Science.gov

Sample records for semiconductor nanocrystals inmicrofluidic

  1. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    SciTech Connect

    Chan, Emory Ming-Yue

    2006-12-19

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystal diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag2Se nanocrystal cation exchange reaction are measured insitu with micro

  2. Doping semiconductor nanocrystals.

    PubMed

    Erwin, Steven C; Zu, Lijun; Haftel, Michael I; Efros, Alexander L; Kennedy, Thomas A; Norris, David J

    2005-07-01

    Doping--the intentional introduction of impurities into a material--is fundamental to controlling the properties of bulk semiconductors. This has stimulated similar efforts to dope semiconductor nanocrystals. Despite some successes, many of these efforts have failed, for reasons that remain unclear. For example, Mn can be incorporated into nanocrystals of CdS and ZnSe (refs 7-9), but not into CdSe (ref. 12)--despite comparable bulk solubilities of near 50 per cent. These difficulties, which have hindered development of new nanocrystalline materials, are often attributed to 'self-purification', an allegedly intrinsic mechanism whereby impurities are expelled. Here we show instead that the underlying mechanism that controls doping is the initial adsorption of impurities on the nanocrystal surface during growth. We find that adsorption--and therefore doping efficiency--is determined by three main factors: surface morphology, nanocrystal shape, and surfactants in the growth solution. Calculated Mn adsorption energies and equilibrium shapes for several nanocrystals lead to specific doping predictions. These are confirmed by measuring how the Mn concentration in ZnSe varies with nanocrystal size and shape. Finally, we use our predictions to incorporate Mn into previously undopable CdSe nanocrystals. This success establishes that earlier difficulties with doping are not intrinsic, and suggests that a variety of doped nanocrystals--for applications from solar cells to spintronics--can be anticipated. PMID:16001066

  3. Doped semiconductor nanocrystal junctions

    NASA Astrophysics Data System (ADS)

    Borowik, Ł.; Nguyen-Tran, T.; Roca i Cabarrocas, P.; Mélin, T.

    2013-11-01

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (ND≈1020-1021cm-3) silicon nanocrystals (NCs) in the 2-50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as ND-1/3, and depleted charge linearly increasing with the NC diameter and varying as ND1/3. We thus establish a "nanocrystal counterpart" of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  4. Doped semiconductor nanocrystal junctions

    SciTech Connect

    Borowik, Ł.; Mélin, T.; Nguyen-Tran, T.; Roca i Cabarrocas, P.

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  5. Electronic spectra of semiconductor nanocrystals

    SciTech Connect

    Alivisatos, A.P.

    1993-12-31

    Semiconductor nanocrystals smaller than the bulk exciton show substantial quantum confinement effects. Recent experiments including Stark effect, resonance Raman, valence band photoemission, and near edge X-ray adsorption will be used to put together a picture of the nanocrystal electronic states.

  6. Semiconductor Nanocrystals for Biological Imaging

    SciTech Connect

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  7. Semiconductor nanocrystal-based phagokinetic tracking

    DOEpatents

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  8. Photoemission studies of semiconductor nanocrystals

    SciTech Connect

    Hamad, K. S.; Roth, R.; Alivisatos, A. P.

    1997-04-01

    Semiconductor nanocrystals have been the focus of much attention in the last ten years due predominantly to their size dependent optical properties. Namely, the band gap of nanocrystals exhibits a shift to higher energy with decreasing size due to quantum confinement effects. Research in this field has employed primarily optical techniques to study nanocrystals, and in this respect this system has been investigated extensively. In addition, one is able to synthesize monodisperse, crystalline particles of CdS, CdSe, Si, InP, InAs, as well as CdS/HgS/CdS and CdSe/CdS composites. However, optical spectroscopies have proven ambiguous in determining the degree to which electronic excitations are interior or surface admixtures or giving a complete picture of the density of states. Photoemission is a useful technique for understanding the electronic structure of nanocrystals and the effects of quantum confinement, chemical environments of the nanocrystals, and surface coverages. Of particular interest to the authors is the surface composition and structure of these particles, for they have found that much of the behavior of nanocrystals is governed by their surface. Previously, the authors had performed x-ray photoelectron spectroscopy (XPS) on CdSe nanocrystals. XPS has proven to be a powerful tool in that it allows one to determine the composition of the nanocrystal surface.

  9. Optical Properties of Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gaponenko, S. V.

    1998-10-01

    Low-dimensional semiconductor structures, often referred to as nanocrystals or quantum dots, exhibit fascinating behavior and have a multitude of potential applications, especially in the field of communications. This book examines in detail the optical properties of these structures, gives full coverage of theoretical and experimental results, and discusses their technological applications. The author begins by setting out the basic physics of electron states in crystals (adopting a "cluster-to-crystal" approach), and goes on to discuss the growth of nanocrystals, absorption and emission of light by nanocrystals, optical nonlinearities, interface effects, and photonic crystals. He illustrates the physical principles with references to actual devices such as novel light-emitters and optical switches. The book covers a rapidly developing, interdisciplinary field. It will be of great interest to graduate students of photonics or microelectronics, and to researchers in electrical engineering, physics, chemistry, and materials science.

  10. Mixed semiconductor nanocrystal compositions

    DOEpatents

    Maskaly, Garry R.; Schaller, Richard D.; Klimov, Victor I.

    2011-02-15

    Composition comprising one or more energy donors and one or more energy acceptors, wherein energy is transferred from the energy donor to the energy acceptor and wherein: the energy acceptor is a colloidal nanocrystal having a lower band gap energy than the energy donor; the energy donor and the energy acceptor are separated by a distance of 40 nm or less; wherein the average peak absorption energy of the acceptor is at least 20 meV greater than the average peak emission energy of the energy donor; and wherein the ratio of the number of energy donors to the number of energy acceptors is from about 2:1 to about 1000:1.

  11. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  12. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  13. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    SciTech Connect

    Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.; Tavasoli, Elham; Vela, Javier

    2014-03-15

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describe our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).

  14. Phase transitions and doping in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Sahu, Ayaskanta

    Colloidal semiconductor nanocrystals are a promising technological material because their size-dependent optical and electronic properties can be exploited for a diverse range of applications such as light-emitting diodes, bio-labels, transistors, and solar cells. For many of these applications, electrical current needs to be transported through the devices. However, while their solution processability makes these colloidal nanocrystals attractive candidates for device applications, the bulky surfactants that render these nanocrystals dispersible in common solvents block electrical current. Thus, in order to realize the full potential of colloidal semiconductor nanocrystals in the next-generation of solid-state devices, methods must be devised to make conductive films from these nanocrystals. One way to achieve this would be to add minute amounts of foreign impurity atoms (dopants) to increase their conductivity. Electronic doping in nanocrystals is still very much in its infancy with limited understanding of the underlying mechanisms that govern the doping process. This thesis introduces an innovative synthesis of doped nanocrystals and aims at expanding the fundamental understanding of charge transport in these doped nanocrystal films. The list of semiconductor nanocrystals that can be doped is large, and if one combines that with available dopants, an even larger set of materials with interesting properties and applications can be generated. In addition to doping, another promising route to increase conductivity in nanocrystal films is to use nanocrystals with high ionic conductivities. This thesis also examines this possibility by studying new phases of mixed ionic and electronic conductors at the nanoscale. Such a versatile approach may open new pathways for interesting fundamental research, and also lay the foundation for the creation of novel materials with important applications. In addition to their size-dependence, the intentional incorporation of

  15. Developing New Nanoprobes from Semiconductor Nanocrystals

    SciTech Connect

    Fu, Aihua

    2006-05-29

    In recent years, semiconductor nanocrystal quantum dots havegarnered the spotlight as an important new class of biological labelingtool. Withoptical properties superior to conventional organicfluorophores from many aspects, such as high photostability andmultiplexing capability, quantum dots have been applied in a variety ofadvanced imaging applications. This dissertation research goes along withlarge amount of research efforts in this field, while focusing on thedesign and development of new nanoprobes from semiconductor nanocrystalsthat are aimed for useful imaging or sensing applications not possiblewith quantum dots alone. Specifically speaking, two strategies have beenapplied. In one, we have taken advantage of the increasing capability ofmanipulating the shape of semiconductor nanocrystals by developingsemiconductor quantum rods as fluorescent biological labels. In theother, we have assembled quantum dots and gold nanocrystals into discretenanostructures using DNA. The background information and synthesis,surface manipulation, property characterization and applications of thesenew nanoprobes in a few biological experiments are detailed in thedissertation.

  16. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  17. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  18. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2005-03-08

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  19. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2015-06-23

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  20. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C; Alivisatos, A. Paul

    2014-02-11

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  1. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul

    2014-03-25

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  2. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, Paul A.

    2015-11-10

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  3. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2010-04-13

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  4. The structure and morphology of semiconductor nanocrystals

    SciTech Connect

    Kadavanich, A V

    1997-11-01

    Colloidal semiconductor nanocrystals were studied using High Resolution Transmission Electron Microscopy (HRTEM). Organically capped nanocrystals were found to have faceted shapes consistent with Wulff polyhedra after the effects of capping ligands on surface energies were taken into account. The basic shape thus derived for wurtzite (WZ) structure CdSe nanocrystals capped by tri-octyl phosphine oxide (TOPO) was a truncated hexagonal prism, elongated alone the <001> axis with (100) and (002) facets. This structure has C{sub 3v} point group symmetry. The main defect in this structure is a stacking fault (a single layer of zinc blende type stacking), which does not significantly affect the shape (does not alter the point group).

  5. Charge transport in semiconductor nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Mentzel, Tamar Shoshana

    In this thesis, we study charge transport in arrays of semiconductor nanocrystal quantum dots. Nanocrystals are synthesized in solution, and an organic ligand on the surface of the nanocrystal creates a potential barrier that confines charges in the nanocrystal. Optical absorption measurements reveal discrete electronic energy levels in the nanocrystals resulting from quantum confinement. When nanocrystals are deposited on a surface, they self-assemble into a close-packed array forming a nanocrystal solid. We report electrical transport measurements of a PbSe nanocrystal solid that serves as the channel of an inverted field-effect transistor. We measure the conductance as a function of temperature, source-drain bias and. gate voltage. The data indicates that holes are the majority carriers; the Fermi energy lies in impurity states in the bandgap of the nanocrystal; and charges hop between the highest occupied valence state in the nanocrystals (the 1S h states). At low source-drain voltages, the activation energy for hopping is given by the energy required to generate holes in the 1Sh state plus activation over barriers resulting from site disorder. The barriers from site disorder are eliminated with a sufficiently high source-drain bias. From the gate effect, we extract the Thomas-Fermi screening length and a density of states that is consistent with the estimated value. We consider variable-range hopping as an alternative model, and find no self-consistent evidence for it. Next, we employ charge sensing as an alternative to current measurements for studying transport in materials with localized sites. A narrow-channel MOSFET serves as a charge sensor because its conductance is sensitive to potential fluctuations in the nearby environment caused by the motion of charge. In particular, it is sensitive to the fluctuation of single electrons at the silicon-oxide interface within the MOSFET. We pattern a strip of amorphous germanium within 100 nm of the transistor. The

  6. Synthesis and applications of heterostructured semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Khon, Elena

    Semiconductor nanocrystals (NCs) have been of great interest to researchers for several decades due to their unique optoelectronic properties. These nanoparticles are widely used for a variety of different applications. However, there are many unresolved issues that lower the efficiency and/or stability of devices which incorporate these NCs. Our research is dedicated to addressing these issues by identifying potential problems and resolving them, improving existing systems, generating new synthetic strategies, and/or building new devices. The general strategies for the synthesis of different nanocrystals were established in this work, one of which is the colloidal growth of gold domains onto CdS semiconductor nanocrystals. Control of shape and size was achieved simply by adjusting the temperature and the time of the reaction. Depending on the exact morphology of Au and CdS domains, fabricated nano-composites can undergo evaporation-induced self-assembly onto a substrate, which is very useful for building devices. CdS/Au heterostructures can assemble in two different ways: through end-to-end coupling of Au domains, resulting in the formation of one-dimensional chains; and via side-by-side packing of CdS nanorods, leading to the onset of two-dimensional superlattices. We investigated the nature of exciton-plasmon interactions in Au-tipped CdS nanorods using femtosecond transient absorption spectroscopy. The study demonstrated that the key optoelectronic properties of electrically coupled metal and semiconductor domains are significantly different from those observed in systems with weak inter-domain coupling. In particular, strongly-coupled nanocomposites promote mixing of electronic states at semiconductor-metal domain interfaces, which causes a significant suppression of both plasmon and exciton carrier excitations. Colloidal QDs are starting to replace organic molecules in many different applications, such as organic light emmiting diods (OLEDs), due to their

  7. Photocatalytic Solar Fuel Generation on Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Feldmann, Jochen

    2015-03-01

    I will review our scientific work on photocatalytic solar fuel generation utilizing colloidal semiconductor nanocrystals decorated with catalytic metal clusters. In particular, nanocrystals made of CdS, TiO2 and organo-metal halide perovskites will be discussed. Key issues are the role of hole scavangers (M. Berr et al., Appl. Phys. Lett. 100, 223903 (2012)), the size and density of catalytic clusters (M. Berr et al.: Appl. Phys. Lett. 97, 093108 (2010) and Nano Letters 12, 5903 (2012) , and dependencies on external parameters such as pH (T. Simon et al., Nature Mat. 13, 1013 (2014)). Financially supported by the Bavarian Research Cluster ``Solar Technologies Go Hybrid: SolTech''.

  8. Enantioselective cellular uptake of chiral semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun'ko, Yu K.; Baranov, A. V.

    2016-02-01

    The influence of the chirality of semiconductor nanocrystals, CdSe/ZnS quantum dots (QDs) capped with L- and D-cysteine, on the efficiency of their uptake by living Ehrlich Ascite carcinoma cells is studied by spectral- and time-resolved fluorescence microspectroscopy. We report an evident enantioselective process where cellular uptake of the L-Cys QDs is almost twice as effective as that of the D-Cys QDs. This finding paves the way for the creation of novel approaches to control the biological properties and behavior of nanomaterials in living cells.

  9. Imaging "invisible" dopant atoms in semiconductor nanocrystals.

    PubMed

    Gunawan, Aloysius A; Mkhoyan, K Andre; Wills, Andrew W; Thomas, Malcolm G; Norris, David J

    2011-12-14

    Nanometer-scale semiconductors that contain a few intentionally added impurity atoms can provide new opportunities for controlling electronic properties. However, since the physics of these materials depends strongly on the exact arrangement of the impurities, or dopants, inside the structure, and many impurities of interest cannot be observed with currently available imaging techniques, new methods are needed to determine their location. We combine electron energy loss spectroscopy with annular dark-field scanning transmission electron microscopy (ADF-STEM) to image individual Mn impurities inside ZnSe nanocrystals. While Mn is invisible to conventional ADF-STEM in this host, our experiments and detailed simulations show consistent detection of Mn. Thus, a general path is demonstrated for atomic-scale imaging and identification of individual dopants in a variety of semiconductor nanostructures. PMID:22107439

  10. Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  11. Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  12. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2008-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  13. Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers

    SciTech Connect

    Engel, Jesse H.; Surendranath, Yogesh; Alivisatos, Paul

    2013-07-20

    Semiconductor nanocrystal solids are attractive materials for active layers in next-generation optoelectronic devices; however, their efficient implementation has been impeded by the lack of precise control over dopant concentrations. Herein we demonstrate a chemical strategy for the controlled doping of nanocrystal solids under equilibrium conditions. Exposing lead selenide nanocrystal thin films to solutions containing varying proportions of decamethylferrocene and decamethylferrocenium incrementally and reversibly increased the carrier concentration in the solid by 2 orders of magnitude from their native values. This application of redox buffers for controlled doping provides a new method for the precise control of the majority carrier concentration in porous semiconductor thin films.

  14. Radiative decay rates of impurity states in semiconductor nanocrystals

    SciTech Connect

    Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2015-10-15

    Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and should be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.

  15. Synthesis of Doped Semiconductor Nanocrystals and Conductive Coatings

    NASA Astrophysics Data System (ADS)

    Wills, Andrew Wilke

    Semiconductor nanocrystals are an intriguing class of materials because of their size-tunable properties. This makes them promising for future optoelectronic devices such as solar cells and light emitting diodes. Realization of these devices, however, requires precise control of the flow of electricity through the particles. In bulk semiconductors, this is achieved by using materials with few unintentional defects, then intentionally adding particular defects or dopants to alter the semiconductor's electronic properties. In contrast, the addition of electrically active dopants has scarcely been demonstrated in semiconductor nanocrystals, and charge transport is hindered by the barrier of electron hopping between particles. The goal of this thesis, therefore, is to discover new methods to control charge transport in nanocrystals. It divides into three major thrusts: 1) the investigation of the doping process in semiconductor nanocrystals, 2) the invention of new synthetic methods to incorporate electrically active dopants into semiconductor nanocrystals, and 3) the invention of a new nanocrystal surface coating that aids processing of nanocrystals into devices but can be removed to enhance charge transport between particles. The first objective is achieved by the comparison of four different precursors that have been used to dope Mn into nanocrystals. Experiments show that dimethylmanganese incorporates efficiently into ZnSe nanocrystals while other precursors are less efficient and sometimes lower the quality of the nanocrystals produced. The second goal is met by the application of a core-shell synthetic strategy to the incorporation of non-isovalent impurities (Al and In) into CdSe nanocrystals. By separating the three steps of nucleation, dopant binding, and growth, each step can be optimized so that doping is achieved and high quality particles are produced. Detailed characterization shows dopant incorporation and local environment, while transistor

  16. Metal-insulator transition in films of doped semiconductor nanocrystals.

    PubMed

    Chen, Ting; Reich, K V; Kramer, Nicolaas J; Fu, Han; Kortshagen, Uwe R; Shklovskii, B I

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition. PMID:26618885

  17. Metal-insulator transition in films of doped semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Reich, K. V.; Kramer, Nicolaas J.; Fu, Han; Kortshagen, Uwe R.; Shklovskii, B. I.

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition.

  18. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.

    PubMed

    Brutchey, Richard L

    2015-11-17

    The ability to synthesize colloidal semiconductor nanocrystals in a well-controlled manner (i.e., with fine control over size, shape, size dispersion, and composition) has been mastered over the past 15 years. Much of this success stems from careful studies of precursor conversion and nanocrystal growth with respect to phosphine chalcogenide precursors for the synthesis of metal chalcogenide nanocrystals. Despite the high level of success that has been achieved with phosphine chalcogenides, there has been a longstanding interest in exploring alternate chalcogenide precursors because of issues associated with phosphine chalcogenide cost, purity, toxicity, etc. This has resulted in a large body of literature on the use of sulfur and selenium dissolved in octadecene or amines, thio- and selenoureas, and silyl chalcogenides as alternate chalcogenide precursors for metal chalcogenide nanocrystal synthesis. In this Account, emerging work on the use of diorganyl dichalcogenides (R-E-E-R, where E = S, Se, or Te and R = alkyl, allyl, benzyl, or aryl) as alternate chalcogenide precursors for the synthesis of metal chalcogenide nanocrystals is summarized. Among the benefits of these dichalcogenide synthons are the following: (i) they represent the first and only common precursor type that can function as chalcogen transfer reagents for each of the group VI elements (i.e., to make metal oxide, metal sulfide, metal selenide, and metal telluride nanocrystals); (ii) they possess relatively weak E-E bonds that can be readily cleaved under mild thermolytic or photolytic conditions; and (iii) the organic substituents can be tuned to affect the reactivity. These combined attributes have allowed dichalcogenide precursors to be employed for a wide range of metal chalcogenide nanocrystal syntheses, including those for In2S3, SnxGe1-xSe, SnTe, Cu2-xSySe1-y, ZnSe, CdS, CdSe, MoSe2, WSe2, BiSe, and CuFeS2. Interestingly, a number of metastable phases of compositionally complex

  19. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    SciTech Connect

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2014-01-28

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  20. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    SciTech Connect

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2011-12-06

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  1. Methods of use of semiconductor nanocrystal probes for treating a material

    SciTech Connect

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2007-04-27

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  2. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2002-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in he probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  3. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2004-03-02

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  4. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2006-09-05

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  5. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2005-08-09

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  6. Apparent Versus True Carrier Multiplication Yields in Semiconductor Nanocrystals

    SciTech Connect

    McGuire, John A.; Sykora, Milan; Joo, Jin; Pietryga, Jeffrey M.; Klimov, Victor I.

    2010-05-11

    Generation of multiple electron-hole pairs (excitons) by single photons, known as carrier multiplication (CM), has the potential to appreciably improve the performance of solar photovoltaics. In semiconductor nanocrystals, this effect usually has been detected using a distinct dynamical signature of multiexcitons associated with their fast Auger recombination. Here, we show that uncontrolled photocharging of the nanocrystal core can lead to exaggeration of the Auger decay component and, as a result, significant deviations of the apparent CM efficiencies from their true values. Specifically, we observe that for the same sample, apparent multiexciton yields can differ by a factor of ~3 depending on whether the nanocrystal solution is static or stirred. We show that this discrepancy is consistent with photoinduced charging of the nanocrystals in static solutions, the effect of which is minimized in the stirred case where the charged nanocrystals are swept from the excitation volume between sequential excitation pulses. Using side-by-side measurements of CM efficiencies and nanocrystal charging, we show that the CM results obtained under static conditions converge to the values measured for stirred solutions after we accurately account for the effects of photocharging. This study helps to clarify the recent controversy over CM in nanocrystals and highlights some of the issues that must be carefully considered in spectroscopic studies of this process.

  7. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    SciTech Connect

    Sachleben, J. R.

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and {sup 13}C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution {sup 1}H and {sup 13}C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 {angstrom}. Internal motion is estimated to be slow with a correlation time > 10{sup {minus}8} s{sup {minus}1}. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O{sub 2} and ultraviolet. A method for measuring {sup 14}N-{sup 1}H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T{sub 1} and T{sub 2} experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in {sup 13}C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  8. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    NASA Astrophysics Data System (ADS)

    Sachleben, J. R.

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and C-13 enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution H-1 and C-13 liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 angstrom. Internal motion is estimated to be slow with a correlation time greater than 10(exp -8) s(exp -1). The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring (N-14)-(H-1) J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T(sub 1) and T(sub 2) experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in C-13 enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  9. Nonradiative Auger recombination in semiconductor nanocrystals.

    PubMed

    Vaxenburg, Roman; Rodina, Anna; Shabaev, Andrew; Lifshitz, Efrat; Efros, Alexander L

    2015-03-11

    We calculate the rate of nonradiative Auger recombination in negatively charged CdSe nanocrystals (NCs). The rate is nonmonotonic, strongly oscillating with NC size, and sensitive to the NC surface. The oscillations result in nonexponential decay of carriers in NC ensembles. Using a standard single-exponential approximation of the decay dynamics, we determine the apparent size dependence of the Auger rate in an ensemble and derive CdSe surface parameters consistent with the experimental dependence on size. PMID:25693512

  10. How many electrons make a semiconductor nanocrystal film metallic

    NASA Astrophysics Data System (ADS)

    Reich, Konstantin; Chen, Ting; Kramer, Nicolaas; Fu, Han; Kortshagen, Uwe; Shklovskii, Boris

    For films of semiconductor nanocrystals to achieve their potential as novel, low-cost electronic materials, a better understanding of their doping to tune their conductivity is required. So far, it not known how many dopants will turn a nanocrystal film from semiconducting to metallic. In bulk semiconductors, the critical concentration nM of electrons at the metal-insulator transition is described by the famous Mott criterion: nMaB3 ~= 0 . 02 , where aB is the effective Bohr radius. We show theoretically that in a dense NC film, where NCs touch each other by small facets, the concentration of electrons nc >>nM at the metal-insulator transition satisfies the condition: ncρ3 ~= 0 . 3 , where ρ is a radius of contact facets. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition. This work was supported primarily by the National Science Foundation through the University of Minnesota MRSEC under Award No. DMR-1420013.

  11. Semiconductor-Nanocrystals-Based White Light-Emitting Diodes

    SciTech Connect

    Dai, Quanqin; Duty, Chad E; Hu, Michael Z.

    2010-01-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white lightemitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed.

  12. Semiconductor Nanocrystals-Based White Light Emitting Diodes

    SciTech Connect

    Dai, Quanqin; Hu, Michael Z.; Duty, Chad E

    2010-01-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid state lighting, such as white light emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement could cut the ever-increasing energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, we highlight the recent progress in semiconductor nanocrystals-based WLEDs, compare different approaches for generating white light, and discuss the benefits and challenges of the solid state lighting technology.

  13. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals.

    PubMed

    Rabouw, Freddy T; de Mello Donega, Celso

    2016-10-01

    Colloidal semiconductor nanocrystals have attracted continuous worldwide interest over the last three decades owing to their remarkable and unique size- and shape-, dependent properties. The colloidal nature of these nanomaterials allows one to take full advantage of nanoscale effects to tailor their optoelectronic and physical-chemical properties, yielding materials that combine size-, shape-, and composition-dependent properties with easy surface manipulation and solution processing. These features have turned the study of colloidal semiconductor nanocrystals into a dynamic and multidisciplinary research field, with fascinating fundamental challenges and dazzling application prospects. This review focuses on the excited-state dynamics in these intriguing nanomaterials, covering a range of different relaxation mechanisms that span over 15 orders of magnitude, from a few femtoseconds to a few seconds after photoexcitation. In addition to reviewing the state of the art and highlighting the essential concepts in the field, we also discuss the relevance of the different relaxation processes to a number of potential applications, such as photovoltaics and LEDs. The fundamental physical and chemical principles needed to control and understand the properties of colloidal semiconductor nanocrystals are also addressed. PMID:27573500

  14. Preparation of III-V semiconductor nanocrystals

    DOEpatents

    Alivisatos, A.P.; Olshavsky, M.A.

    1996-04-09

    Nanometer-scale crystals of III-V semiconductors are disclosed. They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline. 4 figs.

  15. Preparation of III-V semiconductor nanocrystals

    DOEpatents

    Alivisatos, A. Paul; Olshavsky, Michael A.

    1996-01-01

    Nanometer-scale crystals of III-V semiconductors are disclosed, They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline.

  16. Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers.

    PubMed

    Xu, Yanqing; Chen, Qi; Zhang, Chunfeng; Wang, Rui; Wu, Hua; Zhang, Xiaoyu; Xing, Guichuan; Yu, William W; Wang, Xiaoyong; Zhang, Yu; Xiao, Min

    2016-03-23

    Two-photon-pumped lasers have been regarded as a promising strategy to achieve frequency up-conversion for situations where the condition of phase matching required by conventional approaches cannot be fulfilled. However, their practical applications have been hindered by the lack of materials holding both efficient two-photon absorption and ease of achieving population inversion. Here, we show that this challenge can be tackled by employing colloidal nanocrystals of perovskite semiconductors. We observe highly efficient two-photon absorption (with a cross section of 2.7 × 10(6) GM) in toluene solutions of CsPbBr3 nanocrystals that can excite large optical gain (>500 cm(-1)) in thin films. We have succeeded in demonstrating stable two-photon-pumped lasing at a remarkable low threshold by coupling CsPbBr3 nanocrystals with microtubule resonators. Our findings suggest perovskite nanocrystals can be used as excellent gain medium for high-performance frequency-up-conversion lasers toward practical applications. PMID:26938656

  17. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.

    PubMed

    Guzelturk, Burak; Demir, Hilmi Volkan

    2015-06-18

    Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics. PMID:26266593

  18. Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    1999-01-01

    A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.

  19. Building Structural Complexity in Semiconductor Nanocrystals through Chemical Transformations

    SciTech Connect

    Sadtler, Bryce F

    2009-05-01

    Methods are presented for synthesizing nanocrystal heterostructures comprised of two semiconductor materials epitaxially attached within individual nanostructures. The chemical transformation of cation exchange, where the cations within the lattice of an ionic nanocrystal are replaced with a different metal ion species, is used to alter the chemical composition at specific regions ofa nanocrystal. Partial cation exchange was performed in cadmium sulfide (CdS) nanorods of well-defined size and shape to examine the spatial organization of materials within the resulting nanocrystal heterostructures. The selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. The exchange of copper (I) (Cu+) cations in CdS nanorods occurs preferentially at the ends of the nanorods. Theoretical modeling of epitaxial attachments between different facets of CdS and Cu2S indicate that the selectivity for cation exchange at the ends of the nanorods is a result of the low formation energy of the interfaces produced. During silver (I) (Ag+) cation exchange in CdS nanorods, non-selective nucleation of silver sulfide (Ag2S), followed by partial phase segregation leads to significant changes in the spatial arrangement of CdS and Ag2S regions at the exchange reaction proceeds through the nanocrystal. A well-ordered striped pattern of alternating CdS and Ag2S segments is found at intermediate fractions of exchange. The forces mediating this spontaneous process are a combination of Ostwald ripening to reduce the interfacial area along with a strain-induced repulsive interaction between Ag2S segments. To elucidate why Cu+ and Ag+ cation exchange with CdS nanorods produce different morphologies, models for epitaxial attachments between various facets of CdS with Cu2S or

  20. Synthetic Strategies for Semiconductor Nanocrystals Expressing Localized Surface Plasmon Resonance.

    PubMed

    Niezgoda, J Scott; Rosenthal, Sandra J

    2016-03-01

    The field of semiconductor plasmonics has grown rapidly since its outset, only roughly six years ago, and now includes many crystalline substances ranging from GeTe to wide-bandgap transition-metal oxides. One byproduct of this proliferation is the sea of differing synthetic methods to realize localized surface plasmon resonances (LSPRs) based on the studied material. Strategies vary widely from material to material, but all have the common goal of introducing extremely high carrier densities to the semiconductor system. This doping results in tunable, size-quantized, and on/off-switchable LSPR modes, which are a complete departure from traditional metal-nanoparticle-based plasmon resonances. This Minireview will provide an overview of the current state of nanocrystal and quantum-dot plasmonics and the physical basis thereof, however its main purpose is to summarize the methods for realizing LSPRs in the various syntheses and systems that have been reported to date. PMID:26530667

  1. Mapping the exciton diffusion in semiconductor nanocrystal solids.

    PubMed

    Kholmicheva, Natalia; Moroz, Pavel; Bastola, Ebin; Razgoniaeva, Natalia; Bocanegra, Jesus; Shaughnessy, Martin; Porach, Zack; Khon, Dmitriy; Zamkov, Mikhail

    2015-03-24

    Colloidal nanocrystal solids represent an emerging class of functional materials that hold strong promise for device applications. The macroscopic properties of these disordered assemblies are determined by complex trajectories of exciton diffusion processes, which are still poorly understood. Owing to the lack of theoretical insight, experimental strategies for probing the exciton dynamics in quantum dot solids are in great demand. Here, we develop an experimental technique for mapping the motion of excitons in semiconductor nanocrystal films with a subdiffraction spatial sensitivity and a picosecond temporal resolution. This was accomplished by doping PbS nanocrystal solids with metal nanoparticles that force the exciton dissociation at known distances from their birth. The optical signature of the exciton motion was then inferred from the changes in the emission lifetime, which was mapped to the location of exciton quenching sites. By correlating the metal-metal interparticle distance in the film with corresponding changes in the emission lifetime, we could obtain important transport characteristics, including the exciton diffusion length, the number of predissociation hops, the rate of interparticle energy transfer, and the exciton diffusivity. The benefits of this approach to device applications were demonstrated through the use of two representative film morphologies featuring weak and strong interparticle coupling. PMID:25682881

  2. Coherent Acoustic Phonons in Colloidal Semiconductor Nanocrystal Superlattices.

    PubMed

    Poyser, Caroline L; Czerniuk, Thomas; Akimov, Andrey; Diroll, Benjamin T; Gaulding, E Ashley; Salasyuk, Alexey S; Kent, Anthony J; Yakovlev, Dmitri R; Bayer, Manfred; Murray, Christopher B

    2016-01-26

    The phonon properties of films fabricated from colloidal semiconductor nanocrystals play a major role in thermal conductance and electron scattering, which govern the principles for building colloidal-based electronics and optics including thermoelectric devices with a high ZT factor. The key point in understanding the phonon properties is to obtain the strength of the elastic bonds formed by organic ligands connecting the individual nanocrystallites. In the case of very weak bonding, the ligands become the bottleneck for phonon transport between infinitively rigid nanocrystals. In the opposite case of strong bonding, the colloids cannot be considered as infinitively rigid beads and the distortion of the superlattice caused by phonons includes the distortion of the colloids themselves. We use the picosecond acoustics technique to study the acoustic coherent phonons in superlattices of nanometer crystalline CdSe colloids. We observe the quantization of phonons with frequencies up to 30 GHz. The frequencies of quantized phonons depend on the thickness of the colloidal films and possess linear phonon dispersion. The measured speed of sound and corresponding wave modulus in the colloidal films point on the strong elastic coupling provided by organic ligands between colloidal nanocrystals. PMID:26696021

  3. Semiconductor-nanocrystals-based white light-emitting diodes.

    PubMed

    Dai, Quanqin; Duty, Chad E; Hu, Michael Z

    2010-08-01

    In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white light-emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed. PMID:20602425

  4. Green synthesis of water soluble semiconductor nanocrystals and their applications

    NASA Astrophysics Data System (ADS)

    Wang, Ying

    II-VI semiconductor nanomaterials, e.g. CdSe and CdTe, have attracted great attention over the past decades due to their fascinating optical and electrical properties. The research presented here focuses on aqueous semiconductor nanomaterials. The work can be generally divided into three parts: synthesis, property study and application. The synthetic work is devoted to develop new methods to prepare shape- and structure-controlled II-VI semiconductor nanocrystals including nanoparticles and nanowires. CdSe and CdSe CdS semiconductor nanocrystals have been synthesized using sodium citrate as a stabilizer. Upon prolonged illumination with visible light, photoluminescence quantum yield of those quantum dots can be enhanced up to 5000%. The primary reason for luminescence enhancement is considered to be the removing of specific surface states (photocorrosion) and the smoothing of the CdSe core surface (photoannealing). CdTe nanowires are prepared through self-organization of stabilizer-depleted CdTe nanoparticles. The dipolar-dipolar attraction is believed to be the driving force of nanowire formation. The rich surface chemistry of CdTe nanowire is reflected by the formation of silica shell with different morphologies when nanowires with different capping ligands are used. Te and Se nanowires are prepared by chemical decomposition of CdTe and CdSe nanoparticles in presence of an external chemical stimulus, EDTA. These results not only provide a new example of NP→NW transformation, but also lead to a better understanding of the molecular process occurring in the stabilizer-depleted nanoparticles. The applications of those semiconductor materials are primarily based on the construction of nano-structured ultrathin films with desirable functions by using layer-by-layer technique (LBL). We demonstrate that light-induced micro-scale multicolor luminescent patterns can be obtained on photoactivable CdSe/CdS nanoparticles thin films by combining the advantages of LBL as

  5. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    SciTech Connect

    Hamad, K.S.

    2000-05-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  6. Plasma production of nanodevice-grade semiconductor nanocrystals

    SciTech Connect

    Holman, Zachary C.; Kortshagen, Uwe R.

    2011-04-14

    Semiconductor nanocrystals (NCs) offer new opportunities for optical and electronic devices ranging from single-electron transistors to large-area solar cells. Solution synthesis methods cannot reach the temperatures necessary to produce crystalline nanoparticles of covalently bonded materials, and most gas-phase techniques suffer from particle agglomeration and sintering. Nonthermal plasma synthesis, however, can produce high-quality NCs of key materials such as Si and Ge. In this review, we examine the current state and future challenges of the growing field of plasma-synthesized NCs from a device applications perspective. We identify NC microstructure, morphology, ensemble monodispersity, surface chemistry and doping as being vital to the success of next-generation devices, and we discuss research opportunities to understand and control these properties during plasma synthesis.

