; Sekáčová, M.; Nečas, V.

    2011-12-01

    Detectors with AuZn square Schottky contact of the area of 2.5 × 2.5 mm2 were fabricated. On the back side, the whole area AuGeNi eutectic ohmic contact was evaporated. The thickness of the base material (semi-insulating GaAs) was 220 μm. The connection of 4 detectors in parallel was tested to get the detection area of 25 mm2. The 239Pu-Be fast neutron source with energies between 0.5 and 12 MeV was used in experimental measurements. We have investigated the optimal thickness of HDPE (high-density polyethylene) conversion layer for fast neutron detection. The spectra of the neutrons were measured by detectors covered by HDPE converter of different thicknesses. The fast neutron detection efficiency proved experimentally was compared with results from simulations performed by MCNPX (Monte Carlo N-Particle eXtended) code.

  7. Light controlled prebreakdown characteristics of a semi-insulating GaAs photoconductive switch

    NASA Astrophysics Data System (ADS)

    Xiangrong, Ma; Wei, Shi; Weili, Ji; Hong, Xue

    2011-12-01

    A 4 mm gap semi-insulating (SI) GaAs photoconductive switch (PCSS) was triggered by a pulse laser with a wavelength of 1064 nm and a pulse energy of 0.5 mJ. In the experiment, when the bias field was 4 kV, the switch did not induce self-maintained discharge but worked in nonlinear (lock-on) mode. The phenomenon is analyzed as follows: an exciton effect contributes to photoconduction in the generation and dissociation of excitons. Collision ionization, avalanche multiplication and the exciton effect can supply carrier concentration and energy when an outside light source was removed. Under the combined influence of these factors, the SI-GaAs PCSS develops into self-maintained discharge rather than just in the light-controlled prebreakdown status. The characteristics of the filament affect the degree of damage to the switch.

  8. Gettering of donor impurities by V in GaAs and the growth of semi-insulating crystals

    NASA Technical Reports Server (NTRS)

    Ko, K. Y.; Lagowski, J.; Gatos, H. C.

    1989-01-01

    Vanadium added to the GaAs melt getters shallow donor impurities (Si and S) and decreases their concentration in the grown crystals. This gettering is driven by chemical reactions in the melt rather than in the solid. Employing V gettering, reproducibly semi-insulating GaAs were grown by horizontal Bridgman and liquid-encapsulated Czochralski techniques, although V did not introduce any midgap energy levels. The compensation mechanism in these crystals was controlled by the balance between the native midgap donor EL2 and residual shallow acceptors. Vanadium gettering contributed to the reduction of the concentration of shallow donors below the concentration of acceptors. The present findings clarify the long-standing controversy on the role of V in achieving semi-insulating GaAs.

  9. Introduction of metastable vacancy defects in electron-irradiated semi-insulating GaAs

    SciTech Connect

    Saarinen, K.; Kuisma, S.; Maekinen, J.; Hautojaervi, P.; Toernqvist, M.; Corbel, C.

    1995-05-15

    Positron-lifetime experiments have been performed to investigate the metastability of the point defects produced in the electron irradiation of semi-insulating GaAs. The measurements in darkness indicate the presence of Ga vacancies and Ga antisite defects in a negative charge state. Illumination at 25 K reveals another type of a defect, which has a vacancy in its metastable state. The metastable vacancies can be observed most effectively after illumination with 1.1-eV photons and they are persistent up to the annealing temperature of 80--100 K. The introduction rate of the metastable defects is about 0.3 cm{sup {minus}1}, which is close to the values reported earlier for the As antisite. The metastable properties of the defects resemble those of the well-known {ital EL}2 center in as-grown GaAs. We associate these defects to As antisites, which exhibit the metastability predicted by the theory: in the metastable configuration the As antisite atom relaxes away from the lattice position, leaving a Ga site vacant.

  10. Nonlinear transport of semi-insulating GaAs in a semiconductor gas discharge structure

    NASA Astrophysics Data System (ADS)

    Yücel Kurt, H.; Salamov, B. G.

    2007-12-01

    Nonlinear transport of a semi-insulating (SI) GaAs photodetector in a semiconductor gas discharge structure (SGDS) is studied experimentally for a wide range of gas pressures p, interelectrode distances d and different diameters D of the detector areas. While being driven with a stationary voltage, the system generates current and discharge light emission (DLE) instabilities with different amplitudes of the oscillations. The transformation of the profile and amplitude of the current density of the filaments in the different regions of the current-voltage characteristic (CVC) has been studied. Instabilities of spatially non-uniform distributions resulting in the formation of multiple current filaments with increasing voltages above the critical values have been observed. It is shown that the interelectrode distance only plays a passive role and is not responsible for the appearance of the DLE instability under the experimental conditions. At the same time, the expanded range of current and DLE oscillations are observed for different diameters D of the infrared (IR) photodetector areas. An SGDS with an N-shaped CVC is analysed using both the current and DLE data which show the electrical instability in the GaAs photodetector. It is found that the application of high feeding voltage to this photodetector gives rise to a non-uniform spatial distribution of the DLE, which disturbs the operation of the system. The experiment also presents a new method to study and visualize the electrical instabilities in a high-resistivity IR photodetector of large diameter.

  11. High resolution scanning photoluminescence characterization of semi-insulating GaAs using a laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Marek, J.; Elliot, A. G.; Wilke, V.; Geiss, R.

    1986-12-01

    Spatially resolved photoluminescence properties of semi-insulating, liquid encapsulated Czochralski-grown GaAs substrates are analyzed with a laser scanning microscope. The improved resolution of the laser scanning microscope results in the observation of single dislocations within the subgrain boundaries of the polyganized dislocation cell network for the first time by photoluminescence. Both the cell structure and the Cottrell cloud are clearly resolved.

  12. Continuous wave terahertz radiation from antennas fabricated on C¹²-irradiated semi-insulating GaAs.

    PubMed

    Deshmukh, Prathmesh; Mendez-Aller, M; Singh, Abhishek; Pal, Sanjoy; Prabhu, S S; Nanal, Vandana; Pillay, R G; Döhler, G H; Preu, S

    2015-10-01

    We demonstrate continuous wave (CW) terahertz generation from antennas fabricated on C12-irradiated semi-insulating (SI) GaAs substrates. The dark current drawn by the antennas fabricated on irradiated substrates is ∼3 to 4 orders of magnitude lower compared to antennas fabricated on un-irradiated substrates, while the photocurrents decrease by only ∼1.5 orders of magnitude. This can be attributed to the strong reduction of the carrier lifetime that is 2.5 orders of magnitude, with values around τ(rec)=0.2  ps. Reduced thermal heating allows for higher bias voltages to the irradiated antenna devices resulting in higher CW terahertz power, just slightly lower than that of low-temperature grown GaAs (LT GaAs)at similar excitation conditions. PMID:26421576

  13. Structural and optical properties of Cr-doped semi-insulating GaN epilayers

    SciTech Connect

    Mei, F.; Wu, K. M.; Pan, Y.; Han, T.; Liu, C.; Gerlach, J. W.; Rauschenbach, B.

    2008-09-15

    The properties of Cr-doped GaN epilayers grown by rf-plasma-assisted molecular beam epitaxy were studied. The deep acceptor nature of Cr was used to grow semi-insulating GaN epilayers on sapphire substrates for electronic device applications. The room-temperature (RT) sheet resistivity of the epilayers reached 10{sup 10} {omega}/square. The activation energy of dark conductivity was about 0.48 eV. Step-graded Al{sub x}Ga{sub 1-x}N/GaN (x=0.3-0.2) superlattices (SLs) were designed to filter dislocations. Transmission electron microscopy images showed that the SLs can dramatically reduce dislocation density. Al{sub 0.35}Ga{sub 0.65}N/GaN heterostructure grown on Cr-doped semi-insulating GaN epilayer exhibited a RT mobility of 960 cm{sup 2}/V s and sheet carrier density of 2.1x10{sup 13} cm{sup -2}.

  14. Study on the high-power semi-insulating GaAs PCSS with quantum well structure

    NASA Astrophysics Data System (ADS)

    Luan, Chongbiao; Wang, Bo; Huang, Yupeng; Li, Xiqin; Li, Hongtao; Xiao, Jinshui

    2016-05-01

    A high-power semi-insulating GaAs photoconductive semiconductor switch (PCSS) with quantum well structure was fabricated. The AlGaAs layer was deposited on the surface of the GaAs material, and the reflecting film and the antireflection film have been made on the surface of the GaAs and AlGaAs, respectively. When the prepared PCSS worked at a bias voltage of 9.8 kV and triggered by a laser pulse with an incident optical energy of 5.4 mJ, a wavelength of 1064 nm and an optical pulse width of 25 ns, the on-state resistance of the AlGaAs/GaAs PCSS was only 0.45 Ω, and the longevity of the AlGaAs/GaAs PCSS was larger than 106 shots. The results show that this structure reduces the on-state resistance and extends the longevity of the GaAs PCSS.

  15. Photocurrent spectra of semi-insulating GaAs M-S-M diodes: Role of the contacts

    NASA Astrophysics Data System (ADS)

    Dubecký, František; Oswald, Jiří; Kindl, Dobroslav; Hubík, Pavel; Dubecký, Matúš; Gombia, Enos; Šagátová, Andrea; Boháček, Pavol; Sekáčová, Mária; Nečas, Vladimír

    2016-04-01

    Current-voltage (I-V) characteristics and photocurrent (PC) spectra (600-1000 nm) of the metal-semiconductor-metal (M-S-M) structures based on high-quality undoped semi-insulating (SI) GaAs with AuGeNi backside contact and different semitransparent top contacts (AuGeNi, Pt, Gd and Nd) are reported, and analysed with the help of a simple physical model. It is shown that the dominant peak in the PC spectra and the change of photocurrent sign can be explained by a presence of two Schottky-like barriers at the top and bottom surfaces. In addition, I-V and PC results show dependence on the bias and its polarity, and on the contact metal used. The possible origins of these effects are discussed.

  16. Influence of EL2 deep level on photoconduction of semi-insulating GaAs under ultrashort pulse photoinjection

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Xie, Guangyong

    2016-02-01

    To investigate the influence of EL2 deep level on photoconduction of in semi-insulating GaAs (SI-GaAs), a 3 mm-electrode-gap lateral SI-GaAs photoconductive chip was manufactured and tested by using ultrashort pulse laser with 1064 nm wavelength, 10 ns pulsewidth, 3.0 mm light spot diameter and single pulse energy mean of 3.0 mJ. Based on the experimental results and the theory of trapping effect, the photon absorption process of EL2 defects in SI-GaAs is analyzed. For the influence of EL2 deep level, the lifetime of the electron gets shorter and the persistent photoconductivity (PPC) is significant. With increasing of voltage, the decay time constant of photoconduction is reduced and the decay index gets bigger for the ultrashort pulse photoinjection.

  17. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs.

    PubMed

    Tani, M; Matsuura, S; Sakai, K; Nakashima, S

    1997-10-20

    Terahertz radiation was generated with several designs of photoconductive antennas (three dipoles, a bow tie, and a coplanar strip line) fabricated on low-temperature-grown (LT) GaAs and semi-insulating (SI) GaAs, and the emission properties of the photoconductive antennas were compared with each other. The radiation spectrum of each antenna was characterized with the photoconductive sampling technique. The total radiation power was also measured by a bolometer for comparison of the relative radiation power. The radiation spectra of the LT-GaAs-based and SI-GaAs-based photoconductive antennas of the same design showed no significant difference. The pump-power dependencies of the radiation power showed saturation for higher pump intensities, which was more serious in SI-GaAs-based antennas than in LT-GaAs-based antennas. We attributed the origin of the saturation to the field screening of the photocarriers. PMID:18264312

  18. Gallium vacancies and gallium antisites as acceptors in electron-irradiated semi-insulating GaAs

    SciTech Connect

    Corbel, C.; Pierre, F. ); Saarinen, K.; Hautojaervi, P. ); Moser, P. )

    1992-02-15

    Positron-lifetime measurements show that acceptors are produced in semi-insulating GaAs by 1.5-MeV electron irradiation at 20 K. Two types of acceptors can be separated. The first ones are negative vacancy-type defects which anneal out over a very broad range of temperature between 77 and 500 K. The second ones are negative ion-type defects which are stable still at 450 K. The data show that these two types of defects are independent and do not form close pairs. We attribute both to gallium-related defects. We identify the ion-type acceptors as isolated gallium antisites. The vacancy-type acceptors are identified as gallium vacancies which are isolated or involved in negatively charged complexes. The introduction rate of the gallium antisite is estimated to be 1.8{plus minus}0.3 cm{sup {minus}1} in the fluence range 10{sup 17}--10{sup 18} cm{sup {minus}2} for 1.5-MeV electron irradiation at 20 K.

  19. Role of deep-level trapping on the surface photovoltage of semi-insulating GaAs

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Ruda, Harry E.

    1997-04-01

    Dual-beam (bias and probe) transient surface photovoltage (SPV) measurements were made on undoped semi-insulating GaAs over an extended temperature range. Above 270 K, SPV recovery transients following a bias pulse were shown to reflect near-surface conductivity changes; these are in turn controlled by surface-interface-state thermal emission. Owing to the absence of a strong surface electric field in this material, the emitted carriers are not immediately removed from the near-surface region. The recapturing of the emitted carriers is shown to be responsible for nonexponential conductivity and reciprocal-SPV transients. This behavior is considered to be characteristic of relaxation-type semiconductors with near-surface ungated structures. Below 150 K, the photoinduced transition of EL2 from its ground to metastable state EL2 was shown to change the effective electron and hole mobilities and augment the SPV signals immediately following the bias pulse. Thermally induced EL2 recovery above 120 K decreases the SPV signal from its maximum. This decay transient was analyzed and the decay rate fitted to a single exponential. An activation energy of 0.32 eV and a preexponential constant of 1.9×1012 s-1 were obtained, and attributed to the thermal recovery rate for EL2.

  20. Simulating and modeling the breakdown voltage in a semi-insulating GaAs P+N junction diode

    NASA Astrophysics Data System (ADS)

    Resfa, A.; Menezla, Brahimi. R.; Benchhima, M.

    2014-08-01

    This work aims to determine the characteristic I (breakdown voltage) of the inverse current in a GaAs PN junction diode, subject to a reverse polarization, while specifying the parameters that influence the breakdown voltage of the diode. In this work, we simulated the behavior of the ionization phenomenon by impact breakdown by avalanche of the PN junctions, subject to an inverse polarization. We will take into account both the trapping model in a stationary regime in the P+N structure using like material of basis the III-V compounds and mainly the GaAs semi-insulating in which the deep centers have in important densities. We are talking about the model of trapping in the space charge region (SCR) and that is the trap density donor and acceptor states. The carrier crossing the space charge region (SCR) of W thickness creates N electron—hole pairs: for every created pair, the electron and the hole are swept quickly by the electric field, each in an opposite direction, which comes back, according to an already accepted reasoning, to the crossing of the space charge region (SCR) by an electron or a hole. So the even N pair created by the initial particle provoke N2 ionizations and so forth. The study of the physical and electrical behaviour of semiconductors is based on the influence of the presence of deep centers on the characteristic I(V) current-tension, which requires the calculation of the electrostatic potential, the electric field, the integral of ionization, the density of the states traps, the diffusion current of minority in the regions (1) and (3), the current thermal generation in the region (2), the leakage current in the surface, and the breakdown voltage.

  1. Lateral npn junction and semi-insulating GaAs current confinement structure for index-guided InGaAs/AlGaAs lasers by molecular beam epitaxy

    SciTech Connect

    Takamori, Takeshi; Watanabe, Kenji; Kamijoh, Takeshi )

    1993-06-01

    A novel current confinement structure with a lateral npn junction and a semi-insulating GaAs (SI-GaAs) is examined for an index-guided InGaAs/AlGaAs strained quantum-well laser. An amphoteric doping of Si in GaAs and AlGaAs is used to form the lateral npn structure grown over a channeled patterned low-temperature grown Si-GaAs layer. A threshold current of 7.4 mA and total external differential quantum efficiency of 59% under room-temperature continuous-wave operation are achieved with devices fabricated by a self-aligned process. The device with AR-HR coatings emitted the light output over 300 mW.

  2. Photo-induced changes of hydrogen bonding in semi-insulating iron-doped indium phosphide

    NASA Astrophysics Data System (ADS)

    Pajot, B.; Song, C.-Y.; Darwich, R.; Gendron, F.; Ewels, C.

    1995-09-01

    After illumination with 1-1.3 eV photons during cooling-down, metastable PH modes are observed by IR absorption at 5 K in semi-insulating InP:Fe. They correlate with the photo-injection of holes, but not with a change of the charge state of the H-related centres present at equilibrium. They are explained by a change of the bonding of H, induced by hole trapping, from IR-inactive centres to PH-containing centres, stable only below 80 K. One metastable centre has well-defined geometrical parameters and the other one could be located in a region near from the interface with (Fe,P) precipitates.

  3. The reverse mode of the photo activated charge domain in high field biased semi-insulating GaAs

    NASA Astrophysics Data System (ADS)

    Qu, Guanghui; Shi, Wei

    2013-02-01

    The nonlinear accumulation of the photogenerated electrons in high field biased SI-GaAs has been defined as photo activated charge domain (PACD). The transient transport dynamics of the PACD is investigated. The result shows that the PACD, working as a reverse gun dipole domain when biased electric field much higher than 4 kV/cm, and the reverse mode of the PACD could dominate the electric field shielding by its main electric field ultrafast and exponential rising against the bias field. Such mechanisms could play an important role in GaAs THz antenna, GaAs photoconductive semiconductor switch, and the other ultrafast GaAs devices.

  4. High Resolution Parameter-Space from a Two-Level Model on Semi-Insulating GaAs

    NASA Astrophysics Data System (ADS)

    da Silva, S. L.; Viana, E. R.; de Oliveira, A. G.; Ribeiro, G. M.; da Silva, R. L.

    Semi-insulating Gallium Arsenide (SI-GaAs) samples experimentally show, under high electric fields and even at room temperature, negative differential conductivity in N-shaped form (NNDC). Since the most consolidated model for n-GaAs, namely, "the model", proposed by E. Schöll was not capable to generate the NNDC curve for SI-GaAs, in this work we have proposed an alternative model. The model proposed, "the two-valley model" is based on the minimal set of generation-recombination equations for two valleys inside of the conduction band, and an equation for the drift velocity as a function of the applied electric field, that covers the physical properties of the nonlinear electrical conduction of the SI-GaAs system. The "two-valley model" was capable to generate theoretically the NNDC region for the first time, and with that, we were able to build a high resolution parameter-space of the periodicity (PSP) using a Periodicity-Detection (PD) routine. In the parameter-space were observed self-organized periodic structures immersed in chaotic regions. The complex regions are presented in a "shrimp" shape rotated around a focal point, which forms in large-scale a "snail shell" shape, with intricate connections between different "shrimps". The knowledge of detailed information on parameter spaces is crucial to localize wide regions of smooth and continuous chaos.

  5. EBIC spectroscopy - A new approach to microscale characterization of deep levels in semi-insulating GaAs

    NASA Technical Reports Server (NTRS)

    Li, C.-J.; Sun, Q.; Lagowski, J.; Gatos, H. C.

    1985-01-01

    The microscale characterization of electronic defects in (SI) GaAs has been a challenging issue in connection with materials problems encountered in GaAs IC technology. The main obstacle which limits the applicability of high resolution electron beam methods such as Electron Beam-Induced Current (EBIC) and cathodoluminescence (CL) is the low concentration of free carriers in semiinsulating (SI) GaAs. The present paper provides a new photo-EBIC characterization approach which combines the spectroscopic advantages of optical methods with the high spatial resolution and scanning capability of EBIC. A scanning electron microscope modified for electronic characterization studies is shown schematically. The instrument can operate in the standard SEM mode, in the EBIC modes (including photo-EBIC and thermally stimulated EBIC /TS-EBIC/), and in the cathodo-luminescence (CL) and scanning modes. Attention is given to the use of CL, Photo-EBIC, and TS-EBIC techniques.

  6. The influence of high-energy electrons irradiation on the electrical properties of Schottky barrier detectors based on semi-insulating GaAs

    NASA Astrophysics Data System (ADS)

    Zatko, B.; Sagatova, A.; Bohacek, P.; Sedlackova, K.; Sekacová, M.; Arbet, J.; Necas, V.

    2016-01-01

    In this work we fabricated detectors based on semi-insulating GaAs and studied their electrical properties (current-voltage characteristics, galvanomagnetic measurements) after irradiation with 5 MeV electrons from a linear accelerator up to a dose of 104 kGy. A series of detectors were prepared using Ti/Pt/Au Schottky contact with 1 mm diameter. The thickness of the base material was about 230 μm. A whole area Ni/AuGe/Au ohmic contact was evaporated on the back side. For galvanomagnetic measurements we used three samples from the same wafer. All samples were irradiated by a pulse beam of 5 MeV electrons using the linear accelerator in 11 steps, where the accumulative dose increased from 1 kGy up to 104 kGy. Also different dose rates (20, 40 and 80 kGy/h) were applied to the samples. After each irradiation step we performed electrical measurement of each sample. We analyze the electron Hall mobility, resistivity, electron Hall concentration, breakdown voltage and reverse current of samples before and after irradiation using different dose rates.

  7. Semi-insulating GaAs and Au Schottky barrier photodetectors for near-infrared detection (1280 nm)

    NASA Astrophysics Data System (ADS)

    Nusir, A. I.; Makableh, Y. F.; Manasreh, O.

    2015-08-01

    Schottky barriers formed between metal (Au) and semiconductor (GaAs) can be used to detect photons with energy lower than the bandgap of the semiconductor. In this study, photodetectors based on Schottky barriers were fabricated and characterized for the detection of light at wavelength of 1280 nm. The device structure consists of three gold fingers with 1.75 mm long and separated by 0.95 mm, creating an E shape while the middle finger is disconnected from the outer frame. When the device is biased, electric field is stretched between the middle finger and the two outermost electrodes. The device was characterized by measuring the current-voltage (I-V) curve at room temperature. This showed low dark current on the order of 10-10 A, while the photocurrent was higher than the dark current by four orders of magnitude. The detectivity of the device at room temperature was extracted from the I-V curve and estimated to be on the order of 5.3x1010 cm.Hz0.5/W at 5 V. The step response of the device was measured from time-resolved photocurrent curve at 5 V bias with multiple on/off cycles. From which the average recovery time was estimated to be 0.63 second when the photocurrent decreases by four orders of magnitude, and the average rise time was measured to be 0.897 second. Furthermore, the spectral response spectrum of the device exhibits a strong peak close to the optical communication wavelength (~1.3 μm), which is attributed to the internal photoemission of electrons above the Schottky barrier formed between Au and GaAs.

  8. High-Resistivity Semi-insulating AlSb on GaAs Substrates Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Vaughan, E. I.; Addamane, S.; Shima, D. M.; Balakrishnan, G.; Hecht, A. A.

    2016-04-01

    Thin-film structures containing AlSb were grown using solid-source molecular beam epitaxy and characterized for material quality, carrier transport optimization, and room-temperature radiation detection response. Few surface defects were observed, including screw dislocations resulting from shear strain between lattice-mismatched layers. Strain was also indicated by broadening of the AlSb peak in x-ray diffraction measurements. Threading dislocations and interfacial misfit dislocations were seen with transmission electron microscopy imaging. Doping of the AlSb layer was introduced during growth using GaTe and Be to determine the effect on Hall transport properties. Hall mobility and resistivity were largest for undoped AlSb samples, at 3000 cm2/V s and 106 Ω cm, respectively, and increased doping levels progressively degraded these values. To test for radiation response, p-type/intrinsic/ n-type (PIN) diode structures were grown using undoped AlSb on n-GaAs substrates, with p-GaSb cap layers to protect the AlSb from oxidation. Alpha-particle radiation detection was achieved and spectra were produced for 241Am, 252Cf, and 239Pu sources. Reducing the detector surface area increased the pulse height observed, as expected based on voltage-capacitance relationships for diodes.

  9. Implanted Si atoms shifting between Ga sites and As sites by thermal stress in conductive-layer GaAs crystals on semi-insulating substrates

    NASA Astrophysics Data System (ADS)

    Saito, Yasuyuki

    1992-04-01

    Large (0.8 V order) discrepancies of threshold voltage Vth between the predicted Vth values by the Lindhard-Scharff-Schio/tt Gaussian approximate calculation and the Vth of the tungsten nitride (WNx) self-alignment (SA) gate GaAs metal-semiconductor field-effect transistors (MESFETs) were observed. These discrepancies were confirmed by the comparison of the Vth of the WNx-SA-gate MESFETs and the Vth of the (N+: high carrier concentration layers self-aligned of source-drain electrodes)-less conventional MESFETs on 2-in.-diam semi-insulating substrates from liquid-encapsulated-Czochralski-technique-grown <100> boules. The discrepancy was also analyzed by the capacitance-voltage (C-V) measurement of large-diameter (440 μm) Schottky diodes which were built into the MESFET arrays. It was found that for obtained SA-process carrier depth profiles (Si, 150 keV, 3×1012 cm-2) the carrier concentration at a depth of 0.25 μm decreased from 5.3×1016 to 2.0×1016 cm-3, but, on the other hand, the peak carrier concentration slightly decreased from 12.8×1016 to 12.4×1016 cm-3. By the calculation for Vth on the basis of the actual C-V carrier depth profiles, it was found that the carrier concentration decrease was comparable to the Vth variation (0.8 V). Furthermore, the Vth variation of the shallow channel implantation (50 keV) was comparable to that of the deep channel implantation (150 keV). As a result of the experiment and analysis, it was found that the large Vth variation for the SA N+ process was caused by reoccupation (Ga sites to As sites) of implanted Si atoms in the channel active-layer crystal by tensile stress formed by the thermal-expansion coefficient difference between chemical-vapor deposition (CVD) phosphosilicate glass (or CVD SiO2) film and (100) GaAs substrate crystal. The Si atom reoccupation quantity was, for the first time, explained by the Si atom compensation ratio equation as a function of the bond length (Si-As and Si-Ga) variation, an equation

  10. A stress gettering mechanism in semi-insulating, copper-contaminated gallium arsenide

    NASA Astrophysics Data System (ADS)

    Kang, Nam Soo; Zirkle, Thomas E.; Schroder, Dieter K.

    1992-07-01

    We have demonstrated a stress gettering mechanism in semi-insulating, copper-contaminated gallium arsenide (GaAs) using cathodoluminescence (CL), thermally stimulated current spectroscopy (TSC), and low temperature Fourier transform infrared spectroscopy (FTIR). Cathodoluminescence shows a local gettering effect around dislocation cores in bulk semi-insulating GaAs qualitatively. This gettering result was confirmed by low temperature FTIR data, which show absorption features resulting from the transition of electrons from the valence band to copper levels. The energy level of each absorption shoulder corresponds to the various copper levels in GaAs. After gettering, the absorption depth at each shoulder decreases. Thermally stimulated current measurements show changes after copper doping. The characteristic returns to that of uncontaminated GaAs after gettering. On the basis of these qualitative and quantitative data, we conclude that copper was gettered, and we propose a stress gettering mechanism in semi-insulating, copper-contaminated GaAs on the basis of dislocation cores acting as localized gettering sites.

  11. A comparative study of the defects in Fe-doped or undoped semi-insulating InP after high temperature annealing

    SciTech Connect

    Cherkaoui, K.; Kallel, S.; Marrakchi, G.; Karoui, A.

    1996-12-31

    Fe-doped or undoped semi-insulating InP samples submitted to high temperature annealing process have been studied by Photoinduced current transient spectroscopy (PICTS) in order to compare the traps observed. The PICTS spectra of these samples show separately the presence of a multitude of traps having activation energies ranging from 0.12 eV to 0.66 eV. The Fe{sub In} trap level has not been clearly observed in all the samples. The comparison of the thermal parameters of the observed traps allows to assign some of them to a same defect. However, the identification seems to be less evident concerning other traps and should be rather related to the properties of the starting material.

  12. Room-temperature particle detectors with guard rings based on semi-insulating InP co-doped with Ti and Zn

    NASA Astrophysics Data System (ADS)

    Yatskiv, R.; Zdansky, K.; Pekarek, L.

    2009-01-01

    Particle detectors made with a guard-ring (GR) electrode, operating at room temperature, have been studied. The detectors were fabricated on a semi-insulating InP crystal co-doped with Ti and Zn, grown using the Liquid-Encapsulated Czochralski technique. The detection performance of the particle detectors was evaluated using alpha particles emitted from a 241Am source. Good detector performance has been achieved with measured charge-collection efficiencies of 99.9% and 98.2% and FWHM energy resolutions of 0.9% and 2.1%. The measurements were carried out at 230 K for negative and positive bias voltages of the irradiated electrode. The good performance is due to the SI properties of the material which has been achieved by doping with suitable Ti atoms and co-doping with a low concentration of Zn acceptors, sufficient to fully compensate shallow donors. Electron and hole charge-collection efficiencies (CCEs) were measured at various temperatures. At room temperature, unlike at low temperature ( T<250 K), the hole CCE was better than the electron CCE, which can be explained by the presence of electron-trapping centres in InP with a temperature-dependent capture rate.

  13. Measured and computed performance of a microstrip filter composed of semi-insulating GaAs on a fused quartz substrate

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Dengler, Robert J.; Oswald, John E.; Sheen, David M.; Ali, Sami M.

    1991-01-01

    The performance of a microstrip hammerhead filter that has been fabricated on an electrically thin layer of semiinsulating GaAs backed by a fused quartz substrate was measured and compared to results of a three-dimensional finite-difference time-domain (FD-TD) program used to calculate the response of the filter both with and without the GaAs layer. The program, presented by Sheen et al. (1990), discretizes the entire structure and then simulates the propagation of a Gaussian pulse through the filter. The microstrip filter is intended for applications involving ultrathin lifted-off or etched-back GaAs containing both active devices and passive microstrip circuitry backed by a much thicker mechanically rigid low-loss, low-dielectric-constant substrate. The low-pass characteristics of the hammerhead filter with the intermediate GaAs layer are compared with those of the same filter on quartz alone. Both the measured and computed data show a significant shift in cutoff frequency (about 10 percent at the 3 dB points) for a GaAs layer that is 0.007 wavelengths thick at 4 GHz.

  14. High-resolution transmission electron microscopy study on the growth modes of GaSb islands grown on a semi-insulating GaAs (001) substrate

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Lee, J. Y.; Noh, Y. G.; Kim, M. D.; Oh, J. E.

    2007-06-01

    The initial growth behaviors of GaSb on a GaAs substrate were studied using a high-resolution electron microscope (HRTEM). Four types of GaSb islands were observed by HRTEM. HRTEM micrographs showed that strain relaxation mechanisms were different in the four types of islands. Although 90° misfit dislocations relieve misfit strain in the islands, additional mechanisms are required to relax the remaining strain. The existence of elastic deformation near the surface related to dislocations and intermediate layers between GaSb and GaAs were demonstrated in island growths. Finally, the generation of planar defects to relieve strain was observed in a specific GaSb growth.

  15. Anomalous diffusion of Ga and As from semi-insulating GaAs substrate into MOCVD grown ZnO films as a function of annealing temperature and its effect on charge compensation

    SciTech Connect

    Biswas, Pranab; Banerji, P.; Halder, Nripendra N.; Kundu, Souvik; Shripathi, T.; Gupta, M.

    2014-05-15

    The diffusion behavior of arsenic (As) and gallium (Ga) atoms from semi-insulating GaAs (SI-GaAs) into ZnO films upon post-growth annealing vis-à-vis the resulting charge compensation was investigated with the help of x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy. The films, annealed at 600 ºC and 700 ºC showed p-type conductivity with a hole concentration of 1.1 × 10{sup 18} cm{sup −3} and 2.8 × 10{sup 19} cm{sup −3} respectively, whereas those annealed at 800 ºC showed n-type conductivity with a carrier concentration of 6.5 × 10{sup 16} cm{sup −3}. It is observed that at lower temperatures, large fraction of As atoms diffused from the SI-GaAs substrates into ZnO and formed acceptor related complex, (As{sub Zn}–2V{sub Zn}), by substituting Zn atoms (As{sub Zn}) and thereby creating two zinc vacancies (V{sub Zn}). Thus as-grown ZnO which was supposed to be n-type due to nonstoichiometric nature showed p-type behavior. On further increasing the annealing temperature to 800 ºC, Ga atoms diffused more than As atoms and substitute Zn atoms thereby forming shallow donor complex, Ga{sub Zn}. Electrons from donor levels then compensate the p-type carriers and the material reverts back to n-type. Thus the conversion of carrier type took place due to charge compensation between the donors and acceptors in ZnO and this compensation is the possible origin of anomalous conduction in wide band gap materials.

  16. Photoluminescence of Mn+ doped GaAs

    NASA Astrophysics Data System (ADS)

    Zhou, Huiying; Qu, Shengchun; Liao, Shuzhi; Zhang, Fasheng; Liu, Junpeng; Wang, Zhanguo

    2010-10-01

    Photoluminescence is one of the most useful techniques to obtain information about optoelectronic properties and defect structures of materials. In this work, the room-temperature and low temperature photoluminescence of Mn-doped GaAs were investigated, respectively. Mn-doped GaAs structure materials were prepared by Mn+ ion implantation at room temperature into GaAs. The implanted samples were subsequently annealed at various temperatures under N2 atmosphere to recrystallize the samples and remove implant damage. A strong peak was found for the sample annealed at 950 °C for 5 s. Transitions near 0.989 eV (1254 nm), 1.155 eV (1074 nm) and 1.329 eV (933 nm) were identified and formation of these emissions was analyzed for all prepared samples. This structure material could have myriad applications, including information storage, magnet-optical properties and energy level engineering.

  17. GaAs MESFET with lateral non-uniform doping

    NASA Technical Reports Server (NTRS)

    Wang, Y. C.; Bahrami, M.

    1983-01-01

    An analytical model of the GaAs MESFET with arbitrary non-uniform doping is presented. Numerical results for linear lateral doping profile are given as a special case. Theoretical considerations predict that better device linearity and improved F(T) can be obtained by using linear lateral doping when doping density increases from source to drain.

  18. Mixed conduction in semi-insulating gallium arsenide

    NASA Astrophysics Data System (ADS)

    Winter, J. J.; Leupold, H. A.; Ross, R. L.; Ballato, A.

    1982-12-01

    Hall effect and conductivity measurements made on semi-insulating bulk GaAs are examined by a new approach to mixed conduction analysis. Based on Fermi level and electron mobility analyses of conductivity and Hall coefficient, it uses revised values of effective densities of states at the band edges, and electron/hole mobility ratios recently adopted by other workers. The treatment provides a visual analysis of the system in terms of the electrical parameters and impurity densities, and establishes criteria for the onset of mixed conduction.

  19. Advanced BCD technology with vertical DMOS based on a semi-insulation structure

    NASA Astrophysics Data System (ADS)

    Kui, Ma; Xinghua, Fu; Jiexin, Lin; Fashun, Yang

    2016-07-01

    A new semi-insulation structure in which one isolated island is connected to the substrate was proposed. Based on this semi-insulation structure, an advanced BCD technology which can integrate a vertical device without extra internal interconnection structure was presented. The manufacturing of the new semi-insulation structure employed multi-epitaxy and selectively multi-doping. Isolated islands are insulated with the substrate by reverse-biased PN junctions. Adjacent isolated islands are insulated by isolation wall or deep dielectric trenches. The proposed semi-insulation structure and devices fixed in it were simulated through two-dimensional numerical computer simulators. Based on the new BCD technology, a smart power integrated circuit was designed and fabricated. The simulated and tested results of Vertical DMOS, MOSFETs, BJTs, resistors and diodes indicated that the proposed semi-insulation structure is reasonable and the advanced BCD technology is validated. Project supported by the National Natural Science Foundation of China (No. 61464002), the Science and Technology Fund of Guizhou Province (No. Qian Ke He J Zi [2014]2066), and the Dr. Fund of Guizhou University (No. Gui Da Ren Ji He Zi (2013)20Hao).

  20. Photoluminescence of Si-doped GaAs epitaxial layers

    SciTech Connect

    Yaremenko, N. G. Karachevtseva, M. V.; Strakhov, V. A.; Galiev, G. B.; Mokerov, V. G.

    2008-12-15

    The effect of arsenic pressure on the amphoteric behavior of Si during the growth of the Si-doped (100)-, (111)Ga-, and (111)As-oriented GaAs layers is studied by photoluminescence spectroscopy. The edge luminescence band is examined, and the concentration and the degree of compensation as functions of the arsenic pressure are determined. Nonstoichiometry defects in GaAs layers grown with a deficit and an excess of arsenic are studied. It is shown that the defects formed in the (111)Ga- and (111)As-oriented layers are different in nature.

  1. Photoluminescence of Be implanted Si-doped GaAs

    SciTech Connect

    Kroon, R.E.; Botha, J.R.; Neethling, J.H.; Drummond, T.J.

    1999-11-12

    Degenerately doped n-type GaAs produces band-to-band luminescence with the peak energy dependent on the carrier concentration. In this study the photoluminescence of Si-doped GaAs is examined after implantation with high energy Be ions and annealing. The band-to-band peak energy in the unimplanted (reference) material is shown to be smaller than reported values in Te-doped GaAs of the same carrier concentration. This is attributed to compensation in the Si doped material as a result of its amphoteric nature. For the implanted samples, no luminescence was recorded for the unannealed samples or those annealed at 400 C and 500 C. Comparing the relative peak intensities from material annealed at 600 C for 15 min and 30 min indicates an increase in the number of As vacancies with anneal time. For samples annealed at 700 C and 800 C, the dominant luminescence is associated with Ga{sub As} antisite defects. It is suggested that formation of these defects occurs predominantly only at these higher temperatures. Crystal recovery as measured by the luminescence intensity increased with both anneal temperature and time. For the implanted sample annealed at 800 C for 15 min, the dominant peak height was 25% of that from the reference sample.

  2. Optimum doping achieves high quantum yields in GaAs photoemitters

    NASA Technical Reports Server (NTRS)

    Sonnenberg, H.

    1971-01-01

    Experimental data indicate that optimum doping exists. Measured quantum yield curves indicate optimum overall response is obtained in GaAs emitters with doping in high 10 to the 18th power per cu cm range. Doping for optimum response is not necessarily in this range.

  3. Doping incorporation paths in catalyst-free Be-doped GaAs nanowires

    SciTech Connect

    Casadei, Alberto; Heiss, Martin; Colombo, Carlo; Ruelle, Thibaud; Fontcuberta i Morral, Anna; Krogstrup, Peter; Roehr, Jason A.; Upadhyay, Shivendra; Sorensen, Claus B.; Nygard, Jesper

    2013-01-07

    The incorporation paths of Be in GaAs nanowires grown by the Ga-assisted method in molecular beam epitaxy have been investigated by electrical measurements of nanowires with different doping profiles. We find that Be atoms incorporate preferentially via the nanowire side facets, while the incorporation path through the Ga droplet is negligible. We also show that Be can diffuse into the volume of the nanowire giving an alternative incorporation path. This work is an important step towards controlled doping of nanowires and will serve as a help for designing future devices based on nanowires.

  4. Comparative research on the transmission-mode GaAs photocathodes of exponential-doping structures

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Qian, Yun-Sheng; Zhang, Yi-Jun; Chang, Ben-Kang

    2012-03-01

    Early research has shown that the varied doping structures of the active layer of GaAs photocathodes have been proven to have a higher quantum efficiency than uniform doping structures. On the basis of our early research on the surface photovoltage of GaAs photocathodes, and comparative research before and after activation of reflection-mode GaAs photocathodes, we further the comparative research on transmission-mode GaAs photocathodes. An exponential doping structure is the typical varied doping structure that can form a uniform electric field in the active layer. By solving the one-dimensional diffusion equation for no equilibrium minority carriers of transmission-mode GaAs photocathodes of the exponential doping structure, we can obtain the equations for the surface photovoltage (SPV) curve before activation and the spectral response curve (SRC) after activation. Through experiments and fitting calculations for the designed material, the body-material parameters can be well fitted by the SPV before activation, and proven by the fitting calculation for SRC after activation. Through the comparative research before and after activation, the average surface escape probability (SEP) can also be well fitted. This comparative research method can measure the body parameters and the value of SEP for the transmission-mode GaAs photocathode more exactly than the early method, which only measures the body parameters by SRC after activation. It can also help us to deeply study and exactly measure the parameters of the varied doping structures for transmission-mode GaAs photocathodes, and optimize the Cs-O activation technique in the future.

  5. Dielectric properties of semi-insulating silicon at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy; Kamiński, Paweł; Kozłowski, Roman; Surma, Barbara; Dierlamm, Alexander; Kwestarz, Michał

    2015-08-01

    The permittivity and dielectric loss tangent of high-purity silicon with semi-insulating properties achieved by the irradiation with 23-MeV protons have been measured at frequencies from 1 GHz to 15 GHz. The dielectric losses were separated from the conductor losses on the basis of the total loss tangent measurements versus frequency. The resistivity measurements of the material performed at radio frequencies (RF) by means of the capacitance spectroscopy method have shown the non-uniform resistivity distribution in the direction perpendicular to the surface of the semi-insulating wafer. The excellent agreement between the resistivity measurements results at RF and those obtained by using microwave methods have been achieved. It has been confirmed that high-purity, semi-insulating silicon is practically non-dispersive and possesses extremely low dielectric losses that are constant to within experimental errors in the frequency range from 1 GHz to 350 GHz. In this frequency range, the dielectric loss tangent of semi-insulating silicon is equal to 1.2 ×10-5 .

  6. Structural and optical characterization of Mg-doped GaAs nanowires grown on GaAs and Si substrates

    SciTech Connect

    Falcão, B. P. Leitão, J. P.; Correia, M. R.; Soares, M. R.; Morales, F. M.; Mánuel, J. M.; Garcia, R.; Gustafsson, A.; Moreira, M. V. B.; Oliveira, A. G. de; González, J. C.

    2013-11-14

    We report an investigation on the morphological, structural, and optical properties of large size wurtzite GaAs nanowires, low doped with Mg, grown on GaAs(111)B and Si(111) substrates. A higher density of vertical nanowires was observed when grown upon GaAs(111)B. Very thin zinc-blende segments are observed along the axis of the nanowires with a slightly higher linear density being found on the nanowires grown on Si(111). Low temperature cathodoluminescence and photoluminescence measurements reveal an emission in the range 1.40–1.52 eV related with the spatial localization of the charge carriers at the interfaces of the two crystalline phases. Mg related emission is evidenced by cathodoluminescence performed on the GaAs epilayer. However, no direct evidence for a Mg related emission is found for the nanowires. The excitation power dependency on both peak energy and intensity of the photoluminescence gives a clear evidence for the type II nature of the radiative transitions. From the temperature dependence on the photoluminescence intensity, non-radiative de-excitation channels with different activation energies were found. The fact that the estimated energies for the escape of the electron are higher in the nanowires grown on Si(111) suggests the presence of wider zinc-blende segments.

  7. Diffusion studies of Ra and Pb in GaAs by the alpha-particle energy loss method

    NASA Astrophysics Data System (ADS)

    Adamcyk, M.; Beaudoin, M.; Kelson, I.; Levy, Y.; Tiedje, T.

    1998-12-01

    The temperature dependence of the diffusion of lead in GaAs is determined by measuring the modification to the energy spectrum of emitted alpha particles from the decay chain of implanted 212Pb atoms. Diffusion rates are measured for temperatures up to 900 °C. Higher rates are observed for the diffusion in silicon-doped GaAs than in semi-insulating GaAs. An upper limit for the diffusion of radium in GaAs is similarly obtained from the decay of the 224Ra isotope. Implications for the use of implanted alpha sources for thickness monitoring during epitaxial film growth by the alpha-particle energy loss method are discussed.

  8. Inversion of spin dependent photocurrent at Fe3O4/modulation doped GaAs heterointerfaces

    NASA Astrophysics Data System (ADS)

    Shirahata, Y.; Wada, E.; Itoh, M.; Taniyama, T.

    2011-04-01

    We demonstrate inversion of the spin dependent photocurrent across an Fe3O4/modulation doped GaAs interface under optical spin orientation condition. The spin dependent photocurrent for fully epitaxial Fe3O4/GaAs and Fe/GaAs interfaces clearly show the opposite magnetic field dependence, where the spin filtering efficiency for the Fe3O4/GaAs decreases with increasing magnetic field. The results clearly indicate that the spin polarization of the Fe3O4 layer has the opposite sign to that of Fe at the Fermi energy, consistent with theoretical predictions, and the result is a consequence of the atomically flat Fe3O4/GaAs interface we obtained.

  9. Te-doping of self-catalyzed GaAs nanowires

    SciTech Connect

    Suomalainen, S. Hakkarainen, T. V.; Salminen, T.; Koskinen, R.; Guina, Mircea; Honkanen, M.; Luna, E.

    2015-07-06

    Tellurium (Te)-doping of self-catalyzed GaAs nanowires (NWs) grown by molecular beam epitaxy is reported. The effect of Te-doping on the morphological and crystal structure of the NWs is investigated by scanning electron microscopy and high-resolution transmission electron microscopy. The study reveals that the lateral growth rate increases and axial growth rate decreases with increasing Te doping level. The changes in the NW morphology can be reverted to some extent by changing the growth temperature. At high doping levels, formation of twinning superlattice is observed alongside with the (111)-facetted sidewalls. Finally, the incorporation of Te is confirmed by Raman spectroscopy.

  10. Temperature and intensity dependence of photorefractive effect in GaAs

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Partovi, Afshin

    1986-01-01

    The photorefractive effect in semi-insulating Cr-doped GaAs as measured by the beam coupling technique was investigated as functions of temperature (295-386 K) and intensity (0.15-98 mW/sq cm of 1.15-micron light beams from a He-Ne laser). Results show that the photorefractive effect deteriorates rapidly over a narrow range of temperature as temperature rises, and that this characteristic temperature increases with the logarithm of beam intensity. The observed phenomenon is attributed to the competing effects of the dark- and light-induced conductivities.

  11. Determination of Fe{sup 2+} and Fe{sup 3+} concentrations of semi- insulating InP:Fe

    SciTech Connect

    Zach, F.X.; Bourret, E.D.; Bliss, D.; Weber, E.R.; Haller, E.E.

    1992-01-01

    Semi-insulating InP is most commonly obtained by doping with the deep acceptor iron to compensate the shallow donors which otherwise render the material n-type conducting. As the Fermi level in semi-insulating InP is closed to the iron acceptor level, both charge states - Fe{sup 2+} as well as Fe{sup 3+} corresponding to the acceptor level occupied unoccupied by an electron - are present. Mayor et al.(1) presented a method based on absorption measurements in the nearbandgap region of InP to determine the concentration of both charge states separately. In this paper we compare iron concentrations obtained by this method with the results from intracenter absorption, DLTS, EPR, Hall effect measurements and glow discharge mass spectroscopy. We present a new calibration for the optical absorption cross sections.

  12. Determination of Fe sup 2+ and Fe sup 3+ concentrations of semi- insulating InP:Fe

    SciTech Connect

    Zach, F.X.; Bourret, E.D. ); Bliss, D. ); Weber, E.R.; Haller, E.E. . Dept. of Materials Science and Mineral Engineering)

    1992-01-01

    Semi-insulating InP is most commonly obtained by doping with the deep acceptor iron to compensate the shallow donors which otherwise render the material n-type conducting. As the Fermi level in semi-insulating InP is closed to the iron acceptor level, both charge states - Fe{sup 2+} as well as Fe{sup 3+} corresponding to the acceptor level occupied unoccupied by an electron - are present. Mayor et al.(1) presented a method based on absorption measurements in the nearbandgap region of InP to determine the concentration of both charge states separately. In this paper we compare iron concentrations obtained by this method with the results from intracenter absorption, DLTS, EPR, Hall effect measurements and glow discharge mass spectroscopy. We present a new calibration for the optical absorption cross sections.

  13. Visible-light electroluminescence in Mn-doped GaAs light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Nam Hai, Pham; Maruo, Daiki; Tanaka, Masaaki

    2014-03-01

    We observed visible-light electroluminescence (EL) due to d-d transitions in light-emitting diodes with Mn-doped GaAs layers (here, referred to as GaAs:Mn). Besides the band-gap emission of GaAs, the EL spectra show two peaks at 1.89 eV and 2.16 eV, which are exactly the same as 4A2(4F) → 4T1(4G) and 4T1(4G) → 6A1(6S) transitions of Mn atoms doped in ZnS. The temperature dependence and the current-density dependence are consistent with the characteristics of d-d transitions. We explain the observed EL spectra by the p-d hybridized orbitals of the Mn d electrons in GaAs.

  14. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.

    PubMed

    Boland, Jessica L; Casadei, Alberto; Tütüncüoglu, Gözde; Matteini, Federico; Davies, Christopher L; Jabeen, Fauzia; Joyce, Hannah J; Herz, Laura M; Fontcuberta I Morral, Anna; Johnston, Michael B

    2016-04-26

    Controlled doping of GaAs nanowires is crucial for the development of nanowire-based electronic and optoelectronic devices. Here, we present a noncontact method based on time-resolved terahertz photoconductivity for assessing n- and p-type doping efficiency in nanowires. Using this technique, we measure extrinsic electron and hole concentrations in excess of 10(18) cm(-3) for GaAs nanowires with n-type and p-type doped shells. Furthermore, we show that controlled doping can significantly increase the photoconductivity lifetime of GaAs nanowires by over an order of magnitude: from 0.13 ns in undoped nanowires to 3.8 and 2.5 ns in n-doped and p-doped nanowires, respectively. Thus, controlled doping can be used to reduce the effects of parasitic surface recombination in optoelectronic nanowire devices, which is promising for nanowire devices, such as solar cells and nanowire lasers. PMID:26959350

  15. Design of quantum efficiency measurement system for variable doping GaAs photocathode

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Yang, Kai; Liu, HongLin; Chang, Benkang

    2008-03-01

    To achieve high quantum efficiency and good stability has been a main direction to develop GaAs photocathode recently. Through early research, we proved that variable doping structure is executable and practical, and has great potential. In order to optimize variable doping GaAs photocathode preparation techniques and study the variable doping theory deeply, a real-time quantum efficiency measurement system for GaAs Photocathode has been designed. The system uses FPGA (Field-programmable gate array) device, and high speed A/D converter to design a high signal noise ratio and high speed data acquisition card. ARM (Advanced RISC Machines) core processor s3c2410 and real-time embedded system are used to obtain and show measurement results. The measurement precision of photocurrent could reach 1nA, and measurement range of spectral response curve is within 400~1000nm. GaAs photocathode preparation process can be real-time monitored by using this system. This system could easily be added other functions to show the physic variation of photocathode during the preparation process more roundly in the future.

  16. Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Arab, Shermin; Yao, Maoqing; Zhou, Chongwu; Daniel Dapkus, P.; Cronin, Stephen B.

    2016-05-01

    In this letter, the photoluminescence spectra of n-type doped GaAs nanowires, grown by the metal organic chemical vapor deposition method, are measured at 4 K and 77 K. Our measurements indicate that an increase in carrier concentration leads to an increase in the complexity of the doping mechanism, which we attribute to the formation of different recombination centers. At high carrier concentrations, we observe a blueshift of the effective band gap energies by up to 25 meV due to the Burstein-Moss shift. Based on the full width at half maximum (FWHM) of the photoluminescence peaks, we estimate the carrier concentrations for these nanowires, which varies from 6 × 1017 cm-3 (lightly doped), to 1.5 × 1018 cm-3 (moderately doped), to 3.5 × 1018 cm-3 (heavily doped) as the partial pressure of the disilane is varied from 0.01 sccm to 1 sccm during the growth process. We find that the growth temperature variation does not affect the radiative recombination mechanism; however, it does lead to a slight enhancement in the optical emission intensities. For GaAs nanowire arrays measured at room temperature, we observe the same general dependence of band gap, FWHM, and carrier concentration on doping.

  17. Neutron radiation effects in GaAs planar doped barrier diodes

    SciTech Connect

    Kearney, M.J.; Couch, N.R. ); Edwards, M. ); Dale, I. )

    1993-04-01

    The planar doped barrier (PDB) diode has recently been shown to be a very attractive alternative to the Schottky diode for many microwave and millimeter-wave mixer and detector applications. The authors have studied the degradation of GaAs planar doped barrier diodes subject to neutron irradiation. For fluences as high as 10[sup 15] cm[sup [minus]2] the diode characteristics are very well preserved, which strengthens the rationale for using these devices in place of Schottky diodes in harsh working environments such as nuclear instrumentation and space.

  18. Design considerations for a GaAs nipi doping superlattice solar cell

    NASA Technical Reports Server (NTRS)

    Clark, Ralph; Goradia, Chandra; Brinker, David

    1987-01-01

    A new GaAs nipi doping superlattice solar cell structure is presented, which holds promise for high efficiency coupled with very high radiation tolerance. The structure has all contacts on the unilluminated side. Design constraints are presented which this structure must satisfy in order to exhibit high efficiency and high radiation tolerance. The results of self-consistent quantum mechanical calculations are presented which show that a viable design of this cell would include relatively thick n and p layers which are fairly heavily doped.

  19. p-type doping of GaAs nanowires using carbon

    NASA Astrophysics Data System (ADS)

    Salehzadeh, O.; Zhang, X.; Gates, B. D.; Kavanagh, K. L.; Watkins, S. P.

    2012-11-01

    We report on the electrical properties of Au-catalyzed C-doped GaAs nanowires (NWs) grown by metal organic vapor phase epitaxy. Transport measurements were carried out using a tungsten nanoprobe inside a scanning electron microscope by contacting to the Au catalyst particle of individual nanowires. The doping level could be varied from approximately (4 ± 1) × 1016 cm-3 to (1.0 ± 0.3) × 1019 cm-3 by varying the molar flow of the gas phase carbon precursor, as well as the group V to group III precursor ratio. It was found that the current transport mechanism switches from generation-recombination to tunnelling field emission by increasing the doping level to 1 × 1019 cm-3. Based on a diameter-dependent analysis of the apparent resistivity of the C-doped NWs, we propose that C incorporates into GaAs NWs through the triple boundary at the Au/NW interface. The p-type conductivity of the C-doped NWs was inferred by observing a rectification at negative bias (applied to the Au electrode) and confirmed by back-gating measurements performed on field effect transistor devices.

  20. OM-VPE growth of Mg-doped GaAs. [OrganoMetallic-Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Dietze, W. T.; Ludowise, M. J.

    1982-01-01

    The epitaxial growth of Mg-doped GaAs by the organometallic vapor phase epitaxial process (OM-VPE) has been achieved for the first time. The doping is controllable over a wide range of input fluxes of bis (cyclopentadienyl) magnesium, (C5H5)2Mg, the organometallic precursor to Mg.

  1. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    NASA Technical Reports Server (NTRS)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  2. Doped Contacts for High-Longevity Optically Activated, High Gain GaAs Photoconductive Semiconductor Switches

    SciTech Connect

    MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; BROWN,DARWIN JAMES; HJALMARSON,HAROLD P.; BACA,ALBERT G.; THORNTON,R.L.; DONALDSON,R.D.

    1999-12-17

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer that is very effective in the suppression of filament formation, alleviating current crowding. Damage-free operation is now possible with virtually infinite expected lifetime at much higher current levels than before. The inherent damage-free current capacity of the bulk GaAs itself depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approx}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs, unlike a switch with conventional contacts. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.

  3. Efficient defect structure analysis in semi-insulating materials by support vector machine and relevance vector machine

    NASA Astrophysics Data System (ADS)

    Jankowski, Stanisław; Będkowski, Janusz; Danilewicz, Przemysław; Szymański, Zbigniew

    2008-01-01

    We propose new approach for defect centers parameters extraction in semi-insulating GaAs. The experimental data is obtained by high-resolution photoinduced transient spectroscopy (HR-PITS). Two algorithms have been introduced: support vector machine - sequential minimal optimization (SVM-SMO) and relevance vector machine (RVM). Those methods perform the approximation of the Laplace surface. The advantages of proposed methods are: good accuracy of approximation, low complexity, excellent generalization. We developed SVM-RVM-PITS system, which enables graphical representation of Laplace surface, defining local area for defect parameter extraction, choosing the SVM or RVM method for approximation, calculation of the Arrhenius line factors and finally the parameters of the defect centers.

  4. Determination of doping effects on Si and GaAs bulk samples properties by photothermal investigations

    NASA Astrophysics Data System (ADS)

    Abroug, Sameh; Saadallah, Faycel; Yacoubi, Noureddine

    2007-11-01

    The knowledge of doping effects on optical and thermal properties of semiconductors is crucial for the development of opto-electronic compounds. The purpose of this work is to investigate these effects by mirage effect technique and spectroscopic ellipsometry SE. The near gap optical spectra are obtained from photothermal signal for differently doped Si and GaAs bulk samples. However, the above bandgap absorption is determined from SE. These spectra show that absorption in the near IR increases with dopant density and also the bandgap shifts toward low energies. This behavior is due to free carrier absorption which could be obtained by subtracting phonon-assisted absorption from the measured spectrum. This carrier absorption is related to the dopant density through a semi-empirical model. We have also used the photothermal signal phase to measure the influence of doping on thermal diffusivity.

  5. 2D-ACAR Studies on Swift Heavy Ion Si-Implanted GaAs

    NASA Astrophysics Data System (ADS)

    Sivaji, K.; Selvakumar, S.