  7. Cation Exchange Reactions for Improved Quality and Diversity of Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Beberwyck, Brandon James

    Observing the size and shape dependent physical properties of semiconductor nanocrystals requires synthetic methods capable of not only composition and crystalline phase control but also molecular scale uniformity for a particle consisting of tens to hundreds of thousands of atoms. The desire for synthetic methods that produce uniform nanocrystals of complex morphologies continues to increase as nanocrystals find roles in commercial applications, such as biolabeling and display technologies, that are simultaneously restricting material compositions. With these constraints, new synthetic strategies that decouple the nanocrystal's chemical composition from its morphology are necessary. This dissertation explores the cation exchange reaction of colloidal semiconductor nanocrystals, a template-based chemical transformation that enables the interconversion of nanocrystals between a variety of compositions while maintaining their size dispersity and morphology. Chapter 1 provides an introduction to the versatility of this replacement reaction as a synthetic method for semiconductor nanocrystals. An overview of the fundamentals of the cation exchange reaction and the diversity of products that are achievable is presented. Chapter 2 examines the optical properties of nanocrystal heterostructures produced through cation exchange reactions. The deleterious impact of exchange on the photoluminescence is correlated to residual impurities and a simple annealing protocol is demonstrated to achieve photoluminescence yields comparable to samples produced by conventional methods. Chapter 3 investigates the extension of the cation exchange reaction beyond ionic nanocrystals. Covalent III-V nanocrystal of high crystallinity and low size dispersity are synthesized by the cation exchange of cadmium pnictide nanocrystals with group 13 ions. Lastly, Chapter 4 highlights future studies to probe cation exchange reactions in colloidal semiconductor nanocrystals and progress that needs to be

  8. Luminescent CdTe and CdSe semiconductor nanocrystals: preparation, optical properties and applications.

    PubMed

    Wang, Ying

    2008-03-01

    The novel optical and electrical properties of luminescent semiconductor nanocrystals are appealing for ultrasensitive multiplexing and multicolor applications in a variety of fields, such as biotechnology, nanoscale electronics, and opto-electronics. Luminescent CdSe and CdTe nanocrystals are archetypes for this dynamic research area and have gained interest from diverse research communities. In this review, we first describe the advances in preparation of size- and shape-controlled CdSe and CdTe semiconductor nanocrystals with the organometallic approach. This article gives particular focus to water soluble nanocrystals due to the increasing interest of using semiconductor nanocrystals for biological applications. Post-synthetic methods to obtain water solubility, the direct synthesis routes in aqueous medium, and the strategies to improve the photoluminescence efficiency in both organic and aqueous phase are discussed. The shape evolution in aqueous medium via self-organization of preformed nanoparticles is a versatile and powerful method for production of nanocrystals with different geometries, and some recent advances in this field are presented with a qualitative discussion on the mechanism. Some examples of CdSe and CdTe nanocrystals that have been applied successfully to problems in biosensing and bioimaging are introduced, which may profoundly impact biological and biomedical research. Finally we present the research on the use of luminescent semiconductor nanocrystals for construction of light emitting diodes, solar cells, and chemical sensors, which demonstrate that they are promising building blocks for next generation electronics. PMID:18468108

  9. A novel approach for the fabrication of all-inorganic nanocrystal solids: Semiconductor matrix encapsulated nanocrystal arrays

    NASA Astrophysics Data System (ADS)

    Moroz, Pavel

    Growing fossil fuels consumption compels researchers to find new alternative pathways to produce energy. Along with new materials for the conversion of different types of energy into electricity innovative methods for efficient processing of energy sources are also introduced. The main criteria for the success of such materials and methods are the low cost and compelling performance. Among different types of materials semiconductor nanocrystals are considered as promising candidates for the role of the efficient and cheap absorbers for solar energy applications. In addition to the anticipated cost reduction, the integration of nanocrystals (NC) into device architectures is inspired by the possibility of tuning the energy of electrical charges in NCs via nanoparticle size. However, the stability of nanocrystals in photovoltaic devices is limited by the stability of organic ligands which passivate the surface of semiconductors to preserve quantum confinement. The present work introduces a new strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films: semiconductor matrix encapsulated nanocrystal arrays (SMENA). This methodology goes beyond the traditional ligand-interlinking scheme and relies on the encapsulation of morphologically-defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces. The main characteristics and properties of these solids were investigated and compared with ones of traditionally fabricated nanocrystal films using standard spectroscopic, optoelectronic and electronic techniques. As a proof of concept, we. We also characterized electron transport phenomena in different types of nanocrystal films using all-optical approach. By measuring excited carrier lifetimes in either ligand-linked or

  10. Second Harmonic Generation and Confined Acoustic Phonons in HighlyExcited Semiconductor Nanocrystals

    SciTech Connect

    Son, Dong Hee; Wittenberg, Joshua S.; Banin, Uri; Alivisatos, A.Paul

    2006-03-30

    The photo-induced enhancement of second harmonic generation, and the effect of nanocrystal shape and pump intensity on confined acoustic phonons in semiconductor nanocrystals, has been investigated with time-resolved scattering and absorption measurements. The second harmonic signal showed a sublinear increase of the second order susceptibility with respect to the pump pulse energy, indicating a reduction of the effective one-electron second-order nonlinearity with increasing electron-hole density in the nanocrystals. The coherent acoustic phonons in spherical and rod-shaped semiconductor nanocrystals were detected in a time-resolved absorption measurement. Both nanocrystal morphologies exhibited oscillatory modulation of the absorption cross section, the frequency of which corresponded to their coherent radial breathing modes. The amplitude of the oscillation also increased with the level of photoexcitation, suggesting an increase in the amplitude of the lattice displacement as well.

  11. Two-dimensional semiconductor nanocrystals: properties, templated formation, and magic-size nanocluster intermediates.

    PubMed

    Wang, Fudong; Wang, Yuanyuan; Liu, Yi-Hsin; Morrison, Paul J; Loomis, Richard A; Buhro, William E

    2015-01-20

    CONSPECTUS: Semiconductor nanocrystals having an extended length dimension and capable of efficiently transporting energy and charge would have useful applications in solar-energy conversion and other emerging technologies. Pseudocylindrical semiconductor nanowires and quantum wires are available that could potentially serve in this role. Sadly, however, their defective surfaces contain significant populations of surface trap sites that preclude efficient transport. The very large surface area of long wires is at least part of the problem. As electrons, holes, and excitons migrate along a nanowire or quantum wire, they are exposed to an extensive surface and to potentially large numbers of trap sites. A solution to this dilemma might be found by identifying "long" semiconductor nanocrystals of other morphologies that are better passivated. In this Account, we discuss a newly emerging family of flat semiconductor nanocrystals that have surprising characteristics. These thin, flat nanocrystals have up to micrometer-scale (orthogonal) lateral dimensions and thus very large surface areas. Even so, their typical photoluminescence efficiencies of 30% are astonishingly high and are 2 orders of magnitude higher than those typical of semiconductor quantum wires. The very sharp emission spectra of the pseudo-two-dimensional nanocrystals reflect a remarkable uniformity in their discrete thicknesses. Evidence that excitons are effectively delocalized and hence transported over the full dimensions of these nanocrystals has been obtained. The excellent optical properties of the flat semiconductor nanocrystals confirm that they are exceptionally well passivated. This Account summarizes the two synthetic methods that have been developed for the preparation of pseudo-two-dimensional semiconductor nanocrystals. A discussion of their structural features accounts for their discrete, uniform thicknesses and details the crystal-lattice expansions and contractions they exhibit. An

  12. Structure-Dependent Spin Polarization in Polymorphic CdS:Y Semiconductor Nanocrystals.

    PubMed

    Wang, Pan; Xiao, Bingxin; Zhao, Rui; Ma, Yanzhang; Zhang, Mingzhe

    2016-03-01

    Searching for the polymorphic semiconductor nanocrystals would provide precise and insightful structure-spin polarization correlations and meaningful guidance for designing and synthesizing high spin-polarized spintronic materials. Herein, the high spin polarization is achieved in polymorphic CdS:Y semiconductor nanocrystals. The high-pressure polymorph of rock-salt CdS:Y nanocrystals has been recovered at ambient conditions synthesized by the wurtzite CdS:Y nanocrystals as starting material under 5.2 GPa and 300 °C conditions. The rock-salt CdS:Y polymorph displays more robust room-temperature ferromagnetism than wurtzite sample, which can reach the ferromagnetic level of conventional semiconductors doped with magnetic transition-metal ions, mainly due to the significantly enhanced spin configuration and defect states. Therefore, crystal structure directly governs the spin configuration, which determines the degree of spin polarization. This work can provide experimental and theoretical methods for designing the high spin-polarized semiconductor nanocrystals, which is important for applications in semiconductor spintronics. PMID:26905093

  13. Nanocrystal structures

    SciTech Connect

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2008-12-30

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  14. Nanocrystal structures

    DOEpatents

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2006-12-19

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II–VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  15. Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices

    PubMed Central

    2014-01-01

    Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants. PMID:25253644

  16. Characterization of CdSe-nanocrystals used in semiconductors for aerospace applications: Production and optical properties

    NASA Astrophysics Data System (ADS)

    Hegazy, Maroof A.; Abd El-Hameed, Afaf M.

    2014-06-01

    Semiconductor nanocrystals (NC’s) are the materials with dimensions less than 10 nm. When the dimensions of nanocrystals are reduced the bulk bohr diameter, the photo generated electron-hole pair becomes confined and nanocrystal exhibits size dependent upon optical properties. This work is focused on the studying of CdSe semiconductor nanocrystals. These nanocrystals are considered as one of the most widely studies semiconductors because of their size - tunable optical properties from the visible spectrum. CdSe-nanocrystals are produced and obtained throughout the experimental setup initiated at Nano-NRIAG Unit (NNU), which has been constructed and assembled at NRIAG institute. This unit has a specific characterization for preparing chemical compositions, which may be used for solar cell fabrications and space science technology. The materials prepared included cadmium oxide and selinid have sizes ranging between 2.27 nm and 3.75 nm. CdSe-nanocrystals are synthesized in “TOP/TOPO (tri-octyl phosphine/tri-octyl phosphine oxide). Diagnostic tools, include UV analysis, TEM microscope, and X-ray diffraction, which are considered for the analytical studies of the obtained materials. The results show that, in this size regime, the generated particles have unique optical properties, which is achieved from the UV analysis. Also, the TEM image analysis shows the size and shape of the produced particles. These studies are carried out to optimize the photoluminescent efficiency of these nanoparticles. Moreover, the data revealed that, the grain size of nanocrystals is dependent upon the growth time in turn, it leads to a change in the energy gap. Some applications of this class of materials are outlined.

  17. Multiple Exciton Generation in Semiconductor Nanocrystals: Toward Efficient Solar Energy Conversion

    SciTech Connect

    Beard, M. C.; Ellingson, R. J.

    2008-01-01

    Within the range of photon energies illuminating the Earth's surface, absorption of a photon by a conventional photovoltaic semiconductor device results in the production of a single electron-hole pair; energy of a photon in excess of the semiconductor's bandgap is efficiently converted to heat through interactions between the electron and hole with the crystal lattice. Recently, colloidal semiconductor nanocrystals and nanocrystal films have been shown to exhibit efficient multiple electron-hole pair generation from a single photon with energy greater than twice the effective band gap. This multiple carrier pair process, referred to as multiple exciton generation (MEG), represents one route to reducing the thermal loss in semiconductor solar cells and may lead to the development of low cost, high efficiency solar energy devices. We review the current experimental and theoretical understanding of MEG, and provide views to the near-term future for both fundamental research and the development of working devices which exploit MEG.

  18. Syntheses and applications of Mn-doped II-VI semiconductor nanocrystals.

    PubMed

    Yang, Heesun; Santra, Swadeshmukul; Holloway, Paul H

    2005-09-01

    Luminescent Mn-doped II-VI semiconductor nanocrystals have been intensively investigated over the last ten years. Several semiconductor host materials such as ZnS, CdS, and ZnSe have been used for Mn-doped nanocrystals with different synthetic routes and surface passivation. Beyond studies of their fundamental properties including photoluminescence and size, these luminescent nanocrystals have now been tested for practical applications such as electroluminescent displays and biological labeling agents (biomarkers). Here, we first review ZnS:Mn, CdS:Mn/ZnS core/shell, and ZnSe:Mn nanocrystal systems in terms of their synthetic chemistries and photoluminescent properties. Second, based on ZnS:Mn and CdS:Mn/ZnS core/shell nanocrystals as electroluminescent components, direct current electroluminescent devices having a hybrid organic/inorganic multilayer structure are reviewed. Highly luminescent and photostable CdS:Mn/ZnS nanocrystals can further be used as the luminescent biomarkers and some preliminary results are also discussed here. PMID:16193951

  19. The Interplay of Shape and Crystalline Anisotropies in Plasmonic Semiconductor Nanocrystals.

    PubMed

    Kim, Jongwook; Agrawal, Ankit; Krieg, Franziska; Bergerud, Amy; Milliron, Delia J

    2016-06-01

    Doped semiconductor nanocrystals are an emerging class of materials hosting localized surface plasmon resonance (LSPR) over a wide optical range. Studies so far have focused on tuning LSPR frequency by controlling the dopant and carrier concentrations in diverse semiconductor materials. However, the influence of anisotropic nanocrystal shape and of intrinsic crystal structure on LSPR remain poorly explored. Here, we illustrate how these two factors collaborate to determine LSPR characteristics in hexagonal cesium-doped tungsten oxide nanocrystals. The effect of shape anisotropy is systematically analyzed via synthetic control of nanocrystal aspect ratio (AR), from disks to nanorods. We demonstrate the dominant influence of crystalline anisotropy, which uniquely causes strong LSPR band-splitting into two distinct peaks with comparable intensities. Modeling typically used to rationalize particle shape effects is refined by taking into account the anisotropic dielectric function due to crystalline anisotropy, thus fully accounting for the AR-dependent evolution of multiband LSPR spectra. This new insight into LSPR of semiconductor nanocrystals provides a novel strategy for an exquisite tuning of LSPR line shape. PMID:27181287

  20. Chemical and thermodynamic control of the surface of semiconductor nanocrystals for designer white light emitters.

    PubMed

    Krause, Michael M; Mooney, Jonathan; Kambhampati, Patanjali

    2013-07-23

    Small CdSe semiconductor nanocrystals with diameters below 2 nm are thought to emit white light due to random surface defects which result in a broad distribution of midgap emitting states, thereby preventing rational design of small nanocrystal white light emitters. We perform temperature dependent photoluminescence experiments before and after ligand exchange and electron transfer simulations to reveal a very simple microscopic picture of the origin of the white light. These experiments and simulations reveal that these small nanocrystals can be physically modeled in precisely the same way as normal-sized semiconductor nanocrystals; differences in their emission spectra arise from their surface thermodynamics. The white light emission is thus a consequence of the thermodynamic relationship between a core excitonic state and an optically bright surface state with good quantum yield. By virtue of this understanding of the surface and the manner in which it is coupled to the core excitonic states of these nanocrystals, we show both chemical and thermodynamic control of the photoluminescence spectra. We find that using both temperature and appropriate choice in ligands, one can rationally control the spectra so as to engineer the surface to target color rendering coordinates for displays and white light emitters. PMID:23802709

  1. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.

    PubMed

    Reiss, Peter; Couderc, Elsa; De Girolamo, Julia; Pron, Adam

    2011-02-01

    This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments. PMID:21152569

  2. Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals.

    PubMed

    Gómez, D E; Vernon, K C; Mulvaney, P; Davis, T J

    2010-01-01

    We present an experimental demonstration of strong coupling between a surface plasmon propagating on a planar silver thin film and the lowest excited state of CdSe nanocrystals. Attenuated total reflection measurements demonstrate the formation of plasmon-exciton mixed states, characterized by a Rabi splitting of approximately 112 meV at room temperature. Such a coherent interaction has the potential for the development of nonlinear plasmonic devices, and furthermore, this system is akin to those studied in cavity quantum electrodynamics, thus offering the possibility to study the regime of strong light-matter coupling in semiconductor nanocrystals under easily accessible experimental conditions. PMID:20000744

  3. Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films

    SciTech Connect

    Nagpal, Prashant; Klimov, Victor I.

    2011-09-27

    Colloidal semiconductor nanocrystals have attracted significant interest for applications in solution-processable devices such as light-emitting diodes and solar cells. However, a poor understanding of charge transport in nanocrystal assemblies, specifically the relation between electrical conductance in dark and under light illumination, hinders their technological applicability. Here we simultaneously address the issues of 'dark' transport and photoconductivity in films of PbS nanocrystals, by incorporating them into optical field-effect transistors in which the channel conductance is controlled by both gate voltage and incident radiation. Spectrally resolved photoresponses of these devices reveal a weakly conductive mid-gap band that is responsible for charge transport in dark. The mechanism for conductance, however, changes under illumination when it becomes dominated by band-edge quantized states. In this case, the mid-gap band still has an important role as its occupancy (tuned by the gate voltage) controls the dynamics of band-edge charges.

  4. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOEpatents

    Alivisatos, A. Paul; Colvin, Vicki L.

    1998-01-01

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.

  5. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOEpatents

    Alivisatos, A.P.; Colvin, V.L.

    1998-05-12

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.

  6. Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films

    PubMed Central

    Nagpal, Prashant; Klimov, Victor I.

    2011-01-01

    Colloidal semiconductor nanocrystals have attracted significant interest for applications in solution-processable devices such as light-emitting diodes and solar cells. However, a poor understanding of charge transport in nanocrystal assemblies, specifically the relation between electrical conductance in dark and under light illumination, hinders their technological applicability. Here we simultaneously address the issues of 'dark' transport and photoconductivity in films of PbS nanocrystals, by incorporating them into optical field-effect transistors in which the channel conductance is controlled by both gate voltage and incident radiation. Spectrally resolved photoresponses of these devices reveal a weakly conductive mid-gap band that is responsible for charge transport in dark. The mechanism for conductance, however, changes under illumination when it becomes dominated by band-edge quantized states. In this case, the mid-gap band still has an important role as its occupancy (tuned by the gate voltage) controls the dynamics of band-edge charges. PMID:21952220

  7. A developed Ullmann reaction to III-V semiconductor nanocrystals in sealed vacuum tubes.

    PubMed

    Wang, Junli; Yang, Qing

    2008-11-21

    Group III-V (13-15, III = Ga, In, and V = P, As) semiconductor nanocrystals were effectively obtained via a developed Ullmann reaction route through the reactions of preformed nanoscale metallic indium or commercial gallium with triphenylphosphine (PPh(3)) and triphenylarsine (AsPh(3)) in sealed vacuum quartz tubes under moderate conditions at 320-400 degrees C for 8-24 h. The developed synthetic strategy in sealed vacuum tubes extends the synthesis of III-V semiconductor materials, and the air-stable PPh(3) and AsPh(3) with low toxicity provide good alternative pnicogen precursors for the synthesis of III-V nanocrystals. The analysis of XRD, ED and HRTEM established the production of one-dimensional (1D) metastable wurtzite (W) InP, InAs and GaP nanostructures in the zinc blende (ZB) products. Further investigations showed that 1D W nanostructures resulted from kinetic effects under the moderate synthetic conditions employed and the steric effect of PPh(3) and AsPh(3), and that the tendency for the synthesis of III-V nanocrystals was in the orders of IIIP > IIIAs and GaV > InV on the basis of experiments and thermodynamic calculations. Meanwhile, the microstructures and growth mechanism of the III-V nanocrystals were investigated. PMID:19082064

  8. Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals?

    SciTech Connect

    Feng, Y. Lin, S.; Huang, S.; Shrestha, S.; Conibeer, G.

    2015-03-28

    Despite that Tauc plot extrapolation has been widely adopted for extracting bandgap energies of semiconductors, there is a lack of theoretical support for applying it to nanocrystals. In this paper, direct-allowed optical transitions in semiconductor nanocrystals have been formulated based on a purely theoretical approach. This result reveals a size-dependant transition of the power factor used in Tauc plot, increasing from one half used in the 3D bulk case to one in the 0D case. This size-dependant intermediate value of power factor allows a better extrapolation of measured absorption data. Being a material characterization technique, the generalized Tauc extrapolation gives a more reasonable and accurate acquisition of the intrinsic bandgap, while the unjustified purpose of extrapolating any elevated bandgap caused by quantum confinement is shown to be incorrect.

  9. Photophysical Properties of II-VI Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gong, Ke

    As it is well known, semiconductor nanocrystals (also called quantum dots, QDs) are being actively pursued for use in many different types of luminescent optical materials. These materials include the active media for luminescence downconversion in artificial lighting, lasers, luminescent solar concentrators and many other applications. Chapter 1 gives general introduction of QDs, which describe the basic physical properties and optical properties. Based on the experimental spectroscopic study, a semiquantitative method-effective mass model is employed to give theoretical prediction and guide. The following chapters will talks about several topics respectively. A predictive understanding of the radiative lifetimes is therefore a starting point for the understanding of the use of QDs for these applications. Absorption intensities and radiative lifetimes are fundamental properties of any luminescent material. Meantime, achievement of high efficiency with high working temperature and heterostructure fabrication with manipulation of lattice strain are not easy and need systematic investigation. To make accurate connections between extinction coefficients and radiative recombination rates, chapter 2 will consider three closely related aspects of the size dependent spectroscopy of II-VI QDs. First, it will consider the existing literature on cadmium selenide (CdSe) QD absorption spectra and extinction coefficients. From these results and fine structure considerations Boltzmann weighted radiative lifetimes are calculated. These lifetimes are compared to values measured on very high quality CdSe and CdSe coated with zinc selenide (ZnSe) shells. Second, analogous literature data are analyzed for cadmium telluride (CdTe) nanocrystals and compared to lifetimes measured for very high quality QDs. Furthermore, studies of the absorption and excitation spectra and measured radiative lifetimes for CdTe/CdSe Type-II core/shell QDs are reported. These results are also analyzed in

  10. Quantifying energy transfer in semiconductor nanocrystals using coherent phonon manipulation and ultrafast spectroscopy (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Spann, Bryan T.; Xu, Xianfan

    2015-10-01

    One potential way to increase photovoltaic efficiency is to take advantage of hot-carriers. Nanocrystal based solar cells aim to take advantage of hot-carrier capture to boost device performance. The crucial parameter for gauging a given nanocrystal material for this application is the electron-phonon coupling. The electron-phonon coupling will dictate the thermalization time of hot-carriers. In this study we demonstrate a method of quantifying the electron-phonon coupling in semiconductor nanocrystals. By employing ultrafast transient absorption spectroscopy with temporal pulse shaping, we manipulate coherent phonons in CdTe_{1-x}Se_{x} nanocrystals to quantify the efficiency of the electron-phonon coupling. The Raman active longitudinal optical phonon (LO) modes were excited and probed as a function of time. Using a temporal pulse shaper, we were able to control pump pulse pairs to coherently excite and cancel coherent phonons in the CdTe_{1-x}Se_{x} nanocrystals, and estimate the relative amount of optical energy that is coupled to the coherent CdSe LO mode which is the dominant thermalization pathway for the hot-electrons in this system.

  11. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well

    NASA Astrophysics Data System (ADS)

    Achermann, Marc; Petruska, Melissa A.; Kos, Simon; Smith, Darryl L.; Koleske, Daniel D.; Klimov, Victor I.

    2004-06-01

    As a result of quantum-confinement effects, the emission colour of semiconductor nanocrystals can be modified dramatically by simply changing their size. Such spectral tunability, together with large photoluminescence quantum yields and high photostability, make nanocrystals attractive for use in a variety of light-emitting technologies-for example, displays, fluorescence tagging, solid-state lighting and lasers. An important limitation for such applications, however, is the difficulty of achieving electrical pumping, largely due to the presence of an insulating organic capping layer on the nanocrystals. Here, we describe an approach for indirect injection of electron-hole pairs (the electron-hole radiative recombination gives rise to light emission) into nanocrystals by non-contact, non-radiative energy transfer from a proximal quantum well that can in principle be pumped either electrically or optically. Our theoretical and experimental results indicate that this transfer is fast enough to compete with electron-hole recombination in the quantum well, and results in greater than 50 per cent energy-transfer efficiencies in the tested structures. Furthermore, the measured energy-transfer rates are sufficiently large to provide pumping in the stimulated emission regime, indicating the feasibility of nanocrystal-based optical amplifiers and lasers based on this approach.

  12. Benefitting from Dopant Loss and Ostwald Ripening in Mn Doping of II-VI Semiconductor Nanocrystals.

    PubMed

    Zhai, You; Shim, Moonsub

    2015-12-01

    Annealing or growth at high temperatures for an extended period of time is considered detrimental for most synthetic strategies for high-quality Mn-doped II-VI semiconductor nanocrystals. It can lead to the broadening of size distribution and, more importantly, to the loss of dopants. Here, we examine how ripening can be beneficial to doping in a simple "heat-up" approach, where high dopant concentrations can be achieved. We discuss the interplay of the loss of dopants, Ostwald ripening, and the clustering of Mn near the surface during nanocrystal growth. Smaller nanocrystals in a reaction batch, on average, exhibit higher undesirable band-edge photoluminescence (PL) and lower desirable dopant PL. The optimization of dopant loss and the removal of such smaller undesirable nanocrystals through Ostwald ripening along with surface exchange/passivation to remove Mn clustering lead to high Mn PL quantum yields (45 to 55 %) for ZnSxSe1-x, ZnS, CdS, and CdSxSe1-x host nanocrystals. These results provide an improved understanding of the doping process in a simple and potentially scalable synthetic strategy for achieving "pure" and bright dopant emission. PMID:26510444

  13. Benefitting from Dopant Loss and Ostwald Ripening in Mn Doping of II-VI Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhai, You; Shim, Moonsub

    2015-10-01

    Annealing or growth at high temperatures for an extended period of time is considered detrimental for most synthetic strategies for high-quality Mn-doped II-VI semiconductor nanocrystals. It can lead to the broadening of size distribution and, more importantly, to the loss of dopants. Here, we examine how ripening can be beneficial to doping in a simple "heat-up" approach, where high dopant concentrations can be achieved. We discuss the interplay of the loss of dopants, Ostwald ripening, and the clustering of Mn near the surface during nanocrystal growth. Smaller nanocrystals in a reaction batch, on average, exhibit higher undesirable band-edge photoluminescence (PL) and lower desirable dopant PL. The optimization of dopant loss and the removal of such smaller undesirable nanocrystals through Ostwald ripening along with surface exchange/passivation to remove Mn clustering lead to high Mn PL quantum yields (45 to 55 %) for ZnSxSe1-x, ZnS, CdS, and CdSxSe1-x host nanocrystals. These results provide an improved understanding of the doping process in a simple and potentially scalable synthetic strategy for achieving "pure" and bright dopant emission.

  14. Particle-level engineering of thermal conductivity in matrix-embedded semiconductor nanocrystals.

    PubMed

    Hannah, Daniel C; Ithurria, Sandrine; Krylova, Galyna; Talapin, Dmitri V; Schatz, George C; Schaller, Richard D

    2012-11-14

    Known manipulations of semiconductor thermal transport properties rely upon higher-order material organization. Here, using time-resolved optical signatures of phonon transport, we demonstrate a "bottom-up" means of controlling thermal outflow in matrix-embedded semiconductor nanocrystals. Growth of an electronically noninteracting ZnS shell on a CdSe core modifies thermalization times by an amount proportional to the overall particle radius. Using this approach, we obtain changes in effective thermal conductivity of up to 5× for a nearly constant energy gap. PMID:23066718

  15. Direct observation of triplet energy transfer from semiconductor nanocrystals.

    PubMed

    Mongin, Cédric; Garakyaraghi, Sofia; Razgoniaeva, Natalia; Zamkov, Mikhail; Castellano, Felix N

    2016-01-22

    Triplet excitons are pervasive in both organic and inorganic semiconductors but generally remain confined to the material in which they originate. We demonstrated by transient absorption spectroscopy that cadmium selenide semiconductor nanoparticles, selectively excited by green light, engage in interfacial Dexter-like triplet-triplet energy transfer with surface-anchored polyaromatic carboxylic acid acceptors, extending the excited-state lifetime by six orders of magnitude. Net triplet energy transfer also occurs from surface acceptors to freely diffusing molecular solutes, further extending the lifetime while sensitizing singlet oxygen in an aerated solution. The successful translation of triplet excitons from semiconductor nanoparticles to the bulk solution implies that such materials are generally effective surrogates for molecular triplets. The nanoparticles could thereby potentially sensitize a range of chemical transformations that are relevant for fields as diverse as optoelectronics, solar energy conversion, and photobiology. PMID:26798011

  16. Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices

    DOEpatents

    Alivisatos, A. Paul; Colvin, Vickie

    1996-01-01

    An electroluminescent device is described, as well as a method of making same, wherein the device is characterized by a semiconductor nanocrystal electron transport layer capable of emitting visible light in response to a voltage applied to the device. The wavelength of the light emitted by the device may be changed by changing either the size or the type of semiconductor nanocrystals used in forming the electron transport layer. In a preferred embodiment the device is further characterized by the capability of emitting visible light of varying wavelengths in response to changes in the voltage applied to the device. The device comprises a hole processing structure capable of injecting and transporting holes, and usually comprising a hole injecting layer and a hole transporting layer; an electron transport layer in contact with the hole processing structure and comprising one or more layers of semiconductor nanocrystals; and an electron injecting layer in contact with the electron transport layer for injecting electrons into the electron transport layer. The capability of emitting visible light of various wavelengths is principally based on the variations in voltage applied thereto, but the type of semiconductor nanocrystals used and the size of the semiconductor nanocrystals in the layers of semiconductor nanometer crystals may also play a role in color change, in combination with the change in voltage.

  17. 1/f noise in semiconductor and metal nanocrystal solids

    SciTech Connect

    Liu, Heng Lhuillier, Emmanuel Guyot-Sionnest, Philippe

    2014-04-21

    Electrical 1/f noise is measured in thin films of CdSe, CdSe/CdS, ZnO, HgTe quantum dots and Au nanocrystals. The 1/f noise, normalized per nanoparticle, shows no systematic dependence on the nanoparticle material and the coupling material. However, over 10 orders of magnitude, it correlates well with the nearest neighbor conductance suggesting some universal magnitude of the 1/f noise in these granular conductors. In the hopping regime, the main mechanism of 1/f noise is determined to be mobility fluctuated. In the metallic regime obtained with gold nanoparticle films, the noise drops to a similar level as bulk gold films and with a similar temperature dependence.

  18. Charged two-exciton emission from a single semiconductor nanocrystal

    SciTech Connect

    Hu, Fengrui; Zhang, Qiang; Zhang, Chunfeng; Wang, Xiaoyong; Xiao, Min

    2015-03-30

    Here, we study the photoluminescence (PL) time trajectories of single CdSe/ZnS nanocrystals (NCs) as a function of the laser excitation power. At the low laser power, the PL intensity of a single NC switches between the “on” and “off” levels arising from the neutral and positively charged single excitons, respectively. With the increasing laser power, an intermediate “grey” level is formed due to the optical emission from a charged multiexciton state composed of two excitons and an extra electron. Both the inter-photon correlation and the PL decay measurements demonstrate that lifetime-indistinguishable photon pairs are emitted from this negatively charged two-exciton state.

  19. Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts

    SciTech Connect

    Sheldon, Matthew T.; Trudeau, Paul-Emile; Mokari, Taleb; Wang, Lin-Wang; Alivisatos, A. Paul

    2009-08-19

    We report a 100,000-fold increase in the conductance of individual CdSe nanorods when they are electrically contacted via direct solution phase growth of Au tips on the nanorod ends. Ensemble UV-Vis and X-Ray photoelectron spectroscopy indicate this enhancement does not result from alloying of the nanorod. Rather, low temperature tunneling and high temperature (250-400 K) thermionic emission across the junction at the Au contact reveal a 75percent lower interface barrier to conduction compared to a control sample. We correlate this barrier lowering with the electronic structure at the Au-CdSe interface. Our results emphasize the importance of nanocrystal surface structure for robust device performance and the advantage of this contact method.

  20. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers.

    SciTech Connect

    Klimov, Victor I.; Koleske, Daniel David; Hoffbauer, Mark A.; Akhadov, Elshan A.; Werder, Donald J.; Mueller, Alexander H.; Petruska, Melissa A.; Achermann, Marc

    2005-06-01

    Numerous technologies including solid-state lighting, displays, and traffic signals can benefit from efficient, color-selectable light sources that are driven electrically. Semiconductor nanocrystals are attractive types of chromophores that combine size-controlled emission colors and high emission efficiencies with excellent photostability and chemical flexibility. Applications of nanocrystals in light-emitting technologies, however, have been significantly hindered by difficulties in achieving direct electrical injection of carriers. Here we report the first successful demonstration of electroluminescence from an all-inorganic, nanocrystal-based architecture in which semiconductor nanocrystals are incorporated into a p-n junction formed from GaN injection layers. The critical step in the fabrication of these nanocrystal/GaN hybrid structures is the use of a novel deposition technique, energetic neutral atom beam lithography/epitaxy, that allows for the encapsulation of nanocrystals within a GaN matrix without adversely affecting either the nanocrystal integrity or its luminescence properties. We demonstrate electroluminescence (injection efficiencies of at least 1%) in both single- and two-color regimes using structures comprising either a single monolayer or a bilayer of nanocrystals.

  1. Broadband up-conversion at subsolar irradiance: triplet-triplet annihilation boosted by fluorescent semiconductor nanocrystals.

    PubMed

    Monguzzi, A; Braga, D; Gandini, M; Holmberg, V C; Kim, D K; Sahu, A; Norris, D J; Meinardi, F

    2014-11-12

    Conventional solar cells exhibit limited efficiencies in part due to their inability to absorb the entire solar spectrum. Sub-band-gap photons are typically lost but could be captured if a material that performs up-conversion, which shifts photon energies higher, is coupled to the device. Recently, molecular chromophores that undergo triplet-triplet annihilation (TTA) have shown promise for efficient up-conversion at low irradiance, suitable for some types of solar cells. However, the molecular systems that have shown the highest up-conversion efficiency to date are ill suited to broadband light harvesting, reducing their applicability. Here we overcome this limitation by combining an organic TTA system with highly fluorescent CdSe semiconductor nanocrystals. Because of their broadband absorption and spectrally narrow, size-tunable fluorescence, the nanocrystals absorb the radiation lost by the TTA chromophores, returning this energy to the up-converter. The resulting nanocrystal-boosted system shows a doubled light-harvesting ability, which allows a green-to-blue conversion efficiency of ∼12.5% under 0.5 suns of incoherent excitation. This record efficiency at subsolar irradiance demonstrates that boosting the TTA by light-emitting nanocrystals can potentially provide a general route for up-conversion for different photovoltaic and photocatalytic applications. PMID:25322197

  2. 3D assembly of silica encapsulated semiconductor nanocrystals.

    PubMed

    Rengers, Christin; Voitekhovich, Sergei V; Kittler, Susann; Wolf, André; Adam, Marion; Gaponik, Nikolai; Kaskel, Stefan; Eychmüller, Alexander

    2015-08-01

    Non-ordered porous networks, so-called aerogels, can be achieved by the 3D assembly of quantum dots (QDs). These materials are well suited for photonic applications, however a certain quenching of the photoluminescence (PL) intensity is observed in these structures. This PL quenching is mainly attributed to the energy transfer mechanisms that result from the close contact of the nanoparticles in the network. Here, we demonstrate the formation of a novel aerogel material with non-quenching PL behaviour by non-classical, reversible gel formation from tetrazole capped silica encapsulated QDs. Monitoring of the gelation/degelation by optical spectroscopy showed that the optical properties of the nanocrystals could be preserved in the 3D network since no spectral shifts and lifetime shortening, which can be attributed to the coupling between QDs, are observed in the gels as compared to the original colloidal solutions. In comparison with other QD-silica monoliths, QDs in our gels are homogeneously distributed with a distinct and controllable distance. In addition we show that the silica shell is porous and allows metal ions to pass through the shell and interact with the QD core causing detectable changes of the emission properties. We further show the applicability of this gelation method to other QD materials which sets the stage for facile preparation of a variety of mixed gel structures. PMID:26154738

  3. 3D assembly of silica encapsulated semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Rengers, Christin; Voitekhovich, Sergei V.; Kittler, Susann; Wolf, André; Adam, Marion; Gaponik, Nikolai; Kaskel, Stefan; Eychmüller, Alexander

    2015-07-01

    Non-ordered porous networks, so-called aerogels, can be achieved by the 3D assembly of quantum dots (QDs). These materials are well suited for photonic applications, however a certain quenching of the photoluminescence (PL) intensity is observed in these structures. This PL quenching is mainly attributed to the energy transfer mechanisms that result from the close contact of the nanoparticles in the network. Here, we demonstrate the formation of a novel aerogel material with non-quenching PL behaviour by non-classical, reversible gel formation from tetrazole capped silica encapsulated QDs. Monitoring of the gelation/degelation by optical spectroscopy showed that the optical properties of the nanocrystals could be preserved in the 3D network since no spectral shifts and lifetime shortening, which can be attributed to the coupling between QDs, are observed in the gels as compared to the original colloidal solutions. In comparison with other QD-silica monoliths, QDs in our gels are homogeneously distributed with a distinct and controllable distance. In addition we show that the silica shell is porous and allows metal ions to pass through the shell and interact with the QD core causing detectable changes of the emission properties. We further show the applicability of this gelation method to other QD materials which sets the stage for facile preparation of a variety of mixed gel structures.Non-ordered porous networks, so-called aerogels, can be achieved by the 3D assembly of quantum dots (QDs). These materials are well suited for photonic applications, however a certain quenching of the photoluminescence (PL) intensity is observed in these structures. This PL quenching is mainly attributed to the energy transfer mechanisms that result from the close contact of the nanoparticles in the network. Here, we demonstrate the formation of a novel aerogel material with non-quenching PL behaviour by non-classical, reversible gel formation from tetrazole capped silica

  4. Universal size dependence of auger constants in direct- and indirect-gap semiconductor nanocrystals

    SciTech Connect

    Robel, Istvan; Schaller, Richard D; Klimov, Victor I; Gresback, Ryan; Kortshagen, Uwe

    2008-01-01

    Three-dimensional (3D) spatial confinement of electronic wave functions in semiconductor nanocrystals (NCs) results in a significant enhancement of multi-electron phenomena including non radiative Auger recombination. In this process, a conduction-band electron recombines with a valence-band hole by transferring the recombination energy to a third carrier. Significant interest in Auger recombination in NCs has been stimulated by recent studies ofNC lasing, and generation-III photovoltaics enabled by carrier multiplication because in both of these prospective applications Auger recombination represents a dominant carrier-loss mechanism. Here, we perform a side-by-side comparison of Auger recombination rates in NCs of several different compositions including Ge, PbSe, InAs, and CdSe. We observe that the only factor, which has a significant effect on the measured recombination rates, is the size of the NCs but not the details of the material's electronic structure. Most surprisingly, comparable rates are measured for nanocrystals of directand indirect-gap semiconductor NCs despite a dramatic four-to-five orders of magnitude difference in respective bulk-semiconductor Auger constants. This unusual observation can be explained by confinement-induced relaxation of momentum conservation, which smears out the difference between direct- and indirect-gap materials.

  5. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Qihui; Yu, Dongdong; Shi, Weiguang; Li, Jixue; Zhou, Jianguang; Liu, Xiaoyang

    2008-06-01

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  6. Rational design of the gram-scale synthesis of nearly monodisperse semiconductor nanocrystals

    PubMed Central

    2011-01-01

    We address two aspects of general interest for the chemical synthesis of colloidal semiconductor nanocrystals: (1) the rational design of the synthesis protocol aiming at the optimization of the reaction parameters in a minimum number of experiments; (2) the transfer of the procedure to the gram scale, while maintaining a low size distribution and maximizing the reaction yield. Concerning the first point, the design-of-experiment (DOE) method has been applied to the synthesis of colloidal CdSe nanocrystals. We demonstrate that 16 experiments, analyzed by means of a Taguchi L16 table, are sufficient to optimize the reaction parameters for controlling the mean size of the nanocrystals in a large range while keeping the size distribution narrow (5-10%). The DOE method strongly reduces the number of experiments necessary for the optimization as compared to trial-and-error approaches. Furthermore, the Taguchi table analysis reveals the degree of influence of each reaction parameter investigated (e.g., the nature and concentration of reagents, the solvent, the reaction temperature) and indicates the interactions between them. On the basis of these results, the synthesis has been scaled up by a factor of 20. Using a 2-L batch reactor combined with a high-throughput peristaltic pump, different-sized samples of CdSe nanocrystals with yields of 2-3 g per synthesis have been produced without sacrificing the narrow size distribution. In a similar setup, the gram-scale synthesis of CdSe/CdS/ZnS core/shell/shell nanocrystals exhibiting a fluorescence quantum yield of 81% and excellent resistance of the photoluminescence in presence of a fluorescent quencher (aromatic thiol) has been achieved. PACS: 81.20.Ka, 81.07.Bc, 78.67.Bf PMID:21791060

  7. Self-assembly of doped semiconductor nanocrystals leading to the formation of highly luminescent nanorods

    NASA Astrophysics Data System (ADS)

    Manzoor, K.; Aditya, V.; Vadera, S. R.; Kumar, N.; Kutty, T. R. N.

    2006-03-01

    Meso-scale self-assembly of doped semiconductor nanocrystals leading to the formation of monocrystalline nanorods showing enhanced photo- and electro-luminescence properties are reported. Polycrystalline ZnS: Cu +-Al 3+ nanoparticles of zinc-blended (cubic) structure with an average size of ˜4 nm were aggregated in aqueous solution and grown into nanorods of length ˜400 nm and aspect ratio ˜12. Transmission electron microscope (TEM) images indicate crystal growth mechanisms involving particle-to-particle oriented-attachment assisted by sulphur-sulphur catenation leading to covalent-linkage. The nanorods exhibit self-assembly dependant luminescence properties such as quenching of the lattice defect-related emissions accompanied by enhancement of dopant-related emission, efficient low-voltage electroluminescence (EL) and super-linear voltage-brightness EL characteristics. This study demonstrates the technological importance of aggregation based self-assembly in doped semiconductor nanosystems.

  8. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based onHyperbranched Semiconductor Nanocrystals

    SciTech Connect

    Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, AntoniosG.; Alivisatos, A. Paul

    2006-09-09

    In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate 3-dimensional hyper-branched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology.

  9. Metal semiconductor phase transition in vanadium dioxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Lopez Noriega, Rene

    The goal of this research was to improve the understanding of the submicron VO2 formation in the near surface of a host material and to explore the possibility of size effects in the mechanics of the semiconductor to metal phase transition as well as in the optical properties of VO2. By means of ion implantation and thermal processing, we were able to produce variable-sized nanoscale VO2 precipitates embedded in SiO 2. The transition temperatures were found to be correlated with the size of the precipitates, in such a way that for smaller particles, both transitions were thermally delayed. A review of the energy barriers and other features involved in the transition, led us to conclude that regardless of that exact mechanism, the phase transition must proceed in a heterogeneous fashion. Smaller particles were expected to have a lower chance of containing a nucleation site and thus, they need a greater thermal driving force in order to activate them. VO2 precipitates were not only controlled in size but as an unexpected result they turned out to be produced in elongated shapes oriented mainly along the implanted surface. This morphology, which was explained in terms of the Bravais-Friedel law of crystal growth, allowed us to understand the optical properties of the precipitates. We concluded that the optical behavior shown by the particles in the SiO2 matrix, was result of a surface plasmon resonance due to the dielectric confinement and metallic character of the VO2 in the high temperature phase. Beside these contributions to material and physical sciences, we have shown that established results for VO2 doping can be applicable to our submicron particles. We were able to successfully control the width of the hysteresis loop by adding Ti ions before the precipitation. We also reached lower switching temperatures by implanting small quantities of W. Ion implantation also proved to be an easy and convenient way to incorporate VO2 nanoparticles into an optical fiber

  10. Poly(ethylene glycol)-based multidentate oligomers for biocompatible semiconductor and gold nanocrystals.

    PubMed

    Palui, Goutam; Na, Hyon Bin; Mattoussi, Hedi

    2012-02-01

    We have developed a new set of multifunctional multidentate OligoPEG ligands, each containing a central oligomer on which were laterally grafted several short poly(ethylene glycol) (PEG) moieties appended with either thioctic acid (TA) or terminally reactive groups. Reduction of the TAs (e.g., in the presence of NaBH(4)) provides dihydrolipoic acid (DHLA)-appended oligomers. Here the insertion of PEG segments in the ligand structure promotes water solubility and reduces nonspecific interactions, while TA and DHLA groups provide multidentate anchoring onto Au nanoparticles (AuNPs) and ZnS-overcoated semiconductor quantum dots (QDs), respectively. The synthetic route involves simple coupling chemistry using N,N-dicylohexylcarbodiimide (DCC). Water-soluble QDs and AuNPs capped with these ligands were prepared via cap exchange. As prepared, the nanocrystals dispersions were aggregation-free, homogeneous, and stable for extended periods of time over pH ranging from 2 to 14 and in the presence of excess electrolyte (2 M NaCl). The new OligoPEG ligands also allow easy integration of tunable functional and reactive groups within their structures (e.g., azide or amine), which imparts surface functionalities to the nanocrystals and opens up the possibility of bioconjugation with specific biological molecules. The improved colloidal stability combined with reactivity offer the possibility of using the nanocrystals as biological probes in an array of complex and biologically relevant media. PMID:22201293

  11. Design of metal/dielectric/nanocrystals core/shell/shell nano-structures for the fluorescence enhancement of cadmium-free semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Chevallier, Théo.; Le Blevennec, Gilles; Chandezon, Frédéric

    2015-10-01

    AgInS2-ZnS (ZAIS) quaternary semiconductors nanocrystals are versatile cadmium-free luminescent nanomaterials. Their broad emission spectrum and strong absorption make them ideal for the development of new white-LED devices taking advantage of nano-optical phenomena. We recently found strategies to increase the photoluminescence quantum yield of ZAIS nanocrystals up to 80%. In a second step toward high efficiency luminescent materials, we aim at increasing the net conversion efficiency of ZAIS nanocrystals by coupling them with metallic nano-antennae. Indeed, by grafting ZAIS nanocrystals onto carefully chosen metal/dielectric core/shell nanoparticles, both the absorption and emission processes can be tuned and enhanced. A finite-element simulation based on the discrete dipole approximation (DDA) was used to predict the nano-optical behavior of silver@oxide@ZAIS nanostructures. Desirable combinations of materials and geometry for the antennae were identified. A chemical method for the synthesis of the simulated nanostructures was developed. The coupling of ZAIS nanocrystals emission with the plasmonic structure is experimentally observed and is in accordance with our predictions.

  12. General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals.

    PubMed

    Yu, Kui; Liu, Xiangyang; Qi, Ting; Yang, Huaqing; Whitfield, Dennis M; Y Chen, Queena; Huisman, Erik J C; Hu, Changwei

    2016-01-01

    Little is known about the molecular pathway to monomers of semiconductor nanocrystals. Here we report a general reaction pathway, which is based on hydrogen-mediated ligand loss for the precursor conversion to 'monomers' at low temperature before nucleation. We apply (31)P nuclear magnetic resonance spectroscopy to monitor the key phosphorous-containing products that evolve from MXn+E=PPh2H+HY mixtures, where MXn, E=PPh2H, and HY are metal precursors, chalcogenide precursors, and additives, respectively. Surprisingly, the phosphorous-containing products detected can be categorized into two groups, Ph2P-Y and Ph2P(E)-Y. On the basis of our experimental and theoretical results, we propose two competing pathways to the formation of M2En monomers, each of which is accompanied by one of the two products. Our study unravels the pathway of precursor evolution into M2En monomers, the stoichiometry of which directly correlates with the atomic composition of the final compound nanocrystals. PMID:27531507

  13. Charge Blinking Statistics of Semiconductor Nanocrystals Revealed by Carbon Nanotube Single Charge Sensors.

    PubMed

    Zbydniewska, Ewa; Duzynska, Anna; Popoff, Michka; Hourlier, Djamila; Lenfant, Stéphane; Judek, Jaroslaw; Zdrojek, Mariusz; Mélin, Thierry

    2015-10-14

    We demonstrate the relation between the optical blinking of colloidal semiconductor nanocrystals (NCs) and their electrical charge blinking for which we provide the first experimental observation of power-law statistics. To show this, we harness the performance of CdSe/ZnS NCs coupled with carbon nanotube field-effect transistors (CNTFETs), which act as single charge-sensitive electrometers with submillisecond time resolution, at room temperature. A random telegraph signal (RTS) associated with the NC single-trap charging is observed and exhibits power-law temporal statistics (τ(-α), with α in the range of ∼1-3), and a Lorentzian current noise power spectrum with a well-defined 1/f(2) corner. The spectroscopic analysis of the NC-CNTFET devices is consistent with the charging of NC defect states with a charging energy of Ec ≥ 200 meV. These results pave the way for a deeper understanding of the physics and technology of nanocrystal-based optoelectronic devices. PMID:26418364

  14. Measurement of accumulation of semiconductor nanocrystal quantum dots by pimephales promelas.

    PubMed

    Leigh, Kenton L; Bouldin, Jennifer L; Buchanan, Roger A

    2012-01-01

    As the production and use of nanomaterials increases, it is important to understand their environmental and biological fate. Because their unmatched chemical, physical, and optical properties make them useful in a wide variety of applications including biomedical imaging, photo-voltaics, and light emitting diodes, the use of semiconductor nanocrystals such as quantum dots (QDs) is increasing rapidly. Although QDs hold great potential in a wide variety of industrial and consumer applications, the environmental implications of these particles is largely unexplored. The nanocrystal core of many types of QDs contains the toxic metal cadmium (Cd), so possible release of Cd from the QD core is cause for concern. Because many types of QDs are miscible in water, QD interactions with aquatic organisms and their environment require more attention. In the present study we used fluorometry to measure time and dose dependent uptake, accumulation, and post-exposure clearance of accumulated QDs in the gut tract by the aquatic vertebrate Pimephales promelas. By using fluorometry, we were able to measure accumulated QD concentrations. To our knowledge, this is the first reported attempt to quantify accumulated QDs in an organism and is an important step in understanding the interactions among QDs in aquatic organisms and environments. PMID:22942867

  15. Synthesis, optical properties, and microstructure of semiconductor nanocrystals formed by ion implantation

    SciTech Connect

    Budai, J.D.; White, C.W.; Withrow, S.P.; Zuhr, R.A.; Zhu, J.G.

    1996-12-01

    High-dose ion implantation, followed by annealing, has been shown to provide a versatile technique for creating semiconductor nanocrystals encapsulated in the surface region of a substrate material. The authors have successfully formed nanocrystalline precipitates from groups IV (Si, Ge, SiGe), III-V (GaAs, InAs, GaP, InP, GaN), and II-VI (CdS, CdSe, CdS{sub x}Se{sub 1{minus}x}, CdTe, ZnS, ZnSe) in fused silica, Al{sub 2}O{sub 3} and Si substrates. Representative examples will be presented in order to illustrate the synthesis, microstructure, and optical properties of the nanostructured composite systems. The optical spectra reveal blue-shifts in good agreement with theoretical estimates of size-dependent quantum-confinement energies of electrons and holes. When formed in crystalline substrates, the nanocrystal lattice structure and orientation can be reproducibly controlled by adjusting the implantation conditions.

  16. Measurement of Accumulation of Semiconductor Nanocrystal Quantum Dots by Pimephales Promelas

    PubMed Central

    Leigh, Kenton L.; Bouldin, Jennifer L.; Buchanan, Roger A.

    2012-01-01

    As the production and use of nanomaterials increases, it is important to understand their environmental and biological fate. Because their unmatched chemical, physical, and optical properties make them useful in a wide variety of applications including biomedical imaging, photo-voltaics, and light emitting diodes, the use of semiconductor nanocrystals such as quantum dots (QDs) is increasing rapidly. Although QDs hold great potential in a wide variety of industrial and consumer applications, the environmental implications of these particles is largely unexplored. The nanocrystal core of many types of QDs contains the toxic metal cadmium (Cd), so possible release of Cd from the QD core is cause for concern. Because many types of QDs are miscible in water, QD interactions with aquatic organisms and their environment require more attention. In the present study we used fluorometry to measure time and dose dependent uptake, accumulation, and post-exposure clearance of accumulated QDs in the gut tract by the aquatic vertebrate Pimephales promelas. By using fluorometry, we were able to measure accumulated QD concentrations. To our knowledge, this is the first reported attempt to quantify accumulated QDs in an organism and is an important step in understanding the interactions among QDs in aquatic organisms and environments. PMID:22942867

  17. General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals

    PubMed Central

    Yu, Kui; Liu, Xiangyang; Qi, Ting; Yang, Huaqing; Whitfield, Dennis M.; Y. Chen, Queena; Huisman, Erik J. C.; Hu, Changwei

    2016-01-01

    Little is known about the molecular pathway to monomers of semiconductor nanocrystals. Here we report a general reaction pathway, which is based on hydrogen-mediated ligand loss for the precursor conversion to ‘monomers' at low temperature before nucleation. We apply 31P nuclear magnetic resonance spectroscopy to monitor the key phosphorous-containing products that evolve from MXn+E=PPh2H+HY mixtures, where MXn, E=PPh2H, and HY are metal precursors, chalcogenide precursors, and additives, respectively. Surprisingly, the phosphorous-containing products detected can be categorized into two groups, Ph2P–Y and Ph2P(E)–Y. On the basis of our experimental and theoretical results, we propose two competing pathways to the formation of M2En monomers, each of which is accompanied by one of the two products. Our study unravels the pathway of precursor evolution into M2En monomers, the stoichiometry of which directly correlates with the atomic composition of the final compound nanocrystals. PMID:27531507

  18. Biexciton cascade emission reveals absolute absorption cross section of single semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Ihara, Toshiyuki

    2016-06-01

    The sequential two-photon emission process known as biexciton cascade emission is a characteristic phenomenon that occurs in photoexcited semiconductor nanocrystals (NCs). This process occurs when a biexciton state is created in the NCs; thus, the occurrence of the process is related to the photoabsorption properties of the NCs. This paper presents a simple equation that connects the photoabsorption of single NCs and the biexciton cascade emission. The equation is found to be independent of the quantum yields of photoluminescence (PL). With this equation and using an analysis of second-order photon correlation, the absolute absorption cross section σ of the single NCs can be evaluated, obtaining values on the order of 10-14c m2 . This analysis shows that ionization during PL blinking does not affect the validity of the relation, indicating that the evaluation of σ , based on the equation, is applicable for various NCs with unique structures.

  19. Optimizing Two-Color Semiconductor Nanocrystal Immunoassays in Single Well Microtiter Plate Formats

    PubMed Central

    Sapsford, Kim E.; Spindel, Samantha; Jennings, Travis; Tao, Guoliang; Triulzi, Robert C.; Algar, W. Russ; Medintz, Igor L.

    2011-01-01

    The simultaneous detection of two analytes, chicken IgY (IgG) and Staphylococcal enterotoxin B (SEB), in the single well of a 96-well plate is demonstrated using luminescent semiconductor quantum dot nanocrystal (NC) tracers. The NC-labeled antibodies were prepared via sulfhydryl-reactive chemistry using a facile protocol that took <3 h. Dose response curves for each target were evaluated in a single immunoassay format and compared to Cy5, a fluorophore commonly used in fluorescent immunoassays, and found to be equivalent. Immunoassays were then performed in a duplex format, demonstrating multiplex detection in a single well with limits of detection equivalent to the single assay format: 9.8 ng/mL chicken IgG and 7.8 ng/mL SEB. PMID:22164051

  20. The More Exotic Shapes of Semiconductor Nanocrystals: Emerging Applications in Bioimaging.

    PubMed

    Lim, Sung Jun; Smith, Andrew; Nie, Shuming

    2014-05-01

    Semiconductor nanocrystals are tiny fluorescent particles that have recently made a major impact in the biological and medical sciences by enabling high-sensitivity imaging of biomolecules, cells, and tissues. Spherical quantum dots are the prototypical material for these applications but recent synthetic advances have led to a diverse range of nanostructures with controllable sizes, shapes, and materials combinations that offer new dimensions of optical and structural tunability. Uniform anisotropic shapes with linearly polarized light emission allow optical imaging of particle orientation, planar structures have large flexible surfaces and ultra-narrow electronic transitions, and compact nanoparticles have enhanced diffusion in crowded biological environments. These properties are providing unique opportunities to probe basic biological processes, cellular structures, and organismal physiology. PMID:24982823

  1. Linking Semiconductor Nanocrystals into Gel Networks through All-Inorganic Bridges.

    PubMed

    Singh, Amita; Lindquist, Beth A; Ong, Gary K; Jadrich, Ryan B; Singh, Ajay; Ha, Heonjoo; Ellison, Christopher J; Truskett, Thomas M; Milliron, Delia J

    2015-12-01

    For colloidal semiconductor nanocrystals (NCs), replacement of insulating organic capping ligands with chemically diverse inorganic clusters enables the development of functional solids in which adjacent NCs are strongly coupled. Yet controlled assembly methods are lacking to direct the arrangement of charged, inorganic cluster-capped NCs into open networks. Herein, we introduce coordination bonds between the clusters capping the NCs thus linking the NCs into highly open gel networks. As linking cations (Pt(2+)) are added to dilute (under 1 vol %) chalcogenidometallate-capped CdSe NC dispersions, the NCs first form clusters, then gels with viscoelastic properties. The phase behavior of the gels for variable [Pt(2+)] suggests they may represent nanoscale analogues of bridged particle gels, which have been observed to form in certain polymer colloidal suspensions. PMID:26474402

  2. Inelastic Scattering in STEM for Studying Structural and Electronic Properties of Chalcogenide-Based Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gunawan, Aloysius Andhika

    Transmission electron microscopy (TEM) relies upon elastic and inelastic scattering signals to perform imaging and analysis of materials. TEM images typically contain contributions from both types of scattering. The ability to separate the contributions from elastic and inelastic processes individually through energy filter or electron energy loss spectroscopy (EELS) allows unique analysis that is otherwise unachievable. Two prominent types of inelastic scattering probed by EELS, namely plasmon and core-loss excitations, are useful for elucidating structural and electronic properties of chalcogenide-based semiconductor nanocrystals. The elastic scattering, however, is still a critical part of the analysis and used in conjunction with the separated inelastic scattering signals. The capability of TEM operated in scanning mode (STEM) to perform localized atomic length scale analysis also permits the understanding of the nanocrystals unattainable by other techniques. Despite the pivotal role of inelastic scatterings, their contributions for STEM imaging, particularly high-angle annular dark field STEM (HAADF-STEM), are not completely understood. This is not surprising since it is currently impossible to experimentally separate the inelastic signals contributing to HAADF-STEM images although images obtained under bright-field TEM mode can be analyzed separately from their scattering contributions using energy-filtering devices. In order to circumvent such problem, analysis based on simulation was done. The existing TEM image simulation algorithm called Multislice method, however, only accounts for elastic scattering. The existing Multislice algorithm was modified to incorporate (bulk or volume) plasmon inelastic scattering. The results were verified based on data from convergent-beam electron diffraction (CBED), electron energy loss spectroscopy (EELS), and HAADF-STEM imaging as well as comparison to experimental data. Dopant atoms are crucial factors which control

  3. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides.

    PubMed

    Pinaud, Fabien; King, David; Moore, Hsiao-Ping; Weiss, Shimon

    2004-05-19

    Synthetic phytochelatin-related peptides are used as an organic coat on the surface of colloidal CdSe/ZnS semiconductor nanocrystals synthesized from hydrophobic coordinating trioctyl phosphine oxide (TOPO) solvents. The peptides are designed to bind to the nanocrystals via a C-terminal adhesive domain. This adhesive domain, composed of multiple repeats of cysteines pairs flanked by hydrophobic 3-cyclohexylalanines, is followed by a flexible hydrophilic linker domain to which various bio-affinity tags can be attached. This surface coating chemistry results in small, buffer soluble, monodisperse peptide-coated nanoparticles with high colloidal stability and ensemble photophysical properties similar to those of TOPO-coated nanocrystals. Various peptide coatings are used to modulate the nanocrystal surface properties and to bioactivate the nanoparticles. CdSe/ZnS nanocrystals coated with biotinylated peptides efficiently bind to streptavidin and are specifically targeted to GPI-anchored avidin-CD14 chimeric proteins expressed on the membranes of live HeLa cells. This peptide coating surface chemistry provides a novel approach for the production of biocompatible photoluminescent nanocrystal probes. PMID:15137777

  4. Direct measurement of lattice dynamics and optical phonon excitation in semiconductor nanocrystals using femtosecond stimulated Raman spectroscopy.

    PubMed

    Hannah, Daniel C; Brown, Kristen E; Young, Ryan M; Wasielewski, Michael R; Schatz, George C; Co, Dick T; Schaller, Richard D

    2013-09-01

    We report femtosecond stimulated Raman spectroscopy measurements of lattice dynamics in semiconductor nanocrystals and characterize longitudinal optical (LO) phonon production during confinement-enhanced, ultrafast intraband relaxation. Stimulated Raman signals from unexcited CdSe nanocrystals produce a spectral shape similar to spontaneous Raman signals. Upon photoexcitation, stimulated Raman amplitude decreases owing to experimentally resolved ultrafast phonon generation rates within the lattice. We find a ∼600  fs, particle-size-independent depletion time attributed to hole cooling, evidence of LO-to-acoustic down-conversion, and LO phonon mode softening. PMID:25166708

  5. Bioinspired solar water splitting, sensitized solar cells, and ultraviolet sensor based on semiconductor nanocrystal antenna/graphene nanoassemblies

    NASA Astrophysics Data System (ADS)

    Chang, Haixin; Lv, Xiaojun; Zheng, Zijian; Wu, Hongkai

    2011-11-01

    Graphene, two-dimensional carbon crystal with only one atom thickness, provides a general platform for nanoscale even atomic scale optoelectronics and photonics. Graphene has many advantages for optoelectronics such as high conductivity, high electronic mobility, flexibility and transparency. However, graphene also has disadvantages such as low light absorption which are unfavorable for optoelectronic devices. On the other hand, many natural photonic systems provide wonderful solution to enhance light absorption for solar energy harvesting and conversion, such as chlorophyll in green plants. Herein, learning from nature, we described bioinspired photocatalytic solar-driven water splitting, sensitized solar cells and ultraviolet optoelectronic sensors enabled by introducing photosensitive semiconductor nanocrystal antenna to graphene for constructing a series of graphene/nanocrystal nanoassemblies. We have demonstrated that high performance optoelectronic devices can come true with the introducing of photosensitive nanocrystal antenna elements.

  6. Bioinspired solar water splitting, sensitized solar cells, and ultraviolet sensor based on semiconductor nanocrystal antenna/graphene nanoassemblies

    NASA Astrophysics Data System (ADS)

    Chang, Haixin; Lv, Xiaojun; Zheng, Zijian; Wu, Hongkai

    2012-02-01

    Graphene, two-dimensional carbon crystal with only one atom thickness, provides a general platform for nanoscale even atomic scale optoelectronics and photonics. Graphene has many advantages for optoelectronics such as high conductivity, high electronic mobility, flexibility and transparency. However, graphene also has disadvantages such as low light absorption which are unfavorable for optoelectronic devices. On the other hand, many natural photonic systems provide wonderful solution to enhance light absorption for solar energy harvesting and conversion, such as chlorophyll in green plants. Herein, learning from nature, we described bioinspired photocatalytic solar-driven water splitting, sensitized solar cells and ultraviolet optoelectronic sensors enabled by introducing photosensitive semiconductor nanocrystal antenna to graphene for constructing a series of graphene/nanocrystal nanoassemblies. We have demonstrated that high performance optoelectronic devices can come true with the introducing of photosensitive nanocrystal antenna elements.

  7. CdSe colloidal nanocrystals monolithically integrated in a pseudomorphic semiconductor epilayer

    SciTech Connect

    Larramendi, Erick M.; Schoeps, Oliver; Woggon, Ulrike; Artemyev, Mikhail V.; Schikora, Detlef; Lischka, Klaus

    2013-01-14

    As optically active emitters in a semiconductor matrix, core/shell and bare CdSe colloidal nanocrystals (CNCs) were monolithically incorporated in ZnSe pseudomorphic epilayers by molecular beam epitaxy (MBE). A suspension of wet chemically synthesized CNCs was sprayed ex-situ over a pseudomorphic ZnSe/GaAs(001) heterostructure using a nebulizer. Subsequently, the matrix material growth was resumed to form a capping layer by a slow MBE growth mode. Structural investigations show high crystalline quality and pseudomorphic epitaxial character of the whole hybrid CNC-matrix structure. The core/shell CNCs remain optically active following the embedding process. Their emission is blue shifted without a significant change on the spectral shape, and shows the same temperature dependence as that of the free exciton peak energy in zinc-blende CdSe at temperatures above 80 K. Our optical characterization of the samples showed that the embedded CNCs were stable and that the structure of the host was preserved. These results are encouraging for the fabrication of more complex optoelectronic devices based on CNCs.

  8. Hopping conductivity and insulator-metal transition in films of touching semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Fu, Han; Reich, K. V.; Shklovskii, B. I.

    2016-03-01

    This paper is focused on the variable-range hopping of electrons in semiconductor nanocrystal (NC) films below the critical doping concentration nc at which it becomes metallic. The hopping conductivity is described by the Efros-Shklovskii law, which depends on the localization length of electrons. We study how the localization length grows with the doping concentration n in the film of touching NCs. For that we calculate the electron transfer matrix element t (n ) between neighboring NCs for two models when NCs touch by small facets or just one point. We study two sources of disorder: variations of NC diameters and random Coulomb potentials originating from random numbers of donors in NCs. We use the ratio of t (n ) to the disorder-induced NC level dispersion to find the localization length of electrons due to the multistep elastic co-tunneling process. We found three different phases at n

  9. Doped Semiconductor-Nanocrystal Emitters with Optimal Photoluminescence Decay Dynamics in Microsecond to Millisecond Range: Synthesis and Applications

    PubMed Central

    2015-01-01

    Transition metal doped semiconductor nanocrystals (d-dots) possess fundamentally different emission properties upon photo- or electroexcitation, which render them as unique emitters for special applications. However, in comparison with intrinsic semiconductor nanocrystals, the potential of d-dots has been barely realized, because many of their unique emission properties mostly rely on precise control of their photoluminescence (PL) decay dynamics. Results in this work revealed that it would be possible to obtain bright d-dots with nearly single-exponential PL decay dynamics. By tuning the number of Mn2+ ions per dot from ∼500 to 20 in Mn2+ doped ZnSe nanocrystals (Mn:ZnSe d-dots), the single-exponential PL decay lifetime was continuously tuned from ∼50 to 1000 μs. A synthetic scheme was further developed for uniform and epitaxial growth of thick ZnS shell, ∼7 monolayers. The resulting Mn:ZnSe/ZnS core/shell d-dots were found to be essential for necessary environmental durability of the PL properties, both steady-state and transient ones, for the d-dot emitters. These characteristics combined with intense absorption and high PL quantum yields (70 ± 5%) enabled greatly simplified schemes for various applications of PL lifetime multiplexing using Mn:ZnSe/ZnS core/shell d-dots. PMID:27163024

  10. Contact Radius and the Insulator-Metal Transition in Films Comprised of Touching Semiconductor Nanocrystals.

    PubMed

    Lanigan, Deanna; Thimsen, Elijah

    2016-07-26

    Nanocrystal assemblies are being explored for a number of optoelectronic applications such as transparent conductors, photovoltaic solar cells, and electrochromic windows. Majority carrier transport is important for these applications, yet it remains relatively poorly understood in films comprised of touching nanocrystals. Specifically, the underlying structural parameters expected to determine the transport mechanism have not been fully elucidated. In this report, we demonstrate experimentally that the contact radius, between touching heavily doped ZnO nanocrystals, controls the electron transport mechanism. Spherical nanocrystals are considered, which are connected by a circular area. The radius of this circular area is the contact radius. For nanocrystals that have local majority carrier concentration above the Mott transition, there is a critical contact radius. If the contact radius between nanocrystals is less than the critical value, then the transport mechanism is variable range hopping. If the contact radius is greater than the critical value, the films display behavior consistent with metallic electron transport. PMID:27398597

  11. Magnetic Mn5Ge3 nanocrystals embedded in crystalline Ge: a magnet/semiconductor hybrid synthesized by ion implantation

    PubMed Central

    2012-01-01

    The integration of ferromagnetic Mn5Ge3 with the Ge matrix is promising for spin injection in a silicon-compatible geometry. In this paper, we report the preparation of magnetic Mn5Ge3 nanocrystals embedded inside the Ge matrix by Mn ion implantation at elevated temperature. By X-ray diffraction and transmission electron microscopy, we observe crystalline Mn5Ge3 with variable size depending on the Mn ion fluence. The electronic structure of Mn in Mn5Ge3 nanocrystals is a 3d6 configuration, which is the same as that in bulk Mn5Ge3. A large positive magnetoresistance has been observed at low temperatures. It can be explained by the conductivity inhomogeneity in the magnetic/semiconductor hybrid system. PMID:23009168

  12. The interface effect on the band offset of semiconductor nanocrystals with type-I core-shell structure.

    PubMed

    Zhu, Ziming; Ouyang, Gang; Yang, Guowei

    2013-04-21

    In order to pursue the interface effect on the band offset of the semiconductor nanocrystals with the type-I core-shell structure, we have established a theoretical model to elucidate the underlying mechanism based on the atomic-bond-relaxation consideration and continuum mechanics. It was found that the size-dependent interface bond-nature-factor of the core-shell nanocrystals can be deduced on the basis of the proposed model. Taking the typical CdSe-ZnSe nanostructure as an example, we showed that the theoretical results were consistent with the experimental observations. These investigations provided a useful guide in opening up the possibility to engineer nanodevices with special optoelectronic properties. PMID:23474697

  13. Magnetic Fluorescent Delivery Vehicle using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals

    SciTech Connect

    Kim, Jaeyun; Lee, Ji Eun; Lee, Jinwoo; Yu, Jung Ho; Kim, Byoung Chan; An, Kwangjin; Hwang, Yosun; Shin, Chae-Ho; Park, Je-Geun; Kim, Jungbae; Hyeon, Taeghwan

    2006-01-25

    Uniform sized colloidal nanocrystals have attracted much attention, because of their unique magnetic and optical properties, as compared with those of their bulk counterparts. Especially magnetic nanocrystals and quantum dots have been intensively pursued for biomedical applications such as contrast enhancement agents in magnetic resonance imaging, magnetic carriers for drug delivery system, biological labeling and diagnostics. Due to their large pore sizes and high surface areas, mesoporous materials and its composites with nanocrystals have attracted considerable attention. In order to use the nanocrystals as functional delivery carriers and catalytic supports, nanocrystals coated with porous silica shells are desirable. Herein, we report a synthetic procedure for the fabrication of monodisperse nanocrystals embedded in uniform pore-sized mesoporous silica spheres. As a representative example, we synthesized monodisperse magnetite (Fe3O4) nanocrystals embedded in mesoporous silica spheres and both magnetite nanocrystals and CdSe/ZnS quantum dots embedded in mesoporous silica spheres. Furthermore, these mesoporous silica spheres were applied to the uptake and controlled release of drugs.

  14. Protein-Nanoreactor-Assisted Synthesis of Semiconductor Nanocrystals for Efficient Cancer Theranostics.

    PubMed

    Yang, Tao; Wang, Yong; Ke, Hengte; Wang, Qiaoli; Lv, Xiaoyan; Wu, Hong; Tang, Yongan; Yang, Xiangliang; Chen, Chunying; Zhao, Yuliang; Chen, Huabing

    2016-07-01

    Transition metal sulfide nanocrystals are developed as a theranostic platform through the protein-nanoreactor approach with facile functionalization for multimodal NIRF/PA/SPECT/CT imaging and photothermal tumor ablation. PMID:27165472

  15. Carrier multiplication in semiconductor nanocrystals: influence of size, shape, and composition.

    PubMed

    Padilha, Lazaro A; Stewart, John T; Sandberg, Richard L; Bae, Wan Ki; Koh, Weon-Kyu; Pietryga, Jeffrey M; Klimov, Victor I

    2013-06-18

    During carrier multiplication (CM), also known as multiexciton generation (MEG), absorption of a single photon produces multiple electron-hole pairs, or excitons. This process can appreciably increase the efficiency of photoconversion, which is especially beneficial in photocatalysis and photovoltaics. This Account reviews recent progress in understanding the CM process in semiconductor nanocrystals (NCs), motivated by the challenge researchers face to quickly identify candidate nanomaterials with enhanced CM. We present a possible solution to this problem by showing that, using measured biexciton Auger lifetimes and intraband relaxation rates as surrogates for, respectively, CM time constants and non-CM energy-loss rates, we can predict relative changes in CM yields as a function of composition. Indeed, by studying PbS, PbSe, and PbTe NCs of a variety of sizes we determine that the significant difference in CM yields for these compounds comes from the dissimilarities in their non-CM relaxation channels, i.e., the processes that compete with CM. This finding is likely general, as previous observations of a material-independent, "universal" volume-scaling of Auger lifetimes suggest that the timescale of the CM process itself is only weakly affected by NC composition. We further explore the role of nanostructure shape in the CM process. We observe that a moderate elongation (aspect ratio of 6-7) of PbSe NCs can cause up to an approximately two-fold increase in the multiexciton yield compared to spherical nanoparticles. The increased Auger lifetimes and improved charge transport properties generally associated with elongated nanostructures suggest that lead chalcogenide nanorods are a promising system for testing CM concepts in practical photovoltaics. Historically, experimental considerations have been an important factor influencing CM studies. To this end, we discuss the role of NC photocharging in CM measurements. Photocharging can distort multiexciton dynamics

  16. Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure.

    PubMed

    Dai, Quanqin; Wang, Yingnan; Zhang, Yu; Li, Xinbi; Li, Ruowang; Zou, Bo; Seo, JaeTae; Wang, Yiding; Liu, Manhong; Yu, William W

    2009-10-20

    Infrared-emitting PbSe nanocrystals are of increasing interest in both fundamental research and technical application. However, the practical applications are greatly limited by their poor stability. In this work, absorption and photoluminescence spectra of PbSe nanocrystals were utilized to observe the stability of PbSe nanocrystals over several conventional factors, that is, particle concentration, particle size, temperature, light exposure, contacting atmosphere, and storage forms (solution or solid powder). Both absorption and luminescence spectra of PbSe nanocrystals exposed to air showed dependence on particle concentration, size, and light exposure, which caused large and quick blue-shifts in the optical spectra. This air-contacted instability arising from the destructive oxidation and subsequent collision-induced decomposition was kinetically dominated and differed from the traditional thought that smaller particles with lower concentrations shrank fast. The photoluminescence emission intensity of the PbSe nanocrystal solution under ultraviolet (UV) exposure in air increased first and then decreased slowly; without UV irradiation, the emission intensity monotonously decreased over time. However, if stored under nitrogen, no obvious changes in absorption and photoluminescence spectra of the PbSe nanocrystals were observed even under UV exposure or upon being heated up to 100 degrees C. PMID:19522486

  17. Determination of Concentration of Amphiphilic Polymer Molecules on the Surface of Encapsulated Semiconductor Nanocrystals.