    Material properties modification by high energy heavy ion implantation is a prospective technology leading to many device fabrications. This technique induces defects and hence the physical properties of the materials are modified. The effects of swift heavy ion implantation induced defects by 120 MeV 28+Si ion implantation and doping in SI-GaAs are presented from the electron momentum distribution (EMD) of vacancy-type defects studied by two-dimensional angular correlation of annihilation radiation (2D-ACAR). The positron trapping due to the influence of high-energy Si- implantation in GaAs (n-type) is compared with the corresponding spectra of SI- GaAs and with Si-doped (n-type) GaAs. The EMD of the implanted sample shows a distinct increased isotropic distribution with a characteristic transform of its structure as evident from the low momentum region compared to the pristine sample. The characteristics of defects created by Si doping and by 120 MeV 28+Si ion implantation of undoped semi-insulating (SI) GaAS are discussed. These results indicate the nature of positron trapping in open volume defects such as vacancy clusters created by implantation.

  6. Photoluminescence analysis of p-doped GaAs using the Roosbroeck Shockley relation

    NASA Astrophysics Data System (ADS)

    Ullrich, B.; Munshi, S. R.; Brown, G. J.

    2007-10-01

    Linking absorption with emission, the Roosbroeck-Shockley relation (RSR) expresses a fundamental principle of semiconductor optics. Despite its elementary character, the RSR is hardly advocated since it is commonly understood that the relation holds for intrinsic materials only. However, we demonstrate that the RSR reproduces very well the photoluminescence of p-doped GaAs over the temperature range of 5-300 K. The fitting parameters used, such as energy position and doping-induced band gap shrinkage, satisfactorily coincide with the literature. The presented results show that the RSR can have a much broader impact in semiconductor analysis than generally presumed. The paper is dedicated to our friend and mentor Rand R Biggers (1946-2006)

  7. Photoluminescence lineshape features of carbon δ-doped GaAs heterostructures.

    PubMed

    Schuster, J; Kim, T Y; Batke, E; Reuter, D; Wieck, A D

    2012-04-25

    Photoluminescence lineshape properties of quasi-two-dimensional electron systems in setback δ-doped GaAs heterostructures are studied at liquid helium temperature. Contributions from the ground and the first excited two-dimensional subband are clearly observed. A simple fit to the lineshape including broadening demonstrates that there is an exponential low-energy tail associated with the ground subband. No such tail is observed for the first excited subband. The fit precisely reveals the subband bottom energies, the Fermi energy, the electron temperature and the recombination intensities. A self-consistent calculation of subband properties including the potential contribution of the setback δ-doping reproduces well the subband properties and the recombination intensities. PMID:22446024

  8. Deep level domain spectroscopy of low frequency oscillations in semi-insulating InP

    NASA Astrophysics Data System (ADS)

    Backhouse, C.; Young, L.

    1992-11-01

    It is known that low frequency current oscillations occur in semi-insulating GaAs due to the formation and transit of high field domains caused by enhanced trapping of hot electrons by deep levels and that power density spectra of the current show peaks whose temperature dependence gives information on deep levels. In the present work Fe-compensated InP was investigated. The peaks rose from an approximately {1}/{f}{3}/{2} background and by estimating and removing this and by averaging many spectra, no less than 14 frequency peaks were resolved which gave straight lines on an Arrhenius plot of log( {T 2}/{2f}) vs{1}/{T}. Although the amplitude of the current oscillations is not so large as to preclude multiple domain propagation, it seems more likely that the domains are caused by hot electron trapping by one level only, rather than that several traps should have the necessary characteristics to launch domains. The multiplicity of peaks could be partly due to harmonics of the basic high field domain oscillation and partly due to conductivity modulation by other levels whose occupancies are changed by the passage of the domains: the task, if so, is to determine which peaks are which. The activation energies from the Arrhenius plots fell into groups close to 0.30, 0.39, 0.41, 0.44 and 0.49 eV. The 14 peaks thus are believed to arise from 5 deep levels. Evidence was found that the 0.49 eV level is iron-related and is responsible for producing the high field domains and for drain current drift in InP metal-insulator-semiconductor field-effect transistors.

  9. Current-voltage characteristics of silicon-doped GaAs nanowhiskers with a protecting AlGaAs coating overgrown with an undoped GaAs layer

    SciTech Connect

    Dementyev, P. A.; Dunaevskii, M. S. Samsonenko, Yu. B.; Cirlin, G. E.; Titkov, A. N.

    2010-05-15

    A technique for measurement of longitudinal current-voltage characteristics of semiconductor nanowhiskers remaining in contact with the growth surface is suggested. The technique is based on setting up a stable conductive contact between the top of a nanowhisker and the probe of an atomic-force microscope. It is demonstrated that, as the force pressing the probe against the top of the nanowhisker increases, the natural oxide layer covering the top is punctured and a direct contact between the probe and the nanowhisker body is established. In order to prevent nanowhiskers from bending and, ultimately, breaking, they need to be somehow fixed in space. In this study, GaAs nanowhiskers were kept fixed by partially overgrowing them with a GaAs layer. To isolate nanowhiskers from the matrix they were embedded in, they were coated by a nanometer layer of AlGaAs. Doping of GaAs nanowhiskers with silicon was investigated. The shape of the current-voltage characteristics obtained indicates that introduction of silicon leads to p-type conduction in nanowhiskers, in contrast to n-type conduction in bulk GaAs crystals grown by molecular-beam epitaxy. This difference is attributed to the fact that the vapor-liquid-solid process used to obtain nanowhiskers includes a final stage of liquid-phase epitaxy, a characteristic of the latter being p-type conduction obtained in bulk GaAs(Si) crystals.

  10. Doped Contacts for High-Longevity Optically Activated, High Gain GaAs Photoconductive Semiconductor Switches

    SciTech Connect

    Baca, A.G.; Brown, D.J.; Donaldson, R.D.; Helgeson, W.D.; Hjalmarson, H.P.; Loubriel, G.M.; Mar, A.; O'Malley, M.W.; Thornton, R.L.; Zutavern, F.J.

    1999-08-05

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 50 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer beneath the PCSS contacts which is very effective in the suppression of filament formation and alleviating current crowding to improve the longevity of PCSS. Virtually indefinite, damage-free operation is now possible at much higher current levels than before. The inherent damage-free current capacity of the switch depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approximately}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.

  11. Large anomalous Hall resistance of pair {delta}-doped GaAs structures grown by molecular-beam epitaxy

    SciTech Connect

    Jung, D. W.; Noh, J. P.; Touhidul Islam, A. Z. M.; Otsuka, N.

    2008-02-15

    Beryllium/silicon pair {delta}-doped GaAs structures grown by molecular-beam epitaxy exhibit a Hall resistance which has a nonlinear dependence on the applied magnetic field and which is strongly correlated to the negative magnetoresistance observed under the applied magnetic field parallel to the {delta}-doped layers. Dependence of the occurrence of the nonlinear Hall resistance on the growth condition is investigated. A significantly large increase in both the magnitude and the nonlinearity of the Hall resistance is observed from samples whose GaAs buffer layers are grown under the condition of a low As/Ga flux ratio. Reflection high energy electron diffraction and electron microscope observations show that a faceted surface develops with the growth and postgrowth annealing of a GaAs buffer layer under the condition of a low As flux. From samples which have only Si {delta}-doped layers and exhibit the n-type conduction, such nonlinear Hall resistance is not observed. The nonlinearity of the Hall resistance of Be/Si pair {delta}-doped structures depends on the single parameter B/T, where B and T are the applied magnetic field and the temperature, respectively. Based on these results, it is suggested that the nonlinear Hall resistance of Be/Si pair {delta}-doped structures is the anomalous Hall effect caused by localized spins in {delta}-doped layers.

  12. Electrical spin injection in modulation-doped GaAs from an in situ grown Fe/MgO layer

    SciTech Connect

    Shim, Seong Hoon; Kim, Hyung-jun; Koo, Hyun Cheol; Lee, Yun-Hi; Chang, Joonyeon

    2015-09-07

    We study spin accumulation in n-doped GaAs that were electrically injected from Fe via MgO using three-terminal Hanle measurement. The Fe/MgO/GaAs structures were prepared in a cluster molecular beam epitaxy that did not require the breaking of the vacuum. We found the crystal orientation relationship of epitaxial structures Fe[100]//MgO[110]//GaAs[110] without evident defects at the interface. Control of depletion width and interface resistance by means of modulation doping improves spin injection, leading to enhanced spin voltage (ΔV) of 6.3 mV at 10 K and 0.8 mV even at 400 K. The extracted spin lifetime and spin diffusion length of GaAs are 220 ps and 0.77 μm, respectively, at 200 K. MgO tunnel barrier grown in situ with modulation doping at the interface appears to be promising for spin injection into GaAs.

  13. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Burgess, Tim; Saxena, Dhruv; Mokkapati, Sudha; Li, Zhe; Hall, Christopher R.; Davis, Jeffrey A.; Wang, Yuda; Smith, Leigh M.; Fu, Lan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati

    2016-06-01

    Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications.

  14. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires

    PubMed Central

    Burgess, Tim; Saxena, Dhruv; Mokkapati, Sudha; Li, Zhe; Hall, Christopher R.; Davis, Jeffrey A.; Wang, Yuda; Smith, Leigh M.; Fu, Lan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications. PMID:27311597

  15. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires.

    PubMed

    Burgess, Tim; Saxena, Dhruv; Mokkapati, Sudha; Li, Zhe; Hall, Christopher R; Davis, Jeffrey A; Wang, Yuda; Smith, Leigh M; Fu, Lan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications. PMID:27311597

  16. High-field magnetoluminescence studies of Mn-doped GaAs epilayers

    NASA Astrophysics Data System (ADS)

    Meining, C. J.; Ruester, C.; Mallory, R.; Itskos, G.; Cheon, M.; Chen, X.; Wang, S.; Luo, H.; Petrou, A.; McCombe, B. D.; Wei, X.; Liu, X.; Sasaki, Y.; Furdyna, J. K.; Palczewska, M.

    2002-03-01

    We have carried out magnetoluminescence and magntotransport studies of three MBE grown GaAs epilayers. The samples were grown at a substrate temperature of 590^circC and randomly doped with manganese acceptors at different concentrations. The lowest density sample shows activated p-type resistivity, whereas the highly doped samples exhibit n-type metallic behavior. The latter result will be discussed in terms of MnAs precipitates as observed in TEM studies. The degree of circular polarization P of the conduction band to Mn-acceptor transition (CB arrow A(Mn)) was determined for magnetic fields up to 32 T at the NHMFL. In the lowest Mn concentration sample, P increases with magnetic field and saturates around 15 T. In the other two samples, P exhibits a step at about 22 T. These results will be discussed in terms of level crossing of the antiferromagnetically coupled neutral Mn acceptor pairs. >From this analysis we obtain a Mn-Mn coupling constant J of approximately 10 K. Work supported in part by DARPA/ONR N00014-00-1-0951

  17. X-band MMIC amplifier with pulse-doped GaAs MESFET's

    NASA Astrophysics Data System (ADS)

    Shiga, Nobuo; Nakajima, Shigeru; Otobe, Kenji; Sekiguchi, Takeshi; Kuwata, Nobuhiro; Matsuzaki, Ken-Ichiro; Hayashi, Hideki

    1991-12-01

    The design and test of an X-band monolithic four-stage low noise amplifier (LNA) with 0.5 micron-gate pulse-doped GaAs MESFETs for application in a direct broadcast satellite (DBS) converter is presented. The key feature of the research is a detailed demonstration of the advantages of using series feedback with experiments and simulations. This LNA shows an excellent input VSWR match under 1.4 as well as a noise figure of 1.67 dB and a gain of 24 dB at 12 GHz. The noise figure, the gain and VSWRs exhibit very little bias current dependence due to the exceptional features of the pulse-doped structure FETs and the optimized circuit design. Insensitivity to bias current implies performance stability in the face of process fluctuations. Thus, the yield of chips with noise figures of less than 2.0 dB is as high as 62.5 percent, and the variations of gain and VSWR are highly uniform as well.

  18. Specific features of the photoconductivity of semi-insulating cadmium telluride

    SciTech Connect

    Golubyatnikov, V. A.; Grigor’ev, F. I.; Lysenko, A. P. Strogankova, N. I.; Shadov, M. B.; Belov, A. G.

    2014-12-15

    The effect of local illumination providing a high level of free-carrier injection on the conductivity of a sample of semi-insulating cadmium telluride and on the properties of ohmic contacts to the sample is studied. It is found that, irrespective of the illumination region, the contact resistance of ohmic contacts decreases and the concentration of majority carriers in the sample grows in proportion to the illumination intensity. It is shown that inherent heterogeneities in crystals of semi-insulating semiconductors can be studied by scanning with a light probe.

  19. Mg-doping transients during metalorganic vapor phase epitaxy of GaAs and AlGaInP

    NASA Astrophysics Data System (ADS)

    Kondo, Makoto; Anayama, Chikashi; Sekiguchi, Hiroshi; Tanahashi, Toshiyuki

    1994-08-01

    We studied magnesium-doping transients during metalorganic vapor phase epitaxy of GaAs and (Al(x)Ga(1-x))(0.5)In(0.5)P (0 less than or = x less than or = 0.7). We examined the transient of Mg concentration depth profile through epitaxial layers when Mg precursors are initially injected into the reactor (doping delay). We found that increasing the Al composition of epitaxial layers, i.e., increasing the mole fraction of Al precursors in the reactor, significantly reduces the Mg-doping delay. We obtained this result for both trimethylaluminum (TMAl) and triethylaluminum (TEAl). We quantitatively modeled this phenomenon based on the competitive adsorption of Mg and Al precursors on the internal surface of the reactor. Our model also explains that the Mg concentration in epitaxial layers increases either linearly or superlinearly with the Mg precursor input, depending on the length of the doping delay.

  20. Effect of thin emitter set-back layer on GaAs delta-doped emitter bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Lew, K. L.; Yoon, S. F.

    2005-05-01

    GaAs delta-doped emitter bipolar junction transistors (δ-BJT) with different emitter set-back layer thicknesses of 10to50nm were fabricated to study the emitter set-back layer thickness effect on device dc performance. We found that the current gain decreases following decrease in the emitter set-back layer thickness. A detailed analysis was performed to explain this phenomenon, which is believed to be caused by reduction of the effective barrier height in the δ-BJT. This is due to change in the electric-field distribution in the delta-doped structure caused by the built-in potential of the base-emitter (B-E ) junction. Considering the recombination and barrier height reduction effects, the thickness of the emitter set-back layer should be designed according to the B-E junction depletion width with a tolerance of ±5nm. The dc performance of a δ-BJT designed based on this criteria is compared to that of a Al0.25Ga0.75As /GaAs heterojunction bipolar transistor (HBT). Both devices employed base doping of 2×1019cm-3 and base-to-emitter doping ratio of 40. Large emitter area (AE≈1.6×10-5cm-2) and small emitter area (AE≈1.35×10-6cm-2) device current gains of 40 and 20, respectively, were obtained in both types of transistors passivated by (NH4)2S treatment. The measured current gain of the GaAs δ-BJT is the highest reported for a homojunction device with such high base-to-emitter doping ratio normally used in HBT devices.

  1. Nano-structure fabrication of GaAs using AFM tip-induced local oxidation method: different doping types and plane orientations

    PubMed Central

    2011-01-01

    In this study, we have fabricated nano-scaled oxide structures on GaAs substrates that are doped in different conductivity types of p- and n-types and plane orientations of GaAs(100) and GaAs(711), respectively, using an atomic force microscopy (AFM) tip-induced local oxidation method. The AFM-induced GaAs oxide patterns were obtained by varying applied bias from approximately 5 V to approximately 15 V and the tip loading forces from 60 to 180 nN. During the local oxidation, the humidity and the tip scan speed are fixed to approximately 45% and approximately 6.3 μm/s, respectively. The local oxidation rate is further improved in p-type GaAs compared to n-type GaAs substrates whereas the rate is enhanced in GaAs(100) compared to and GaAs(711), respectively, under the identical conditions. In addition, the oxide formation mechanisms in different doping types and plane orientations were investigated and compared with two-dimensional simulation results. PMID:21978373

  2. Observations of exciton and carrier spin relaxation in Be doped p-type GaAs

    SciTech Connect

    Asaka, Naohiro; Harasawa, Ryo; Tackeuchi, Atsushi; Lu, Shulong; Dai, Pan

    2014-03-17

    We have investigated the exciton and carrier spin relaxation in Be-doped p-type GaAs. Time-resolved spin-dependent photoluminescence (PL) measurements revealed spin relaxation behaviors between 10 and 100 K. Two PL peaks were observed at 1.511 eV (peak 1) and 1.497 eV (peak 2) at 10 K, and are attributed to the recombination of excitons bound to neutral Be acceptors (peak 1) and the band-to-acceptor transition (peak 2). The spin relaxation times of both PL peaks were measured to be 1.3–3.1 ns at 10–100 K, and found to originate from common electron spin relaxation. The observed existence of a carrier density dependence of the spin relaxation time at 10–77 K indicates that the Bir-Aronov-Pikus process is the dominant spin relaxation mechanism.

  3. Enhancement of intensity-dependent absorption in InP and GaAs at 1.9 microns by doping

    NASA Technical Reports Server (NTRS)

    Li, N.-L.; Bass, M.; Swimm, R.

    1985-01-01

    It is pointed out that the study of intensity-dependent absorption (IDA) in general, and two-photon absorption (TPA), in particular, has suffered from experimental difficulties and inadequate theoretical models. Bass et al. (1979) could improve the experimental situation by making use of laser calorimetry to obtain directly the TPA coefficient of a medium with a high degree of sensitivity. In the present investigation, the employed technique has been used to study the effect of deep level dopants on IDA in InP and GaAs. It is found that the coefficient for IDA is strongly dependent on the presence of Fe in InP and Cr in GaAs. The conducted investigation had the objective to examine the effect of deep level impurities on IDA processes in InP and GaAs. Fe-doped InP and Cr-doped GaAs were compared with undoped crystals.

  4. Self-consistent calculations and design considerations for a GaAs nipi doping superlattice solar cell

    NASA Technical Reports Server (NTRS)

    Clark, Ralph O.; Goradia, Chandra; Brinker, David

    1987-01-01

    The authors present design constraints which show that a previously proposed GaAs nipi doping superlattice solar cell structure would not work as an efficient space solar cell. A structure based on the CLEFT process, which shows promise of being an efficient cell with very high radiation tolerance, is proposed. In order to test theoretically its viability and to optimize its design, self-consistent quantum mechanical calculations were made for a number of thicknesses of the n, i, and p layers and the dopings in the n and p layers. These results show that: 1) an i layer is not necessary; in fact, its presence makes it difficult to satisfy one of the key constraints; 2) a near-optimum design with 750-A thick n and p layers with dopings of 2.5E18/cu cm and a selective contact separation of 20 microns would yield both high efficiency and very high radiation tolerance.

  5. Surface passivation of tellurium-doped GaAs nanowires by GaP: Effect on electrical conduction

    SciTech Connect

    Darbandi, A.; Salehzadeh, O.; Watkins, S. P.; Kuyanov, P.; LaPierre, R. R.

    2014-06-21

    We report on the surface passivation of Au-assisted Te-doped GaAs nanowires (NWs) grown by metalorganic vapor phase epitaxy. The electrical properties of individual free standing NWs were assessed using a tungsten nano-probe inside a scanning electron microscope. The diameter independent apparent resistivity of both strained and relaxed passivated NWs suggests the unpinning of the Fermi level and reduction of sidewalls surface states density. Similar current-voltage properties were observed for partially axially relaxed GaAs/GaP NWs. This indicates a negligible contribution of misfit dislocations in the charge transport properties of the NWs. Low temperature micro-photoluminescence (μ-PL) measurements were also carried out for both uncapped and passivated GaAs NWs. The improvement of the integrated (μ-PL) intensity for GaAs/GaP NWs further confirms the effect of passivation.

  6. Radiation tolerant GaAs MESFET with a highly-doped thin active layer grown by OMVPE

    SciTech Connect

    Nishiguchi, M.; Hashinaga, T.; Nishizawa, H.; Hayashi, H. ); Okazaki, N. ); Kitagawa, M.; Fujino, T. )

    1990-12-01

    A new structure of GaAs MESFET with high radiation tolerance is proposed. Changes in electrical parameters of a GaAs MESFET as a function of total {gamma}-ray dose have been found to be caused mainly by a decrease in the effective carrier concentration in an active layer. The authors have designed a new structure from a simulation based on an empirical relationship between the changes of the effective carrier concentration and the total {gamma}-ray dose. It has been successfully demonstrated by utilizing a highly-doped thin active layer (4 {times} 10{sup 18} cm{sup {minus}3}, 100 {Angstrom}) grown by OMVPE. This MESFET can withstand a dose ten times higher (1 {times} 10{sup 9} rads(GaAs)) than a conventional one can.

  7. Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Benyahia, D.; Kubiszyn, Ł.; Michalczewski, K.; Kębłowski, A.; Martyniuk, P.; Piotrowski, J.; Rogalski, A.

    2016-01-01

    Non-intentionally doped GaSb epilayers were grown by molecular beam epitaxy (MBE) on highly mismatched semi-insulating GaAs substrate (001) with 2 offcut towards [110]. The effects of substrate temperature and the Sb/Ga flux ratio on the crystalline quality, surface morphology and electrical properties were investigated by Nomarski optical microscopy, X-ray diffraction (XRD) and Hall measurements, respectively. Besides, differential Hall was used to investigate the hole concentration behaviour along the GaSb epilayer. It is found that the crystal quality, electrical properties and surface morphology are markedly dependent on the growth temperature and the group V/III flux ratio. Under the optimized parameters, we demonstrate a low hole concentration at very low growth temperature. Unfortunately, the layers grown at low temperature are characterized by wide FWHM and low Hall mobility.

  8. Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Benyahia, D.; Kubiszyn, Ł.; Michalczewski, K.; KĘbŁOwski, , A.; Martyniuk, P.; Piotrowski, J.; Rogalski, A.

    2016-01-01

    Non-intentionally doped GaSb epilayers were grown by molecular beam epitaxy (MBE) on highly mismatched semi-insulating GaAs substrate (001) with 2 offcut towards [110]. The effects of substrate temperature and the Sb/Gaflux ratio on the crystalline quality, surface morphology and electrical properties were investigated by Nomarski optical microscopy, X-ray diffraction (XRD) and Hall measurements, respectively. Besides, differential Hall was used to investigate the hole concentration behaviour along the GaSb epilayer. It is found that the crystal quality, electrical properties and surface morphology are markedly dependent on the growth temperature and the group V/III flux ratio. Under the optimized parameters, we demonstrate a low hole concentration at very low growth temperature. Unfortunately, the layers grown at low temperature are characterized by wide FWHM and low Hall mobility.

  9. Electronic structures and magnetic stabilities of 2D Mn-doped GaAs nanosheets: The role of long-range exchange interactions and doping strategies

    SciTech Connect

    Lan, Mu; Xiang, Gang Zhang, Xi

    2014-08-28

    We investigate the structural, electronic and magnetic properties of Mn atoms doped two-dimensional (2D) hexagonal GaAs nanosheets (GaAsNSs) using both first-principle calculations and Monte Carlo simulations. The first-principle molecular dynamics is first used to test the structural stability of Mn-doped GaAsNS ((Ga,Mn)AsNS). The analysis of spin-resolved electronic structures and determination of magnetic exchange interactions based on density functional theory (DFT) calculations reveals the existence of long-range exchange interaction in the system. Finally, Metropolis Monte Carlo simulation is employed to estimate Curie temperatures (T{sub C}s) of (Ga,Mn)AsNSs with different doping concentrations by different doping strategies. The results indicate that a T{sub C} up to 82 K can be obtained in regularly-doped (Ga,Mn)AsNSs and doping strategies have prominent impact on T{sub C}s of the systems, which emphasizes the importance of both long-range interactions and doping strategies in reduced dimensional diluted magnetic semiconductors (DMSs)

  10. GaAs surface cleaning by thermal oxidation and sublimation in molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Saito, Junji; Nanbu, Kazuo; Ishikawa, Tomonori; Kondo, Kazuo

    1988-01-01

    GaAs surface cleaning by thermal oxidation and sublimation prior to molecular-beam-epitaxial growth has been investigated as a means of reducing the carrier depletion at the substrate and epitaxial layer interface. The carrier depletion between the substrate and epitaxial films, measured by a C-V carrier profiling technique, was shown to decrease significantly with an increase in the thickness of the thermal oxidation. The concentration of carbon contamination near the substrate-epitaxial interface was measured using secondary ion mass spectroscopy. The carbon concentration correlated very well with the carrier depletion. Therefore, the main origin of the carrier depletion is believed to be the carbon concentration of the initial growth surface. Based on these results, the thermal oxidation and sublimation of a semi-insulating GaAs substrate was successfully applied to improve the mobility and sheet concentration of the two-dimensional electron gas in selectively doped GaAs/N-Al0.3Ga0.7As heterostructures with very thin GaAs buffer layers.

  11. The influence of a doping profile on the characteristics of an ion-implanted GaAs field-effect transistor with a Schottky barrier

    SciTech Connect

    Shestakov, A. K. Zhuravlev, K. S.

    2011-12-15

    A GaAs field-effect ion-implanted transistor with a Schottky barrier is simulated. The doping profile obtained when doping through an insulator mask is determined and the dependences of the static transistor characteristics on the parameters of the doping profile are calculated and analyzed. The physical processes controlling the transistor characteristics in the case of a variation in the parameters of its doping profile and the coefficient of compensation of the substrate are studied. Based on calculations, the optimal doping-profile parameters ensuring the best characteristics for transistors are predicted.

  12. Emission-wavelength tuning of InAs quantum dots grown on nitrogen-δ-doped GaAs(001)

    NASA Astrophysics Data System (ADS)

    Kaizu, Toshiyuki; Taguchi, Kohei; Kita, Takashi

    2016-05-01

    We studied the structural and photoluminescence (PL) characteristics of InAs quantum dots (QDs) grown on nitrogen (N) δ-doped GaAs(001). The emission wavelength for low-density N-δ doping exhibited a blueshift with respect to that for undoped GaAs and was redshifted with increasing N-sheet density. This behavior corresponded to the variation in the In composition of the QDs. N-δ doping has two opposite and competing effects on the incorporation of Ga atoms from the underlying layer into the QDs during the QD growth. One is the enhancement of Ga incorporation induced by the lattice strain, which is due to the smaller radius of N atoms. The other is an effect blocking for Ga incorporation, which is due to the large bonding energy of Ga-N or In-N. At a low N-sheet density, the lattice-strain effect was dominant, while the blocking effect became larger with increasing N-sheet density. Therefore, the incorporation of Ga from the underlying layer depended on the N-sheet density. Since the In-Ga intermixing between the QDs and the GaAs cap layer during capping also depended on the size of the as-grown QDs, which was affected by the N-sheet density, the superposition of these three factors determined the composition of the QDs. In addition, the piezoelectric effect, which was induced with increased accumulation of lattice strain and the associated high In composition, also affected the PL properties of the QDs. As a result, tuning of the emission wavelength from 1.12 to 1.26 μm was achieved at room temperature.

  13. Ferroelectric films of barium strontium titanate on semi-insulating silicon carbide substrates

    NASA Astrophysics Data System (ADS)

    Tumarkin, A. V.; Razumov, S. V.; Gagarin, A. G.; Odinets, A. A.; Mikhailov, A. K.; Pronin, I. P.; Stozharov, V. M.; Senkevich, S. V.; Travin, N. K.

    2016-04-01

    Thin ferroelectric Ba x Sr1- x TiO3 (BST) layers have been grown for the first time on semi-insulating silicon carbide substrates by RF magnetron sputtering of a ceramic target without using buffer sublayers. Results of investigation of the structure of obtained BST films and the electrical properties of related planar capacitors are presented. The obtained structures are characterized by high nonlinearity and low dielectric losses at microwave frequencies.

  14. Longevity improvement of optically activated, high gain GaAs photoconductive semiconductor switches

    SciTech Connect

    MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; BROWN,DARWIN JAMES; HJALMARSON,HAROLD P.; BACA,ALBERT G.

    2000-03-02

    The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses at 23A, and over 100 pulses at 1kA. This is achieved by improving the ohmic contacts by doping the semi-insulating GaAs underneath the metal, and by achieving a more uniform distribution of contact wear across the entire switch by distributing the trigger light to form multiple filaments. This paper will compare various approaches to doping the contacts, including ion implantation, thermal diffusion, and epitaxial growth. The device characterization also includes examination of the filament behavior using open-shutter, infra-red imaging during high gain switching. These techniques provide information on the filament carrier densities as well as the influence that the different contact structures and trigger light distributions have on the distribution of the current in the devices. This information is guiding the continuing refinement of contact structures and geometries for further improvements in switch longevity.

  15. Photoluminescence study on heavily donor and acceptor impurity doped GaAs layers grown by molecular-beam epitaxy

    SciTech Connect

    Islam, A. Z. M. Touhidul; Jung, D. W.; Noh, J. P.; Otsuka, N.

    2009-05-01

    Gallium arsenide layers doped with high concentrations of Be and Si by molecular-beam epitaxy are studied by photoluminescence (PL) spectroscopy. PL peaks from doped layers are observed at energies significantly lower than the band-gap of GaAs. The growth and doping conditions suggest that the origin of these peaks is different from that of low energy PL peaks, which were observed in earlier studies and attributed to impurity-vacancy complexes. The dependence of the peak energy on the temperature and the annealing is found to differ from that of the peaks attributed to impurity-vacancy complexes. On the basis of these observations, it is suggested that the low energy peaks are attributed to short range ordered arrangements of impurity ions. This possibility is examined by calculations of the PL spectra with models of pairs of acceptor and donor delta-doped layers and PL experiments of a superlattice of pairs of Be and Si delta-doped layers.

  16. Controllable GMR device in a δ-doped, magnetically and electrically modulated, GaAs /Alx Ga1-x As heterostructure

    NASA Astrophysics Data System (ADS)

    Shen, Li-Hua; Zhang, Gui-Lian; Yang, Duan-Chui

    2016-09-01

    We report on a theoretical study of giant magnetoresistance (GMR) effect in a δ-doped GaAs /Alx Ga1-x As heterostructure modulated by two stripes of ferromagnetic metal and a stripe of Schottky metal in parallel configuration. The δ-doping dependent transmission and conductance of the device are calculated. It is shown that a considerable giant magnetoresistance (GMR) effect exists in this structure. It is also shown that the magnetoresistance ratio (MR) can be switched by the δ-doping. The underlying physical mechanism of the results is analysed in light of δ-doping-dependent tunneling process in the device.

  17. Optical tunability of magnetic polaron stability in single-Mn doped bulk GaAs and GaAs/AlGaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Qu, Fanyao; Moura, Fábio Vieira; Alves, Fabrizio M.; Gargano, Ricardo

    2013-03-01

    Optical control of magnetic property of a magnetic polaron (MP) in Mn-doped bulk GaAs and GaAs/AlGaAs quantum dots (QDs) have been studied. We have developed basis optimization technique for the method of linear combination of atomic orbitals (LCAOs), which significantly improve the accuracy of the conventional LCAO calculation. We have demonstrated that a monochromatic, linearly polarized, intense pulsed laser field induces a collapse of the MP and an ionization of Mn-acceptor in Mn-doped GaAs materials due to a dichotomy of hole wave function. We find this optical tunability of MP stability can be adjusted by confinement introduced in GaAs QDs.

  18. Photoreflectance and surface photovoltage spectroscopy of beryllium-doped GaAs /AlAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Čechavičius, B.; Kavaliauskas, J.; Krivaitė, G.; Seliuta, D.; Valušis, G.; Halsall, M. P.; Steer, M. J.; Harrison, P.

    2005-07-01

    We present an optical study of beryllium δ-doped GaAs /AlAs multiple quantum well (QW) structures designed for sensing terahertz (THz) radiation. Photoreflectance (PR), surface photovoltage (SPV), and wavelength-modulated differential surface photovoltage (DSPV) spectra were measured in the structures with QW widths ranging from 3to20nm and doping densities from 2×1010to5×1012cm-2 at room temperature. The PR spectra displayed Franz-Keldysh oscillations which enabled an estimation of the electric-field strength of ˜20kV/cm at the sample surface. By analyzing the SPV spectra we have determined that a buried interface rather than the sample surface mainly governs the SPV effect. The DSPV spectra revealed sharp features associated with excitonic interband transitions which energies were found to be in a good agreement with those calculated including the nonparabolicity of the energy bands. The dependence of the exciton linewidth broadening on the well width and the quantum index has shown that an average half monolayer well width fluctuations is mostly predominant broadening mechanism for QWs thinner than 10nm. The line broadening in lightly doped QWs, thicker than 10nm, was found to arise from thermal broadening with the contribution from Stark broadening due to random electric fields of the ionized impurities in the structures. We finally consider the possible influence of strong internal electric fields, QW imperfections, and doping level on the operation of THz sensors fabricated using the studied structures.

  19. Carrier compensation in semi-insulating CdTe: First-principles calculations

    SciTech Connect

    Du, Mao-Hua; Singh, David J

    2008-01-01

    Carrier compensation in semi-insulating CdTe has been attributed to the compensation of surplus shallow acceptors by deep donors, usually assumed to be Te antisites. However, our first-principles calculations show that intrinsic defects should not have a significant effect on the carrier compensation due either to lack of deep levels near midgap or to low defect concentration. We demonstrate that an extrinsic defect, OTe-H complex, may play an important role in the carrier compensation in CdTe because of its amphoteric character and reasonably high concentration. Our findings have important consequences for improving device performance in CdTe-based radiation detectors and solar cells.

  20. GaInP/GaAs tandem solar cells with highly Te- and Mg-doped GaAs tunnel junctions grown by MBE

    NASA Astrophysics Data System (ADS)

    Zheng, Xin-He; Liu, San-Jie; Xia, Yu; Gan, Xing-Yuan; Wang, Hai-Xiao; Wang, Nai-Ming; Yang, Hui

    2015-10-01

    We report a GaInP/GaAs tandem solar cell with a novel GaAs tunnel junction (TJ) with using tellurium (Te) and magnesium (Mg) as n- and p-type dopants via dual-filament low temperature effusion cells grown by molecular beam epitaxy (MBE) at low temperature. The test Te/Mg-doped GaAs TJ shows a peak current density of 21 A/cm2. The tandem solar cell by the Te/Mg TJ shows a short-circuit current density of 12 mA/cm2, but a low open-circuit voltage range of 1.4 V˜1.71 V under AM1.5 illumination. The secondary ion mass spectroscopy (SIMS) analysis reveals that the Te doping is unexpectedly high and its doping profile extends to the Mg doping region, thus possibly resulting in a less abrupt junction with no tunneling carriers effectively. Furthermore, the tunneling interface shifts from the intended GaAs n++/p++ junction to the AlGaInP/GaAs junction with a higher bandgap AlGaInP tunneling layers, thereby reducing the tunneling peak. The Te concentration of ˜ 2.5 × 1020 in GaAs could cause a lattice strain of 10-3 in magnitude and thus a surface roughening, which also negatively influences the subsequent growth of the top subcell and the GaAs contacting layers. The doping features of Te and Mg are discussed to understand the photovoltaic response of the studied tandem cell. Project supported by the SINANO-SONY Joint Program (Grant No. Y1AAQ11001), the National Natural Science Foundation of China (Grant No. 61274134), the USCB Start-up Program (Grant No. 06105033), and the International Cooperation Projects of Suzhou City, China (Grant No. SH201215).

  1. Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics

    SciTech Connect

    Ritenour, Andrew J.; Boucher, Jason W.; DeLancey, Robert; Greenaway, Ann L.; Aloni, Shaul; Boettcher, Shannon W.

    2014-09-01

    We report the use of a simple close-spaced vapor transport technique for the growth of high-quality epitaxial GaAs films using potentially inexpensive GaAs powders as precursors. The free carrier type and density (1016 to 1019 cm–3) of the films were adjusted by addition of Te or Zn powder to the GaAs source powder. We show using photoelectrochemical and electron beam-induced current analyses that the minority carrier diffusion lengths of the n- and p-GaAs films reached ~3 μm and ~8 μm, respectively. Hall mobilities approach those achieved for GaAs grown by metal–organic chemical vapor deposition, 1000–4200 cm2 V–1 s–1 for n-GaAs and 50–240 cm V–1 s–1 for p-GaAs depending on doping level. We conclude that the electronic quality of GaAs grown by close-spaced vapor transport is similar to that of GaAs made using conventional techniques and is thus sufficient for high-performance photovoltaic applications.

  2. Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics

    DOE PAGESBeta

    Ritenour, Andrew J.; Boucher, Jason W.; DeLancey, Robert; Greenaway, Ann L.; Aloni, Shaul; Boettcher, Shannon W.

    2014-09-01

    We report the use of a simple close-spaced vapor transport technique for the growth of high-quality epitaxial GaAs films using potentially inexpensive GaAs powders as precursors. The free carrier type and density (1016 to 1019 cm–3) of the films were adjusted by addition of Te or Zn powder to the GaAs source powder. We show using photoelectrochemical and electron beam-induced current analyses that the minority carrier diffusion lengths of the n- and p-GaAs films reached ~3 μm and ~8 μm, respectively. Hall mobilities approach those achieved for GaAs grown by metal–organic chemical vapor deposition, 1000–4200 cm2 V–1 s–1 for n-GaAsmore » and 50–240 cm V–1 s–1 for p-GaAs depending on doping level. We conclude that the electronic quality of GaAs grown by close-spaced vapor transport is similar to that of GaAs made using conventional techniques and is thus sufficient for high-performance photovoltaic applications.« less

  3. Ab initio study of the strain dependent thermodynamics of Bi doping in GaAs

    NASA Astrophysics Data System (ADS)

    Jacobsen, Heather; Puchala, Brian; Kuech, Thomas F.; Morgan, Dane

    2012-08-01

    The thermodynamics of Bi incorporation into bulk and epitaxial GaAs was studied using density functional theory (DFT) and anharmonic elasticity calculations. The equilibrium concentration of Bi was determined as a function of epitaxial strain state, temperature, and growth conditions. For a bulk, unstrained system, Bi in GaAs under typical growth conditions (Ga-rich and Bi-metal-rich at 400 °C) has a dilute heat of solution of 572 meV/Bi and a solubility of x=5.2×10-5 in GaAs1-xBix. However, epitaxial strain can greatly enhance this solubility, and under the same conditions an epitaxial film of GaAs1-xBix with 5% in-plane tensile strain is predicted to have a Bi solubility of x=7.3×10-3, representing approximately a hundred times increase in solubility over the unstrained bulk case. Despite these potentially large increases in solubility, the equilibrium solubility is still very low compared to values that have been achieved experimentally through nonequilibrium growth. These values of solubility are also sensitive to the choice of the Bi reference state. If the primary route for phase separation is the formation of GaBi within the same structure, rather than Bi metal, GaBi would serve as the source/sink for Bi. If GaBi is used as the Bi reference state, the epitaxial formation energy on a bulk unstrained GaAs substrate is reduced dramatically to 144 meV/Bi, yielding a Bi solubility of x=0.083 in GaAs1-xBix. These calculations suggest that Bi solubility could be greatly enhanced if Bi metal formation is inhibited and the system is forced to remain constrained to the GaAs1-xBix structure. Although GaBi is not a naturally stable compound, it could potentially be stabilized through a combination of kinetic limitations and alloying.

  4. Design Issues of GaAs and AlGaAs Delta-Doped p-i-n Quantum-Well APD's

    NASA Technical Reports Server (NTRS)

    Wang, Yang

    1994-01-01

    We examine the basic design issues in the optimization of GaAs delta-doped and AlGAs delta-doped quantum-well avalanche photodiode (APD) structures using a theoretical analysis based on an ensemble Monte Carlo simulation. The devices are variations of the p-i-n doped quantum-well structure previously described in the literature. They have the same low-noise, high-gain and high-bandwidth features as the p-i-n doped quantum-well device. However, the use of delta doping provides far greater control or the doping concentrations within each stage possibly enhancing the extent to which the device can be depleted. As a result, it is expected that the proposed devices will operate at higher gain levels (at very low noise) than devices previously developed.

  5. Photoreflectance analysis of annealed vanadium-doped GaAs thin films grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fitouri, H.; Bilel, C.; Zaied, I.; Bchetnia, A.; Rebey, A.; El Jani, B.

    2015-09-01

    In this study, we investigate the optical properties of annealed vanadium-doped GaAs films grown on GaAs substrates by metalorganic vapor phase epitaxy. The temperature dependence of the photoreflectance (PR) of as-grown GaAs:V films has been studied. We used the fit with Third-Derivative Functional Form model to evaluate the physical parameters. The temperature dependence of band gap and spin-orbit energies can be described by the Bose-Einstein statistical expression. The PR spectra of the samples are measured after thermal annealing in order to check any improvement in the optical quality of the material. The PR signal amplitude of GaAs:V samples decreased after thermal annealing. Degradation of the PR signal for annealing temperature at about 850 °C is observed revealing a poor quality of the layer surface states and an important density of the recombination centers. The lock-in phase analysis of PR spectra allows to determine the time constant for GaAs:V sample before and after thermal annealing.

  6. First Principles Electronic Structure of Mn doped GaAs, GaP, and GaN Semiconductors

    SciTech Connect

    Schulthess, Thomas C; Temmerman, Walter M; Szotek, Zdzislawa; Svane, Axel; Petit, Leon

    2007-01-01

    We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.

  7. Comparison of OARE Accelerometer Data with Dopant Distribution in Se-Doped GaAs Crystals Grown During USML-1

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Bly, Jennifer M.; Matthiesen, David H.

    1997-01-01

    Experiments were conducted in the crystal growth furnace (CGF) during the first United States Microgravity Laboratory (USML-1), the STS-50 flight of the Space Shuttle Columbia, to determine the segregation behavior of selenium in bulk GaAs in a microgravity environment. After the flight, the selenium-doped GaAs crystals were sectioned, polished, and analyzed to determine the free carrier concentration as a function of position, One of the two crystals initially exhibited an axial concentration profile indicative of diffusion controlled growth, but this profile then changed to that predicted for a complete mixing type growth. An analytical model, proposed by Naumann [R.J. Naumann, J. Crystal Growth 142 (1994) 253], was utilized to predict the maximum allowable microgravity disturbances transverse to the growth direction during the two different translation rates used for each of the experiments. The predicted allowable acceleration levels were 4.86 microgram for the 2.5 micrometers/s furnace translation rate and 38.9 microgram for the 5.0 micrometers/s rate. These predicted values were compared to the Orbital Acceleration Research Experiment (OARE) accelerometer data recorded during the crystal growth periods for these experiments. Based on the analysis of the OARE acceleration data and utilizing the predictions from the analytical model, it is concluded that the change in segregation behavior was not caused by any acceleration events in the microgravity environment.

  8. Evaluation of modulating field of photoreflectance of surface-intrinsic-n+ type doped GaAs by using photoinduced voltage

    NASA Astrophysics Data System (ADS)

    Lee, W. Y.; Chien, J. Y.; Wang, D. P.; Huang, K. F.; Huang, T. C.

    2002-04-01

    Photoreflectance (PR) of surface-intrinsic-n+ type doped GaAs has been measured for various power densities of pump laser. The spectra exhibited many Franz-Keldysh oscillations, whereby the strength of electric field F in the undoped layer can be determined. The thus obtained Fs are subject to photovoltaic effect and are less than built-in field Fbi. In the previous work we have obtained the relation F≈Fbi-δF/2 when δF≪Fbi by using electroreflectance to simulate PR, where δF is the modulating field of the pump beam. In this work a method was devised to evaluate δF by using photoinduced voltages Vs and, hence, the relation can be verified by PR itself. The δFs obtained by Vs are also consistent with those of using imaginary part of fast Fourier transform of PR spectra.

  9. Design and fabrication of GaAs OMIST photodetector

    NASA Astrophysics Data System (ADS)

    Kang, Xuejun; Lin, ShiMing; Liao, Qiwei; Gao, Junhua; Liu, Shi'an; Cheng, Peng; Wang, Hongjie; Zhang, Chunhui; Wang, Qiming

    1998-08-01

    We designed and fabricated GaAs OMIST (Optical-controlled Metal-Insulator-Semiconductor Thyristor) device. Using oxidation of AlAs layer that is grown by MBE forms the Ultra- Thin semi-Insulating layer (UTI) of the GAAS OMIST. The accurate control and formation of high quality semi-insulating layer (AlxOy) are the key processes for fabricating GaAs OMIST. The device exhibits a current-controlled negative resistance region in its I-V characteristics. When illuminated, the major effect of optical excitation is the reduction of the switching voltage. If the GaAs OMIST device is biased at a voltage below its dark switching voltage Vs, sufficient incident light can switch OMIST from high impedance low current 'off' state to low impedance high current 'on' state. The absorbing material of OMIST is GaAS, so if the wavelength of incident light within 600 to approximately 850 nm can be detected effectively. It is suitable to be used as photodetector for digital optical data process. The other attractive features of GaAs OMIST device include suitable conducted current, switching voltage and power levels for OEIC, high switch speed and high sensitivity to light or current injection.

  10. Raman study of As outgassing and damage induced by ion implantation in Zn-doped GaAs

    SciTech Connect

    Barba, D.; Aimez, V.; Beauvais, J.; Beerens, J.; Drouin, D.; Chicoine, M.; Schiettekatte, F.

    2004-11-01

    Room temperature micro-Raman investigations of LO phonon and LO phonon-plasmon coupling is used to study the As outgassing mechanism and the disordering effects induced by ion implantation in Zn-doped GaAs with nominal doping level p=7x10{sup 18} cm{sup -3}. The relative intensity of these two peaks is measured right after rapid vacuum thermal annealings (RVTA) between 200 and 450 deg. C, or after ion implantations carried out at energies of 40 keV with P{sup +}, and at 90 and 170 keV with As{sup +}. These intensities provide information regarding the Schottky barrier formation near the sample surface. Namely, the Raman signature of the depletion layer formation resulting from As desorption is clearly observed in samples submitted to RVTA above 300 deg. C, and the depletion layer depths measured in ion implanted GaAs:Zn are consistent with the damage profiles obtained through Monte Carlo simulations. Ion channeling effects, maximized for a tilt angle set to 45 deg. during implantation, are also investigated. These results show that the Raman spectroscopy is a versatile tool to study the defects induced by postgrowth processes in multilayered heterostructures, with probing range of about 100 nm in GaAs-based materials.

  11. Structural and magnetic characteristics of MnAs nanoclusters embedded in Be-doped GaAs

    NASA Astrophysics Data System (ADS)

    Rench, D. W.; Schiffer, P.; Samarth, N.

    2011-09-01

    We describe a systematic study of the synthesis, microstructure, and magnetization of hybrid ferromagnet-semiconductor nanomaterials comprised of MnAs nanoclusters embedded in a p-doped GaAs matrix. These samples are created during the in situ annealing of Be-doped (Ga,Mn)As heterostructures grown by molecular beam epitaxy. Transmission electron microscopy and magnetometry studies reveal two distinct classes of nanoclustered samples whose structural and magnetic properties depend on the Mn content of the initial (Ga,Mn)As layer. For Mn content in the range 5-7.5%, annealing creates a superparamagnetic material with a uniform distribution of small clusters (diameter ˜6 nm) and with a low blocking temperature (TB˜10 K). While transmission electron microscopy cannot definitively identify the composition and crystalline phase of these small clusters, our experimental data suggest that they may be comprised of either zinc-blende MnAs or Mn-rich regions of (Ga,Mn)As. At higher Mn content (≳8%), we find that annealing results in an inhomogeneous distribution of both small clusters as well as much larger NiAs-phase MnAs clusters (diameter ˜25 nm). These samples also exhibit supermagnetism, albeit with substantially larger magnetic moments and coercive fields, and blocking temperatures well above room temperature.

  12. Selfsimilar and fractal analysis of n-type delta-doped quasiregular GaAs quantum wells

    SciTech Connect

    García-Cervantes, H.; Rodríguez-Vargas, I.

    2014-05-15

    We study the electronic structure of n-type delta-doped quantum wells in GaAs in which the multiple well system is built according to the Fibonacci sequence. The building blocks A and B correspond to delta-doped wells with impurities densities n{sub 2DA} and n{sub 2DB}, and the same well width. The Thomas-Fermi approximation, the semi-empirical sp{sub 3}s* tight-binding model including spin, the Surface Green Function Matching method and the Transfer Matrix approach were implemented to obtain the confining potential, the electronic structure and the selfsimilarity of the spectrum. The fragmentation of the electronic spectra is observed whenever the building blocks A and B interact and it increases as the difference of impurities density between A and B increases as well. The wave function of the first sate of the fragmented bands presents critical characteristics, this is, it is not a localized state nor a extended one as well as it has selfsimilar features. So, the quasiregular characteristics are preserved irrespective of the complexity of the system and can affect the performance of devices based on these structures.

  13. Mechanisms of the passage of dark currents through Cd(Zn)Te semi-insulating crystals

    NASA Astrophysics Data System (ADS)

    Sklyarchuk, V.; Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O.; Nykoniuk, Ye.; Rybka, A.; Kutny, V.; Bolotnikov, A. E.; James, R. B.

    2014-09-01

    We investigated the passage of dark currents through semi-insulating crystals of Cd(Zn)Te with weak n-type conductivity that are used widely as detectors of ionizing radiation. The crystals were grown from a tellurium solution melt at 800 оС by the zone-melting method, in which a polycrystalline rod in a quartz ampoule was moved through a zone heater at a rate of 2 mm per day. The synthesis of the rod was carried out at ~1150 оС. We determined the important electro-physical parameters of this semiconductor, using techniques based on a parallel study of the temperature dependence of current-voltage characteristics in both the ohmic and the space-charge-limited current regions. We established in these crystals the relationship between the energy levels and the concentrations of deep-level impurity states, responsible for dark conductivity and their usefulness as detectors.

  14. The role of hydrogen in semi-insulating InP

    SciTech Connect

    Han, Y.; Liu, X.; Jiao, J.; Qian, J.; Chen, Y.; Wang, Z.; Lin, L.

    1998-12-31

    Complexes of vacancy at indium site with one to four hydrogen atoms and isolated hydrogen or hydrogen dimer and other infrared absorption lines, tentatively be assigned to hydrogen related defects were investigated by FTIR. Hydrogen can passivate imperfections, thereby eliminating detrimental electronic states from the energy bandgap. Incorporated hydrogen can introduce extended defects and generate electrically-active defects. Hydrogen also can act as an actuator for creating antistructure defects. Isolated hydrogen related defects (e.g., H{sub 2}{sup *}) may play an important role in the conversion of the annealed wafers from semiconducting to the semi-insulating behavior. H{sub 2}{sup *} may be a deep donor, whose energy level is very near the iron deep acceptor level in the energy gap.

  15. Simulation of Electric Field in Semi Insulating Au/CdTe/Au Detector under Flux

    SciTech Connect

    Franc, J.; James, R.; Grill, R.; Kubat, J.; Belas, E.; Hoschl, P.; Moravec, P.; Praus, P.

    2009-08-02

    We report our simulations on the profile of the electric field in semi insulating CdTe and CdZnTe with Au contacts under radiation flux. The type of the space charge and electric field distribution in the Au/CdTe/Au structure is at high fluxes result of a combined influence of charge formed due to band bending at the electrodes and from photo generated carriers, which are trapped at deep levels. Simultaneous solution of drift-diffusion and Poisson equations is used for the calculation. We show, that the space charge originating from trapped photo-carriers starts to dominate at fluxes 10{sup 15}-10{sup 16}cm{sup -2}s{sup -1}, when the influence of contacts starts to be negligible.

  16. The influence of Sb doping on the growth and electronic properties of GaAs(100) and AlGaAs(100)

    NASA Technical Reports Server (NTRS)

    Jamison, K. D.; Chen, H. C.; Bensaoula, A.; Lim, W.; Trombetta, L.

    1989-01-01

    Isoelectronic doping using antimony has been shown to reduce traps and improve material properties during epitaxial growth of Si doped GaAs(100) and AlGaAs(100). In this study, the effect of the antimony dopant on the optimal growth temperature is examined with the aim of producing high-quality heterostructures at lower temperatues. High-quality films of GaAs and AlGaAs have been grown by molecular-beam epitaxy at the normal growth temperatures of 610 and 700 C, respectively, and 50-100 C below this temperature using varying small amounts of Sb as a dopant. Electrical properties of the films were then examined using Hall mobility measurements and deep-level transient spectroscopy.

  17. Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, P. K.; Dhar, S.; Berger, P.; Juang, F.-Y.

    1986-01-01

    A study has been made of the effects of adding small amounts of In (0.2-1.2 pct) to GaAs grown by molecular beam epitaxy. The density of four electron traps decreases in concentration by an order of magnitude, and the peak intensities of prominent emissions in the excitonic spectra are reduced with increase in In content. Based on the higher surface migration rate of In, compared to Ga, at the growth temperatures it is apparent that the traps and the excitonic transitions are related to point defects. This agrees with earlier observations by Briones and Collins (1982) and Skromme et al. (1985).

  18. Microscopic defect level characterization of semi-insulating compound semiconductors by TSC and PICTS. Application to the effect of hydrogen in CdTe

    NASA Astrophysics Data System (ADS)

    Hage-Ali, M.; Yaacoub, B.; Mergui, S.; Samimi, M.; Biglari, B.; Siffert, P.

    1991-06-01

    Thermally stimulated current (TSC) and photo-induced current transient spectroscopy (PICTS) methods have been developed for the microscopic defect characterization in semi-insulating compound semiconductors. The capabilities of these methods are demonstrated by investigating the effects of hydrogen implantation or diffusion into semi-insulating cadmium telluride.

  19. Compensation mechanism in liquid encapsulated Czochralski GaAs Importance of melt stoichiometry

    NASA Technical Reports Server (NTRS)

    Holmes, D. E.; Chen, R. T.; Elliott, K. R.; Kirkpatrick, C. G.; Yu, P. W.

    1982-01-01

    It is shown that the key to reproducible growth of undoped semi-insulating GaAs by the liquid encapsulated Czochralski (LEC) technique is the control over the melt stoichiometry. Twelve crystals were grown from stoichiometric and nonstoichiometric melts. The material was characterized by secondary ion mass spectrometry, localized vibrational mode far infrared spectroscopy, Hall-effect measurements, optical absorption, and photoluminescence. A quantitative model for the compensation mechanism in the semi-insulating material was developed based on these measurements. The free carrier concentration is controlled by the balance between EL2 deep donors and carbon acceptors; furthermore, the incorporation of EL2 is controlled by the melt stoichiometry, increasing as the As atom fraction in the melt increases. As a result, semi-insulating material can be grown only from melts above a critical As composition. The practical significance of these results is discussed in terms of achieving high yield and reproducibility in the crystal growth process.

  20. Development of bulk GaAs room temperature radiation detectors

    SciTech Connect

    McGregor, D.S.; Knoll, G.F. . Dept. of Nuclear Engineering); Eisen, Y. . Soreq Nuclear Research Center); Brake, R. )

    1992-10-01

    This paper reports on GaAs, a wide band gap semiconductor with potential use as a room temperature radiation detector. Various configurations of Schottky diode detectors were fabricated with bulk crystals of liquid encapsulated Czochralski (LEC) semi-insulating undoped GaAs material. Basic detector construction utilized one Ti/Au Schottky contact and one Au/Ge/Ni alloyed ohmic contact. Pulsed X-ray analysis indicated pulse decay times dependent on bias voltage. Pulse height analysis disclosed non-uniform electric field distributions across the detectors tentatively explained as a consequence of native deep level donors (EL2) in the crystal.

  1. Lattice expansion, stability, and Mn solubility in substitutionally Mn-doped GaAs

    NASA Astrophysics Data System (ADS)

    Nakamura, Kohji; Hatano, Keishi; Akiyama, Toru; Ito, Tomonori; Freeman, A. J.

    2007-05-01

    The structural properties and stability of zinc-blende GaxMn1-xAs over the whole Mn composition range are studied by means of the highly precise full-potential linearized augmented plane-wave method and the Connolly-Williams cluster expansion method, within the local-density approximation (LDA), generalized gradient approximation (GGA), and LDA+U . In contrast to LDA and GGA predictions, the calculated LDA+U lattice constant is found to increase when the Mn composition increases, even in the case that the Mn atoms substitutionally occupy cation sites, due to the correlation correction of the pd hybridization strength between the Mn3d bands and the As4p valence bands, which agrees with recent experimental findings. In addition, we confirm that the system has a tendency to segregate into GaAs and MnAs, and so inherently favors clustering. A temperature-composition phase diagram is obtained with the mean-field approximation for the entropy, in which the Mn solubility into GaAs is found to be very low at low temperatures (˜300°C) .

  2. Infrared absorption related to the metastable state of arsenic antisite defects in electron-irradiated GaAs

    SciTech Connect

    Kuisma, S.; Saarinen, K.; Hautojaervi, P.; Corbel, C.

    1996-12-31

    A metastable irradiation-induced vacancy is detected by positrons in semi-insulating GaAs. The vacancy is associated with the metastable state of an irradition-induced As-antisite-related defect. This metastable state absorbs IR light in contrast to the metastable state of the As-antisite-related native EL2 defect. This property can be explained by the presence of other defects complexed with the As antisite in electron-irradiated GaAs.

  3. Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters

    SciTech Connect

    Singh, Abhishek; Pal, Sanjoy; Surdi, Harshad; Prabhu, S. S. Nanal, Vandana; Pillay, R. G.