    PubMed

    Fedosyuk, Aleksandra; Radchanka, Aliaksandra; Antanovich, Artsiom; Prudnikau, Anatol; Kvach, Maksim V; Shmanai, Vadim; Artemyev, Mikhail

    2016-03-01

    We present a method for the determination of the average number of polymer molecules on the surface of A(II)B(VI) luminescent core-shell nanocrystals (CdSe/ZnS, ZnSe/ZnS quantum dots, and CdS/ZnS nanorods) encapsulated with amphiphilic polymer. Poly(maleic anhydride-alt-1-tetradecene) (PMAT) was quantitatively labeled with amino-derivative of fluorescein and the average amount of PMAT molecules per single nanocrystal was determined using optical absorption of the dye in the visible spectral range. The average amount of PMAT molecules grows linearly with the surface area of all studied nanocrystals. However, the surface density of the monomer units increases nonlinearly with the surface area, because of the increased competition between PMAT molecules for Zn-hexanethiol surface binding sites. The average value of zeta potential (ζ = -35 mV) was found to be independent of the size, shape, and chemical composition of nanocrystals at fixed buffer parameters (carbonate-bicarbonate buffer, pH 9.5 and 5 mM ionic strength). This finding is expected to be useful for the determination of the surface density of remaining carboxyl groups in PMAT-encapsulated nanocrystals. PMID:26866303

  18. General Strategy for Enhancing Electrochemiluminescence of Semiconductor Nanocrystals by Hydrogen Peroxide and Potassium Persulfate as Dual Coreactants.

    PubMed

    Dai, Pan-Pan; Yu, Tao; Shi, Hai-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2015-12-15

    Semiconductor nanocrystals usually suffer from weak electrogenerated chemiluminescence (ECL) emissions compared with conventional organic emitters. In this work, we propose, for the first time, a very convenient but effective way to greatly enhance ECL emission of semiconductor TiO2 nanotubes (NTs) by H2O2 and K2S2O8 as dual coreactants, generating ECL emission ca. 6.3 and 107 times stronger than that of K2S2O8 or H2O2 as an individual coreactant, respectively. Scanning electron microscopy, X-ray diffraction, and electron paramagnetic resonance spectral studies were carried out to investigate the ECL enhancement mechanism. The ECL enhancement of TiO2 NTs by the K2S2O8-H2O2 system was supposed to originate from the coordination of H2O2 to the TiO2 surface and the synergy effect between H2O2 and K2S2O8 in the ECL process. The coordination of H2O2 to the surface of TiO2 could stabilize the electrogenerated coreactant-related radical OH(•) (hydroxyl radical), which could obviously promote the amount of sulfate radical anion (SO4(•-)) near the electrode surface by inducing decomposition of K2S2O8 into SO4(•-) or inhibiting the consumption of SO4(•-) by its reaction with H2O. The holes (h(+)) released from SO4(•-) were injected into the valence band of TiO2, resulting in more TiO2(+), which combined with the electrons coming from the conduction band with an enhanced light emission. Moreover, this enhancement effect was also applicable to ECL of a CdS nanocrystal film on a glass carbon electrode, with ca. 2.74- and 148.3-fold enhanced ECL intensity correspondingly, indicating wide applications in the development of semiconductor nanocrystal-based ECL biosensors. PMID:26564425

  19. Detection Techniques for Biomolecules using Semi-Conductor Nanocrystals and Magnetic Beads as Labels

    NASA Astrophysics Data System (ADS)

    Chatterjee, Esha

    Continued interest in the development of miniaturized and portable analytical platforms necessitates the exploration of sensitive methods for the detection of trace analytes. Nanomaterials, on account of their unique physical and chemical properties, are not only able to overcome many limitations of traditional detection reagents but also enable the exploration of many new signal transduction technologies. This dissertation presents a series of investigations of alternative detection techniques for biomolecules, involving the use of semi-conductor nanocrystals and magnetic beads as labels. Initial research focused on the development of quantum dot-encapsulating liposomes as a novel fluorescent label for immunoassays. This hybrid nanomaterial was anticipated to overcome the drawbacks presented by traditional fluorophores as well as provide significant signal amplification. Quantum dot-encapsulating liposomes were synthesized by the method of thin film hydration and characterized. The utility of these composite nanostructures for bioanalysis was demonstrated. However, the longterm instability of the liposomes hampered quantitative development. A second approach for assay development exploited the ability of gold nanoparticles to quench the optical signals obtained from quantum dots. The goal of this study was to demonstrate the feasibility of using aptamer-linked nanostructures in FRET-based quenching for the detection of proteins. Thrombin was used as the model analyte in this study. Experimental parameters for the assay were optimized. The assay simply required the mixing of the sample with the reagents and could be completed in less than an hour. The limit of detection for thrombin by this method was 5 nM. This homogeneous assay can be easily adapted for the detection of a wide variety of biochemicals. The novel technique of ferromagnetic resonance generated in magnetic bead labels was explored for signal transduction. This inductive detection technique lends

  20. Final Report for Nucleation and growth of semiconductor nanocrystals by solid-phase reaction

    SciTech Connect

    P. D. Persans; T. M. Hayes

    2005-12-12

    This final report describes the technical output of a scientific program aimed at understanding the formation and structure of II-VI nanocrystals formed by solid phase precipitation within a glass environment. The principle probes were optical absorption spectroscopy to determine crystallite sizes, Raman scattering to determine composition, and x-ray absorption spectroscopy to study the evolution of local reactant environments.

  1. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe.

    PubMed

    Bang, Jin Ho; Kamat, Prashant V

    2009-06-23

    CdSe and CdTe nanocrystals are linked to nanostructured TiO2 films using 3-mercaptopropionic acid as a linker molecule for establishing the mechanistic aspects of interfacial charge transfer processes. Both these quantum dots are energetically capable of sensitizing TiO2 films and generating photocurrents in quantum dot solar cells. These two semiconductor nanocrystals exhibit markedly different external quantum efficiencies ( approximately 70% for CdSe and approximately 0.1% for CdTe at 555 nm). Although CdTe with a more favorable conduction band energy (E(CB) = -1.0 V vs NHE) is capable of injecting electrons into TiO2 faster than CdSe (E(CB) = -0.6 V vs NHE), hole scavenging by a sulfide redox couple remains a major bottleneck. The sulfide ions dissolved in aqueous solutions are capable of scavenging photogenerated holes in photoirradiated CdSe system but not in CdTe. The anodic corrosion and exchange of Te with S dominate the charge transfer at the CdTe interface. Factors that dictate the efficiency and photostability of CdSe and CdTe quantum dots are discussed. PMID:19435373

  2. Single-particle spectroscopy of I-III-VI semiconductor nanocrystals: spectral diffusion and suppression of blinking by two-color excitation

    NASA Astrophysics Data System (ADS)

    Sharma, Dharmendar Kumar; Hirata, Shuzo; Bujak, Lukasz; Biju, Vasudevanpillai; Kameyama, Tatsuya; Kishi, Marino; Torimoto, Tsukasa; Vacha, Martin

    2016-07-01

    Ternary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width. Single nanocrystals undergo spectral diffusion which also contributes to the inhomogeneous band. Excitation with two lasers with energies above and below the bandgap reveals coexistence of two emitting donor states within one particle. Spectral diffusion in such particles is due to temporal activation and deactivation of one such state. Filling of a trap state with a lower-energy laser enables optical modulation of photoluminescence intermittency (blinking) and leads to an almost two-fold increase in brightness.Ternary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width. Single nanocrystals undergo spectral diffusion which also contributes to the inhomogeneous band. Excitation with two lasers with energies above and below the bandgap reveals coexistence of two emitting donor states within one particle. Spectral diffusion in such particles is due

  3. Measuring and Predicting the Internal Structure of Semiconductor Nanocrystals through Raman Spectroscopy.

    PubMed

    Mukherjee, Prabuddha; Lim, Sung Jun; Wrobel, Tomasz P; Bhargava, Rohit; Smith, Andrew M

    2016-08-31

    Nanocrystals composed of mixed chemical domains have diverse properties that are driving their integration in next-generation electronics, light sources, and biosensors. However, the precise spatial distribution of elements within these particles is difficult to measure and control, yet profoundly impacts their quality and performance. Here we synthesized a unique series of 42 different quantum dot nanocrystals, composed of two chemical domains (CdS:CdSe), arranged in 7 alloy and (core)shell structural classes. Chemometric analyses of far-field Raman spectra accurately classified their internal structures from their vibrational signatures. These classifications provide direct insight into the elemental arrangement of the alloy as well as an independent prediction of fluorescence quantum yield. This nondestructive, rapid approach can be broadly applied to greatly enhance our capacity to measure, predict and monitor multicomponent nanomaterials for precise tuning of their structures and properties. PMID:27472011

  4. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells.

    PubMed

    Zhao, Lei; Lin, Zhiqun

    2012-08-22

    Semiconductor organic-inorganic hybrid solar cells incorporating conjugated polymers (CPs) and nanocrystals (NCs) offer the potential to deliver efficient energy conversion with low-cost fabrication. The CP-based photovoltaic devices are complimented by an extensive set of advantageous characteristics from CPs and NCs, such as lightweight, flexibility, and solution-processability of CPs, combined with high electron mobility and size-dependent optical properties of NCs. Recent research has witnessed rapid advances in an emerging field of directly tethering CPs on the NC surface to yield an intimately contacted CP-NC nanocomposite possessing a well-defined interface that markedly promotes the dispersion of NCs within the CP matrix, facilitates the photoinduced charge transfer between these two semiconductor components, and provides an effective platform for studying the interfacial charge separation and transport. In this Review, we aim to highlight the recent developments in CP-NC nanocomposite materials, critically examine the viable preparative strategies geared to craft intimate CP-NC nanocomposites and their photovoltaic performance in hybrid solar cells, and finally provide an outlook for future directions of this extraordinarily rich field. PMID:22761026

  5. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  6. Single-particle spectroscopy of I-III-VI semiconductor nanocrystals: spectral diffusion and suppression of blinking by two-color excitation.

    PubMed

    Sharma, Dharmendar Kumar; Hirata, Shuzo; Bujak, Lukasz; Biju, Vasudevanpillai; Kameyama, Tatsuya; Kishi, Marino; Torimoto, Tsukasa; Vacha, Martin

    2016-07-14

    Ternary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width. Single nanocrystals undergo spectral diffusion which also contributes to the inhomogeneous band. Excitation with two lasers with energies above and below the bandgap reveals coexistence of two emitting donor states within one particle. Spectral diffusion in such particles is due to temporal activation and deactivation of one such state. Filling of a trap state with a lower-energy laser enables optical modulation of photoluminescence intermittency (blinking) and leads to an almost two-fold increase in brightness. PMID:27376712

  7. Luminescence properties of ZnS:Cu, Eu semiconductor nanocrystals synthesized by a hydrothermal process

    NASA Astrophysics Data System (ADS)

    Xin, Mei; Hu, Li-Zhong

    2013-08-01

    ZnS:Cu, Eu nanocrystals with an average diameter of ~ 80 nm are synthesized using a hydrothermal approach at 200 °C. The photoluminescence (PL) properties of the ZnS:Cu, Eu nanocrystals before and after annealing, as well as the doping form of Eu, are studied. The as-synthesized samples are characterized by X-ray diffraction, scanning electron microscopy, inductively coupled plasma-atomic emission spectrometry, and the excitation and emission spectra (PL). The results show that both Cu and Eu are indeed incorporated into the ZnS matrix. Compared with the PL spectrum of the Cu mono-doped sample, the PL emission intensity of the Cu and Eu-codoped sample increases and a peak appears at 516 nm, indicating that Eu3+ ions, which act as an impurity compensator and activator, are incorporated into the ZnS matrix, forming a donor level. Compared with the unannealed sample, the annealed one has an increased PL emission intensity and the peak position has a blue shift of 56 nm from 516 nm to 460 nm, which means that Eu3+ ions reduce to Eu2+ ions, thereby leading to the appearance of Eu2+ characteristic emission and generating effective host-to-Eu2+ energy transfer. The results indicate the potential applications of ZnS:Cu, Eu nanoparticles in optoelectronic devices.

  8. Amorphous silicon as electron transport layer for colloidal semiconductor nanocrystals light emitting diode

    SciTech Connect

    Song Tao; Shen Xiaojuan; Sun Baoquan; Zhang Fute; Zhang Xiaohong; Zhu Xiulin

    2009-12-07

    We demonstrate the fabrication of light-emitting diodes (LEDs) made from all-inorganic colloidal semiconducting nanocrystals (NCs). The diode utilizes a sandwich structure formed by placing CdSe/CdS NCs between two layers of Si and Ag{sub x}O, which act as electron- and hole-transporting materials, respectively. The photoluminescence properties of NCs are rendered less dependent upon surface chemistry and chemical environment by growing a thick CdS shell. It also enhances stability of the NCs during the process of magnetron sputtering for silicon deposition. The resulting LED device exhibits a low turn-on voltage of 2.5 V and the maximum external quantum efficiency of nearly 0.08%.

  9. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst.

    PubMed

    Han, Zhiji; Qiu, Fen; Eisenberg, Richard; Holland, Patrick L; Krauss, Todd D

    2012-12-01

    Homogeneous systems for light-driven reduction of protons to H(2) typically suffer from short lifetimes because of decomposition of the light-absorbing molecule. We report a robust and highly active system for solar hydrogen generation in water that uses CdSe nanocrystals capped with dihydrolipoic acid (DHLA) as the light absorber and a soluble Ni(2+)-DHLA catalyst for proton reduction with ascorbic acid as an electron donor at pH = 4.5, which gives >600,000 turnovers. Under appropriate conditions, the precious-metal-free system has undiminished activity for at least 360 hours under illumination at 520 nanometers and achieves quantum yields in water of over 36%. PMID:23138979

  10. Protective ligand shells for luminescent SiO₂-coated alloyed semiconductor nanocrystals.

    PubMed

    Acebrón, María; Galisteo-López, Juan F; Granados, Daniel; López-Ogalla, Javier; Gallego, José M; Otero, Roberto; López, Cefe; Juárez, Beatriz H

    2015-04-01

    SiO2 encapsulation of alloyed CdSeZnS nanocrystals (NCs) shows differences in terms of optical properties and luminescence quantum yield, depending on the surface composition, size, and ligand content. In this work, emphasis has been placed on the fine control required to obtain luminescent SiO2 encapsulated NCs by studying the role of oleic acid (OA), stearic acid (SA), and dodecanethiol (DDT) ligands on the alloyed NCs. While the use of anchored DDT molecules is essential to preserve the optical properties, intercalated OA and SA play a critical role for SiO2 nucleation, as stated by (1)H NMR (including DOSY and NOESY) spectroscopy. These results emphasize the importance of surface chemistry in NCs; it is crucial to control their reactivity, and therefore their impact, in different applications, from optics to biomedicine. PMID:25756519

  11. Nonlinear optical response of semiconductor-nanocrystals-embedded photonic band gap structure

    SciTech Connect

    Liao, Chen; Zhang, Huichao; Tang, Luping; Zhou, Zhiqiang; Lv, Changgui; Cui, Yiping; Zhang, Jiayu

    2014-04-28

    Colloidal CdSe/ZnS core/shell nanocrystals (NCs), which were dispersed in SiO{sub 2} sol, were utilized to fabricate a SiO{sub 2}:NCs/TiO{sub 2} all-dielectric photonic band gap (PBG) structure. The third-order nonlinear refractive index (n{sub 2}) of the PBG structure was nearly triple of that of the SiO{sub 2}:NCs film due to the local field enhancement in the PBG structure. The photoinduced change in refractive index (Δn) could shift the PBG band edge, so the PBG structure would show significant transmission modification, whose transmission change was ∼17 folds of that of the SiO{sub 2}:NCs film. Under excitation of a 30 GW/cm{sup 2} femtosecond laser beam, a transmission decrease of 80% was realized.

  12. The formation of molecular aggregates of sulfophthalocyanine in complexes with semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Dadadzhanov, D. R.; Martynenko, I. V.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Baranov, A. V.

    2015-11-01

    In this study, complexes of CdSe/ZnS quantum dots and quantum rods with sulfophthalocyanine molecules have been formed. Analysis of spectral and luminescent properties of solutions of the complexes has revealed that an increase in the number of molecules per one nanocrystal in a mixed solution results in a noticeable decrease in the intensity of the luminescence of the quantum dots and quantum rods. In addition, it has been found that, upon an increase in the concentration of sulfophthalocyanine molecules, the absorption spectra of the samples in the region of their first absorption band have signs of formation of nonluminiscent aggregates of sulfophthalocyanine molecules. Analysis of the absorption spectra of the mixed solutions has made it possible to demonstrate that the complexes with the quantum rods have a content of the sulfophthalocyanine aggregates significantly lower than the complexes with the quantum dots.

  13. Symmetry breaking in semiconductor nanocrystals via kinetic-controlled surface diffusion: a strategy for manipulating the junction structure.

    PubMed

    Wang, Xixi; Liu, Maochang; Chen, Yubin; Fu, Wenlong; Wang, Bin; Guo, Liejin

    2016-09-21

    The synthesis of semiconductor nanocrystals is usually limited to high-level symmetry, as constrained by the inherent, for example, face-centered cubic or hexagonal close-packed lattices of the crystals. Herein, we report a robust approach for breaking the symmetry of the CdS lattice and obtaining high-quality CdS ultrathin monopods, bipods, tripods, and tetrapods. The success relies on manipulating reaction kinetics by dropwise addition of a precursor solution, which permits deterministic control over the number of CdS monomers in the reaction solution. With rapid monomer supply by fast precursor injection, growth was restricted to only one {111} facet of the nascent CdS tetrahedron to produce an asymmetric ultrathin monopod (a zinc-blende tip with a wurtzite arm). Otherwise, growth monomers could access adjacent {111} facets through surface diffusion and thus lead to the switch of the growth pattern from asymmetric to symmetric to generate an ultrathin multipod (a zinc-blende tip/core with multi-wurtzite arms). These symmetry-controlled photocatalysts were characterized by a fine-tuned zinc blende-wurtzite intergrowth type-II homojunction. After evaluating their structure-dependent solar-hydrogen-production properties, the CdS ultrathin monopod with an appropriate length for controllable charge transportation showed the highest photocatalytic activity. PMID:27539367

  14. Theoretical study on ultrafast dynamics of coherent acoustic phonons in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Huang, Tongyun; Han, Peng; Wang, Xinke; Feng, Shengfei; Sun, Wenfeng; Ye, Jiasheng; Zhang, Yan

    2016-05-01

    We present a theoretical study on the ultrafast dynamics of coherent acoustic phonons in semiconductor quantum dots using continuum model calculations. The excitonic states and the coherent acoustic vibrational modes of semiconductor quantum dots are calculated using the effective mass approximation and continuum elastic medium model, respectively. By solving the Liouville–von Neumann equation and the equation of motion, we obtain the oscillation of coherent acoustic phonon amplitude excited by a pump pulse laser. Owing to the ultrafast excitation of coherent phonons, both the amplitude and the phase of the coherent phonon oscillation are constant with time. This coherent phonon oscillation results in conservation of the coherence of the exciton state, which cannot exist in a system interacting with incoherent phonons. We further study the amplitude and the period of coherent acoustic phonon oscillation as a function of pump pulse energy detuning, quantum dot size, and material.

  15. Near-Infrared Photoluminescence Enhancement in Ge/CdS and Ge/ZnS Core/Shell Nanocrystals: Utilizing IV/II-VI Semiconductor Epitaxy

    SciTech Connect

    Guo, Yijun; Rowland, Clare E; Schaller, Richard D; Vela, Javier

    2014-08-26

    Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II–VI, III–V and IV–VI semiconductor quantum dots. Here, we use relatively unexplored IV/II–VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II–VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II–VI nanocrystals are reproducibly 1–3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II–VI nanocrystals. We expect this synthetic IV/II–VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials.

  16. Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Chang, Shoude; Grover, Chander P.

    2004-06-01

    Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.

  17. Carbon-shell-decorated p-semiconductor PbMoO4 nanocrystals for efficient and stable photocathode of photoelectrochemical water reduction

    NASA Astrophysics Data System (ADS)

    Wang, Ligang; Tang, Hanqin; Tian, Yang

    2016-07-01

    Photoelectrochemical (PEC) water splitting using semiconductors is a promising method for the future scalable production of renewable hydrogen fuels. The critical issues in PEC water splitting include the development of the photoelectrode materials with high efficiency and long-term stability, especially for p-type semiconductor photocathodes. Herein, we report the use of citric acid (CA) pyrolysis to prepare carbon-shell-decorated PbMoO4 (C@PbMoO4) nanocrystals via a simple solvothermal method. Different carbon shell thicknesses below 10 nm were generated by varying the amount of CA in the precursor solution. In contrast, without using CA, bare PbMoO4 nanocrystals were obtained. The PEC experiments showed that 2-nm carbon shell could preferably improve the water splitting performance of PbMoO4: the photocurrent density of 2-nm C@PbMoO4 is nearly 2-fold high as that of bare PbMoO4 at 0 V versus reversible hydrogen electrode (RHE). The surface charge transfer efficiency of 2-nm C@PbMoO4 in the PEC process was tested to increase from 83% to 90.4%, the charge separation efficiency enhanced 56%, and the PEC stability also greatly increased compared to those of the bare PbMoO4 nanocrystals. This strategy could be applied to other p-type semiconducting photocathodes for low-cost solar-fuel-generation devices.

  18. Application of semiconductor fluorescent nanocrystals as optical probes for rapid early viral detection

    NASA Astrophysics Data System (ADS)

    Bentzen, Elizabeth L.; House, Frances; Tomlinson, Ian D.; Rosenthal, Sandra J.; Crowe, James E.; Wright, David D.

    2005-04-01

    Fluorescence is a tool widely employed in biological assays. Fluorescent semiconducting nanocrystals, quantum dots (QDs), are beginning to find their way into the tool box of many biologist, chemist and biochemist. These quantum dots are an attractive alternative to the traditional organic dyes due to their broad excitation spectra, narrow emission spectra and photostability. Non-specific binding is a frequently encountered problem with fluorescent labeling in biological assays. In these studies various cell lines were examined for non-specific binding to quantum dots. Evidence suggests that non-specific binding is related to cell type and, may be significantly reduced by functionalizing quantum dots with polyethyleneglycol ligands (PEG). In addition quantum dots were used to detect and monitor the progession of the viral glycoproteins ,F (fusion) and G (attachment), from Respiratory Syncytial Virus (RSV) in HEp-2 cells. RSV is the most common cause of lower respiratory tract infection in children worldwide and the most common cause of hospitalization of infants in the US. Antiviral therapy is available for treatment of RSV but is only effective if given within the first 48 hours of infection. Existing test methods require a virus level of at least 1000-fold of the amount needed for infection of most children and require several days to weeks to obtain results. The use of quantum dots may provide an early, rapid method for detection and provide insight into the trafficking of viral proteins during the course of infection.

  19. Biexciton Auger Recombination in CdSe/CdS Core/Shell Semiconductor Nanocrystals.

    PubMed

    Vaxenburg, Roman; Rodina, Anna; Lifshitz, Efrat; L Efros, Alexander

    2016-04-13

    A theoretical study of the positive and negative trion channels in the nonradiative Auger recombination of band-edge biexcitons (BXs) in CdSe/CdS core/shell nanocrystals (NCs) is presented. The theory takes into account the BX fine-structure produced by NC asymmetry and hole-hole exchange interaction. The calculations show that growth of CdS shell upon CdSe core suppresses the rate of the Auger recombination via negative trion channel, while the more efficient Auger recombination via positive trion channel shows much weaker dependence on the shell thickness. The demonstrated oscillatory dependence of the BX Auger rate on the core and shell sizes is explained qualitatively in terms of overlap of the ground and excited carrier wave functions. The calculations show that raise of temperature accelerates the Auger recombination in CdSe/CdS NCs due to reduction of the bulk energy gaps of CdSe and CdS. PMID:26950398

  20. How Robust are Semiconductor Nanorods? Investigating the Stability and Chemical Decomposition Pathways of Photoactive Nanocrystals

    SciTech Connect

    Reichert, Malinda D; Lin, Chia-Cheng; Vela, Javier

    2014-07-08

    Anisotropic II–VI semiconductor nanostructures are important photoactive materials for various energy conversion and optical applications. However, aside from the many available surface chemistry studies and from their ubiquitous photodegradation under continuous illumination, the general chemical reactivity and thermal stability (phase and shape transformations) of these materials are poorly understood. Using CdSe and CdS nanorods as model systems, we have investigated the behavior of II–VI semiconductor nanorods against various conditions of extreme chemical and physical stress (acids, bases, oxidants, reductants, and heat). CdSe nanorods react rapidly with acids, becoming oxidized to Se or SeO2. In contrast, CdSe nanorods remain mostly unreactive when treated with bases or strong oxidants, although bases do partially etch the tips of the nanorods (along their axis). Roasting (heating in air) of CdSe nanorods results in rock-salt CdO, but neither CdSe nor CdO is easily reduced by hydrogen (H2). Another reductant, n-BuLi, reduces CdSe nanorods to metallic Cd. Variable temperature X-ray diffraction experiments show that axial annealing and selective axial melting of the nanorods precede particle coalescence. Furthermore, thermal analysis shows that the axial melting of II–VI nanorods is a ligand-dependent process. In agreement with chemical reactivity and thermal stability observations, silica-coating experiments show that the sharpest (most curved) II–VI surfaces are most active against heterogeneous nucleation of a silica shell. These results provide valuable insights into the fate and possible ways to enhance the stability and improve the use of II–VI semiconductor nanostructures in the fields of optics, magnetism, and energy conversion.

  1. Biosynthesis of fluorescent CdS nanocrystals with semiconductor properties: Comparison of microbial and plant production systems.

    PubMed

    Al-Shalabi, Zahwa; Doran, Pauline M

    2016-04-10

    This study investigated fission yeast (Schizosaccharomyces pombe) and hairy roots of tomato (Solanum lycopersicum) as in vitro production vehicles for biological synthesis of CdS quantum dots. Cd added during the mid-growth phase of the cultures was detoxified within the biomass into inorganic sulphide-containing complexes with the quantum confinement properties of semiconductor nanocrystals. Significant differences were found between the two host systems in terms of nanoparticle production kinetics, yield and quality. The much slower growth rate of hairy roots compared with yeast is a disadvantage for commercial scaled-up production. Nanoparticle extraction from the biomass was less effective for the roots: 19% of the Cd present in the hairy roots was recovered after extraction compared with 34% for the yeast. The overall yield of CdS quantum dots was also lower for the roots: relative to the amount of Cd taken up into the biomass, 8.5% was recovered in yeast gel filtration fractions exhibiting quantum dot properties whereas the result for hairy roots was only 0.99%. Yeast-produced CdS crystallites were somewhat smaller with diameters of approximately 2-6nm compared with those of 4-10nm obtained from the roots. The average ratio of inorganic sulphide to Cd for the purified and size-fractionated particles was 0.44 for the yeast and 1.6 for the hairy roots. Despite the limitations associated with hairy roots in terms of culture kinetics and product yield, this system produced CdS nanoparticles with enhanced photostability and 3.7-13-fold higher fluorescence quantum efficiency compared with those generated by yeast. This work demonstrates that the choice of cellular host can have a significant effect on nanoparticle functional properties as well as on the bioprocessing aspects of biological quantum dot synthesis. PMID:26880539

  2. Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors

    NASA Astrophysics Data System (ADS)

    Díaz, Sebastián A.; Gillanders, Florencia; Jares-Erijman, Elizabeth A.; Jovin, Thomas M.

    2015-01-01

    Photoswitchable molecules and nanoparticles constitute superior biosensors for a wide range of industrial, research and biomedical applications. Rendered reversible by spontaneous or deterministic means, such probes facilitate many of the techniques in fluorescence microscopy that surpass the optical resolution dictated by diffraction. Here we have devised a family of photoswitchable quantum dots (psQDs) in which the semiconductor core functions as a fluorescence donor in Förster resonance energy transfer (FRET), and multiple photochromic diheteroarylethene groups function as acceptors upon activation by ultraviolet light. The QDs were coated with a polymer bearing photochromic groups attached via linkers of different length. Despite the resulting nominal differences in donor-acceptor separation and anticipated FRET efficiencies, the maximum quenching of all psQD preparations was 38±2%. This result was attributable to the large ultraviolet absorption cross-section of the QDs, leading to preferential cycloreversion of photochromic groups situated closer to the nanoparticle surface and/or with a more favourable orientation.

  3. Metal-semiconductor phase transition of order arrays of VO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Lopez, Rene; Suh, Jae; Feldman, Leonard; Haglund, Richard

    2004-03-01

    The study of solid-state phase transitions at nanometer length scales provides new insights into the effects of material size on the mechanisms of structural transformations. Such research also opens the door to new applications, either because materials properties are modified as a function of particle size, or because the nanoparticles interact with a surrounding matrix material, or with each other. In this paper, we describe the formation of vanadium dioxide nanoparticles in silicon substrates by pulsed laser deposition of ion beam lithographically selected sites and thermal processing. We observe the collective behavior of 50 nm diameter VO2 oblate nanoparticles, 10 nm high, and ordered in square arrays with arbitrary lattice constant. The metal-semiconductor-transition of the VO2 precipitates shows different features in each lattice spacing substrate. The materials are characterized by electron microscopy, x-ray diffraction, Rutherford backscattering. The features of the phase transition are studied via infrared optical spectroscopy. Of particular interest are the enhanced scattering and the surface plasmon resonance when the particles reach the metallic state. This resonance amplifies the optical contrast in the range of near-infrared optical communication wavelengths and it is altered by the particle-particle coupling as in the case of noble metals. In addition the VO2 nanoparticles exhibit sharp transitions with up to 50 K of hysteresis, one of the largest values ever reported for this transition. The optical properties of the VO2 nanoarrays are correlated with the size of the precipitates and their inter-particle distance. Nonlinear and ultra fast optical measurements have shown that the transition is the fastest known solid-solid transformation. The VO2 nanoparticles show the same bulk property, transforming in times shorter than 150 fs. This makes them remarkable candidates for ultrafast optical and electronic switching applications.

  4. Optimizing the synthesis of red- and near-infrared CuInS2 and AgInS2 semiconductor nanocrystals for bioimaging.

    PubMed

    Liu, Liwei; Hu, Rui; Law, Wing-Chueng; Roy, Indrajit; Zhu, Jing; Ye, Ling; Hu, Siyi; Zhang, Xihe; Yong, Ken-Tye

    2013-10-21

    This work reports the study of optimization of the reaction parameters on the synthesis of high quality CuInS2 and AgInS2 nanocrystals for bioimaging applications. The concentration of reaction precursors (e.g. Ag, Cu, In and S) plays a key role in determining the emission profile of these ternary quantum dots (QDs). By carefully varying the precursor compositions, the emission of QD can be tuned from red to near infrared (NIR) region. Taking the advantages of NIR emission, which possesses minimal absorption in biological tissues, we have also prepared water-dispersible CuInS2/ZnS and AgInS2/ZnS nanocrystals and demonstrated the high biocompatibility for both deep tissue penetration and tumor targeting. The QDs were stabilized in Pluronic F127 block copolymer micelles, offering us optically and colloidally stable contrast agents for in vitro and in vivo imaging. Two-photon excitation of QD has also been demonstrated, accomplishing a NIR-to-NIR transaction. This study devotes the key steps in promoting the use of ternary QDs as low-toxic, photostable, and cadmium-free semiconductor nanocrystal formulation for multiple imaging applications. PMID:23967444

  5. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation.

    PubMed

    Sathe, Tushar R; Agrawal, Amit; Nie, Shuming

    2006-08-15

    Mesoporous beads are promising materials for embedding functional nanoparticles because of their nanometer-sized pores and large surface areas. Here we report the development of silica microbeads embedded with both semiconductor quantum dots (QD) and iron oxide (Fe3O4) nanocrystals as a new class of dual-function carriers for optical encoding and magnetic separation. The embedding (doping) process is carried out by either simultaneous or sequential addition of quantum dots and iron oxide (Fe3O4) nanocrystals in solution. The doping process is fast and quantitative, but the incorporated iron oxide strongly attenuates the signal intensity of QD fluorescence. We find that this attenuation is not due to conventional fluorescence quenching but is caused by the broad optical absorption spectrum of mixed-valence Fe3O4. For improved biocompatibility and reduced nonspecific binding, the encoded beads are further coated with amphiphilic polymers such as octylamine poly(acrylic acid). The results indicate that the polymer-coated beads are well suited for target capturing and enrichment, yielding magnetic separation efficiencies higher than 99%. By combining the multiplexing capability of QDs with the superparamagnetic properties of iron oxide nanocrystals, this class of encoded beads is expected to find broad applications in high-throughput and multiplexed biomolecular assays. PMID:16906704

  6. Electrochromic nanocrystal quantum dots.

    PubMed

    Wang, C; Shim, M; Guyot-Sionnest, P

    2001-03-23

    Incorporating nanocrystals into future electronic or optoelectronic devices will require a means of controlling charge-injection processes and an understanding of how the injected charges affect the properties of nanocrystals. We show that the optical properties of colloidal semiconductor nanocrystal quantum dots can be tuned by an electrochemical potential. The injection of electrons into the quantum-confined states of the nanocrystal leads to an electrochromic response, including a strong, size-tunable, midinfrared absorption corresponding to an intraband transition, a bleach of the visible interband exciton transitions, and a quench of the narrow band-edge photoluminescence. PMID:11264530

  7. Silicon nanocrystal inks, films, and methods

    DOEpatents

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  8. Optimizing the synthesis of CdS/ZnS core/shell semiconductor nanocrystals for bioimaging applications.

    PubMed

    Liu, Li-Wei; Hu, Si-Yi; Pan, Ying; Zhang, Jia-Qi; Feng, Yue-Shu; Zhang, Xi-He

    2014-01-01

    In this study, we report on CdS/ZnS nanocrystals as a luminescence probe for bioimaging applications. CdS nanocrystals capped with a ZnS shell had enhanced luminescence intensity, stronger stability and exhibited a longer lifetime compared to uncapped CdS. The CdS/ZnS nanocrystals were stabilized in Pluronic F127 block copolymer micelles, offering an optically and colloidally stable contrast agents for in vitro and in vivo imaging. Photostability test exhibited that the ZnS protective shell not only enhances the brightness of the QDs but also improves their stability in a biological environment. An in-vivo imaging study showed that F127-CdS/ZnS micelles had strong luminescence. These results suggest that these nanoparticles have significant advantages for bioimaging applications and may offer a new direction for the early detection of cancer in humans. PMID:24991530

  9. Ion beam synthesis of CdS, ZnS, and PbS compound semiconductor nanocrystals

    SciTech Connect

    White, C.W.; Budai, J.D.; Meldrum, A.L.

    1997-12-01

    Sequential ion implantation followed by thermal annealing has been used to form encapsulated CdS, ZnS, and PbS nanocrystals in SiO{sub 2} and Al{sub 2}O{sub 3} matrices. In SiO{sub 2}, nanoparticles are nearly spherical and randomly oriented, and ZnS and PbS nanocrystals exhibit a bimodal size distribution. In Al{sub 2}O{sub 3}, nanoparticles are faceted and coherent with the matrix. Initial photoluminescence (PL) results are presented.

  10. LDRD-LW Final Report: 07-LW-041 "Magnetism in Semiconductor Nanocrystals: New Physics at the Nanoscale"

    SciTech Connect

    Meulenberg, R W; Lee, J I; McCall, S K

    2009-10-19

    The work conducted in this project was conducted with the aim of identifying and understanding the origin and mechanisms of magnetic behavior in undoped semiconductor nanocrystals (NCs), specifically those composed of CdSe. It was anticipated that the successful completion of this task would have the effect of addressing and resolving significant controversy over this topic in the literature. Meanwhile, application of the resultant knowledge was expected to permit manipulation of the magnetic properties, particularly the strength of any magnetic effects, which is of potential relevance in a range of advanced technologies. More specifically, the project was designed and research conducted with the goal of addressing the following series of questions: (1) How does the magnitude of the magnetism in CdSe NCs change with the organic molecules used to passivate their surface the NC size? i.e. Is the magnetism an intrinsic effect in the nanocrystalline CdSe (as observed for Au NCs) or a surface termination driven effect? (2) What is the chemical (elemental) nature of the magnetism? i.e. Are the magnetic effects associated with the Cd atoms or the Se atoms or both? (3) What is/are the underlying mechanism(s)? (4) How can the magnetism be controlled for further applications? To achieve this goal, several experimental/technical milestones were identified to be fulfilled during the course of the research: (A) The preparation of well characterized CdSe NCs with varying surface termination (B) Establishing the extent of the magnetism of these NCs using magnetometry (particularly using superconducting interference device [SQUID]) (C) Establishing the chemical nature of the magnetism using x-ray magnetic circular dichroism (XMCD) - the element specific nature of the technique allows identification of the element responsible for the magnetism (D) Identification of the effect of surface termination on the empty densities of states (DOS) using x-ray absorption spectroscopy (XAS

  11. Design of a multi-coordinating polymer as a platform for functionalizing metal, metal oxide and semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Ji, Xin; Kapur, Anshika; Mattoussi, Hedi

    2016-03-01

    We introduce a new set of amphiphilic polymers as multifunctional, metal-coordinating ligands adapted to surfacefunctionalize quantum dots (QDs), iron oxide nanoparticles (IONPs) and gold nanoparticles/nanorods (AuNPs/AuNRs). The ligand design relies on the introduction of several anchoring groups, hydrophilic moieties and reactive functionalities into a polymer chain, via one-step nucleophilic addition reaction. Such synthetic scheme also allows the insertion of target biomolecules during the ligand synthesis. This functionalization strategy yields nanocrystals that exhibit long-term colloidal stability over a broad range of biological conditions, such as pH changes and when mixed with growth media. When zwitterion groups are used as hydrophilic motifs, this provides compact nanocrystals that are compatible with conjugation to proteins via metal-polyhistidine self-assembly. In addition, we show that QDs ligated with these polymers can engage in energy or charge transfer interactions. Furthermore, nanocrystals coated with folic acid-modified polymers could promote the delivery of nanoparticle-conjugates into cancer cells via folate receptormediated endocytosis.