    2014-02-10

    We demonstrate here an efficient photoconductive THz source with low electrical power consumption. We have increased the maximum THz radiation power emitted from SI-GaAs based photoconductive emitters (PCEs) by two orders of magnitude. By irradiating the SI-GaAs substrate with Carbon-ions up to 2 μm deep, we have created lot of defects and decreased the lifetime of photo-excited carriers inside the substrate. Depending on the irradiation dose, we find 1 to 2 orders of magnitude decrease in total current flowing in the substrate, resulting in subsequent decrease of heat dissipation in the device. This has resulted in increasing maximum cut-off of the applied voltage across PCE electrodes to operate the device without thermal breakdown from ∼35 V to >150 V for the 25 μm electrode gaps. At optimum operating conditions, carbon irradiated (10{sup 14} ions/cm{sup 2}) PCEs give THz pulses with power about 100 times higher in comparison to the usual PCEs on SI-GaAs and electrical to THz power conversion efficiency has improved by a factor of ∼800.

  4. Heat load of a P-doped GaAs photocathode in SRF electron gun

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Jain, A.; Gupta, R.; Holmes, D.

    2010-05-23

    Many efforts were made over the last decades to develop a better polarized electron source for the high energy physics. Several laboratories operate DC guns with the Gallium-Arsenide photo-cathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved using a Superconducting RF electron gun, which delivers beams of higher brightness than DC guns does, because the field gradient at the cathode is higher. SRF guns with metal cathodes and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since the cathode will be normal conducting, the problem about the heat load stemming from the cathode arises. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and the verification by measuring the quality factor of the gun with and without cathode.

  5. GaAs Self-Aligned JFETS with Carbon-Doped P+ Region

    SciTech Connect

    Allerman, A.A.; Baca, A.G.; Chang, P.C.; Drummond, T.J.

    1999-02-15

    Self-aligned JFETs with a carbon-doped p{sup +} region have been reported for the first time. For these JFETs, both the channel and p{sup +} region were grown by metal organic chemical vapor deposition (MOCVD) and are termed epitaxial JFETs in this study. The epitaxial JFETs were compared to ion implanted JFETs of similar channel doping and threshold voltage. Both JFETs were fabricated using the same self-aligned process for doping the source and drain regions of the JFET and for eliminating excess gate capacitance of conventional JFETs. The gate turn-on voltage for the epitaxial JFETs was 1.06 V, about 0.1 V higher than for the implanted JFETs. The reverse breakdown voltage was similar for both JFETs but the reverse gate leakage current of the epitaxial JFETs was 1-3 orders of magnitude less than the implanted JFETs. The epitaxial JFETs also showed higher transconductance and lower knee voltage than the implanted JFETs.

  6. Hydrogen sulphide doping of GaAs and AlxGa1-xAs grown by molecular beam epitaxy (MBE)

    NASA Astrophysics Data System (ADS)

    Briones, F.; Golmayo, D.; González, L.; de Miguel, J. L.

    1985-03-01

    H2S gas has been used during molecular beam epitaxy (MBE) growth of GaAs and Al x Ga1- x As as sulphur vector for n-type doping. Doping efficiencies are less than 10-3 at usual growth temperatures, and are limited by an incorporation competitive surface process, probably 2Ga+H2S→Ga2S+H2. In AlxGa1- x As for x≧0.2 the doping efficiency is further reduced by carrier freeze-out at deep levels. Measured thermal activation energies depend on growth conditions and remain relatively low even up to the direct-indirect bandgap crossover for substrate temperatures in the 585 645 ‡C range.

  7. Dislocation lines in indium-doped GaAs crystals observed by infrared light scattering tomography of about 1 μm wavelength radiation

    NASA Astrophysics Data System (ADS)

    Ogawa, Tomoya

    1988-05-01

    Decorated dislocation lines in GaAs crystals are remarkably well observed by scattering of an infrared laser beam in the 1 μm wavelength range. Some of these dislocation lines are also observed by absorption imaging in the same wavelength region but others are only detected by light scattering. Furthermore, the former lines correspond to the pits etched by molten KOH. Dislocation lines in In-doped GaAs crystals grown by the LEC method from nearly stoichiometric melts are studied in connection with their growth history, where grown-in dislocation lines are bent at growth interfaces to react with each other and then their density is decreased. At the shoulder part of the ingots, many slip dislocations are found, where most dislocation lines are so isolated that they are clearly and individually observed by light scattering tomography without etching.

  8. Fabrication of Ohmic contact on semi-insulating 4H-SiC substrate by laser thermal annealing

    NASA Astrophysics Data System (ADS)

    Cheng, Yue; Lu, Wu-yue; Wang, Tao; Chen, Zhi-zhan

    2016-06-01

    The Ni contact layer was deposited on semi-insulating 4H-SiC substrate by magnetron sputtering. The as-deposited samples were treated by rapid thermal annealing (RTA) and KrF excimer laser thermal annealing (LTA), respectively. The RTA annealed sample is rectifying while the LTA sample is Ohmic. The specific contact resistance (ρc) is 1.97 × 10-3 Ω.cm2, which was determined by the circular transmission line model. High resolution transmission electron microscopy morphologies and selected area electron diffraction patterns demonstrate that the 3C-SiC transition zone is formed in the near-interface region of the SiC after the as-deposited sample is treated by LTA, which is responsible for the Ohmic contact formation in the semi-insulating 4H-SiC.

  9. Characteristic of photocurrent decline of transmission-mode equally doped GaAs photocathode

    NASA Astrophysics Data System (ADS)

    Zhang, Dong Lian; Shi, Feng; Gao, Xiang; Cheng, Hong-Chang; Miao, Zhuang; Niu, Sen; Wang, Long; Chen, Chang

    2014-09-01

    Photocurrent of GaAs photocathode activated with Cs and O was tested by auto-activation monitor, the fitting curves of photocurrent showed that the photocurrent of the photocathode after the first activation declines exponentially, and then declines linearly with very small slope |k1|; the photocurrent after the second activation rises exponentially, and then declines linearly with a slope|k2| which is a bit larger than |k1|.Based on the mechanism difference between twice annealing of the photocathode, the degeneration behavior of the photocathode was analyzed by three-dipoles model and XPS test after the first activation and succedent thermal cleaning. It is indicated that Cs2O dipoles on the surface are saturated after the photocathode was activated for the first time, the remained Cs and Cs2O in the ultra-high vacuum chamber which deposited on the photocathode surface will prevent the emission of photoelectrons. The photocathode surface with Cs and O reconstructed when it was annealing for the second time, a lot of Cs2O dipoles changed into more stable GaAs-O-Cs dipoles, and this phenomenon would happened immediately as soon as the photocathode was activating for the second time. After the residual Cs and Cs2O dipoles depleted, the neutral gas CO2, H2O, O2, damaging the surface dipoles layer, are the main factors resulted in the decline of photocurrent. Due to the instable Cs2O dipoles on the surface of photocathode have greater chances of converting into stable GaAs-O-Cs dipoles when photocathode was activated for the first time, the photocurrent declines more slowly compared with the second activation. The discussion for the phenomenon is of great significance for exploring the photoemission mechanism of Ⅲ-Ⅴ semiconductors.

  10. Cathodoluminescence of Yellow and Blue Luminescence in Undoped Semi-insulating GaN and n-GaN

    NASA Astrophysics Data System (ADS)

    Hou, Qi-Feng; Wang, Xiao-Liang; Xiao, Hong-Ling; Wang, Cui-Mei; Yang, Cui-Bai; Yin, Hai-Bo; Li, Jin-Min; Wang, Zhan-Guo

    2011-03-01

    Yellow and blue luminescence in undoped GaN layers with different resistivities are studied by cathodoluminescence. Intense yellow and blue luminescence bands are observed in semi-insulating GaN, while in n-GaN the yellow luminescence and blue luminescence bands are very weak. The stronger yellow and blue luminescences in semi-insulating GaN are correlated to the higher edge-type dislocation density. The scanning cathodoluminescence image reveals strong defect-related luminescence at the grain boundaries where the dislocations accumulate. It is found that the relative intensity of the blue luminescence band to the yellow luminescence band increases with the cathodoluminescence beam energies and is larger in n-GaN with a lower density of edge-type dislocations. An approximately 3.35 eV shoulder next to the near-band-edge peak is observed in n-GaN but not in semi-insulating GaN. A redshift of the near-band-edge peak with cathodoluminescence beam energy is observed in both samples and is explained by internal absorption.

  11. Growth studies of erbium-doped GaAs deposited by metalorganic vapor phase epitaxy using noval cyclopentadienyl-based erbium sources

    NASA Technical Reports Server (NTRS)

    Redwing, J. M.; Kuech, T. F.; Gordon, D. C.; Vaartstra, B. A.; Lau, S. S.

    1994-01-01

    Erbium-doped GaAS layers were grown by metalorganic vapor phase epitaxy using two new sources, bis(i-propylcyclopentadienyl)cyclopentadienyl erbium and tris(t-butylcyclopentadienyl) erbium. Controlled Er doping in the range of 10(exp 17) - 10(exp 18)/cu cm was achieved using a relatively low source temperature of 90 C. The doping exhibits a second-order dependence on inlet source partial pressure, similar to behavior obtained with cyclopentadienyl Mg dopant sources. Equivalent amounts of oxygen and Er are present in 'as-grown' films indicating that the majority of Er dopants probably exist as Er-O complexes in the material. Er(+3) luminescence at 1.54 micrometers was measured from the as-grown films, but ion implantation of additional oxygen decreases the emission intensity. Electrical compensation of n-type GaAs layers codoped with Er and Si is directly correlated to the Er concentration is proposed to arise from the deep centers associated with Er which are responsible for a broad emission band near 0.90 micrometers present in the photoluminescence spectra of GaAs:Si, Er films.

  12. Plasma Deposited SiO2 for Planar Self-Aligned Gate Metal-Insulator-Semiconductor Field Effect Transistors on Semi-Insulating InP

    NASA Technical Reports Server (NTRS)

    Tabory, Charles N.; Young, Paul G.; Smith, Edwyn D.; Alterovitz, Samuel A.

    1994-01-01

    Metal-insulator-semiconductor (MIS) field effect transistors were fabricated on InP substrates using a planar self-aligned gate process. A 700-1000 A gate insulator of Si02 doped with phosphorus was deposited by a direct plasma enhanced chemical vapor deposition at 400 mTorr, 275 C, 5 W, and power density of 8.5 MW/sq cm. High frequency capacitance-voltage measurements were taken on MIS capacitors which have been subjected to a 700 C anneal and an interface state density of lxl0(exp 11)/eV/cq cm was found. Current-voltage measurements of the capacitors show a breakdown voltage of 107 V/cm and a insulator resistivity of 10(exp 14) omega cm. Transistors were fabricated on semi-insulating InP using a standard planar self-aligned gate process in which the gate insulator was subjected to an ion implantation activation anneal of 700 C. MIS field effect transistors gave a maximum extrinsic transconductance of 23 mS/mm for a gate length of 3 microns. The drain current drift saturated at 87.5% of the initial current, while reaching to within 1% of the saturated value after only 1x10(exp 3). This is the first reported viable planar InP self-aligned gate transistor process reported to date.

  13. Magnesium doping of efficient GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Ford, C. W.; Werthen, J. G.

    1984-01-01

    Magnesium has been substituted for zinc in GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition (MOCVD). Bis(cyclopentadienyl)magnesium (Cp2Mg) is used as the MOCVD transport agent for Mg. Full retention of excellent material quality and efficient cell performance results. The substitution of Mg for Zn would enhance the abruptness and reproducibility of doping profiles, and facilitate high temperature processing and operation, due to the much lower diffusion coefficient of Mg, relative to Zn, in these materials.

  14. On the growth mechanism of Li- and Na-doped Zn chalcogenides on GaAs(001) by means of molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ohishi, M.; Yoneta, M.; Ishii, S.; Ohura, M.; Hiroe, Y.; Saito, H.

    1996-02-01

    Sharp and semicircular patterns were observed in RHEED during the MBE growth of Li- or Na-acceptor doped ZnSe and ZnS on GaAs(001). The radius and the separation between the diffraction circles vary with the change of the azimuth of the incident electron beam. Calculated diffraction patterns assuming that Li or Na atoms are arrayed one-dimensionally along the [110] direction of the crystal axis are in good agreement with the experimental results. We conclude that Li or Na atoms are incorporated at the [110] terrace steps, which prevents the further growth from the step edge.

  15. Investigation of the optical properties of GaAs with δ-Si doping grown by molecular-beam epitaxy at low temperatures

    SciTech Connect

    Lavrukhin, D. V. Yachmenev, A. E.; Bugaev, A. S.; Galiev, G. B.; Klimov, E. A.; Khabibullin, R. A.; Ponomarev, D. S.; Maltsev, P. P.

    2015-07-15

    Molecular-beam epitaxy is used for the preparation of structures based on “low-temperature” grown GaAs with introduced d-Si doping. Specific features in the photon-energy range of 1.28–1.48 eV are observed in the photoluminescence spectrum after structures annealing at temperatures of 520 and 580°C; these features are related to the formation of point defects and their complexes. The “pump–probe” light transmission measurements reveal that the characteristic lifetimes of nonequilibrium carriers in the fabricated structures amount to T{sup c} ≈ 1.2–1.5 ps.

  16. High purity liquid phase epitaxial GaAs for radiation detectors

    SciTech Connect

    Wynne, D.I.; Haller, E.E.; Rossington Tull, C.S.

    1998-12-31

    The authors report on the growth of high purity n-GaAs using Liquid Phase Epitaxy (LPE) and the fabrication of room temperature p-i-n radiation detectors. The epilayers are grown from a Ga solvent in a graphite boat in a pure hydrogen atmosphere. Growth is started at a temperature of approximately 800 C. The best epilayers show a net-residual-donor concentration of 2 {times} 10{sup 13} cm{sup {minus}3}, confirmed by Hall effect measurements. The residual donors have been analyzed by far infrared spectroscopy and found to be sulfur and silicon. Epilayers with thicknesses of up to 120 {micro}m have been deposited on 650 {micro}m thick semi-insulating GaAs substrates and on 500 {micro}m thick n{sup +}-type GaAs substrates. The authors report the results obtained with Schottky barrier diodes fabricated from these high purity n-type GaAs epilayers and operated as X-ray detectors. The Schottky barrier contacts consisted of evaporated circular gold contacts on epilayers on n{sup +} substrates. The ohmic contacts were formed by evaporated and alloyed Ni-Ge-Au films on the back of the substrate. Several of the diodes exhibit currents of the order of 1 to 10 nA at reverse biases depleting approximately 50 {micro}m of the epilayer. This very encouraging result, demonstrating the possibility for fabricating GaAs p-i-n diodes with depletion layers in high purity GaAs instead of semi-insulating GaAs, is supported by similar results obtained by several other groups. The consequences of using high purity instead of semi-insulating GaAs will be much reduced charge carrier trapping. Diode electrical characteristics and detector performance results using {sup 55}Fe and {sup 241}Am radiation will be discussed.

  17. Selective-area growth of heavily n-doped GaAs nanostubs on Si(001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chang, Yoon Jung; Simmonds, Paul J.; Beekley, Brett; Goorsky, Mark S.; Woo, Jason C. S.

    2016-04-01

    Using an aspect ratio trapping technique, we demonstrate molecular beam epitaxy of GaAs nanostubs on Si(001) substrates. Nanoholes in a SiO2 mask act as a template for GaAs-on-Si selective-area growth (SAG) of nanostubs 120 nm tall and ≤100 nm in diameter. We investigate the influence of growth parameters including substrate temperature and growth rate on SAG. Optimizing these parameters results in complete selectivity with GaAs growth only on the exposed Si(001). Due to the confined-geometry, strain and defects in the GaAs nanostubs are restricted in lateral dimensions, and surface energy is further minimized. We assess the electrical properties of the selectively grown GaAs nanostubs by fabricating heterogeneous p+-Si/n+-GaAs p-n diodes.

  18. Microwave properties of semi-insulating silicon carbide between 10 and 40 GHz and at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Hartnett, John G.; Mouneyrac, David; Krupka, Jerzy; le Floch, Jean-Michel; Tobar, Michael E.; Cros, Dominique

    2011-03-01

    The complex permittivity of high-purity, semi-insulating, axis-aligned monocrystalline 4H-SiC has been determined over the frequency range 10-40 GHz and at temperatures from 40 up to 295 K using whispering gallery modes and quasi TE0, n , p modes in a dielectric resonator constructed from seven layers of a 375 μm thick wafer. The real part of the permittivity (in the plane of the wafers) was found to be nearly independent of frequency. The dielectric loss tangent of 4H-SiC increases with temperature above 100 K. All results were obtained for the semiconductor in darkness.

  19. Formation of Semi-Insulating Layers on Semiconducting β-Ga2O3 Single Crystals by Thermal Oxidation

    NASA Astrophysics Data System (ADS)

    Oshima, Takayoshi; Kaminaga, Kenichi; Mukai, Akira; Sasaki, Kohei; Masui, Takekazu; Kuramata, Akito; Yamakoshi, Shigenobu; Fujita, Shizuo; Ohtomo, Akira

    2013-05-01

    Semi-insulating layers (SIL) were formed on the surfaces of nominally undoped β-Ga2O3 (010) single crystals by thermal oxidation. Capacitance-voltage measurement with double Schottky configuration was performed to evaluate the increase in the thickness of the SIL as a function of annealing temperature and time. A SiO2 layer prepared on the surface prevented the extension of the SIL, indicating that oxygen incorporation from air and successive bulk diffusion dominated the carrier compensation process. The activation energy of oxygen diffusion coefficient was estimated to be 4.1 eV.

  20. 808-nm diode-pumped dual-wavelength passively Q-switched Nd:LuLiF4 laser with Bi-doped GaAs

    NASA Astrophysics Data System (ADS)

    Li, S. X.; Li, T.; Li, D. C.; Zhao, S. Z.; Li, G. Q.; Hang, Y.; Zhang, P. X.; Li, X. Y.; Qiao, H.

    2015-09-01

    Diode-pumped CW and passively Q-switched Nd:LuLiF4 lasers with stable, synchronous dual-wavelength operations near 1047 and 1053 nm were demonstrated for the first time. The maximal CW output power of 821 mW was obtained at an incident pump power of 6.52 W. Employing high quality Bi-doped GaAs as saturable absorber, stable dual-wavelength Q-switched operation was realized. Under 6.52 W incident pump power, the minimal pulse duration of 1.5 ns, the largest single pulse energy of 11.32 μJ, and the highest peak power of 7.25 kW were achieved.

  1. Direct identification of interstitial Mn in heavily p-type doped GaAs and evidence of its high thermal stability

    SciTech Connect

    Pereira, L. M. C.; Wahl, U.; Correia, J. G.; Decoster, S.; Vantomme, A.; Silva, M. R. da; Araujo, J. P.

    2011-05-16

    We report on the lattice location of Mn in heavily p-type doped GaAs by means of {beta}{sup -} emission channeling from the decay of {sup 56}Mn. The majority of the Mn atoms substitute for Ga and up to 31% occupy the tetrahedral interstitial site with As nearest neighbors. Contrary to the general belief, we find that interstitial Mn is immobile up to 400 deg. C, with an activation energy for diffusion of 1.7-2.3 eV. Such high thermal stability of interstitial Mn has significant implications on the strategies and prospects for achieving room temperature ferromagnetism in Ga{sub 1-x}Mn{sub x}As.

  2. Liquid encapsulated Czochralski growth of low dislocation GaAs

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, C. G.; Chen, R. T.; Holmes, D. E.

    1982-01-01

    The availability of high-quality, large-diameter GaAs substrates is key to the successful development and production of high-speed GaAs devices and high-efficiency GaAs solar cells. The liquid encapsulated Czochralski (LEC) technique has provided a means for producing large-diameter GaAs. Progress in improving the LEC growth process which has resulted in 3-inch GaAs crystals with exceptionally low dislocation densities and reduced propensity for twinning is reported. Undoped, semi-insulating GaAs ingots were grown in a Melbourn high-pressure LEC system. The effects of seed perfection, seed necking, cone angle, melt stoichiometry, ambient pressure, thickness of the B2O3 encapsulating layer, and diameter control on the dislocation density were investigated. The material was characterized by preferential etching and X-ray topography. It is shown that 3-inch diameter substrates can be produced with dislocation densities as low as 6000 per sq cm through proper selection and control of growth parameters. Also, the incidence of twinning can be reduced significantly by growing from slightly As-rich melts.

  3. Visualization of electrical domains in semi-insulating GaAs:Cr and potential use for variable grating mode operation

    NASA Astrophysics Data System (ADS)

    Rajbenbach, H.; Verdiell, J. M.; Huignard, J. P.

    1988-08-01

    The results of an experimental optical technique for imaging the electrical domain repartition in semi-insulating GaAs:Cr are reported. The technique is based on the use of the crystal as the active component of a transverse electro-optic two-dimensional light modulator. Under dc applied voltage, the electrical domains are traveling from the cathode to the anode at a velocity that increases with the applied voltage and with the incident illumination (v≂10-100 mm/s). Results for ac applied voltages are also presented. In particular, the observation of stationary and periodically distributed high-field domains in GaAs:Cr is reported for sawtooth applied voltages (1 kV, 50-250 Hz). These high-field domains induce a phase structure whose period is shown to be electrically controllable. This is the first reported demonstration of the possibility of a variable grating mode operation in semiconductors.

  4. Heteroepitaxial growth and multiferroic properties of Mn-doped BiFeO3 films on SrTiO3 buffered III-V semiconductor GaAs

    NASA Astrophysics Data System (ADS)

    Gao, G. Y.; Yang, Z. B.; Huang, W.; Zeng, H. Z.; Wang, Y.; Chan, H. L. W.; Wu, W. B.; Hao, J. H.

    2013-09-01

    Epitaxial Mn-doped BiFeO3 (MBFO) thin films were grown on GaAs (001) substrate with SrTiO3 (STO) buffer layer by pulsed laser deposition. X-ray diffraction results demonstrate that the films show pure (00l) orientation, and MBFO (100)//STO(100), whereas STO (100)//GaAs (110). Piezoresponse force microscopy images and polarization versus electric field loops indicate that the MBFO films grown on GaAs have an effective ferroelectric switching. The MBFO films exhibit good ferroelectric behavior (2Pr ˜ 92 μC/cm2 and 2EC ˜ 372 kV/cm). Ferromagnetic property with saturated magnetization of 6.5 emu/cm3 and coercive field of about 123 Oe is also found in the heterostructure at room temperature.

  5. Structural properties of pressure-induced structural phase transition of Si-doped GaAs by angular-dispersive X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Lin, Kung-Liang; Lin, Chih-Ming; Lin, Yu-Sheng; Jian, Sheng-Rui; Liao, Yen-Fa; Chuang, Yu-Chun; Wang, Chuan-Sheng; Juang, Jenh-Yih

    2016-02-01

    Pressure-induced phase transitions in n-type silicon-doped gallium arsenide (GaAs:Si ) at ambient temperature were investigated by using angular-dispersive X-ray diffraction (ADXRD) under high pressure up to around 18.6 (1) GPa, with a 4:1 (in volume ratio) methanol-ethanol mixture as the pressure-transmitting medium. In situ ADXRD measurements revealed that n-type GaAs:Si starts to transform from zinc- blende structure to an orthorhombic structure [GaAs-II phase], space group Pmm2, at 16.4 (1) GPa. In contrast to previous studies of pure GaAs under pressure, our results show no evidence of structural transition to Fmmm or Cmcm phase. The fitting of volume compression data to the third-order Birch-Murnaghan equation of state yielded that the zero-pressure isothermal bulk moduli and the first-pressure derivatives were 75 (3) GPa and 6.4 (9) for the B3 phase, respectively. After decompressing to the ambient pressure, the GaAs:Si appears to revert to the B3 phase completely. By fitting to the empirical relations, the Knoop microhardness numbers are between H PK = 6.21 and H A = 5.85, respectively, which are substantially smaller than the values of 7-7.5 for pure GaAs reported previously. A discontinuous drop in the pressure-dependent lattice parameter, N- N distances, and V/ V 0 was observed at a pressure of 11.5 (1) GPa, which was tentatively attributed to the pressure-induced dislocation activities in the crystal grown by vertical gradient freeze method.

  6. Nonlinear optical studies and CO2 laser-induced melting of Zn-doped GaAs

    NASA Astrophysics Data System (ADS)

    James, R. B.; Mills, B. E.; Christie, W. H.; Eby, R. E.; Darken, L. S., Jr.

    1986-02-01

    The intensity dependence of the free-hole absorption of CO2 laser radiation in GaAs:Zn crystals has been measured. Experimental results pertaining to nonlinear optical transmission measurements, the topography of the laser-irradiated surfaces, deviations from stoichiometry in the near-surface region, the incorporation of oxygen, and the pulsed laser annealing of ion-implanted GaAs are discussed. The intensity dependence of the nonlinear absorption is found to be closely approximated by an inhomogeneously broadened two-level model; the measured level for the saturation intensity is in good agreement with theoretical calculations. An energy-density 'window' exists for which the resolidified layer is both crystalline and maintains a high degree of surface planarity. Ga-rich regions remain after the solidification of the molten layer. The amount of arsenic loss increases with increasing laser-energy density and number of laser shots.

  7. Semi insulating CdTe:Cl after elimination of inclusions and precipitates by post grown annealing

    NASA Astrophysics Data System (ADS)

    Franc, J.; Belas, E.; Bugár, M.; Hlídek, P.; Grill, R.; Yang, G.; Cavallini, A.; Fraboni, B.; Castaldini, A.; Assali, S.

    2012-11-01

    We present in this contribution results of two-step annealing, when the CdTe:Cl doped samples are at first annealed under Cd overpressure to remove inclusions and the re-annealed under Te overpressure to restore the high resistivity state. Investigation of samples after Cd rich annealing by infrared microscope has proven, that all inclusions are removed. Also Te nano precipitates were strongly influenced by the annealing process. The resistivity of the samples after Te-rich annealing was restored to values ( ~ 108-109Ωcm). We observed, however, decrease of mobility-lifetime product of electrons from 10-3cm2/Vs to 10-4cm2/Vs. In order to understand the reason of this decrease we performed a study of point defects before and after annealing by thermoelectric effect spectroscopy. It shows a decrease of concentrations of most deep levels after two-step annealing. This behavior is completely different compared to past annealing studies, where concentration of deep levels strongly increased after annealing. The only level with an increased concentration in the current study is the midgap level (E ~ 0.8 eV). At the same time we observed increase of micro-twins in the samples investigated by transmission electron microscopy. The decrease of charge collection efficiency after two-step annealing may be therefore connected with re-arrangement of near midgap levels due to increase of concentrations of structure defects (micro twins, dislocations) that accumulate in their surroundings point defects with energy ~ 0.75 eV.

  8. GaAs thin film epitaxy and x-ray detector development

    NASA Astrophysics Data System (ADS)

    Wynne, Dawnelle I.; Cardozo, B.; Haller, Eugene E.

    1999-10-01

    We report on the growth of high purity n-GaAs using Liquid Phase Epitaxy and on the fabrication of Schottky barrier diodes for use as x-ray detectors using these layers. Our epilayers are grown form an ultra-pure Ga solvent in a graphite boat in a hydrogen atmosphere. Growth is started at a temperature of approximately 800 degrees C; the temperature is ramped down at 2 degrees C/min. to room temperature. Our best epilayers show a net-residual-donor concentration of approximately 2 X 1012 cm-3, measured by Hall effect. Electron mobilities as high as 150,000 cm2 V-1 s-1 at 77K have been obtained. The residual donors have been analyzed by far IR photothermal ionization spectroscopy and found to be sulfur and silicon. Up to approximately 200 micrometers of epitaxial GaAs have been deposited using several sequential growth runs on semi-insulating and n+-doped substrates. Schottky barrier diodes have been fabricated using this epitaxial material and have been electrically characterized by current-voltage and capacitance-voltage measurements. The Schottky barriers are formed by electron beam evaporation of Pt films. The ohmic contacts are made by electron beam evaporated and alloyed Ni-Ge-Au films on the backside of the substrate. Several of our diodes exhibit dark currents of the order of 0.3-3.3 nA/mm2 at reverse biases depleting approximately 50 micrometers of the epilayer. Electrical characteristics and preliminary performance results of our Schottky diodes using 109Cd and 241Am gamma and x- ray radiation will be discussed.

  9. Photoluminescence fatigue and inhomogeneous line broadening in semi-insulating Tl6SeI4 single crystals

    NASA Astrophysics Data System (ADS)

    Kostina, S. S.; Peters, J. A.; Lin, W.; Chen, P.; Liu, Z.; Wang, P. L.; Kanatzidis, M. G.; Wessels, B. W.

    2016-06-01

    Photoluminescence (PL) properties of semi-insulating Tl6SeI4 have been investigated. A broad emission band centered at 1.63 ± 0.02 eV was observed in all samples. The PL emission band is excitonic in nature and is tentatively attributed to a bound exciton emission. PL fatigue (a reduction in PL intensity under prolonged laser excitation) was always observed. The amount of PL fatigue depended on excitation power and temperature. PL fatigue kinetics are described by a stretched exponential with nominal lifetimes in the 10–265 s range. The recovery of the PL occurred within a few seconds of light cessation. The magnitude of PL fatigue in different samples correlated with inhomogeneous line broadening of the 1.63 eV emission band, such that broader bands exhibited more fatigue. An additional luminescence band centered at 1.78 eV was observed which increased in intensity under prolonged laser irradiation. The fatigue phenomenon is tentatively attributed to two mechanisms—the formation of photo-induced defects and the formation of quasi-stable particles. Both of these mechanisms introduce additional radiative and non-radiative recombination channels that lead to a decrease in the PL intensity under prolonged laser irradiation. Since inhomogeneous line broadening and PL fatigue are related to the concentration of defects or impurities, the measurement of these two parameters is an effective method to screen sample quality.

  10. Scattering mechanisms in a high-mobility low-density carbon-doped (100) GaAs two-dimensional hole system

    NASA Astrophysics Data System (ADS)

    Watson, J. D.; Mondal, S.; Csáthy, G. A.; Manfra, M. J.; Hwang, E. H.; Das Sarma, S.; Pfeiffer, L. N.; West, K. W.

    2011-06-01

    We report on a systematic study of the density dependence of mobility in a low-density carbon-doped (100) GaAs two-dimensional hole system (2DHS). At T=50 mK, a mobility of 2.6 × 106 cm2/Vs at a density p=6.2×1010 cm-2 was measured. This is the highest mobility reported for a 2DHS to date. Using a backgated sample geometry, the density dependence of mobility was studied from 2.8 × 1010 cm-2 to 1 × 1011 cm-2. The mobility vs density cannot be fit to a power law dependence of the form μ~pα using a single exponent α. Our data indicate a continuous evolution of the power law with α ranging from ~0.7 at high density and increasing to ~1.7 at the lowest densities measured. Calculations specific to our structure indicate a crossover of the dominant scattering mechanism from uniform background impurity scattering at high density to remote ionized impurity scattering at low densities. This is the first observation of a carrier density-induced transition from background impurity dominated to remote dopant dominated transport in a single sample.

  11. The effects of the magnitude of the modulation field on electroreflectance spectroscopy of undoped-n+ type doped GaAs

    NASA Astrophysics Data System (ADS)

    Wang, D. P.; Huang, K. M.; Shen, T. L.; Huang, K. F.; Huang, T. C.

    1998-01-01

    The electroreflectance (ER) spectra of an undoped-n+ type doped GaAs has been measured at various amplitudes of modulating fields (δF). Many Franz-Keldysh oscillations were observed above the band gap energy, thus enabling the electric field (F) in the undoped layer to be determined. The F is obtained by applying fast Fourier transformation to the ER spectra. When δF is small, the power spectrum can be clearly resolved into two peaks, which corresponds to heavy- and light-hole transitions. When δF is less than ˜1/8 of the built-in field (Fbi˜77 420 V/cm), the F deduced from the ER is almost independent of δF. However, when larger than this, F is increased with δF. Also, when δF is increased to larger than ˜1/8 of Fbi, a shoulder appears on the right side of the heavy-hole peak of the power spectrum. The separation between the main peak and the shoulder of the heavy-hole peak becomes wider as δF becomes larger.

  12. Reversible electrical properties of LEC GaAs

    NASA Astrophysics Data System (ADS)

    Look, D. C.; Theis, W. M.; Yu, P. W.; Sizelove, J. R.; Ford, W.; Mathur, G.

    1987-01-01

    Undoped, low-pressure, liquid-encapsulated Czochralski GaAs can be reversibly changed from conducting ( ρ ˜ 1Ω-cm) to semi-insulating ( ρ ˜ 107Ω-cm) by either slow or fast cooling, respectively, after a 5 hr, 950° C soak in an evacuated quartz ampoule. The semi-insulating wafers are very uniform and lead to tight threshold-voltage control in direct-implant MESFET’s. We have studied crystals in both states by temperature-dependent Hall effect, photoluminescence, IR absorption, mass spectroscopy, and DLTS. It is shown that donor and acceptor concentrations are typically more than an order of magnitude greater than the C and Si concentrations, which are both less than 3 × 1014 cm-3. The EL2 concentration remains relatively constant at about 1.0 × 1016 cm-3. Thus, the normal EL2-Si-C compensation model does not apply. The most likely explanation for the reversibility involves a delicate balance between native-defect donors and acceptors in equilibrium at 950° C, but with the donors dominating after a slow cool, and the acceptors after a fast cool. A consistent model includes a dominant donor at Ec 0.13eV, probably VAs AsGa, and a dominant acceptor at Ev + 0.07eV, probably VGa GaAs. In this model, vacancy motion is very important during the slow cool. Such processes must be strongly considered in the growth of bulk, high-purity GaAs.

  13. Optically Detected Electron-Nuclear Double Resonance of As-Antisite Defects in GaAs

    NASA Astrophysics Data System (ADS)

    Hofmann, D. M.; Meyer, B. K.; Lohse, F.; Spaeth, J.-M.

    1984-09-01

    This Letter reports on the first optically detected electron-nuclear double-resonance (ENDOR) measurements of a paramagnetic semiconductor defect in which ligand hyperfine interactions could be resolved. In semi-insulating GaAs: Cr the ENDOR lines of the first-shell 75As neighbors of the regular tetrahedral AsAs4-antisite defect could be detected and analyzed. The ENDOR investigation reveals that at least one other AsAs4-antisite complex contributes to the same ESR spectrum.

  14. Evolution Of Surface Topography On GaAs(100) And GaAs(111) At Normal And Oblique Incidence Of Ar{sup +}-Ions

    SciTech Connect

    Venugopal, V.; Basu, T.; Garg, S.; Majumder, S.; Sarangi, S. N.; Som, T.; Das, P.; Bhattacharyya, S. R.; Chini, T. K.

    2010-10-04

    Nanoscale surface structures emerging from medium energy (50-60 keV)Ar{sup +}-ion sputtering of p-type GaAs(100) and semi-insulating GaAs(111) substrates have been investigated. For normally incident 50 keV Ar{sup +}-ions of fluence 1x10{sup 17} ions/cm{sup 2} on GaAs(100) and GaAs(111) features in the form of nanoscale pits/holes without short range ordering are observed with densities 5.2x10{sup 9} /cm{sup 2} and 5.9x10{sup 9} /cm{sup 2}, respectively along with irregularly shaped patches of islands. For GaAs(111) on increasing the influence to 5x10{sup 17} /cm{sup 2} the pit density increases marginally to 6.2x10{sup 9} /cm{sup 2}. For 60 deg. off-normal incidence of 60 keV Ar.{sup +}-ions of fluence 2x10{sup 17} ions/cm{sup 2} on GaAs(100) microscale wavelike surface topography is observed. In all cases well-defined nanodots are absent on the surface.

  15. Carbon-doped high-mobility hole gases on (0 0 1) and (1 1 0) GaAs

    NASA Astrophysics Data System (ADS)

    Gerl, C.; Schmult, S.; Wurstbauer, U.; Tranitz, H.-P.; Mitzkus, C.; Wegscheider, W.

    2006-05-01

    Since Stormer and Tsang have introduced the first two-dimensional hole gas (2DHG) in the GaAs/AlGaAs heterosystem, the choice of suitable dopants was limited to beryllium and silicon over the last 20 years. Both acceptor atoms have significant disadvantages, i.e. either high-diffusion rates or a limitation to specific growth directions. Utilizing a carbon filament-doping source, we prepared high-quality 2DHGs in the (0 0 1) and the nonpolar (1 1 0) crystal plane with carrier mobilies beyond 10 6 cm 2/Vs in quantum well and single interface structures. Low-temperature magnetoresistance measurements recover a large number of fractional QHE states and show a pronounced beating pattern from which the Rashba induced spin-splitting has been determined. In addition, 2DHGs have been grown on cleaved edges of (1 1 0) and (0 0 1) wafers with transport features in qualitative agreement to our findings on (1 1 0) substrates.

  16. Coherent dynamics of Landau-Levels in modulation doped GaAs quantum wells at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Cunming; Paul, Jagannath; Reno, John; McGill, Stephen; Hilton, David; Karaiskaj, Denis

    By using two-dimensional Fourier transform spectroscopy, we investigate the dynamics of Landau-Levels formed in modulation doped GaAs/AlGaAs quantum wells of 18 nm thickness at high magnetic fields and low temperature. The measurements show interesting dephasing dynamics and linewidth dependency as a function of the magnetic field. The work at USF and UAB was supported by the National Science Foundation under grant number DMR-1409473. The work at NHMFL, FSU was supported by the National Science Foundation under grant numbers DMR-1157490 and DMR-1229217. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  17. Electrical and optical properties of carbon-doped GaN grown by MBE on MOCVD GaN templates using a CCl4 dopant source

    SciTech Connect

    Armitage, Rob; Yang, Qing; Feick, Henning; Park, Yeonjoon; Weber, Eicke R.

    2002-04-15

    Carbon-doped GaN was grown by plasma-assisted molecular-beam epitaxy using carbon tetrachloride vapor as the dopant source. For moderate doping mainly acceptors were formed, yielding semi-insulating GaN. However at higher concentrations p-type conductivity was not observed, and heavily doped films (>5 x 10{sup 20} cm{sup -3}) were actually n-type rather than semi-insulating. Photoluminescence measurements showed two broad luminescence bands centered at 2.2 and 2.9 eV. The intensity of both bands increased with carbon content, but the 2.2 eV band dominated in n-type samples. Intense, narrow ({approx}6 meV) donor-bound exciton peaks were observed in the semi-insulating samples.

  18. Growth and characterization of metamorphic InxGa1-xAs/InAlAs (x >= 0.8) modulation doped heterostructures on GaAs using a linearly graded In(AlGa)as buffer layer

    NASA Astrophysics Data System (ADS)

    Wang, S. M.; Karlsson, C.; Rorsman, N.; Bergh, M.; Olsson, E.; Andersson, T. G.

    1997-01-01

    Metamorphic InxGa1-xAs/InAlAs (x >= 0.8) modulation doped heterostructures have been grown on GaAs using a linearly graded In(AlGa)As buffer layer, and their structural and electric properties have been investigated. Surface morphology was found to depend on growth temperature and graded buffer thickness. Low growth temperature resulted in a relatively smooth surface with a minimum root-mean-square roughness value of 4-7 nm. The In(AlGa)As graded buffer effectively prevented dislocations from threading into the top layers. The epilayer grown on the graded buffer was tilted and not fully relaxed. High electron mobility and sheet density were achieved. The highest mobility value was 13740 cm2/Vs with a carrier density of 1.9 · 1012 cm-2 at 300 K. These values are comparable with InP-based InGaAs/InAlAs modulation doped heterostructures.

  19. An AFM-based surface oxidation process for heavily carbon-doped p-type GaAs with a hole concentration of 1.5×1021 cm-3

    NASA Astrophysics Data System (ADS)

    Shirakashi, J.-I.; Matsumoto, K.; Konagai, M.

    Under appropriate bias conditions in ambient humidity, AFM can be used to selectively oxidize the surface of electronic materials such as metals and semiconductors. Therefore, an AFM-based surface modification technique would be a powerful tool for fabricating nanometer-sized metal (M)/insulator (I) or semiconductor (S)/insulator (I) junction structures. Heavily carbon-doped p-type GaAs with a hole concentration of 1.5×1021 cm-3 is also of great interest for application to novel device structures, because the carrier concentration is comparable to that of normal metals. Selective surface oxidation of carbon-doped p-type GaAs was achieved using a negatively biased conductive tip. The oxidation shown here was carried out under 20-25% ambient humidity. By changing the applied bias voltage and the scanning speed of the cantilever, the size of the modified structure wires was precisely controlled, with a feature size of 10 nm. These results suggest that GaAs-based devices with ultra-small SIS junction systems could be realized using the AFM-based surface oxidation process.

  20. Wafer-fused orientation-patterned GaAs

    NASA Astrophysics Data System (ADS)

    Li, Jin; Fenner, David B.; Termkoa, Krongtip; Allen, Mark G.; Moulton, Peter F.; Lynch, Candace; Bliss, David F.; Goodhue, William D.

    2008-02-01

    The fabrication of thick orientation-patterned GaAs (OP-GaAs) films is reported using a two-step process where an OP-GaAs template with the desired crystal domain pattern was prepared by wafer fusion bonding and then a thick film was grown over the template by low pressure hydride vapor phase epitaxy (HVPE). The OP template was fabricated using molecular beam epitaxy (MBE) followed by thermocompression wafer fusion, substrate removal, and lithographic patterning. On-axis (100) GaAs substrates were utilized for fabricating the template. An approximately 350 μm thick OP-GaAs film was grown on the template at an average rate of ~70 μm/hr by HVPE. The antiphase domain boundaries were observed to propagate vertically and with no defects visible by Nomarski microscopy in stain-etched cross sections. The optical loss at ~2 μm wavelength over an 8 mm long OP-GaAs grating was measured to be no more than that of the semi-insulating GaAs substrate. This template fabrication process can provide more flexibility in arranging the orientation of the crystal domains compared to the Ge growth process and is scalable to quasi-phase-matching (QPM) devices operating from the IR to terahertz frequencies utilizing existing industrial foundries.

  1. Stoichiometry-controlled compensation in liquid encapsulated Czochralski GaAs

    NASA Technical Reports Server (NTRS)

    Holmes, D. E.; Chen, R. T.; Elliott, K. R.; Kirkpatrick, C. G.

    1982-01-01

    It is shown that the electrical compensation of undoped GaAs grown by the liquid encapsulated Czochralski technique is controlled by the melt stoichiometry. The concentration of the deep donor EL2 in the crystal depends on the As concentration in the melt, increasing from about 5 x 10 to the 15th per cu cm to 1.7 x 10 to the 16th per cu cm as the As atom fraction increases from 0.48 to 0.51. Furthermore, it is shown that the free-carrier concentration of semi-insulating GaAs is determined by the relative concentrations of EL2 and carbon acceptors. As a result, semi-insulating material can be obtained only above a critical As concentration (0.475-atom fraction in the material here) where the concentration of EL2 is sufficient to compensate residual acceptors. Below the critical As concentration the material is p type due to excess acceptors.

  2. Study of microdefects and their distribution in dislocation-free Si-doped HB GaAs by X-ray diffuse scattering on triple-crystal diffractometer

    NASA Astrophysics Data System (ADS)

    Charniy, L. A.; Morozov, A. N.; Bublik, V. T.; Scherbachev, K. D.; Stepantsova, I. V.; Kaganer, V. M.

    1992-03-01

    Microdefects in dislocation-free Si-doped (n = (1-3) × 10 18cm-3) HB GaAs crystals were studied by X-ray diffuse scattering measured with the help of a triple-crystal diffractometer. The intensity of the diffuse scattering as well as the isointensity contours around different reciprocal lattice points were analysed. A comparison of the measured isointensity contours with the theoretically calculated ones showed that the microdefects detected are interstitial dislocation loops with the Burgers vectors b = {1}/{2}<110 #3862;; lying in the planes #38;{110} and {111}. The mean radius of the dislocation loops R0 was determined using the wave vector q0 alpha; R-10 corresponding to the transmition point where the Huang diffuse scattering I( q) alpha q-2 ( q < q0) changed to the asymptotic scattering I( q) alpha q-4 ( q #62 q0). The analysis of a D-shaped cross-sectional (111) wafer cut from the end part of the HB ingot showed that R0 changed smoothly along the [ overline211] symmetry axis of the wafer. The highly inhomogeneous "new-moon"-like distribution of the non-dislocational etch-pits was also obtained. The maximal loop radius obtained at the edges of the wafer, R 0 = 1 μm, corresponds to the wafer area enriched with etch-pits and the minimal one, R 0 = 0.3 μm, corresponds to the bound of the new-moon-like area denuded from etch-pits. Microdefects of a new type were detected in the denuded area. These microdefects consist of nuclei, 0.1 μm in radius, and an extended atmosphere of interstitials. The minimal microdefect radius in the centre of the wafer corresponds to the maximum local value of the lattice parameter a = 5.655380 Å, and the minimum local value a = 5.65372 Å was obtained at the wafer edges enriched with microdefect-related etch-pits. Absolute X-ray diffuse intensity measurements were used for microdefect concentration determination. Normalization of I( q) was based on the comparison of the Huang intensity with the thermal diffuse scattering

  3. Semi-insulating GaN:C epilayers grown by metalorganic vapor phase epitaxy using propane as a carbon source

    NASA Astrophysics Data System (ADS)

    Lundin, W. V.; Zavarin, E. E.; Brunkov, P. N.; Yagovkina, M. A.; Sakharov, A. V.; Sinitsyn, M. A.; Ber, B. Ya.; Kazantsev, D. Yu.; Tsatsulnikov, A. F.

    2016-05-01

    The influence of propane present in a reactor at various stages of GaN growth by metalorganic vapor phase epitaxy (MOVPE) on sapphire substrates on the character of epitaxial process and the properties of epilayers has been studied. Doped GaN epilayers with carbon concentration 5 × 1018 cm-3 characterized by high crystalline perfection, an atomically smooth surface, and electric breakdown voltage above 500 V at a doped layer thickness of 4 μm have been obtained.

  4. Highly doped p-ZnTe films and quantum well structures grown by nonequilibrium pulsed laser ablation

    SciTech Connect

    Lowndes, D.H.; Rouleau, C.M.; Budai, J.D.; Geohegan, D.B.; McCamy, J.W.

    1995-06-01

    Highly p-doped ZnTe films have been grown on semi-insulating GaAs (001) and unintentionally doped (p-type) GaSb (001) substrates by pulsed KrF (248 nm) excimer laser ablation of a ZnTe target through an N{sub 2} ambient, without the use of any assisting (DC or AC) plasma source. Free hole concentrations in the mid-10{sup 19} cm{sup {minus}3} to > 10{sup 20} cm{sup {minus}3} range have been obtained. This appears to be the first time that any wide band gap (E{sub g} {ge} 2 eV) II-VI compound (or other) semiconductor has been impurity-doped from the gas phase by pulsed-laser ablation (PLA). The maximum carrier concentrations also may be the highest obtained for ZnTe by any method thus far. Because pulsed laser deposition is inherently digital, attractive deposition rates can be combined with precise control of layer thickness in epitaxial multilayered structures. Typical deposition conditions are < 0.5 {angstrom} per laser pulse, with crystalline quality governed by tradeoffs between substrate temperature, pulse repetition rate, and the focused pulsed laser energy density. PLA`s capability for growth of very thin epitaxial layers is being exploited and studied through growth of doped heteroepitaxial quantum well structures in the nearly lattice-matched ZnTe/CdSe//GaSb(substrate) system. Results obtained from growth and characterization of heterostructures in this system will be presented.

  5. Analysis of high field effects on the steady-state current-voltage response of semi-insulating 4H-SiC for photoconductive switch applications

    SciTech Connect

    Tiskumara, R.; Joshi, R. P. Mauch, D.; Dickens, J. C.; Neuber, A. A.

    2015-09-07

    A model-based analysis of the steady-state, current-voltage response of semi-insulating 4H-SiC is carried out to probe the internal mechanisms, focusing on electric field driven effects. Relevant physical processes, such as multiple defects, repulsive potential barriers to electron trapping, band-to-trap impact ionization, and field-dependent detrapping, are comprehensively included. Results of our model match the available experimental data fairly well over orders of magnitude variation in the current density. A number of important parameters are also extracted in the process through comparisons with available data. Finally, based on our analysis, the possible presence of holes in the samples can be discounted up to applied fields as high as ∼275 kV/cm.

  6. Measured Attenuation of Coplanar Waveguide on 6H, p-type SiC and High Purity Semi-Insulating 4H SiC through 800 K

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Schwartz, Zachary D.; Alterovitz, Samuel A.; Downey, Alan N.

    2004-01-01

    Wireless sensors for high temperature applications such as oil drilling and mining, automobiles, and jet engine performance monitoring require circuits built on wide bandgap semiconductors. In this paper, the characteristics of microwave transmission lines on 4H-High Purity Semi-Insulating SiC and 6H, p-type SiC is presented as a function of temperature and frequency. It is shown that the attenuation of 6H, p-type substrates is too high for microwave circuits, large leakage current will flow through the substrate, and that unusual attenuation characteristics are due to trapping in the SiC. The 4H-HPSI SiC is shown to have low attenuation and leakage currents over the entire temperature range.

  7. High temperature annealing effects on deep-level defects in a high purity semi-insulating 4H-SiC substrate

    SciTech Connect

    Iwamoto, Naoya Azarov, Alexander; Svensson, Bengt G.; Ohshima, Takeshi; Moe, Anne Marie M.

    2015-07-28

    Effects of high-temperature annealing on deep-level defects in a high-purity semi-insulating 4H silicon carbide substrate have been studied by employing current-voltage, capacitance-voltage, junction spectroscopy, and chemical impurity analysis measurements. Secondary ion mass spectrometry data reveal that the substrate contains boron with concentration in the mid 10{sup 15 }cm{sup −3} range, while other impurities including nitrogen, aluminum, titanium, vanadium and chromium are below their detection limits (typically ∼10{sup 14 }cm{sup −3}). Schottky barrier diodes fabricated on substrates annealed at 1400–1700 °C exhibit metal/p-type semiconductor behavior with a current rectification of up to 8 orders of magnitude at bias voltages of ±3 V. With increasing annealing temperature, the series resistance of the Schottky barrier diodes decreases, and the net acceptor concentration in the substrates increases approaching the chemical boron content. Admittance spectroscopy results unveil the presence of shallow boron acceptors and deep-level defects with levels in lower half of the bandgap. After the 1400 °C annealing, the boron acceptor still remains strongly compensated at room temperature by deep donor-like levels located close to mid-gap. However, the latter decrease in concentration with increasing annealing temperature and after 1700 °C, the boron acceptor is essentially uncompensated. Hence, the deep donors are decisive for the semi-insulating properties of the substrates, and their thermal evolution limits the thermal budget for device processing. The origin of the deep donors is not well-established, but substantial evidence supporting an assignment to carbon vacancies is presented.

  8. High temperature annealing effects on deep-level defects in a high purity semi-insulating 4H-SiC substrate

    NASA Astrophysics Data System (ADS)

    Iwamoto, Naoya; Azarov, Alexander; Ohshima, Takeshi; Moe, Anne Marie M.; Svensson, Bengt G.

    2015-07-01

    Effects of high-temperature annealing on deep-level defects in a high-purity semi-insulating 4H silicon carbide substrate have been studied by employing current-voltage, capacitance-voltage, junction spectroscopy, and chemical impurity analysis measurements. Secondary ion mass spectrometry data reveal that the substrate contains boron with concentration in the mid 1015 cm-3 range, while other impurities including nitrogen, aluminum, titanium, vanadium and chromium are below their detection limits (typically ˜1014 cm-3). Schottky barrier diodes fabricated on substrates annealed at 1400-1700 °C exhibit metal/p-type semiconductor behavior with a current rectification of up to 8 orders of magnitude at bias voltages of ±3 V. With increasing annealing temperature, the series resistance of the Schottky barrier diodes decreases, and the net acceptor concentration in the substrates increases approaching the chemical boron content. Admittance spectroscopy results unveil the presence of shallow boron acceptors and deep-level defects with levels in lower half of the bandgap. After the 1400 °C annealing, the boron acceptor still remains strongly compensated at room temperature by deep donor-like levels located close to mid-gap. However, the latter decrease in concentration with increasing annealing temperature and after 1700 °C, the boron acceptor is essentially uncompensated. Hence, the deep donors are decisive for the semi-insulating properties of the substrates, and their thermal evolution limits the thermal budget for device processing. The origin of the deep donors is not well-established, but substantial evidence supporting an assignment to carbon vacancies is presented.

  9. LEC GaAs for integrated circuit applications

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.

    1984-01-01

    Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.

  10. The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Anikara, R.

    1972-01-01

    The electrical behavior of zinc ions implanted into chromium-doped semiinsulating gallium arsenide was investigated by measurements of the sheet resistivity and Hall effect. Room temperature implantations were performed using fluence values from 10 to the 12th to 10 to the 15th power/sq cm at 60 keV. The samples were annealed for 30 minutes in a nitrogen atmosphere up to 800 C in steps of 200 C and the effect of this annealing on the Hall effect and sheet resistivity was studied at room temperature using the Van der Pauw technique. The temperature dependence of sheet resistivity and mobility was measured from liquid nitrogen temperature to room temperature. Finally, a measurement of the implanted profile was obtained using a layer removal technique combined with the Hall effect and sheet resistivity measurements.

  11. Steady State Properties of Lock-On Current Filaments in GaAs

    NASA Astrophysics Data System (ADS)

    Kambour, K.; Kang, Samsoo; Myles, Charles W.; Hjalmarson, Harold P.

    1999-10-01

    Collective impact ionization has been used by Hjalmarson et al.(H. Hjalmarson, F. Zutavern, G. Loubriel, A. Baca, and D. Wake, Sandia Report SAND93-3972(1996).) to explain the lock-on effect, observed in optically activated, semi-insulating GaAs switches. We have used this theory to study some of the steady state properties of the lock-on current filaments which accompany this effect. In steady state, the energy gained from the electric field is exactly compensated for by the the energy lost due to the phonon cooling of the hot carriers. In the simplest approximation, the carrier distribution approaches a quasi-equilibrium Maxwell-Boltzmann distribution. In this presentation we report preliminary results on the validity of this quasi-equilibrium approximation. We find that this approximation leads to a filament carrier density which is much lower than the high density needed to achieve a quasi-equilibrium distribution. Further work is in progress.

  12. Current Sharing Among Multiple Lock-On Filaments in GaAs

    NASA Astrophysics Data System (ADS)

    Hjalmarson, H. P.; Loubriel, G. M.; Zutavern, F. J.

    1998-03-01

    Optically-triggered, high-power photoconductive semiconductor switches (PCSS's) using semi-insulating GaAs are under development at Sandia. These switches carry current in high carrier-density filaments. A major problem is the increased electrode damage in high power applications. One method we use to increase switch longevity is to trigger multiple filaments which share the current. For this talk, a hydrodynamic implementation of the collective impact ionization theory is used to evaluate and refine this method. To be specific, the current-voltage characteristic for two filaments is compared with that for a single filament. An important issue is the interaction of the two filaments as a function of their distance separation.

  13. Effect of Split Gate Size on the Electrostatic Potential and 0.7 Anomaly within Quantum Wires on a Modulation-Doped GaAs /AlGaAs Heterostructure

    NASA Astrophysics Data System (ADS)

    Smith, L. W.; Al-Taie, H.; Lesage, A. A. J.; Thomas, K. J.; Sfigakis, F.; See, P.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.

    2016-04-01

    We study 95 split gates of different size on a single chip using a multiplexing technique. Each split gate defines a one-dimensional channel on a modulation-doped GaAs /AlGaAs heterostructure, through which the conductance is quantized. The yield of devices showing good quantization decreases rapidly as the length of the split gates increases. However, for the subset of devices showing good quantization, there is no correlation between the electrostatic length of the one-dimensional channel (estimated using a saddle-point model) and the gate length. The variation in electrostatic length and the one-dimensional subband spacing for devices of the same gate length exceeds the variation in the average values between devices of different lengths. There is a clear correlation between the curvature of the potential barrier in the transport direction and the strength of the "0.7 anomaly": the conductance value of the 0.7 anomaly reduces as the barrier curvature becomes shallower. These results highlight the key role of the electrostatic environment in one-dimensional systems. Even in devices with clean conductance plateaus, random fluctuations in the background potential are crucial in determining the potential landscape in the active device area such that nominally identical gate structures have different characteristics.

  14. Photoluminescence properties of modulation-doped In{sub x}Al{sub 1–x}As/In{sub y}Ga{sub 1–y}As/In{sub x}Al{sub 1–x}As structures with strained inas and gaas nanoinserts in the quantum well

    SciTech Connect

    Galiev, G. B.; Vasil’evskii, I. S.; Klimov, E. A.; Klochkov, A. N.; Lavruhin, D. V.; Pushkarev, S. S.; Maltsev, P. P.

    2015-09-15

    The photoluminescence spectra of modulation-doped InAlAs/InGaAs/InAlAs heterostructures with quantum wells containing thin strained InAs and GaAs inserts are investigated. It is established that the insertion of pair InAs layers and/ or a GaAs transition barriers with a thickness of 1 nm into a quantum well leads to a change in the form and energy position of the photoluminescence spectra as compared with a uniform In{sub 0.53}Ga{sub 0.47}As quantum well. Simulation of the band structure shows that this change is caused by a variation in the energy and wave functions of holes. It is demonstrated that the use of InAs inserts leads to the localization of heavy holes near the InAs layers and reduces the energy of optical transitions, while the use of GaAs transition barriers can lead to inversion of the positions of the light- and heavy-hole subbands in the quantum well. A technique for separately controlling the light- and heavy-hole states by varying the thickness and position of the GaAs and InAs inserts in the quantum well is suggested.

  15. Identification of As-vacancy complexes in Zn-diffused GaAs

    SciTech Connect

    Elsayed, M.; Krause-Rehberg, R.; Korff, B.; Richter, S.; Leipner, H. S.

    2013-03-07

    We have used positron annihilation spectroscopy to study the introduction of point defects in Zn-diffused semi-insulating GaAs. The diffusion was performed by annealing the samples for 2 h at 950 Degree-Sign C. The samples were etched in steps of 7 {mu}m. Both Doppler broadening using slow positron beam and lifetime spectroscopy studies were performed after each etching step. Both techniques showed the existence of vacancy-type defects in a layer of about 45 {mu}m. Secondary ion mass spectroscopy measurements illustrated the presence of Zn at high level in the sample almost up to the same depth. Vacancy-like defects as well as shallow positron traps were observed by lifetime measurements. We distinguish two kinds of defects: As vacancy belongs to defect complex, bound to most likely one Zn atom incorporated on Ga sublattice, and negative-ion-type positron traps. Zn acceptors explained the observation of shallow traps. The effect of Zn was evidenced by probing GaAs samples annealed under similar conditions but without Zn treatment. A defect-free bulk lifetime value is detected in this sample. Moreover, our positron annihilation spectroscopy measurements demonstrate that Zn diffusion in GaAs system is governed by kick-out mechanism.

  16. X-ray imaging using a 320 x 240 hybrid GaAs pixel detector

    SciTech Connect

    Irsigler, R.; Andersson, J.; Alverbro, J.

    1999-06-01

    The authors present room temperature measurements on 200 {micro}m thick GaAs pixel detectors, which were hybridized to silicon readout circuits. The whole detector array contains 320 x 240 square shaped pixel with a pitch of 38 {micro}m and is based on semi-insulating liquid-encapsulated Czochralski (LEC) GaAs material. After fabricating and dicing, the detector chips were indium bump flip chip bonded to CMOS readout circuits based on charge integration and finally evaluated. This readout chip was originally designed for the readout of flip chip bonded infrared detectors, but appears to be suitable for X-ray applications as well. A bias voltage between 50 V and 100 V was sufficient to operate the detector at room temperature. The detector array did respond to x-ray radiation by an increase in current due to production of electron hole pairs by the ionization processes. Images of various objects and slit patterns were acquired by using a standard X-ray source for dental imaging. The new X-ray hybrid detector was analyzed with respect to its imaging properties. Due to the high absorption coefficient for X-rays in GaAs and the small pixel size, the sensor shows a high modulation transfer function up to the Nyquist frequency.

  17. Origin and reduction of impurities at GaAs epitaxial layer-substrate interfaces

    NASA Astrophysics Data System (ADS)

    Kanber, H.; Yang, H. T.; Zielinski, T.; Whelan, J. M.

    1988-09-01

    Surface cleaning techniques used for semi-insulating GaAs substrates prior to epitaxial growth can have an important and sometimes detrimental effect on the quality and characteristics of epitaxial layers that are grown on them. We observe that a HF rinse followed by a 5:1:1 H 2SO 4:H 2O 2:H 2O etch and H 2O rinse drastically reduced the maximum concentrations and total amount of both SIMS detected S and Si for MOCVD grown GaAs undoped epitaxial layers. Subsequent final HCl and H 2O reduced the S interfacial residues to the SIMS detection limit. Total amounts of residual Si are estimated to be equivalent to 10 -2 to 10 -3 monolayers. Residual S is less. Alternately the S residue can be comparable reduced by a HF rinse followed by a NH 4OH:H 2O 2:H 2O etch and H 2O rinse. Hot aqueous HCl removes S but not Si residues. The Si residue is not electrically active and most likely exists as islands of SiO 2. The relative significance of the impurity residues is most pronounced for halide VPE, smaller for MBE and least for MOCVD grown GaAs epitaxial layers.

  18. ZnSe Window Layers for GaAs and GaInP2 Solar Cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.

    1995-01-01

    This report concerns studies of the use of ZnSe as a window layer for GaAs solar cells. Well-oriented crystalline ZnSe films on (100) single crystal GaAs substrates were grown by MOCVD. In particular, ZnSe films were grown by reacting a zinc adduct with hydrogen selenide at temperatures in the range of 200 C to 400 C. X-ray diffraction studies and images obtained with an atomic force microscope determined that the films were highly oriented but were polycrystalline. Particular emphasis was placed on the use of a substrate temperature of 350 C. Using iodine as a dopant, n-type ZnSe films with resistivities in the range of .01 to .05 ohm-cm were grown on semi-insulating GaAs. Thus procedures have been developed for investigating the utility of n-type ZnSe window layers on n/p GaAs structures. Studies of recombination at n-ZnSe/n-GaAs interfaces in n-ZnSe/n-GaAs/p-GaAs cell structures are planned for future work.

  19. Isoelectronic co-doping

    DOEpatents

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  20. Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Suárez-López, J. R.; Duque, C. A.; Restrepo, R. L.

    2016-04-01

    In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions.

  1. Fe-doped InN layers grown by molecular beam epitaxy

    SciTech Connect

    Wang Xinqiang; Liu Shitao; Ma Dingyu; Zheng Xiantong; Chen Guang; Xu Fujun; Tang Ning; Shen Bo; Zhang Peng; Cao Xingzhong; Wang Baoyi; Huang Sen; Chen, Kevin J.; Zhou Shengqiang; Yoshikawa, Akihiko

    2012-10-22

    Iron(Fe)-doped InN (InN:Fe) layers have been grown by molecular beam epitaxy. It is found that Fe-doping leads to drastic increase of residual electron concentration, which is different from the semi-insulating property of Fe-doped GaN. However, this heavy n-type doping cannot be fully explained by doped Fe-concentration ([Fe]). Further analysis shows that more unintentionally doped impurities such as hydrogen and oxygen are incorporated with increasing [Fe] and the surface is degraded with high density pits, which probably are the main reasons for electron generation and mobility reduction. Photoluminescence of InN is gradually quenched by Fe-doping. This work shows that Fe-doping is one of good choices to control electron density in InN.

  2. Polarization doping of graphene on silicon carbide

    NASA Astrophysics Data System (ADS)

    Mammadov, Samir; Ristein, Jürgen; Koch, Roland J.; Ostler, Markus; Raidel, Christian; Wanke, Martina; Vasiliauskas, Remigijus; Yakimova, Rositza; Seyller, Thomas

    2014-12-01

    The doping of quasi-freestanding graphene (QFG) on H-terminated, Si-face 6H-, 4H-, and 3C-SiC is studied by angle-resolved photoelectron spectroscopy close to the Dirac point. Using semi-insulating as well as n-type doped substrates we shed light on the contributions to the charge carrier density in QFG caused by (i) the spontaneous polarization of the substrate, and (ii) the band alignment between the substrate and the graphene layer. In this way we provide quantitative support for the previously suggested model of polarization doping of graphene on SiC (Ristein et al 2012 Phys. Rev. Lett. 108 246104).

  3. Continuous visible-light emission at room temperature in Mn-doped GaAs and Si light-emitting diodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki; Hai, Pham Nam; Anh, Le Duc

    2015-09-01

    We demonstrate visible-light electroluminescence due to d-d transitions in GaAs:Mn based light emitting diodes (LEDs) [1][2]. We prepared p+n junctions with a p+GaAs:Mn layer. At a reverse bias voltage (-3 to -6V), holes are injected from the n-type layer to the depletion layer and accelerated by the intense electric field, and excite the d electrons of Mn in the p+GaAs:Mn layer by impact excitations. We observe visible-light emission E1 = 1.89eV and E2 = 2.16eV, which are exactly the same as the 4T1 -> 6A1 and 4A2 -> 4 T1 transition energy of Mn. Furthermore, by utilizing optical transitions between the p-d hybridized orbitals of Mn atoms doped in Si, we demonstrate Si-based LEDs that continuously emit reddish-yellow visible light at room temperature. The Mn p-d hybrid states are excited by hot holes that are accelerated in the depletion layers of reverse biased Si pn junctions. Above a threshold reverse bias voltage of about -4V, our LEDs show strong visible light emission with two peaks at E1 = 1.75eV and E2 = 2.30eV, corresponding to optical transitions from the t-a (spin-down anti-bonding) states to the e- (spin-down non-bonding) states, and from the e- to the t+a (spin-up anti-bonding) states. The internal quantum efficiency of the E1 and E2 transitions is 3-4 orders of magnitude higher than that of the indirect band-gap transition [3]. [1] P. N. Hai, et al., APL 104, 122409 (2014). [2] P. N. Hai, et al., JAP 116, 113905 (2014). [3] P. N. Hai, et al., submitted.

  4. Performance of monolithic integrated series-connected GaAs solar cells under concentrated light

    NASA Astrophysics Data System (ADS)

    Seno, Minato; Watanabe, Kentaroh; Sugiyama, Masakazu; Nakano, Yoshiaki

    2013-09-01

    The concentrator photovoltaic (CPV) system provides excellent cost performance and conversion efficiency by increasing the concentration ratio. The problem is that concentration ratio is limited by short-circuit current density (Jsc) due to cell resistance loss. In order to achieve much larger concentration ratio, the monolithically integrated series-connected GaAs photovoltaic (PV) cells were fabricated. By dividing a cell into sub-cells on a chip and connecting them in series, the cell provides smaller short-circuit current (Isc) and larger open-circuit voltage (Voc). This approach can reduce joule energy loss inside a cell without decreasing electrical power output and allow much larger concentration ratio. In our design, 10 series-connected sub-cells, with bypass diodes in parallel with each sub-cell, were integrated monolithically on semi-insulating GaAs. When some sub-cells in the array were shaded, the bypass diodes prevented the shaded sub-cells from breakdown and reduced fluctuation of power output. The detection area of a unit cell was 1.73 mm2 and an entire detection area occupied over 68% of the whole chip area. The arrayed 10 cells exhibited Voc of 9.0 V under illumination (AM 1.5G). The series-connected cell achieved maximum efficiency at higher concentration ratio than non-series-connected cell.

  5. GaAs laser diode pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Conant, L. C.; Reno, C. W.

    1974-01-01

    A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness of a conventional GaAs array as a linear source by introducing the pump light through a slit into a close-wrapped gold coated pump cavity. This cavity forms an integrating chamber for the pump light.

  6. Magnetron Sputtered Gold Contacts on N-gaas

    NASA Technical Reports Server (NTRS)

    Buonaquisti, A. D.; Matson, R. J.; Russell, P. E.; Holloway, P. H.

    1984-01-01

    Direct current planar magnetron sputtering was used to deposit gold Schottky barrier electrical contacts on n-type GaAs of varying doping densities. The electrical character of the contact was determined from current voltage and electron beam induced voltage data. Without reducing the surface concentration of carbon and oxide, the contacts were found to be rectifying. There is evidence that energetic neutral particles reflected from the magnetron target strike the GaAs and cause interfacial damage similar to that observed for ion sputtering. Particle irradiation of the surface during contact deposition is discussed.

  7. Interface demarcation in GaAs by current pulsing

    NASA Technical Reports Server (NTRS)

    Matthiesen, D. H.; Kafalas, J. A.; Duchene, G. A.; Bellows, A. H.

    1990-01-01

    GTE Laboratories is currently conducting a program to investigate the effect of convection in the melt on the properties of bulk grown gallium arsenide (GaAs). In addition to extensive ground based experimentation, a Get Away Special growth system has been developed to grow two GaAs crystals aboard the Space Shuttle, each with a one inch diameter. In order to perform a complete segregation analysis of the crystals grown in space, it is necessary to measure the interface shape and growth rate as well as the spatial distribution of the selenium dopant. The techniques for interface demarcation in selenium doped GaAs by current pulsing have been developed at GTE Laboratories and successful interface demarcation has been achieved for current pulses ranging from 20 to 90 amps, in both single crystal and polycrystalline regions.

  8. Cubic GaS: A Surface Passivator For GaAs

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Barron, Andrew R.; Power, Michael B.; Jenkins, Phillip P.; Macinnes, Andrew N.

    1994-01-01

    Thin films of cubic form of gallium sulfide (GaS) formed on surfaces of gallium arsenide (GaAs) substrates via metal/organic chemical vapor deposition (MOCVD). Deposited cubic GaS, crystalline lattice matched to substrate GaAs, neutralizes electrically active defects on surfaces of both n-doped and p-doped GaAs. Enabling important GaAs-based semiconducting materials to serve as substrates for metal/insulator/semiconductor (MIS) capacitors. Cubic GaS enables fabrication of ZnSe-based blue lasers and light-emitting diodes. Because GaS is optically transparent, deposited to form window layers for such optoelectronic devices as light-emitting diodes, solar optical cells, and semiconductor lasers. Its transparency makes it useful as interconnection material in optoelectronic integrated circuits. Also useful in peeled-film technology because selectively etched from GaAs.

  9. Effect of growth temperature and GaAs substrate misorientation on the morphology of InAsBi nanoislands grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Boussaha, R.; Fitouri, H.; Rebey, A.; Jani, B. El

    2014-02-01

    The structural properties of InAsBi nanoislands grown on semi insulating GaAs by atmospheric pressure metalorganic vapor phase epitaxy, using trimethyl indium, trimethyl bismuth, and arsine as precursor sources have been studied. The influence of growth temperature and substrate misorientation on the surface morphologies of these nanostructures have been controlled by means of atomic force microscopy. The results show InAsBi islands formation on the studied samples. The density, shape, size and the size dispersion of these islands vary greatly with growth temperature. So, below 400 °C island density increases with increasing growth temperature and accompanied by appearance of ridges. Increasing temperature over 400 °C induces a decrease in the island density and enlargement of sizes. In addition, samples grown on 10° misoriented substrates exhibit a clearly ridge on the surface.

  10. Two orders of magnitude reduction in the temperature dependent resistivity of Ga1-xMnxAs grown on (6 3 1) GaAs insulating substrates

    NASA Astrophysics Data System (ADS)

    Rangel-Kuopp, Victor-Tapio; Martinez-Velis, Isaac; Gallardo-Hernandez, Salvador; Lopez-Lopez, Maximo

    2013-12-01

    The temperature dependent van der Pauw (T-Pauw) technique was used to investigate the resistivity of three Ga1-xMnxAs layers grown on (6 3 1) GaAs semi-insulating substrates. The samples had Mn concentration of 3.52×l020 cm-3, 5.05×1020 cm-3 and 1.12×l021 cm-3, corresponding to Mn cell effusion temperature TMn of 700 °C, 715 °C and 745 °C, respectively. They were compared to samples grown under the same conditions but on (0 0 1) GaAs semi-insulating substrates. For the sample grown at TMn=700 °C on a (6 3 1) substrate, a two orders of magnitude decrease in the resistivity is observed, when compared with the sample grown on a (0 0 1) substrate. For the sample grown at TMn=715 °C the decrease is approximately four times, while for the sample grown at TMn=745 °C the decrease is approximately forty times. We plotted the resistivities as a function of temperature in Arrhenius plots, where we extracted two activation energies, the smallest one between 6 and 11 meV, and the largest one between 25 and 183 meV. Both activation energies increased as TMn increased. These results are in agreement with SIMS analysis where we observed that manganese concentration in the (6 3 1) orientation growth is around two order of magnitude larger than in the samples grown in the (0 0 1) orientation substrate.

  11. Small signal model parameters analysis of GaN and GaAs based HEMTs over temperature for microwave applications

    NASA Astrophysics Data System (ADS)

    Alim, Mohammad A.; Rezazadeh, Ali A.; Gaquiere, Christophe

    2016-05-01

    Thermal and small-signal model parameters analysis have been carried out on 0.5 μm × (2 × 100 μm) AlGaAs/GaAs HEMT grown on semi-insulating GaAs substrate and 0.25 μm × (2 × 100 μm) AlGaN/GaN HEMT grown on SiC substrate. Two different technologies are investigated in order to establish a detailed understanding of their capabilities in terms of frequency and temperature using on-wafer S-parameter measurement over the temperature range from -40 to 150 °C up to 50 GHz. The equivalent circuit parameters as well as their temperature-dependent behavior of the two technologies were analyzed and discussed for the first time. The principle elevation or degradation of transistor parameters with temperature demonstrates the great potential of GaN device for high frequency and high temperature applications. The result provides some valuable insights for future design optimizations of advanced GaN and a comparison of this with the GaAs technology.

  12. Epitaxial Fe on free-standing GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Yang, Mingze; Darbandi, Ali; Majumder, Sarmita; Watkins, Simon; Kavanagh, Karen

    2016-07-01

    Epitaxial Fe contacts have been fabricated onto the top half of free-standing, Te-doped GaAs nanowires (NWs) via electrodeposition. Electrical isolation from the substrate via a polymeric layer enabled the measurement of electrical transport through individual wires. Using a fixed probe within a scanning electron microscope, an average metal-semiconductor diode barrier height of 0.69 ± 0.03 eV (ideality factor 1.48 ± 0.02) was found.

  13. Localized corrosion of GaAs surfaces and formation of porous GaAs

    SciTech Connect

    Schmuki, P.; Vitus, C.M.; Isaacs, H.S.; Fraser, J.; Graham, M.J.

    1995-12-01

    The present work deals with pitting corrosion of p- and n-type GaAs (100). Pit growth can be electrochemically initiated on both conduction types in chloride-containing solutions and leads after extended periods of time to the formation of a porous GaAs structure. In the case of p-type material, localized corrosion is only observed if a passivating film is present on the surface, otherwise -- e.g. in acidic solutions -- the material suffers from a uniform attack (electropolishing) which is independent of the anion present. In contrast, pitting corrosion of n-type material can be triggered independent of the presence of an oxide film. This is explained in terms of the different current limiting factor for the differently doped materials (oxide film in the case of the p- and a space charge layer in the case of the n-GaAs). The porous structure was characterized by SEM, EDX and AES, and consists mainly of GaAs. From scratch experiments it is clear that the pit initiation process is strongly influenced by surface defects. For n-type material, AFM investigations show that light induced roughening of the order of several hundred nm occurs under non-passivating conditions. This nm- scale roughening however does not affect the pitting process.

  14. Characterization of Si volume- and delta-doped InGaAs grown by molecular beam epitaxy

    SciTech Connect

    Fedoryshyn, Y.; Kaspar, P.; Jaeckel, H.; Beck, M.

    2010-05-15

    Bulk InGaAs layers were grown at 400 deg. C lattice-matched to InP semi-insulating substrates by molecular beam epitaxy. Si doping of the layers was performed by applying volume- and delta-doping techniques. The samples were characterized by capacitance-voltage, van der Pauw-Hall, secondary ion mass spectroscopy and photoluminescence measurements. Good agreement in terms of dependence of mobility and Burstein-Moss shift shift on doping concentration in samples doped by the two different techniques was obtained. Amphoteric behavior of Si was observed at doping concentrations higher than {approx}2.9x10{sup 19} cm{sup -3} in both delta- and volume-doped samples. Degradation of InGaAs crystalline quality occurred in samples with Si concentrations higher than {approx}4x10{sup 19} cm{sup -3}.

  15. The OAs defect in GaAs: A hybrid density functional study

    NASA Astrophysics Data System (ADS)

    Colleoni, Davide; Pasquarello, Alfredo

    2014-02-01

    The O center substitutional to As (OAs) is addressed through hybrid functional calculations as a candidate defect to explain the Fermi-level pinning in oxygen-doped GaAs. The defect center shows amphoteric behavior which could lead to Fermi-level pinning. However, the calculated charge transition levels only moderately agree with the experimental pinning level. Furthermore, the first-neighbor shell of the O atom and the absence of negative-U behavior clearly contrast with the experimental characterization. Thus, the present results do not support the OAs center as origin of the observed Fermi-level pinning in oxygen-doped GaAs.

  16. THz wave emission of GaAs induced by He+ ion implantation

    NASA Astrophysics Data System (ADS)

    Yang, Kang; Cao, Jianqing; Huang, Can; Ji, Te; Zhang, Zengyan; Liu, Qi; Wu, Shengwei; Lin, Jun; Zhao, Hongwei; Zhu, Zhiyong

    2013-07-01

    Semi-Insulating Gallium Arsenide (SI-GaAs) was implanted with 1.5 MeV He+ ions and THz photoconductive antenna (PCA) was prepared on the implanted SI-GaAs surface. The antenna was applied as the THz wave emission source of a terahertz time domain spectroscopy (THz-TDS) and the THz wave emission ability was studied as a function of the implantation dose. It is found that the THz signal intensity increases with increase of implantation dose, and after reaching to a peak value the THz signal intensity decreases with further implantation. The best THz emission ability was achieved at a dose value between 1 × 1015 and 1 × 1016 ions/cm2. It is believed that the implantation induced defects in the 1 μm-thick surface area are responsible for the enhanced THz emission ability. The work proved that better THz photoconductive antenna than that made by low-temperature-grown GaAs (LT-GaAs) can be produced through He-ion implantation at proper dose.

  17. Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications

    NASA Astrophysics Data System (ADS)

    Tian, Liqiang; Shi, Wei; Feng, Qingqing

    2011-11-01

    A spark gap (SG) triggered by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) is presented. Currents as high as 5.6 kA have been generated using the combined switch, which is excited by a laser pulse with energy of 1.8 mJ and under a bias of 4 kV. Based on the transferred-electron effect and gas streamer theory, the breakover characteristics of the combined switch are analyzed. The photoexcited carrier density in the PCSS is calculated. The calculation and analysis indicate that the PCSS breakover is caused by nucleation of the photoactivated avalanching charge domain. It is shown that the high output current is generated by the discharge of a high-energy gas streamer induced by the strong local electric field distortion or by overvoltage of the SG resulting from quenching of the avalanching domain, and periodic oscillation of the current is caused by interaction between the gas streamer and the charge domain. The cycle of the current oscillation is determined by the rise time of the triggering electric pulse generated by the PCSS, the pulse transmission time between the PCSS and the SG, and the streamer transit time in the SG.

  18. Performance analysis of undoped cylindrical gate all around (GAA) MOSFET at subthreshold regime

    NASA Astrophysics Data System (ADS)

    Jena, B.; Pradhan, K. P.; Dash, S.; Mishra, G. P.; Sahu, P. K.; Mohapatra, S. K.

    2015-09-01

    In this work the sensitivity of process parameters like channel length (L), channel thickness (tSi), and gate work function (φM) on various performance metrics of an undoped cylindrical gate all around (GAA) metal-oxide-semiconductor field effect transistor (MOSFET) are systematically analyzed. Undoped GAA MOSFET is a radical invention as it introduces a new direction for transistor scaling. In conventional MOSFET, generally the channel doping concentration is very high to provide high on-state current, but in contrary it causes random dopant fluctuation and threshold voltage variation. So, the undoped nature of GAA MOSFET solves the above complications. Hence, we have analyzed the electrical characteristics as well as the analog/RF performances of undoped GAA MOSFET through Sentaurus device simulator.

  19. Processing and characterization of epitaxial GaAs radiation detectors

    NASA Astrophysics Data System (ADS)

    Wu, X.; Peltola, T.; Arsenovich, T.; Gädda, A.; Härkönen, J.; Junkes, A.; Karadzhinova, A.; Kostamo, P.; Lipsanen, H.; Luukka, P.; Mattila, M.; Nenonen, S.; Riekkinen, T.; Tuominen, E.; Winkler, A.

    2015-10-01

    GaAs devices have relatively high atomic numbers (Z=31, 33) and thus extend the X-ray absorption edge beyond that of Si (Z=14) devices. In this study, radiation detectors were processed on GaAs substrates with 110 - 130 μm thick epitaxial absorption volume. Thick undoped and heavily doped p+ epitaxial layers were grown using a custom-made horizontal Chloride Vapor Phase Epitaxy (CVPE) reactor, the growth rate of which was about 10 μm / h. The GaAs p+/i/n+ detectors were characterized by Capacitance Voltage (CV), Current Voltage (IV), Transient Current Technique (TCT) and Deep Level Transient Spectroscopy (DLTS) measurements. The full depletion voltage (Vfd) of the detectors with 110 μm epi-layer thickness is in the range of 8-15 V and the leakage current density is about 10 nA/cm2. The signal transit time determined by TCT is about 5 ns when the bias voltage is well above the value that produces the peak saturation drift velocity of electrons in GaAs at a given thickness. Numerical simulations with an appropriate defect model agree with the experimental results.

  20. Thermal conductivity of bulk GaN—Effects of oxygen, magnesium doping, and strain field compensation

    SciTech Connect

    Simon, Roland B.; Anaya, Julian; Kuball, Martin

    2014-11-17

    The effect of oxygen doping (n-type) and oxygen (O)-magnesium (Mg) co-doping (semi-insulating) on the thermal conductivity of ammonothermal bulk GaN was studied via 3-omega measurements and a modified Callaway model. Oxygen doping was shown to significantly reduce thermal conductivity, whereas O-Mg co-doped GaN exhibited a thermal conductivity close to that of undoped GaN. The latter was attributed to a decreased phonon scattering rate due the compensation of impurity-generated strain fields as a result of dopant-complex formation. The results have great implications for GaN electronic and optoelectronic device applications on bulk GaN substrates.

  1. Sn-seeded GaAs nanowires grown by MOVPE.

    PubMed

    Sun, Rong; Vainorius, Neimantas; Jacobsson, Daniel; Pistol, Mats-Erik; Lehmann, Sebastian; Dick, Kimberly A

    2016-05-27

    It has previously been reported that in situ formed Sn nanoparticles can successfully initiate GaAs nanowire growth with a self-assembled radial p-n junction composed of a Sn-doped n-type core and a C-doped p-type shell. In this paper, we investigate the effect of fundamental growth parameters on the morphology and crystal structure of Sn-seeded GaAs nanowires. We show that growth can be achieved in a broad temperature window by changing the TMGa precursor flow simultaneously with decreasing temperature to prevent nanowire kinking at low temperatures. We find that changes in the supply of both AsH3 and TMGa can lead to nanowire kinking and that the formation of twin planes is closely related to a low V/III ratio. From PL results, we observe an increase of the average luminescence energy induced by heavy doping which shifts the Fermi level into the conduction band. Furthermore, the doping level of Sn and C is dependent on both the temperature and the V/III ratio. These results indicate that using Sn as the seed particle for nanowire growth is quite different from traditionally used Au in for example growth conditions and resulting nanowire properties. Thus, it is very interesting to explore alternative metal seed particles with controllable introduction of other impurities. PMID:27087548

  2. Sn-seeded GaAs nanowires grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Sun, Rong; Vainorius, Neimantas; Jacobsson, Daniel; Pistol, Mats-Erik; Lehmann, Sebastian; Dick, Kimberly A.

    2016-05-01

    It has previously been reported that in situ formed Sn nanoparticles can successfully initiate GaAs nanowire growth with a self-assembled radial p–n junction composed of a Sn-doped n-type core and a C-doped p-type shell. In this paper, we investigate the effect of fundamental growth parameters on the morphology and crystal structure of Sn-seeded GaAs nanowires. We show that growth can be achieved in a broad temperature window by changing the TMGa precursor flow simultaneously with decreasing temperature to prevent nanowire kinking at low temperatures. We find that changes in the supply of both AsH3 and TMGa can lead to nanowire kinking and that the formation of twin planes is closely related to a low V/III ratio. From PL results, we observe an increase of the average luminescence energy induced by heavy doping which shifts the Fermi level into the conduction band. Furthermore, the doping level of Sn and C is dependent on both the temperature and the V/III ratio. These results indicate that using Sn as the seed particle for nanowire growth is quite different from traditionally used Au in for example growth conditions and resulting nanowire properties. Thus, it is very interesting to explore alternative metal seed particles with controllable introduction of other impurities.

  3. Basic properties of GaAs oxide generated by scanning probe microscope tip-induced nano-oxidation process

    NASA Astrophysics Data System (ADS)

    Okada, Yoshitaka; Iuchi, Yoshimasa; Kawabe, Mitsuo; Harris, James S.

    2000-07-01

    The basic properties of GaAs oxide generated by atomic force microscope (AFM) tip-induced nano-oxidation process have been investigated. The chemical analysis of the AFM tip-generated GaAs oxide was performed by using scanning microprobe x-ray photoelectron spectroscopy, and the main constituents of GaAs anodic oxide were determined to be Ga2O3 and As2O3. The electrical characterization showed that the electron transport across a GaAs oxide nanodot of ˜5.7 nm thickness, from a doped n+-Si tip into the n+-GaAs substrate follows the Fowler-Nordheim tunneling mechanism over a range of applied bias. Further, the tip-generated GaAs oxide nanodots were found to withstand moderate thermal treatments, but some volume reduction was observed.

  4. Experimental studies of the charge limit phenomenon in NEA GaAs photocathodes

    SciTech Connect

    Tang, H.; Alley, R.K.; Aoyagi, H.; Clendenin, J.E.; Frisch, J.C.; Mulhollan, G.A.; Saez, P.J.; Schultz, D.C.; Turner, J.L.

    1994-06-01

    Negative electron affinity GaAs photocathodes have been in continuous use at SLAC for generating polarized electron beams since early 1992. If the quantum efficiency of a GaAs cathode is below a critical value, the maximum photoemitted charge with photons of energies close to the band gap in a 2-ns pulse is found to be limited by the intrinsic properties of the cathode instead of by the space charge limit. We have studied this novel charge limit phenomenon in a variety of GaAs photocathodes of different structures and doping densities. We find that the charge limit is strongly dependent on the cathode`s quantum efficiency and the extraction electric field, and to a lesser degree on the excitation laser wavelength. In addition, we show that the temporal behavior of the charge limit depends critically on the doping density.

  5. Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer.

    PubMed

    Yong, Chaw Keong; Noori, Keian; Gao, Qiang; Joyce, Hannah J; Tan, H Hoe; Jagadish, Chennupati; Giustino, Feliciano; Johnston, Michael B; Herz, Laura M

    2012-12-12

    The ultrafast charge carrier dynamics in GaAs/conjugated polymer type II heterojunctions are investigated using time-resolved photoluminescence spectroscopy at 10 K. By probing the photoluminescence at the band edge of GaAs, we observe strong carrier lifetime enhancement for nanowires blended with semiconducting polymers. The enhancement is found to depend crucially on the ionization potential of the polymers with respect to the Fermi energy level at the surface of the GaAs nanowires. We attribute these effects to electron doping by the polymer which reduces the unsaturated surface-state density in GaAs. We find that when the surface of nanowires is terminated by native oxide, the electron injection across the interface is greatly reduced and such surface doping is absent. Our results suggest that surface engineering via π-conjugated polymers can substantially improve the carrier lifetime in nanowire hybrid heterojunctions with applications in photovoltaics and nanoscale photodetectors. PMID:23171081

  6. Formation and properties of porous GaAs

    SciTech Connect

    Schmuki, P.; Lockwood, D.J.; Fraser, J.W.; Graham, M.J.; Isaacs, H.S.

    1996-06-01

    Porous structures on n-type GaAs (100) can be grown electrochemically in chloride-containing solutions. Crystallographic etching of the sample is a precursor stage of the attack. Polarization curves reveal the existanece of a critical onset potential for por formation (PFP). PFP is strongly dependent on the doping level of the sample and presence of surface defects. Good agreement between PFP and breakdown voltage of the space charge layer is found. Surface analysis by EDX, AES, and XPS show that the porous structure consists mainly of GaAs and that anion uptake in the structure can only observed after attackhas been initiated. Photoluminescence measurements reveal (under certain conditions) visible light emission from the porous structure.

  7. Structural and optical characterization of GaN nanostructures formed by using N+ implantation into GaAs at various temperature

    NASA Astrophysics Data System (ADS)

    Woo, Hyung-Joo; Kim, Gi-Dong; Choi, Han-Woo; Kim, Joon-Kon

    2012-02-01

    We have investigated the evolution of GaN phase nanocrystallite formation in a GaAs matrix by using nitrogen-ion implantation and subsequent rapid thermal annealing. A semi-insulating GaAs (100) wafer was implanted with 50-keV nitrogen ions at fluences in the range of 0.5 ˜ 4.0 × 1017 cm-2 at temperatures of room temperature, 500 °C and 700 °C, followed by post-implantation annealing at 500 ˜ 900 °C under a pure nitrogen gas flow. In the case of high-temperature implantation, there were no significant changes in the UV-VIS absorption spectra after high-temperature annealing compared with the spectra of the as-implanted sample. On the other hand, microscopic blistering and/or exfoliation is preferred after post-implantation annealing at high temperatures above 600 °C. As a consequence, low-temperature implantation (<200 °C is recommended in order to keep a morphologically-clean sample surfaces especially at an implantation fluence of 2 × 1017 cm-2 or more. Formation of nanometer-sized GaN crystallites was confirmed by using X-ray diffraction, cross-sectional transmission electron microscopy and low-temperature photoluminescence spectroscopy, and the effects of different annealing conditions on the evolution of the structures of the crystallites are described.

  8. GaAs Blocked-Impurity-Band Detectors for Far-Infrared Astronomy

    SciTech Connect

    Cardozo, Benjamin Lewin

    2004-12-21

    High-purity and doped GaAs films have been grown by Liquid-phase epitaxy (LPE) for development of a blocked impurity band (BIB) detector for far-infrared radiation. The film growth process developed has resulted in the capability to grow GaAs with a net active impurity concentration below 1 x 10{sup 13} cm{sup -3}, ideal for the blocking layer of the BIB detector. The growth of n-type LPE GaAs films with donor concentrations below the metal-insulator transition, as required for the absorbing layer of a BIB detector, has been achieved. The control of the donor concentration, however, was found to be insufficient for detector production. The growth by LPE of a high-purity film onto a commercially grown vapor-phase epitaxial (VPE) n-type GaAs doped absorbing layer resulted in a BIB device that showed a significant reduction in the low-temperature dark current compared to the absorbing layer only. Extended optical response was not detected, most likely due to the high compensation of the commercially grown GaAs absorbing layer, which restricts the depletion width of the device.

  9. Investigation of the optical and electrical properties of p-type porous GaAs structure

    NASA Astrophysics Data System (ADS)

    Saghrouni, H.; Missaoui, A.; Hannachi, R.; Beji, L.

    2013-12-01

    Porous GaAs layers have been formed by electrochemical anodic etching of (1 0 0) heavily doped p-type GaAs substrate in a HF:C2H5OH solution. The surface morphology of porous GaAs has been studied using atomic force microscopy (AFM). Nano-structural nature of the porous layer has been demonstrated by X-ray diffraction analysis (XRD) and confirmed by AFM. An estimation of the main size of the GaAs crystallites obtained from effective mass theory and based on PL data was close to the lowest value obtained from the AFM results. The porous p-GaAs samples are characterised by spectroscopic ellipsometry and modulation spectroscopy techniques. The objective of this study is to determine the porosity, refractive index, and thickness. The porosity of GaAs determined by atomic force microscopy confirmed by the value obtained from the spectroscopic ellipsometry. In fact the current-voltage I(V) characteristics of metal-semiconductor Au/p-GaAs are investigated and compared with Au/p-porous GaAs structures. From the forward bias I(V) characteristics of these devices, the main electrical parameters such as ideality factor, barrier height, and series resistance have been determined.

  10. Fracture mechanics evaluation of GaAs

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1984-01-01

    A data base of mechanical and fracture properties for GaAs was generated. The data for single crystal GaAs will be used to design reusable GaAs solar modules. Database information includes; (1) physical property characterizations; (2) fracture behavior evaluations; and (3) strength of cells determined as a function of cell processing and material parameters.

  11. Epitaxial two-dimensional nitrogen atomic sheet in GaAs

    SciTech Connect

    Harada, Yukihiro Yamamoto, Masuki; Baba, Takeshi; Kita, Takashi

    2014-01-27

    We have grown an epitaxial two-dimensional nitrogen (N) atomic sheet in GaAs by using the site-controlled N δ-doping technique. We observed a change of the electronic states in N δ-doped GaAs from the isolated impurity centers to the delocalized impurity band at 1.49 eV with increasing N-doping density. According to the excitation-power- and temperature-dependent photoluminescence (PL) spectra, the emission related to localized levels below the impurity band edge was dominant at low excitation power and temperature, whereas the effects of the localized levels can be neglected by increasing the excitation power and temperature. Furthermore, a clear Landau shift of the PL-peak energy was observed at several Tesla in the Faraday configuration, in contrast to the case in the impurity limit.

  12. Biexciton emission from single isoelectronic traps formed by nitrogen-nitrogen pairs in GaAs

    SciTech Connect

    Takamiya, Kengo; Fukushima, Toshiyuki; Yagi, Shuhei; Hijikata, Yasuto; Yaguchi, Hiroyuki; Mochizuki, Toshimitsu; Yoshita, Masahiro; Akiyama, Hidefumi; Kuboya, Shigeyuki; Onabe, Kentaro; Katayama, Ryuji

    2013-12-04

    We have studied photoluminescence (PL) from individual isoelectronic traps formed by nitrogen-nitrogen (NN) pairs in GaAs. Sharp emission lines due to exciton and biexciton were observed from individual isoelectronic traps in nitrogen atomic-layer doped (ALD) GaAs. The binding energy of biexciton bound to individual isoelectronic traps was approximately 8 meV. Both the exciton and biexciton luminescence lines show completely random polarization and no fine-structure splitting. These results are desirable to the application to the quantum cryptography used in the field of quantum information technology.

  13. GaAs Schottky barrier varactor diodes for submillimeter wavelength power generation

    NASA Technical Reports Server (NTRS)

    Crowe, T. W.; Peatman, W. C. B.; Winkler, E.

    1991-01-01

    The development of GaAs Schottky barrier diodes for frequencies well into the submillimeter wavelength range is discussed. These devices have the highest cutoff frequencies yet obtained for varactor diodes and have produced sufficient output power to drive Schottky mixers at frequencies as high as 640 GHz. The fundamental design tradeoff between cutoff frequency and capacitance modulation is explored. As the doping density is increased and the anode diameter is reduced, the dynamic cutoff frequency increases, reaching a maximum of roughly 5 THz. It is concluded that the maximum output frequency from harmonic multipliers based on standard GaAs varactor diodes will be about 1 THz.

  14. Amphoteric behavior of Ge in GaAs: an LDA analysis

    NASA Astrophysics Data System (ADS)

    Giorgi, G.; Yamashita, K.

    2011-04-01

    We have studied the stability of neutral and charged Ge substitutional defects (donor, acceptor and molecular) in bulk GaAs host. To correct the severe underestimation given by the local density approximation (LDA) in predicting bandgaps, we have applied the LDA + U scheme (Dudarev et al 1998 Phys. Rev. B 57 1505) to the gallium d orbitals. We have aligned the LDA calculated band edges of GaAs to those calculated at LDA + U level. Then, we have corrected the thermal ionization energies (LDA derived) for the defects considered. The effect of atomic distance in the self-compensation mechanism in the case of Ge2 donor-acceptor defective cells was evaluated. Our results are compared with previous results on IV-doped III-V alloys. We found that self-passivation is the main mechanism for the thermodynamic stabilization of both defective cells and alloys. We have established a relationship between the energy of stabilization versus (1) the amount of molecular Ge2 in the alloys and (2) the distance between Ge donor-acceptor atoms in the supercells, finding an almost linear relationship. We conclude that Ge2-doped GaAs defective systems behave as extremely diluted (GaAs)1-xGe2x alloys (x → 0).

  15. MeV implantation studies in LPE (liquid phase epitaxy)-grown GaAs and InP. Final report, 1 October 1987-31 March 1989

    SciTech Connect

    Park, Y.S.

    1989-03-31

    Research was conducted on growth and evaluation of high-quality gallium arsenide layers using liquid phase epitaxy (LPE) and on MeV ion-implantation processings of molecular beam epitaxy (MBE) grown GaInAs layers on GaAs and LPE-grown GaAs layers on GaAs. By a novel growth method i.e., isoelectronic doping of LPE GaAs layers with indium, high structural and electrical-quality layers were successfully grown. In the as-grown indium-doped LPE GaAs layers, the etch-pit density, rocking-curve FWHM, and the ideality factor of a Schottky diode improved significantly, showing an optimal In doping density of 2.4 x 10/sup 19/. The effects of MeV-ion bombardment in a strained but partially relaxed GaInAs epitaxial layers on GaAs were systematically investigated. Depending on the state of initial relaxation, film thickness, and incident ion-beam current, the lattice strain changed differently with the increasing ion-beam dose.

  16. Doping-induced suppression of dislocation formation in semiconductors

    SciTech Connect

    Walukiewicz, W.

    1989-04-15

    A mechanism explaining suppression of dislocation formation in doped semiconductors is proposed. The mechanism is based on the recently introduced concept of amphoteric native defects. It is shown that supersaturation of vacancylike defects depends on the Fermi energy and thus also on the doping level. The calculated dependence of supersaturation on the doping level quantitatively accounts for experimentally observed trends in dislocation suppression in GaAs and InP.

  17. Identification of oxygen-related midgap level in GaAs

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Lin, D. G.; Gatos, H. C.; Aoyama, T.

    1984-01-01

    An oxygen-related deep level ELO was identified in GaAs employing Bridgman-grown crystals with controlled oxygen doping. The activation energy of ELO is almost the same as that of the dominant midgap level: EL2. This fact impedes the identification of ELO by standard deep level transient spectroscopy. However, it was found that the electron capture cross section of ELO is about four times greater than that of EL2. This characteristic served as the basis for the separation and quantitative investigation of ELO employing detailed capacitance transient measurements in conjunction with reference measurements on crystals grown without oxygen doping and containing only EL2.

  18. Determination of carrier concentration and compensation microprofiles in GaAs

    NASA Technical Reports Server (NTRS)

    Jastrzebski, L.; Lagowski, J.; Walukiewicz, W.; Gatos, H. C.

    1980-01-01

    Simultaneous microprofiling of semiconductor free carrier, donor, and acceptor concentrations was achieved for the first time from the absolute value of the free carrier absorption coefficient and its wavelength dependence determined by IR absorption in a scanning mode. Employing Ge- and Si-doped melt-grown GaAs, striking differences were found between the variations of electron concentration and those of ionized impurity concentrations. These results showed clearly that the electronic characteristics of this material are controlled by amphoteric doping and deviations from stoichiometry rather than by impurity segregation.

  19. Effect of Bi isovalent dopants on the formation of homogeneous coherently strained InAs quantum dots in GaAs matrices

    SciTech Connect

    Peleshchak, R. M.; Guba, S. K.; Kuzyk, O. V.; Kurilo, I. V.; Dankiv, O. O.

    2013-03-15

    The distribution of hydrostatic strains in Bi{sup 3+}-doped InAs quantum dots embedded in a GaAs matrix are calculated in the context of the deformation-potential model. The dependences of strains in the material of spherical InAs quantum dots with substitutional (Bi {yields} As) and interstitial (Bi) impurities on the quantum-dot size are derived. The qualitative correlation of the model with the experiment is discussed. The data on the effect of doping on the morphology of self-assembled InAs:Bi quantum dots in a GaAs matrix are obtained.

  20. GaAs solar cell development

    NASA Technical Reports Server (NTRS)

    Knechtli, R. C.; Kamath, S.; Loo, R.

    1977-01-01

    The motivation for developing GaAs solar cells is based on their superior efficiency when compared to silicon cells, their lower degradation with increasing temperature, and the expectation for better resistance to space radiation damage. The AMO efficiency of GaAs solar cells was calculated. A key consideration in the HRL technology is the production of GaAs cells of large area (greater than 4 sg cm) at a reasonable cost without sacrificing efficiency. An essential requirement for the successful fabrication of such cells is the ability to grow epitaxially a uniform layer of high quality GaAs (buffer layer) on state-of-the-art GaAs substrates, and to grow on this buffer layer the required than layer of (AlGa)As. A modified infinite melt liquid phase epitaxy (LPE) growth technique is detailed.

  1. Intervalence-Band Absorption Saturation And Optically Induced Damage Of GaAs By Pulsed CO2 Laser Radiation

    NASA Astrophysics Data System (ADS)

    James, R. B.; Christie, W. H.; Eby, R. E.; Darken, L. S.; Mills, B. E.

    1985-11-01

    The absorption of CO2, laser radiation in p-type GaAs is dominated by direct free-hole transitions between states in the heavy- and light-hole bands. For laser intensities on the order of 10 MW/cm2, the absorption associated with these transitions in moderately Zn-doped GaAs begins to saturate in a manner predicted by an inhomogeneously broadened two-level model. For heavily Zn-doped samples (>1018 cm -3), large areas of the surface are found to melt at comparable laser energy densities, in contrast to the lightly doped samples in which the damage initially occurs in small localized sites. As the energy density of the CO2 laser radiation is progressively increased, the surface topography of the samples shows signs of ripple patterns, high local stress, vaporization of material, and exfoliation of solid GaAs fragments. X-ray emission data taken on the laser-melted samples show that there is a loss of As, compared to Ga, from the surface during the high temperature cycling. Secondary ion mass spectrometry (SIMS) measurements are used to study the diffusion of oxygen from the native oxide and the incorporation of trapped oxygen in the near-surface region of the GaAs samples that have been melted by a CO2 laser pulse. We find that oxygen trapping does occur, and that the amount and depth of the oxygen signal depends on the laser energy density and number of laser shots.

  2. Wafer Bonding and Epitaxial Transfer of GaSb-based Epitaxy to GaAs for Monolithic Interconnection of Thermophotovoltaic Devices

    SciTech Connect

    C.A. Wang; D.A. Shiau; P.G. Murphy; P.W. O'brien; R.K. Huang; M.K. Connors; A.C. Anderson; D. Donetsky; S. Anikeev; G. Belenky; D.M. Depoy; G. Nichols

    2003-06-16

    GaInAsSb/AlGaAsSb/InAsSb/GaSb epitaxial layers were bonded to semi-insulating GaAs handle wafers with SiO{sub x}/Ti/Au as the adhesion layer for monolithic interconnection of thermophotovoltaic (TPV) devices. Epitaxial transfer was completed by removal of the GaSb substrate, GaSb buffer, and InAsSb etch-stop layer by selective chemical etching. The SiO{sub x}/TiAu provides not only electrical isolation, but also high reflectivity and is used as an internal back-surface reflector. Characterization of wafer-bonded epitaxy by high-resolution x-ray diffraction and time-decay photoluminescence indicates minimal residual stress and enhancement in optical quality. 0.54-eV GaInAsSb cells were fabricated and monolithically interconnected in series. A 10-junction device exhibited linear voltage building with an open-circuit voltage of 1.8 V.

  3. Growth and characterization of Czochralski-grown n and p-type GaAs for space solar cell substrates

    NASA Technical Reports Server (NTRS)

    Chen, R. T.

    1983-01-01

    Progress in LEC (liquid encapsulated Czochralski) crystal growth techniques for producing high-quality, 3-inch-diameter, n- and p-type GaAs crystals suitable for solar cell applications is described. The LEC crystals with low dislocation densities and background impurities, high electrical mobilities, good dopant uniformity, and long diffusion lengths were reproducibly grown through control of the material synthesis, growth and doping conditions. The capability for producing these large-area, high-quality substrates should positively impact the manufacturability of highly efficiency, low cost, radiation-hard GaAs solar cells.

  4. Spin Hall Effect in Doped Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Das Sarma, Sankar

    2006-03-01

    We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

  5. Radiation effects in GaAs AMOS solar cells

    NASA Technical Reports Server (NTRS)

    Shin, B. K.; Stirn, R. J.

    1979-01-01

    The results of radiation damage produced in AMOS (Antireflecting-Metal-Oxide-Semiconductor) cells with Sb2O3 interfacial oxide layers by 1-MeV electrons are presented. The degradation properties of the cells as a function of irradiation fluences were correlated with the changes in their spectral response, C-V, dark forward, and light I-V characteristics. The active n-type GaAs layers were grown by the OM-CVD technique, using sulfur doping in the range between 3 x 10 to the 15th power and 7 x 10 to the 16th power/cu cm. At a fluence of 10 to the 16th power e/sq cm, the low-doped samples showed I sub sc degradation of 8% and V sub oc degradation of 8%. The high-doped samples showed I sub sc and V sub oc degradation of 32% and 1%, respectively, while the fill factor remained relatively unchanged for both. AMOS cells with water vapor-grown interfacial layers showed no significant change in V sub oc.

  6. Bismuth alloying properties in GaAs nanowires

    SciTech Connect

    Ding, Lu; Lu, Pengfei; Cao, Huawei; Cai, Ningning; Yu, Zhongyuan; Gao, Tao; Wang, Shumin

    2013-09-15

    First-principles calculations have been performed to investigate the structural, electronic and optical properties of bismuth alloying in GaAs nanowires. A typical model of Ga{sub 31}As{sub 31} nanowires is introduced for its reasonable band gap. The band gap of GaAs{sub 1−x}Bi{sub x} shrinks clearly with the increasing Bi concentration and the band edge shifts when spin–orbit coupling (SOC) is considered. The insertion of Bi atom leads to hybridization of Ga/As/Bi p states which contributes a lot around Fermi level. Scissor effect is involved. The optical properties are presented, including dielectric function, optical absorption spectra and reflectivity, which are also varied with the increasing of Bi concentrations. - Graphical abstract: Top view of Bi-doped GaAs nanowires. Ga, As, and Bi atoms are denoted with grey, purple and red balls, respectively. Display Omitted - Highlights: • A typical model of Ga{sub 31}As{sub 31} nanowires is introduced for its reasonable band gap. • The band gap of GaAs{sub 1−x}Bi{sub x} shrinks clearly with the increasing Bi concentration. • The band edge shifts when spin–orbit coupling (SOC) is considered. • The insertion of Bi atom leads to hybridization of Ga/As/Bi p states.

  7. Simulation of quantum dots size and spacing effect for intermediate band solar cell application based on InAs quantum dots arrangement in GaAs

    SciTech Connect

    Hendra, P. I. B. Rahayu, F. Darma, Y.

    2014-03-24

    Intermediate band solar cell (IBSC) has become a promising technology in increasing solar cell efficiency. In this work we compare absorption coefficient profile between InAs quantum dots with GaAs bulk. We calculate the efficiency of GaAs bulk and GaAs doped with 2, 5, and 10 nm InAs quantum dot. Effective distances in quantum dot arrangement based on electron tunneling consideration were also calculated. We presented a simple calculation method with low computing power demand. Results showed that arrangement of quantum dot InAs in GaAs can increase solar cell efficiency from 23.9 % initially up to 60.4%. The effective distance between two quantum dots was found 2 nm in order to give adequate distance to prevent electron tunneling and wave functions overlap.

  8. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.

    PubMed

    Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2015-09-16

    Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices. PMID:26284305

  9. Design and optimization of GaAs photovoltaic converter for laser power beaming

    NASA Astrophysics Data System (ADS)

    Shan, Tiqiang; Qi, Xinglin

    2015-07-01

    GaAs photovoltaic (PV) converters are useful for the conversion of monochromatic light into electrical power in numerous military and industrial applications. The work of this paper is to design a monochromatic GaAs PV converter for coupling to laser beams in the wavelength of 790-840 nm and optimize its structure, layer thicknesses, doping levels of the emitter and base, and antireflection coating. Modeling calculations of the GaAs PV converter optimization are carried out using PC-1D. From the highest efficiency point of view, the best wavelength is 840 nm at which the optimized structure gives an efficiency of 61.8% theoretically. Experiment results under 808 nm laser power beaming show that high optical-to-electrical conversion efficiency of 53.23% at 5 W/cm2 is achieved using the optimized GaAs PV laser converter. Finally, accurate extraction of the key parameters, viz. the ideality factor, reverse saturation current, series resistance and shunt resistance is introduced. Variations of these parameters with illumination intensity are also investigated analytically based on the one diode model, which are necessary for the design of a high performance PV generation system.

  10. Formation of oxides and their role in the growth of Ag nanoplates on GaAs substrates.

    SciTech Connect

    Sun, Y.; Gosztola, D.; Lei, C.; Haasch, R.; Center for Nanoscale Materials; Univ. of Illinois

    2008-10-21

    Simple galvanic reactions between highly doped n-type GaAs wafers and a pure aqueous solution of AgNO3 at room temperature provide an easy and efficient protocol to directly deposit uniform Ag nanoplates with tunable dimensions on the GaAs substrates. The anisotropic growth of the Ag nanoplates in the absence of surfactant molecules might be partially ascribed to the codeposition of oxides of gallium and arsenic, which are revealed by extensive data from electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy, during the growth of the Ag nanoplates. The electron microscopic characterization shows that each Ag nanoplate has a 'necked' geometry, that is, it pins on the GaAs lattices through only a tiny neck (with sizes of <10 nm). In addition, the as-grown Ag nanoplates exhibit strong enhancement toward Raman scattering of materials on (or around) their surfaces.

  11. Characterization of GaAs solar cells made by ion implantation and rapid thermal annealing using selective photoetching

    SciTech Connect

    van Sark, W.G.J.H.M.; Weyher, J.L.; Giling, L.J. ); de Potter, M.; van Rossum, M. )

    1990-05-01

    Shallow {ital n}-{ital p} GaAs solar cells have been made by implantation of Si into Zn-doped ({ital p}-type) GaAs substrates followed by rapid thermal annealing. The structure of the GaAs crystal has been determined by the DSL photoetching method (Diluted Sirtl-like etchants used with Light). It was found that implantation-induced-damage (revealed by DSL as microroughness and craters) was not removed after annealing for energies exceeding 60 keV. This leads to substrates that contain many precipitates, which appears to be disastrous for the fabrication of good solar cells. In addition, good cell performance is hampered by compensation effects in the {ital n}-{ital p} transition region and in the {ital n}-type layer itself.

  12. Temperature dependence of the photovoltage from Franz-Keldysh oscillations in a GaAs p+-i-n+ structure

    NASA Astrophysics Data System (ADS)

    Lee, Sang Jo; Sohn, Chang Won; Jo, Hyun-Jun; Han, Im Sik; Kim, Jong Su; Noh, Sam Kyu; Choi, Hyonkwang; Leem, Jae-Young

    2015-09-01

    The temperature dependences of the junction electric fields and photovoltage have been investigated for a GaAs p+-i-n+ structure by using photoreflectance (PR) spectroscopy. The electric field strength was examined through three types of Franz-Keldysh oscillation (FKO) analyses; then, the photovoltage was evaluated with respect to temperature in the range from 30 to 300 K. From the PR results, we observed two electric fields that are estimated to originate from two regions of FKOs in undoped GaAs and from the space charge region in highly-doped GaAs. The electric field under illumination decreased with decreasing temperature while the photovoltage obtained from the electric field increased. We also demonstrate that PR spectroscopy is a good method for investigating the photovoltaic effect in solar-cell structures.

  13. Double-doped double-strained modulation-doped field effect transistor: 3D-SMODFET

    NASA Astrophysics Data System (ADS)

    Martin, Glenn Harvey

    This dissertation reviews the operation of MODFETs and the current status they have achieved as the world's fastest transistor. The utilization of AlGaAs/InGaAs heterostructures in the MODFET has resulted in the wide spread use of PHEMTs in the microwave industry today. This structure's increasing popularity is mainly due to the improvement in the quality and price of GaAs substrates over the past ten years. As the cost of good semi-insulating GaAs substrates has dropped, economic forces and the industries' need for microwave applications (wireless market) have driven the PHEMT into the production line of many companies world wide. The cost advantages of monolithic integration has results in the wide spread applications of monolithic microwave integrated circuits (MMIC). The advantages of the AlInAs/InGaAs heterostructure are numerous and will be discussed in detail within this dissertation. The simple fact of this is the continued research in using the AlInAs/InGaAs heterostructure on GaAs substrates with the inherent problems of the large lattice mismatch. In this dissertation the careful optimization of the AlInAs/InGaAs heterostructure for use in MODFET structures is done. In reviewing epitaxial designs for AlInAs/InGaAs heterostructures it became clear that the common InP-based MODFET was not optimized. This conclusion is based on the fact when comparing the AlInAs/InGaAs MODFET to the AlGaAs/InGaAs PHEMT they received a lot of bang for the buck. The large conduction band discontinuity (Delta Esb{C}) of the AlInAs/InGaAs heterostructure allowed for simple quick designs to easily out perform the AlGaAs/InGaAs PHEMTs. Results of this careful optimization of the AlInAs/InGaAs MODFET on InP substrates are an exceptional industry record high 2DEG sheet charge of 8.4× 10sp{12} cmsp{-2} with a corresponding current of 1,850 mA/mm. This record high performance was been achieved through (i) the careful optimization of MBE growth of pseudomorphic heterojunctions, (ii

  14. High-efficiency, radiation-resistant GaAs space cells

    NASA Technical Reports Server (NTRS)

    Bertness, K. A.; Ristow, M. Ladle; Grounner, M.; Kuryla, M. S.; Werthen, J. G.

    1991-01-01

    Although many GaAs solar cells are intended for space applicatons, few measurements of cell degradation after radiation are available, particularly for cells with efficiencies exceeding 20 percent (one-sun, AMO). Often the cell performance is optimized for the highest beginning-of-life (BOL) efficiency, despite the unknown effect of such design on end-of-life (EOL) efficiencies. The results of a study of the radiation effects on p-n GaAs cells are presented. The EOL efficiency of GaAs space cell can be increased by adjusting materials growth parameters, resulting in a demonstration of 16 percent EOL efficiency at one-sun, AMO. Reducing base doping levels to below 3 x 10(exp 17)/cu m and decreasing emitter thickness to 0.3 to 0.5 micron for p-n cells led to significant improvements in radiation hardness as measured by EOL/BOL efficiency ratios for irradiation of 10(exp -15)/sq cm electrons at 1 MeV. BOL efficiency was not affected by changes in emitter thickness but did improve with lower base doping.

  15. Pulse transformer for GaAs laser

    NASA Technical Reports Server (NTRS)

    Rutz, E. M.