  12. Enhanced photophysical properties of plasmonic magnetic metal-alloyed semiconductor heterostructure nanocrystals: a case study for the Ag@Ni/Zn1-xMgxO system.

    PubMed

    Paul, Sumana; Ghosh, Sirshendu; Saha, Manas; De, S K

    2016-05-14

    Understanding the effect of homovalent cation alloying in wide band gap ZnO and the formation of metal-semiconductor heterostructures is very important for maximisation of the photophysical properties of ZnO. Nearly monodisperse ZnO nanopyramid and Mg alloyed ZnO nanostructures have been successfully synthesized by one pot decomposition of metal stearate by using oleylamine both as activating and capping agent. The solid solubility of Mg(ii) ions in ZnO is limited to ∼30% without phase segregation. An interesting morphology change is found on increasing Mg alloying: from nanopyramids to self-assembled nanoflowers. The morphology change is explained by the oriented attachment process. The introduction of Mg into the ZnO matrix increases the band gap of the materials and also generates new zinc interstitial (Zni) and oxygen vacancy related defects. Plasmonic magnetic Ag@Ni core-shell (Ag as core and Ni as shell) nanocrystals are used as a seed material to synthesize Ag@Ni/Zn1-xMgxO complex heterostructures. Epitaxial growth is established between Ag(111) and ZnO(110) planes in the heterostructure. An epitaxial metal-semiconductor interface is very crucial for complete electron-hole (e-h) separation and enhancement of the exciton lifetime. The alloyed semiconductor-metal heterostructure is observed to be highly photocatalytically active for dye degradation as well as photodetection. Incorporation of magnetic Ni(0) makes the photocatalyst superparamagnetic at room temperature which is found to be helpful for catalyst regeneration. PMID:27113320

  13. Hydrazine-promoted sequential cation exchange: a novel synthesis method for doped ternary semiconductor nanocrystals with tunable emission.

    PubMed

    Shao, Haibao; Wang, Chunlei; Xu, Shuhong; Jiang, Yuan; Shao, Yujie; Bo, Fan; Wang, Zhuyuan; Cui, Yiping

    2014-01-17

    Using ZnSe nanocrystals (NCs) as starting material, Ag-doped or Cu-doped ZnCdSe ternary NCs were prepared by hydrazine-promoted sequential cation exchange in aqueous media. The composition of the NCs can be flexibly controlled by varying the amount of intermediate Ag or Cu cation addition, thus changing the emission of the ternary NCs while preserving the NC size. According to Vegard's law, the as-prepared ternary NCs possess an alloyed structure. In addition, the ternary NCs obtained have a high quantum yield, strong stability and a broad optical tuning range. PMID:24334495

  14. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects

    NASA Astrophysics Data System (ADS)

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D.; Nykypanchuk, Dmytro; Nam, Chang-Yong

    2016-03-01

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that

  15. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects.

    PubMed

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D; Nykypanchuk, Dmytro; Nam, Chang-Yong

    2016-03-10

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices. PMID:26677967

  16. Nanocrystal Inks without Ligands: Stable Colloids of Bare Germanium Nanocrystals

    SciTech Connect

    Holman, Zachary C.; Kortshagen, Uwe R.

    2011-05-11

    Colloidal semiconductor nanocrystals typically have ligands attached to their surfaces that afford solubility in common solvents but hinder charge transport in nanocrystal films. Here, an alternative route is explored in which bare germanium nanocrystals are solubilized by select solvents to form stable colloids without the use of ligands. A survey of candidate solvents shows that germanium nanocrystals are completely solubilized by benzonitrile, likely because of electrostatic stabilization. Films cast from these dispersions are uniform, dense, and smooth, making them suitable for device applications without postdeposition treatment.

  17. Spectroscopic Signatures of Photocharging due to Hot-Carrier Transfer in Solutions of Semiconductor Nanocrystals under Low-Intensity Ultraviolet Excitation

    SciTech Connect

    McGuire, John A.; Sykora, Milan; Robel, Istvan; Padilha, Lazaro A.; Joo, Jin; Pietryga, Jeffrey M.; Klimov, Victor I.

    2010-10-12

    We show that excitation of solutions of well-passivated PbSe semiconductor nanocrystals (NCs) with ultraviolet (3.1 eV) photons can produce long-lived charge-separated states in which the NC core is left with a nonzero net charge. Since this process is not observed for lower-energy (1.5 eV) excitation, we ascribe it to hot-carrier transfer to some trap site outside the NC. Photocharging leads to bleaching of steady-state absorption, partial quenching of emission, and additional fast time scales in carrier dynamics due to Auger decay of charged single- and multiexciton states. The degree of photocharging, f, saturates at a level that varies from 5 to 15% depending on the sample. The buildup of the population of charged NCs is extremely slow indicating very long, tens of seconds, lifetimes of these charge-separated states. Based on these time scales and the measured onset of saturation of f at excitation rates around 0.05-1 photon per NC per ms, we determine that the probability of charging following a photon absorption event is of the order of 10-4 to 10-3. The results of these studies have important implications for the understanding of photophysical properties of NCs, especially in the case of time-resolved measurements of carrier multiplication.

  18. Spectroscopic signatures of photocharging due to hot-carrier transfer in solutions of semiconductor nanocrystals under low-intensity ultraviolet excitation.

    PubMed

    McGuire, John A; Sykora, Milan; Robel, István; Padilha, Lazaro A; Joo, Jin; Pietryga, Jeffrey M; Klimov, Victor I

    2010-10-26

    We show that excitation of solutions of well-passivated PbSe semiconductor nanocrystals (NCs) with ultraviolet (3.1 eV) photons can produce long-lived charge-separated states in which the NC core is left with a nonzero net charge. Since this process is not observed for lower-energy (1.5 eV) excitation, we ascribe it to hot-carrier transfer to some trap site outside the NC. Photocharging leads to bleaching of steady-state absorption, partial quenching of emission, and additional fast time scales in carrier dynamics due to Auger decay of charged single- and multiexciton states. The degree of photocharging, f, saturates at a level that varies from 5 to 15% depending on the sample. The buildup of the population of charged NCs is extremely slow indicating very long, tens of seconds, lifetimes of these charge-separated states. Based on these time scales and the measured onset of saturation of f at excitation rates around 0.05-1 photon per NC per ms, we determine that the probability of charging following a photon absorption event is of the order of 10(-4) to 10(-3). The results of these studies have important implications for the understanding of photophysical properties of NCs, especially in the case of time-resolved measurements of carrier multiplication. PMID:20939512

  19. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zhang, Tian; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-01

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO2. The ncSi thin films with high resistivity (200-400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO2/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 1018-1019 cm-3 despite their high resistivity. The saturation of doping at about 1.4 × 1019 cm-3 and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10-3 cm2/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  20. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO{sub 2} by capacitance voltage measurement on inverted metal oxide semiconductor structure

    SciTech Connect

    Zhang, Tian Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-21

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO{sub 2}. The ncSi thin films with high resistivity (200–400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO{sub 2}/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 10{sup 18}–10{sup 19 }cm{sup −3} despite their high resistivity. The saturation of doping at about 1.4 × 10{sup 19 }cm{sup −3} and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10{sup −3} cm{sup 2}/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  1. Sorting fluorescent nanocrystals with DNA

    SciTech Connect

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  2. Can high pressure I-II transitions in semiconductors be affected by plastic flow and nanocrystal precipitation in phase I?

    NASA Astrophysics Data System (ADS)

    Weinstein, B. A.; Lindberg, G. P.

    Pressure-Raman spectroscopy in ZnSe and ZnTe single crystals reveals that Se and Te nano-crystals (NCs) precipitate in these II-VI hosts for pressures far below their I-II phase transitions. The inclusions are evident from the appearance and negative pressure-shift of the A1 Raman peaks of Se and Te (trigonal phase). The Se and Te NCs nucleate at dislocations and grain boundaries that arise from pressure-induced plastic flow. This produces chemical and structural inhomogeneities in the zincblende phase of the host. At substantially higher pressures, the I-II transition proceeds in the presence of these inhomogenities. This can affect the transition's onset pressure Pt and width ΔPt, and the occurrence of metastable phases along the transition path. Precipitation models in metals show that nucleation of inclusions depends on the Peierls stress τp and a parameter α related to the net free energy gained on nucleation. For favorable values of τp and α, NC precipitation at pressures below the I-II transition could occur in other compounds. We propose criteria to judge whether this is likely based on the observed ranges of τp in the hosts, and estimates of α derived from the cohesive energy densities of the NC materials. One finds trends that can serve as a useful guide, both to test the proposed criteria, and to decide when closer scrutiny of phase transition experiments is warranted, e.g., in powders where high dislocation densities are initially created

  3. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  4. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G.; Sundar, Vikram C.

    2008-02-05

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties

  5. The dual role of sulfur-containing amino acids in the synthesis of IV-VI semiconductor nanocrystals: a mechanochemical approach.

    PubMed

    Baláž, Peter; Baláž, Matej; Caplovičová, Mária; Zorkovská, Anna; Caplovič, Lubomír; Psotka, Miroslav

    2014-01-01

    PbS@cystine nanocrystals were synthesized mechanochemically, with lead acetate and L-cystine being used as the lead and sulfur precursors, respectively. The resulting nanocrystals are 22-34 nm in size, well-faceted and octahedral in shape. Characterization by XRD, FT-IR, NMR, FE-SEM, EDS, TEM (HRTEM) and surface area measurement methods showed that the particles are single, defect-free crystals with a high crystallinity. Furthermore, the crystals were prepared using a solvent-free procedure that was performed under ambient temperature and atmospheric pressure. PMID:25406478

  6. Biomolecular Assembly of Gold Nanocrystals

    SciTech Connect

    Micheel, Christine Marya

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  7. Incorporation of Cu Acceptors in ZnO Nanocrystals

    SciTech Connect

    Oo, W.M.H.; Mccluskey, Matthew D.; Huso, Jesse; Morrison, J.; Bergman, Leah; Engelhard, Mark H.; Saraf, Laxmikant V.

    2010-09-16

    Doping of semiconductor nanocrystals is an important problem in nanomaterials research. Using infrared (IR) and x-ray photoelectron spectroscopy (XPS), we have observed Cu acceptor dopants that were intentionally introduced into ZnO nanocrystals. The incorporation of Cu2+ dopants increased as the diameter of the nanocrystals was increased from ~3 to 5 nm. Etching the nanocrystals with acetic acid revealed a core-shell structure, where a 2-nm lightly doped core is surrounded by a heavily doped shell. These observations are consistent with the trapped dopant model, in which dopant atoms stick to the surface of the core and are overgrown by the nanocrystal material.

  8. Picosecond dynamics of photoexcited carriers in interacting silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Kořínek, Miroslav; Trojánek, František; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Kübel, Christian; Malý, Petr

    2016-07-01

    The non-radiative Auger carrier recombination plays an important role in physics and the application of semiconductor nanocrystals. Here we report on the effect of inter-nanocrystal carrier interaction on Auger recombination. We prepared a special set of samples containing silicon nanocrystals embedded in silicon oxide with well-defined geometry. The picosecond carrier recombination rate measured by femtosecond pump and probe technique was found to be strongly dependent on the inter-nanocrystal separation. The observed decrease of the decay rate with nanocrystal separation on the nanometer scale is interpreted in terms of the wave function overlap appearing in the relevant matrix element describing the recombination process.

  9. Size-Dependent Raman Shifts for nanocrystals

    PubMed Central

    Gao, Yukun; Zhao, Xinmei; Yin, Penggang; Gao, Faming

    2016-01-01

    Raman spectroscopy is a very sensitive tool for probing semiconductor nanocrystals. The underlying mechanism behind the size-dependent Raman shifts is still quite controversial. Here we offer a new theoretical method for the quantum confinement effects on the Raman spectra of semiconductor nanocrystals. We propose that the shift of Raman spectra in nanocrystals can result from two overlapping effects: the quantum effect shift and surface effect shift. The quantum effect shift is extracted from an extended Kubo formula, the surface effect shift is determined via the first principles calculations. Fairly good prediction of Raman shifts can be obtained without the use of any adjustable parameter. Closer analysis shows that the size-dependent Raman shifts in Si nanocrystals mainly result from the quantum effect shifts. For nanodiamond, the proportion of surface effect shift in Raman shift is up to about 40%. Such model can also provide a good baseline for using Raman spectroscopy as a tool to measure size. PMID:27102066

  10. Hybrid pn-junction solar cells based on layers of inorganic nanocrystals and organic semiconductors: optimization of layer thickness by considering the width of the depletion region.

    PubMed

    Saha, Sudip K; Guchhait, Asim; Pal, Amlan J

    2014-03-01

    We report the formation and characterization of hybrid pn-junction solar cells based on a layer of copper diffused silver indium disulfide (AgInS2@Cu) nanoparticles and another layer of copper phthalocyanine (CuPc) molecules. With copper diffusion in the nanocrystals, their optical absorption and hence the activity of the hybrid pn-junction solar cells was extended towards the near-IR region. To decrease the particle-to-particle separation for improved carrier transport through the inorganic layer, we replaced the long-chain ligands of copper-diffused nanocrystals in each monolayer with short-ones. Under illumination, the hybrid pn-junctions yielded a higher short-circuit current as compared to the combined contribution of the Schottky junctions based on the components. A wider depletion region at the interface between the two active layers in the pn-junction device as compared to that of the Schottky junctions has been considered to analyze the results. Capacitance-voltage characteristics under a dark condition supported such a hypothesis. We also determined the width of the depletion region in the two layers separately so that a pn-junction could be formed with a tailored thickness of the two materials. Such a "fully-depleted" device resulted in an improved photovoltaic performance, primarily due to lessening of the internal resistance of the hybrid pn-junction solar cells. PMID:24452695

  11. The Surface Chemistry of Metal Chalcogenide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas Charles

    The surface chemistry of metal chalcogenide nanocrystals is explored through several interrelated analytical investigations. After a brief discussion of the nanocrystal history and applications, molecular orbital theory is used to describe the electronic properties of semiconductors, and how these materials behave on the nanoscale. Quantum confinement plays a major role in dictating the optical properties of metal chalcogenide nanocrystals, however surface states also have an equally significant contribution to the electronic properties of nanocrystals due to the high surface area to volume ratio of nanoscale semiconductors. Controlling surface chemistry is essential to functionalizing these materials for biological imaging and photovoltaic device applications. To better understand the surface chemistry of semiconducting nanocrystals, three competing surface chemistry models are presented: 1.) The TOPO model, 2.) the Non-stoichiometric model, and 3.) the Neutral Fragment model. Both the non-stoichiometric and neutral fragment models accurately describe the behavior of metal chalcogenide nanocrystals. These models rely on the covalent bond classification system, which divides ligands into three classes: 1.) X-type, 1-electron donating ligands that balance charge with excess metal at the nanocrystal surface, 2.) L-type, 2-electron donors that bind metal sites, and 3.) Z-type, 2-electron acceptors that bind chalcogenide sites. Each of these ligand classes is explored in detail to better understand the surface chemistry of metal chalcogenide nanocrystals. First, chloride-terminated, tri-n-butylphosphine (Bu 3P) bound CdSe nanocrystals were prepared by cleaving carboxylate ligands from CdSe nanocrystals with chlorotrimethylsilane in Bu3P solution. 1H and 31P{1H} nuclear magnetic resonance spectra of the isolated nanocrystals allowed assignment of distinct signals from several free and bound species, including surface-bound Bu3P and [Bu3P-H]+[Cl]- ligands as well as a Bu

  12. Infrared colloidal lead chalcogenide nanocrystals: synthesis, properties, and photovoltaic applications.

    PubMed

    Fu, Huiying; Tsang, Sai-Wing

    2012-04-01

    Simple solution phase, catalyst-free synthetic approaches that offer monodispersed, well passivated, and non-aggregated colloidal semiconductor nanocrystals have presented many research opportunities not only for fundamental science but also for technological applications. The ability to tune the electrical and optical properties of semiconductor nanocrystals by manipulating the size and shape of the crystals during the colloidal synthesis provides potential benefits to a variety of applications including photovoltaic devices, light-emitting diodes, field effect transistors, biological imaging/labeling, and more. Recent advances in the synthesis and characterization of colloidal lead chalcogenide nanocrystals and the achievements in colloidal PbS or PbSe nanocrystals solar cells have demonstrated the promising application of infrared-emitting colloidal lead chalcogenide nanocrystals in photovoltaic devices. Here, we review recent progress in the synthesis and optical properties of colloidal lead chalcogenide nanocrystals. We focus in particular upon the size- and shape-controlled synthesis of PbS, PbSe, and PbTe nanocrystals by using different precursors and various stabilizing surfactants for the growth of the colloidal nanocrystals. We also summarize recent advancements in the field of colloidal nanocrystals solar cells based on colloidal PbS and PbSe nanocrystals. PMID:22382898

  13. Multifunctional nanocrystals

    DOEpatents

    Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak

    2010-06-22

    Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.

  14. Multifunctional nanocrystals

    DOEpatents

    Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak

    2007-08-28

    Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.

  15. Patterning nanocrystals using DNA

    SciTech Connect

    Williams, Shara Carol

    2003-09-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices to a length greater than

  16. Colloidal inorganic nanocrystals: Nucleation, growth and biological applications

    NASA Astrophysics Data System (ADS)

    Lynch, Jared James

    Colloidal inorganic nanocrystals are a class of material whose size ranges from a few nanometers to a hundred nanometers in dimension. These nanocrystals have size dependent properties that differ significantly from the bulk material counterparts. Due to their unique physical properties colloidal inorganic nanocrystals have several promising applications in a diverse range of areas, such as biomedical diagnosis, catalysis, plasmonics, high-density data storage and solar energy conversion. This dissertation presents the study of the formation of iron oxide nanocrystals under the influence of solvent and Ar gas bubbles, the phase transfer of metal oxide nanocrystals into water using inorganic ions, and the doping of semiconductor CdS/ZnS core/shell nanocrystals with copper and silver ions. First, the formation of iron oxide nanocrystals is investigated in the presence of boiling solvent or Ar bubbles. Using a non-injection based synthesis method, the thermal decomposition of iron oleate was studied under various reaction conditions, and the role of the bubbles on the nucleation and growth of iron oxide nanocrystals was determined. Kinetics studies were used to elucidate how latent heat transfer from the bubbles allows for "active monomers" to form preferentially from exothermic reactions taking place during nucleation. General insights into colloidal inorganic nanocrystal formation are discussed. Second, a non-injection based synthesis for CdS/ZnS core/shell nanocrystals is used to make high quality semiconductor particles which are intentionally doped with Cu or Ag ions. The Ag ions effect on the optical properties of the CdS/ZnS nanocrystals is investigated. The absorption and fluorescence of the samples is measured as a function of time and temperature. Proposed mechanisms for the observations are given and thoroughly discussed. Comparisons between previous results for Cu doped CdS/ZnS nanocrystals are also made to further understand how doping of semiconductor

  17. Synthesis and investigation of optical properties of TOPO-capped CuInS{sub 2} semiconductor nanocrystal in the presence of different solvent

    SciTech Connect

    Asgary, Saeid; Mirabbaszadeh, Kavoos; Nayebi, Payman; Emadi, Hamid

    2014-03-01

    Graphical abstract: - Highlights: • TOPO-capped CuInS{sub 2} nanoparticles were synthesized by injection method. • Pure CuInS{sub 2} nanoparticle was obtained by injection in 200 °C. • The size, shape and optical properties of products were controlled. • Nanoparticles with size smaller than 10 nm and wurtzite phase was obtained. • The absorption and PL spectra of CuInS{sub 2} nanoparticles were tunable. - Abstract: In this work, synthesis of CuInS{sub 2} semiconductor nanoparticles by thermolysis of a mixed solution of CuAc, In(Ac){sub 3} and DDT in coordinating solvent and trioctylphosphine oxide (TOPO) as ligand was developed. CuInS{sub 2} nanoparticles with size of −10 nm and nanorods were obtained and optical properties controlled by adjusting the reaction parameters such as temperature and time. Also the shape of nanoparticles was controlled by various solvents elaborately. The as-prepared nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), UV–vis absorption, and photoluminescence (PL) spectroscopy. With the use of different solvent different morphology obtained. In the presence of oleylamine/octadecene rectangle-like nanorods obtained while with the use of oleic acid sphere-like nanoparticles achieved.

  18. Lead sulphide nanocrystal photodetector technologies

    NASA Astrophysics Data System (ADS)

    Saran, Rinku; Curry, Richard J.

    2016-02-01

    Light detection is the underlying principle of many optoelectronic systems. For decades, semiconductors including silicon carbide, silicon, indium gallium arsenide and germanium have dominated the photodetector industry. They can show excellent photosensitivity but are limited by one or more aspects, such as high production cost, high-temperature processing, flexible substrate incompatibility, limited spectral range or a requirement for cryogenic cooling for efficient operation. Recently lead sulphide (PbS) nanocrystals have emerged as one of the most promising new materials for photodetector fabrication. They offer several advantages including low-cost manufacturing, solution processability, size-tunable spectral sensitivity and flexible substrate compatibility, and they have achieved figures of merit outperforming conventional photodetectors. We review the underlying concepts, breakthroughs and remaining challenges in photodetector technologies based on PbS nanocrystals.

  19. Plasmonic engineering of spontaneous emission from silicon nanocrystals

    PubMed Central

    Goffard, Julie; Gérard, Davy; Miska, Patrice; Baudrion, Anne-Laure; Deturche, Régis; Plain, Jérôme

    2013-01-01

    Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells. PMID:24037020

  20. Encapsulated nanocrystals and quantum dots formed by ion beam synthesis

    SciTech Connect

    White, C.W.; Budai, J.D.; Withrow, S.P.

    1996-09-01

    High-dose ion implantation was used to synthesize a wide range of nanocrystals and quantum dots and to encapsulate them in host materials such as SiO{sub 2}, {alpha}-Al{sub 2}O{sub 3}, and crystalline Si. When Si nanocrystals are encapsulated in SiO{sub 2}, they exhibit dose dependent absorption and photoluminescence which provides insight into the luminescence mechanism. Compound semiconductor nanocrystals (both Group III-V and Group II-VI) can be formed in these matrices by sequential implantation of he individual constituents, and we discuss their synthesis and some of their physical and optical properties.

  1. From ligands to binding motifs and beyond; the enhanced versatility of nanocrystal surfaces.

    PubMed

    De Roo, J; De Keukeleere, K; Hens, Z; Van Driessche, I

    2016-09-14

    Surface chemistry bridges the gap between nanocrystal synthesis and their applications. In this respect, the discovery of complex ligand binding motifs on semiconductor quantum dots and metal oxide nanocrystals opens a gateway to new areas of research. The implications are far-reaching, from catalytic model systems to the performance of solar cells. PMID:27461488

  2. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals. PMID:27444048

  3. Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance.

    PubMed

    Oh, Soong Ju; Berry, Nathaniel E; Choi, Ji-Hyuk; Gaulding, E Ashley; Paik, Taejong; Hong, Sung-Hoon; Murray, Christopher B; Kagan, Cherie R

    2013-03-26

    We investigate the effects of stoichiometric imbalance on the electronic properties of lead chalcogenide nanocrystal films by introducing excess lead (Pb) or selenium (Se) through thermal evaporation. Hall-effect and capacitance-voltage measurements show that the carrier type, concentration, and Fermi level in nanocrystal solids may be precisely controlled through their stoichiometry. By manipulating only the stoichiometry of the nanocrystal solids, we engineer the characteristics of electronic and optoelectronic devices. Lead chalcogenide nanocrystal field-effect transistors (FETs) are fabricated at room temperature to form ambipolar, unipolar n-type, and unipolar p-type semiconducting channels as-prepared and with excess Pb and Se, respectively. Introducing excess Pb forms nanocrystal FETs with electron mobilities of 10 cm(2)/(V s), which is an order of magnitude higher than previously reported in lead chalcogenide nanocrystal devices. Adding excess Se to semiconductor nanocrystal solids in PbSe Schottky solar cells enhances the power conversion efficiency. PMID:23368728

  4. Growth of platinum nanocrystals

    SciTech Connect

    2009-01-01

    Movie showing the growth of platinum nanocrystals in a liquid cell observed in situ using the JEOL 3010 TEM at the National Center for Electron Microscopy. This is the first ever-real time movie showing nucleation and growth by monomer attachment or by smaller nanocrystals coalescing to form larger nanocrystals. All the nanocrystals end up being roughly the same shape and size. http://newscenter.lbl.gov/feature-stories/2009/08/04/growth-spurts/

  5. Colloidal Nanocrystals Fluoresced by Surface Coordination Complexes

    PubMed Central

    Wang, Guan; Ji, Jianwei; Zhang, Xinwen; Zhang, Yan; Wang, Qiangbin; You, Xiaozeng; Xu, Xiangxing

    2014-01-01

    Colloidal Nanocrystals (NCs) with fluorescence originating from surface complexes are successfully prepared. The components of these NCs range from insulator, semiconductor to metal, with either pure phase, doped or core/shell structures. The photoluminescence of these NCs can be reversibly tuned across the visible to infrared spectrum, and even allow multi-color emission. A light emitting device is fabricated and a new in vivo cell imaging method is performed to demonstrate the power of this technology for emerging applications. PMID:24970242

  6. Field-effect electroluminescence in silicon nanocrystals.

    PubMed

    Walters, Robert J; Bourianoff, George I; Atwater, Harry A

    2005-02-01

    There is currently worldwide interest in developing silicon-based active optical components in order to leverage the infrastructure of silicon microelectronics technology for the fabrication of optoelectronic devices. Light emission in bulk silicon-based devices is constrained in wavelength to infrared emission, and in efficiency by the indirect bandgap of silicon. One promising strategy for overcoming these challenges is to make use of quantum-confined excitonic emission in silicon nanocrystals. A critical challenge for silicon nanocrystal devices based on nanocrystals embedded in silicon dioxide has been the development of a method for efficient electrical carrier injection. We report here a scheme for electrically pumping dense silicon nanocrystal arrays by a field-effect electroluminescence mechanism. In this excitation process, electrons and holes are both injected from the same semiconductor channel across a tunnelling barrier in a sequential programming process, in contrast to simultaneous carrier injection in conventional pn-junction light-emitting-diode structures. Light emission is strongly correlated with the injection of a second carrier into a nanocrystal that has been previously programmed with a charge of the opposite sign. PMID:15665836

  7. Fabrication and electronic transport studies of single nanocrystal systems

    SciTech Connect

    Klein, D L

    1997-05-01

    Semiconductor and metallic nanocrystals exhibit interesting electronic transport behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of electronic states in these systems. This thesis describes several techniques for the electronic study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that electronic investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create electronic devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single electron transistor is presented. This device is fabricated using a hybrid scheme which combines electron beam lithography and wet chemistry to bind single nanocrystals in tunneling contact between closely spaced metallic leads. In these devices, both Au and CdSe nanocrystals show Coulomb blockade effects with characteristic energies of several tens of meV. Additional structure is seen the transport behavior of CdSe nanocrystals as a result of its electronic structure.

  8. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface

    SciTech Connect

    Katari, J.E.B. ); Colvin, V.L.; Alivisatos, A.P. Univ. of California, Berkeley CA )

    1994-04-14

    We report the use of X-ray photoelectron spectroscopy (XPS) to determine the surface composition of semiconductor nanocrystals. Crystalline, nearly monodisperse CdSe nanocrystals ranging in radius from 9 to 30 A were chemically synthesized and covalently bound to Au and Si surfaces for study. XPS core level peak positions for Cd and Se were in agreement with those of bulk CdSe. We have determined that the majority of Se atoms on the surface are unbonded as prepared and that Cd atoms are bonded to the surface ligand, tri-n-octylphosphine oxide, to the extent that such bonding is sterically allowed. We have determined that the total ligand saturation of the nanocrystal surface varies from 60% in the smaller nanocrystals to 30% in the larger nanocrystals. In addition, we have determined that upon exposure of the nanocrystals to air Se surface sites are oxidized, forming a SeO[sub 2] surface film which causes the nanocrystals to degrade over time. The nanocrystal surface can be modified by dispersing the crystals in pyridine. Nearly all of the P ligands are removed in this case, leaving behind primarily unsaturated Cd and Se surface atoms. In this case, both Cd and Se oxidize upon exposure to air. 35 refs., 17 figs., 1 tab.

  9. Z-Contrast STEM Imaging and EELS of CdSe Nanocrystals: Towards the Analysis of Individual Nanocrystal Surfaces

    SciTech Connect

    Erwin, M.; Kadavanich, A.V.; Kippeny, T.; Pennycook, S.J.; Rosenthal, S.J.

    1999-04-05

    We have applied Atomic Number Contract Scanning Transmission Electron Microscopy (Z-Contrast STEM) and STEM/EELS (Electron Energy Loss Spectroscopy) towards the study of colloidal CdSe semiconductor nanocrystals embedded in MEH-PPV polymer films. Unlike the case of conventional phase-contrast High Resolution TEM, Z-Contrast images are direct projections of the atomic structure. Hence they can be interpreted without the need for sophisticated image simulation and the image intensity is a direct measure of the thickness of a nanocrystal. Our thickness measurements are in agreement with the predicted faceted shape of these nanocrystals. Our unique 1.3A resolution STEM has successfully resolve3d the sublattice structure of these CdSe nanocrystals. In [010] projection (the polar axis in the image plane) we can distinguish Se atom columns from Cd columns. Consequently we can study the effects of lattice polarity on the nanocrystal morphology. Furthermore, since the STEM technique does not rely on diffraction, it is superbly suited to the study of non-periodic detail, such as the surface structure of the nanocrystals. EELS measurements on individual nanocrystals indicate a significant amount (equivalet to 0.5-1 surface monolayers) of oxygen on the nanocrystals, despite processing in an inert atmosphere. Spatially resolved measurements at 7A resolution suggest a surface oxide layer. However, the uncertainty in the measurement precludes definitive assignment at this time. The source of the oxygen is under investigation as well.

  10. Nanocrystal targeting in vivo

    NASA Astrophysics Data System (ADS)

    Åkerman, Maria E.; Chan, Warren C. W.; Laakkonen, Pirjo; Bhatia, Sangeeta N.; Ruoslahti, Erkki

    2002-10-01

    Inorganic nanostructures that interface with biological systems have recently attracted widespread interest in biology and medicine. Nanoparticles are thought to have potential as novel intravascular probes for both diagnostic (e.g., imaging) and therapeutic purposes (e.g., drug delivery). Critical issues for successful nanoparticle delivery include the ability to target specific tissues and cell types and escape from the biological particulate filter known as the reticuloendothelial system. We set out to explore the feasibility of in vivo targeting by using semiconductor quantum dots (qdots). Qdots are small (<10 nm) inorganic nanocrystals that possess unique luminescent properties; their fluorescence emission is stable and tuned by varying the particle size or composition. We show that ZnS-capped CdSe qdots coated with a lung-targeting peptide accumulate in the lungs of mice after i.v. injection, whereas two other peptides specifically direct qdots to blood vessels or lymphatic vessels in tumors. We also show that adding polyethylene glycol to the qdot coating prevents nonselective accumulation of qdots in reticuloendothelial tissues. These results encourage the construction of more complex nanostructures with capabilities such as disease sensing and drug delivery.

  11. Nanocrystals and quantum dots formed by high-dose ion implantation

    SciTech Connect

    White, C.W.; Budai, J.D.; Zhu, J.G.; Withrow, S.P.; Hembree, D.M.; Henderson, D.O.; Ueda, A.; Tung, Y.S.; Mu, R.

    1996-01-01

    Ion implantation and thermal annealing have been used to produce a wide range of nanocrystals and quantum dots in amorphous (SiO{sub 2}) and crystalline (Al{sub 2}O{sub 3}) matrices. Nanocrystals of metals (Au), elemental semiconductors (Si and Ge), and even compound semiconductors (SiGe, CdSe, CdS) have been produced. In amorphous matrices, the nanocrystals are randomly oriented, but in crystalline matrices they are three dimensionally aligned. Evidence for photoluminescence and quantum confinement effects are presented.

  12. Semiconductor nanorod liquid crystals

    SciTech Connect

    Li, Liang-shi; Walda, Joost; Manna, Liberato; Alivisatos, A. Paul

    2002-01-28

    Rodlike molecules form liquid crystalline phases with orientational order and positional disorder. The great majority of materials in which liquid crystalline phases have been observed are comprised of organic molecules or polymers, even though there has been continuing and growing interest in inorganic liquid crystals. Recent advances in the control of the sizes and shapes of inorganic nanocrystals allow for the formation of a broad class of new inorganic liquid crystals. Here we show the formation of liquid crystalline phases of CdSe semiconductor nanorods. These new liquid crystalline phases may have great importance for both application and fundamental study.

  13. Low temperature thin films formed from nanocrystal precursors

    DOEpatents

    Alivisatos, A.P.; Goldstein, A.N.

    1993-11-16

    Nanocrystals of semiconductor compounds are produced. When they are applied as a contiguous layer onto a substrate and heated they fuse into a continuous layer at temperatures as much as 250, 500, 750 or even 1000 K below their bulk melting point. This allows continuous semiconductor films in the 0.25 to 25 nm thickness range to be formed with minimal thermal exposure. 9 figures.

  14. Low temperature thin films formed from nanocrystal precursors

    DOEpatents

    Alivisatos, A. Paul; Goldstein, Avery N.

    1993-01-01

    Nanocrystals of semiconductor compounds are produced. When they are applied as a contiguous layer onto a substrate and heated they fuse into a continuous layer at temperatures as much as 250, 500, 750 or even 1000.degree. K below their bulk melting point. This allows continuous semiconductor films in the 0.25 to 25 nm thickness range to be formed with minimal thermal exposure.

  15. Multiexciton Generation in Nanocrystals and Nanorods

    NASA Astrophysics Data System (ADS)

    Rabani, Eran

    2014-03-01

    Multiexciton generation (MEG) is a process where several excitons are generated upon the absorption of a single photon in semiconductors. This process enjoys great technological ramifications for solar cells and other light harvesting technologies. For example, it is expected that the more charge carriers created shortly after the photon is absorbed, the larger fraction of the photon energy can successfully be converted into electricity, thus increasing the device efficiency. Strict selection rules and competing processes in the bulk allows MEG at energies of five times the band gap. It was suggested that nanocrystals, where quantum confinement effects are important, may exhibit MEG at lower values of (typically 2 to 3 times the band gap). Indeed, MEG in nanocrystals has been reported recently for several systems, showing that the threshold was size and band-gap independent. However, more recent studies have questioned the high efficiency of MEG in nanocrystals. In this talk we will discuss the process of MEG in semiconducting nanocrystals (NCs) and nanorods (NRs). A general theoretical framework will be presented and the limits of indirect absorption and impact ionization will be derived. The role of composition material, size, geometry and energy on the MEG efficiencies will be explored using a stochastic approach to calculate MEG with a numerical effort that scales linearly with system size.

  16. Chelating ligands for nanocrystals' surface functionalization.

    PubMed

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-09-22

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors. PMID:15366904

  17. Biomineralization: Nanocrystals by design

    NASA Astrophysics Data System (ADS)

    Shang, Li; Nienhaus, Gerd Ulrich

    2015-10-01

    Nanocrystals with precisely defined structures offer promise as components of advanced materials yet they are challenging to create. Now, a nanocrystal made up of seven cadmium and twelve chloride ions has been synthesized via a biotemplating approach that uses a de novo designed protein.

  18. Optical activity of chirally distorted nanocrystals

    NASA Astrophysics Data System (ADS)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2016-05-01

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.