    1976-01-01

    High-radiance gallium arsenide (GaAs) laser operating at room temperature is utilized in optical navigation system. For efficient transformer-to-laser impedance match, laser should be connected directly to pulse transformer secondary winding.

  16. Carbon doping of III-V compound semiconductors

    SciTech Connect

    Moll, A.J.

    1994-09-01

    Focus of the study is C acceptor doping of GaAs, since C diffusion coefficient is at least one order of magnitude lower than that of other common p-type dopants in GaAs. C ion implantation results in a concentration of free holes in the valence band < 10% of that of the implanted C atoms for doses > 10{sup 14}/cm{sup 2}. Rutherford backscattering, electrical measurements, Raman spectroscopy, and Fourier transform infrared spectroscopy were amonth the techniques used. Ga co-implantation increased the C activation in two steps: first, the additional radiation damage creates vacant As sites that the implanted C can occupy, and second, it maintains the stoichiometry of the implanted layer, reducing the number of compensating native defects. In InP, the behavior of C was different from that in GaAs. C acts as n-type dopant in the In site; however, its incorporation by implantation was difficult to control; experiments using P co-implants were inconsistent. The lattice position of inactive C in GaAs in implanted and epitaxial layers is discussed; evidence for formation of C precipitates in GaAs and InP was found. Correlation of the results with literature on C doping in III-V semiconductors led to a phenomenological description of C in III-V compounds (particularly GaAs): The behavior of C is controlled by the chemical nature of C and the instrinsic Fermi level stabilization energy of the material.

  17. The effects of As overpressure and diffusion source on the diffusion of Mn in GaAs

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Hsieh, K. C.

    1992-12-01

    Data are presented to show the effect of As overpressure on the diffusion of Mn in GaAs using four different Mn sources. These sources include solid Mn thin film deposited directly on the GaAs substrate and Mn vapors from pure Mn, MnAs, and Mn3As solids. In the circumstance for which a solid Mn film is used as the diffusion source, a nonuniform doping distribution and poor surface morphology is obtained due to a reaction between the Mn film and the GaAs matrix. The degraded surface consists of a layer of polycrystalline cubic alloy having a lattice constant of nearly 8.4 Å and a composition close to MnGa2 with a small amount of As. Of the remaining diffusion sources (Mn, MnAs, and Mn3As), only MnAs consistently produces a uniform doping distribution and smooth surface morphology. For diffusions at 800 °C, a uniform surface hole carrier concentration as high as 1020/cm3 can be obtained using MnAs as the source. The As overpressure is found to drastically alter the Mn diffusion profile, and Mn, like Zn, may diffuse in GaAs interstitial-substitutionally. Vapor from both the Mn and Mn3As solids degrade the GaAs surface. Mn3As, however, uncharacteristically degrades the surface more rapidly although the details of such are not well understood. With the presence of a high As overpressure, however, both surfaces of the Mn and Mn3As sources are converted to (Mn,As) compounds, the compositions being close to MnAs. High enough As overpressures are shown to completely suppress the GaAs surface degradation which is evident when Mn3As alone is used as the diffusion source.

  18. Investigation of the origin of deep levels in CdTe doped with Bi

    SciTech Connect

    Saucedo, E.; Franc, J.; Elhadidy, H.; Horodysky, P.; Ruiz, C. M.; Bermudez, V.; Sochinskii, N. V.

    2008-05-01

    Combining optical (low temperature photoluminescence), electrical (thermoelectric effect spectroscopy), and structural (synchrotron X-ray powder diffraction) methods, the defect structure of CdTe doped with Bi was studied in crystals with dopant concentration in the range of 10{sup 17}-10{sup 19} at./cm{sup 3}. The semi-insulating state observed in crystals with low Bi concentration is assigned to the formation of a shallow donor level and a deep donor recombination center. Studying the evolution of lattice parameter with temperature, we postulate that the deep center is formed by a Te-Te dimer and their formation is explained by a tetrahedral to octahedral distortion, due to the introduction of Bi in the CdTe lattice. We also shows that this model agrees with the electrical, optical, and transport charge properties of the samples.

  19. Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (0 0 1) substrates

    NASA Astrophysics Data System (ADS)

    Li, Yanbo; Zhang, Yang; Zhang, Yuwei; Wang, Baoqiang; Zhu, Zhanping; Zeng, Yiping

    2012-06-01

    We report on the growth of GaSb layers on GaAs (0 0 1) substrates by molecular beam epitaxy (MBE). We investigate the influence of the GaAs substrate surface treatment, growth temperature, and V/III flux ratios on the crystal quality and the surface morphology of GaSb epilayers. Comparing to Ga-rich GaAs surface preparation, the Sb-rich GaAs surface preparation can promote the growth of higher-quality GaSb material. It is found that the crystal quality, electrical properties, and surface morphology of the GaSb epilayers are highly dependent on the growth temperature, and Sb/Ga flux ratios. Under the optimized growth conditions, we demonstrate the epitaxial growth of high quality GaSb layers on GaAs substrates. The p-type nature of the unintentionally doped GaSb is studied and from the growth conditions dependence of the hole concentrations of the GaSb, we deduce that the main native acceptor in the GaSb is the Ga antisite (GaSb) defect.

  20. Optimisation of a carbon doped buffer layer for AlGaN/GaN HEMT devices

    NASA Astrophysics Data System (ADS)

    Gamarra, Piero; Lacam, Cedric; Tordjman, Maurice; Splettstösser, Jörg; Schauwecker, Bernd; di Forte-Poisson, Marie-Antoinette

    2015-03-01

    This work reports on the optimisation of carbon doping GaN buffer layer (BL) for AlGaN/GaN HEMT (high electron mobility transistor) structures, grown by low pressure metal-organic vapour phase epitaxy (LP-MOVPE) on 3 in. SiC semi-insulating substrates. The incorporation of carbon impurities in GaN is studied as a function of the growth conditions, without using an external carbon source. We observed that the C incorporation can be effectively controlled over more than one order of magnitude by tuning the reactor pressure and the growth temperature, without degradation of the crystalline properties of the GaN layers. HEMT structures with a specific barrier design were grown with different carbon dopings in the GaN BL and processed into transistors to evaluate the impact of the BL doping on the device performances. A significant improvement of the HEMT drain leakage current and of the breakdown voltage was obtained by increasing the carbon incorporation in the GaN BL. The RF performances of the devices show a trade-off between leakage currents and trapping phenomena which are enhanced by the use of carbon doping, limiting the delivered output power. An output power as high as 6.5 W/mm with a Power Added Efficiency of 70% has been achieved at 2 GHz by the HEMT structures with the lowest carbon doping in the BL.

  1. Sulfur passivation and contact methods for GaAs nanowire solar cells

    NASA Astrophysics Data System (ADS)

    Tajik, N.; Peng, Z.; Kuyanov, P.; LaPierre, R. R.

    2011-06-01

    The effect of sulfur passivation on core-shell p-n junction GaAs nanowire (NW) solar cells has been investigated. Devices of two types were investigated, consisting of indium tin oxide contact dots or opaque Au finger electrodes. Lateral carrier transport from the NWs to the contact fingers was achieved via a p-doped GaAs surface conduction layer. NWs between the opaque contact fingers had sidewall surfaces exposed for passivation by sulfur. The relative cell efficiency increased by 19% upon passivation. The contribution of the thin film grown between the NWs to the total cell efficiency was estimated by removing the NWs using a sonication procedure. Mechanisms of carrier transport and photovoltaic effects are discussed on the basis of spatially resolved laser scanning measurements.

  2. Sulfur passivation and contact methods for GaAs nanowire solar cells.

    PubMed

    Tajik, N; Peng, Z; Kuyanov, P; LaPierre, R R

    2011-06-01

    The effect of sulfur passivation on core-shell p-n junction GaAs nanowire (NW) solar cells has been investigated. Devices of two types were investigated, consisting of indium tin oxide contact dots or opaque Au finger electrodes. Lateral carrier transport from the NWs to the contact fingers was achieved via a p-doped GaAs surface conduction layer. NWs between the opaque contact fingers had sidewall surfaces exposed for passivation by sulfur. The relative cell efficiency increased by 19% upon passivation. The contribution of the thin film grown between the NWs to the total cell efficiency was estimated by removing the NWs using a sonication procedure. Mechanisms of carrier transport and photovoltaic effects are discussed on the basis of spatially resolved laser scanning measurements. PMID:21454946

  3. High-efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1979-01-01

    GaAs chemical vapor deposition (CVD) growth on single-crystal GaAs substrates was investigated over a temperature range of 600 to 750 C, As/GA mole-ratio range of 3 to 11, and gas molefraction range 5 x 10 to the minus 9th power to 7x 10 to the minus 7th power for H2S doping. GasAs CVD growth on recrystallized Ge films was investigated for a temperature range of 550 to 700 C, an As/GA mole ratio of 5, and for various H2S mole fraction. The highest efficiency cell observed on these films with 2 mm dots was 4.8% (8% when AR-coated). Improvements in fill factor and opencircuit voltage by about 40% each are required in order to obtain efficiencies of 15% or greater.

  4. Technological steps reduction in the fabrication of high efficiency GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Gavand, M.; Mayet, L.; Montegu, B.; Laugier, A.

    A simplified method to make high-efficiency GaAs solar cells by isothermal liquid-phase epitaxy has been investigated. A graded GaAlAs window layer was grown by isothermal contact between a Be-doped GaAlAs melt and a n-type GaAs substrate. With the aim of further reducing the fabrication cost, attempts were made to grow the junction and the window on the as-cut side of the wafers; with small modifications in the cleaning process, efficiencies up to 20 percent were obtained. The following substrates were considered: polycrystalline, chemically/mechanically polished monocrystalline, and buffer layer. The best efficiency of 22.7 percent (under 24 suns AM1.5, 25 deg C) was obtained when buffer-layer substrates were used.

  5. Spin Hall Effect in Doped Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Das Sarma, S.

    2006-02-01

    In this Letter we present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump and skew-scattering contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show that their effects scale as σxySJ/σxySS˜(ℏ/τ)/ɛF, with τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n- and p-doped 3D and 2D GaAs structures, obtaining σs/σc˜10-3-10-4, where σs(c) is the spin Hall (charge) conductivity, which is in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)]SCIEAS0036-807510.1126/science.1105514 in n-doped 3D GaAs system.

  6. Ultra-Thin-Film GaAs Solar Cells

    NASA Technical Reports Server (NTRS)

    Wang, K. L.; Shin, B. K.; Yeh, Y. C. M.; Stirn, R. J.

    1982-01-01

    Process based on organo-metallic chemical vapor deposition (OM/CVD) of trimethyl gallium with arsine forms economical ultrathin GaAs epitaxial films. Process has higher potential for low manufacturing cost and large-scale production compared with more-conventional halide CVD and liquid-phase epitaxy processes. By reducing thickness of GaAs and substituting low-cost substrate for single-crystal GaAs wafer, process would make GaAs solar cells commercially more attractive.

  7. Doped semiconductors and other solar energy materials

    NASA Astrophysics Data System (ADS)

    Williamson, D. L.

    1988-02-01

    A review is presented of recent applications of Mössbauer spectroscopy that focus on determining the fate of doped impurities in semiconductors, primarily GaAs, Ga1-xAlxAs and Si. Other solar energy materials and processes which are discussed include amorphous Si∶H-based alloys, chalcopyrites, transparent conducting oxides, photochemical processing via semiconductor powders in electrolytes, mirror making, and plant photosynthesis.

  8. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1979-01-01

    The optimization of space processing of GaAs is described. The detailed compositional, structural, and electronic characterization of GaAs on a macro- and microscale and the relationships between growth parameters and the properties of GaAs are among the factors discussed. The key parameters limiting device performance are assessed.

  9. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    The handbook discusses the history of GaAs solar cell development, presents equations useful for working with GaAs solar cells, describes commonly used instrumentation techniques for assessing radiation effects in solar cells and fundamental processes occurring in solar cells exposed to ionizing radiation, and explains why radiation decreases the electrical performance of solar cells. Three basic elements required to perform solar array degradation calculations: degradation data for GaAs solar cells after irradiation with 1 MeV electrons at normal incidence; relative damage coefficients for omnidirectional electron and proton exposure; and the definition of the space radiation environment for the orbit of interest, are developed and used to perform a solar array degradation calculation.

  10. Optical and thermal properties of doped semiconductor

    NASA Astrophysics Data System (ADS)

    Abroug, S.; Saadallah, F.; Yacoubi, N.

    2008-01-01

    The knowledge of doping effects on optical and thermal properties of semiconductors is crucial for the development of optoelectronic compounds. The purpose of this work is to investigate theses effects by mirage effect technique and spectroscopic ellipsometry SE. The absorption spectra measured for differently doped Si and GaAs bulk samples, show that absorption in the near IR increases with dopant density and also the band gap shifts toward low energies. This behavior is due to free carrier absorption which could be obtained by subtracting phonon assisted absorption from the measured spectrum. This carrier absorption is related to the dopant density throw a semi-empirical model.

  11. Electrical and optical properties of Fe doped AlGaN grown by molecular beam epitaxy

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Kozhukhova, E. A.; Dabiran, A. M.; Chow, P. P.; Wowchak, A. M.; Pearton, S. J.

    2010-01-15

    Electrical and optical properties of AlGaN grown by molecular beam epitaxy were studied in the Al composition range 15%-45%. Undoped films were semi-insulating, with the Fermi level pinned near E{sub c}-0.6-0.7 eV. Si doping to (5-7)x10{sup 17} cm{sup -3} rendered the 15% Al films conducting n-type, but a large portion of the donors were relatively deep (activation energy 95 meV), with a 0.15 eV barrier for capture of electrons giving rise to strong persistent photoconductivity (PPC) effects. The optical threshold of this effect was {approx}1 eV. Doping with Fe to a concentration of {approx}10{sup 17} cm{sup -3} led to decrease in concentration of uncompensated donors, suggesting compensation by Fe acceptors. Addition of Fe strongly suppressed the formation of PPC-active centers in favor of ordinary shallow donors. For higher Al compositions, Si doping of (5-7)x10{sup 17} cm{sup -3} did not lead to n-type conductivity. Fe doping shifted the bandedge luminescence by 25-50 meV depending on Al composition. The dominant defect band in microcathodoluminescence spectra was the blue band near 3 eV, with the energy weakly dependent on composition.

  12. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  13. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.

    1998-01-01

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  14. A 4-W 56-dB gain microstrip amplifier at 15 GHz utilizing GaAs FET's and IMPATT diodes

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Namordi, M. R.; Doerbeck, F. H.

    1979-01-01

    Performance results and design considerations are presented for an all solid-state Ku-band power amplifier which is feasible for use in PM communication systems for airborne or spacecraft transmitter applications. A six-stage GaAs FET preamplifier and a driver and balanced power amplifier utilizing GaAs IMPATT diodes operating in the injection locked oscillator mode are discussed. For high power and efficiency Schottky-Read IMPATT's with low-high-low doping profiles are employed. For improved reliability the IMPATT's incorporate a TiW barrier metallization to retard degradation of the IMPATT's. Results of accelerated life testing of the IMPATT devices are also presented.

  15. Mg acceptor doping of In{sub 2}O{sub 3} and overcompensation by oxygen vacancies

    SciTech Connect

    Bierwagen, Oliver; Speck, James S.

    2012-09-03

    Mg-doped indium oxide (In{sub 2}O{sub 3}) thin films were grown by plasma-assisted molecular beam epitaxy with Mg-concentrations ranging from 10{sup 17} to 6 Multiplication-Sign 10{sup 20} cm{sup -3}. In this concentration range Mg was incorporated into In{sub 2}O{sub 3} without discernable impediment nor formation of secondary phases. Despite the role of Mg as acceptor, the films were n-type conductive in the as-grown state or after annealing in vacuum. For Mg-concentrations well in excess of the unintentional donor concentration annealing in oxygen resulted in semi-insulating films without detectable p-type conductivity. These results strongly suggest oxygen vacancies to act as shallow donors in In{sub 2}O{sub 3} that can overcompensate the Mg acceptors.

  16. Defect studies in low-temperature-grown GaAs

    SciTech Connect

    Bliss, D.E.

    1992-11-01

    High content of excess As is incorporated in GaAs grown by low-temperature molecular-beam-epitaxy (LTMBE). The excess As exists primarily as As antisite defects AsGa and a lesser extent of gallium vacancies V[sub Ga]. The neutral AsGa-related defects were measured by infrared absorption at 1[mu]m. Gallium vacancies, V[sub Ga], was investigated by slow positron annihilation. Dependence of defect contents on doping was studied by Si and Be dopants. No free carriers are generated by n-type or p-type doping up to 10[sup 19] cm[sup [minus]3] Si or Be. Raman data indicate Be occupies Ga substitutional sites but Si atom is not substitutional. Si induces more As[sub Ga] in the layer. As As[sub Ga] increases, photoquenchable As[sub Ga] decreases. Fraction of photoquenchable defects correlates to defects within 3 nearest neighbor separations disrupting the metastability. Annealing reduces neutral As[sub Ga] content around 500C, similar to irradiation damaged and plastically deformed Ga[sub As], as opposed to bulk grown GaAs in which As[sub Ga]-related defects are stable up to 1100C. The lower temperature defect removal is due to V[sub Ga] enhanced diffusion of As[sub Ga] to As precipitates. The supersaturated V[sub GA] and also decreases during annealing. Annealing kinetics for As[sub Ga]-related defects gives 2.0 [plus minus] 0.3 eV and 1.5 [plus minus] 0.3 eV migration enthalpies for the As[sub Ga] and V[sub Ga]. This represents the difference between Ga and As atoms hopping into the vacancy. The non-photoquenchable As[sub Ga]-related defects anneal with an activation energy of 1.1 [plus minus] 0.3eV. Be acceptors can be activated by 800C annealing. Temperature difference between defect annealing and Be activation formation of As[sub Ga]-Be[sub Ga] pairs. Si donors can only be partially activated.

  17. Defect studies in low-temperature-grown GaAs

    SciTech Connect

    Bliss, D.E.

    1992-11-01

    High content of excess As is incorporated in GaAs grown by low-temperature molecular-beam-epitaxy (LTMBE). The excess As exists primarily as As antisite defects AsGa and a lesser extent of gallium vacancies V{sub Ga}. The neutral AsGa-related defects were measured by infrared absorption at 1{mu}m. Gallium vacancies, V{sub Ga}, was investigated by slow positron annihilation. Dependence of defect contents on doping was studied by Si and Be dopants. No free carriers are generated by n-type or p-type doping up to 10{sup 19} cm{sup {minus}3} Si or Be. Raman data indicate Be occupies Ga substitutional sites but Si atom is not substitutional. Si induces more As{sub Ga} in the layer. As As{sub Ga} increases, photoquenchable As{sub Ga} decreases. Fraction of photoquenchable defects correlates to defects within 3 nearest neighbor separations disrupting the metastability. Annealing reduces neutral As{sub Ga} content around 500C, similar to irradiation damaged and plastically deformed Ga{sub As}, as opposed to bulk grown GaAs in which As{sub Ga}-related defects are stable up to 1100C. The lower temperature defect removal is due to V{sub Ga} enhanced diffusion of As{sub Ga} to As precipitates. The supersaturated V{sub GA} and also decreases during annealing. Annealing kinetics for As{sub Ga}-related defects gives 2.0 {plus_minus} 0.3 eV and 1.5 {plus_minus} 0.3 eV migration enthalpies for the As{sub Ga} and V{sub Ga}. This represents the difference between Ga and As atoms hopping into the vacancy. The non-photoquenchable As{sub Ga}-related defects anneal with an activation energy of 1.1 {plus_minus} 0.3eV. Be acceptors can be activated by 800C annealing. Temperature difference between defect annealing and Be activation formation of As{sub Ga}-Be{sub Ga} pairs. Si donors can only be partially activated.

  18. GaAs Substrates for High-Power Diode Lasers

    NASA Astrophysics Data System (ADS)

    Mueller, Georg; Berwian, Patrick; Buhrig, Eberhard; Weinert, Berndt

    GaAs substrate crystals with low dislocation density (Etch-Pit Density (EPD) < 500,^-2) and Si-doping ( ~10^18,^-3) are required for the epitaxial production of high-power diode-lasers. Large-size wafers (= 3 mathrm{in} -> >=3,) are needed for reducing the manufacturing costs. These requirements can be fulfilled by the Vertical Bridgman (VB) and Vertical Gradient Freeze (VGF) techniques. For that purpose we have developed proper VB/VGF furnaces and optimized the thermal as well as the physico-chemical process conditions. This was strongly supported by extensive numerical process simulation. The modeling of the VGF furnaces and processes was made by using a new computer code called CrysVUN++, which was recently developed in the Crystal Growth Laboratory in Erlangen.GaAs crystals with diameters of 2 and 3in were grown in pyrolytic Boron Nitride (pBN) crucibles having a small-diameter seed section and a conical part. Boric oxide was used to fully encapsulate the crystal and the melt. An initial silicon content in the GaAs melt of c (melt) = 3 x10^19,^-3 has to be used in order to achieve a carrier concentration of n = (0.8- 2) x10^18,^-3, which is the substrate specification of the device manufacturer of the diode-laser. The EPD could be reduced to values between 500,^-2 and 50,^-2 with a Si-doping level of 8 x10^17 to 1 x10^18,^-3. Even the 3in wafers have rather large dislocation-free areas. The lowest EPDs ( <100,^-2) are achieved for long seed wells of the crucible.

  19. P-type Ge epitaxy on GaAs (100) substrate grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Jin, Y. J.; Chia, C. K.; Liu, H. F.; Wong, L. M.; Chai, J. W.; Chi, D. Z.; Wang, S. J.

    2016-07-01

    In this work, Ga-doped Geranium (Ge) films have been grown on GaAs (100) substrates by metal-organic chemical vapor deposition (MOCVD). Undesired pillar structures have been observed on the epilayers prepared at relatively lower temperatures. Energy dispersive X-ray spectroscopy (EDX) indicated that the pillars are mainly consisted of Ga atoms, which is totally different from that of the Ge film. It was demonstrated that the pillar structures could be reduced by simply raising the growth temperature while keeping the other growth conditions unchanged. In this regard, the growth mechanism of the pillars was related to the Ge-Ga dimers formed during the growth of p-Ge films. By further studying the influence of a GaAs or Ge buffer layer on the growth of p-Ge layers, we found that the GaAs substrate with lower density of Ga or Ge dangling bonds was helpful in suppressing the formation of the undesired pillar structures.

  20. GaAs nanowire array solar cells with axial p-i-n junctions.

    PubMed

    Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2014-06-11

    Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics. PMID:24849203

  1. Defects in electron-irradiated GaAs studied by positron lifetime spectroscopy

    SciTech Connect

    Polity, A.; Rudolf, F.; Nagel, C.; Eichler, S.; Krause-Rehberg, R.

    1997-04-01

    A systematic study of electron-irradiation-induced defects in GaAs was carried out. The irradiation was performed at low temperature (4 K) with an incident energy of 2 MeV. Both, the defect formation and annealing behavior were studied in dependence on the fluence (10{sup 15}--10{sup 19} cm{sup {minus}2}) in undoped, n-, and p-doped GaAs. Temperature-dependent positron lifetime measurements were performed between 20 and 600 K. The thermal stability of defects was studied by annealing experiments in the temperature range of 90--600 K. A defect complex, which anneals in a main stage at 300 K, was found in all GaAs samples after electron irradiation. A possible candidate for this defect is a complex of a vacancy connected with an intrinsic defect. A second vancancylike defect was observed in n-type material after annealing at 550 K. This defect was assumed to be in the As sublattice. {copyright} {ital 1997} {ital The American Physical Society}

  2. Au impact on GaAs epitaxial growth on GaAs (111)B substrates in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liao, Zhi-Ming; Chen, Zhi-Gang; Lu, Zhen-Yu; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2013-02-01

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {111}B substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {113}B faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  3. GaAs optoelectronic neuron arrays

    NASA Technical Reports Server (NTRS)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  4. GaAs Solar Cell Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1996-01-01

    History of GaAs solar cell development is provided. Photovoltaic equations are described along with instrumentation techniques for measuring solar cells. Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed. The space radiation environment and solar array degradation calculations are addressed.

  5. P-doping mechanisms in catalyst-free gallium arsenide nanowires.

    PubMed

    Dufouleur, Joseph; Colombo, Carlo; Garma, Tonko; Ketterer, Bernt; Uccelli, Emanuele; Nicotra, Marco; Fontcuberta i Morral, Anna

    2010-05-12

    Doped catalyst-free GaAs nanowires have been grown by molecular beam epitaxy with the gallium-assisted method. The spatial dependence of the dopant concentration and resistivity have been measured by Raman spectroscopy and four point electrical measurements. Along with theoretical considerations, the doping mechanisms have been revealed. Two competing mechanisms have been revealed: dopant incorporation from the side facets and from the gallium droplet. In the latter incorporation path, doping compensation seems to play an important role in the effective dopant concentration. Hole concentrations of at least 2.4 x 10(18) cm(-3) have been achieved, which to our knowledge is the largest p doping range obtained up to date. This work opens the avenue for the use of doped GaAs nanowires in advanced applications and in mesoscopic physics experiments. PMID:20373777

  6. Dilute nitride and GaAs n-i-p-i solar cells

    PubMed Central

    2012-01-01

    We demonstrate for the first time the operation of GaInNAs and GaAs n-i-p-i doping solar cells with ion-implanted selective contacts. Multiple layers of alternate doping are grown by molecular beam epitaxy to form the n-i-p-i structure. After growth, vertical selective contacts are fabricated by Mg and Si ion implantation, followed by rapid thermal annealing treatment and fabrication into circular mesa cells. As means of characterisation, spectral response and illuminated current–voltage (I-V) were measured on the samples. The spectral response suggests that all horizontal layers are able to contribute to the photocurrent. Performance of the devices is discussed with interest in the n-i-p-i structure as a possible design for the GaInP/GaAs/GaInNAs tandem solar cell. PMID:23167964

  7. Dilute nitride and GaAs n-i-p-i solar cells.

    PubMed

    Mazzucato, Simone; Royall, Benjamin; Ketlhwaafetse, Richard; Balkan, Naci; Salmi, Joel; Puustinen, Janne; Guina, Mircea; Smith, Andy; Gwilliam, Russell

    2012-01-01

    We demonstrate for the first time the operation of GaInNAs and GaAs n-i-p-i doping solar cells with ion-implanted selective contacts. Multiple layers of alternate doping are grown by molecular beam epitaxy to form the n-i-p-i structure. After growth, vertical selective contacts are fabricated by Mg and Si ion implantation, followed by rapid thermal annealing treatment and fabrication into circular mesa cells. As means of characterisation, spectral response and illuminated current-voltage (I-V) were measured on the samples. The spectral response suggests that all horizontal layers are able to contribute to the photocurrent. Performance of the devices is discussed with interest in the n-i-p-i structure as a possible design for the GaInP/GaAs/GaInNAs tandem solar cell. PMID:23167964

  8. Homojunction GaAs solar cells grown by close space vapor transport

    SciTech Connect

    Boucher, Jason W.; Ritenour, Andrew J.; Greenaway, Ann L.; Aloni, Shaul; Boettcher, Shannon W.

    2014-06-08

    We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping, and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.

  9. Carrier scattering by native defects in heavily doped semiconductors

    SciTech Connect

    Walukiewicz, W. Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA )

    1990-05-15

    Calculations of the effect of charged native defects on carrier mobility in semiconductors are presented. The concentrations of native defects are calculated within the framework of the recently proposed amphoteric-native-defect model. The model provides a simple rule for identification of semiconductor systems in which defect scattering is important. It is shown that native-defect scattering is a dominant mechanism limiting electron mobilities in heavily doped {ital n}-type GaAs. It is also shown that native defects do not play any significant role in {ital p}-type GaAs.

  10. Lattice location of diffused Zn atoms in GaAs and InP single crystals

    SciTech Connect

    Chan, L.Y.; Yu, K.M.; Ben-Tzur, M.; Haller, E.E.; Jaklevic, J.M.; Walukiewicz, W. ); Hanson, C.M. )

    1991-03-01

    We have investigated the saturation phenomenon of the free carrier concentration in {ital p}-type GaAs and InP single crystals doped by zinc diffusion. The free hole saturation occurs at 10{sup 20} cm{sup {minus}3} for GaAs, but the maximum concentration for InP appears at mid 10{sup 18} cm{sup {minus}3}. The difference in the saturation hole concentrations for these materials is investigated by studying the incorporation and the lattice location of the impurity zinc, an acceptor when located on a group III atom site. Zinc is diffused into the III-V wafers in a sealed quartz ampoule. Particle-induced x-ray emission with ion-channeling techniques are employed to determine the exact lattice location of the zinc atoms. We have found that over 90% of all zinc atoms occupy Ga sites in the diffused GaAs samples, while for the InP case, the zinc substitutionality is dependent on the cooling rate of the sample after high-temperature diffusion. For the slowly cooled sample, a large fraction ({similar to}90%) of the zinc atoms form random precipitates of Zn{sub 3}P{sub 2} and elemental Zn. However, when rapidly cooled only 60% of the zinc forms such precipitates while the rest occupies specific sites in the InP. We analyze our results in terms of the amphoteric native defect model. We show that the difference in the electrical activity of the Zn atoms in GaAs and InP is a consequence of the different location of the Fermi level stabilization energy in these two materials.

  11. Zn diffusion in Al/0.7/Ga/0.3/As compared with that in GaAs. [solar cells

    NASA Technical Reports Server (NTRS)

    Flat, A.; Milnes, A. G.; Feucht, D. L.

    1977-01-01

    Zinc was diffused into 4 times 10 to the 17th per cu cm n-type Al(0.7)Ga(0.3)As grown by liquid-phase epitaxy and also into n-type 2 times 10 to the 17th per cu cm doped GaAs slices at 600, 650, and 750 C. The Zn diffusion coefficient in the Al(0.7)Ga(0.3)As was about one order of magnitude larger than in GaAs. The significance of this fact is that diffusion of Zn through a 0.5 micron Al(0.7)Ga(0.3)As layer appears to be possible with adequate control of the junction depth in the underlying GaAs.

  12. N + doping of gallium arsenide by rapid thermal oxidation of a silicon cap

    NASA Astrophysics Data System (ADS)

    Sadana, D. K.; de Souza, J. P.; Cardone, F.

    1990-10-01

    Shallow (<200 nm) Si profiles with doping levels in excess of 2×1018 cm-3 were reproducively obtained in GaAs by rapid thermal oxidation (RTO) of Si caps (50 or 160 nm) in 0.1% O2/Ar ambient at 850-1050 °C. The doping level as well as distribution of the diffused Si can be controlled by the thickness of the Si cap, RTO temperature, RTO time, and oxygen level in the annealing ambient. It appears that the generation of Si interstitials at the oxidizing surface of the Si cap during RTO is responsible for the Si diffusion into the underlying GaAs substrate.

  13. Laser doping and metallization of wide bandgap materials: silicon carbide, gallium nitride, and aluminum nitride

    NASA Astrophysics Data System (ADS)

    Salama, Islam Abdel Haleem

    A laser direct write and doping (LDWD) system is designed and utilized for direct metallization and selective area doping in different SiC polytypes, GaN and in dielectrics including AlN. Laser direct metallization in 4H- and 6H-SiC generates metal-like conductive phases that are produced as both rectifying and ohmic contacts without metal deposition. Nd:YAG (lambda = 532, 1064 nm) nanosecond pulsed laser irradiation in SiC induces carbon-rich conductive phases by thermal decomposition of SiC while UV excimer (lambda = 193 nm) laser irradiation produces a silicon-rich phase due to selective carbon photoablation. Linear transmission line method (TLM) pattern is directly fabricated in single crystals SiC by pulsed laser irradiation allowing characterization of the laser fabricated metal-like contacts. Activation of a self focusing effect at the frequency doubled Nd:YAG laser irradiation (lambda = 532 nm) allows to fabricate buried metal like contacts in SiC wafers while maintaining their device-ready surface condition. Gas immersion laser doping (GILD) and laser doping from a molten precursor are utilized to dope both GaN and SiC. Trimethylaluminum (TMAl) and nitrogen are the precursors used to produce p-type and n-type doped SiC; respectively. Nd:YAG and excimer laser nitrogen doping in SiC epilayer and single crystal substrates increases the dopant concentration by two orders of magnitude and produces both deep (500--600 nm) and shallow (50 nm) junctions, respectively. Laser assisted effusion/diffusion is introduced and utilized to dope Al in SiC wafers. Using this technique, a150 nm p-type doped junction is fabricated in semi-insulating 6H- and n-type doped 4H-SiC wafers. Laser-induced p-type doping of Mg in single crystal GaN is conducted using Bis-magnesium dihydrate [Mg(TMHD)2]. Mg concentration and penetration depth up to 10 20--1021 cm-3 and 5mum, respectively are achieved using various laser doping techniques. Laser direct writing and doping (LDWD) is a

  14. Planar doped barrier subharmonic mixers

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1992-01-01

    The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.

  15. Acoustic Wave Chemical Microsensors in GaAs

    SciTech Connect

    Albert G. Baca; Edwin J. Heller; Gregory C. Frye-Mason; John L. Reno; Richard Kottenstette; Stephen A. Casalnuovo; Susan L. Hietala; Vincent M. Hietala

    1998-09-20

    High sensitivity acoustic wave chemical microsensors are being developed on GaAs substrates. These devices take advantage of the piezoelectric properties of GaAs as well as its mature microelectronics fabrication technology and nascent micromachining technology. The design, fabrication, and response of GaAs SAW chemical microsensors are reported. Functional integrated GaAs SAW oscillators, suitable for chemical sensing, have been produced. The integrated oscillator requires 20 mA at 3 VK, operates at frequencies up to 500 MHz, and occupies approximately 2 mmz. Discrete GaAs sensor components, including IC amplifiers, SAW delay lines, and IC phase comparators have been fabricated and tested. A temperature compensation scheme has been developed that overcomes the large temperature dependence of GaAs acoustic wave devices. Packaging issues related to bonding miniature flow channels directly to the GaAs substrates have been resolved. Micromachining techniques for fabricating FPW and TSM microsensors on thin GaAs membranes are presented and GaAs FPW delay line performance is described. These devices have potentially higher sensitivity than existing GaAs and quartz SAW sensors.

  16. Sn-Seeded GaAs Nanowires as Self-Assembled Radial p–n Junctions

    PubMed Central

    2015-01-01

    The widespread use of Au as a seed particle in the fabrication of semiconductor nanowires presents a fundamental limitation to the potential incorporation of such nanostructures into electronic devices. Although several other growth techniques have been demonstrated, the use of alternative seed particle metals remains an underexplored but potentially very promising way to influence the properties of the resulting nanowires while simultaneously avoiding gold. In this Letter, we demonstrate the use of Sn as a seed particle metal for GaAs nanowires grown by metal–organic vapor phase epitaxy. We show that vertically aligned and stacking defect-free GaAs nanowires can be grown with very high yield. The resulting nanowires exhibit Esaki diode behavior, attributed to very high n-doping of the nanowire core with Sn, and simultaneous C-doping of the radial overgrowth. These results demonstrate that the use of alternative seed particle metals is a potentially important area to explore for developing nanowire materials with controlled material properties. PMID:25989532

  17. GaAs shallow-homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1981-01-01

    The feasibility of fabricating space resistant, high efficiency, light weight, low cost GaAs shallow homojunction solar cells for space application is investigated. The material preparation of ultrathin GaAs single crystal layers, and the fabrication of efficient GaAs solar cells on bulk GaAs substrates are discussed. Considerable progress was made in both areas, and conversion efficiency about 16% AMO was obtained using anodic oxide as a single layer antireflection coating. A computer design shows that even better cells can be obtained with double layer antireflection coating. Ultrathin, high efficiency solar cells were obtained from GaAs films prepared by the CLEFT process, with conversion efficiency as high as 17% at AMI from a 10 micrometers thick GaAs film. A organometallic CVD was designed and constructed.

  18. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    SciTech Connect

    Dutta, P. Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10{sup 7 }cm{sup −2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  19. Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050 nm

    NASA Astrophysics Data System (ADS)

    Chu, Hongwei; Zhao, Shengzhi; Yang, Kejian; Li, Yuefei; Li, Dechun; Li, Guiqiu; Zhao, Jia; Qiao, Wenchao; Xu, Xiaodong; Di, Juqing; Zheng, Lihe; Xu, Jun

    2014-03-01

    A diode-end-pumped passively Q-switched ytterbium-doped yttrium aluminum garnet (Yb:YAG) laser with gallium arsenide (GaAs) wafer as saturable absorber has been realized. In the experiment, two pieces of GaAs wafers with respective thicknesses of 400 and 700 μm were used respectively. The output laser characteristics such as the pulse duration, single pulse energy and peak power, have been measured. By using thicker GaAs wafer as saturable absorber, a minimum pulse duration of 3.5 ns was obtained with an average output power of 361 mW and a pulse repetition rate (PRR) of 25 kHz, corresponding to a single pulse energy of 19.6 μJ and a peak power of 5.7 kW. With a 400 μm-thick GaAs wafer as saturable absorber, a maximum output power of 469 mW was achieved. The central wavelength of the laser was measured to be 1050.4 nm at pump power of 7.8 W and dual wavelength operation peaked at 1049.3 nm and 1051.6 nm was observed at a high pump power of 10 W. By considering Gaussian spatial distribution and the thermal effects in the gain medium, the coupled rate equations for passively Q-switched Yb:YAG laser with GaAs saturable absorber were given.

  20. Low-temperature grown GaAs heterojunction metal-semiconductor-metal photodetectors improve speed and efficiency

    NASA Astrophysics Data System (ADS)

    Currie, Marc; Quaranta, Fabio; Cola, Adriano; Gallo, Eric M.; Nabet, Bahram

    2011-11-01

    Low-temperature-grown GaAs (LT-GaAs) has a picosecond recombination lifetime, making a fast photodetector material but limiting carrier mobility and collection efficiency. Here, a metal-semiconductor-metal photodetector with a thin channel of regular-temperature GaAs (RT-GaAs) above LT-GaAs provides fast transit between contacts. A p-type delta doping layer below these layers produces a vertical electric field forcing optically generated electrons towards the channel. The AlGaAs/RT-GaAs heterojunction increases Schottky contacts, and the resulting 8-22 μm pitch photodetectors have low (<1-nA) dark current, 12-ps (oscilloscope-limited) pulsewidth, and 0.15-A/W responsivity. The devices demonstrate that fast LT-GaAs pulses are achievable with responsivity similar to RT-GaAs.

  1. High Growth Rate Metal-Organic Molecular Beam Epitaxy for the Fabrication of GaAs Space Solar Cells

    NASA Technical Reports Server (NTRS)

    Freundlich, A.; Newman, F.; Monier, C.; Street, S.; Dargan, P.; Levy, M.

    2005-01-01

    In this work it is shown that high quality GaAs photovoltaic devices can be produced by Molecular Beam Epitaxy (MBE) with growth rates comparable to metal-organic chemical vapor deposition (MOCVD) through the subsitution of group III solid sources by metal-organic compounds. The influence the III/V flux-ratio and growth temperatures in maintaining a two dimensional layer by layer growth mode and achieving high growth rates with low residual background impurities is investigated. Finally subsequent to the study of the optimization of n- and p doping of such high growth rate epilayers, results from a preliminary attempt in the fabrication of GaAs photovoltaic devices such as tunnel diodes and solar cells using the proposed high growth rate approach are reported.

  2. Observation of linear I-V curves on vertical GaAs nanowires with atomic force microscope

    NASA Astrophysics Data System (ADS)

    Geydt, P.; Alekseev, P. A.; Dunaevskiy, M.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2015-12-01

    In this work we demonstrate the possibility of studying the current-voltage characteristics for single vertically standing semiconductor nanowires on standard AFM equipped by current measuring module in PeakForce Tapping mode. On the basis of research of eight different samples of p-doped GaAs nanowires grown on different GaAs substrates, peculiar electrical effects were revealed. It was found how covering of substrate surface by SiOx layer increases the current, as well as phosphorous passivation of the grown nanowires. Elimination of the Schottky barrier between golden cap and the top parts of nanowires was observed. It was additionally studied that charge accumulation on the shell of single nanowires affects its resistivity and causes the hysteresis loops on I-V curves.

  3. Piezoelectric field in strained GaAs.

    SciTech Connect

    Chow, Weng Wah; Wieczorek, Sebastian Maciej

    2005-11-01

    This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.

  4. Eight-Bit-Slice GaAs General Processor Circuit

    NASA Technical Reports Server (NTRS)

    Weissman, John; Gauthier, Robert V.

    1989-01-01

    Novel GaAs 8-bit slice enables quick and efficient implementation of variety of fast GaAs digital systems ranging from central processing units of computers to special-purpose processors for communications and signal-processing applications. With GaAs 8-bit slice, designers quickly configure and test hearts of many digital systems that demand fast complex arithmetic, fast and sufficient register storage, efficient multiplexing and routing of data words, and ease of control.

  5. UV laser activated digital etching of GaAs

    SciTech Connect

    Meguro, T.; Aoyagi, Y.

    1996-12-31

    The self-limited etching characteristics of digital etching employing an UV laser/Cl{sub 2}/GaAs system are presented. The self-limiting nature is the key mechanism and plays an important role in digital etching for obtaining etch rates independent of etching parameters. Surface processes based on photodissociation of physisorbed chlorine on GaAs with diffusion of negatively charged Cl into GaAs are also discussed.

  6. Carbon Doping of Compound Semiconductor Epitaxial Layers Grown by Metalorganic Chemical Vapor Deposition Using Carbon Tetrachloride.

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian Thomas

    1990-01-01

    A dilute mixture of CCl_4 in high purity H_2 has been used as a carbon dopant source for rm Al_ {x}Ga_{1-x}As grown by low pressure metalorganic chemical vapor deposition (MOCVD). To understand the mechanism for carbon incorporation from CCl_4 doping and to provide experimental parameters for the growth of carbon doped device structures, the effects of various crystal growth parameters on CCl _4 doping have been studied, including growth temperature, growth rate, V/III ratio, Al composition, and CCl_4 flow rate. Although CCl _4 is an effective p-type dopant for MOCVD rm Al_{x}Ga_ {1-x}As, injection of CCl_4 into the reactor during growth of InP resulted in no change in the carrier concentration or carbon concentration. Abrupt, heavy carbon doping spikes in GaAs have been obtained using CCl_4 without a dopant memory effect. By annealing samples with carbon doping spikes grown within undoped, n-type, and p-type GaAs, the carbon diffusion coefficient in GaAs at 825 ^circC has been estimated and has been found to depend strongly on the GaAs background doping. Heavily carbon doped rm Al_{x}Ga _{1-x}As/GaAs superlattices have been found to be more stable against impurity induced layer disordering (IILD) than Mg or Zn doped superlattices, indicating that the low carbon diffusion coefficient limits the IILD process. Carbon doping has been used in the base region on an Npn AlGaAs/GaAs heterojunction bipolar transistor (HBT). Transistors with 3 x 10 μm self-aligned emitter fingers have been fabricated which exhibit a current gain cutoff frequency of f_ {rm t} = 26 GHz.

  7. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.

  8. High efficiency, low cost thin GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1982-01-01

    The feasibility of fabricating space-resistant, high efficiency, light-weight, low-cost GaAs shallow-homojunction solar cells for space application is demonstrated. This program addressed the optimal preparation of ultrathin GaAs single-crystal layers by AsCl3-GaAs-H2 and OMCVD process. Considerable progress has been made in both areas. Detailed studies on the AsCl3 process showed high-quality GaAs thin layers can be routinely grown. Later overgrowth of GaAs by OMCVD has been also observed and thin FaAs films were obtained from this process.

  9. Photorefractive properties of doped cadmium telluride

    NASA Astrophysics Data System (ADS)

    Bylsma, R. B.; Bridenbaugh, P. M.; Olson, D. H.; Glass, A. M.

    1987-09-01

    The first study of the photorefractive properties of doped CdTe has demonstrated high sensitivity for optical processing applications. Of the binary II-VI and III-V semiconductors, CdTe has the highest electro-optic coefficient r41 in the infrared, some three times larger than that of GaAs and InP. Deep levels introduced into CdTe exhibit appropriate absorption and photoconductivity at 1.06 μm by doping with V and Ti impurities. Photorefractive beam coupling experiments in CdTe:V gave small signal gains of 0.7 cm-1, and diffraction efficiencies with no applied electrical field of 0.7%. Thus, CdTe appears to be superior to previously studied III-V semiconductors, in the near-infrared spectrum. Optimization of doping and trap densities is expected to result in gain which exceeds the absorption loss, thereby allowing phase conjugation with infrared injection lasers.

  10. Effect of variations in the doping profiles on the properties of doped multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1996-01-01

    The purpose of this study is to use both theoretical and experimental evidence to determine the impact of doping imbalance and symmetry on the physical and electrical characteristics of doped multiple quantum well avalanche photodiodes (APD). Theoretical models have been developed to calculate the electric field valence and conduction bands, capacitance-voltage (CV), and carrier concentration versus depletion depth profiles. The models showed a strong correlation between the p- and n-doping balance inside the GaAs wells and the number of depleted stages and breakdown voltage of the APD. A periodic doping imbalance in the wells has been shown to result in a gradual increase (or decrease) in the electric field profile throughout the device which gave rise to partially depleted devices at low bias. The MQW APD structures that we modeled consisted of a 1 micron top p(+)-doped (3 x 10(exp 18) cm(exp -3)) GaAs layer followed by a 1 micron region of alternating layers of GaAs (500 A) and Al(0.42)Ga(0.58)As (500 A), and a 1 micron n(+) back layer (3 x 10(exp 18) cm(exp -3)). The GaAs wells were doped with p-i-n layers placed at the center of each well. The simulation results showed that in an APD with nine doped wells, and where the 50 A p-doped layer is off by 10% (p = 1.65 x 10(exp 18) cm(exp -3), n = 1.5 x 10(exp 18) cm(exp -3)), almost half of the MQW stages were shown to be undepleted at low bias which was a result of a reduction in the electric field near the p(+) cap layer by over 50% from its value in the balanced structure. Experimental CV and IV data on similar MBE grown MQW structures have shown very similar depletion and breakdown characteristics. The models have enabled us to better interpret our experimental data and to determine both the extent of the doping imbalances in the devices as well as the overall p- or n-type doping characteristics of the structures.

  11. Minority carrier lifetimes of metalorganic chemical vapor deposition long-wavelength infrared HgCdTe on GaAs

    NASA Astrophysics Data System (ADS)

    Zucca, R.; Edwall, D. D.; Chen, J. S.; Johnston, S. L.; Younger, C. R.

    1991-10-01

    Metalorganic chemical vapor deposition (MOCVD) growth of HgCdTe on GaAs is a promising technique that overcomes the size and crystal quality limitations of CdTe substrates. An important material parameter is the minority carrier liftetime, which determines the ultimate zero bias impedance and quantum efficiency of a photodiode. We present the first systematic study of the temperature and carrier concentration dependence of minority carrier lifetimes on n-type and p-type layers of MOCVD long-wavelength infrared HgCdTe grown on GaAs substrates. The temperature dependencies of the lifetime are compared with theoretical predictions based on Auger, radiative, and Shockley-Read recombination. Excellent fits are obtained over a broad temperature range, from 20 K to room temperature. The experimental lifetimes of n-type material reach the theoretical limit imposed by Auger+radiative recombination for carrier concentrations higher than 2×1015 cm-3. For lower carrier concentrations, the measured lifetimes are shorter than those predicted from Auguer+radiative recombination, and Shockley-Read recombination must be added to the calculations. The lifetimes of arsenic-doped and vacancy-doped p-type material are Shockley-Read limited. They are one order of magnitude longer than those previously observed on vacancy-doped liquid phase epitaxy material.

  12. Panel fabrication utilizing GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1984-01-01

    The development of the GaAs solar cells for space applications is described. The activities in the fabrication of GaAs solar panels are outlined. Panels were fabricated while introducing improved quality control, soldering laydown and testing procedures. These panels include LIPS II, San Marco Satellite, and a low concentration panel for Rockwells' evaluation. The panels and their present status are discussed.

  13. Linearity of photoconductive GaAs detectors to pulsed electrons

    SciTech Connect

    Ziegler, L.H.

    1995-12-31

    The response of neutron damaged GaAs photoconductor detectors to intense, fast (50 psec fwhm) pulses of 16 MeV electrons has been measured. Detectors made from neutron damaged GaAs are known to have reduced gain, but significantly improved bandwidth. An empirical relationship between the observed signal and the incident electron fluence has been determined.

  14. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    SciTech Connect

    Li, X.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Janzén, E.; Forsberg, U.; Bergsten, J.; Rorsman, N.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  15. Peeled film GaAs solar cell development

    NASA Technical Reports Server (NTRS)

    Wilt, D. M.; Thomas, R. D.; Bailey, S. G.; Brinker, D. J.; Deangelo, F. L.

    1990-01-01

    Thin-film, single-crystal gallium arsenide (GaAs) solar cells could exhibit a specific power approaching 700 W/kg including coverglass. A simple process has been described whereby epitaxial GaAs layers are peeled from a reusable substrate. This process takes advantage of the extreme selectivity of the etching rate of aluminum arsenide (AlAs) over GaAs in dilute hydrofluoric acid. The feasibility of using the peeled film technique to fabricate high-efficiency, low-mass GaAs solar cells is presently demonstrated. A peeled film GaAs solar cell was successfully produced. The device, although fractured and missing the aluminum gallium arsenide window and antireflective coating, had a Voc of 874 mV and a fill factor of 68 percent under AM0 illumination.

  16. Ion-implanted GaAs JFETs with f{sub t} {gt} 45 GHz for low-power electronics

    SciTech Connect

    Zolper, J.C.; Baca, A.G.; Hietala, V.M.; Shul, R.J.; Sherwin, M.E. |

    1996-12-31

    GaAs Junction Field Effect Transistors (JFETs) are reported with gate lengths down to 0.3 micrometers. The structure is fully self-aligned and employs all ion implantation doping. p[sup +]-gate regions are formed with either Zn or Cd implants along with a P coimplantation to reduce diffusion. The source and rain implants are engineered with Si or SiF implants to minimize short channel effects. JFETs with 0.3 micrometer gate length are demonstrated with a sub-threshold slope of 110 mV/decade along with an intrinsic unity current gain cutoff frequency as high as 52 GHz.

  17. Optical and magnetotransport properties of InGaAs/GaAsSb/GaAs structures doped with a magnetic impurity

    SciTech Connect

    Kalentyeva, I. L. Zvonkov, B. N.; Vikhrova, O. V.; Danilov, Yu. A.; Demina, P. B.; Dorokhin, M. V.; Zdoroveyshchev, A. V.

    2015-11-15

    InGaAs/GaAsSb/GaAs bilayer quantum-well structures containing a magnetic-impurity δ-layer (Mn) at the GaAs/InGaAs interface are experimentally studied for the first time. The structures are fabricated by metal organic chemical-vapor deposition (MOCVD) and laser deposition on substrates of conducting (n{sup +}) and semi-insulating GaAs in a single growth cycle. The InGaAs-layer thickness is varied from 1.5 to 5 nm. The significant effect of a decrease in the InGaAs quantum-well thickness on the optical and magnetotransport properties of the structures under study is detected. Nonlinear magnetic-field dependence of the Hall resistance and negative magnetoresistance at temperatures of ≤30–40 K, circular polarization of the electroluminescence in a magnetic field, opposite behaviors of the photoluminescence and electroluminescence emission intensities in the structures, and an increase in the contribution of indirect transitions with decreasing InGaAs thickness are observed. Simulation shows that these effects can be caused by the influence of the δ-layer of acceptor impurity (Mn) on the band structure and the hole concentration distribution in the bilayer quantum well.

  18. Polarization and charge limit studies of strained GaAs photocathodes

    SciTech Connect

    Saez, P.J.

    1997-03-01

    This thesis presents studies on the polarization and charge limit behavior of electron beams produced by strained GaAs photocathodes. These photocathodes are the source of high-intensity, high-polarization electron beams used for a variety of high-energy physics experiments at the Stanford Linear Accelerator Center. Recent developments on P-type, biaxially-strained GaAs photocathodes have produced longitudinal polarization in excess of 80% while yielding beam intensities of {approximately} 2.5 A/cm{sup 2} at an operating voltage of 120 kV. The SLAC Gun Test Laboratory, which has a replica of the SLAC injector, was upgraded with a Mott polarimeter to study the polarization properties of photocathodes operating in a high-voltage DC gun. Both the maximum beam polarization and the maximum charge obtainable from these photocathodes have shown a strong dependence on the wavelength of illumination, on the doping concentration, and on the negative electron affinity levels. The experiments performed for this thesis included studying the effects of temperature, cesiation, quantum efficiency, and laser intensity on the polarization of high-intensity beams. It was found that, although low temperatures have been shown to reduce the spin relaxation rate in bulk semiconductors, they don`t have a large impact on the polarization of thin photocathodes. It seems that the short active region in thin photocathodes does not allow spin relaxation mechanisms enough time to cause depolarization. Previous observations that lower QE areas on the photocathode yield higher polarization beams were confirmed. In addition, high-intensity, small-area laser pulses were shown to produce lower polarization beams. Based on these results, together with some findings in the existing literature, a new proposal for a high-intensity, high-polarization photocathode is given. It is hoped that the results of this thesis will promote further investigation on the properties of GaAs photocathodes.

  19. Au impact on GaAs epitaxial growth on GaAs (111){sub B} substrates in molecular beam epitaxy

    SciTech Connect

    Liao, Zhi-Ming; Chen, Zhi-Gang; Xu, Hong-Yi; Guo, Ya-Nan; Sun, Wen; Zhang, Zhi; Yang, Lei; Lu, Zhen-Yu; Chen, Ping-Ping; Lu, Wei; Zou, Jin; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072

    2013-02-11

    GaAs growth behaviour under the presence of Au nanoparticles on GaAs {l_brace}111{r_brace}{sub B} substrate is investigated using electron microscopy. It has been found that, during annealing, enhanced Ga surface diffusion towards Au nanoparticles leads to the GaAs epitaxial growth into {l_brace}113{r_brace}{sub B} faceted triangular pyramids under Au nanoparticles, governed by the thermodynamic growth, while during conventional GaAs growth, growth kinetics dominates, resulting in the flatted triangular pyramids at high temperature and the epitaxial nanowires growth at relatively low temperature. This study provides an insight of Au nanoparticle impact on GaAs growth, which is critical for understanding the formation mechanisms of semiconductor nanowires.

  20. Airplane dopes and doping

    NASA Technical Reports Server (NTRS)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  1. Hole-Impeded-Doping-Superlattice LWIR Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    Hole-Impeded-Doping-Superlattice (HIDS) InAs devices proposed for use as photoconductive or photovoltaic detectors of radiation in long-wavelength infrared (LWIR) range of 8 to 17 micrometers. Array of HIDS devices fabricated on substrates GaAs or Si. Radiation incident on black surface, metal contacts for picture elements serve as reactors, effectively doubling optical path and thereby increasing absorption of photons. Photoconductive detector offers advantages of high gain and high impedance; photovoltaic detector offers lower noise and better interface to multiplexer readouts.

  2. GaAs VLSI for aerospace electronics

    NASA Technical Reports Server (NTRS)

    Larue, G.; Chan, P.

    1990-01-01

    Advanced aerospace electronics systems require high-speed, low-power, radiation-hard, digital components for signal processing, control, and communication applications. GaAs VLSI devices provide a number of advantages over silicon devices including higher carrier velocities, ability to integrate with high performance optical devices, and high-resistivity substrates that provide very short gate delays, good isolation, and tolerance to many forms of radiation. However, III-V technologies also have disadvantages, such as lower yield compared to silicon MOS technology. Achieving very large scale integration (VLSI) is particularly important for fast complex systems. At very short gate delays (less than 100 ps), chip-to-chip interconnects severely degrade circuit clock rates. Complex systems, therefore, benefit greatly when as many gates as possible are placed on a single chip. To fully exploit the advantages of GaAs circuits, attention must be focused on achieving high integration levels by reducing power dissipation, reducing the number of devices per logic function, and providing circuit designs that are more tolerant to process and environmental variations. In addition, adequate noise margin must be maintained to ensure a practical yield.

  3. Implantation of carbon in GaAs

    SciTech Connect

    Moll, A.J.

    1992-03-01

    Carbon implanted into GaAs and thermally annealed typically exhibits very low (<3%) electrical activity. It has been demonstrated that the electrical activity of C can be significantly enhanced by co-implantation with Ga. Improved activation may result from either additional damage of the crystal lattice or from stoichiometric changes, forcing the C atoms onto As sites. To determine the relative importance of each of these effects, I have undertaken a systematic study of carbon activation in GaAs. A range of co-implants have been used: group III (B, Ga), group V (N, P, As) and noble gases (Ar, Kr). The damage introduced to the substrate will depend on the mass of the ion implanted. The group III and group V co-implants will affect the crystal stoichiometry. The results indicate that both lattice damage and crystal stoichiometry are important for high electrical activity of C. Increasing the damage will increase the activation due to the increased number of As vacancies but maximum activation can be obtained only by a co-implant which not only damages the lattice but also forces the C to occupy an As site.

  4. X-point Shallow Donors in GaAs under pressure

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Haller, E. E.

    1996-03-01

    Transitions from the ground to bound excited states associated with shallow donors in GaAs under large hydrostatic pressure are studied with IR absorption spectroscopy. A modified Merrill-Basset diamond anvil cell was used to apply hydrostatic pressures of several GPa to lightly doped ( 10^15 cm-3) n-type GaAs samples. At such pressures, the energy of the conduction band at the X point falls below that at the Γ point and the wavefunctions of donor impurities take on X-band character. The deep DX centers which exist at these pressures were converted to shallow donors by illumination at low temperature with a red LED. The X-band absorption spectra for Sn and Si show one line each at 50 and 61 meV, respectively. The spectrum for S shows a broad absorption starting at 90 meV, which shifts to lower energies with increasing pressure. The presence of only one line in the Si and Sn spectra can be explained by the non-parabolicity of the X-point conduction band minimum. The binding energies of these donors are estimated to be 74, 85, and 117 meV for Sn, Si, and S respectively. This work supported by USNSF DMR-94 17763.

  5. Dyakonov-Perel Effect on Spin Dephasing in n-Type GaAs

    NASA Technical Reports Server (NTRS)

    Ning, C. Z.; Wu, M. W.

    2003-01-01

    A paper presents a study of the contribution of the Dyakonov-Perel (DP) effect to spin dephasing in electron-donor-doped bulk GaAs in the presence of an applied steady, moderate magnetic field perpendicular to the growth axis of the GaAs crystal. (The DP effect is an electron-wave-vector-dependent spin-state splitting of the conduction band, caused by a spin/orbit interaction in a crystal without an inversion center.) The applicable Bloch equations of kinetics were constructed to include terms accounting for longitudinal optical and acoustic phonon scattering as well as impurity scattering. The contributions of the aforementioned scattering mechanisms to spin-dephasing time in the presence of DP effect were examined by solving the equations numerically. Spin-dephasing time was obtained from the temporal evolution of the incoherently summed spin coherence. Effects of temperature, impurity level, magnetic field, and electron density on spin-dephasing time were investigated. Spin-dephasing time was found to increase with increasing magnetic field. Contrary to predictions of previous simplified treatments of the DP effect, spin-dephasing time was found to increase with temperature in the presence of impurity scattering. These results were found to agree qualitatively with results of recent experiments.

  6. Probing the excited subband dispersion of holes confined to GaAs wide quantum wells

    NASA Astrophysics Data System (ADS)

    Jo, Insun; Liu, Yang; Deng, H.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Winkler, R.

    Owing to the strong spin-orbit coupling and their large effective mass, the two-dimensional (2D) holes in modulation-doped GaAs quantum wells provide a fertile test bed to study the rich physics of low-dimensional systems. In a wide quantum well, even at moderate 2D densities, the holes start to occupy the excited subband, a subband whose dispersion is very unusual and has a non-monotonic dependence on the wave vector. Here, we study a 2D hole system confined to a 40-nm-thick (001) GaAs quantum well and demonstrate that, via the application of both front and back gates, the density can be tuned in a wide range, between ~1 and 2 ×1011 cm-2. Using Fourier analysis of the low-field Shubnikov-de Haas oscillations, we investigate the population of holes and the spin-orbit interaction induced spin-splitting in different subbands. We discuss the results in light of self-consistent quantum calculations of magneto-oscillations. Work support by the DOE BES (DE-FG02-00-ER45841), the NSF (Grants DMR-1305691 and MRSEC DMR-1420541), the Gordon and Betty Moore Foundation (Grant GBMF4420), and Keck Foundation for experiments, and the NSF Grant DMR-1310199 for calculations.

  7. Plasma-induced-damage of GaAs during etching of refractory metal contacts

    SciTech Connect

    Shul, R.J.; Lovejoy, M.L.; Baca, A.G.; Zolper, J.C.; Rieger, D.J.; Hafich, M.J.; Corless, R.F.; Vartuli, C.R.

    1994-10-01

    The effect of plasma-induced-damage on the majority carrier transport properties of GaAs has been studied by monitoring changes in sheet resistance (R{sub s}) of thin conducting layers under various plasma conditions including etch conditions for refractory metal contacts. R{sub s} determined from transmission line measurements are used to evaluate plasma-induced-damage for electron cyclotron resonance (ECR) and reactive ion etch (RIE) conditions by varying the thickness of doped epitaxial layers. The authors speculate that plasma-induced-damage in the near surface region plays a major role in explaining the damage mechanism observed in this study. Very consistent trends have been observed where R{sub s} increases with increasing ECR and RIE dc-bias, increasing microwave power, and decreasing pressure, thus showing R{sub s} increases as either the ion energy or ion flux increases. The authors have also observed that R{sub s} is lower for samples exposed to the RIE than the ECR, possibly due to higher ion and electron densities generated in the ECR and higher pressures in the RIE. It has also been observed R{sub s} dependence on ECR plasma chemistry where, R{sub s} is lower in SF{sub 6}/Ar plasmas than Ar and N{sub 2} plasmas possibly related to interactions of F or S atoms with the GaAs surface. Moderate anneal temperatures (200 to 500{degrees}C) have shown significant R{sub s} recovery.

  8. The influence of electric field and mobility profile on GaAs MESFET characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Hsu; Arch, David K.

    1989-11-01

    Analytical approximations for the drain I-V relationship, including the mobility profile and field distribution in the channel from the drain to the source, of GaAs MESFETs are derived. The model includes the extended depletion from the gate to the drain for nonself-aligned devices. The calculation of the electric field along the channel is in very good agreement with existing analytical models and a two-dimensional numerical simulation. Experimentally, the authors fabricated and tested tilted angle lightly doped drain (LDD) GaAs MESFETs. It was found that the LLD MESFET structure suppresses the peak electric field under the gate near the drain region. A lower output conductance and higher drain-to-source breakdown were observed as expected. In addition to the electric field, the mobility profile is another factor that influences the performance of the devices. The accuracy of describing the low-field transconductance is strongly dependent on the mobility profile. Moreover, the mobility profile modifies the electric field along the channel and also influences the shape of the drain I-V curves. It is found that more accurate I-V curves can be obtained once the mobility profile is taken into account.

  9. Thermal expansion of gallium arsenide layers grown by molecular beam epitaxy at low temperatures

    NASA Astrophysics Data System (ADS)

    Leszczynski, M.; Walker, J. F.

    1993-03-01

    The thermal expansion of low-temperature (190-220 °C) MBE grown gallium arsenide (LT GaAs) was measured using x-ray diffraction methods. The experiment was performed in order to observe the influence of high nonstoichiometric excess (about 1%) of arsenic on the thermal expansion of gallium arsenide. The diffraction measurements enabled the simultaneous monitoring of the lattice constants of the LT GaAs layers and their semi-insulating GaAs substrates. Their lattice mismatch was only slightly temperature dependent and decreased by about 5% with a temperature rise from 77 K (in dark) up to 550 K. This means that the value of the thermal expansion coefficient of as-grown LT GaAs was lower only by about 0.05×10-6 K-1 than that of the semi-insulating GaAs substrate. Reduction of arsenic excess by air annealing at 420 °C resulted in the decrease of lattice mismatch and the difference in the thermal expansion. This means that both are related to such point defects as arsenic antisites and interstitials. The experimental results are compared with the previously published data for variously doped gallium arsenide samples.

  10. The development of integrated chemical microsensors in GaAs

    SciTech Connect

    CASALNUOVO,STEPHEN A.; ASON,GREGORY CHARLES; HELLER,EDWIN J.; HIETALA,VINCENT M.; BACA,ALBERT G.; HIETALA,S.L.

    1999-11-01

    Monolithic, integrated acoustic wave chemical microsensors are being developed on gallium arsenide (GaAs) substrates. With this approach, arrays of microsensors and the high frequency electronic components needed to operate them reside on a single substrate, increasing the range of detectable analytes, reducing overall system size, minimizing systematic errors, and simplifying assembly and packaging. GaAs is employed because it is both piezoelectric, a property required to produce the acoustic wave devices, and a semiconductor with a mature microelectronics fabrication technology. Many aspects of integrated GaAs chemical sensors have been investigated, including: surface acoustic wave (SAW) sensors; monolithic SAW delay line oscillators; GaAs application specific integrated circuits (ASIC) for sensor operation; a hybrid sensor array utilizing these ASICS; and the fully monolithic, integrated SAW array. Details of the design, fabrication, and performance of these devices are discussed. In addition, the ability to produce heteroepitaxial layers of GaAs and aluminum gallium arsenide (AlGaAs) makes possible micromachined membrane sensors with improved sensitivity compared to conventional SAW sensors. Micromachining techniques for fabricating flexural plate wave (FPW) and thickness shear mode (TSM) microsensors on thin GaAs membranes are presented and GaAs FPW delay line and TSM resonator performance is described.

  11. Self-aligned Si-Zn diffusion into GaAs and AlGaAs

    SciTech Connect

    Zou, W.X.; Corzine, S.; Vawter, G.A.; Merz, J.L.; Coldren, L.A.; Hu, E.L.

    1988-08-15

    A practical technology for self-aligned Si-Zn diffusion into GaAs and AlGaAs has been developed. It is found that the use of a Si film alone for self-aligned Si-Zn diffusion is subject to serious problems of morphology degradation and doping contamination during the process of the Si diffusion. A procedure combining the use of a SiO/sub 2/ film as an encapsulant with a sputtered Si film as source for Si diffusion and mask for Zn diffusion is investigated in detail. Optimum thicknesses of the Si and SiO/sub 2/ films are determined to be 180 and 550 A, respectively.

  12. Channeling studies of the location of zinc in GaAs

    SciTech Connect

    Christenson, K.K.

    1989-01-01

    The diffusion of zinc in GaAs is highly anomalous in that the diffusion coefficient (D) is proportional to the zinc concentration squared in marked contrast to Fick's law which predicts that D is concentration independent. D is also very sensitive to the ambient conditions during diffusion, particularly the arsenic overpressure and the presence of other doping species. Further, heavy zinc doping can increase the self diffusion rates for gallium and aluminum by 10/sup 5/ and is thus useful for selectively disordering GaAs/GaAlAs layer structures. The diffusion mechanisms involved are poorly understood, particularly the experimental finding that the column V sites (As, P and Sb) are not disordered. We believe that the anomalous nature can be explained by combining the theories of R.L. Longini (1962) on the effect of the hole density on the interstitial population and of K. Weiser (1962) on the effect of the charge state of an interstitial on the diffusion activation energy. To test our hypothesis, we have located the position of the zinc in the GaAs lattice with the ALCHEMI technique (Atom Location by CHanneling Enhanced MIcroanalysis) in a Transmission Electron Microscope (TEM). This required substantial enhancements to the x-ray microanalytic abilities of the TEM along with an improved understanding of the nature of the illumination in the immersion lens of a TEM, all of which are discussed. Our results indicate that, within the experimental error, all of the zinc occupies the gallium sites, which is consistent with our hypothesis. Further research involving TEM, synchrotron, diffusion and device studies are also suggested.

  13. Plasma-induced damage of GaAs during etching of refractory metal contacts

    SciTech Connect

    Shul, R.J.; Lovejoy, M.L.; Baca, A.G.; Zolper, J.C.; Rieger, D.J.; Hafich, M.J.; Corless, R.F.; Vartuli, C.B.

    1995-05-01

    The effect of plasma-induced damage on the majority carrier transport properties of {ital p}-type GaAs has been studied by monitoring changes in sheet resistance ({ital R}{sub {ital s}}) of thin conducting layers under various plasma conditions including etch conditions for refractory metal contacts. {ital R}{sub {ital s}} determined from transmission line measurements are used to evaluate plasma-induced damage for electron cyclotron resonance (ECR) and reactive ion etch (RIE) conditions by varying the thickness and doping of epitaxial layers. Damage depths calculated from {ital R}{sub {ital s}} data show a strong dependence on doping levels. This can be explained by a plasma-damage-induced trap density profile which tails off into the sample. Consistent trends have been observed where {ital R}{sub {ital s}} increases with increasing dc bias, increasing microwave power, and decreasing pressure, thus showing {ital R}{sub {ital s}} increases as either the ion energy or ion flux increases. The lowest plasma-induced damage observed in this study occurs with ECR at low microwave power and no rf biasing. Under rf-bias conditions, samples exposed to the ECR (1 mTorr total pressure) show more damage than those exposed to the RIE (8 mTorr total pressure) at comparable dc bias. We have also observed {ital R}{sub {ital s}} dependence on ECR plasma chemistry where {ital R}{sub {ital s}} is lower in SF{sub 6}/Ar plasmas than Ar and N{sub 2} plasmas possibly related to interactions of F or S atoms with the GaAs surface. Moderate anneal temperatures (200--500 {degree}C) have shown significant {ital R}{sub {ital s}} recovery. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}

  14. Modeling atomic hydrogen diffusion in GaAs

    NASA Astrophysics Data System (ADS)

    Kagadei, Valerii A.; Nefyodtsev, E.

    2004-05-01

    The hydrogen diffusion model in GaAs in conditions of an intense flow of penetrating atoms has been developed. It is shown that the formation undersurface diffusion barrier layer from immobile interstitial molecules of hydrogen reduce probability of atoms penetration into crystal and rate of their diffusion in GaAs, and influence on the process of shallow- and/or deep-centers passivation. It is exhibited that the influence of diffusion barrier should be taken into account at optimum mode selection of GaAs structure hydrogenation.

  15. Photocurrent Spectroscopy of Single Wurtzite GaAs Nanowires

    SciTech Connect

    Kim, D. C.; Ahtapodov, L.; Boe, A. B.; Moses, A. F.; Dheeraj, D. L.; Fimland, B. O.; Weman, H.; Choi, J. W.; Ji, H.; Kim, G. T.

    2011-12-23

    Photocurrent of single wurtzite GaAs nanowires grown by Au-assisted molecular beam epitaxy is measured at room and low temperature (10 K). At room temperature a high photo-response with more than two orders of magnitude increase of current is observed. The wavelength dependence of the photocurrent shows a sharp change near the zinc blende GaAs band gap. The absence of the free exciton peak in the low temperature photocurrent spectrum, and problems related to determining the exact position of the energy bandgap of wurtzite GaAs from the observed data are discussed.

  16. GaAs VLSI technology and circuit elements for DSP

    NASA Astrophysics Data System (ADS)

    Mikkelson, James M.

    1990-10-01

    Recent progress in digital GaAs circuit performance and complexity is presented to demonstrate the current capabilities of GaAs components. High density GaAs process technology and circuit design techniques are described and critical issues for achieving favorable complexity speed power and cost tradeoffs are reviewed. Some DSP building blocks are described to provide examples of what types of DSP systems could be implemented with present GaAs technology. DIGITAL GaAs CIRCUIT CAPABILITIES In the past few years the capabilities of digital GaAs circuits have dramatically increased to the VLSI level. Major gains in circuit complexity and power-delay products have been achieved by the use of silicon-like process technologies and simple circuit topologies. The very high speed and low power consumption of digital GaAs VLSI circuits have made GaAs a desirable alternative to high performance silicon in hardware intensive high speed system applications. An example of the performance and integration complexity available with GaAs VLSI circuits is the 64x64 crosspoint switch shown in figure 1. This switch which is the most complex GaAs circuit currently available is designed on a 30 gate GaAs gate array. It operates at 200 MHz and dissipates only 8 watts of power. The reasons for increasing the level of integration of GaAs circuits are similar to the reasons for the continued increase of silicon circuit complexity. The market factors driving GaAs VLSI are system design methodology system cost power and reliability. System designers are hesitant or unwilling to go backwards to previous design techniques and lower levels of integration. A more highly integrated system in a lower performance technology can often approach the performance of a system in a higher performance technology at a lower level of integration. Higher levels of integration also lower the system component count which reduces the system cost size and power consumption while improving the system reliability

  17. Measuring the magnetic-field-dependent chemical potential of a low-density three-dimensional electron gas in n -GaAs and extracting its magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Aditya N.; Venkataraman, V.

    2016-01-01

    We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n -type GaAs at room temperature. A transient voltage of ˜100 μ V was measured across a Au-Al2O3 -GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of ˜6 T . Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 ×1015cm-3 . Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.

  18. Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source

    SciTech Connect

    Boucher, Jason; Ritenour, Andrew; Boettcher, Shannon W.

    2013-04-29

    Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source GaAs is an attractive material for thin-film photovoltaic applications, but is not widely used for terrestrial power generation due to the high cost of metal-organic chemical vapor deposition (MOCVD) techniques typically used for growth. Close space vapor transport is an alternative that allows for rapid growth rates of III-V materials, and does not rely on the toxic and pyrophoric precursors used in MOCVD. We characterize CSVT films of GaAs using photoelectrochemical current-voltage and quantum efficiency measurements. Hole diffusion lengths which exceed 1.5 um are extracted from internal quantum efficiency measurements using the Gartner model. Device physics simulations suggest that solar cells based on these films could reach efficiencies exceeding 24 %. To reach this goal, a more complete understanding of the electrical properties and characterization of defects will be necessary, including measurements on complete solid-state devices. Doping of films is achieved by using source material containing the desired impurity (e.g., Te or Zn). We discuss strategies for growing III-V materials on inexpensive substrates that are not lattice-matched to GaAs.

  19. Defect energy levels in p-type GaAsBi and GaAs grown by MBE at low temperatures

    NASA Astrophysics Data System (ADS)

    Mooney, P. M.; Tarun, M. C.; Bahrami-Yekta, V.; Tiedje, T.; Lewis, R. B.; Masnadi-Shirazi, M.

    2016-06-01

    Deep level defects in p-type GaAs1‑x Bi x (x < 1%) and GaAs grown by molecular beam epitaxy at substrate temperatures of 330 °C and 370 °C have been characterized by deep level transient spectroscopy. We find that incorporating Bi into GaAs at 330 °C does not affect the total concentration of hole traps, which is ∼4 × 1016 cm‑3, comparable to the concentration of electron traps observed in Si-doped GaAsBi having a similar alloy composition. Increasing the growth temperature of the p-type GaAsBi (x = 0.8%) layer from 330 °C to 370 °C reduces the hole trap concentration by an order of magnitude. Moreover, the defects having near mid-gap energy levels that are the most efficient non-radiative recombination centers are present only in GaAsBi layers grown at the lower temperature. These new results are discussed in the context of previous measurements of n-type GaAs and GaAsBi layers grown under similar conditions.

  20. Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui

    2005-01-01

    In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.

  1. Resolution characteristics of graded doping and graded composition reflection-mode AlGaAs/GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Deng, Wenjuan; Zhang, Daoli; Zou, Jijun; Peng, Xincun; Wang, Weilu; Zhang, Yijun; Chang, Benkang

    2015-11-01

    The resolution model of graded doping and graded composition reflection-mode AlGaAs/GaAs photocathode is solved numerically from the two-dimensional continuity equations. According to the model, the theoretical modulation transfer functions (MTFs) of different structure reflection-mode photocathodes were calculated, and the effects of doping concentration, Al composition, AlGaAs and GaAs layer thickness on the resolution of cathodes were analyzed. The simulation results show that both graded composition and graded doping structures can increase the resolution of photocathode, and the effect of graded composition structure is more pronounced. The resolution improvement is attributed to the built-in electric field induced by a graded composition or doping structure. The simulation results also show that the MTFs of cathodes are affected by the AlGaAs and GaAs layer thickness.

  2. Influence of dislocation content on the quantitative determination of the doping level distribution in n-GaAs using absorption mapping

    NASA Astrophysics Data System (ADS)

    Künecke, U.; Wellmann, P. J.

    2006-06-01

    In an earlier paper [P.J. Wellmann, A. Albrecht, U. Künecke, B. Birkmann, G. Mueller, M. Jurisch, Eur. Phys. J. Appl. Phys. 27, 357 (2004)] an optical method based on whole wafer absorption measurements was presented to determine the charge carrier concentration and its lateral distribution in n-type (Si/Te) doped GaAs. The submitted results for Si-doped GaAs gave rise to questions concerning the interpretation of absorption mappings in wafers with high dislocation densities. GaAs substrates for optoelectronic devices are strongly affected by dislocations.{ }Therefore further studies were conducted: absorption and Hall measurements were performed on GaAs:Si wafers with high and low dislocation densities. Absorption in Si-doped GaAs is far more complex than in Te-doped GaAs. It shows a co-dependency on charge carrier concentration and dislocation content which causes complications in the quantitative optical determination of the charge carrier concentration. Qualitatively, absorption mappings depict dislocations and variations of charge carrier concentration very well.

  3. Development of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Mcnally, P. J.

    1972-01-01

    Calculations of GaAs solar cell output parameters were refined and a computer model was developed for parameter optimization. The results were analyzed to determine the material characteristics required for a high efficiency solar cell. Calculated efficiencies for a P/N cell polarity are higher than an N/P cell. Both cell polarities show efficiency to have a larger dependence on short circuit current than an open circuit voltage under nearly all conditions considered. The tolerances and requirements of a cell fabrication process are more critical for an N/P type than for a P/N type cell. Several solar cell fabrication considerations relative to junction formation using ion implantation are also discussed.

  4. Electron scattering by native defects in uniformly and modulation doped semiconductor structures

    SciTech Connect

    Walukiewicz, W.

    1989-11-01

    Formation of native defects in GaAs is described in terms of the amphoteric native defect model. It is shown that Fermi energy induced formation of gallium vacancies is responsible for the limitations of maximum free electron concentration in GaAs. The effect of the defects on electron mobility in heavily doped n-GaAs is quantitatively evaluated. Defect scattering explains the abrupt reduction of electron mobility at high doping levels. Also, it is demonstrated that native defects are responsible for the mobility reduction in inverted modulation doped GaAs/AlGaAs heterostructures. The amphoteric defect model also explains a distinct asymmetry in defect formation in n- and p-GaAs. In p-GaAs the Fermi level induced reduction of the defect formation energy is much smaller, and therefore the concentration of the native defects is negligible compared with the hole concentration. 43 refs., 5 figs.

  5. Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs

    NASA Astrophysics Data System (ADS)

    Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.

    Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.

  6. Optimization of AlAs/AlGaAs quantum well heterostructures on on-axis and misoriented GaAs (111)B

    NASA Astrophysics Data System (ADS)

    Herzog, F.; Bichler, M.; Koblmüller, G.; Prabhu-Gaunkar, S.; Zhou, W.; Grayson, M.

    2012-05-01

    We report systematic growth optimization of high Al-content AlGaAs, AlAs, and associated modulation-doped quantum well (QW) heterostructures on on-axis and misoriented GaAs (111)B by molecular beam epitaxy. Growth temperatures TG > 690 °C and low As4 fluxes close to group III-rich growth significantly suppress twin defects in high-Al content AlGaAs on on-axis GaAs (111)B, as quantified by atomic force and transmission electron microscopy as well as x-ray diffraction. Mirror-smooth and defect-free AlAs with pronounced step-flow morphology was further achieved by growth on 2° misoriented GaAs (111)B toward [01¯1] and [21¯1¯] orientations. Successful fabrication of modulation-doped AlAs QW structures on these misoriented substrates yielded record electron mobilities (at 1.15 K) in excess of 13 000 cm2/Vs at sheet carrier densities of 5 × 1011 cm-2.

  7. Enhanced annealing of GaAs solar cell radiation damage

    NASA Technical Reports Server (NTRS)

    Loo, R.; Knechtli, R. C.; Kamath, G. S.

    1981-01-01

    Solar cells are degraded by radiation damage in space. Investigations have been conducted concerning possibilities for annealing this radiation damage in GaAs solar cells, taking into account the conditions favoring such annealing. It has been found that continuous annealing as well as the combination of injection annealing with thermal annealing can lead to recovery from radiation damage under particularly favorable conditions in GaAs solar cells. The damage caused by both electrons and protons in GaAs solar cells can be substantially reduced by annealing at temperatures as low as 150 C, under appropriate conditions. This possibility makes the GaAs solar cells especially attractive for long space missions, or for missions in severe radiation environments. Attention is given to results concerning periodic thermal annealing, continuous annealing, and injection annealing combined with thermal annealing.

  8. Simulation of silicon diffusion in GaAs

    NASA Astrophysics Data System (ADS)

    Saad, A. M.; Velichko, O. I.

    2011-03-01

    The simulation of coupled diffusion of silicon atoms and point defects in GaAs has been carried out for diffusion at the temperatures of 1000 and 850 °C. The amphoteric behavior of silicon atoms in GaAs has been taken into account in the investigation of high concentration diffusion from silicon layer deposited on GaAs substrate. The calculated dopant profiles agree well with the experimental ones and they confirm the adequacy of the model of silicon diffusion used for simulation. A comparison with the experimental data has enabled this work to obtain the parameters of silicon effective diffusivity and other values describing high concentration silicon diffusion in GaAs.

  9. GaAs Films Prepared by RF-Magnetron Sputtering

    SciTech Connect

    L.H. Ouyang; D.L. Rode; T. Zulkifli; B. Abraham-Shrauner; N. Lewis; M.R. Freeman

    2001-08-01

    The authors reported on the optical absorption, adhesion, and microstructure of RF-magnetron sputtered films of hydrogenated amorphous and microcrystalline GaAs films for the 1 to 25 {micro}m infrared wavelength rate. Sputtering parameters which were varied include sputtering power, temperature and pressure, and hydrogen sputtering-gas concentration. TEM results show a sharp transition from purely amorphous GaAs to a mixture of microcrystalline GaAs in an amorphous matrix at 34 {+-} 2 C. By optimizing the sputtering parameters, the optical absorption coefficient can be decreased below 100 cm{sup -1} for wavelengths greater than about 1.25 {micro}m. These results represent the lowest reported values of optical absorption for sputtered films of GaAs directly measured by spectrophotometry for the near-infrared wavelength region.

  10. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1983-01-01

    GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.

  11. GaAs monolithic RF modules for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Cauley, Michael A.

    1991-01-01

    Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.

  12. Slot plasmonic waveguide based on doped-GaAs for terahertz deep-subwavelength applications.

    PubMed

    Amarloo, Hadi; Safavi-Naeini, Safieddin

    2015-11-01

    A new plasmonic waveguide for deep-subwavelength field localization at the terahertz (THz) range of frequency is proposed. GaAs with optimum doping level is used as the plasmonic material. The waveguide structure is a narrow slot in a thin GaAs film on top of the quartz substrate. The waveguide characteristics are analyzed, and its dimensions are optimized to minimize the losses. It is shown that the mode size of the proposed waveguide is less than λ/16 by λ/16. The proposed plasmonic waveguide can be a platform for numerous THz plasmonic-based integrated devices, such as integrated sensors and imagers. PMID:26560933

  13. Nitrogen-concentration control in GaNAs/AlGaAs quantum wells using nitrogen δ-doping technique

    SciTech Connect

    Mano, Takaaki; Jo, Masafumi; Kuroda, Takashi; Noda, Takeshi; Sugimoto, Yoshimasa; Sakuma, Yoshiki; Elborg, Martin; Sakoda, Kazuaki

    2014-05-15

    GaNAs/Al{sub 0.35}Ga{sub 0.65}As multiple quantum wells (MQWs) with nitrogen δ-doping were fabricated on GaAs (100) substrates by plasma-assisted molecular beam epitaxy. High controllability of nitrogen-concentrations in the MQWs was achieved by tuning nitrogen δ-doping time. The maximum nitrogen concentration in the MQWs was 2.8%. The MQWs exhibit intense, narrow photoluminescence emission.

  14. AlGaN/GaN high electron mobility transistors with intentionally doped GaN buffer using propane as carbon precursor

    NASA Astrophysics Data System (ADS)

    Bergsten, Johan; Li, Xun; Nilsson, Daniel; Danielsson, Örjan; Pedersen, Henrik; Janzén, Erik; Forsberg, Urban; Rorsman, Niklas

    2016-05-01

    AlGaN/GaN high electron mobility transistors (HEMTs) fabricated on a heterostructure grown by metalorganic chemical vapor deposition using an alternative method of carbon (C) doping the buffer are characterized. C-doping is achieved by using propane as precursor, as compared to tuning the growth process parameters to control C-incorporation from the gallium precursor. This approach allows for optimization of the GaN growth conditions without compromising material quality to achieve semi-insulating properties. The HEMTs are evaluated in terms of isolation and dispersion. Good isolation with OFF-state currents of 2 × 10-6 A/mm, breakdown fields of 70 V/µm, and low drain induced barrier lowering of 0.13 mV/V are found. Dispersive effects are examined using pulsed current-voltage measurements. Current collapse and knee walkout effects limit the maximum output power to 1.3 W/mm. With further optimization of the C-doping profile and GaN material quality this method should offer a versatile approach to decrease dispersive effects in GaN HEMTs.

  15. Phononic Crystal Waveguiding in GaAs

    NASA Astrophysics Data System (ADS)

    Azodi Aval, Golnaz

    Compared to the much more common photonic crystals that are used to manipulate light, phononic crystals (PnCs) with inclusions in a lattice can be used to manipulate sound. While trying to propagate in a periodically structured media, acoustic waves may experience geometries in which propagation forward is totally forbidden. Furthermore, defects in the periodicity can be used to confine acoustic waves to follow complicated routes on a wavelength scale. Using advanced fabrication methods, we aim to implement these structures to control surface acoustic wave (SAW) propagation on the piezoelectric surface and eventually interact SAWs with quantum structures. To investigate the interaction of SAWs with periodic elastic structures, SAW interdigital transducers (IDTs) and PnC fabrication procedures were developed. GaAs is chosen as a piezoelectric substrate for SAWs propagation. Lift-off photolithography processes were used to fabricate IDTs with finger widths as low as 1.5 microns. PnCs are periodic structures of shallow air holes created in GaAs substrate by means of a wet-etching process. The PnCs are square lattices with lattice constants of 8 and 4 microns. To predict the behavior of a SAW when interacting with the PnC structures, an FDTD simulator was used to calculate the band structures and SAW wave displacement on the crystal surface. The bandgap (BG) predicted for the 8 micron crystal ranges from 180 MHz to 220 MHz. Simulations show a shift in the BG position for 4 microns crystals ranging from 391 to 439 MHz. Two main waveguide geometries were considered in this work: a simple line waveguide and a funneling entrance line waveguide. Simulations indicated an increase in acoustic power density for the funneling waveguides. Fabricated device evaluated with electrical measurements. In addition, a scanning Sagnac interferometer is used to map the energy density of the SAWs. The Sagnac interferometer is designed to measure the outward displacement of a surface due to

  16. Amphoteric Doping of GaAsBi alloys with Silicon

    NASA Astrophysics Data System (ADS)

    Field, R. L., III; Jen, T.; Yarlagadda, B.; Luengo-Kovac, M.; Sih, V.; Kurdak, C.; Goldman, R. S.

    2014-03-01

    Due to the significant bandgap reduction associated with bismuth incorporation, dilute bismuthide semiconductor alloys have been proposed for high-efficiency optoelectronic devices. Although Si and Be are the most common dopants for n- and p-type doping of GaAs and related materials during MBE growth, their use in high quality structures has limitations. For example, while Be has a high active solubility in GaAs, it is also a fast diffuser in GaAs. In this work, Si is found to be an amphoteric dopant in GaAsBi by varying the As4/Ga beam equivalent pressure ratio, resulting in n-type (p-type) films due to Si entering group III (group V) sites. The hole mobility is found to decrease with Bi composition, an indication that Bi-related defects are the main source of scattering in p-type GaAsBi. Yet, the electron mobility appears independent of Bi composition, at least in the range of compositions that have been fabricated and measured. To date, we have achieved Bi incorporation in excess of 6% Bi substituting for As, with electron mobilities as high as 2500 cm2/V-s for Si-doped (n ~ 1018 cm-3) GaAsBi. Using Si provides an alternative to the traditional use of C and Be as p-type dopants.

  17. BIN Diode For Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Maserjian, J.

    1989-01-01

    Diode formed by selective doping during epitaxial growth, starting with semi-insulating substrate. Use of high-mobility semiconductors like GaAs extends cutoff frequency. Either molecular-beam epitaxy (MBE) or organometallic chemical-vapor deposition used to form layers of diode. Planar growth process permits subsequent fabrication of arrays of diodes by standard photolithographic techniques, to achieve quasi-optical coupling of submillimeter radiation. Useful for generation of harmonics or heterodyne mixing in receivers for atmospheric and space spectroscopy operating at millimeter and submillimeter wavelengths. Used as frequency doublers or triplers, diodes of new type extend frequency range of present solid-state oscillators.

  18. Control of Li configuration and electrical properties of Li-doped ZnO

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Knutsen, K. E.; Merz, T.; Kuznetsov, A. Yu; Svensson, B. G.; Brillson, L. J.

    2012-09-01

    Li-doped ZnO after different thermal treatments was characterized by depth-resolved cathodoluminescence spectroscopy (DRCLS), secondary ion mass spectrometry, surface photovoltage spectroscopy (SPS), coupled with other surface science techniques. It is found that the Li configuration and electrical properties of Li-doped ZnO could be controlled by different thermal processes. Within a 500-600 °C annealing temperature range, subsequent quenching of ZnO leaves Li as interstitial donors, resulting in n-type low room temperature resistivity. In contrast, slower cooling in air enables these interstitials to fill Zn vacancies, forming Li acceptors 3.0 eV below the conduction band edge. Emergence of this acceptor and the resultant resistivity increase agree with the calculated diffusion lengths based on published diffusion coefficients. In general, these acceptors are compensated by residual intrinsic and extrinsic donors, resulting in a semi-insulating material. DRCL spectra exhibit a 3.0 eV optical signature of the LiZn acceptor and its depth distribution in slow-cooled ZnO. A 3.0 eV SPS absorption feature corresponding to a conduction band-to-acceptor level transition confirms this acceptor assignment. Nanoscale SPS spectra reveal p-type band bending localized near ZnO surface nano-mounds, where VZn and LiZn acceptor densities increase. The slow-cooled and quenched Li-doped ZnO spectra display an inverse relationship between the optical emission densities of lithium on zinc versus zinc vacancy sites, demonstrating the time dependence of Li interstitial diffusion to reach zinc vacancies and form substitutional Li acceptors.

  19. Polycrystal GaAs infrared windows

    NASA Astrophysics Data System (ADS)

    Wada, Hideo; Shibata, Ken-ichiro; Yamashita, Masashi; Nakayama, Shigeru; Fujii, Akihito

    2001-09-01

    There are difficult points such as lowering of the detection or recognition capability of some targets by aerodynamic heating with speedup of the aircraft and missile and restriction of the operation by the raindrop in rainfall time on the conventional ZnS infrared window application used for missile seeker and FLIR equipment. Therefore, in this study, the promising polycrystal GaAs which has low infrared radiations in high temperature was produced using HB method (Horizontal Boat method) and VG method (Vertical Boat method) as a new infrared window material expected the durability for rain erosion. As the result, 70mm2 windows by the HB method and 100mm diameter windows by VB method were realized. Moreover, their optical characteristics, mechanical properties and thermal shock durabilities were measured and they were confirmed to be about 56% in average transmittance in the wavelength of 10micrometers bands, 530~630kg/mm2 in their hardness and thermostable at 300 degree(s)C.

  20. Spectroscopy of GaAs quantum wells

    SciTech Connect

    West, L.C.

    1985-07-01

    A new type of optical dipole transition in GaAs quantum wells has been observed. The dipole occurs between two envelope states of the conduction band electron wavefunction, and is called a quantum well envelope state transition (QWEST). The QWEST is observed by infrared absorption in three different samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, and 108 MeV, respectively. The oscillator strength is found to have values of over 12, in good agreement with prediction. The linewidths are seen as narrow as 10 MeV at room temperature and 7 MeV at low temperature, thus proving a narrow line resonance can indeed occur between transitions of free electrons. Techniques for the proper growth of these quantum well samples to enable observation of the QWEST have also been found using (AlGa)As compounds. This QWEST is considered to be an ideal material for an all optical digital computer. The QWEST can be made frequency matched to the inexpensive Carbon Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and fast relaxation time of the QWEST indicate a logic element with a subpicosecond switch time can be built in the near future, with a power level which will eventually be limited only by the noise from a lack of quanta to above approximately 10 microwatts. 64 refs., 35 figs., 6 tabs.

  1. InAs/GaAs and InAs doping superlattices

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.; Hancock, Bruce R.; Maserjian, Joseph

    1990-01-01

    The extension of the optical response of narrow band gap III-V semiconductors into the long wavelength infrared radiation (LWIR) regime for high sensitivity sensor applications is a challenging problem. Recent advances in nipi doped GaAs superlattices, lattice mismatched epitaxy and the heteroepitaxial growth of III-V compound semiconductors on silicon substrates offer a number of opportunities. Researchers describe two different device approaches based on the molecular beam epitaxy (MBE) growth of superlattice materials which are directed to LWIR focal plane array technology. The first of these uses nipi superlattices fabricated in bulk InAs which has been grown on either GaAs or Si substrates. The second is based on the growth of a new pseudomorphic tetragonal phase of InAs on GaAs to create a semimetal/semiconductor superlattice material.

  2. Semiconducting properties of zinc-doped cubic boron nitride thin films

    SciTech Connect

    Nose, K.; Yoshida, T.

    2007-09-15

    We have examined the electronic properties of zinc-doped cubic boron nitride (cBN) thin films prepared by sputter deposition. The electric conductivity of films deposited in pure Ar increased as the concentration of zinc dopant increased, and hole conduction was identified by the measurement of thermoelectric currents. It was also found that the conductivity increment in such films was accompanied by a linear increase in the B/(B+N) ratio. At the same time, no modification of the composition and the conductivity by incorporated zinc was observed when film growth took place in presence of nitrogen gas. The effect of the excess boron on the conductivity emerged only when films show semi-insulating behavior. These results suggest that Zn substitution for nitrogen causes high electric conductivity of cBN. The electric contact between Ti electrode and semiconducting cBN was examined by the transfer length method, and Ohmic conduction was observed in the Ti/cBN contact. The specific contact resistance was affected by the specific resistance of cBN films, and it was reduced from 10{sup 5} to 100 {omega} cm{sup 2} by increasing the concentration of incorporated Zn.

  3. Confinement in thickness-controlled GaAs polytype nanodots.

    PubMed

    Vainorius, Neimantas; Lehmann, Sebastian; Jacobsson, Daniel; Samuelson, Lars; Dick, Kimberly A; Pistol, Mats-Erik

    2015-04-01

    Polytype nanodots are arguably the simplest nanodots than can be made, but their technological control was, up to now, challenging. We have developed a technique to produce nanowires containing exactly one polytype nanodot in GaAs with thickness control. These nanodots have been investigated by photoluminescence, which has been cross-correlated with transmission electron microscopy. We find that short (4-20 nm) zincblende GaAs segments/dots in wurtzite GaAs confine electrons and that the inverse system confines holes. By varying the thickness of the nanodots we find strong quantum confinement effects which allows us to extract the effective mass of the carriers. The holes at the top of the valence band have an effective mass of approximately 0.45 m0 in wurtzite GaAs. The thinnest wurtzite nanodot corresponds to a twin plane in zincblende GaAs and gives efficient photoluminescence. It binds an exciton with a binding energy of roughly 50 meV, including central cell corrections. PMID:25761051

  4. Effect of doping on room temperature carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Sellers, D. G.; Chen, E. Y.; Polly, S. J.; Hubbard, S. M.; Doty, M. F.

    2016-05-01

    We investigate the effect of doping on the mechanisms of carrier escape from intermediate states in delta-doped InAs/GaAs intermediate band solar cells. The intermediate states arise from InAs quantum dots embedded in a GaAs p-i-n junction cell. We find that doping the sample increases the number of excited-state carriers participating in a cycle of trapping and carrier escape via thermal, optical, and tunneling mechanisms. However, we find that the efficiency of the optically-driven carrier escape mechanism is independent of doping and remains small.

  5. 46 CFR Sec. 7 - Operation under current GAA/MSTS Southeast Asia Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Operation under current GAA/MSTS Southeast Asia Program... AUTHORITY VOYAGE DATA Sec. 7 Operation under current GAA/MSTS Southeast Asia Program. In order to adapt the provisions of NSA Order 35 (OPR-2) to the particular circumstances of the present GAA/MSTS Southeast...

  6. Humidity effects on tribochemical removal of GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Bingjun; Gao, Jian; Jin, Chenning; Xiao, Chen; Wu, Jiang; Liu, Huiyun; Jiang, Shulan; Chen, Lei; Qian, Linmao

    2016-06-01

    Defect-free tribochemical removal of gallium arsenide (GaAs) was demonstrated in vacuum, dry air, and various humidity environments by scratching with a SiO2 tip. The removal depth increases with increasing relative humidity (1–90%), and reaches its maximum value in water. A perfect crystal matrix without defects was observed in the cross section of the scratched groove using a transmission electron microscope. A model based on reactive tip scratching-induced oxidation, water solubility of debris, and adhesion effect was proposed to interpret tribochemical removal of GaAs surface. This study provides new insights into defect-free and site-controlled nanofabrication of GaAs.

  7. Recent developments in GaAs solar cells

    SciTech Connect

    Kamath, G.S.

    1983-08-01

    The higher efficiency, radiation hardness and greater survivability at higher temperatures give GaAs cells a distinct advantage in space applications over silicon cells. Recent progress in fabrication technology has demonstrated the feasibility of high yield mass production of GaAs cells at a cost low enough to warrant their use in satellite power systems. Small panels have been assembled for several preliminary flight tests with encouraging results. Additional developments in concentrator cells as well as in all (AlGa)As cells for future systems such as cascade cells are reviewed. The (AlGa)As cells, in combination with silicon or GaAs cells, could lead to a multijunction cell with an efficiency 50% higher than any single junction cell.

  8. Microwave GaAs Integrated Circuits On Quartz Substrates

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara

    1994-01-01

    Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.

  9. Unpinned GaAs MOS capacitors and transistors

    NASA Astrophysics Data System (ADS)

    Tiwari, Sandip; Wright, Steven L.; Batey, John

    1988-09-01

    Metal-oxide-semiconductor (MOS) capacitors and field-effect transistors (MOSFETs) in the GaAs semiconductor system using an unpinned interface are described. The structures utilize plasma-enhanced chemical-vapor deposition (PECVD) for the silicon-dioxide insulator on GaAs that has been terminated with a few monolayers of silicon during growth by molecular beam epitaxy. Interface densities in the structures have been reduced to about 10 to the 12th/sq cm-eV. High-frequency characteristics indicate strong inversion of both p-type and n-type GaAs. The excellent insulating quality of the oxide has allowed demonstration of quasi-static characteristics. MOSFETs operating in depletion mode with a transconductance of 60 mS/mm at 8.0-micron gate lengths have been fabricated.

  10. Atomic hydrogen cleaning of GaAS Photocathodes

    SciTech Connect

    M. Poelker; J. Price; C. Sinclair

    1997-01-01

    It is well known that surface contaminants on semiconductors can be removed when samples are exposed to atomic hydrogen. Atomic H reacts with oxides and carbides on the surface, forming compounds that are liberated and subsequently pumped away. Experiments at Jefferson lab with bulk GaAs in a low-voltage ultra-high vacuum H cleaning chamber have resulted in the production of photocathodes with high photoelectron yield (i.e., quantum efficiency) and long lifetime. A small, portable H cleaning apparatus also has been constructed to successfully clean GaAs samples that are later removed from the vacuum apparatus, transported through air and installed in a high-voltage laser-driven spin-polarized electron source. These results indicate that this method is a versatile and robust alternative to conventional wet chemical etching procedures usually employed to clean bulk GaAs.

  11. Characterization of production GaAs solar cells for space

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1988-01-01

    The electrical performance of GaAs solar cells was characterized as a function of irradiation with protons and electrons with the underlying goal of producing solar cells suitable for use in space. Proton energies used varied between 50 keV and 10 MeV, and damage coefficients were derived for liquid phase epitaxy GaAs solar cells. Electron energies varied between 0.7 and 2.4 MeV. Cells from recent production runs were characterized as a function of electron and proton irradiation. These same cells were also characterized as a function of solar intensity and operating temperature, both before and after the electron irradiations. The long term stability of GaAs cells during photon exposure was examined. Some cells were found to degrade with photon exposure and some did not. Calibration standards were made for GaAs/Ge solar cells by flight on a high altitude balloon.

  12. Nonstoichiometric Low-Temperature Grown GaAs Nanowires.

    PubMed

    Díaz Álvarez, Adrian; Xu, Tao; Tütüncüoglu, Gözde; Demonchaux, Thomas; Nys, Jean-Philippe; Berthe, Maxime; Matteini, Federico; Potts, Heidi A; Troadec, David; Patriarche, Gilles; Lampin, Jean-François; Coinon, Christophe; Fontcuberta i Morral, Anna; Dunin-Borkowski, Rafal E; Ebert, Philipp; Grandidier, Bruno

    2015-10-14

    The structural and electronic properties of nonstoichiometric low-temperature grown GaAs nanowire shells have been investigated with scanning tunneling microscopy and spectroscopy, pump-probe reflectivity, and cathodoluminescence measurements. The growth of nonstoichiometric GaAs shells is achieved through the formation of As antisite defects, and to a lower extent, after annealing, As precipitates. Because of the high density of atomic steps on the nanowire sidewalls, the Fermi level is pinned midgap, causing the ionization of the subsurface antisites and the formation of depleted regions around the As precipitates. Controlling their incorporation offers a way to obtain unique electronic and optical properties that depart from the ones found in conventional GaAs nanowires. PMID:26339987

  13. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1985-01-01

    The present program has been aimed at solving the fundamental and technological problems associated with Crystal Growth of Device Quality in Space. The initial stage of the program was devoted strictly to ground-based research. The unsolved problems associated with the growth of bulk GaAs in the presence of gravitational forces were explored. Reliable chemical, structural and electronic characterization methods were developed which would permit the direct relation of the salient materials parameters (particularly those affected by zero gravity conditions) to the electronic characteristics of single crystal GaAs, in turn to device performance. These relationships are essential for the development of optimum approaches and techniques. It was concluded that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail.

  14. Characterization of production GaAs solar cells for space

    SciTech Connect

    Anspaugh, B.E.

    1988-12-01

    The electrical performance of GaAs solar cells was characterized as a function of irradiation with protons and electrons with the underlying goal of producing solar cells suitable for use in space. Proton energies used varied between 50 keV and 10 MeV, and damage coefficients were derived for liquid phase epitaxy GaAs solar cells. Electron energies varied between 0.7 and 2.4 MeV. Cells from recent production runs were characterized as a function of electron and proton irradiation. These same cells were also characterized as a function of solar intensity and operating temperature, both before and after the electron irradiations. The long term stability of GaAs cells during photon exposure was examined. Some cells were found to degrade with photon exposure and some did not. Calibration standards were made for GaAs/Ge solar cells by flight on a high altitude balloon.

  15. Temperature dependence of optical properties of GaAs

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Snyder, Paul G.; Woollam, John A.

    1991-01-01

    The effect of temperature on the optical properties of GaAs was investigated using spectroscopic ellipsometry measurements, between room temperature and about 610 C in increments of 50 C, of pseudodielectric functions and related optical constants of GaAs. A quantitative analysis of the pseudodielectric function spectrum was carried out using a harmonic-oscillator approximation (HOA) to fit the measured dielectric functions. Good fits were obtained with this model, which provides a convenient means of reproducing the GaAs dielectric function at any temperature, by using the temperature-dependent oscillator parameters. The HOA analysis also provides information about band-gap variation with temperature. Using the measured optical constants at a number of fixed temperatures, an algorithm was developed for computing the dielectric function spectrum at an arbitrary temperature in the range 22-610 C.

  16. High efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Zwerdling, S.; Wang, K. L.; Yeh, Y. C. M.

    1981-01-01

    The paper demonstrates the feasibility of producing high-efficiency GaAs solar cells with high power-to-weight ratios by organic metallic chemical vapor deposition (OM-CVD) growth of thin epi-layers on suitable substrates. An AM1 conversion efficiency of 18% (14% AM0), or 17% (13% AM0) with a 5% grid coverage is achieved for a single-crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer. Thin GaAs epi-layers OM-CVD grown can be fabricated with good crystallographic quality using a Si-substrate on which a thin Ge epi-interlayer is first deposited by CVD from GeH4 and processed for improved surface morphology

  17. InGaAsN Solar Cells with 1.0eV Bandgap, Lattice Matched to GaAs

    SciTech Connect

    Allerman, A.A.; Banas, J.J.; Gee, J.M.; Hammons, B.E.; Jones, E.D.; Kurtz, S.R.

    1998-11-24

    The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar Al, with 1.0 ev bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies > 70% arc obwined. Optical studies indicate that defects or impurities, from InGAsN doping and nitrogen incorporation, limit solar cell performance.

  18. MBE Growth of GaAs Whiskers on Si Nanowires

    SciTech Connect

    Maxwell Andrews, Aaron

    2010-01-04

    We present the growth of GaAs nanowhiskers by molecular beam epitaxy on Si (111) nanowires grown by low-pressure chemical vapor deposition. The whiskers grow in the wurtzite phase, along the [0001] direction, on the {l_brace}112{r_brace} facets of the Si nanowire, forming a star-like six-fold radial symmetry. The photoluminescence shows a 30 meV blue shift with respect to bulk GaAs, additionally a GaAs/AlAs core-shell heterostructure shows increased luminescence.

  19. Ga nanoparticle-enhanced photoluminescence of GaAs

    SciTech Connect

    Kang, M.; Al-Heji, A. A.; Jeon, S.; Wu, J. H.; Lee, J.-E.; Saucer, T. W.; Zhao, L.; Sih, V.; Katzenstein, A. L.; Sofferman, D. L.; Goldman, R. S.

    2013-09-02

    We have examined the influence of surface Ga nanoparticles (NPs) on the enhancement of GaAs photoluminescence (PL) efficiency. We have utilized off-normal focused-ion-beam irradiation of GaAs surfaces to fabricate close-packed Ga NP arrays. The enhancement in PL efficiency is inversely proportional to the Ga NP diameter. The maximum PL enhancement occurs for the Ga NP diameter predicted to maximize the incident electromagnetic (EM) field enhancement. The PL enhancement is driven by the surface plasmon resonance (SPR)-induced enhancement of the incident EM field which overwhelms the SPR-induced suppression of the light emission.

  20. GaAs MMICs for EHF SATCOM ground terminals

    NASA Astrophysics Data System (ADS)

    Hampel, Daniel; Upton, Alastair

    The authors address the potential use of GaAs, and their benefits, for EHF ground terminals. This assessment of GaAs MMICs (monoltihic microwave integrated circuits), while concentrating on the analog RF front end, also includes some associated critical digital functions. Performance requirements and specific application areas, such as 20-GHz low-noise amplifiers and 44-GHz power amplifiers, are discussed and current state-of-the-art performance in low-noise high-electron-mobility transistors (HEMTs) and high-efficiency pseudomorphic HEMTs is presented, along with projected performance improvements over the next five years.

  1. Defect interactions in GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The two-sublattice structural configuration of GaAs and deviations from stoichiometry render the generation and interaction of electrically active point defects (and point defect complexes) critically important for device applications and very complex. Of the defect-induced energy levels, those lying deep into the energy band are very effective lifetime ""killers". The level 0.82 eV below the condition band, commonly referred to as EL2, is a major deep level, particularly in melt-grown GaAs. This level is associated with an antisite defect complex (AsGa - VAS). Possible mechanisms of its formation and its annihilation were further developed.

  2. Peeled film GaAs solar cells for space power

    SciTech Connect

    Wilt, D.M.; Deangelo, F.L.; Thomas, R.D.; Bailey, S.G.; Landis, G.A.; Brinker, D.J.; Fatemi, N.S.

    1990-05-01

    Gallium arsenide (GaAs) peeled film solar cells were fabricated, by Organo-Metallic Vapor Phase Epitaxy (OMVPE), incorporating an aluminum arsenide (AlAs) parting layer between the device structure and the GaAs substrate. This layer was selectively removed by etching in dilute hydrofloric (HF) acid to release the epitaxial film. Test devices exhibit high series resistance due to insufficient back contact area. A new design is presented which uses a coverglass superstrate for structural support and incorporates a coplanar back contact design. Devices based on this design should have a specific power approaching 700 W/Kg.

  3. GaAs solar cells with V-grooved emitters

    NASA Technical Reports Server (NTRS)

    Bailey, S. G.; Fatemi, N.; Wilt, D. M.; Landis, G. A.; Thomas, R. D.

    1989-01-01

    A GaAs solar cell with a V-grooved front surface is described. It shows improved optical coupling and higher short-circuit current compared to planar cells. The GaAs homojunction cells, manufactured by OrganoMetallic Chemical Vapor Deposition (OMCVD), are described. The V-grooves were formed by anisotropic etching. Reflectivity measurements show significantly lower reflectance for the microgrooved cell compared to the planar structure. The short circuit current of the V-grooved solar cell is consistently higher than that of the planar controls.

  4. Investigation of high efficiency GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.; Dunham, Glen; Addis, F. W.; Huber, Dan; Linden, Kurt

    1989-01-01

    Investigations of basic mechanisms which limit the performance of high efficiency GaAs solar cells are discussed. P/N heteroface structures have been fabricated from MOCVD epiwafers. Typical AM1 efficiencies are in the 21 to 22 percent range, with a SERI measurement for one cell being 21.5 percent. The cells are nominally 1.5 x 1.5 cm in size. Studies have involved photoresponse, T-I-V analyses, and interpretation of data in terms of appropriate models to determine key cell parameters. Results of these studies are utilized to determine future approaches for increasing GaAs solar cell efficiencies.

  5. Epitaxial EuO thin films on GaAs

    SciTech Connect

    Swartz, A. G.; Ciraldo, J.; Wong, J. J. I.; Li Yan; Han Wei; Lin Tao; Shi, J.; Kawakami, R. K.; Mack, S.; Awschalom, D. D.

    2010-09-13

    We demonstrate the epitaxial growth of EuO on GaAs by reactive molecular beam epitaxy. Thin films are grown in an adsorption-controlled regime with the aid of an MgO diffusion barrier. Despite the large lattice mismatch, it is shown that EuO grows well on MgO(001) with excellent magnetic properties. Epitaxy on GaAs is cube-on-cube and longitudinal magneto-optic Kerr effect measurements demonstrate a large Kerr rotation of 0.57 deg., a significant remanent magnetization, and a Curie temperature of 69 K.

  6. Simple intrinsic defects in GaAs : numerical supplement.

    SciTech Connect

    Schultz, Peter Andrew

    2012-04-01

    This Report presents numerical tables summarizing properties of intrinsic defects in gallium arsenide, GaAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz and O.A. von Lilienfeld, 'Simple intrinsic defects in GaAs', Modelling Simul. Mater. Sci Eng., Vol. 17, 084007 (2009), and intended for use as reference tables for a defect physics package in device models. The numerical results for density functional theory calculations of properties of simple intrinsic defects in gallium arsenide are presented.

  7. Modelling of interband transitions in GaAs tunnel diode

    NASA Astrophysics Data System (ADS)

    Louarn, K.; Fontaine, C.; Arnoult, A.; Olivié, F.; Lacoste, G.; Piquemal, F.; Bounouh, A.; Almuneau, G.

    2016-06-01

    In this paper, an improved model for non-local band-to-band tunneling carrier transport is presented and compared to experimental measurement from GaAs tunnel junctions devices. By carefully taking into account the coupling between the conduction band and the light holes valence band, the model is able to predict, with realistic material parameters, the amplitude of the current density throughout the whole tunneling regime. The model suggests that elastic band-to-band tunneling instead of trap-assisted-tunneling is the predominant mechanism in GaAs tunnel junctions, which is of great interest for better understanding and improving III–V multi-junction solar cells.

  8. High efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1977-01-01

    Several oxidation techniques are discussed which have been found to increase the open circuit (V sub oc) of metal-GaAs Schottky barrier solar cells, the oxide chemistry, attempts to measure surface state parameters, the evolving characteristics of the solar cell as background contamination (has been decreased, but not eliminated), results of focused Nd/YAG laser beam recrystallization of Ge films evaporated onto tungsten, and studies of AMOS solar cells fabricated on sliced polycrystalline GaAs wafers. Also discussed are projected materials availability and costs for GaAs thin-film solar cells.

  9. Peeled film GaAs solar cells for space power

    NASA Technical Reports Server (NTRS)

    Wilt, D. M.; Deangelo, F. L.; Thomas, R. D.; Bailey, S. G.; Landis, G. A.; Brinker, D. J.; Fatemi, N. S.

    1990-01-01

    Gallium arsenide (GaAs) peeled film solar cells were fabricated, by Organo-Metallic Vapor Phase Epitaxy (OMVPE), incorporating an aluminum arsenide (AlAs) parting layer between the device structure and the GaAs substrate. This layer was selectively removed by etching in dilute hydrofloric (HF) acid to release the epitaxial film. Test devices exhibit high series resistance due to insufficient back contact area. A new design is presented which uses a coverglass superstrate for structural support and incorporates a coplanar back contact design. Devices based on this design should have a specific power approaching 700 W/Kg.

  10. Electronic contribution to friction on GaAs

    SciTech Connect

    Applied Science and Technology Graduate Group, UC Berkeley; Dept. of Materials Sciences and Engineering, UC Berkeley; Salmeron, Miquel; Qi, Yabing; Park, J.Y.; Hendriksen, B.L.M.; Ogletree, D.F.; Salmeron, Miquel

    2008-04-15

    The electronic contribution to friction at semiconductor surfaces was investigated by using a Pt-coated tip with 50nm radius in an atomic force microscope sliding against an n-type GaAs(100) substrate. The GaAs surface was covered by an approximately 1 nm thick oxide layer. Charge accumulation or depletion was induced by the application of forward or reverse bias voltages. We observed a substantial increase in friction force in accumulation (forward bias) with respect to depletion (reverse bias). We propose a model based on the force exerted by the trapped charges that quantitatively explains the experimental observations of excess friction.