  19. The influence of dopant distribution on the optoelectronic properties of tin-doped indium oxide nanocrystals and nanocrystal films

    NASA Astrophysics Data System (ADS)

    Lounis, Sebastien Dahmane

    Colloidally prepared nanocrystals of transparent conducting oxide (TCO) semiconductors have emerged in the past decade as an exciting new class of plasmonic materials. In recent years, there has been tremendous progress in developing synthetic methods for the growth of these nanocrystals, basic characterization of their properties, and their successful integration into optoelectronic and electrochemical devices. However, many fundamental questions remain about the physics of localized surface plasmon resonance (LSPR) in these materials, and how their optoelectronic properties derive from their underlying structural properties. In particular, the influence of the concentration and distribution of dopant ions and compensating defects on the optoelectronic properties of TCO nanocrystals has seen little investigation. Indium tin oxide (ITO) is the most widely studied and commercially deployed TCO. Herein we investigate the role of the distribution of tin dopants on the optoelectronic properties of colloidally prepared ITO nanocrystals. Owing to a high free electron density, ITO nanocrystals display strong LSPR absorption in the near infrared. Depending on the particular organic ligands used, they are soluble in various solvents and can readily be integrated into densely packed nanocrystal films with high conductivities. Using a combination of spectroscopic techniques, modeling and simulation of the optical properties of the nanocrystals using the Drude model, and transport measurements, it is demonstrated herein that the radial distribution of tin dopants has a strong effect on the optoelectronic properties of ITO nanocrystals. ITO nanocrystals were synthesized in both surface-segregated and uniformly distributed dopant profiles. Temperature dependent measurements of optical absorbance were first combined with Drude modeling to extract the internal electrical properties of the ITO nanocrystals, demonstrating that they are well-behaved degenerately doped semiconductors

  20. Prospects of nanoscience with nanocrystals

    DOE PAGESBeta

    Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu; Hens, Zeger; Talapin, Dmitri V.; Kagan, Cherie R.; Klimov, Victor I.; Rogach, Andrey L.; Reiss, Peter; Milliron, Delia J.; et al

    2015-01-22

    Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today's strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. Furthermore, the performance of inorganic NC-based photovoltaic and lightemitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where verymore » few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. New phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In our Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.« less

  1. Prospects of nanoscience with nanocrystals

    SciTech Connect

    Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu; Hens, Zeger; Talapin, Dmitri V.; Kagan, Cherie R.; Klimov, Victor I.; Rogach, Andrey L.; Reiss, Peter; Milliron, Delia J.; Guyot-Sionnnest, Philippe; Konstantatos, Gerasimos; Parak, Wolfgang J.; Hyeon, Taeghwan; Korgel, Brian A.; Murray, Christopher B.; Heiss, Wolfgang

    2015-01-22

    Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today's strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. Furthermore, the performance of inorganic NC-based photovoltaic and lightemitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. New phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In our Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.

  2. Passivation effects in B doped self-assembled Si nanocrystals

    SciTech Connect

    Puthen Veettil, B. Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Zhang, Tian; Yang, Terry; Johnson, Craig; Conibeer, Gavin; Perez-Würfl, Ivan; McCamey, Dane

    2014-12-01

    Doping of semiconductor nanocrystals has enabled their widespread technological application in optoelectronics and micro/nano-electronics. In this work, boron-doped self-assembled silicon nanocrystal samples have been grown and characterised using Electron Spin Resonance and photoluminescence spectroscopy. The passivation effects of boron on the interface dangling bonds have been investigated. Addition of boron dopants is found to compensate the active dangling bonds at the interface, and this is confirmed by an increase in photoluminescence intensity. Further addition of dopants is found to reduce the photoluminescence intensity by decreasing the minority carrier lifetime as a result of the increased number of non-radiative processes.

  3. Frequency upconverted lasing of nanocrystal quantum dots in microbeads

    NASA Astrophysics Data System (ADS)

    Zhang, Chunfeng; Zhang, Fan; Cheng, An; Kimball, Brian; Wang, Andrew Y.; Xu, Jian

    2009-11-01

    Stable, frequency upconverted lasing of semiconductor nanocrystal quantum dots was demonstrated in silica microbeads under two-photon pumping conditions. Upon infrared excitation, the stimulated emission of the nanocrystal-doped microbeads exhibits sharp peaks at λ ˜610 nm with narrow line widths of ≤1 nm. The lasing action has been attributed to the biexciton gain coupled to the whispering gallery modes in spherical cavities, as confirmed by time-resolved photoluminescence spectra. The lasing lifetime characterized in term of pulse numbers (˜106 pulses) was two orders of magnitude longer than that of the dye salt-based two-photon lasers.

  4. Nonthermal plasma synthesis of metal sulfide nanocrystals from metalorganic vapor and elemental sulfur

    NASA Astrophysics Data System (ADS)

    Thimsen, Elijah; Kortshagen, Uwe R.; Aydil, Eray S.

    2015-08-01

    Nanocrystal synthesis in nonthermal plasmas has been focused on elemental group IV semiconductors such as Si and Ge. In contrast, very little is known about plasma synthesis of compound nanocrystals and the time is ripe to extend this synthesis approach to nanocrystals comprised of two or more elements such as metal sulfides, oxides and nitrides. Towards this end, we studied, in an argon-sulfur plasma, the synthesis of ZnS, Cu2S and SnS nanocrystals from metalorganic precursors diethyl Zn(II), hexafluoroacetylacetonate Cu(I) vinyltrimethylsilane, and tetrakis(dimethylamido) Sn(IV), respectively. In situ optical emission spectroscopy was used to observe changes in relative concentrations of various plasma species during synthesis, while ex situ material characterization was used to examine the crystal structure, elemental composition and optical absorption of these nanocrystals. For a constant metalorganic vapor feed rate, the elemental composition of the nanocrystals was found to be independent of the sulfur flow rate into the plasma, above a small threshold value. At constant sulfur flow rate, the nanocrystal composition depended on the metalorganic vapor feed rate. Specifically, the ensemble metal atomic fraction in the nanocrystals was found to increase with increasing metalorganic vapor flow rates, resulting in more metal-rich crystal phases. The metalorganic feed rate can be used to control the composition and crystal phase of the metal-sulfide nanocrystals synthesized using this plasma process.

  5. One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals

    NASA Astrophysics Data System (ADS)

    Ma, Nan; Sargent, Edward H.; Kelley, Shana O.

    2009-02-01

    Colloidal semiconductor nanocrystals are widely used as lumiphores in biological imaging because their luminescence is both strong and stable, and because they can be biofunctionalized. During synthesis, nanocrystals are typically passivated with hydrophobic organic ligands, so it is then necessary either to replace these ligands or encapsulate the nanocrystals with hydrophilic moieties to make the lumiphores soluble in water. Finally, biological labels must be added to allow the detection of nucleic acids, proteins and specific cell types. This multistep process is time- and labour-intensive and thus out of reach of many researchers who want to use luminescent nanocrystals as customized lumiphores. Here, we show that a single designer ligand-a chimeric DNA molecule-can controllably program both the growth and the biofunctionalization of the nanocrystals. One part of the DNA sequence controls the nanocrystal passivation and serves as a ligand, while another part controls the biorecognition. The synthetic protocol reported here is straightforward and produces a homogeneous dispersion of nanocrystal lumiphores functionalized with a single biomolecular receptor. The nanocrystals exhibit strong optical emission in the visible region, minimal toxicity and have hydrodynamic diameters of ~6 nm, which makes them suitable for bioimaging. We show that the nanocrystals can specifically bind DNA, proteins or cells that have unique surface recognition markers.

  6. Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds

    SciTech Connect

    Mastroianni, Alexander; Claridge, Shelley; Alivisatos, A. Paul

    2009-03-30

    Nanostructures constructed from metal and semiconductor nanocrystals conjugated to, and organized by DNA are an emerging class of material with collective optical properties. We created discrete pyramids of DNA with gold nanocrystals at the tips. By taking small angle X-ray scattering (SAXS) measurments from solutions of these pyramids we confirmed that this pyramidal geometry creates structures which are more rigid in solution than linear DNA. We then took advantage of the tetrahedral symmetry to demonstrate construction of chiral nanostructures.

  7. Formation of Si nanocrystals utilizing a Au nanoscale island etching mask

    SciTech Connect

    Kang, Y.M.; Lee, S.J.; Kim, D.Y. . E-mail: dykim@dongguk.edu; Kim, T.W.; Woo, Y.-D.; Wang, K.L.

    2005-01-04

    Si nanocrystals were formed by using a Au nanoscale island etching mask. A high-resolution transmission electron microscopy image showed that the Si nanocrystals were created on a SiO{sub x} layer, and the luminescence peak related to Si nanocrystals was observed in the cathodoluminescence spectrum. Capacitance-voltage measurements demonstrate a metal-insulator-semiconductor behavior with a flatband voltage shift for the Al/SiO{sub 2}/nanocrystalline Si/SiO{sub 2}/p-Si structures, indicative of the existence of the Si nanocrystals embedded into the SiO{sub x} layer. These results indicate that Si nanocrystals embedded into the SiO{sub x} layer can be formed by using a Au island etching mask.

  8. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  9. Nanocrystal-Powered Nanomotor

    SciTech Connect

    Regan, B.C.; Aloni, S.; Jensen, K.; Ritchie, R.O.; Zettl, A.

    2005-07-05

    We have constructed and operated a nanoscale linear motorpowered by a single metal nanocrystal ram sandwiched between mechanicallever arms. Low-level electrical voltages applied to the carbon nanotubelever arms cause the nanocrystal to grow or shrink in a controlledmanner. The length of the ram is adjustable from 0 to more than 150 nm,with extension speeds exceeding 1900 nm/s. The thermodynamic principlesgoverning motor operation resemble those driving frost heave, a naturalsolid-state linear motor.

  10. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Tabachnyk, Maxim; Ehrler, Bruno; Gélinas, Simon; Böhm, Marcus L.; Walker, Brian J.; Musselman, Kevin P.; Greenham, Neil C.; Friend, Richard H.; Rao, Akshay

    2014-11-01

    The efficient transfer of energy between organic and inorganic semiconductors is a widely sought after property, but has so far been limited to the transfer of spin-singlet excitons. Here we report efficient resonant-energy transfer of molecular spin-triplet excitons from organic semiconductors to inorganic semiconductors. We use ultrafast optical absorption spectroscopy to track the dynamics of triplets, generated in pentacene through singlet exciton fission, at the interface with lead selenide (PbSe) nanocrystals. We show that triplets transfer to PbSe rapidly (<1 ps) and efficiently, with 1.9 triplets transferred for every photon absorbed in pentacene, but only when the bandgap of the nanocrystals is close to resonance (±0.2 eV) with the triplet energy. Following triplet transfer, the excitation can undergo either charge separation, allowing photovoltaic operation, or radiative recombination in the nanocrystal, enabling luminescent harvesting of triplet exciton energy in light-emitting structures.

  11. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals.

    PubMed

    Tabachnyk, Maxim; Ehrler, Bruno; Gélinas, Simon; Böhm, Marcus L; Walker, Brian J; Musselman, Kevin P; Greenham, Neil C; Friend, Richard H; Rao, Akshay

    2014-11-01

    The efficient transfer of energy between organic and inorganic semiconductors is a widely sought after property, but has so far been limited to the transfer of spin-singlet excitons. Here we report efficient resonant-energy transfer of molecular spin-triplet excitons from organic semiconductors to inorganic semiconductors. We use ultrafast optical absorption spectroscopy to track the dynamics of triplets, generated in pentacene through singlet exciton fission, at the interface with lead selenide (PbSe) nanocrystals. We show that triplets transfer to PbSe rapidly (<1 ps) and efficiently, with 1.9 triplets transferred for every photon absorbed in pentacene, but only when the bandgap of the nanocrystals is close to resonance (±0.2 eV) with the triplet energy. Following triplet transfer, the excitation can undergo either charge separation, allowing photovoltaic operation, or radiative recombination in the nanocrystal, enabling luminescent harvesting of triplet exciton energy in light-emitting structures. PMID:25282509

  12. 2009 Clusters, Nanocrystals & Nanostructures GRC

    SciTech Connect

    Lai-Sheng Wang

    2009-07-19

    For over thirty years, this Gordon Conference has been the premiere meeting for the field of cluster science, which studies the phenomena that arise when matter becomes small. During its history, participants have witnessed the discovery and development of many novel materials, including C60, carbon nanotubes, semiconductor and metal nanocrystals, and nanowires. In addition to addressing fundamental scientific questions related to these materials, the meeting has always included a discussion of their potential applications. Consequently, this conference has played a critical role in the birth and growth of nanoscience and engineering. The goal of the 2009 Gordon Conference is to continue the forward-looking tradition of this meeting and discuss the most recent advances in the field of clusters, nanocrystals, and nanostructures. As in past meetings, this will include new topics that broaden the field. In particular, a special emphasis will be placed on nanomaterials related to the efficient use, generation, or conversion of energy. For example, we anticipate presentations related to batteries, catalysts, photovoltaics, and thermoelectrics. In addition, we expect to address the controversy surrounding carrier multiplication with a session in which recent results addressing this phenomenon will be discussed and debated. The atmosphere of the conference, which emphasizes the presentation of unpublished results and lengthy discussion periods, ensures that attendees will enjoy a valuable and stimulating experience. Because only a limited number of participants are allowed to attend this conference, and oversubscription is anticipated, we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. An invitation is not required. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral

  13. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals

    SciTech Connect

    Lounis, SD; Runnerstrorm, EL; Llordes, A; Milliron, DJ

    2014-05-01

    Plasmonic nanocrystals of highly doped metal oxides have seen rapid development in the past decade and represent a class of materials with unique optoelectronic properties. In this Perspective, we discuss doping mechanisms in metal oxides and the accompanying physics of free carrier scattering, both of which have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. The balance between activation and compensation of dopants limits the free carrier concentration of the most common metal oxides, placing a ceiling on the LSPR frequency. Furthermore, because of ionized impurity scattering of the oscillating plasma by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well-understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration.

  14. Vibrational Properties of Ge Nanocrystals Determined by EXAFS

    SciTech Connect

    Araujo, L. L.; Kluth, P.; Ridgway, M. C.; Azevedo, G. de M.

    2007-02-02

    The vibrational properties of Ge nanocrystals (NCs) produced by ion implantation in SiO2 followed by thermal annealing were determined from temperature dependent Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy measurements. Using a correlated anharmonic Einstein model and thermodynamic perturbation theory it was possible to extract information about thermal and static disorder, thermal expansion and anharmonicity effects for the Ge NCs. Comparison with results for bulk crystalline and amorphous Ge indicates that the Ge NCs bonds are stiffer than those of both bulk phases of Ge. Also, the values of the anharmonic linear thermal expansion and the thermal expansion coefficient obtained for the Ge NCs were considerably smaller those for bulk crystalline Ge. Similar trends are reported in the literature for other semiconductor NC systems. They suggest that the increased surface to volume ratio of nanocrystals and the presence of the surrounding SiO2 matrix might be responsible for the different vibrational properties of the nanocrystal phase.

  15. A Chemical Approach to 3-D Lithographic Patterning of Si and GeNanocrystals

    SciTech Connect

    Sharp, I.D.; Xu, Q.; Yi, D.O.; Liao, C.Y.; Ager III, J.W.; Beeman, J.W.; Yu, K.M.; Robinson, J.T.; Dubon, O.D.; Chrzan, D.C.; Haller, E.E.

    2005-12-12

    Ion implantation into silica followed by thermal annealingis an established growth method for Si and Ge nanocrystals. Wedemonstrate that growth of Group IV semiconductor nanocrystals can besuppressed by co-implantation of oxygen prior to annealing. For Sinanocrystals, at low Si/O dose ratios, oxygen co-implantation leads to areduction of the average nanocrystal size and a blue-shift of thephotoluminescence emission energy. For both Si and Ge nanocrystals, atlarger Si/O or Ge/O dose ratios, the implanted specie is oxidized andnanocrystals do not form. This chemical deactivation was utilized toachieve patterned growth of Si and Ge nanocrystals. Si was implanted intoa thin SiO2 film on a Si substrate followed by oxygen implantationthrough an electron beam lithographically defined stencil mask. Thermalannealing of the co-implanted structure yields two-dimensionallypatterned growth of Si nanocrystals under the masked regions. We applieda previously developed process to obtain exposed nanocrystals byselective HF etching of the silica matrix to these patterned structures.Atomic force microscopy (AFM) of etched structures revealed that exposednanocrystals are not laterally displaced from their original positionsduring the etching process. Therefore, this process provides a means ofachieving patterned structures of exposed nanocrystals. The possibilitiesfor scaling this chemical-based lithography process to smaller featuresand for extending it to 3-D patterning is discussed.

  16. A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells

    NASA Astrophysics Data System (ADS)

    Bozyigit, Deniz; Lin, Weyde M. M.; Yazdani, Nuri; Yarema, Olesya; Wood, Vanessa

    2015-01-01

    Improving devices incorporating solution-processed nanocrystal-based semiconductors requires a better understanding of charge transport in these complex, inorganic-organic materials. Here we perform a systematic study on PbS nanocrystal-based diodes using temperature-dependent current-voltage characterization and thermal admittance spectroscopy to develop a model for charge transport that is applicable to different nanocrystal-solids and device architectures. Our analysis confirms that charge transport occurs in states that derive from the quantum-confined electronic levels of the individual nanocrystals and is governed by diffusion-controlled trap-assisted recombination. The current is limited not by the Schottky effect, but by Fermi-level pinning because of trap states that is independent of the electrode-nanocrystal interface. Our model successfully explains the non-trivial trends in charge transport as a function of nanocrystal size and the origins of the trade-offs facing the optimization of nanocrystal-based solar cells. We use the insights from our charge transport model to formulate design guidelines for engineering higher-performance nanocrystal-based devices.

  17. A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells

    PubMed Central

    Bozyigit, Deniz; Lin, Weyde M. M.; Yazdani, Nuri; Yarema, Olesya; Wood, Vanessa

    2015-01-01

    Improving devices incorporating solution-processed nanocrystal-based semiconductors requires a better understanding of charge transport in these complex, inorganic–organic materials. Here we perform a systematic study on PbS nanocrystal-based diodes using temperature-dependent current–voltage characterization and thermal admittance spectroscopy to develop a model for charge transport that is applicable to different nanocrystal-solids and device architectures. Our analysis confirms that charge transport occurs in states that derive from the quantum-confined electronic levels of the individual nanocrystals and is governed by diffusion-controlled trap-assisted recombination. The current is limited not by the Schottky effect, but by Fermi-level pinning because of trap states that is independent of the electrode–nanocrystal interface. Our model successfully explains the non-trivial trends in charge transport as a function of nanocrystal size and the origins of the trade-offs facing the optimization of nanocrystal-based solar cells. We use the insights from our charge transport model to formulate design guidelines for engineering higher-performance nanocrystal-based devices. PMID:25625647

  18. Nanocrystal Solar Cells

    SciTech Connect

    Gur, Ilan

    2006-12-15

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  19. Femtosecond chirp-free studies of energy relaxation in semiconductor quantum dots: Search for a phonon bottleneck

    SciTech Connect

    Klimov, V.; McBranch, D.

    1997-08-01

    Contrary to the predictions of phonon bottleneck theories, we observe very fast subpicosecond energy relaxation in strongly confined semiconductor nanocrystals with electron level spacing as large as 20 LO phonon energies.

  20. Radial pressure measurement in core/shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Ithurria, Sandrine; Guyot-Sionnest, Philippe; Mahler, Benoît; Dubertret, Benoît

    2009-02-01

    Quantum dots are nanometre-sized semiconductor particles exhibiting unique size-dependent electronic properties. In order to passivate the nanocrystals surface and to protect them from oxidation, we grow a shell composed of a second semiconductor with a larger bandgap on the core (for example a core / shell CdS / ZnS). However, the lattice mismatch between the two materials (typically 7% between ZnS and CdS) induces mechanical stress which can lead to dislocations. To better understand these mechanisms, it is important to be able to measure the pressure induced on the semiconductor core. We used a nanocrystal doped with manganese ions Mn2+, which provide a phosphorescence signal depending on the local pressure. A few dopant atoms per nanoparticle were placed at controlled radial positions in a ZnS shell formed layer by layer. The experimental pressure measurements are in very good agreement with a simple spherically symmetric elastic continuum model[1]. Using manganese as a pressure gauge could be used to better understand some structural phenomena observed in these nanocrystals, such as crystalline phases transition, or shell cracking.

  1. Designer Nanocrystal Materials for Photovoltaics

    NASA Astrophysics Data System (ADS)

    Kagan, Cherie

    Advances in synthetic methods allow a wide range of semiconductor nanocrystals (NCs) to be tailored in size and shape and to be used as building blocks in the design of NC solids. However, the long, insulating ligands commonly employed in the synthesis of colloidal NCs inhibit strong interparticle coupling and charge transport once NCs are assembled into the solids state as NC arrays. We will describe the range of short, compact ligand chemistries we employ to exchange the long, insulating ligands used in synthesis and to increase interparticle coupling. These ligand exchange processes can have a dramatic influence on NC surface chemistry as well as NC organization in the solids, showing examples of short-range order. Synergistically, we use 1) thermal evaporation and diffusion and 2) wet-chemical methods to introduce extrinsic impurities and non-stoichiometry to passivate surface traps and dope NC solids. NC coupling and doping provide control over the density of states and the carrier type, concentration, mobility, and lifetime, which we characterize by a range of electronic and spectroscopic techniques. We will describe the importance of engineering device interfaces to design NC materials for solar photovoltaics.

  2. Germanium Nanocrystal Solar Cells

    NASA Astrophysics Data System (ADS)

    Holman, Zachary Charles

    Greenhouse gas concentrations in the atmosphere are approaching historically unprecedented levels from burning fossil fuels to meet the ever-increasing world energy demand. A rapid transition to clean energy sources is necessary to avoid the potentially catastrophic consequences of global warming. The sun provides more than enough energy to power the world, and solar cells that convert sunlight to electricity are commercially available. However, the high cost and low efficiency of current solar cells prevent their widespread implementation, and grid parity is not anticipated to be reached for at least 15 years without breakthrough technologies. Semiconductor nanocrystals (NCs) show promise for cheap multi-junction photovoltaic devices. To compete with photovoltaic materials that are currently commercially available, NCs need to be inexpensively cast into dense thin films with bulk-like electrical mobilities and absorption spectra that can be tuned by altering the NC size. The Group II-VI and IV-VI NC communities have had some success in achieving this goal by drying and then chemically treating colloidal particles, but the more abundant and less toxic Group IV NCs have proven more challenging. This thesis reports thin films of plasma-synthesized Ge NCs deposited using three different techniques, and preliminary solar cells based on these films. Germanium tetrachloride is dissociated in the presence of hydrogen in a nonthermal plasma to nucleate Ge NCs. Transmission electron microscopy and X-ray diffraction indicate that the particles are nearly monodisperse (standard deviations of 10-15% the mean particle diameter) and the mean diameter can be tuned from 4-15 nm by changing the residence time of the Ge NCs in the plasma. In the first deposition scheme, a Ge NC colloid is formed by reacting nanocrystalline powder with 1-dodecene and dispersing the functionalized NCs in a solvent. Films are then formed on substrates by drop-casting the colloid and allowing it to dry

  3. Synthesis of nanocrystals and nanocrystal self-assembly

    NASA Astrophysics Data System (ADS)

    Chen, Zhuoying

    nanocrystals is presented. Different surfactants of amines, carboxylic acids, and alcohols were used to study the effect of size and morphological control over the nanocrystals. Techniques including X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and high-resolution electron microscopy are used to examine crystallinity and morphology. Chapter 3. By investigating the self-assembly of cadmium selenide-gold (CdSe-Au) nanoparticle mixtures by transmission electron microscopy after solvent evaporation, the effect of solvents in the formation process of CdSe-Au binary nanoparticle superlattices (BNSLs) was studied. 1-dodecanethiol was found to be critical in generating conditions necessary for superlattice formation, prior to the other factors that likely determine structure, highlighting the dual role of this organic polar molecule as both ligand and high boiling point/crystallization solvent. The influence of thiol was investigated under various concentrations (and also compared with other less polar solvents) in order to determine optimized conditions for self-assembly, for which relatively large (> 1 mum2) areas of superlattices could be routinely formed. Depending on appropriate selection of the radius ratio, AuCu or CaCu 5 binary superlattices of CdSe-Au nanoparticles were generated. Chapter 4. The preparation of binary nanoparticle superlattices obtained by self-assembly of two different semiconductor quantum dots is presented. Such a system is a means to include two discretized, quantum-confined, and complimentary semiconductor units in close proximity, which might exhibit interesting charge transport properties for applications such as solar cells. From a range of possible structures predicted, we observe an exclusive preference for the formation of Cuboctahedral AB13 (Cuboctahedral modification of NaZn13) and AB5 (isostructural with CaCu5) structures in the system of 8.1 nm CdTe and 4.4 nm CdSe nanoparticles. To understand further

  4. Polytypic Nanocrystals of Cu-Based Ternary Chalcogenides: Colloidal Synthesis and Photoelectrochemical Properties.

    PubMed

    Wu, Liang; Chen, Shi-You; Fan, Feng-Jia; Zhuang, Tao-Tao; Dai, Chen-Min; Yu, Shu-Hong

    2016-05-01

    Heterocrystalline polytype nanostructured semiconductors have been attracting more and more attention in recent years due to their novel structures and special interfaces. Up to now, controlled polytypic nanostructures are mostly realized in II-VI and III-V semiconductors. Herein, we report the synthesis and photoelectrochemical properties of Cu-based ternary I-III-VI2 chalcogenide polytypic nanocrystals, with a focus on polytypic CuInS2 (CIS), CuInSe2 (CISe), and CuIn(S0.5Se0.5)2 alloy nanocrystals. Each obtained polytypic nanocrystal is constructed with a wurtzite hexagonal column and a zinc blende/chalcopyrite cusp, regardless of the S/Se ratio. The growth mechanisms of polytypic CIS and CISe nanocrystals have been studied by time-dependent experiments. The polytypic nanocrystals are solution-deposited on indium-tin oxide glass substrate and used as a photoelectrode, thus showing stable photoelectrochemical activity in aqueous solution. Density functional theory calculation was used to study the electronic structure and the band gap alignment. This versatile synthetic method provides a new route for synthesis of novel polytypic nanostructured semiconductors with unique properties. PMID:27063512

  5. Bridging the Gap: Electron Relay and Plasmonic Sensitization of Metal Nanocrystals for Metal Clusters.

    PubMed

    Xiao, Fang-Xing; Zeng, Zhiping; Liu, Bin

    2015-08-26

    In recent years, enormous attention has been paid to the construction of metal cluster-semiconductor nanocomposites because of the fascinating and unique properties of metal clusters; however, investigations on photoelectrochemical (PEC) and photocatalytic properties of metal cluster-semiconductor systems are still rare. Moreover, to date, intrinsic correlation between metal clusters and bulk metal nanocrystals has yet to be elucidated. In this work, a facile layer-by-layer (LbL) self-assembly strategy has been developed to judiciously and intimately integrate gold nanocrystals (Au) within the interface between gold clusters (Au(x)) and hierarchically ordered TiO2 nanotube arrays framework, by which imperative roles of Au nanocrystals as electron relay mediator and plasmonic sensitizer for Aux clusters were revealed. In addition, it was found that synergistic interaction between Au nanocrystals and Aux clusters contributed to promising visible-light-driven photocatalytical and PEC performances. It is anticipated that our work could provide a general way for rationally constructing metal and metal clusters codecorated semiconductor heterostructures and, more significantly, bridge the gap between metal clusters and metal nanocrystals for a diverse range of applications. PMID:26258281

  6. Simple Preparation and Stabilization of Nickel Nanocrystals on Cellulose Nanocrystal

    SciTech Connect

    Shin, Yongsoon; Bae, In-Tae; Arey, Bruce W.; Exarhos, Gregory J.

    2007-06-01

    Nickel nanocrystals were simply prepared on the carbon through a thermal reduction process at 400-500oC under N2 after Ni(II) ions were deposited and stabilized on cellulose nanocrystal (CNXL) surface. Hydroxyl groups on the CNXL anchor and stabilize Ni(II) ions. Well-dispersed Ni nanocrystals on the carbonized CNXL were about 5-12 nm in size. XRD, FESEM, and TEM were employed to characterize the products.

  7. Germanium and Silicon Nanocrystal Thin-Film Field-Effect Transistors from Solution

    SciTech Connect

    Holman, Zachary C.; Liu, Chin-Yi; Kortshagen, Uwe R.

    2010-07-09

    Germanium and silicon have lagged behind more popular II-VI and IV-VI semiconductor materials in the emerging field of semiconductor nanocrystal thin film devices. We report germanium and silicon nanocrystal field-effect transistors fabricated by synthesizing nanocrystals in a plasma, transferring them into solution, and casting thin films. Germanium devices show n-type, ambipolar, or p-type behavior depending on annealing temperature with electron and hole mobilities as large as 0.02 and 0.006 cm2 V-1 s-1, respectively. Silicon devices exhibit n-type behavior without any postdeposition treatment, but are plagued by poor film morphology.

  8. Electronic structure study of wide band gap magnetic semiconductor (La0.6Pr0.4)0.65Ca0.35MnO3 nanocrystals in paramagnetic and ferromagnetic phases

    NASA Astrophysics Data System (ADS)

    Dwivedi, G. D.; Joshi, Amish G.; Kumar, Shiv; Chou, H.; Yang, K. S.; Jhong, D. J.; Chan, W. L.; Ghosh, A. K.; Chatterjee, Sandip

    2016-04-01

    X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La0.6Pr0.4)0.65Ca0.35MnO3 near Fermi-level. XMCD results indicate that Mn3+ and Mn4+ spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La0.6Pr0.4)0.65Ca0.35MnO3 system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below TC. The valence band UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.

  9. Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin.

    PubMed

    Leach, Alice D P; Macdonald, Janet E

    2016-02-01

    The capacity of fluorescent colloidal semiconductor nanocrystals for commercial application has led to the development of nanocrystals with nontoxic constituent elements as replacements for the currently available Cd- and Pb-containing systems. CuInS2 is a good candidate material because of its direct band gap in the near-infrared spectral region and large optical absorption coefficient. The ternary nature, flexible stoichiometry, and different crystal structures of CuInS2 lead to a range of optoelectronic properties, which have been challenging to elucidate. In this Perspective, the optoelectronic properties of CuInS2 nanocrystals are described and what is known of their origin is discussed. We begin with an overview of their synthesis, structure, and mechanism of formation. A complete discussion of the tunable luminescence properties and the radiative decay mechanism of this system is then presented. Finally, progress toward application of these "green" nanocrystals is summarized. PMID:26758860

  10. Direct printing of microstructures by femtosecond laser excitation of nanocrystals in solution

    NASA Astrophysics Data System (ADS)

    Shou, Wan; Pan, Heng

    2016-05-01

    We report direct printing of micro/sub-micron structures by femtosecond laser excitation of semiconductor nanocrystals (NCs) in solution. Laser excitation with moderate intensity (1011-1012 W/cm2) induces 2D and 3D deposition of CdTe nanocrystals in aqueous solution, which can be applied for direct printing of microstructures. It is believed that laser irradiation induces charge formation on nanocrystals leading to deposition. Furthermore, it is demonstrated that the charged nanocrystals can respond to external electrical bias, enabling a printing approach based on selective laser induced electrophoretic deposition. Finally, energy dispersive X-ray analysis of deposited structures shows oxidation occurs and deposited structure mainly consists of CdxO.

  11. Nickel and nickel oxide nanocrystals selectively grafting on multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Prabhu, Yendrapati Taraka; Rao, Kalagadda Venkateswara; Kumari, Bandla Siva; Sai, Vemula Sesha; Pavani, Tambur

    2015-01-01

    Nickel and nickel oxide nanocrystals in their pure phase are carefully embellished by a facial method on oxygen-functionalized multi-walled carbon nanotubes (O-MWCNTs) using nickel nitrate (NN) was effectively accomplished for the first time by calcining them in hydrogen, nitrogen and air, respectively, at suitable temperatures. Nickel and nickel oxide nanocrystals impregnated O-MWCNTs were examined for its structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and field emission scanning electron microscopy. The nanocrystals on the O-MWCNTs were determined of 15-20 nm size. Decorated nanocrystals on CNT's have potential applications in semiconductor industries.

  12. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    NASA Astrophysics Data System (ADS)

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.

    2016-05-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core-shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core-shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals.

  13. Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals

    NASA Astrophysics Data System (ADS)

    Bruns, Oliver T.; Ittrich, Harald; Peldschus, Kersten; Kaul, Michael G.; Tromsdorf, Ulrich I.; Lauterwasser, Joachim; Nikolic, Marija S.; Mollwitz, Birgit; Merkel, Martin; Bigall, Nadja C.; Sapra, Sameer; Reimer, Rudolph; Hohenberg, Heinz; Weller, Horst; Eychmüller, Alexander; Adam, Gerhard; Beisiegel, Ulrike; Heeren, Joerg

    2009-03-01

    Semiconductor quantum dots and superparamagnetic iron oxide nanocrystals have physical properties that are well suited for biomedical imaging. Previously, we have shown that iron oxide nanocrystals embedded within the lipid core of micelles show optimized characteristics for quantitative imaging. Here, we embed quantum dots and superparamagnetic iron oxide nanocrystals in the core of lipoproteins-micelles that transport lipids and other hydrophobic substances in the blood-and show that it is possible to image and quantify the kinetics of lipoprotein metabolism in vivo using fluorescence and dynamic magnetic resonance imaging. The lipoproteins were taken up by liver cells in wild-type mice and displayed defective clearance in knock-out mice lacking a lipoprotein receptor or its ligand, indicating that the nanocrystals did not influence the specificity of the metabolic process. Using this strategy it is possible to study the clearance of lipoproteins in metabolic disorders and to improve the contrast in clinical imaging.

  14. Symmetry-controlled colloidal nanocrystals: nonhydrolytic chemical synthesis and shape determining parameters.

    PubMed

    Jun, Young-wook; Lee, Jae-Hyun; Choi, Jin-sil; Cheon, Jinwoo

    2005-08-11

    Since inorganic nanocrystals exhibit unique shape-dependent nanoscale properties and can be utilized as basic building blocks for futuristic nanodevices, a systematic study on the shape control of these nanocrystals remains an important subject in materials and physical chemistry. In this feature article, we overview the recent progress on the synthetic development of symmetry-controlled colloidal nanocrystals of semiconductor and metal oxide, which are prepared through nonhydrolytic chemical routes. We describe their shape-guiding processes and illustrate the detailed key factors controlling their growth by examining various case studies of zero-dimensional spheres and cubes, one-dimensional rods, and quasi multidimensional structures such as disks, multipods, and stars. Specifically, the crystalline phase of nucleating seeds, surface energy, kinetic vs thermodynamic growth, and selective adhesion processes of capping ligands are found to be most crucial for the determination of the nanocrystal shape. PMID:16852873

  15. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  16. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  17. Multiple Exciton Generation in Colloidal Silicon Nanocrystals

    SciTech Connect

    Beard, M. C.; Knutsen, K. P.; Yu, P.; Luther, J. M.; Song, Q.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. M.

    2007-01-01

    Multiple exciton generation (MEG) is a process whereby multiple electron-hole pairs, or excitons, are produced upon absorption of a single photon in semiconductor nanocrystals (NCs) and represents a promising route to increased solar conversion efficiencies in single-junction photovoltaic cells. We report for the first time MEG yields in colloidal Si NCs using ultrafast transient absorption spectroscopy. We find the threshold photon energy for MEG in 9.5 nm diameter Si NCs (effective band gap {identical_to} Eg = 1.20 eV) to be 2.4 {+-} 0.1E{sub g} and find an exciton-production quantum yield of 2.6 {+-} 0.2 excitons per absorbed photon at 3.4E{sub g}. While MEG has been previously reported in direct-gap semiconductor NCs of PbSe, PbS, PbTe, CdSe, and InAs, this represents the first report of MEG within indirect-gap semiconductor NCs. Furthermore, MEG is found in relatively large Si NCs (diameter equal to about twice the Bohr radius) such that the confinement energy is not large enough to produce a large blue-shift of the band gap (only 80 meV), but the Coulomb interaction is sufficiently enhanced to produce efficient MEG. Our findings are of particular importance because Si dominates the photovoltaic solar cell industry, presents no problems regarding abundance and accessibility within the Earth's crust, and poses no significant environmental problems regarding toxicity.

  18. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals

    SciTech Connect

    Caldwell, Andrew H.; Ha, Don-Hyung; Robinson, Richard D.; Ding, Xiaoyue

    2014-10-28

    Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu{sub 1.81}S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tuned from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ∼8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.

  19. Voids and Mn-rich inclusions in a (Ga,Mn)As ferromagnetic semiconductor investigated by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Kovács, A.; Sadowski, J.; Kasama, T.; Domagała, J.; Mathieu, R.; Dietl, T.; Dunin-Borkowski, R. E.