  11. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    SciTech Connect

    Mascarenhas, Angelo

    2015-07-07

    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  12. Local Structures and Interface Morphology of InGaAsN Thin Films Grown on GaAs

    SciTech Connect

    Allerman, A.A.; Chen, J.G.; Geisz, J.F.; Huang, S.; Hulbert, S.L.; Jones, E.D.; Kao, Y.H.; Kurtz, S.; Kurtz, S.R.; Olson, J.M.; Soo, Y.L.

    1999-02-23

    The compound semiconductor system InGaAsN exhibits many intriguing properties which are particularly useful for the development of innovative high efficiency thin film solar cells and long wavelength lasers. The bandgap in these semiconductors can be varied by controlling the content of N and In and the thin films can yet be lattice-matched to GaAs. In the present work, x-ray absorption fine structure (XAFS) and grazing incidence x-ray scattering (GIXS) techniques have been employed to probe the local environment surrounding both N and In atoms as well as the interface morphology of InGaAsN thin films epitaxially grown on GaAs. The soft x-ray XAFS results around nitrogen K-edge reveal that N is in the sp{sup 3} hybridized bonding configuration in InGaAsN and GaAsN, suggesting that N impurities most likely substitute for As sites in these two compounds. The results of In K-edge XAFS suggest a possible trend of a slightly larger coordination number of As nearest neighbors around In atoms in InGaAsN samples with a narrower bandgap whereas the In-As interatomic distance remains practically the same as in InAs within the experimental uncertainties. These results combined suggest that N-substitution of the As sites plays an important role of bandgap-narrowing while in the meantime counteracting the compressive strain caused by In-doping. Grazing incidence x-ray scattering (GIXS) experiments verify that InGaAsN thin films can indeed form very smooth interfaces with GaAs yielding an average interfacial roughness of 5-20{angstrom}.

  13. Inversion-mode GaAs wave-shaped field-effect transistor on GaAs (100) substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyun; Lou, Xiabing; Si, Mengwei; Wu, Heng; Shao, Jiayi; Manfra, Michael J.; Gordon, Roy G.; Ye, Peide D.

    2015-02-01

    Inversion-mode GaAs wave-shaped metal-oxide-semiconductor field-effect transistors (WaveFETs) are demonstrated using atomic-layer epitaxy of La2O3 as gate dielectric on (111)A nano-facets formed on a GaAs (100) substrate. The wave-shaped nano-facets, which are desirable for the device on-state and off-state performance, are realized by lithographic patterning and anisotropic wet etching with optimized geometry. A well-behaved 1 μm gate length GaAs WaveFET shows a maximum drain current of 64 mA/mm, a subthreshold swing of 135 mV/dec, and an ION/IOFF ratio of greater than 107.

  14. Inversion-mode GaAs wave-shaped field-effect transistor on GaAs (100) substrate

    SciTech Connect

    Zhang, Jingyun; Si, Mengwei; Wu, Heng; Ye, Peide D.; Lou, Xiabing; Gordon, Roy G.; Shao, Jiayi; Manfra, Michael J.

    2015-02-16

    Inversion-mode GaAs wave-shaped metal-oxide-semiconductor field-effect transistors (WaveFETs) are demonstrated using atomic-layer epitaxy of La{sub 2}O{sub 3} as gate dielectric on (111)A nano-facets formed on a GaAs (100) substrate. The wave-shaped nano-facets, which are desirable for the device on-state and off-state performance, are realized by lithographic patterning and anisotropic wet etching with optimized geometry. A well-behaved 1 μm gate length GaAs WaveFET shows a maximum drain current of 64 mA/mm, a subthreshold swing of 135 mV/dec, and an I{sub ON}/I{sub OFF} ratio of greater than 10{sup 7}.

  15. Impact of the modulation doping layer on the ν = 5/2 anisotropy

    DOE PAGESBeta

    Shi, X.; Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-03-30

    We have carried out a systematic study of the tilted magnetic field induced anisotropy at the Landau level filling factor ν = 5/2 in a series of high quality GaAs quantum wells, where the setback distance (d) between the modulation doping layer and the GaAs quantum well is varied from 33 to 164 nm. We have observed that in the sample of the smallest d, electronic transport is anisotropic when the in-plane magnetic field (Bip) is parallel to the [1–10] crystallographic direction, but remains more or less isotropic when Bip // [110]. In contrast, in the sample of largest d,more » electronic transport is anisotropic in both crystallographic directions. Lastly, our results clearly show that the modulation doping layer plays an important role in the tilted field induced ν = 5/2 anisotropy.« less

  16. Impact of the modulation doping layer on the ν = 5/2 anisotropy

    SciTech Connect

    Shi, X.; Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-03-30

    We have carried out a systematic study of the tilted magnetic field induced anisotropy at the Landau level filling factor ν = 5/2 in a series of high quality GaAs quantum wells, where the setback distance (d) between the modulation doping layer and the GaAs quantum well is varied from 33 to 164 nm. We have observed that in the sample of the smallest d, electronic transport is anisotropic when the in-plane magnetic field (Bip) is parallel to the [1–10] crystallographic direction, but remains more or less isotropic when Bip // [110]. In contrast, in the sample of largest d, electronic transport is anisotropic in both crystallographic directions. Lastly, our results clearly show that the modulation doping layer plays an important role in the tilted field induced ν = 5/2 anisotropy.

  17. Electronic and magnetic properties of N-N split substitution in GaAs: A hybrid density functional study

    SciTech Connect

    Huang, Ruiqi; Wang, Qingxia; Cai, Xiaolin; Li, Chong; Jia, Yu; Wang, Fei; Wang, Sanjun

    2015-07-15

    Employing the first-principles combined with hybrid functional calculations, the electronic and magnetic properties of GaAs doped with a N{sub 2} molecule are investigated in this work. We find that in Ga{sub 32}As{sub 31}(N{sub 2}){sub As} the N-N split is able to saturate the dangling bond of Ga atom ,form sp{sup 3}-like hybridization, and simultaneously supply an extra localized electron, leading to a magnetic ground state with a magnetic moment of ∼1μ{sub B}. This magnetic ground state is different from previously nonmagnetic results predicted by PBE functional, which results from the self-interaction error inherent in semi-local density functional theory. Moreover, the band gap of magnetic ground state of Ga{sub 32}As{sub 31}(N{sub 2}){sub As} alloy decreases, which is relative to GaAs . Finally we discuss and explain why the magnetism is not discovered in previous experiments and theories.

  18. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Joyce, Hannah J.; Docherty, Callum J.; Gao, Qiang; Tan, H. Hoe; Jagadish, Chennupati; Lloyd-Hughes, James; Herz, Laura M.; Johnston, Michael B.

    2013-05-01

    We have performed a comparative study of ultrafast charge carrier dynamics in a range of III-V nanowires using optical pump-terahertz probe spectroscopy. This versatile technique allows measurement of important parameters for device applications, including carrier lifetimes, surface recombination velocities, carrier mobilities and donor doping levels. GaAs, InAs and InP nanowires of varying diameters were measured. For all samples, the electronic response was dominated by a pronounced surface plasmon mode. Of the three nanowire materials, InAs nanowires exhibited the highest electron mobilities of 6000 cm2 V-1 s-1, which highlights their potential for high mobility applications, such as field effect transistors. InP nanowires exhibited the longest carrier lifetimes and the lowest surface recombination velocity of 170 cm s-1. This very low surface recombination velocity makes InP nanowires suitable for applications where carrier lifetime is crucial, such as in photovoltaics. In contrast, the carrier lifetimes in GaAs nanowires were extremely short, of the order of picoseconds, due to the high surface recombination velocity, which was measured as 5.4 × 105  cm s-1. These findings will assist in the choice of nanowires for different applications, and identify the challenges in producing nanowires suitable for future electronic and optoelectronic devices.

  19. Discrimination between energy transfer and back transfer processes for GaAs host and Er luminescent dopants using electric response analysis

    SciTech Connect

    Ishii, Masashi; Koizumi, Atsushi; Fujiwara, Yasufumi; Takeda, Yoshikazu

    2014-04-07

    The energy transfer and back transfer processes of GaAs co-doped with Er and O (GaAs:Er,O) were experimentally distinguished by using a frequency response analysis of the AC photocurrent. The results were achieved by using the difference in the frequency dispersion between (1) the dispersion of the energy transfer, which is triggered by the trapping of free charges in the GaAs host and is represented with the Debye relaxation response and (2) the dispersion of the energy back transfer, which is induced by non-radiative transition of 4f bound electrons in the Er dopants and is described with a Lorentzian. The Debye relaxation response found in GaAs:Er,O provided a charge trapping time that was dependent on temperature, which was well correlated with the thermal quenching property of intense intra-4f-shell luminescence. The spectral shape of the Lorentzian dependence on the temperature was explained with the thermal excitation of Er 4f electrons and release of trapped charges in GaAs. The thermal excitation and release of charges consistently explained the characteristics of weak 4f luminescence in low- and high-temperature regions, respectively.

  20. Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source

    NASA Astrophysics Data System (ADS)

    Boucher, Jason W.; Ritenour, Andrew J.; Boettcher, Shannon W.

    2013-05-01

    GaAs is an attractive material for thin-film photovoltaic applications, but is not widely used for terrestrial power generation due to the high cost of metal-organic chemical vapor deposition (MOCVD) techniques typically used for growth. Close space vapor transport is an alternative that allows for rapid growth rates of III-V materials, and does not rely on the toxic and pyrophoric precursors used in MOCVD. We characterize CSVT films of GaAs using photoelectrochemical current-voltage and quantum efficiency measurements. Hole diffusion lengths which exceed 1.5 μm are extracted from internal quantum efficiency measurements using the Gärtner model. Device physics simulations suggest that solar cells based on these films could reach efficiencies exceeding 24%. To reach this goal, a more complete understanding of the electrical properties and characterization of defects will be necessary, including measurements on complete solid-state devices. Doping of films is achieved by using source material containing the desired impurity (e.g., Te or Zn). We discuss strategies for growing III-V materials on inexpensive substrates that are not lattice-matched to GaAs.

  1. Present status of GaAs. [including space processing and solid state applications

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.; Jastrzebski, L.

    1979-01-01

    An extensive literature survey on GaAs was carried out for the period December 31, 1970, to December 31, 1977. The increasing interest in GaAs device structures increased steadily during that period. The leading research and development centers and the specific areas of interest were identified. A workshop on GaAs was held in November 1977 to assess the present status of melt-grown GaAs and the existing needs for reliable chemical, structural, and electronic characterization methods. It was concluded that the present available bulk GaAs crystals are of poor quality and that GaAs technology is lagging demonstrated or potentially feasible GaAs devices and systems.

  2. Use of ZnSe as an interlayer for GaAs growth on Si

    NASA Astrophysics Data System (ADS)

    Bringans, R. D.; Biegelsen, D. K.; Swartz, L.-E.; Ponce, F. A.; Tramontana, J. C.

    1992-07-01

    ZnSe has been used as an interlayer between Si substrates and GaAs layers in molecular beam epitaxial growth of GaAs on Si. It is found that thin GaAs layers are much more uniform and have fewer defects when grown on ZnSe interlayers than when they are grown directly on Si. The growth of GaAs on ZnSe is much more difficult than the more usual reverse sequence, and different growth modes for the epitaxy of GaAs on ZnSe are compared. Deposition of GaAs on ZnSe at room temperature followed by solid phase regrowth led to an epitaxial layer plus a polycrystalline layer. A slow ramping of the substrate temperature during the GaAs epitaxial growth was found to give the best crystal quality.

  3. Measuring Carrier Lifetime in GaAs by Luminescence

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1986-01-01

    Luminescence proposed as nondestructive technique for measuring Shockley-Read-Hall (SRH) recombination lifetime GaAs. Sample irradiated, and luminescence escapes through surface. Measurement requires no mechanical or electrical contact with sample. No ohmic contacts or p/n junctions needed. Sample not scrapped after tested.

  4. The 20 GHz power GaAs FET development

    NASA Technical Reports Server (NTRS)

    Crandell, M.

    1986-01-01

    The development of power Field Effect Transistors (FET) operating in the 20 GHz frequency band is described. The major efforts include GaAs FET device development (both 1 W and 2 W devices), and the development of an amplifier module using these devices.

  5. The surface chemistry of GaAs atomic layer epitaxy

    SciTech Connect

    Creighton, J.R.; Banse, B.A.

    1991-01-01

    In this paper we review three proposed mechanisms for GaAs ALE and review or present data support or contradiction of these mechanisms. Surface chemistry results clearly demonstrated that TMGa irreversibly chemisorbs on the Ga-rich GaAs(100) surface. The reactive sticking coefficient (RSC) of TMGa on the adsorbate-free Ga-rich GaAs(100) surface was measured to be {approximately}0.5, conclusively demonstrating that the selective adsorption'' mechanism of ALE is not valid. We describe kinetic evidence for methyl radical desorption in support of the adsorbate inhibition'' mechanism. The methyl radical desorption rates determined by temperature programmed desorption (TPD) demonstrate that desorption is at least a factor of {approximately}10 faster from the As-rich c(2 {times} 8)/(2 {times} 4) surface than from the Ga-rich surface. It is disparity in CH{sub 3} desorption rates between the As-rich and Ga-rich surfaces that is largely responsible for GaAs ALE behavior. A gallium alkyl radical (e.g. MMGa) is also observed during TPD and molecular beam experiments, in partial support of the flux balance'' mechanism. Stoichiometry issues of ALE are also discussed. We have discovered that arsine exposures typical of atmospheric pressure and reduced pressure ALE lead to As coverages {ge} 1 ML, which provides the likely solution to the stoichiometry question regarding the arsine cycle. 32 refs., 6 figs.

  6. GaAs Photovoltaics on Polycrystalline Ge Substrates

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Pal, AnnaMaria T.; McNatt, Jeremiah S.; Wolford, David S.; Landis, Geoffrey A.; Smith, Mark A.; Scheiman, David; Jenkins, Phillip P.; McElroy Bruce

    2007-01-01

    High efficiency III-V multijunction solar cells deposited on metal foil or even polymer substrates can provide tremendous advantages in mass and stowage, particularly for planetary missions. As a first step towards that goal, poly-crystalline p/i/n GaAs solar cells are under development on polycrystalline Ge substrates. Organo Metallic Vapor Phase Epitaxy (OMVPE) parameters for pre-growth bake, nucleation and deposition have been examined. Single junction p/i/n GaAs photovoltaic devices, incorporating InGaP front and back window layers, have been grown and processed. Device performance has shown a dependence upon the thickness of a GaAs buffer layer deposited between the Ge substrate and the active device structure. A thick (2 m) GaAs buffer provides for both increased average device performance as well as reduced sensitivity to variations in grain size and orientation. Illumination under IR light (lambda > 1 micron), the cells showed a Voc, demonstrating the presence of an unintended photoactive junction at the GaAs/Ge interface. The presence of this junction limited the efficiency to approx.13% (estimated with an anti-refection coating) due to the current mismatch and lack of tunnel junction interconnect.

  7. Gallium arsenide (GaAs) power conversion concept

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.

    1980-01-01

    A summary design analysis of a GaAs power conversion system for the solar power satellite (SPS) is presented. Eight different satellite configuration options for the solar arrays are compared. Solar cell annealing effects after proton irradiation are considered. Mass estimates for the SPS and the effect of solar cell parameters on SPS array design are discussed.

  8. V-Grooved GaAs Solar Cell

    NASA Technical Reports Server (NTRS)

    Bailey, S. G.; Landis, G. R.; Wilt, D. M.; Thomas, R. D.; Arrison, A.; Fatemi, N. S.

    1991-01-01

    V-grooved GaAs solar photovoltaic cells increase optical coupling and greater conversion of light into electricity. Increases both trapping of incident light and lengths of optical paths in cell material. Net effect increases in total absorptivity, tolerance to damage by energetic particles, and short-circuit current. These improvements expected to follow from similar improvements obtained in silicon solar cells.

  9. ZnSe Films in GaAs Solar Cells

    NASA Technical Reports Server (NTRS)

    Kachare, Ram H.

    1987-01-01

    ZnSe increases efficiency and conserves material. Two proposed uses of zinc selenide films promise to boost performance and reduce cost of gallium arsenide solar cells. Accordingly ZnSe serves as surface-passivation layer and as sacrificial layer enabling repeated use of costly GaAs substrate in fabrication.

  10. High purity, low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1983-01-01

    Liquid encapsulated Czochralski crystal growth techniques for producing undoped, high resistivity, low dislocation material suitable for device applications is described. Technique development resulted in reduction of dislocation densities in 3 inch GaAs crystals. Control over the melt stoichiometry was determined to be of critical importance for the reduction of twinning and polycrystallinity during growth.

  11. Au and Al Schottky barrier formation on GaAs (100) surfaces prepared by thermal desorption of a protective arsenic coating

    SciTech Connect

    Spindt, C.J.; Yamada, M.; Meissner, P.L.; Miyano, K.E.; Herrera, A.; Spicer, W.E. . Stanford Electronics Labs.); Arko, A.J. ); Woodall, J.M.; Pettit, G.D. . Thomas J. Watson Research Center)

    1991-01-01

    Photoelectron spectroscopy has been used as a tool to investigate the initial stages of Schottky barrier formation on GaAs (100) surfaces. This is a popular technique that has been used by many researchers in the past to measure the band bending (or shift) of the valence band and conduction band (a measure of the Schottky barrier shift), while the Fermi level remains fixed at the system ground (i.e., the ground of the spectrometer). Metal deposition on a semiconductor surface can alter the Schottky barrier at the surface and pin the Fermi level near the middle of the energy gap. Extremely clean and crystallographically perfect surfaces are required in this study. Toward this end, a method of protecting the GaAs surface was employed which consists of capping the GaAs surface with a layer of As. Upon introduction into the high vacuum system the As is thermally desorbed, revealing a pure GaAs surface. Our work was motivated by a previous study (Brillson et al) on similarly capped specimens, which suggested that metal overlayers do not pin the Schottky barrier in GaAs. Barrier heights varied by as much as 0.75 eV between Al and Au overlayers. This large energy range is a striking result in view of the fact that a considerable number of prior studies on both (110) and (100) surfaces have found that all metals will pin within a narrow (0.25 eV) range at midgap. We repeated the measurements of Brillson on the identically doped samples used in their study using two extreme range metals of Au and Al as overlayers. We found that the barrier height measurements on low doped n-type samples used in this work and in the previous work are affected by photovoltaic effects, even at room temperature. This was determined from taking spectra at a number of temperatures between 20 K and room temperature and looking for shifts. 16 refs., 7 figs.

  12. Dry etch damage in GaAs metal-semiconductor field-effect transistors exposed to inductively coupled plasma and electron cyclotron resonance Ar plasmas

    SciTech Connect

    Ren, F.; Lee, J.W.; Abernathy, C.R.; Pearton, S.J.; Constantine, C.; Barratt, C.; Shul, R.J.

    1997-07-01

    The effects of Ar plasma exposure on transconductance, channel sheet resistance, output resistance, and gate contact ideality factor of GaAs metal-semiconductor field-effect transistors (MESFETs) were investigated using two different high-density plasma sources, namely inductively coupled plasma and electron resonance plasma. Ion-induced damage is found to be reduced at moderate source powers ({approximately}200W) because of the reduction in cathode dc self-bias and hence ion energy, but at higher source powers the increase in ion flux produces significant deterioration of the device performance. Careful attention must be paid to both ion flux and ion energy in order to minimize ion-induced damage. Due to their relatively low channel doping levels, MESFETs are found to be more sensitive to plasma damage than devices with very heavily doped component layers such as heterojunction bipolar transistors. {copyright} {ital 1997 American Vacuum Society.}

  13. Fermi energy tuning with light to control doping profiles during epitaxy

    SciTech Connect

    Sanders, C. E.; Beaton, D. A.; Reedy, R. C.; Alberi, K.

    2015-05-04

    The influence of light stimulation and photogenerated carriers on the process of dopant surface segregation during growth is studied in molecular beam epitaxially grown Si-doped GaAs structures. The magnitude of surface segregation decreases under illumination by above-bandgap photons, wherein splitting of the quasi Fermi levels reduces the band bending at the growth surface and raises the formation energy of compensating defects that can enhance atomic diffusion. We further show that light-stimulated epitaxy can be used as a practical approach to diminish dopant carry-forward in device structures and improve the performance of inverted modulation-doped quantum wells.

  14. Stable growth of ruthenium doped InP at the current blocking layer for buried-heterostructure lasers

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Harunaka; Nagira, Takashi; Kawazu, Zempei; Sakaino, Go; Nishida, Takehiro; Takemi, Masayoshi

    2015-03-01

    We report on the stable growth of ruthenium doped InP (Ru-InP) and its application in optical communication devices, grown by metal-organic vapor phase epitaxy. Ru-InP has semi-insulating characteristics for both n- and p-InP. The resistivity of the p/Ru/p-InP structure was 2×107 Ω cm for a Ru concentration of 5×1017 cm-3 in Ru-InP with a Ru-InP thickness greater than 1.0 μm. However, the resistivity was very low when the Ru-InP thickness was less than 1.0 μm. We investigated the Zn diffusion from p-InP to Ru-InP and found two Zn diffusion fronts in Ru-InP. Each diffusion front had a correlation with the Ru and Zn concentrations. By optimizing the current blocking layers in the Ru-InP and Zn-InP layers in buried-heterostructure lasers (BH-lasers), an output power over 10 mW was realized for laser diodes, even when they were operated at 95 °C.

  15. Oxidation of the GaAs semiconductor at the Al2O3/GaAs junction.

    PubMed

    Tuominen, Marjukka; Yasir, Muhammad; Lång, Jouko; Dahl, Johnny; Kuzmin, Mikhail; Mäkelä, Jaakko; Punkkinen, Marko; Laukkanen, Pekka; Kokko, Kalevi; Schulte, Karina; Punkkinen, Risto; Korpijärvi, Ville-Markus; Polojärvi, Ville; Guina, Mircea

    2015-03-14

    Atomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes). The oxidation-induced defect-rich phases at the interfaces of oxide/III-V junctions significantly affect the electrical performance of devices. In this study, a method to control the GaAs oxidation and interfacial defect density at the prototypical Al2O3/GaAs junction grown via atomic layer deposition (ALD) is demonstrated. Namely, pre-oxidation of GaAs(100) with an In-induced c(8 × 2) surface reconstruction, leading to a crystalline c(4 × 2)-O interface oxide before ALD of Al2O3, decreases band-gap defect density at the Al2O3/GaAs interface. Concomitantly, X-ray photoelectron spectroscopy (XPS) from these Al2O3/GaAs interfaces shows that the high oxidation state of Ga (Ga2O3 type) decreases, and the corresponding In2O3 type phase forms when employing the c(4 × 2)-O interface layer. Detailed synchrotron-radiation XPS of the counterpart c(4 × 2)-O oxide of InAs(100) has been utilized to elucidate the atomic structure of the useful c(4 × 2)-O interface layer and its oxidation process. The spectral analysis reveals that three different oxygen sites, five oxidation-induced group-III atomic sites with core-level shifts between -0.2 eV and +1.0 eV, and hardly any oxygen-induced changes at the As sites form during the oxidation. These results, discussed within the current atomic model of the c(4 × 2)-O interface, provide insight into the atomic structures of oxide/III-V interfaces and a way to control the semiconductor oxidation. PMID:25686555

  16. Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs1-x Bi x films

    NASA Astrophysics Data System (ADS)

    Wood, Adam W.; Collar, Kristen; Li, Jincheng; Brown, April S.; Babcock, Susan E.

    2016-03-01

    We have examined the morphology and composition of embedded nanowires that can be formed during molecular beam epitaxy of GaAs1-x Bi x using high angle annular dark field (‘Z-contrast’) imaging in an aberration-corrected scanning transmission electron microscope. Samples were grown in Ga-rich growth conditions on a stationary GaAs substrate. Ga-rich droplets are observed on the surface with lateral trails extending from the droplet in the [110] direction. Cross-sectional scanning transmission electron microscopy of the film reveals epitaxial nanowire structures of composition ˜GaAs embedded in the GaAs1-x Bi x epitaxial layers. These nanowires extend from a surface droplet to the substrate at a shallow angle of inclination (˜4°). They typically are 4 μm long and have a lens-shaped cross section with major and minor axes dimensions of 800 and 120 nm. The top surface of the nanowires exhibits a linear trace in longitudinal cross-section, across which the composition change from ˜GaAs to GaAs1-x Bi x appears abrupt. The bottom surfaces of the nanowires appear wavy and the composition change appears to be graded over ˜25 nm. The droplets have phase separated into Ga- and Bi-rich components. A qualitative model is proposed in which Bi is gettered into Ga droplets, leaving Bi depleted nanowires in the wakes of the droplets as they migrate in one direction across the surface during GaAs1-x Bi x film growth.

  17. alloy lattice-matched to GaAs: a first-principles study

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyang; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2014-10-01

    First-principles calculations based on density functional theory have been performed for the quaternary GaAs1- x- y N x Bi y alloy lattice-matched to GaAs. Using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, electronic, and optical properties were obtained, including band structures, density of states (DOSs), dielectric function, absorption coefficient, refractive index, energy loss function, and reflectivity. It is found that the lattice constant of GaAs1- x- y N x Bi y alloy with y/ x =1.718 can match to GaAs. With the incorporation of N and Bi into GaAs, the band gap of GaAs1- x- y N x Bi y becomes small and remains direct. The calculated optical properties indicate that GaAs1- x- y N x Bi y has higher optical efficiency as it has less energy loss than GaAs. In addition, it is also found that the electronic and optical properties of GaAs1- x- y N x Bi y alloy can be further controlled by tuning the N and Bi compositions in this alloy. These results suggest promising applications of GaAs1- x- y N x Bi y quaternary alloys in optoelectronic devices.

  18. Ka-Band GaAs FET Monolithic Power Amplifier Development

    NASA Technical Reports Server (NTRS)

    Saunier, Paul; Tserng, Hua Quen

    1997-01-01

    Over the course of this program, very extensive progress was made in Ka-band GaAs technology. At the beginning of the program, odd-shaped VPE MESFET wafers were used. A breakthrough in power and efficiency was achieved with highly doped (8 x 10(exp 17) cm(exp -3) MBE grown MESFET material. We obtained power of 112 mW with 16 dB gain and 21.6% efficiency at 34 GHz with a monolithic 50-100-250 micron amplifier. The next breakthrough came with the use of heterostructures grown by MBE (AlGaAs/InGaAs where the InGaAs is highly doped). This allowed us to achieve high power density with high efficiency. A benchmark 40% efficiency was achieved with a single-stage 100 micron MMIC at 32.5 GHz. The corresponding three-stage 50-100-250 micron amplifier achieved 180 mW with 23 dB gain and 30.3% efficiency. The next breakthrough came with 3-inch MBE grown PHEMT wafers incorporating an etch-stop layer for the gate recess (using RIE). Again, state-of-the-art performances were achieved: 40% efficiency with 235 mW output power and 20.7 dB gain. The single-stage 2 x 600 micron chip demonstrated 794 mW output power with 5 dB gain and 38.2% power-added efficiency (PAE). The Ka-band technology developed under this program has promise for extensive use: JPL demonstrated 32 GHz phased arrays with a three-stage amplifier developed under this contract. A variation of the three-stage amplifier was used successfully in a 4 x 4 phased array transmitter developed under another NASA contract.

  19. Raman spectroscopy of InGaAs/GaAs nanoheterostructures δ-doped with Mn

    SciTech Connect

    Plankina, S. M.; Vikhrova, O. V.; Danilov, Yu. A.; Zvonkov, B. N.; Kalentyeva, I. L.; Nezhdanov, A. V.; Chunin, I. I.; Yunin, P. A.

    2015-01-15

    The results of complex studies of InGaAs/GaAs nanoheterostructures δ-doped with Mn are reported. The structures are grown by metal-organic vapor-phase epitaxy in combination with laser deposition. By confocal Raman spectroscopy, it is shown that the low-temperature δ-doped GaAs cap layers are of higher crystal quality compared to uniformly doped layers. Scattering of light in the coupled phonon-plasmon mode is observed. The appearance of this mode is conditioned by the diffusion of manganese from the δ-layer. The thickness of the cap layer is found to be d{sub c} ≈ 9–20 nm, optimal for attainment of the highest photoluminescence intensity of the quantum well and the highest layer concentration of holes by doping with manganese.

  20. Fermi energy control of vacancy coalescence and dislocation density in melt-grown GaAs

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Gatos, H. C.; Lin, D. G.; Aoyama, T.

    1984-01-01

    A striking effect of the Fermi energy on the dislocation density in melt-grown GaAs has been discovered. Thus, a shift of the Fermi energy from 0.1 eV above to 0.2 eV below its intrinsic value (at high temperature, i.e., near 1100 K) increases the dislocation density by as much as five orders of magnitude. The Fermi energy shift was brought about by n-type and p-type doping at a level of about 10 to the 17th per cu cm (under conditions of optimum partial pressure of As, i.e., under optimum melt stoichiometry). This effect must be associated with the fact that the Fermi energy controls the charge state of vacancies (i.e., the occupancy of the associated electronic states) which in turn must control their tendency to coalesce and thus the dislocation density. It appears most likely that gallium vacancies are the critical species.

  1. Influence of growth conditions on tin incorporation in GaAs grown by molecular beam epitaxy

    SciTech Connect

    Alexandre, F.; Raisin, C.; Abdalla, M.I.; Brenac, A.; Masson, J.M.

    1980-08-01

    Intentional perturbations applied to the growth parameters of Sn-doped GaAs layers grown by molecular beam epitaxy have been performed in order to investigate the tin incorporation mechanism. The start, the interruption, and the end of growth as well as a variation of fluxes or substrate temperature have been studied, using either the Auger electron spectroscopy (AES) measurement of tin accumulation on the surface, or C-V derived free-carrier concentration profile versus any of these growth parameters. The theoretical model proposed by Wood and Joyce, based on a time-delayed incorporation mechanism, has been found to fit the observed results, especially for As-rich surface, provided that an incorporation mechanism of second order is assumed. For Ga-rich conditions (T/sub s/>580 /sup 0/C), a new result has been recognized, i.e., a significant reduction of carrier concentration as T/sub s/ is increased. The assumption of a partially acceptor nature of tin incident atoms under these growth conditions does not seem to fully explain this result. On the other hand, this may be better understood assuming a certain amount of tin atoms being re-evaporated in the high substrate temperature range. This behavior induces a temporarily weaker accumulation at the surface, and hence a relatively smaller incorporation rate.

  2. Large-area, high-speed PIN detectors in GaAs

    NASA Astrophysics Data System (ADS)

    Jackson, D. J.; Persechini, D. L.

    1986-02-01

    Large-area PIN detectors have been manufactured with bandwidths exceeding 8 GHz. The devices were fabricated in concert with design rules for the manufacture of ICs and incorporate an interdigitated format which permits the large detector area with low device capacitance. The PIN detectors were deposited on GaAs substrates. First, an SiO2 layer was deposited, then etched. Next, a 50 nm layer of Zn and then a 50 nm layer of Au were sputter deposited and the interdigitated pattern was defined by photoresist techniques. The electrodes were plated to a 1 micron thickness, the photoresist was removed, and the Zn:Au film was etched away before doping the substrate with Zn and Ge. The device was then sintered at 430 C. A response level of 5 dB/div was obtained over the range 2-8 GHz, with the roll-off point at 8 GHz being 3 dB. The performance levels were achieved without packaging optimization.

  3. Effect of the Pauli principle on photoelectron spin transport in p+ GaAs

    NASA Astrophysics Data System (ADS)

    Cadiz, F.; Paget, D.; Rowe, A. C. H.; Amand, T.; Barate, P.; Arscott, S.

    2015-04-01

    In p+ GaAs thin films, the effect of photoelectron degeneracy on spin transport is investigated theoretically and experimentally by imaging the spin polarization profile as a function of distance from a tightly focused light excitation spot. Under degeneracy of the electron gas (high concentration, low temperature), a dip at the center of the polarization profile appears with a polarization maximum at a distance of about 2 μ m from the center. This counterintuitive result reveals that photoelectron diffusion depends on spin, as a direct consequence of the Pauli principle. This causes a concentration dependence of the spin stiffness while the spin dependence of the mobility is found to be weak in doped material. The various effects which can modify spin transport in a degenerate electron gas under local laser excitation are considered. A comparison of the data with a numerical solution of the coupled diffusion equations reveals that ambipolar coupling with holes increases the steady-state photoelectron density at the excitation spot and therefore the amplitude of the degeneracy-induced polarization dip. Thermoelectric currents are predicted to depend on spin under degeneracy (spin Soret currents), but these currents are negligible except at very high excitation power where they play a relatively small role. Coulomb spin drag and band-gap renormalization are negligible due to electrostatic screening by the hole gas.

  4. 8-9 and 14-15 meu Two-Color 640x486 GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Guanapala, S.; Bandara, S.; Singh, A.; Liu, J.; Rafol, S.; Luong, E.; Mumolo, J.; Tran, N.; Vincent, J.; Shott, C.; Long, J.; LeVan, P.

    1999-01-01

    An optimized long-wavelength two-color Quantum Well Infrared Phototdetector (QWIP) device structure has been designed. This device structure was grown on a three-inch semi-insulating GaAs substrate by molecular beam epitaxy (MBE).

  5. Inverse design approach to hole doping in ternary oxides: Enhancing p-type conductivity in cobalt oxide spinels

    NASA Astrophysics Data System (ADS)

    Perkins, J. D.; Paudel, T. R.; Zakutayev, A.; Ndione, P. F.; Parilla, P. A.; Young, D. L.; Lany, S.; Ginley, D. S.; Zunger, A.; Perry, N. H.; Tang, Y.; Grayson, M.; Mason, T. O.; Bettinger, J. S.; Shi, Y.; Toney, M. F.

    2011-11-01

    Holes can be readily doped into small-gap semiconductors such as Si or GaAs, but corresponding p-type doping in wide-gap insulators, while maintaining transparency, has proven difficult. Here, by utilizing design principles distilled from theory with systematic measurements in the prototype A2BO4 spinel Co2ZnO4, we formulate and test practical design rules for effective hole doping. Using these, we demonstrate a 20-fold increase in the hole density in Co2ZnO4 due to extrinsic (Mg) doping and, ultimately, a factor of 104 increase for the inverse spinel Co2NiO4, the x = 1 end point of Ni-doped Co2Zn1-xNixO4.

  6. Dependence of the electrical parameters of MBE-grown Cd{sub x}Hg{sub 1} {sub -} {sub x}Te films on the level of doping with indium

    SciTech Connect

    Varavin, V. S. Dvoretskii, S. A.; Ikusov, D. G.; Mikhailov, N. N.; Sidorov, Yu. G.; Sidorov, G. Yu.; Yakushev, M. V.

    2008-06-15

    Dependences of the minority-carrier lifetime and electron mobility in Cd{sub x}Hg{sub 1-x}Te films on their indium-doping level are studied. Films with x {approx} 0.22 grown by molecular-beam epitaxy on GaAs substrates were in situ doped with indium across their entire thickness. The temperature dependences of the lifetime were studied in the temperature range 77-300 K. The decrease in the lifetime, observed as the doping level increases, is governed by the mechanism of Auger recombination. As the doping level becomes higher, the mobility decreases in qualitative agreement with theoretical calculations.

  7. Femtosecond pulsed laser ablation of GaAs

    NASA Astrophysics Data System (ADS)

    Trelenberg, T. W.; Dinh, L. N.; Saw, C. K.; Stuart, B. C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed.

  8. Neutron irradiation effects in GaAs

    SciTech Connect

    Patel, J.U.

    1992-01-01

    Changes in electrical properties of n-GaAs as a result of irradiations with fast neutron have been studied, after epitaxial layers doped with Si at concentrations in the range 1.35 x 10[sup 15] to 1.60 x 10[sup 16] cm[sup [minus]3] were irradiated with reactor neutron fluences up to 1.31 x 10[sup 15] cm [sup [minus]2]. When the changes in carrier concentration, Hall mobility and resistivity were more than 25% of their initial values, nonlinear dependence on neutron fluence was apparent. New theory is proposed which explains the changes in electrical properties in terms of rates of trapping and release of charges. A theoretical relationship is derived for the change in carrier concentration as a function of neutron fluence and Fermi level shift was found to be consistent with the observed changes in carrier concentration. A correlation has been found between the changes in carrier concentration and mobility with neutron fluence using newly defined physically meaningful parameters in the case of two pairs of samples. The correlation has been explained in terms of the increased scattering of charge carriers from the defects created by neutrons that trap the free carriers. Mobility changes were measured at temperatures from 15 K to 305 K in n-GaAs van-der Pauw samples irradiated by fast reactor neutrons. The inverse mobility values obtain versus temperature, from the variable temperature Hall measurements, in the case of irradiated and in-irradiated samples were fitted using the relation [mu][sup [minus]1] = T[sup [minus]3/2] + B T[sup 3/2]. The inverse mobility increased as a result of neutron irradiations over the whole range of temperature, the increase being attributed to the increased scattering from neutron induced charged defects.

  9. Lateral epitaxial overgowth of GaAs by organometallic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Gale, R. P.; Mcclelland, R. W.; Fan, J. C. C.; Bozler, C. O.

    1982-01-01

    Lateral epitaxial overgrowth of GaAs by organometallic chemical vapor deposition has been demonstrated. Pyrolytic decomposition of trimethylgallium and arsine, without the use of HCl, was used to deposit GaAs on substrates prepared by coating (110) GaAs wafers with SiO2, then using photolithography to open narrow stripes in the oxide. Lateral overgrowth was seeded by epitaxial deposits formed on the GaAs surfaces exposed by the stripe openings. The extent of lateral overgrowth was investigated as a function of stripe orientation and growth temperature. Ratios of lateral to vertical growth rates greater than five have been obtained. The lateral growth is due to surface-kinetic control for the two-dimensional growth geometry studied. A continuous epitaxial GaAs layer 3 microns thick has been grown over a patterned mask on a GaAs substrate and then cleaved from the substrate.

  10. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Lagowski, J.

    1981-01-01

    Experimental and theoretical efforts in the development of crystal growth approaches, effective techniques for electronic characterization on a macro and microscale, and in the discovery of phenomena and processes relevant to GaAs device applications are reported. The growth of electron trap-free bulk GaAS with extremely low density of dislocations is described. In electroepitaxy, growth configuration which eliminates the substrate back-contact was developed. This configuration can be extended to the simultaneous growth on many substrates with a thin solution layer sandwiched between any two of them. The significant reduction of Joule heating effects in the configuration made it possible to realize the in situ measurement of the layer thickness and the growth velocity. Utilizing the advantages of electroepitaxy in achieving abrupt acceleration (or deceleration) of the growth it was shown that recombination centers are formed as a result of growth acceleration.

  11. Cryogenic measurements of aerojet GaAs n-JFETs

    NASA Technical Reports Server (NTRS)

    Goebel, John H.; Weber, Theodore T.

    1993-01-01

    The spectral noise characteristics of Aerojet gallium arsenide (GaAs) junction field effect transistors (JFET's) have been investigated down to liquid-helium temperatures. Noise characterization was performed with the field effect transistor (FET) in the floating-gate mode, in the grounded-gate mode to determine the lowest noise readings possible, and with an extrinsic silicon photodetector at various detector bias voltages to determine optimum operating conditions. The measurements indicate that the Aerojet GaAs JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to silicon (Si) metal oxide semiconductor field effect transistor (MOSFET's) operating at liquid helium temperatures, and is equal to the best Si n channel junction field effect transistor (n-JFET's) operating at 300 K.

  12. A V-grooved GaAs solar cell

    NASA Technical Reports Server (NTRS)

    Bailey, S. G.; Fatemi, N. S.; Landis, G. A.; Wilt, D. M.; Thomas, R. D.; Arrison, A.

    1988-01-01

    V-grooved GaAs solar cells promise the benefits of improved optical coupling, higher short-circuit current, and increased tolerance to particle radiation compared to planar cells. A GaAs homojunction cell was fabricated by etching a V-groove pattern into an n epilayer (2.1 x 10 to the 17th power per cu cm) grown by metalorganic chemical vapor deposition (MOCVD) on an n+ substrate (2.8 x 10 to the 18th power per cu cm) and then depositing and MOCVD p epilayer (4.2 x 10 to the 18th power per cu cm). Reflectivity measurements on cells with and without an antireflective coating confirm the expected decrease in reluctance of the microgrooved cell compared to the planar structure. The short circuit current of the V-grooved solar cell was 13 percent higher than that of the planar control.

  13. Optical detectors for GaAs MMIC integration: Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  14. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C.; Lagowski, Jacek

    1989-01-01

    The program on Crystal Growth of Device Quality GaAs in Space was initiated in 1977. The initial stage covering 1977 to 1984 was devoted strictly to ground-based research. By 1985 the program had evolved into its next logical stage aimed at space growth experiments; however, since the Challenger disaster, the program has been maintained as a ground-based program awaiting activation of experimentation in space. The overall prgram has produced some 80 original scientific publications on GaAs crystal growth, crystal characterization, and new approaches to space processing. Publication completed in the last three years are listed. Their key results are outlined and discussed in the twelve publications included as part of the report.

  15. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1986-01-01

    It was established that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail. It was further established that in compound semiconductors with a volatile constituent, control of stoichiometry is far more critical than any other crystal growth parameter. It was also shown that, due to suppression of nonstoichiometric fluctuations, the advantages of space for growth of semiconductor compounds extend far beyond those observed in elemental semiconductors. A novel configuration was discovered for partial confinement of GaAs melt in space which overcomes the two major problems associated with growth of semiconductors in total confinement. They are volume expansion during solidification and control of pressure of the volatile constituent. These problems are discussed in detail.

  16. GaAs arrays for X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Owens, Alan; Andersson, Hans; Campbell, M.; Lumb, David H.; Nenonen, Seppo A. A.; Tlustos, Lukas

    2004-09-01

    We present results from our compound semiconductor laboratory program and describe the development of a large area GaAs imaging array for planetary remote sensing applications. The device is fabricated from ~150 micron thick epitaxial material, patterned into a 64 x 64 pixel array, back-thinned and contacted. It will be flip-chip bump bonded onto a custom designed, fully spectroscopic, low noise (< 20 e- rms) active pixel sensor ASIC. At present, the ASIC is still under development and so in order to validate and qualify the various technological steps, we have produced a GaAs imager based on the MEDIPIX-1 format using a MEDIPIX-1 readout chip. In X-ray tests, the device was found to work well with a bump yield of 99.9%. After flat field corrections, the spatial uniformity of the array was commensurate with Poisson noise.

  17. Single Material Band Gap Engineering in GaAs Nanowires

    SciTech Connect

    Spirkoska, D.; Abstreiter, G.; Efros, A.; Conesa-Boj, S.; Morante, J. R.; Arbiol, J.; Fontcuberta i Morral, A.

    2011-12-23

    The structural and optical properties of GaAs nanowire with mixed zinc-blende/wurtzite structure are presented. High resolution transmission electron microscopy indicates the presence of a variety of shorter and longer segments of zinc-blende or wurtzite crystal phases. Sharp photoluminescence lines are observed with emission energies tuned from 1.515 eV down to 1.43 eV. The downward shift of the emission peaks can be understood by carrier confinement at the wurtzite/zinc-blende heterojunction, in quantum wells and in random short period superlattices existent in these nanowires, assuming the theoretical staggered band-offset between wurtzite and zinc-blende GaAs.

  18. Sub-additivity in Electron Emission from GaAs

    NASA Astrophysics Data System (ADS)

    Brunkow, Evan; Clayburn, Nathan; Becker, Maria; Jones, Eric; Batelaan, Herman; Gay, Timothy

    2016-05-01

    When two spatially-overlapped laser pulses (775 nm center wavelength, 75 fs duration) are incident on an untreated <100> GaAs crystal surface, the electron emission rate depends on the temporal separation between the two pulses. We have shown that for delays between 0.2 and 1000ps, the emission rate is ``sub-additive'', i.e., is lower than when the beams have separation >> 1 ns. We believe the cause of this sub-additivity is an increase in reflectance and transmittance due to electrons occupying the excited state of the GaAs. We are now able to manipulate the magnitude of the sub-additivity by changing the number of electrons that are in the excited state. Sub-additivity is not observed with tungsten tip surfaces which have no excited state. Funded by NSF PHY-1505794, EPSCoR IIIA-1430519, and NSF 1306565 (HB).

  19. GaAs solar cells for laser power beaming

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.; Dunham, Glen; Huber, Daniel A.; Addis, F. William; Anheier, Norman; Coomes, E. P.

    1991-01-01

    Efforts to develop GaAs solar cells for coupling to laser beams in the wavelength range of 800 to 840 nm are described. This work was motivated primarily by interests in space-tp-space power beaming applications. In particular, the Battelle Pacific Northwest Laboratories is conducting studies of the utilization of power beaming for several future space missions. Modeling calculations of GaAs cell performance were carried out using PC-1D to determine an appropriate design for a p/n cell structure. Epitaxial wafers were grown by MOCVD and cells fabricated at WSU Tri-Cities. Under simulated conditions, an efficiency of 53 percent was achieved for a cell coupled to 806 nm light at 400 mW/sq cm.

  20. Oxygen-enhanced wet thermal oxidation of GaAs

    NASA Astrophysics Data System (ADS)

    Bauters, J. F.; Fenlon, R. E.; Seibert, C. S.; Yuan, W.; Plunkett, J. S. B.; Li, J.; Hall, D. C.

    2011-10-01

    An oxygen-enhanced wet thermal oxidation process is used to grow smooth, uniform, insulating native oxides of GaAs. At 420 °C, a maximum linear growth rate of 4.8 nm/min is observed for oxidation in water vapor with 2000 ppm O2 added relative to the N2 carrier gas, with growth ceasing by 7000 ppm. Films as thick as 800 nm with surface roughness as low as 0.2 nm are demonstrated. In fabricated metal-oxide-semiconductor capacitors, a 412 nm thick native oxide film exhibits a factor of ˜2700 reduction in leakage current density at 1 V relative to a direct metal (Au:Ti) to GaAs contact.

  1. Testing a GaAs cathode in SRF gun

    SciTech Connect

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-03-28

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10{sup -12} Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to {approx}10{sup -9} Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and the high

  2. Experimental examination of gaas dissolution in in-p melt

    NASA Astrophysics Data System (ADS)

    Bolkhovityanov, Yu. B.; Bolkhovityanova, R. I.; Chikichev, S. I.

    1983-05-01

    The “solubility” of GaAs crystals in quaternary In-Ga-As-P liquids (X{Ga/I} = X{As/I}) has been studied experi-mentally at 770°C using seed-dissolution technique. The location of the true liquidus isotherm has been established independently by means of the direct vi-sual observation technique. Comparison between the two data sets indicates that the first method can be successfully used only for those In-Ga-As-P melt compositions which have the corresponding solid InxGa1-xAsyP1-y alloys nearly lattice-matched to the GaAs substrate. In other cases the results obtained by this method are totally misleading although in-teresting as they are. The phenomenon of “catastro-phic” substrate erosion is investigated. The results of the present study are interpreted within the conceptual framework developed previously.

  3. Government systems and GaAs monolithic components

    NASA Astrophysics Data System (ADS)

    Sieger, K. J.

    1983-12-01

    The current state of monolithic GaAs technology and its current and future applications to government systems are reviewed, with attention given to the government investment strategy, commercial market impact, new technology, and challenges from silicon technology. Data obtained from a survey to determine the status of GaAs IC technology are presented. These contain the system type and acronym, a technical description of the system, the critical research and development needed to develop the particular IC, specific applications and functions of the IC in the system, the year of implementation, and the potential chip buyer. High volume applications, with chip counts of one million and more, are identified as phased arrays (radar and communication), expendable decoys, missile seekers, and satellite signal processors. Problem areas, future trends, and areas of uncertainty are discussed.

  4. High purity low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1982-01-01

    Recent advances in GaAs bulk crystal growth using the LEC (liquid encapsulated Czochralski) technique are described. The dependence of the background impurity concentration and the dislocation density distribution on the materials synthesis and growth conditions were investigated. Background impurity concentrations as low as 4 x 10 to the 15th power were observed in undoped LEC GaAs. The dislocation density in selected regions of individual ingots was very low, below the 3000 cm .3000/sq cm threshold. The average dislocation density over a large annular ring on the wafers fell below the 10000/sq cm level for 3 inch diameter ingots. The diameter control during the program advanced to a diameter variation along a 3 inch ingot less than 2 mm.

  5. A high-speed GaAs MESFET optical controller

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.; Richard, M.; Bendett, M.; Gustafson, G.

    1989-01-01

    Optical interconnects are being considered for control signal distribution in phased array antennas. A packaged hybrid GaAs optical controller with a 1:16 demultiplexed output that is suitable for this application is described. The controller, which was fabricated using enhancement/depletion mode MESFET technology, operates at demultiplexer-limited input data rates up to 305 Mb/s and requires less than 200 microW optical input power.

  6. Solar heating of GaAs nanowire solar cells.

    PubMed

    Wu, Shao-Hua; Povinelli, Michelle L

    2015-11-30

    We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. We find that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K. PMID:26698787

  7. SEU design consideration for MESFETs on LT GaAs

    SciTech Connect

    Weatherford, T.R.; Radice, R.; Eskins, D.

    1997-12-01

    Computer simulation results are reported on transistor design and single-event charge collection modeling of metal-semiconductor field effect transistors (MESFETs) fabricated in the Vitesse H-GaAsIII{reg_sign} process on Low Temperature grown (LT) GaAs epitaxial layers. Tradeoffs in Single Event Upset (SEU) immunity and transistor design are discussed. Effects due to active loads and diffusion barriers are examined.

  8. On the dissolution properties of GaAs in Ga

    NASA Technical Reports Server (NTRS)

    Davidson, M. C.; Moynahan, A. H.

    1977-01-01

    The dissolution of GaAs in Ga was studied to determine the nature and cause of faceting effects. Ga was allowed to dissolve single crystalline faces under isothermal conditions. Of the crystalline planes with low number indices, only the (100) surface showed a direct correlation of dissolution sites to dislocations. The type of dissolution experienced depended on temperature, and there were three distinct types of behavior.

  9. GaAs Optoelectronic Integrated-Circuit Neurons

    NASA Technical Reports Server (NTRS)

    Lin, Steven H.; Kim, Jae H.; Psaltis, Demetri

    1992-01-01

    Monolithic GaAs optoelectronic integrated circuits developed for use as artificial neurons. Neural-network computer contains planar arrays of optoelectronic neurons, and variable synaptic connections between neurons effected by diffraction of light from volume hologram in photorefractive material. Basic principles of neural-network computers explained more fully in "Optoelectronic Integrated Circuits For Neural Networks" (NPO-17652). In present circuits, devices replaced by metal/semiconductor field effect transistors (MESFET's), which consume less power.

  10. Gallium arsenide (GaAs) solar cell modeling studies

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.

    1980-01-01

    Various models were constructed which will allow for the variation of system components. Computer studies were then performed using the models constructed in order to study the effects of various system changes. In particular, GaAs and Si flat plate solar power arrays were studied and compared. Series and shunt resistance models were constructed. Models for the chemical kinetics of the annealing process were prepared. For all models constructed, various parametric studies were performed.

  11. Lattice Distortion of GaAsBi Alloy Grown on GaAs by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Takehara, Yuji; Yoshimoto, Masahiro; Huang, Wei; Saraie, Junji; Oe, Kunishige; Chayahara, Akiyoshi; Horino, Yuji

    2006-01-01

    GaAs1-xBix alloys were grown on GaAs by molecular beam epitaxy (MBE). The lattice constants perpendicular and parallel to the surface of epilayers were estimated by high-resolution X-ray diffraction (XRD) analysis. The GaBi molar fraction was estimated by the Rutherford backscattering spectroscopy (RBS). GaAs1-xBix epilayers with GaBi molar fractions less than 5% were almost coherently grown on GaAs substrate with compressive strain. The lattice mismatch between GaAs1-xBix (x=5%) and GaAs was estimated to be approximately 0.5%.

  12. Cathodoluminescence characterization of ion implanted GaAs

    NASA Astrophysics Data System (ADS)

    Cone, M. L.

    1980-03-01

    The unique properties of GaAs make it possible to construct integrated circuit devices that are impossible in Si. The Air Force Avionics Laboratory/AADR has been developing this technology for a number of years. The difficulty of introducing dopants by diffusion has lead ion implantation to play an increasing role in the fabrication process. The present production technique for high performance devices is to fabricate large quantities and select those few that meet the desired specifications. Having a nondestructive technique that can be used to characterize the implantation process during fabrication of the device so as to reject faulty device structures can save valuable time as well as money. Depth-resolved cathodoluminescence is a process that can be used for this purpose. This research develops and verifies a model of cathodoluminescence in ion implanted GaAs. This model can now be used as a tool for further study of ion implanted GaAs. This is the first step in developing cathodoluminescence as a tool for deducing the shape of the ion implanted depth profile in semiconductor materials.

  13. Ab initio study of hot electrons in GaAs.

    PubMed

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G

    2015-04-28

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287

  14. Preparation and characterization of pulse electrodeposited GaAs films

    NASA Astrophysics Data System (ADS)

    Murali, K. R.; Trivedi, D. C.

    2006-04-01

    GaAs is a III-V compound possessing high mobility and a direct band gap of 1.43 eV, making it a very suitable candidate for photovoltaic applications. Thin GaAs films were prepared by plating an aqueous solution containing GaCl3 and As2O3 at a pH of 2 and at room temperature. The current density was kept at 50 mA cm-2 and the duty cycle was varied in the range 10-50%. The films were deposited on titanium, nickel and tin oxide coated glass substrates. Films exhibited polycrystalline nature with peaks corresponding to single-phase GaAs. Optical absorption measurements indicated a direct band gap of 1.40 eV. Atomic force microscope measurements indicated uniform coverage with large crystallites for the films deposited at higher duty cycles. Photoelectrochemical cells were made using the films as photoelectrodes and graphite as counter electrode in 1 M polysulphide electrolyte. At 60 mW cm-2 illumination, an open-circuit voltage of 0.5 V and a short-circuit current density of 5.0 mA cm-2 were observed for the films deposited at a duty cycle of 50%.

  15. Integration of colossal magnetoresistors with GaAs

    NASA Astrophysics Data System (ADS)

    Khartsev, S. I.; Kim, J.-H.; Grishin, A. M.

    2005-10-01

    Colossal magnetoresistive (CMR) La 0.67Ca 0.33MnO 3 (LCMO) and La 0.67Sr 0.33MnO 3 (LSMO) films have been grown by pulsed laser deposition technique on GaAs(0 0 1) substrates buffered with epitaxial MgO layer. X-ray diffraction revealed strong c-axis out-of-plane orientation and strong in-plane texture of CMR/MgO bilayers on GaAs single crystal. The maximum temperature coefficient of resistivity TCR=9.0% K -1 at 223 K and 2.0% K -1 at 327 K, and the magnetoresistance Δ ρ/ ρ˜-7.95% kOe -1 and -1.47% kOe -1 have been achieved for LCMO/MgO/GaAs and LSMO/MgO/GaAs heteroepitaxial structures, respectively. Comparison with the test LCMO and LSMO films grown directly onto the bulk MgO(0 0 1) single crystal demonstrates the identity of LSMO/MgO/GaAs and LSMO/MgO films properties whereas the LCMO films grown on MgO buffered GaAs show lower transition temperature T=242 K compared to 253 K in LCMO/MgO.

  16. Selective photon-stimulated desorption of hydrogen from GaAs surfaces.

    PubMed

    Petravic, M; Deenapanray, P N; Comtet, G; Hellner, L; Dujardin, G; Usher, B F

    2000-03-01

    Photon-stimulated desorption of H(+) from hydrogenated GaAs (110) and (100) surfaces was studied as a function of photon energy. Distinct peaks, observed around As 3d core-level binding energy for desorption from the GaAs (100) surface and in the As 3d and Ga 3p region for desorption from the GaAs (110) surface, show a striking similarity with the fine structure (spin-orbit splitting) measured in the photoemission from As 3d and Ga 3p levels. These results provide clear evidence for direct desorption processes and represent a basis for selective modification of hydrogenated GaAs surfaces. PMID:11017257

  17. Recovery of gallium and arsenic from GaAs wafer manufacturing slurries

    SciTech Connect

    Jadvar, R.; McCoy, B.J. ); Ford, B.; Galt, J. )

    1991-11-01

    Lapping and polishing slurries from the gallium arsenide (GaAs) wafer manufacturing process were used to develop simple and inexpensive methods for separation and recovery of valuable gallium and toxic arsenic. The lapping slurry, containing GaAs, glycerol, alumina, iron oxide, and water, is treated by a process involving water addition, dissolution of GaAs, mixing, sedimentation, decantation, and evaporation. The polishing slurry, containing GaAs, silica, sodium bicarbonate, sodium hypochlorite and water, is treated simply by a repetitive cycle of adding water, mixing, settling, decanting, and evaporating. After treatment, the slurries contain less than 5 ppm of dissolved arsenic and are considered non-hazardous.

  18. Inverted thermal conversion - GaAs, a new alternative material for integrated circuits

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Gatos, H. C.; Kang, C. H.; Skowronski, M.; Ko, K. Y.

    1986-01-01

    A new type of GaAs is developed which exhibits inverted thermal conversion (ITC); i.e., it converts from conducting to semiinsulating upon annealing at about 850 C. In device fabrication, its low resistivity prior to high-temperature processing differentiates ITC GaAs from the standard semiinsulating GaAs. The ITC characteristics are obtained through control of the concentration of the midgap donor EL2 based on heat treatment and crystal-growth modification. Thus EL2 does not exist in the conducting state of ITC GaAs. Conversion to the semiinsulating state during 850 C annealing is caused by the formation of EL2.