    2011-04-01

    Voids adjacent to cubic (ZnS-type) and hexagonal (NiAs-type) Mn-rich nanocrystals are characterized using aberration-corrected transmission electron microscopy in an annealed Ga0.995Mn0.005As magnetic semiconductor specimen grown by molecular beam epitaxy. Nanobeam electron diffraction measurements suggest that the nanocrystals exhibit deviations in lattice parameter as compared to bulk MnAs. After annealing at 903 K, the magnetic transition temperature of the specimen is likely to be dominated by the presence of cubic ferromagnetic nanocrystals. In situ annealing inside the electron microscope is used to study the nucleation, coalescence, and grain growth of individual nanocrystals.

  20. Semiconductor processing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The primary thrust of the semiconductor processing is outlined. The purpose is to (1) advance the theoretical basis for bulk growth of elemental and compound semiconductors in single crystal form, and (2) to develop a new experimental approaches by which semiconductor matrices with significantly improved crystalline and chemical perfection can be obtained. The most advanced approaches to silicon crystal growth is studied. The projected research expansion, directed toward the capability of growth of 4 inch diameter silicon crystals was implemented. Both intra and interdepartmental programs are established in the areas of process metallurgy, heat transfer, mass transfer, and systems control. Solutal convection in melt growth systems is also studied.

  1. Research Update: Comparison of salt- and molecular-based iodine treatments of PbS nanocrystal solids for solar cells

    SciTech Connect

    Jähnig, Fabian; Bozyigit, Deniz; Yarema, Olesya; Wood, Vanessa

    2015-02-01

    Molecular- and salt-based chemical treatments are believed to passivate electronic trap states in nanocrystal-based semiconductors, which are considered promising for solar cells but suffer from high carrier recombination. Here, we compare the chemical, optical, and electronic properties of PbS nanocrystal-based solids treated with molecular iodine and tetrabutylammonium iodide. Surprisingly, both treatments increase—rather than decrease—the number density of trap states; however, the increase does not directly influence solar cell performance. We explain the origins of the observed impact on solar cell performance and the potential in using different chemical treatments to tune charge carrier dynamics in nanocrystal-solids.

  2. Quantum Confinement Regimes in CdTe Nanocrystals Probed by Single Dot Spectroscopy: From Strong Confinement to the Bulk Limit.

    PubMed

    Tilchin, Jenya; Rabouw, Freddy T; Isarov, Maya; Vaxenburg, Roman; Van Dijk-Moes, Relinde J A; Lifshitz, Efrat; Vanmaekelbergh, Daniel

    2015-08-25

    Sufficiently large semiconductor nanocrystals are a useful model system to characterize bulk-like excitons, with the electron and hole bound predominantly by Coulomb interaction. We present optical characterization of excitons in individual giant CdTe nanocrystals with diameters up to 25.5 nm at 4.2 K under varying excitation power and magnetic field strength. We determine values for the biexciton binding energy, diamagnetic shift constant, and Landé g-factor, which approach the bulk values with increasing nanocrystal size. PMID:26181051

  3. Cu-doped CdS and ZnS nanocrystals grown onto thiolated silica-gel

    NASA Astrophysics Data System (ADS)

    Andrade, George Ricardo Santana; Nascimento, Cristiane da Cunha; Xavier, Paulo Adriano; Costa, Silvanio Silverio Lopes; Costa, Luiz Pereira; Gimenez, Iara F.

    2014-11-01

    CdS and ZnS nanocrystals were grown over specific binding sites onto a thiolated silica-gel aiming to favor defect emission processes. This strategy was found to be effective in yielding ZnS nanocrystals with simultaneous blue and blue-green emissions owing to different types of defects. The effects of doping with copper ions have been observed on the photoluminescence properties. The intensity of defect-related emissions from both semiconductor nanocrystals increased with increasing dopant concentration from 0.25% to 1.5% copper, consistent with the presence of sulfur vacancies. Higher dopant concentrations lead to concentration quenching.

  4. New self-assembled nanocrystal micelles for biolabels and biosensors.

    SciTech Connect

    Tallant, David Robert; Wilson, Michael C. (University of New Mexico, Albuquerque, NM); Leve, Erik W. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Brinker, C. Jeffrey; Gabaldon, John (University of New Mexico, Albuquerque, NM); Scullin, Chessa (University of New Mexico, Albuquerque, NM)

    2005-12-01

    The ability of semiconductor nanocrystals (NCs) to display multiple (size-specific) colors simultaneously during a single, long term excitation holds great promise for their use in fluorescent bio-imaging. The main challenges of using nanocrystals as biolabels are achieving biocompatibility, low non-specific adsorption, and no aggregation. In addition, functional groups that can be used to further couple and conjugate with biospecies (proteins, DNAs, antibodies, etc.) are required. In this project, we invented a new route to the synthesis of water-soluble and biocompatible NCs. Our approach is to encapsulate as-synthesized, monosized, hydrophobic NCs within the hydrophobic cores of micelles composed of a mixture of surfactants and phospholipids containing head groups functionalized with polyethylene glycol (-PEG), -COOH, and NH{sub 2} groups. PEG provided biocompatibility and the other groups were used for further biofunctionalization. The resulting water-soluble metal and semiconductor NC-micelles preserve the optical properties of the original hydrophobic NCs. Semiconductor NCs emit the same color; they exhibit equal photoluminescence (PL) intensity under long-time laser irradiation (one week) ; and they exhibit the same PL lifetime (30-ns). The results from transmission electron microscopy and confocal fluorescent imaging indicate that water-soluble semiconductor NC-micelles are biocompatible and exhibit no aggregation in cells. We have extended the surfactant/lipid encapsulation techniques to synthesize water-soluble magnetic NC-micelles. Transmission electron microscopy results suggest that water-soluble magnetic NC-micelles exhibit no aggregation. The resulting NC-micelles preserve the magnetic properties of the original hydrophobic magnetic NCs. Viability studies conducted using yeast cells suggest that the magnetic nanocrystal-micelles are biocompatible. We have demonstrated, for the first time, that using external oscillating magnetic fields to manipulate

  5. Silicon nanocrystal-noble metal hybrid nanoparticles.

    PubMed

    Sugimoto, H; Fujii, M; Imakita, K

    2016-06-01

    We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion. PMID:27121127

  6. Suppression of auger recombination in ""giant"" core/shell nanocrystals

    SciTech Connect

    Garcia Santamaria, Florencio; Vela, Javier; Schaller, Richard D; Hollingsworth, Jennifer A; Klimov, Victor I; Chen, Yongfen

    2009-01-01

    Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency ('blinking') of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has been a longstanding goal in colloidal nanocrystal research. Here, we demonstrate that such suppression is possible using so-called 'giant' nanocrystals that consist of a small CdSe core and a thick CdS shell. These nanostructures exhibit a very long biexciton lifetime ({approx}10 ns) that is likely dominated by radiative decay instead of non-radiative Auger recombination. As a result of suppressed Auger recombination, even high-order multiexcitons exhibit high emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 me V) and record low excitation thresholds.

  7. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  8. Modulated Binary-Ternary Dual Semiconductor Heterostructures.

    PubMed

    Prusty, Gyanaranjan; Guria, Amit K; Mondal, Indranil; Dutta, Anirban; Pal, Ujjwal; Pradhan, Narayan

    2016-02-18

    A generic modular synthetic strategy for the fabrication of a series of binary-ternary group II-VI and group I-III-VI coupled semiconductor nano-heterostructures is reported. Using Ag2 Se nanocrystals first as a catalyst and then as sacrificial seeds, four dual semiconductor heterostructures were designed with similar shapes: CdSe-AgInSe2 , CdSe-AgGaSe2 , ZnSe-AgInSe2 , and ZnSe-AgGaSe2 . Among these, dispersive type-II heterostructures are further explored for photocatalytic hydrogen evolution from water and these are observed to be superior catalysts than the binary or ternary semi-conductors. Details of the chemistry of this modular synthesis have been studied and the photophysical processes involved in catalysis are investigated. PMID:26800297

  9. Method of synthesizing pyrite nanocrystals

    DOEpatents

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  10. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  11. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  12. Tuning Equilibrium Compositions in Colloidal Cd1-xMnxSe Nanocrystals Using Diffusion Doping and Cation Exchange.

    PubMed

    Barrows, Charles J; Chakraborty, Pradip; Kornowske, Lindsey M; Gamelin, Daniel R

    2016-01-26

    The physical properties of semiconductor nanocrystals can be tuned dramatically via composition control. Here, we report a detailed investigation of the synthesis of high-quality colloidal Cd1-xMnxSe nanocrystals by diffusion doping of preformed CdSe nanocrystals. Until recently, Cd1-xMnxSe nanocrystals proved elusive because of kinetic incompatibilities between Mn(2+) and Cd(2+) chemistries. Diffusion doping allows Cd1-xMnxSe nanocrystals to be prepared under thermodynamic rather than kinetic control, allowing access to broader composition ranges. We now investigate this chemistry as a model system for understanding the characteristics of nanocrystal diffusion doping more deeply. From the present work, a Se(2-)-limited reaction regime is identified, in which Mn(2+) diffusion into CdSe nanocrystals is gated by added Se(2-), and equilibrium compositions are proportional to the amount of added Se(2-). At large added Se(2-) concentrations, a solubility-limited regime is also identified, in which x = xmax = ∼0.31, independent of the amount of added Se(2-). We further demonstrate that Mn(2+) in-diffusion can be reversed by cation exchange with Cd(2+) under exactly the same reaction conditions, purifying Cd1-xMnxSe nanocrystals back to CdSe nanocrystals with fine tunability. These chemistries offer exceptional composition control in Cd1-xMnxSe NCs, providing opportunities for fundamental studies of impurity diffusion in nanocrystals and for development of compositionally tuned nanocrystals with diverse applications ranging from solar energy conversion to spin-based photonics. PMID:26643033

  13. Spin coherence generation and detection in spherical nanocrystals

    NASA Astrophysics Data System (ADS)

    Smirnov, D. S.; Glazov, M. M.

    2012-08-01

    A theoretical description of electron spin orientation and detection by short optical pulses is proposed for ensembles of singly charged semiconductor nanocrystals. The complex structure of the valence band in spherical nanocrystals is taken into account. We demonstrate that the direction of electron spin injected by the pump pulse depends on both the pump pulse helicity and the pump pulse power. It is shown that a train of optical pulses can lead to the complete orientation of the resident electron spin. The microscopic theory of the spin Faraday, Kerr and ellipticity effects is developed and the spectral sensitivity of these signals is discussed. We show that under periodic pumping pronounced mode-locking of electron spins takes place and manifests itself as significant spin signals at negative delays between pump and probe pulses.

  14. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties.

    PubMed

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities. PMID:27216552

  15. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  16. Mechanical Properties of Nanocrystal Supercrystals

    SciTech Connect

    Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena; Ogletree, D. Frank; Delplancke-Ogletree, Marie-Paule; Ashby, Paul D.

    2009-12-30

    Colloidal nanocrystals attract significant interest due to their potential applications in electronic, magnetic, and optical devices. Nanocrystal supercrystals (NCSCs) are particularly appealing for their well ordered structure and homogeneity. The interactions between organic ligands that passivate the inorganic nanocrystal cores critically influence their self-organization into supercrystals, By investigating the mechanical properties of supercrystals, we can directly characterize the particle-particle interactions in a well-defined geometry, and gain insight into both the self-assembly process and the potential applications of nanocrystal supercrystals. Here we report nanoindentation studies of well ordered lead-sulfide (Pbs) nanocrystal supercrystals. Their modulus and hardness were found to be similar to soft polymers at 1.7 GPa and 70 MPa respectively and the fractures toughness was 39 KPa/m1/2, revealing the extremely brittle nature of these materials.

  17. Germanium Nanocrystals Embedded in Sapphire

    SciTech Connect

    Xu, Q.; Sharp, I.D.; Liao, C.Y.; Yi, D.O.; Ager III, J.W.; Beeman, J.W.; Yu, K.M.; Chrzan, D.C.; Haller, E.E.

    2005-04-15

    {sup 74}Ge nanocrystals are formed in a sapphire matrix by ion implantation followed by damage. Embedded nanocrystals experience large compressive stress relative to bulk, as embedded in sapphire melt very close to the bulk melting point (Tm = 936 C) whereas experience considerably lower stresses. Also, in situ TEM reveals that nanocrystals ion-beam-synthesized nanocrystals embedded in silica are observed to be spherical and measured by Raman spectroscopy of the zone center optical phonon. In contrast, reveals that the nanocrystals are faceted and have a bi-modal size distribution. Notably, the matrix remains crystalline despite the large implantation dose and corresponding thermal annealing. Transmission electron microscopy (TEM) of as-grown samples those embedded in silica exhibit a significant melting point hysteresis around T{sub m}.

  18. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays.

    PubMed

    Lee, Jong-Soo; Kovalenko, Maksym V; Huang, Jing; Chung, Dae Sung; Talapin, Dmitri V

    2011-06-01

    Flexible, thin-film electronic and optoelectronic devices typically involve a trade-off between performance and fabrication cost. For example, solution-based deposition allows semiconductors to be patterned onto large-area substrates to make solar cells and displays, but the electron mobility in solution-deposited semiconductor layers is much lower than in semiconductors grown at high temperatures from the gas phase. Here, we report band-like electron transport in arrays of colloidal cadmium selenide nanocrystals capped with the molecular metal chalcogenide complex In(2)Se(4)(2-), and measure electron mobilities as high as 16 cm(2) V(-1) s(-1), which is about an order of magnitude higher than in the best solution-processed organic and nanocrystal devices so far. We also use CdSe/CdS core-shell nanoparticles with In(2)Se(4)(2-) ligands to build photodetectors with normalized detectivity D* > 1 × 10(13) Jones (I Jones = 1 cm Hz(1/2) W(-1)), which is a record for II-VI nanocrystals. Our approach does not require high processing temperatures, and can be extended to different nanocrystals and inorganic surface ligands. PMID:21516091

  19. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; Zhao, Lei; Han, Wei; Xin, Xukai; Lin, Zhiqun

    2013-06-01

    Colloidal nanocrystals exhibit a wide range of size- and shape-dependent properties and have found application in myriad fields, incuding optics, electronics, mechanics, drug delivery and catalysis, to name but a few. Synthetic protocols that enable the simple and convenient production of colloidal nanocrystals with controlled size, shape and composition are therefore of key general importance. Current strategies include organic solution-phase synthesis, thermolysis of organometallic precursors, sol-gel processes, hydrothermal reactions and biomimetic and dendrimer templating. Often, however, these procedures require stringent experimental conditions, are difficult to generalize, or necessitate tedious multistep reactions and purification. Recently, linear amphiphilic block co-polymer micelles have been used as templates to synthesize functional nanocrystals, but the thermodynamic instability of these micelles limits the scope of this approach. Here, we report a general strategy for crafting a large variety of functional nanocrystals with precisely controlled dimensions, compositions and architectures by using star-like block co-polymers as nanoreactors. This new class of co-polymers forms unimolecular micelles that are structurally stable, therefore overcoming the intrinsic instability of linear block co-polymer micelles. Our approach enables the facile synthesis of organic solvent- and water-soluble nearly monodisperse nanocrystals with desired composition and architecture, including core-shell and hollow nanostructures. We demonstrate the generality of our approach by describing, as examples, the synthesis of various sizes and architectures of metallic, ferroelectric, magnetic, semiconductor and luminescent colloidal nanocrystals.

  20. Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange

    PubMed Central

    2013-01-01

    For three types of colloidal magnetic nanocrystals, we demonstrate that postsynthetic cation exchange enables tuning of the nanocrystal’s magnetic properties and achieving characteristics not obtainable by conventional synthetic routes. While the cation exchange procedure, performed in solution phase approach, was restricted so far to chalcogenide based semiconductor nanocrystals, here ferrite-based nanocrystals were subjected to a Fe2+ to Co2+ cation exchange procedure. This allows tracing of the compositional modifications by systematic and detailed magnetic characterization. In homogeneous magnetite nanocrystals and in gold/magnetite core shell nanocrystals the cation exchange increases the coercivity field, the remanence magnetization, as well as the superparamagnetic blocking temperature. For core/shell nanoheterostructures a selective doping of either the shell or predominantly of the core with Co2+ is demonstrated. By applying the cation exchange to FeO/CoFe2O4 core/shell nanocrystals the Neél temperature of the core material is increased and exchange-bias effects are enhanced so that vertical shifts of the hysteresis loops are obtained which are superior to those in any other system. PMID:23362940

  1. Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics.

    PubMed

    Wang, Jun; Xin, Xukai; Lin, Zhiqun

    2011-08-01

    Semiconductor quantum dots exhibit great potential for applications in next generation high efficiency, low cost solar cells because of their unique optoelectronic properties. Cu(2)ZnSnS(4) (CZTS) nanocrystals and graphene quantum dots (GQDs) have recently received much attention as building blocks for use in solar energy conversion due to their outstanding properties and advantageous characteristics, including high optical absorptivity, tunable bandgap, and earth abundant chemical composition. In this Feature Article, recent advances in the synthesis and utilization of CZTS nanocrystals and colloidal GQDs for photovoltaics are highlighted, followed by an outlook on the future research efforts in these areas. PMID:21713274

  2. Self-aligned epitaxial metal-semiconductor hybrid nanostructures for plasmonics

    SciTech Connect

    Urbanczyk, Adam; Otten, Frank W. M. van; Noetzel, Richard

    2011-06-13

    We demonstrate self-alignment of epitaxial Ag nanocrystals on top of low-density near-surface InAs quantum dots (QDs) grown by molecular beam epitaxy. The Ag nanocrystals support a surface plasmon resonance that can be tuned to the emission wavelength of the QDs. Photoluminescence measurements of such hybrid metal-semiconductor nanostructures reveal large enhancement of the emission intensity. Our concept of epitaxial self-alignment enables the integration of plasmonic functionality with electronic and photonic semiconductor devices operating down to the single QD level.

  3. Optical properties of Si and Ge nanocrystals: Parameter-free calculations

    NASA Astrophysics Data System (ADS)

    Ramos, L. E.; Weissker, H.-Ch.; Furthmüller, J.; Bechstedt, F.

    2005-12-01

    The cover picture of the current issue refers to the Edi-tor's Choice article of Ramos et al. [1]. The paper gives an overview of the electronic and optical properties of silicon and germanium nanocrystals determined by state-of-the-art ab initio methods. Nanocrystals have promising applications in opto-electronic devices, since they can be used to confine electrons and holes and facilitate radiative recombination. Since meas-urements for single nanoparticles are difficult to make, ab initio theoretical investigations become important to understand the mechanisms of luminescence.The cover picture shows nanocrystals of four sizes with tetrahedral coordination whose dangling bonds at the surface are passivated with hydrogen. As often observed in experiments, the nanocrystals are not perfectly spherical, but contain facets. Apart from the size of the nanocrystals, which determines the quantum confinement, the way their dangling bonds are passivated is relevant for their electronic and optical properties. For instance, the passivation with hydroxyls reduces the quantum confine-ment. On the other hand, the oxidation of the silicon nanocrys-tals increases the quantum confinement and reduces the effect of single surface terminations on the gap. Due to the oscillator strengths of the lowest-energy optical transitions, Ge nanocrys-tals are in principle more suitable for opto-electronic applica-tions than Si nanocrystals.The first author, Luis E. Ramos, is a postdoc at the Institute of Solid-State Physics and Optics (IFTO), Friedrich-Schiller University Jena, Germany. He investigates electronic and optical properties of semiconductor nanocrystallites and is a member of the European Network of Excellence NANO-QUANTA and of the European Theoretical Spectroscopy Facility (ETSF).

  4. Modifying growth of perylene diimide nanocrystals with poly(3-hexyl thiophene) as additives

    NASA Astrophysics Data System (ADS)

    Bu, Laju; Hayward, Ryan

    2014-03-01

    The shape, size, and crystallinity of organic semiconductors play vital roles in their applications in optoelectronics. Various methods to control crystallization of organic semiconductors, including thermal/solvent annealing, addition of poor solvents, and chemical structure modification, have been applied to improve the performance of organic photovoltaics. While soluble additives controlled crystallization are commonly found in biomineralization, pharmaceutics, and food science, they have rarely been applied to organic semiconductors. Here, we show that a p-type polymer, P3HT, serves as a soluble additive in crystallization of a n-type semiconductor, perylene diimide (PDI), by preferentially adsorbing on lateral crystal faces, which reduce lateral growth of PDI crystals relative to longitudinal growth, yielding extended 1-D nanofibers. Upon subsequent crystallization of P3HT, the PDI nanofibers serve as efficient nucleation sties, resulting in shish-kebab like p/n heterostuctures. Using ultrasound to enhance nucleation of PDI crystals, variations in P3HT molecular weight and concentration, and sonication temperature, allow PDI nanocrystal size and uniformity to be tuned. The uniform PDI nanocrystals can act as seeds to crystallize additional PDI to get segmented nanocrystals.

  5. Harvesting Solar Energy by Means of Charge-Separating Nanocrystals and Their Solids

    PubMed Central

    Diederich, Geoffrey; O'Connor, Timothy; Moroz, Pavel; Kinder, Erich; Kohn, Elena; Perera, Dimuthu; Lorek, Ryan; Lambright, Scott; Imboden, Martene; Zamkov, Mikhail

    2012-01-01

    Conjoining different semiconductor materials in a single nano-composite provides synthetic means for the development of novel optoelectronic materials offering a superior control over the spatial distribution of charge carriers across material interfaces. As this study demonstrates, a combination of donor-acceptor nanocrystal (NC) domains in a single nanoparticle can lead to the realization of efficient photocatalytic1-5 materials, while a layered assembly of donor- and acceptor-like nanocrystals films gives rise to photovoltaic materials. Initially the paper focuses on the synthesis of composite inorganic nanocrystals, comprising linearly stacked ZnSe, CdS, and Pt domains, which jointly promote photoinduced charge separation. These structures are used in aqueous solutions for the photocatalysis of water under solar radiation, resulting in the production of H2 gas. To enhance the photoinduced separation of charges, a nanorod morphology with a linear gradient originating from an intrinsic electric field is used5. The inter-domain energetics are then optimized to drive photogenerated electrons toward the Pt catalytic site while expelling the holes to the surface of ZnSe domains for sacrificial regeneration (via methanol). Here we show that the only efficient way to produce hydrogen is to use electron-donating ligands to passivate the surface states by tuning the energy level alignment at the semiconductor-ligand interface. Stable and efficient reduction of water is allowed by these ligands due to the fact that they fill vacancies in the valence band of the semiconductor domain, preventing energetic holes from degrading it. Specifically, we show that the energy of the hole is transferred to the ligand moiety, leaving the semiconductor domain functional. This enables us to return the entire nanocrystal-ligand system to a functional state, when the ligands are degraded, by simply adding fresh ligands to the system4. To promote a photovoltaic charge separation, we use a

  6. Hybrid bulk heterojunction solar cells based on low band gap polymers and CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Dayneko, Sergey; Tameev, Alexey; Tedoradze, Marine; Martynov, Igor; Linkov, Pavel; Samokhvalov, Pavel; Nabiev, Igor; Chistyakov, Alexander

    2014-03-01

    Solar energy converters based on organic semiconductors are inexpensive, can be layered onto flexible surfaces, and show great promise for photovoltaics. In bulk heterojunction polymer solar cells, charges are separated at the interface of two materials, an electron donor and an electron acceptor. Typically, only the donor effectively absorbs light. Therefore, the use of an acceptor with a wide absorption spectrum and high extinction coefficient and charge mobility should increase the efficiency of bulk heterojunction polymer solar cells. Semiconductor nanocrystals (quantum dots and rods) are good candidate acceptors for these solar cells. Recently, most progress in the development of bulk heterojunction polymer solar cells was achieved using PCBM, a traditional fullerene acceptor, and two low band gap polymers, poly[N- 9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and poly4,8-bis[(2- ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b] thiophenediyl (PTB7). Therefore, the possibility of combining these polymers with semiconductor nanocrystals deserves consideration. Here, we present the first comparison of solar cells based on PCDTBT and PTB7 where CdSe quantum dots serve as acceptors. We have found that PTB7-based cells are more efficient than PCDTBT-based ones. The efficiency also strongly depends on the nanocrystal size. An increase in the QD diameter from 5 to 10 nm causes a more than fourfold increase in the cell efficiency. This is determined by the relationship between the nanoparticle size and energy spectrum, its pattern clearly demonstrating how the mutual positions of the donor and acceptor levels affect the solar cell efficiency. These results will help to develop novel, improved nanohybrid components of solar cells based on organic semiconductors and semiconductor nanocrystals.

  7. Phosphate-free synthesis, optical absorption and photoelectric properties of Cu2ZnGeS4 and Cu2ZnGeSe4 uniform nanocrystals.

    PubMed

    Shi, Liang; Yin, Peiqun

    2013-10-01

    Copper-based quaternary chalcogenide semiconductor Cu2ZnGeS4 and Cu2ZnGeSe4 nanocrystals have been synthesized successfully via a simple and convenient one-pot phosphine-free solution approach. Oleylamine was used as both the solvent and reductant for Se or S and benefited the formation of homogeneous quaternary nanocrystals. Scanning transmission electron microscopy-EDS elemental mapping confirms the uniform spatial distribution of four elements in nanocrystals. UV-Vis absorption spectra of Cu2ZnGeS4 and Cu2ZnGeSe4 nanocrystals show strong photon absorption in the entire visible range. The photoresponsive behavior indicates the potential application of Cu2ZnGeSe4 nanocrystals in solar energy conversion systems. PMID:23900582

  8. An ensemble-based method to assess the quality of a sample of nanocrystals as single photon emitters

    NASA Astrophysics Data System (ADS)

    Vezzoli, Stefano; Shojaii, Seyedruhollah; Cialdi, Simone; Cipriani, Daniele; Castelli, Fabrizio; Paris, Matteo G. A.; Carbone, Luigi; Davide Cozzoli, P.; Giacobino, Elisabeth; Bramati, Alberto

    2013-07-01

    Colloidal semiconductor nanocrystals are among the best candidates for realizing a nano-structured single photon source at room temperature. In this paper we present a new and efficient optical method to assess the quality of a sample of nanocrystals as single-photon emitters, by an ensemble measurement of photoluminescence. We relate the ensemble photoluminescence measurements to the photon statistics of single emitters by a simple theoretical model. As an example we compare two different kinds of CdSe/CdS dot-in-rods, showing a similar degree of single photon emission when observed on a selection of single nanocrystals. The results are compared with anti-bunching measurements realized on single nanocrystals of the two kinds.

  9. Nanocrystal solids: Order and progress

    NASA Astrophysics Data System (ADS)

    Delerue, Christophe

    2016-05-01

    Quantification of structural disorder and electron localization in superlattices of colloidal nanocrystals shows that minimizing variations in size and epitaxial connections is key to enhance the electronic properties of these materials.

  10. Early stage of nanocrystal growth

    SciTech Connect

    2012-01-01

    Berkeley Lab researchers at the Molecular Foundry have elucidated important mechanisms behind oriented attachment, the phenomenon that drives biomineralization and the growth of nanocrystals. This electron microscopy movie shows the early stage of nanocrystal growth. Nanoparticles make transient contact at many points and orientations until their lattices are perfectly matched. The particles then make a sudden jump-to-contact to form attached aggregates. (Movie courtesy of Jim DeYoreo)

  11. Nonradiative Auger recombination of biexcitons in CdSe/CdS core-shell nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Vaxenburg, Roman; Rodina, Anna; Lifshitz, Efrat; Efros, Alexander

    Semiconductor nanocrystals are known for their applicative potential as light-emitting components in lasers and LEDs, as well as light absorbers in solar cells. The performance of these nanocrystal-based devices, however, strongly depends on the dissipative nonradiative Auger recombination. The study of dynamics of the Auger processes is therefore of key importance in connection with the performance of nanocrystals devices. Here we report on a theoretical study of the Auger recombination dynamics of biexcitons in CdSe/CdS core-shell nanocrystals. Biexcitons can decay by the Auger process via negative or positive trion recombination channels. We study the dependence of the rate of each one of these channels on the angular momentum of the initial biexciton state, nanocrystal geometry, and temperature. We observe that the overall dependence of the rates of both channels is strongly oscillating with nanocrystal geometry, indicating large differences in the Auger rates in nanocrystals of similar size. We find that the rate of the negative trion channel is independent of the initial biexciton angular momentum and is generally slower than the rate of the positive trion channel, which, in contrast, is sensitive to the biexciton angular momentum. Further, we demonstrate that by variation of temperature the Auger rate can be varied across a wide range of values.

  12. Tailoring indium oxide nanocrystal synthesis conditions for air-stable high-performance solution-processed thin-film transistors.

    PubMed

    Swisher, Sarah L; Volkman, Steven K; Subramanian, Vivek

    2015-05-20

    Semiconducting metal oxides (ZnO, SnO2, In2O3, and combinations thereof) are a uniquely interesting family of materials because of their high carrier mobilities in the amorphous and generally disordered states, and solution-processed routes to these materials are of particular interest to the printed electronics community. Colloidal nanocrystal routes to these materials are particularly interesting, because nanocrystals may be formulated with tunable surface properties into stable inks, and printed to form devices in an additive manner. We report our investigation of an In2O3 nanocrystal synthesis for high-performance solution-deposited semiconductor layers for thin-film transistors (TFTs). We studied the effects of various synthesis parameters on the nanocrystals themselves, and how those changes ultimately impacted the performance of TFTs. Using a sintered film of solution-deposited In2O3 nanocrystals as the TFT channel material, we fabricated devices that exhibit field effect mobility of 10 cm(2)/(V s) and an on/off current ratio greater than 1 × 10(6). These results outperform previous air-stable nanocrystal TFTs, and demonstrate the suitability of colloidal nanocrystal inks for high-performance printed electronics. PMID:25915094

  13. The dependence of lead-salt nanocrystal properties on morphology and dielectric environment

    NASA Astrophysics Data System (ADS)

    Bartnik, Adam Christopher

    The IV-VI semiconductors, and specifically the lead-salts (PbS, PbSe, and PbTe), are a natural choice for nanocrystal science. In nanocrystals, because of their narrow band gap, small effective masses, and large dielectric constants, they offer a unique combination of both strong confinement and strong dielectric contrast with their environment. Studying how these two effects modify optical and electrical properties of nanocrystals will be the topic of this dissertation. We begin with a summary of the synthesis of high-quality PbS and PbSe nanocrystals. Special care is taken to explain the chemical procedures in detail to an audience not expected to have significant prior chemistry knowledge. The synthesized nanocrystals have bright and tunable emission that spans the edge of the visible to the near-IR spectrum (700--1800 nm), and they are capped with organic ligands making them easily adaptable to different substrates or hosts. This combination of high optical quality and flexible device engineering make them extremely desirable for application. Moving beyond single-material nanocrystals, we next explore nanocrystal heterostructures, specifically materials with a spherical core of one semiconductor and a shell of another. Core-shell structures are commonly used in nanocrystals as a method to separate the core material, where the electrons and holes are expected to stay, from interfering effects at the surface. This typically results in improvements in stability and fluorescence quantum efficiency. To that end, we develop a model to explain how confinement plays out across abrupt changes in material, focusing on the optical and electrical properties of recently synthesized PbSe/PbS core-shell quantum dots. We show that for typical sizes of these nanocrystals, a novel type of nanocrystal heterostructure is created, where electrons and holes extend uniformly across the abrupt material boundary, and the shell does not act as a protecting layer. For very large sizes

  14. (Plasmonic Metal Core)/(Semiconductor Shell) Nanostructures

    NASA Astrophysics Data System (ADS)

    Fang, Caihong

    Over the past several years, integration of metal nanocrystals that can support localized surface plasmon has been demonstrated as one of the most promising methods to the improvement of the light-harvesting efficiency of semiconductors. Ag and Au nanocrystals have been extensively hybridized with semiconductors by either deposition or anchoring. However, metal nanocrystals tend to aggregate, reshape, detach, or grow into large nanocrystals, leading to a loss of the unique properties seen in the original nanocrystals. Fortunately, core/shell nanostructures, circumventing the aforementioned problems, have been demonstrated to exhibit superior photoactivities. To further improve the light-harvesting applications of (plasmonic metal core)/(semiconductor shell) nanostructures, it is vital to understand the plasmonic and structural evolutions during the preparation processes, design novel hybrid nanostructures, and improve their light-harvesting performances. In this thesis, I therefore studied the plasmonic and structural evolutions during the formation of (Ag core)/(Ag2S shell) nanostructures. Moreover, I also prepared (noble metal core)/(TiO2 shell) nanostructures and investigated their plasmonic properties and photon-harvesting applications. Clear understanding of the sulfidation process can enable fine control of the plasmonic properties as well as the structural composition of Ag/Ag 2S nanomaterials. Therefore, I investigated the plasmonic and structural variations during the sulfidation process of Ag nanocubes both experimentally and numerically. The sulfidation reactions were carried out at both the ensemble and single-particle levels. Electrodynamic simulations were also employed to study the variations of the plasmonic properties and plasmon modes. Both experiment and simulation results revealed that sulfidation initiates at the vertices of Ag nanocubes. Ag nanocubes are then gradually truncated and each nanocube becomes a nanosphere eventually. The cubic

  15. Bunching and antibunching in the fluorescence of semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Messin, G.; Hermier, J. P.; Giacobino, E.; Desbiolles, P.; Dahan, M.

    2001-12-01

    The fluorescence of single-colloidal CdSe quantum dots is investigated at room temperature by means of the autocorrelation function over a time scale of almost 12 orders of magnitude. Over a short time scale, the autocorrelation function shows complete antibunching, indicating single-photon emission and atomiclike behavior. Over longer time scales (up to tens of seconds), we measure a bunching effect that is due to fluorescence intermittency and that cannot be described by fluctuations between two states with constant rates. The autocorrelation function also exhibits nonstationary behavior related to power-law distributions of ON and OFF times.

  16. Methods for synthesis of semiconductor nanocrystals and thermoelectric compositions

    DOEpatents

    Ren, Zhifeng; Chen, Gang; Poudel, Bed; Kumar, Shankar; Wang, Wenzhong; Dresselhaus, Mildred

    2007-08-14

    The present invention provides methods for synthesis of IV VI nanostructures, and thermoelectric compositions formed of such structures. In one aspect, the method includes forming a solution of a Group IV reagent, a Group VI reagent and a surfactant. A reducing agent can be added to the solution, and the resultant solution can be maintained at an elevated temperature, e.g., in a range of about 20.degree. C. to about 360.degree. C., for a duration sufficient for generating nanoparticles as binary alloys of the IV VI elements.

  17. Methods for synthesis of semiconductor nanocrystals and thermoelectric compositions

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor); Wang, Wenzhong (Inventor); Dresselhaus, Mildred (Inventor)

    2007-01-01

    The present invention provides methods for synthesis of IV VI nanostructures, and thermoelectric compositions formed of such structures. In one aspect, the method includes forming a solution of a Group IV reagent, a Group VI reagent and a surfactant. A reducing agent can be added to the solution, and the resultant solution can be maintained at an elevated temperature, e.g., in a range of about 20.degree. C. to about 360.degree. C., for a duration sufficient for generating nanoparticles as binary alloys of the IV VI elements.

  18. Synthesis and photocatalytic properties of multi-morphological AuCu3-ZnO hybrid nanocrystals

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Chen, Yuanzhi; Peng, Jian; Xie, Qingshui; Peng, Dong-Liang

    2015-10-01

    Noble metal-semiconductor hybrid nanocrystals represent an important class of materials for many potential applications, especially for photocatalysis. The utilization of transition metals to form alloys with noble metals can not only reduce the preparation costs, but may also offer tunable optical and catalytic properties for a broader range of applications. In this study, we report on the solution synthesis of AuCu3-ZnO hybrid nanocrystals with three interesting morphologies, including urchin-like, flower-like and multipod-like nanocrystals. In the synthetic strategy, Au-Cu bimetallic alloy seeds formed in situ are used to induce the heteroepitaxial growth of ZnO nanocrystals on the surface of bimetallic alloy cores; thus different types of morphologies can be achieved by controlling the reaction conditions. Through high-resolution transmission electron microscopy observations, well-defined interfaces between ZnO and AuCu3 are observed, which indicate that ZnO has a (0001) orientation and prefers to grow on AuCu3 {111} facets. The as-prepared hybrid nanocrystals demonstrate morphology- and composition-dependent surface plasmon resonance (SPR) absorption bands. In addition, much higher photocatalytic efficiency than pure ZnO nanocrystals is observed for the hybrid nanocrystals in the degradation of methylene blue. In particular, the multipod-like AuCu3-ZnO hybrid nanocrystals show the highest catalytic performance, as well as more than three times higher photocurrent density than the pure ZnO sample. The reported synthetic strategy provides a facile route to the effective combination of a plasmonic alloy with semiconductor components at the nanoscale in a controlled manner.