  19. GaAs thin films and methods of making and using the same

    DOEpatents

    Boettcher, Shannon; Ritenour, Andrew; Boucher, Jason; Greenaway, Ann

    2016-06-14

    Disclosed herein are embodiments of methods for making GaAs thin films, such as photovoltaic GaAs thin films. The methods disclosed herein utilize sources, precursors, and reagents that do not produce (or require) toxic gas and that are readily available and relatively low in cost. In some embodiments, the methods are readily scalable for industrial applications and can provide GaAs thin films having properties that are at least comparable to or potentially superior to GaAs films obtained from conventional methods.

  20. Advances in large-diameter liquid encapsulated Czochralski GaAs

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1982-01-01

    The purity, crystalline perfection, and electrical properties of n- and p-type GaAs crystals grown by the liquid encapsulated Czochralski (LEC) technique are evaluated. The determination of the dislocation density, incidence of twinning, microstructure, background purity, mobility, and minority carrier diffusion length is included. The properties of the LEC GaAs crystals are generally comparable to, if not superior to those of small-diameter GaAs material grown by conventional bulk growth techniques. As a result, LEC GaAs is suitable for application to minority carrier devices requiring high-quality and large-area substrates.

  1. GaAs high-speed digital IC technology: An overview

    SciTech Connect

    Larson, L.E.; Jensen, J.F.; Greiling, P.T.

    1986-10-01

    Gallium arsenide integrated circuit technology has advanced to the stage where small-scale integration (SSI) and medium-scale integration (MSI) circuits are available for implementation in high-speed digital systems. The recent availability of GaAs wafer foundries for fabrication of custom designs, along with commercially available GaAs components, allows system designers for the first time to take advantage of the inherent high speed and low power capabilities of the technology. Large-scale integration (LSI) complexity circuits are already being fabricated in the United States and abroad, and higher levels of integration are expected. This will result in improved levels of performance for large digital systems. The advantages of higher levels of integration are clearly evident, although there appears to be an optimum level of integration for each GaAs logic family beyond which system speed actually degrades. In conjunction with the development of GaAs technology, an industry-standard GaAs production process is also evolving. This generic process is available (with minor variations) from most of the GaAs wafer foundries and IC manufacturers. Here the authors review digital GaAs IC device and circuit technology and analyze the performance of GaAs circuits fabricated by this production process. They also analyze the effect of the GaAs IC integration level on computer system speed.

  2. Electroreflectance and photoluminescence study of the effect of hydrogen on heavily doped GaAs/AlGaAs structures

    NASA Astrophysics Data System (ADS)

    Yang, D.; Garland, J. W.; Raccah, P. M.; Coluzza, C.; Frankl, P.; Capizzi, M.; Chambers, F.; Devane, G.

    1990-12-01

    Highly doped semiconducting heteroepitaxial structures are commonly found in advanced devices. It is difficult to interpret quantitatively the results of optical measurements on such structures because the strong built-in electric fields present invalidate the low-field theories usually used to interpret those results. We have studied by electrolyte electroreflectance and photoluminescence a GaAs/AlGaAs resonant tunneling structure with a highly n-doped GaAs substrate and cap, before and after hydrogenation. We also have developed a new, improved microscopic theoretical treatment of the effects of strong fields on the local dielectric function and have used that treatment to evaluate quantitatively the effect of hydrogenation on the densities of shallow donor levels and of deep traps in the GaAs cap and to find the interface charges and band-pinning levels in the resonant tunneling junction.

  3. MBE growth and characterization of (100) and (631)-oriented modulation doped AlGaAs/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Mendez-Garcia, V. H.; González-Fernández, J. V.; Espinosa-Vega, L. I.; Díaz, T.; Romano, R.; Rosendo, E.; Gallardo, S.; Vázquez-Cortes, D.; Shimomura, S.

    2013-09-01

    In this work, the optical and electrical properties of simultaneously grown modulation-doped heterostructures (MDH) on (100)- and (631)-oriented GaAs substrates are investigated. Due to the amphoteric behavior of Si in AlGaAs doped films two dimensional electron (2DEG) and hole gas (2DHG) structures for the growth on (100) and (631) planes, respectively are obtained. Atomic force microscopy (AFM) revealed atomically flat surface for the (100)-MDH sample. On the contrary, (631)-MDH sustained uniform corrugation along [1¯13] after the growth of the GaAs films, which provoked anisotropic mobility of the carriers at 77 K as confirmed by the Hall effect in a double arm bar. By photoluminescence spectroscopy (PL) the band to band transition, carbon and Si-related lines were identified. The concentration of the ternary alloy and impurities were evaluated by secondary ion mass spectrometry.

  4. Ti/Pd/Ag Contacts to n-Type GaAs for High Current Density Devices

    NASA Astrophysics Data System (ADS)

    Huo, Pengyun; Rey-Stolle, Ignacio

    2016-06-01

    The metallization stack Ti/Pd/Ag on n-type Si has been readily used in solar cells due to its low metal/semiconductor specific contact resistance, very high sheet conductance, bondability, long-term durability, and cost-effectiveness. In this study, the use of Ti/Pd/Ag metallization on n-type GaAs is examined, targeting electronic devices that need to handle high current densities and with grid-like contacts with limited surface coverage (i.e., solar cells, lasers, or light emitting diodes). Ti/Pd/Ag (50 nm/50 nm/1000 nm) metal layers were deposited on n-type GaAs by electron beam evaporation and the contact quality was assessed for different doping levels (from 1.3 × 1018 cm-3 to 1.6 × 1019 cm-3) and annealing temperatures (from 300°C to 750°C). The metal/semiconductor specific contact resistance, metal resistivity, and the morphology of the contacts were studied. The results show that samples doped in the range of 1018 cm-3 had Schottky-like I- V characteristics and only samples doped 1.6 × 1019 cm-3 exhibited ohmic behavior even before annealing. For the ohmic contacts, increasing annealing temperature causes a decrease in the specific contact resistance ( ρ c,Ti/Pd/Ag ~ 5 × 10-4 Ω cm2). In regard to the metal resistivity, Ti/Pd/Ag metallization presents a very good metal conductivity for samples treated below 500°C ( ρ M,Ti/Pd/Ag ~ 2.3 × 10-6 Ω cm); however, for samples treated at 750°C, metal resistivity is strongly degraded due to morphological degradation and contamination in the silver overlayer. As compared to the classic AuGe/Ni/Au metal system, the Ti/Pd/Ag system shows higher metal/semiconductor specific contact resistance and one order of magnitude lower metal resistivity.

  5. Visible-light electroluminescence in Mn-doped GaAs light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Maruo, Daiki; Hai, Pham Nam; Tanaka, Masaaki

    2015-03-01

    We demonstrate visible-light electroluminescence (EL) due to d- d transitions in GaAs:Mn based LEDs. We design p+-n junctions with a p+ GaAs:Mn layer, in which at a reverse bias voltage (-3 to -6 V), an intense electric field builds up in the depletion layers of the p+-n junctions. Holes are injected to the depletion layer by Zener tunneling from the conduction band or by diffusion of minority holes from the valence band of the n-type layer. These holes are accelerated by the intense electric field in the depletion layer, and excite the d electrons of Mn in the p+ GaAs:Mn layer by impact excitations. We observe visible-light emission at E1 = 1.89 eV and E2 = 2.16 eV, which are exactly the same as the 4T1-->6A1 and 4A2-->4T1 transition energy of Mn. The threshold voltage for observation of visible-light EL is -4 V, corresponding to -(E1 +E2) / e. This indicates that the impact excitation is most effective for the one step excitation from the ground state 6A1 to the highest excited state 4A2 .

  6. Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility.

    PubMed

    Boland, Jessica L; Conesa-Boj, Sonia; Parkinson, Patrick; Tütüncüoglu, Gözde; Matteini, Federico; Rüffer, Daniel; Casadei, Alberto; Amaduzzi, Francesca; Jabeen, Fauzia; Davies, Christopher L; Joyce, Hannah J; Herz, Laura M; Fontcuberta i Morral, Anna; Johnston, Michael B

    2015-02-11

    Reliable doping is required to realize many devices based on semiconductor nanowires. Group III-V nanowires show great promise as elements of high-speed optoelectronic devices, but for such applications it is important that the electron mobility is not compromised by the inclusion of dopants. Here we show that GaAs nanowires can be n-type doped with negligible loss of electron mobility. Molecular beam epitaxy was used to fabricate modulation-doped GaAs nanowires with Al0.33Ga0.67As shells that contained a layer of Si dopants. We identify the presence of the doped layer from a high-angle annular dark field scanning electron microscopy cross-section image. The doping density, carrier mobility, and charge carrier lifetimes of these n-type nanowires and nominally undoped reference samples were determined using the noncontact method of optical pump terahertz probe spectroscopy. An n-type extrinsic carrier concentration of 1.10 ± 0.06 × 10(16) cm(-3) was extracted, demonstrating the effectiveness of modulation doping in GaAs nanowires. The room-temperature electron mobility was also found to be high at 2200 ± 300 cm(2) V(-1) s(-1) and importantly minimal degradation was observed compared with undoped reference nanowires at similar electron densities. In addition, modulation doping significantly enhanced the room-temperature photoconductivity and photoluminescence lifetimes to 3.9 ± 0.3 and 2.4 ± 0.1 ns respectively, revealing that modulation doping can passivate interfacial trap states. PMID:25602841

  7. Low thermal power electron beam annealing of scanning tunneling microscope tips

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Agne, M.; Breitenstein, O.; Jenniches, H.

    1997-08-01

    An add-on unit was developed that allows the cleaning of scanning tunneling microscope tips by electron beam annealing even if they cannot be disconnected from the piezo scanner in situ. The whole scanner tip combination, which is attached to a linear motion stage, is subjected to a pulsed annealing treatment. The heat impact is focused on the outermost tip by sticking the tip through a hole in a grounded Mo screening plate with the cathode mounted on the opposite side. Tungsten tips attached to the scanner of the Omicron ultrahigh vacuum Multiscan Lab were annealed to achieve atomic resolution of ultrahigh vacuum cleaved GaAs (110) faces. A highly doped superlattice package grown on semi-insulating GaAs was also able to be investigated on the cleaved (110) face due to the ability of exact tip positioning with a scanning electron microscope.

  8. Diffused P+-N solar cells in bulk GaAs

    NASA Technical Reports Server (NTRS)

    Borrego, J. M.; Ghandhi, S. K.

    1982-01-01

    Recently melt grown GaAs, made by liquid encapsulation techniques, has become available. This material is of sufficiently good quality to allow the fabrication of solar cells by direct diffusion. Results obtained with p(+)/n junction solar cells made by zinc diffusion are described. The quality of bulk GaAs for this application is evaluated.

  9. Image processing by four-wave mixing in photorefractive GaAs

    NASA Technical Reports Server (NTRS)

    Gheen, Gregory; Cheng, Li-Jen

    1987-01-01

    Three image processing experiments were performed by degenerate four-wave mixing in photorefractive GaAs. The experiments were imaging by phase conjugation, edge enhancement, and autocorrelation. The results show that undoped, semiinsulating, liquid-encapsulated Czochralski-grown GaAs crystals can be used as effective optical processing media despite their small electrooptic coefficient.

  10. 46 CFR Sec. 7 - Operation under current GAA/MSTS Southeast Asia Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... provisions of NSA Order 35 (OPR-2) to the particular circumstances of the present GAA/MSTS Southeast Asia... General Agency operations not related to the current GAA/MSTS Southeast Asia Program, NSA Order 35 (OPR-2... lieu of those appearing in sections 3 and 4 of NSA Order 35 (OPR-2). Continental United States ports...

  11. 46 CFR Sec. 7 - Operation under current GAA/MSTS Southeast Asia Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... provisions of NSA Order 35 (OPR-2) to the particular circumstances of the present GAA/MSTS Southeast Asia... General Agency operations not related to the current GAA/MSTS Southeast Asia Program, NSA Order 35 (OPR-2... lieu of those appearing in sections 3 and 4 of NSA Order 35 (OPR-2). Continental United States ports...

  12. 46 CFR Sec. 7 - Operation under current GAA/MSTS Southeast Asia Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... provisions of NSA Order 35 (OPR-2) to the particular circumstances of the present GAA/MSTS Southeast Asia... General Agency operations not related to the current GAA/MSTS Southeast Asia Program, NSA Order 35 (OPR-2... lieu of those appearing in sections 3 and 4 of NSA Order 35 (OPR-2). Continental United States ports...

  13. 46 CFR Sec. 7 - Operation under current GAA/MSTS Southeast Asia Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... provisions of NSA Order 35 (OPR-2) to the particular circumstances of the present GAA/MSTS Southeast Asia... General Agency operations not related to the current GAA/MSTS Southeast Asia Program, NSA Order 35 (OPR-2... lieu of those appearing in sections 3 and 4 of NSA Order 35 (OPR-2). Continental United States ports...

  14. Implementation and Performance of GaAs Digital Signal Processing ASICs

    NASA Technical Reports Server (NTRS)

    Whitaker, William D.; Buchanan, Jeffrey R.; Burke, Gary R.; Chow, Terrance W.; Graham, J. Scott; Kowalski, James E.; Lam, Barbara; Siavoshi, Fardad; Thompson, Matthew S.; Johnson, Robert A.

    1993-01-01

    The feasibility of performing high speed digital signal processing in GaAs gate array technology has been demonstrated with the successful implementation of a VLSI communications chip set for NASA's Deep Space Network. This paper describes the techniques developed to solve some of the technology and implementation problems associated with large scale integration of GaAs gate arrays.

  15. Optically Pumped NMR Studies of Mechanically Induced Strain in GaAs Films

    NASA Astrophysics Data System (ADS)

    Bowers, Clifford; Wood, Ryan; Tokarski, John, III; McCarthy, Lauren; Saha, Dipta; Stanton, Christopher; Moreno, Jesus

    2015-03-01

    We present a new methodology for measuring strain in semiconductor films based on optically pumped NMR (OPNMR). Single crystals of GaAs were epoxy bonded to Si wafers at 100 °C. The GaAs is then variably thinned by selective chemical etching. Upon cooling, biaxial tensile strains are induced in the GaAs films since the coefficient of thermal expansion in GaAs is different than in the Si support. OPNMR experiments were carried out at 6-10 K. The OPNMR spectra are selective to nuclei within a photon penetration depth from the surface. When mounted on a 0.635 mm thick Si support, the strain, which is proportional to the observed quadrupole splitting, is found to decrease with increasing thickness of the GaAs films and appears to approach a residual value. When the same GaAs film is mounted on a thicker 5mm Si block, the strain increased. To explain the observations, we consider effects of dislocation relaxation of strain and bending of the composite. The interface strain extracted from the measurements is 5.5 × 10-4, in good agreement with the value estimated using the differential thermal contraction of Si and GaAs. The strain resolution of the technique is about 10-5 in GaAs.

  16. Prediction of dislocation generation during Bridgman growth of GaAs crystals

    NASA Technical Reports Server (NTRS)

    Tsai, C. T.; Yao, M. W.; Chait, Arnon

    1992-01-01

    Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.

  17. Heterogeneous integration of GaAs pHEMT and Si CMOS on the same chip

    NASA Astrophysics Data System (ADS)

    Li-Shu, Wu; Yan, Zhao; Hong-Chang, Shen; You-Tao, Zhang; Tang-Sheng, Chen

    2016-06-01

    In this work, we demonstrate the technology of wafer-scale transistor-level heterogeneous integration of GaAs pseudomorphic high electron mobility transistors (pHEMTs) and Si complementary metal–oxide semiconductor (CMOS) on the same Silicon substrate. GaAs pHEMTs are vertical stacked at the top of the Si CMOS wafer using a wafer bonding technique, and the best alignment accuracy of 5 μm is obtained. As a circuit example, a wide band GaAs digital controlled switch is fabricated, which features the technologies of a digital control circuit in Si CMOS and a switch circuit in GaAs pHEMT, 15% smaller than the area of normal GaAs and Si CMOS circuits.

  18. Stalled DNA Replication Forks at the Endogenous GAA Repeats Drive Repeat Expansion in Friedreich's Ataxia Cells.

    PubMed

    Gerhardt, Jeannine; Bhalla, Angela D; Butler, Jill Sergesketter; Puckett, James W; Dervan, Peter B; Rosenwaks, Zev; Napierala, Marek

    2016-08-01

    Friedreich's ataxia (FRDA) is caused by the expansion of GAA repeats located in the Frataxin (FXN) gene. The GAA repeats continue to expand in FRDA patients, aggravating symptoms and contributing to disease progression. The mechanism leading to repeat expansion and decreased FXN transcription remains unclear. Using single-molecule analysis of replicated DNA, we detected that expanded GAA repeats present a substantial obstacle for the replication machinery at the FXN locus in FRDA cells. Furthermore, aberrant origin activation and lack of a proper stress response to rescue the stalled forks in FRDA cells cause an increase in 3'-5' progressing forks, which could enhance repeat expansion and hinder FXN transcription by head-on collision with RNA polymerases. Treatment of FRDA cells with GAA-specific polyamides rescues DNA replication fork stalling and alleviates expansion of the GAA repeats, implicating DNA triplexes as a replication impediment and suggesting that fork stalling might be a therapeutic target for FRDA. PMID:27425605

  19. A study of binding biotinylated nano-beads to the surface of (001) GaAs

    NASA Astrophysics Data System (ADS)

    Ding, Ximing; Moumanis, Khalid; Dubowski, Jan J.; Frost, Eric H.

    2006-02-01

    We have investigated the deposition of biotinylated nano-beads on the surface of GaAs. The deposition procedure involved either direct coating of (001) GaAs with nano-beads, or binding the nano-beads with avidin immobilized on the surface of (001) GaAs through the interface of biotin and the NH II terminal group of 11-amino-1-undecanethiol (HS(CH II) 11NH II). The efficiency of binding was tested by washing the samples in a solution of a commercial detergent and by subjecting them to a deionized water ultrasonic bath. The results indicate that nano-beads deposited directly on the surface of (001) GaAs withstand the detergent washing test but they are easily removed by ultrasonic washing. In contrast, the nano-beads attached to (001) GaAs through the avidin-biotin-thiol interface survive the ultrasonic washing tests.

  20. Micromechanical Switches on GaAs for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Randall, John N.; Goldsmith, Chuck; Denniston, David; Lin, Tsen-Hwang

    1995-01-01

    In this presentation, we describe the fabrication of micro-electro-mechanical system (MEMS) devices, in particular, of low-frequency multi-element electrical switches using SiO2 cantilevers. The switches discussed are related to micromechanical membrane structures used to perform switching of optical signals on silicon substrates. These switches use a thin metal membrane which is actuated by an electrostatic potential, causing the switch to make or break contact. The advantages include: superior isolation, high power handling capabilities, high radiation hardening, very low power operations, and the ability to integrate onto GaAs monolithic microwave integrated circuit (MMIC) chips.

  1. Molecular dynamics simulations of displacement cascades in GaAs.

    SciTech Connect

    Foiles, Stephen Martin

    2010-04-01

    The quantification of the production of primary defects via displacement cascades is an important ingredient in the prediction of the influence of radiation on the performance of electronic components in radiation environments. Molecular dynamics simulations of displacement cascades are performed for GaAs The interatomic interactions are described using a recently proposed Bond Order Potential, and a simple model of electronic stopping is incorporated. The production of point defects is quantified as a function of recoil energy and recoil species. Correlations in the point defects are examined. There are a large number of anti-site defects nearest-neighbor pairs as well as di-vacancies and larger order vacancy clusters. Radiation damage and ion implantation in materials have been studied via molecular dynamics for many years. A significant challenge in these simulations is the detailed identification and quantification of the primary defect production. For the present case of a compound semiconductor, GaAs, there are a larger number of possible point defects compared to elemental materials; two types of vacancies, two types of interstitials and antisite defects. This is further complicated by the fact that, in addition to the formation of point defects, amorphous zones may also be created. The goal of the current work is to quantify the production of primary defects in GaAs due to radiation exposures. This information will be used as part of an effort to predict the influence of radiation environments on the performance of electronic components and circuits. The data provide the initial state for continuum-level analysis of the temporal evolution of defect populations. For this initial state, it is important to know both the number of the various point defects that may be produced as well as the initial spatial correlations between the primary defects. The molecular dynamics simulations employ a recently developed Bond Order Potential (BOP) for GaAs. The analysis

  2. Optical modulator based on GaAs photonic crystals

    NASA Astrophysics Data System (ADS)

    Li, Jiusheng

    2005-11-01

    In this letter, we propose a novel optical modulator based on GaAs photonic crystals and investigate its optically properties numerically by using the finite-difference time-domain method. The position of the cutoff frequency can be varied by free carriers injection, and the band gap shift can be observed. Band gap shift is used to modulate light. Bing several micrometers length, low insertion loss, and large extinction ratios, the modulator can be used in ultra-small and ultra-dense photonic integrated circuits.

  3. 17 GHz low noise GaAs FET amplifier

    NASA Astrophysics Data System (ADS)

    Bharj, J. S.

    1984-10-01

    The considered amplifier is suitable for use as the first stage in a direct broadcast TV satellite receiver, and it was specifically designed for the Unisat spacecraft. Attention is given to RF device characterization, the design of the low-noise FET amplifier, the very significant dispersion effects at 17 GHz, the noise figure, and questions of DC bias. Balanced stages are used for low-noise and high-gain amplifiers to enhance the reliability. The noise figure of the amplifier is approximately 3.75 dB in the frequency band of interest. A low-noise microstrip GaAs FET amplifier circuit is shown.

  4. Coupling reactions of trifluoroethyl iodide on GaAs(100)

    NASA Astrophysics Data System (ADS)

    Singh, N. K.; Kemp, N. T.; Paris, N.; Balan, V.

    2004-07-01

    We report on the reactions of 2-iodo-1,1,1-trifluoroethane (CF3CH2I) on gallium-rich GaAs(100)-(4×1), studied using the techniques of temperature programmed desorption and x-ray photoelectron spectroscopy. The study is to provide evidence for the formation of a higher fluorinated alkene, 1,1,4,4,4-pentafluoro-1-butene (CF2=CHCH2CF3) and alkane, 1,1,1,4,4,4-hexafluorobutane (CF3CH2CH2CF3) from the coupling reactions of covalently bonded surface alkyl (CF3CH2•) moieties. CF3CH2I adsorbs nondissociatively at 150 K. Thermal dissociation of this weakly chemisorbed state occurs below room temperature to form adsorbed CF3CH2• and I• species. The surface CF3CH2• species undergoes β-fluoride elimination to form gaseous CF2=CH2 and this represents the major pathway for the removal of CF3CH2• species from the surface. In competition with the β-fluoride elimination process the adsorbed CF3CH2• species also undergoes, recombination with surface iodine atoms to form recombinative molecular CF3CH2I, olefin insertion reaction with CF2=CH2 to form gaseous CF2=CHCH2CF3, and last self-coupling reaction to form CF3CH2CH2CF3. The adsorbed surface iodine atoms, formed by the dissociation of the molecularly chemisorbed CF3CH2I, and fluorine atoms formed during the β-fluoride elimination reaction, both form etch products (GaI, GaF, AsI, AsF, and As2) by their reactions with the surface layer Ga atoms, subsurface As atoms, and GaAs substrate. In this article we discuss the mechanisms by which these products form from the adsorbed CF3CH2• and I• species, and the role that the GaAs surface plays in the proposed reaction pathways. We compare the reactivity of the GaAs surface with transition metals in its ability to facilitate dehydrogenation and coupling reactions in adsorbed alkyl species. .

  5. Quantum effects in electron beam pumped GaAs

    SciTech Connect

    Yahia, M. E.; Azzouz, I. M.; Moslem, W. M.

    2013-08-19

    Propagation of waves in nano-sized GaAs semiconductor induced by electron beam are investigated. A dispersion relation is derived by using quantum hydrodynamics equations including the electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures. It is found that the propagating modes are instable and strongly depend on the electron beam parameters, as well as the quantum recoil effects and degenerate pressures. The instability region shrinks with the increase of the semiconductor number density. The instability arises because of the energetic electron beam produces electron-hole pairs, which do not keep in phase with the electrostatic potential arising from the pair plasma.

  6. Rare Earth Doped Semiconductors and Materials Research Society Symposium Proceedings, Volume 301

    NASA Astrophysics Data System (ADS)

    Ballance, John

    1994-02-01

    The properties of rare earth ions in solids were studied in detail for decades, but until recently this work was restricted to dominantly ionic hosts such as fluorides and oxides, and to a lesser extent to more covalently bonded hosts, such as tetrahedral 2-6 semiconductors. The idea of rare earth elements incorporated into covalent semiconductors such as GaAs and Si may be traced to a short communication in 1963 by R.L. Bell (J. Appl. Phys. 34, 1563 (1963)) proposing a dc-pumped rare earth laser. At about the same time, three unpublished technical reports appeared as a result of U.S. Department of Defense sponsored research in rare earth doped Si, GaAs, and InP to fabricate LED's. Attempts by other researchers to identify sharp 4f specific emissions in these hosts essentially failed.

  7. Scratch encourages selective doping

    NASA Technical Reports Server (NTRS)

    Hawrylo, F. Z.; Kressel, H.

    1980-01-01

    Dislocations induced by scratching produce deep narrow spikes of zinc diffused in gallium arsenide. Density of defects formed locally increases zinc diffusion coefficient. Enhancements by factor of 6 have been observed. Technique works for other dopants than zinc and for other semiconductors besides GaAs.

  8. High-efficiency nanostructured window GaAs solar cells.

    PubMed

    Liang, Dong; Kang, Yangsen; Huo, Yijie; Chen, Yusi; Cui, Yi; Harris, James S

    2013-10-01

    Nanostructures have been widely used in solar cells due to their extraordinary optical properties. In most nanostructured cells, high short circuit current has been obtained due to enhanced light absorption. However, most of them suffer from lowered open circuit voltage and fill factor. One of the main challenges is formation of good junction and electrical contact. In particular, nanostructures in GaAs only have shown unsatisfactory performances (below 5% in energy conversion efficiency) which cannot match their ideal material properties and the record photovoltaic performances in industry. Here we demonstrate a completely new design for nanostructured solar cells that combines nanostructured window layer, metal mesa bar contact with small area, high quality planar junction. In this way, we not only keep the advanced optical properties of nanostructures such as broadband and wide angle antireflection, but also minimize its negative impact on electrical properties. High light absorption, efficient carrier collection, leakage elimination, and good lateral conductance can be simultaneously obtained. A nanostructured window cell using GaAs junction and AlGaAs nanocone window demonstrates 17% energy conversion efficiency and 0.982 V high open circuit voltage. PMID:24021024

  9. 28 percent efficient GaAs concentrator solar cells

    NASA Technical Reports Server (NTRS)

    Macmillan, H. F.; Hamaker, H. C.; Kaminar, N. R.; Kuryla, M. S.; Ladle Ristow, M.

    1988-01-01

    AlGaAs/GaAs heteroface solar concentrator cells which exhibit efficiencies in excess of 27 percent at high solar concentrations (over 400 suns, AM1.5D, 100 mW/sq cm) have been fabricated with both n/p and p/n configurations. The best n/p cell achieved an efficiency of 28.1 percent around 400 suns, and the best p/n cell achieved an efficiency of 27.5 percent around 1000 suns. The high performance of these GaAs concentrator cells compared to earlier high-efficiency cells was due to improved control of the metal-organic chemical vapor deposition growth conditions and improved cell fabrication procedures (gridline definition and edge passivation). The design parameters of the solar cell structures and optimized grid pattern were determined with a realistic computer modeling program. An evaluation of the device characteristics and a discussion of future GaAs concentrator cell development are presented.

  10. Step-step interactions on GaAs (110) nanopatterns

    SciTech Connect

    Galiana, B.; Benedicto, M.; Tejedor, P.

    2013-01-14

    The step-step interactions on vicinal GaAs (110) surface patterns have been extracted from the quantitative analysis of the terrace width distribution (TWD). We have specifically studied the interactions in near-equilibrium faceting and kinetics-driven step bunching and meandering formed by spontaneous self-organization or through the modification of GaAs growth kinetics by atomic hydrogen. We show that the experimental TWDs determined from atomic force microscopy measurements can be accurately described by a weighed sum of a generalized Wigner distribution and several Gaussians. The results of our calculations indicate that straight facets are formed during high temperature homoepitaxy due to attractive interactions between [110] steps. At low temperatures, steady state attractive interactions in [110] step bunches are preceded by a transition regime dominated by entropic and energetic repulsions between meandering [11n]-type steps (n {>=} 2), whose population density exceeds that of the [110] bunched steps. In addition, it has been found that atomic H reduces the attractive interactions between [110] bunched steps and enhances entropic and dipole-induced energetic repulsions between H-terminated [11n] steps through the inhibition of As-As bond formation at step edges. Our analysis has evidenced a correlation between the value of the adjustable parameter that accounts in our model for the specific weight of the secondary peaks in the TWD ({beta}) and the extent of transverse meandering on the vicinal surface.

  11. Phase Transformation in Radially Merged Wurtzite GaAs Nanowires

    PubMed Central

    2015-01-01

    III–V Nanowires (NWs) grown with metal–organic chemical vapor deposition commonly show a polytypic crystal structure, allowing growth of structures not found in the bulk counterpart. In this paper we studied the radial overgrowth of pure wurtzite (WZ) GaAs nanowires and characterized the samples with high resolution X-ray diffraction (XRD) to reveal the crystal structure of the grown material. In particular, we investigated what happens when adjacent WZ NWs radially merge with each other by analyzing the evolution of XRD peaks for different amounts of radial overgrowth and merging. By preparing cross-sectional lamella samples we also analyzed the local crystal structure of partly merged NWs by transmission electron microscopy. Once individual NWs start to merge, the crystal structure of the merged segments is transformed progressively from initial pure WZ to a mixed WZ/ZB structure. The merging process is then modeled using a simple combinatorial approach, which predicts that merging of two or more WZ NWs will result in a mixed crystal structure containing WZ, ZB, and 4H. The existence large and relaxed segments of 4H structure within the merged NWs was confirmed by XRD, allowing us to accurately determine the lattice parameters of GaAs 4H. We compare the measured WZ and 4H unit cells with an ideal tetrahedron and find that both the polytypes are elongated in the c-axis and compressed in the a-axis compared to the geometrically converted cubic ZB unit cell. PMID:26494983

  12. Image processing using Gallium Arsenide (GaAs) technology

    NASA Technical Reports Server (NTRS)

    Miller, Warner H.

    1989-01-01

    The need to increase the information return from space-borne imaging systems has increased in the past decade. The use of multi-spectral data has resulted in the need for finer spatial resolution and greater spectral coverage. Onboard signal processing will be necessary in order to utilize the available Tracking and Data Relay Satellite System (TDRSS) communication channel at high efficiency. A generally recognized approach to the increased efficiency of channel usage is through data compression techniques. The compression technique implemented is a differential pulse code modulation (DPCM) scheme with a non-uniform quantizer. The need to advance the state-of-the-art of onboard processing was recognized and a GaAs integrated circuit technology was chosen. An Adaptive Programmable Processor (APP) chip set was developed which is based on an 8-bit slice general processor. The reason for choosing the compression technique for the Multi-spectral Linear Array (MLA) instrument is described. Also a description is given of the GaAs integrated circuit chip set which will demonstrate that data compression can be performed onboard in real time at data rate in the order of 500 Mb/s.

  13. GaAs clean up studied with synchrotron radiation photoemission

    NASA Astrophysics Data System (ADS)

    Tallarida, Massimo; Adelmann, Christoph; Delabie, Annelies; van Elshocht, Sven; Caymax, Matty; Schmeisser, Dieter

    2012-12-01

    In this contribution we describe the chemical changes at the surface of GaAs upon adsorption of tri-methyl-aluminum (TMA). TMA is used to grow Al2O3 with atomic layer deposition (ALD) usually using H2O as oxygen source. Recently, it was pointed out that the adsorption of TMA on various III-V surfaces reduces the native oxide, allowing the growth of an abrupt III-V/High-K interface with reduced density of defects. Synchrotron radiation photoemission spectroscopy (SR-PES) is a powerful method to characterize surfaces and interfaces of many materials, as it is capable to determine their chemical composition as well as the electronic properties. We performed in-situ SR-PES measurements after exposing a GaAs surface to TMA pulses at about 250°C. Upon using the possibility of tuning the incident photon energy we compared the Ga3d spectra at 41 eV, 71 eV, 91 eV and 121 eV, as well as the As3d at 71 eV and 91 eV. Finally, we show that using SR-PES allows a further understanding of the surface composition, which is usually not accessible with other techniques.

  14. Subnanosecond, high voltage photoconductive switching in GaAs

    SciTech Connect

    Druce, R.L.; Pocha, M.D.; Griffin, K.L. ); O'Bannon, B.J. )

    1990-01-01

    We are conducting research on the switching properties of photoconductive materials to explore their potential for generating high-power microwaves (HPM) and for high rep-rate switching. We have investigated the performance of Gallium Arsenide (GaAs) in linear mode (the conductivity of the device follows the optical pulse) as well as an avalanche-like mode (the optical pulse only controls switch closing). Operating in the linear mode, we have observed switch closing times of less than 200 ps with a 100 ps duration laser pulse and opening times of less than 400 ps at several kV/cm fields using neutron irradiated GaAs. In avalanche and lock-on modes, high fields are switched with lower laser pulse energies, resulting in higher efficiencies; but with measurable switching delay and jitter. We are currently investigating both large area (1 cm{sup 2}) and small area (<1 mm{sup 2}) switches illuminated by AlGaAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 {mu}m.

  15. Sol-gel derived ? thin films on GaAs

    NASA Astrophysics Data System (ADS)

    Arscott, S.; Smith, N.; Kurchania, R.; Milne, S. J.; Miles, R. E.

    1998-02-01

    Sol-gel derived thin films of lead zirconate titanate (PZT) have been fabricated on a platinized GaAs substrate using a propane-1,3-diol based sol-gel route. PZT can be used as the piezoelectric component in bulk acoustic wave devices for monolithic microwave integrated circuit applications. A 100 nm silicon nitride buffer layer was deposited onto the GaAs by plasma-enhanced chemical vapour deposition in order to prevent gallium and arsenic outdiffusion during film fabrication. Rapid thermal processing (RTP) techniques were employed to decompose thermally the sol-gel layer to PZT in a further effort to minimize problems of gallium and arsenic outdiffusion. Adhesion between the bottom electrode and substrate was found to improve when an intermediate titanium layer deposited between the platinum and silicon nitride was oxidized prior to deposition of the platinum electrode. A crystalline PZT film was produced on the 0268-1242/13/2/016/img9 substrate configuration by firing the sol-gel coating at 0268-1242/13/2/016/img10C for 10 s using RTP. A single deposition of sol resulted in a film having a thickness of 0268-1242/13/2/016/img11. Ferroelectric hysteresis measurements yielded average values of remanant polarization and coercive field of 0268-1242/13/2/016/img12 and 0268-1242/13/2/016/img13 respectively.

  16. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    1985-01-01

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  17. Preparation of pulse plated GaAs films

    NASA Astrophysics Data System (ADS)

    Murali, K. R.; Trivedi, D. C.

    2006-07-01

    Thin GaAs films were prepared by pulse plating from an aqueous solution containing 0.20 M GaCl3 and 0.15 M As2O3 at a pH of 2 and at room temperature. The current density was kept as 50 mA cm-2 the duty cycle was varied in the range 10 50%. The films were deposited on titanium, nickel and tin oxide coated glass substrates. Films exhibited polycrystalline nature with peaks corresponding to single phase GaAs. Optical absorption measurements indicated a direct band gap of 1.40 eV. Photoelectrochemical cells were made using the films as photoelectrodes and graphite as counter electrode in 1 M polysulphide electrolyte. At 60 mW cm-2 illumination, an open circuit voltage of 0.5 V and a short circuit current density of 5.0 mA cm-2 were observed for the films deposited at a duty cycle of 50%.

  18. Cryogenic measurements of aerojet GaAs n-JFETs

    NASA Technical Reports Server (NTRS)

    Goebel, John H.; Weber, Theodore T.; Van Rheenen, Arthur D.; Jostad, Leon; Kim, Joo-Young; Gable, Ben

    1992-01-01

    The spectral noise characteristics of Aerojet GaAs n-JFETs have been investigated down to liquid helium temperatures. Voltage noise characterization was performed with the FET in 1) the floating gate mode, 2) the grounded gate mode to determine the lowest noise readings possible and 3) with an extrinsic silicon photodetector at various detector bias voltages, to determine optimum operating conditions. Current noise characterization was measured at the drain in the temperature range 300 to 77 K. Device design and MBE processing are described. Static I-V characterization is done at 300, 77 and 6 K. The measurements indicate that the Aerojet GaAs n-JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered as a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to that of Si MOSFETs operating at liquid helium temperatures, and is equal to the best Si n-JFETs operating at 300 K.

  19. Thermally stable oxygen and nitrogen implant isolation of C-doped Al{sub 0.35}Ga{sub 0.65}As

    SciTech Connect

    Zolper, J.C.; Sherwin, M.E.; Baca, A.G.; Schneider, R.P. Jr.

    1993-12-31

    Oxygen and nitrogen ion implantation have been applied to C-doped Al{sub 0.35}Ga{sub 0.65}As layers to produce high resistivity regions ({rho}{sub s} {ge} l {times} 10{sup 10} {Omega}/{open_square} that are stable after annealing at 900C. A dose threshold for stable compensation for both O and N ions was found above 8 {times} 10{sup l3} cm{sup {minus}2} for samples doped at 2 {times} 10{sup l8} cm{sup {minus}3}. Although O implantation has been reported to form stable compensation in Si-doped and Be-doped AlGaAs, the ability of nitrogen implantation to produce thermally stable compensation has not been previously reported and may be due to a C-N complex. The existence of this C-N complex is supported by results for O- and N-implants into C-doped GaAs where N formed thermally stable compensation but O did not. Sheet resistance data versus anneal temperature and estimates of the depth of the defect levels are reported. This result will have application to hetcrojunction bipolar transistors and complementary heterostructure field effect transistor technologies that employ C-doped AlGaAs or GaAs layers along with high temperature post-isolation processing.

  20. Experimental demonstration of strained Si nanowire GAA n-TFETs and inverter operation with complementary TFET logic at low supply voltages

    NASA Astrophysics Data System (ADS)

    Luong, G. V.; Strangio, S.; Tiedemannn, A.; Lenk, S.; Trellenkamp, S.; Bourdelle, K. K.; Zhao, Q. T.; Mantl, S.

    2016-01-01

    In this work, strained Si (sSi) nanowire array of n-TFETs with gates all around (GAA) yielding ON-currents of 5 μA/μm at a supply voltage Vdd = 0.5 V are presented. Tilted ion implantation with BF2+ into NiSi2 dopant has been used to form a highly doped pocket for the source to channel tunneling junction. These devices indicate sub-threshold slopes (SS) below 60 mV/dec for Id < 10-4 μA/μm at Vds = 0.1 V at room temperature. Common analog device characteristics have been determined at Vdd = 0.5 V resulting in a transconductance gm = 24 μS/μm, transconductance efficiency gm/Id = 23 V-1 and the conductance gd = 0.8 μS/μm normalized to the gate width. Based on the good saturation behavior in the output characteristic, an intrinsic gain of 188 is observed. In addition, we present operation of the first experimental sSi GAA NW C-TFET inverter. In spite of ambipolar behavior, the voltage transfer curves (VTC) indicate wide and constant noise margin levels with steep transitions offering a voltage gain of 25 at Vdd = 1 V.

  1. Six-fold hexagonal symmetric nanostructures with various periodic shapes on GaAs substrates for efficient antireflection and hydrophobic properties.

    PubMed

    Leem, Jung Woo; Song, Young Min; Yu, Jae Su

    2011-12-01

    We fabricated various periodic nanostructures with a six-fold hexagonal symmetry on gallium arsenide (GaAs) substrates using simple process steps, together with a theoretical analysis of their antireflective properties. Elliptical photoresist (PR) nanopillars, which are inevitably generated by the asymmetric intensity distribution of the laser interference, were converted to rounded lens-like patterns by a thermal reflow process without any additional complex optic systems, thus leading to an exact six-fold hexagonal symmetry. Various shaped periodic nanostructures including nanorods, cones, truncated cones, and even parabolic patterns were obtained under different etching conditions using the rounded lens-like PR patterns formed by the reflow process. For the parabolic structure, the calculated lowest average reflectance of ∼ 2.3% was obtained. To achieve better antireflection characteristics, an aluminum-doped zinc oxide (AZO) film was deposited on the GaAs parabolas, which forms an AZO/GaAs parabolic nanostructure. The structure exhibited a low average reflectance of ∼ 1.2% over a wide wavelength region of 350-1800 nm and a hydrophobic surface with a water contact angle of θ(c) ∼ 115°. The calculated reflectances were reasonably consistent with the measured results. PMID:22071365

  2. Performance and temperature dependencies of proton irradiated n/p GaAs and n/p silicon cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1985-01-01

    The n/p homojunction GaAs cell is found to be more radiation resistant than p/nheteroface GaAs under 10 MeV proton irradiation. Both GaAs cell types outperform conventional silicon n/p cells under the same conditions. An increase temperature dependency of maximum power for the GaAs n/p cells is attributed largely to differences in Voc between the two GaAs cell types. These results and diffusion length considerations are consistent with the conclusion that p-type GaAs is more radiation resistant than n-type and therefore that the n/p configuration is possibly favored for use in the space radiation environment. However, it is concluded that additional work is required in order to choose between the two GaAs cell configurations.

  3. Vibrational mode Fourier Transform Spectroscopy with a diamond anvil cell: Modes of the Si DX center and S related centers in GaAs

    SciTech Connect

    Wolk, J.A.; Haller, E.E. |; Heyman, J.N.; Jeanloz, R.; Beeman, J.W.; Guitron, J.G.; Bourret, E.D.; Walukiewicz, W.W.

    1992-12-31

    The authors report the first use of the diamond anvil cell to observe the local modes of impurities in GaAs under large hydrostatic pressure by Fourier Transform Spectroscopy. These observations were accomplished by constructing a monolithic assembly which has a light concentrating cone in front of the diamond anvil cell and a Ge:Be photoconductor detector designed to operate at low photon fluxes mounted directly behind the cell. This technique has been used to discover a local vibrational mode of the DX center in GaAs:Si and, in combination with Hall effect and resistivity analysis, to infer that the charge state of this defect is negative. This new spectroscopic tool has also been used to identify new LVMs in heavily doped GaAs:S which are due to sulfur related centers.

  4. Enhanced spin-polarization lifetimes in a two-dimensional electron gas in a gate-controlled GaAs quantum well

    NASA Astrophysics Data System (ADS)

    Anghel, Sergiu; Singh, Akshay; Passmann, Felix; Iwata, Hikaru; Moore, John N.; Yusa, Go; Li, Xiaoqin; Betz, Markus

    2016-07-01

    Exciton, trion, and electron spin dynamics in a 20-nm-wide modulation-doped GaAs single quantum well are investigated using resonant ultrafast two-color Kerr rotation spectroscopy. Excitons and trions are selectively detected by resonant probe pulses while their relative spectral weight is controlled by adjusting the gate voltage which tunes the carrier density. Tuning the carrier density markedly influences the spin decay time of the two-dimensional electron gas. The spin decay time can be enhanced by a factor of 3 at an intermediate carrier concentration in the quantum well where excitons and trions coexist in the system. In addition, we explore the capability to tune the g factor of the electron gas via the carrier density.

  5. Optically Pumped NMR Evidence for Finite-Size Skyrmions in GaAs Quantum Wells near Landau Level Filling ν = 1

    NASA Astrophysics Data System (ADS)

    Barrett, S. E.; Dabbagh, G.; Pfeiffer, L. N.; West, K. W.; Tycko, R.

    1995-06-01

    The Knight shift [Ks\\(ν,T\\)] and spin-lattice relaxation time [T1\\(ν,T\\)] of the 71Ga nuclei located in n-doped GaAs quantum wells are measured using optically pumped NMR, for Landau level filling 0.66<ν<1.76 and temperature 1.55] drops precipitously on either side of ν = 1, which is evidence that the charged excitations of the ν = 1 ground state are finite-size Skyrmions. For ν<1, the data are consistent with a many-body ground state which is not fully spin polarized, with a very small spin excitation gap that increases as ν-->23.

  6. Doped Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Olson Reichhardt, Cynthia; Libal, Andras; Reichhardt, Charles

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Unlike magnetic artificial spin ices, colloidal and vortex artificial spin ice realizations allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloids is suppressed near the doping sites. These results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.

  7. Relationship between planar GaAs nanowire growth direction and substrate orientation

    NASA Astrophysics Data System (ADS)

    Dowdy, Ryan S.; Walko, Donald A.; Li, Xiuling

    2013-01-01

    Planar GaAs nanowires are epitaxially grown on GaAs substrates of various orientations, via the Au-catalyzed vapor-liquid-solid mechanism using metal organic chemical vapor deposition. The nanowire geometry and growth direction are examined using scanning electron microscopy and x-ray microdiffraction. A hypothesis relating the planar nanowire growth direction to the surface projections of <111> B crystal directions is proposed. GaAs planar nanowire growth on vicinal substrates is performed to test this hypothesis. Good agreement between the experimental results and the projection model is found.

  8. Heteroepitaxial InP solar cells on Si and GaAs substrates

    NASA Technical Reports Server (NTRS)

    Weinberg, Irving; Swartz, Clifford K.; Brinker, David J.

    1990-01-01

    The characteristics of InP cells processed from thin layers of InP heteroepitaxially grown on GaAs, on silicon with an intervening GaAs layer, and on GaAs with intervening Ga(x)In(1-x)As layers are described, and the factors affecting cell efficiency are discussed. Under 10 MeV proton irradiations, the radiation resistances of the heteroepitaxial cells were superior to that of homoepitaxial InP cells. The superior radiation resistance is attributed to the high dislocation densities present in the heteroepitaxial cells.

  9. Photonic crystal thin films of GaAs prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Povey, I. M.; Whitehead, D.; Thomas, K.; Pemble, M. E.; Bardosova, M.; Renard, J.

    2006-09-01

    Photonic crystal thin films were fabricated via the self-assembly of a lattice of silica spheres on silicon (100) substrates. Progressive infilling of the air spaces within the structure with GaAs was achieved using trimethylgallium and arsine under atomic-layer-deposition conditions. Samples with the highest levels of GaAs infill were subsequently inverted using selective etching. Reflectance spectra are interpreted via the Bragg expression and calculated photonic band structure diagrams. For GaAs infilled and inverted samples, the relative positions of the first and second order Bragg reflections are strongly influenced by the wavelength dependent refractive index.

  10. Arsenic ambient conditions preventing surface degradation of GaAs during capless annealing at high temperatures

    NASA Technical Reports Server (NTRS)

    Kang, C. H.; Kondo, K.; Lagowski, J.; Gatos, H. C.

    1987-01-01

    Changes in surface morphology and composition caused by capless annealing of GaAs were studied as a function of annealing temperature, T(GaAs), and the ambient arsenic pressure controlled by the temperature, T(As), of an arsenic source in the annealing ampul. It was established that any degradation of the GaAs surface morphology could be completely prevented, providing that T(As) was more than about 0.315T(GaAs) + 227 C. This empirical relationship is valid up to the melting point temperature of GaAs (1238 C), and it may be useful in some device-processing steps.

  11. High resolution electron microscopy of GaAs capped GaSb nanostructures

    SciTech Connect

    Molina Rubio, Sergio I; Beltran, AM; Ben, Teresa; Galindo, P.L.; Taboada, Alfonso G; Chisholm, Matthew F

    2012-01-01

    We show in this work that GaAs capping of 2 ML of GaSb grown by molecular beam epitaxy results in the formation of very small (with heights of about 1 nm) GaAsxSb1 x nanostructures surrounded by a GaAs rich layer. This conclusion is obtained by analyzing the morphology of the GaAsxSb1 x nanostructures by high resolution scanning transmission electron microscopy in Z-contrast mode. This result shows that a significant fraction of the Sb atoms must segregate along the growth direction during the GaAs capping process.

  12. Epitaxial and polycrystalline GaAs solar cells using OM-CVD techniques

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.; Wang, K. L.; Shin, B. K.; Stirn, R. J.

    1980-01-01

    GaAs epitaxial films were grown by chemical vapor deposition using organo-metallic sources (OM-CVD) on single crystal and polycrystalline bulk GaAs, as well as on bulk polycrystalline and recrystallized thin-film Ge substrates. Details of Antireflecting Metal-Oxide-Semiconductor (AMOS) solar cells fabricated on GaAs films grown on bulk polycrystalline Ge and recrystallized Ge thin-film substrates will be discussed, as well as preliminary photovoltaic results obtained for n(+)/p homojunction structures.

  13. Surface and coordination chemistry related to GaAs

    NASA Astrophysics Data System (ADS)

    Keys, Andrea

    The vapor phase structures of Al(tBU)3 and Ga(tBU)3 have been investigated by gas phase electron diffraction and consist of planar three-coordinate monomers. Salient structural parameters (ra) include: Al-C = 2.005(3) A, Ga-C = 2.034(2) A. The geometries are controlled by inter-ligand interactions. The electron diffraction structures are compared to those determined by ab initio calculations for M(tBU)3 (M = Al, Ga, In). To understand the most suitable linkages for the surface of GaAs, model compounds were synthesized by reacting Ga(tBU)3 and [tBu2Ga(mu-Cl]2 with one molar equivalent of varying ligands. The synthesized compounds include chlorides, benzenethiolate, dithiocarbamates, carboxylates, amides, benzohydroxamate, and phenylphosphonate. The Ga ⋯ Ga and Ga-ligand interatomic distances for these compounds, as well as Group 15 and 16 donor bridging ligands, are compared to the values for the surface of GaAs and cubic-GaS in order to determine their suitability as linkage groups for self-assembled monolayers. The most suitable linkages were determined to be benzenethiol and phenylphophonic acid, and these were used to grow self-assembled monolayers on {100} GaAs. Carboxylic acid was also used, to determine the success of the organometallic model compounds in predicting the suitability of ligands for surface reaction. Self-assembled monolayers were also grown on Al2O3, using carboxylic acids and phenylphosphonic acids as the surface linkages. Metallo-organic chemical vapor deposition was performed using single-source precursors ( tBU)2Ga(S2CNR2). The tert -butyl gallium bis-dialkyl-dithiocarbamate compounds, (tBu)Ga(S2CNR2)2, are formed as minor products via ligand disproportionation reactions. Gallium sulfide (GaS) thin films have been grown at 375-425°C by atmospheric pressure metal-organic chemical vapor deposition using compounds (tBu) 2Ga(S2CNMe2) and (tBu)2Ga(S 2CNEt2) as single source precursors. Polycrystalline samples of the chalcogenides InSe, In2Se3

  14. Assembly of Submicron Ferromagnets in GaAs Semiconductors*

    NASA Astrophysics Data System (ADS)

    Shi, Jing

    1996-03-01

    Spin-dependent electronic phenomena discovered in nanoscale metallic systems have raised interesting scientific questions regarding spin interactions and are currently finding technological applications. In particular, incorporating microscopic magnets within semiconducting compounds offers the exciting possibility of combining local magnetism with the flexibility of semiconductor-based quantum electronic structures. This work demonstrates that submicron room-temperature ferromagnets have been successfully formed in GaAs semiconductors through a simple process of ion implantation and subsequent heat treatment (J. Shi et al), Nature 377, 707 (1995); J. Shi et al, J. Appl. Phys. (accepted for publication, 1996).. A combination of transmission electron, atomic force, and magnetic force microscopies have been used in conjunction with magnetization measurements to directly examine the structural and magnetic properties of this new system. After Mn^+-implantation at various doses, rapid thermal annealing crystallizes in situ submicron GaMn ferromagnetic particles ( ~ 200 nm) at the GaAs surface. These GaMn particles are crystalline, some with quasicrystalline-like order. Bulk magnetization measurements show that the GaMn particles are room temperature ferromagnets with a Curie temperature far exceeding room temperature. Both the particle size and coercivity can be varied by controlling the implantation and annealing conditions. High resolution magnetic force microscopy images on single GaMn ferromagnets reveal that unmagnetized samples contain both magnetic single- and multi-domain particles, but after initial magnetization, the single-domain state predominates, with magnetic moments aligned preferentially along the [001] directions of the GaAs substrate. In particular, magnetic force imaging has been performed in a changing magnetic field (up to 8 kOe) to directly study and image magnetization reversal of single-domain particles. *Work done in collaboration with D

  15. Ohmic Contacts to n-type GaSb and n-type GaInAsSb

    SciTech Connect

    R.K. Huang; C.A. Wang; C.T. Harris; M.K. Connors; D.A. Shiau

    2003-06-16

    An investigation with the objective of improving n-type ohmic contacts to GaSb-based devices is described. This study involves a series of n-GaInAsSb and n-GaSb samples with varying doping, grown on both n-GaSb and semi-insulating GaAs substrates. These samples were fabricated into mesa-etched TLM structures, and the specific contact resistivity and sheet resistance of these layers as a function of majority electron concentration were measured. Extremely low specific contact resistivities of about 2 x 10{sup -6} {Omega}-cm{sup 2} and sheet resistances of about 4 {Omega}/{open_square} are found for n-type GaInAsSb doped at about 3 x 10{sup 18} cm{sup -3}.

  16. The effects of the porous buffer layer and doping with dysprosium on internal stresses in the GaInP:Dy/por-GaAs/GaAs(100) heterostructures

    SciTech Connect

    Seredin, P. V.; Gordienko, N. N.; Glotov, A. V.; Zhurbina, I. A.; Domashevskaya, E. P.; Arsent'ev, I. N. Shishkov, M. V.

    2009-08-15

    In structures with a porous buffer layer, residual internal stresses caused by a mismatch between the crystal-lattice parameters of the epitaxial GaInP alloy and the GaAs substrate are redistributed to the porous layer that acts as a buffer and is conducive to disappearance of internal stresses. Doping of the epitaxial layer with dysprosium exerts a similar effect on the internal stresses in the film-substrate structure.

  17. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study

    PubMed Central

    2014-01-01

    First-principles calculations based on density functional theory have been performed for the quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs. Using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, electronic, and optical properties were obtained, including band structures, density of states (DOSs), dielectric function, absorption coefficient, refractive index, energy loss function, and reflectivity. It is found that the lattice constant of GaAs1-x-y N x Bi y alloy with y/x =1.718 can match to GaAs. With the incorporation of N and Bi into GaAs, the band gap of GaAs1-x-y N x Bi y becomes small and remains direct. The calculated optical properties indicate that GaAs1-x-y N x Bi y has higher optical efficiency as it has less energy loss than GaAs. In addition, it is also found that the electronic and optical properties of GaAs1-x-y N x Bi y alloy can be further controlled by tuning the N and Bi compositions in this alloy. These results suggest promising applications of GaAs1-x-y N x Bi y quaternary alloys in optoelectronic devices. PMID:25337061

  18. A photoconductive model for superior GaAs THz photomixers

    NASA Astrophysics Data System (ADS)

    Brown, E. R.

    1999-08-01

    Theoretical methods are used to evaluate the THz output from photomixer structures consisting of interdigitated electrodes and planar antennas on top of a low-temperature-grown GaAs layer. Consistent with experiment, the THz power from a standard photomixer is found to be limited by low external quantum efficiency (˜1%). This arises primarily from low photoconductive gain, which is attributed to a long transit time (between electrodes) for the majority of photocarriers generated in the structure. The modeling is then applied to an improved structure containing a thinner absorbing layer (≈0.34 μm for λ=0.85 μm pump) with a dielectric mirror below it to induce resonant-cavity absorption near the surface where the gain is higher. Through increased gain and absorptivity, the model predicts ≈7× greater THz output for the same optical pump power.

  19. Artificial graphene in nanopatterned GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Scarabelli, Diego; Levy, Antonio; Pfeiffer, Loren; West, Ken; Pellegrini, Vittorio; Manfra, Michael J.; Wind, Shalom; Pinczuk, Aron

    2015-03-01

    Electrons in graphene have linear energy-momentum dispersion, making them massless Dirac fermions. An alternative way to achieve massless Dirac-fermions in a controlled and tunable manner is to construct a honeycomb lattice potential for a 2D electron gas in a semiconductor quantum well. We report realization of very short period (as small as 40 nm) honeycomb lattice pattern using e-beam lithography and drying etching on a GaAs quantum well and spectroscopy data of electron states under this potential modulation. The study is carried out using photoluminescence and light scattering at low temperature (about 4K). Inter mini-band transitions are observed by resonant inelastic light scattering and interpreted with calculated mini-band structure. Control over parameters such as Fermi level should permit manipulation of massless fermions. This will provide a platform for novel behavior such as topological states in a semiconductor quantum simulator. Supported by DOE-BES Award DE-SC0010695.

  20. Temporal analysis of SEU in SOI/GAA SRAMs

    SciTech Connect

    Francis, P.; Colinge, J.P.; Berger, G.

    1995-12-01

    This paper analyzes the very strong SEU hardness of a 1k static random-access memory fabricated using the SOI/GAA technology, irradiated with a xenon ion beam at various angles of incidence. The memory has been shown to operate with a supply voltage as low as 2V while still presenting excellent SEU hardness. Since the different physical charge collection mechanisms are particularly slow in SOI devices, it is shown that collected and critical charges must be dynamically compared in order to determine the SEU threshold. A new approach is then proposed to evaluate the time-variable critical charge independently of the pulse shape generated by the incident ion, and a general analytical model is derived. Finally, predictions in good agreement with experimental data are obtained.