  19. Assemblies of Cellulose Nanocrystals

    NASA Astrophysics Data System (ADS)

    Kumacheva, Eugenia

    The entropically driven coassembly of nanorods (cellulose nanocrystals, CNCs) and different types of nanoparticles (NPs), including dye-labeled latex NPs, carbon dots and plasmonic NPs was experimentally studied in aqueous suspensions and in solid films. In mixed CNC-NP suspensions, phase separation into an isotropic NP-rich and a chiral nematic CNC-rich phase took place; the latter contained a significant amount of NPs. Drying the mixed suspension resulted in CNC-NP films with planar disordered layers of NPs, which alternated with chiral nematic CNC-rich regions. In addition, NPs were embedded in the chiral nematic domains. The stratified morphology of the films, together with a random distribution of NPs in the anisotropic phase, led to the films having close-to-uniform fluorescence, birefringence, and circular dichroism properties.

  20. Luminescent nanocrystal stress gauge

    PubMed Central

    Choi, Charina L.; Koski, Kristie J.; Olson, Andrew C. K.; Alivisatos, A. Paul

    2010-01-01

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe-CdS core-shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution. PMID:21098301

  1. Size dependence of negative trion Auger recombination in photodoped CdSe nanocrystals.

    PubMed

    Cohn, Alicia W; Rinehart, Jeffrey D; Schimpf, Alina M; Weaver, Amanda L; Gamelin, Daniel R

    2014-01-01

    We report a systematic investigation of the size dependence of negative trion (T(-)) Auger recombination rates in free-standing colloidal CdSe nanocrystals. Colloidal n-type CdSe nanocrystals of various radii have been prepared photochemically, and their trion decay dynamics have been measured using time-resolved photoluminescence spectroscopy. Trion Auger time constants spanning 3 orders of magnitude are observed, ranging from 57 ps (radius R = 1.4 nm) to 2.2 ns (R = 3.2 nm). The data reveal a substantially stronger size dependence than found for bi- or multiexciton Auger recombination in CdSe or other semiconductor nanocrystals, scaling in proportion to R(4.3). PMID:24328385

  2. Sulfur antisite-induced intrinsic high-temperature ferromagnetism in Ag2S:Y nanocrystals.

    PubMed

    Wang, Pan; Yang, Tianye; Zhao, Rui; Zhang, Mingzhe

    2016-04-21

    There is an urgent need for a complete understanding of intrinsic ferromagnetism, due to the necessity for application of ferromagnetic semiconductors. Here, further insight into the magnetic mechanism of sulfur antisite-induced intrinsic high-temperature ferromagnetism is investigated in Ag2S:Y nanocrystals. The gas-liquid phase chemical deposition method is adopted to obtain the monoclinic Ag2S:Y nanocrystals. The field and temperature-dependent magnetization measurements demonstrate the robust high-temperature ferromagnetism of Ag2S:Y nanocrystals. As revealed in the magnetic origin study from first-principles calculations, the intrinsic sulfur antisite defect is only responsible for the creation of a magnetic moment which mainly comes from the S 3p and Ag 4d orbitals. Such a mechanism, which is essentially different from those of dopants and other native defects, provides new insight into the origin of the magnetism. PMID:27009760

  3. Semiconductor Cubing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Through Goddard Space Flight Center and Jet Propulsion Laboratory Small Business Innovation Research contracts, Irvine Sensors developed a three-dimensional memory system for a spaceborne data recorder and other applications for NASA. From these contracts, the company created the Memory Short Stack product, a patented technology for stacking integrated circuits that offers higher processing speeds and levels of integration, and lower power requirements. The product is a three-dimensional semiconductor package in which dozens of integrated circuits are stacked upon each other to form a cube. The technology is being used in various computer and telecommunications applications.

  4. Silicon nanocrystal-noble metal hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Sugimoto, H.; Fujii, M.; Imakita, K.

    2016-05-01

    We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion.We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion. Electronic supplementary information (ESI) available: Additional TEM images and extinction spectra of Si-metal hybrid NPs are shown in Fig. S1

  5. Atomic-scale studies of hydrogenated semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Mayne, A. J.; Riedel, D.; Comtet, G.; Dujardin, G.

    The adsorption of hydrogen on semiconductors strongly modifies the electronic and chemical properties of the surfaces, whether on the surface or in the sub-surface region. This has been the starting point, in recent years, of many new areas of research and technology. This paper will discuss the properties, at the atomic scale, of hydrogenated semiconductor surfaces studied with scanning tunnelling microscopy (STM) and synchrotron radiation. Four semiconductor surfaces will be described - germanium(1 1 1), silicon(1 0 0), silicon carbide(1 0 0) and diamond(1 0 0). Each surface has its particularities in terms of the physical and electronic structure and in regard to the adsorption of hydrogen. The manipulation of hydrogen on these surfaces by electronic excitation using electrons from the STM tip will be discussed in detail highlighting the excitation mechanisms. The reactivity of these surfaces towards various molecules and semiconductor nanocrystals will be illustrated.

  6. Controlled Crystallinity and Fundamental Coupling Interactions in Nanocrystals

    NASA Astrophysics Data System (ADS)

    Ouyang, Min

    2009-03-01

    Metal and semiconductor nanocrystals show many unusual properties and functionalities, and can serve as model system to explore fundamental quantum and classical coupling interactions as well as building blocks of many practical applications. However, because of their small size, these nanoparticles typically exhibit different crystalline properties as compared with their bulk counterpart, and controlling crystallinity (and structural defects) within nanoparticles has posed significant technical challenges. In this talk, I will firstly apply silver metal nanoparticles as an example and present a novel chemical synthetic technique to achieve unprecedented crystallinity control at the nanoscale. This engineering of nanocrystallinity enables manipulation of intrinsic chemical functionalities, physical properties as well as nano-device performance [1]. For example, I will highlight that electron- phonon coupling constant can be significantly reduced by about four times and elastic modulus is increased ˜40% in perfect single crystalline silver nanoparticles as compared with those in disordered twinned nanoparticles. One important application of metal nanoparticles is nanoscale sensors. I will thus demonstrate that performance of nanoparticles based molecular sensing devices can be optimized with three times improvement of figure-of-merit if perfect single crystalline nanoparticles are applied. Lastly, I will present our related studies on semiconductor nanocrystals as well as their hybrid heterostructures. These discussions should offer important implications for our understanding of the fundamental properties at nanoscale and potential applications of metal nanoparticles. [4pt] [1] Yun Tang and Min Ouyang, Nature Materials, 6, 754, 2007.

  7. Room temperature d0 ferromagnetism in ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Proshchenko, Vitaly; Horoz, Sabit; Tang, Jinke; Dahnovsky, Yuri

    2016-06-01

    Room temperature ferromagnetic semiconductors have a great deal of advantage because of their easy integration into semiconductor devices. ZnS nanocrystals (NCs), bulk, and surfaces exhibit d0 ferromagnetism at room temperature. The experiments reveal that NC ferromagnetism takes place at low and room temperatures only due to Zn vacancies (S vacancies do not contribute). To understand the mechanism of d0 ferromagnetism, we introduce the surface-bulk model of a nanocrystal, which includes both surface and bulk magnetizations. The calculations demonstrate that the surface has the higher than bulk magnetization. We find the mechanism of the ferromagnetism is due to sulfur s- and p-electrons in a tetrahedral crystal field. The bulk magnetic moment increases with Zn vacancy concentration at small concentrations and then goes down at larger concentrations. A surface magnetic moment behaves differently with the concentration. It is always a monotonically rising function. We find that the total NC magnetic moment increases with the size and concentration of Zn vacancies (only low concentrations). We also study the magnetization per unit cell where we find that it decreases for the surface and increases for bulk magnetism with the NC size.

  8. Nanocrystal-polymer solar cells

    NASA Astrophysics Data System (ADS)

    Huynh, Wendy Uyen

    The ability to structure materials on a nanometer dimension enables the processes of solar energy conversion to be optimized at their most fundamental length scale. In semiconducting nanocrystals, optical absorption and electrical transport can be tailored by changing their radius and length, respectively. The unique features of quantum confinement and shape manipulation characteristic for inorganic nanocrystals can be utilized to fabricate solar cells with properties not observed in organic or conventional inorganic solar cells. Furthermore, their solution processibility provides fabrication advantages in the production of low cost, large area, and flexible solar cells. By blending organic conjugated polymers with CdSe nanocrystals efficient thin film solar cells have been constructed. Intimate contact for efficient charge transfer between the polymer and nanocrystal components of the blend was achieved by removing the organic ligands on the surface of the nanocrystal and by using solvent mixtures. Control of the nanocrystal length and therefore the distance on which electrons are transported directly through a thin film device enabled the creation of direct pathways for the transport of electrons. In addition, tuning the band gap by altering the nanocrystal radius as well as using alternate materials such as CdTe the overlap between the absorption spectrum of the cell and the solar emission spectrum could be optimized. A photovoltaic device consisting of 7nm by 60nm CdSe nanorods and the conjugated polymer poly-3(hexylthiophene) was assembled from solution with an external quantum efficiency of over 54% and a monochromatic power conversion efficiency of up to 7% under illumination at low light intensity. Under AM 1.5 Global solar conditions, we obtained a power conversion efficiency of 1.7%.

  9. Off-Resonance Photosensitization of a Photorefractive Polymer Composite Using PbS Nanocrystals

    SciTech Connect

    Moon, Jong-Sik; Liang, Yichen; Stevens, Tyler E.; Monson, Todd C.; Huber, Dale L.; Mahala, Benjamin D.; Winiarz, Jeffrey G.

    2015-05-26

    The photosensitization of photorefractive polymeric composites for operation at 633 nm is accomplished through the inclusion of narrow band gap semiconductor nanocrystals composed of PbS. Unlike previous studies involving photosensitization of photorefractive polymer composites with inorganic nanocrystals, we employ an off-resonance approach where the first excitonic transition associated with the PbS nanocrystals lies at ~1220 nm and not the wavelength of operation. Using this methodology, internal diffraction efficiencies exceeding 82%, two-beam-coupling gain coefficients of 211 cm–1, and response times of 34 ms have been observed, representing some of the best figures of merit reported for this class of materials. Furthermore, these data demonstrate the ability of semiconductor nanocrystals to compete effectively with traditional organic photosensitizers. In addition to superior performance, this approach also offers an inexpensive and easy means by which to photosensitize composite materials. Additionally, the photoconductive characteristics of the composites used for this study will also be considered.

  10. Off-Resonance Photosensitization of a Photorefractive Polymer Composite Using PbS Nanocrystals

    DOE PAGESBeta

    Moon, Jong-Sik; Liang, Yichen; Stevens, Tyler E.; Monson, Todd C.; Huber, Dale L.; Mahala, Benjamin D.; Winiarz, Jeffrey G.

    2015-05-26

    The photosensitization of photorefractive polymeric composites for operation at 633 nm is accomplished through the inclusion of narrow band gap semiconductor nanocrystals composed of PbS. Unlike previous studies involving photosensitization of photorefractive polymer composites with inorganic nanocrystals, we employ an off-resonance approach where the first excitonic transition associated with the PbS nanocrystals lies at ~1220 nm and not the wavelength of operation. Using this methodology, internal diffraction efficiencies exceeding 82%, two-beam-coupling gain coefficients of 211 cm–1, and response times of 34 ms have been observed, representing some of the best figures of merit reported for this class of materials. Furthermore,more » these data demonstrate the ability of semiconductor nanocrystals to compete effectively with traditional organic photosensitizers. In addition to superior performance, this approach also offers an inexpensive and easy means by which to photosensitize composite materials. Additionally, the photoconductive characteristics of the composites used for this study will also be considered.« less

  11. High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces.

    PubMed

    Panthani, Matthew G; Kurley, J Matthew; Crisp, Ryan W; Dietz, Travis C; Ezzyat, Taha; Luther, Joseph M; Talapin, Dmitri V

    2014-02-12

    Solution processing of photovoltaic semiconducting layers offers the potential for drastic cost reduction through improved materials utilization and high device throughput. One compelling solution-based processing strategy utilizes semiconductor layers produced by sintering nanocrystals into large-grain semiconductors at relatively low temperatures. Using n-ZnO/p-CdTe as a model system, we fabricate sintered CdTe nanocrystal solar cells processed at 350 °C with power conversion efficiencies (PCE) as high as 12.3%. JSC of over 25 mA cm(-2) are achieved, which are comparable or higher than those achieved using traditional, close-space sublimated CdTe. We find that the VOC can be substantially increased by applying forward bias for short periods of time. Capacitance measurements as well as intensity- and temperature-dependent analysis indicate that the increased VOC is likely due to relaxation of an energetic barrier at the ITO/CdTe interface. PMID:24364381

  12. Optical properties and ensemble characteristics of size purified Silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Miller, Joseph Bradley

    Nanotechnology is at the forefront of current scientific research and nanocrystals are being hailed as the 'artificial' atoms of the 21st century. Semiconducting silicon nanocrystals (SiNCs) are prime candidates for potential commercial applications because of silicon's already ubiquitous presence in the semiconductor industry, nontoxicity and abundance in nature. For realization of these potential applications, the properties and behavior of SiNCs need to be understood and enhanced. In this report, some of the main SiNC synthesis schemes are discussed, including those we are currently experimenting with to create our own SiNCs and the one utilized to create the SiNCs used in this study. The underlying physics that governs the unique behavior of SiNCs is then presented. The properties of the as-produced SiNCs are determined to depend strongly on surface passivation and environment. Size purification, an important aspect of nanomaterial utilization, was successfully performed on our SiNCs though density gradient ultracentrifugation. We demonstrate that the size-purified fractions exhibit an enhanced ability for colloidal self-assembly, with better aligned nanocrystal energy levels which promotes greater photostability in close-packed films and produces a slight increase in photoluminescence (PL) quantum yield. The qualities displayed by the fractions are exploited to form SiNC clusters that exhibit photostable PL. An analysis of SiNC cluster (from individual nanocrystals to collections of more than one thousand) blinking and PL shows an improvement in their PL emitting 'on' times. Pure SiNC films and SiNC-polymer nanocomposites are created and the dependence of their PL on temperature is measured. For such nanocomposites, the coupling between the 'coffee-ring' effect and liquid-liquid phase separation is also examined for ternary mixtures of solvent, polymer and semiconducting nanocrystal. We discover that with the right SiNC-polymer concentration and polymer

  13. Laser-induced growth of nanocrystals embedded in porous materials

    NASA Astrophysics Data System (ADS)

    Capoen, Bruno; Chahadih, Abdallah; El Hamzaoui, Hicham; Cristini, Odile; Bouazaoui, Mohamed

    2013-06-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  14. Laser-induced growth of nanocrystals embedded in porous materials

    PubMed Central

    2013-01-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  15. Characterization of Nanocrystal Size Distribution using Raman Spectroscopy with a Multi-particle Phonon Confinement Model.

    PubMed

    Doğan, İlker; van de Sanden, Mauritius C M

    2015-01-01

    Analysis of the size distribution of nanocrystals is a critical requirement for the processing and optimization of their size-dependent properties. The common techniques used for the size analysis are transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence spectroscopy (PL). These techniques, however, are not suitable for analyzing the nanocrystal size distribution in a fast, non-destructive and a reliable manner at the same time. Our aim in this work is to demonstrate that size distribution of semiconductor nanocrystals that are subject to size-dependent phonon confinement effects, can be quantitatively estimated in a non-destructive, fast and reliable manner using Raman spectroscopy. Moreover, mixed size distributions can be separately probed, and their respective volumetric ratios can be estimated using this technique. In order to analyze the size distribution, we have formulized an analytical expression of one-particle PCM and projected it onto a generic distribution function that will represent the size distribution of analyzed nanocrystal. As a model experiment, we have analyzed the size distribution of free-standing silicon nanocrystals (Si-NCs) with multi-modal size distributions. The estimated size distributions are in excellent agreement with TEM and PL results, revealing the reliability of our model. PMID:26327524

  16. Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals.

    PubMed

    Lounis, Sebastien D; Runnerstrom, Evan L; Bergerud, Amy; Nordlund, Dennis; Milliron, Delia J

    2014-05-14

    Doped metal oxide nanocrystals represent an exciting frontier for colloidal synthesis of plasmonic materials, displaying unique optoelectronic properties and showing promise for a variety of applications. However, fundamental questions about the nature of doping in these materials remain. In this article, the strong influence of radial dopant distribution on the optoelectronic properties of colloidal indium tin oxide nanocrystals is reported. Comparing elemental depth-profiling by X-ray photoelectron spectroscopy (XPS) with detailed modeling and simulation of the optical extinction of these nanocrystals using the Drude model for free electrons, a correlation between surface segregation of tin ions and the average activation of dopants is observed. A strong influence of surface segregation of tin on the line shape of the localized surface plasmon resonance (LSPR) is also reported. Samples with tin segregated near the surface show a symmetric line shape that suggests weak or no damping of the plasmon by ionized impurities. It is suggested that segregation of tin near the surface facilitates compensation of the dopant ions by electronic defects and oxygen interstitials, thus reducing activation. A core-shell model is proposed to explain the observed differences in line shape. These results demonstrate the nuanced role of dopant distribution in determining the optoelectronic properties of semiconductor nanocrystals and suggest that more detailed study of the distribution and structure of defects in plasmonic colloidal nanocrystals is warranted. PMID:24786283

  17. Influence of Dopant Distribution on the Plasmonic Properties of Indium Tin Oxide Nanocrystals

    SciTech Connect

    Lounis, SD; Runnerstrom, EL; Bergerud, A; Nordlund, D; Milliron, DJ

    2014-05-14

    Doped metal oxide nanocrystals represent an exciting frontier for colloidal synthesis of plasmonic materials, displaying unique optoelectronic properties and showing promise for a variety of applications. However, fundamental questions about the nature of doping in these materials remain. In this article, the strong influence of radial dopant distribution on the optoelectronic properties of colloidal indium tin oxide nanocrystals is reported. Comparing elemental depth-profiling by X-ray photoelectron spectroscopy (XPS) with detailed modeling and simulation of the optical extinction of these nanocrystals using the Drude model for free electrons, a correlation between surface segregation of tin ions and the average activation of dopants is observed. A strong influence of surface segregation of tin on the line shape of the localized surface plasmon resonance (LSPR) is also reported. Samples with tin segregated near the surface show a symmetric line shape that suggests weak or no damping of the plasmon by ionized impurities. It is suggested that segregation of tin near the surface facilitates compensation of the dopant ions by electronic defects and oxygen interstitials, thus reducing activation. A core shell model is proposed to explain the observed differences in line shape. These results demonstrate the nuanced role of dopant distribution in determining the optoelectronic properties of semiconductor nanocrystals and suggest that more detailed study of the distribution and structure of defects in plasmonic colloidal nanocrystals is warranted.

  18. A dual-colored bio-marker made of doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Y. L.; Fu, S.; Tok, A. I. Y.; Zeng, X. T.; Lim, C. S.; Kwek, L. C.; Boey, F. C. Y.

    2008-08-01

    Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.

  19. Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution.

    PubMed

    Zou, Guizheng; Ju, Huangxian

    2004-12-01

    Electrogenerated chemiluminescence (ECL) of semiconductor quantum dots in aqueous solutions and its first sensing application were studied by depositing CdSe nanocrystals (NCs) on a paraffin-impregnated graphite electrode (PIGE). The CdSe nanocrystal thin film exhibited two ECL peaks at -1.20 (ECL-1) and -1.50 V (ECL-2) in pH 9.3, 0.1 M PBS during the cyclic sweep between 0 and -1.8 V at 20 mV s(-1). The electron-transfer reaction between individual electrochemically reduced nanocrystal species and oxidant coreactants such as H(2)O(2) and reduced dissolved oxygen led to ECL-1. When mass NCs packed densely in the film were reduced electrochemically, assembly of reduced nanocrystal species could react with coreactants to produce another ECL signal, ECL-2. ECL-1 showed higher sensitivity to the concentration of oxidant coreactants than ECL-2 and thus was used for ECL detection of coreactant, H(2)O(2). A linear response of ECL-1 to H(2)O(2) was observed in the concentration range of 2.5 x 10(-7)-6 x 10(-5) M with a detection limit of 1.0 x10(-7) M. The fabrication of 10 CdSe nanocrystal thin-film modified PIGEs displayed an acceptable reproducibility with a RSD of 1.18% obtained at H(2)O(2) level of 10 microM. PMID:15571335

  20. Linearly arranged polytypic CZTSSe nanocrystals

    PubMed Central

    Fan, Feng-Jia; Wu, Liang; Gong, Ming; Chen, Shi You; Liu, Guang Yao; Yao, Hong-Bin; Liang, Hai-Wei; Wang, Yi-Xiu; Yu, Shu-Hong

    2012-01-01

    Even colloidal polytypic nanostructures show promising future in band-gap tuning and alignment, researches on them have been much less reported than the standard nano-heterostructures because of the difficulties involved in synthesis. Up to now, controlled synthesis of colloidal polytypic nanocrsytals has been only realized in II-VI tetrapod and octopod nanocrystals with branched configurations. Herein, we report a colloidal approach for synthesizing non-branched but linearly arranged polytypic I2-II-IV-VI4 nanocrystals, with a focus on polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystals. Each synthesized polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystal is consisted of two zinc blende-derived ends and one wurtzite-derived center part. The formation mechanism has been studied and the phase composition can be tuned through adjusting the reaction temperature, which brings a new band-gap tuning approach to Cu2ZnSnSxSe4-x nanocrystals. PMID:23233871

  1. Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics

    SciTech Connect

    Akhavan, Vahid A.; Goodfellow, Brian W.; Panthani, Matthew G.; Steinhagen, Chet; Harvey, Taylor B.; Stolle, C. Jackson; Korgel, Brian A.

    2012-05-15

    This review article summarizes our research focused on Cu(In{sub 1-x}Ga{sub x})Se{sub 2} (CIGS) nanocrystals, including their synthesis and implementation as the active light absorbing material in photovoltaic devices (PVs). CIGS PV layers are typically made using a high temperature (>450 Degree-Sign C) process in which Cu, In and Ga are sequentially or co-evaporated and selenized. We have sought to use CIGS nanocrystals synthesized with the desired stoichiometry to deposit PV device layers without high temperature processing. This approach, using spray deposition of the CIGS light absorber layers, without high temperature selenization, has enabled up to 3.1% power conversion efficiency under AM 1.5 solar illumination. Although the device efficiency is too low for commercialization, these devices provide a proof-of-concept that solution-deposited CIGS nanocrystal films can function in PV devices, enabling unconventional device architectures and materials combinations, including the use of flexible, inexpensive and light-weight plastic substrates. - Graphical abstract: The semiconductor light-absorbing layers in photovoltaic devices can be deposited under ambient conditions using nanocrystal inks. Devices can be fabricated on glass or on mechanically flexible plastic substrates. Highlights: Black-Right-Pointing-Pointer CIGS and CZTS nanocrystals are synthesized and formulated into inks. Black-Right-Pointing-Pointer Nanocrystal films are spray deposited and used as light absorbing layers in photovoltaic devices. Black-Right-Pointing-Pointer Photovoltaic devices were constructed from nanowire mats. Black-Right-Pointing-Pointer Photovoltaic device efficiency is limited by electrical transport in the nanocrystal layers.

  2. The flow reactor system for in-line synthesis of semiconductor nanoparticle

    NASA Astrophysics Data System (ADS)

    Ryzhov, O. A.; Matyushkin, L. B.

    2015-11-01

    A flow reactor nanoparticle synthesis technique is proposed as replacement for «hot injection» synthesis of semiconductor nanocrystals in a glass flask. The main advantages are possibility of continuous nanoparticles production, technology flexibility and lower cost of the final products in comparison with currently applied methods.

  3. Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials

    NASA Astrophysics Data System (ADS)

    Yang, Qiguang; Seo, Jae Tae; Creekmore, Santiel; Tan, Guolong; Brown, Herbert; Ma, Seong Min; Creekmore, Linwood; Jackson, Ashley; Skyles, Tifney; Tabibi, Bagher; Wang, Huitian; Jung, Sung Soo; Namkung, Min

    2006-05-01

    The possible physical origin of third-order nonlinearity of cadmium chalcogenide (Te, Se, and S) semiconductor nanocrystals were discussed based on the results of both Z-scan and degenerate four-wave mixing spectroscopies at 532, 775, 800, and 1064 nm in nanosecond, picosecond, and femtosecond time scale for nonlinear photonic applications.

  4. Nanocrystal powered nanomotor

    DOEpatents

    Regan, Brian C.; Zettl, Alexander K.; Aloni, Shaul

    2011-01-04

    A nanoscale nanocrystal which may be used as a reciprocating motor is provided, comprising a substrate having an energy differential across it, e.g. an electrical connection to a voltage source at a proximal end; an atom reservoir on the substrate distal to the electrical connection; a nanoparticle ram on the substrate distal to the atom reservoir; a nanolever contacting the nanoparticle ram and having an electrical connection to a voltage source, whereby a voltage applied between the electrical connections on the substrate and the nanolever causes movement of atoms between the reservoir and the ram. Movement of the ram causes movement of the nanolever relative to the substrate. The substrate and nanolever preferably comprise multiwalled carbon nanotubes (MWNTs) and the atom reservoir and nanoparticle ram are preferably metal (e.g. indium) deposited as small particles on the MWNTs. The substrate may comprise a silicon chip that has been fabricated to provide the necessary electrodes and other electromechanical structures, and further supports an atomic track, which may comprise an MWNT.

  5. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  6. Doping silicon nanocrystals and quantum dots.

    PubMed

    Oliva-Chatelain, Brittany L; Ticich, Thomas M; Barron, Andrew R

    2016-01-28

    The ability to incorporate a dopant element into silicon nanocrystals (NC) and quantum dots (QD) is one of the key technical challenges for the use of these materials in a number of optoelectronic applications. Unlike doping of traditional bulk semiconductor materials, the location of the doping element can be either within the crystal lattice (c-doping), on the surface (s-doping) or within the surrounding matrix (m-doping). A review of the various synthetic strategies for doping silicon NCs and QDs is presented, concentrating on the efficacy of the synthetic routes, both in situ and post synthesis, with regard to the structural location of the dopant and the doping level. Methods that have been applied to the characterization of doped NCs and QDs are summarized with regard to the information that is obtained, in particular to provide researchers with a guide to the suitable techniques for determining dopant concentration and location, as well as electronic and photonic effectiveness of the dopant. PMID:26727507

  7. Doping silicon nanocrystals and quantum dots

    NASA Astrophysics Data System (ADS)

    Oliva-Chatelain, Brittany L.; Ticich, Thomas M.; Barron, Andrew R.

    2016-01-01

    The ability to incorporate a dopant element into silicon nanocrystals (NC) and quantum dots (QD) is one of the key technical challenges for the use of these materials in a number of optoelectronic applications. Unlike doping of traditional bulk semiconductor materials, the location of the doping element can be either within the crystal lattice (c-doping), on the surface (s-doping) or within the surrounding matrix (m-doping). A review of the various synthetic strategies for doping silicon NCs and QDs is presented, concentrating on the efficacy of the synthetic routes, both in situ and post synthesis, with regard to the structural location of the dopant and the doping level. Methods that have been applied to the characterization of doped NCs and QDs are summarized with regard to the information that is obtained, in particular to provide researchers with a guide to the suitable techniques for determining dopant concentration and location, as well as electronic and photonic effectiveness of the dopant.

  8. Injected nanocrystals for targeted drug delivery

    PubMed Central

    Lu, Yi; Li, Ye; Wu, Wei

    2016-01-01

    Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS) cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies. PMID:27006893

  9. Mid-IR band gap engineering of CdxPb1-xS nanocrystals by mechanochemical reaction

    NASA Astrophysics Data System (ADS)

    Tan, Guo-Long; Liu, Limin; Wu, Weibing

    2014-06-01

    Composition-tunable ternary CdxPb1-xS nanocrystals (NCs) are very important materials for remote sensing and detecting in the infrared (IR) wavelength region. They are, however, almost exclusively prepared by wet chemical routes which lead to surface-capped nanoparticles. The surface capping molecules could move their absorption peaks from mid-IR to near IR wavelength region. However, surface clean CdxPb1-xS nanocrystals (NCs) would demonstrate intrinsic optical spectrum in the mid-IR region. Herein, we present a physical mechanical alloying (MA) process being applied to prepare tens of grams of surface clean CdxPb1-xS nanocrystals within the composition range of x = 0.0 to 0.4. The average particle size is smaller than 9 nm. The as-milled nanocrystals are chemically homogenous. The CdxPb1-xS nanocrystals show a continuous lattice contraction with Cd content. There is an exponential indirect band gap-composition relationship. This MA method shows the ability to continuously and precisely tune the band gap energies of ternary CdxPb1-xS semiconductor nanocrystals from mid-IR region (2638 nm) to NIR wavelength region (1240 nm) through chemical composition.

  10. Non-native Co-, Mn-, and Ti-oxyhydroxide nanocrystals in ferritin for high efficiency solar energy conversion.

    PubMed

    Erickson, S D; Smith, T J; Moses, L M; Watt, R K; Colton, J S

    2015-01-01

    Quantum dot solar cells seek to surpass the solar energy conversion efficiencies achieved by bulk semiconductors. This new field requires a broad selection of materials to achieve its full potential. The 12 nm spherical protein ferritin can be used as a template for uniform and controlled nanocrystal growth, and to then house the nanocrystals for use in solar energy conversion. In this study, precise band gaps of titanium, cobalt, and manganese oxyhydroxide nanocrystals within ferritin were measured, and a change in band gap due to quantum confinement effects was observed. The range of band gaps obtainable from these three types of nanocrystals is 2.19-2.29 eV, 1.93-2.15 eV, and 1.60-1.65 eV respectively. From these measured band gaps, theoretical efficiency limits for a multi-junction solar cell using these ferritin-enclosed nanocrystals are calculated and found to be 38.0% for unconcentrated sunlight and 44.9% for maximally concentrated sunlight. If a ferritin-based nanocrystal with a band gap similar to silicon can be found (i.e. 1.12 eV), the theoretical efficiency limits are raised to 51.3% and 63.1%, respectively. For a current matched cell, these latter efficiencies become 41.6% (with an operating voltage of 5.49 V), and 50.0% (with an operating voltage of 6.59 V), for unconcentrated and maximally concentrated sunlight respectively. PMID:25490522

  11. Coupling of single InGaAs quantum dots to the plasmon resonance of a metal nanocrystal

    SciTech Connect

    Urbanczyk, A.; Hamhuis, G. J.; Noetzel, R.

    2010-07-26

    The authors report the coupling of single InGaAs quantum dots (QDs) to the surface plasmon resonance of a metal nanocrystal. Clear enhancement of the photoluminescence (PL) in the spectral region of the surface plasmon resonance is observed which splits up into distinct emission lines from single QDs in micro-PL. The hybrid metal-semiconductor structure is grown by molecular beam epitaxy on GaAs (100) utilizing the concept of self-organized anisotropic strain engineering for realizing ordered arrays with nanometer-scale precise positioning of the metal nanocrystals with respect to the QDs.

  12. Spatial Separation of Charge Carriers in In2O3-x(OH)y Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity.

    PubMed

    He, Le; Wood, Thomas E; Wu, Bo; Dong, Yuchan; Hoch, Laura B; Reyes, Laura M; Wang, Di; Kübel, Christian; Qian, Chenxi; Jia, Jia; Liao, Kristine; O'Brien, Paul G; Sandhel, Amit; Loh, Joel Y Y; Szymanski, Paul; Kherani, Nazir P; Sum, Tze Chien; Mims, Charles A; Ozin, Geoffrey A

    2016-05-24

    The development of strategies for increasing the lifetime of photoexcited charge carriers in nanostructured metal oxide semiconductors is important for enhancing their photocatalytic activity. Intensive efforts have been made in tailoring the properties of the nanostructured photocatalysts through different ways, mainly including band-structure engineering, doping, catalyst-support interaction, and loading cocatalysts. In liquid-phase photocatalytic dye degradation and water splitting, it was recently found that nanocrystal superstructure based semiconductors exhibited improved spatial separation of photoexcited charge carriers and enhanced photocatalytic performance. Nevertheless, it remains unknown whether this strategy is applicable in gas-phase photocatalysis. Using porous indium oxide nanorods in catalyzing the reverse water-gas shift reaction as a model system, we demonstrate here that assembling semiconductor nanocrystals into superstructures can also promote gas-phase photocatalytic processes. Transient absorption studies prove that the improved activity is a result of prolonged photoexcited charge carrier lifetimes due to the charge transfer within the nanocrystal network comprising the nanorods. Our study reveals that the spatial charge separation within the nanocrystal networks could also benefit gas-phase photocatalysis and sheds light on the design principles of efficient nanocrystal superstructure based photocatalysts. PMID:27159793

  13. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  14. Femtosecond Laser Synthesis of Multi-Element Nanocrystals

    SciTech Connect

    Dinh, L N; Trelenberg, T; Torralva, B; Stuart, B C; Balooch, M

    2003-01-08

    We studied the conditions under which short-pulsed laser deposited (PLD) stoichiometric multi-element nanocrystals of GaAs,InP,CoPt and Inconel (an alloy of Cr, Fe and Ni) are formed. The properties of the PLD nanoclusters and the irradiated targets were investigated as a function of the laser pulse-length (150 fs-500 ps) and the inert background gas pressure in the synthesis chamber (microTorr to hundreds of Torr). Our results reveal that the formation of stoichiometric GaAs nanocrystals required ablating a GaAs target with a shorter than 25 ps laser in a {ge} 50 miliTorr of inert background pressure. For InP, a mixture of stoichiometric InP and In nanocrystals with an InP/In ratio of {approx} 1 resulted upon ablating an InP target in Ar at 1 Torr. This InP/In ratio increased to {approx} 5 when ablating the InP target in an Ar pressure of 750 Torr. In case of CoPt alloy, the stoichiometry in the target was not reflected in the collected nanocluster films, independent of the background gas pressure. Interestingly, the stoichiometry of the target was found in the collected nanocluster films when an Inconel target was ablated by a femtosecond laser even in vacuum. It is noted that the constituents of Inconel (Cr, Fe and Ni) have similar vapor pressures while Co and Pt do not. Our experimental results suggest that the stoichiometries of the PLD multi-element nanoclusters are closer with those of the targets when shorter than 25 ps lasers are used. However, this does not imply that simply irradiating a multi-element target in vacuum with a shorter than 25 ps pulse-length laser would automatically result in the formation of stoichiometric nanocrystals. The preservation of the stoichiometry of the irradiated target and the formation of stoichiometric semiconductor nanocrystals require ablating the targets with a shorter than 25 ps laser in a background gas. The minimum background gas pressure is materials dependent. And for metal alloys, the stoichiometry of the ablated

  15. Nanocrystals Research for Energy Efficient and Clean Energy Technologies:

    SciTech Connect

    Rosenthal, Sandra J

    2013-12-17

    Efforts centered on: nanocrystal photovoltaic fabrication, ultrafast dynamics and aberration-corrected STEM characterization of II-VI core, core/shell and alloyed nanocrystals, and fundamental investigation and applications of ultrasmall white light-emitting CdSe nanocrystal.

  16. Electrospinnability of bionanocomposites with high nanocrystal loadings: The effect of nanocrystal surface characteristics.

    PubMed

    Naseri, Narges; Mathew, Aji P; Oksman, Kristiina

    2016-08-20

    This paper deals with the effect of solution properties and nanoparticle surface chemistry on the spinnability of a chitosan/polyethylene oxide (PEO) with high concentration (50wt%) of chitin and cellulose nanocrystals and the properties of the resultant nanocomposite fibers/fiber mats. Electrospinning dispersions with cellulose nanocrystals having sulphate surface groups showed poor spinnability compared to chitin nanocrystals with amide and amino groups. Chitin nanocrystal based dispersions showed good spinnability and continuous fiber formation whereas cellulose nanocrystal system showed discontinuous fibers and branching. The viscosity and surface tension are shown to impact this behavior, but conductivity did not. Poor spinnability observed for cellulose nanocrystal based fibers was attributed to the coagulation of negatively charged cellulose nanocrystals and positively charged chitosan. The study showed that the nanocrystal surface charge and interactions with the chitosan/PEO matrix have a significant impact on the spinnability of bionanocomposites. PMID:27178953

  17. A new family of wurtzite-phase Cu2ZnAS4-x and CuZn2AS4 (A = Al, Ga, In) nanocrystals for solar energy conversion applications.

    PubMed

    Ghosh, Anima; Palchoudhury, Soubantika; Thangavel, Rajalingam; Zhou, Ziyou; Naghibolashrafi, Nariman; Ramasamy, Karthik; Gupta, Arunava

    2016-01-01

    A new family of quaternary semiconductors Cu2ZnAS4-x and CuZn2AS4 (A = Al, Ga, In) has been synthesized in the form of wurtzite phase nanocrystals for the first time. The nanocrystals can be converted to the stannite phase via thermal annealing under a N2 atmosphere. A direct band gap in the visible wavelength region combined with a high absorption cross-section makes these materials promising for solar energy conversion applications. PMID:26466863

  18. Homogeneous Cu2ZnSnSe4 nanocrystals/graphene oxide nanocomposites as hole transport layer for polymer solar cells

    NASA Astrophysics Data System (ADS)

    Tan, Licheng; Zhang, Yan; Chen, Yiwang; Chen, Yufeng

    2015-02-01

    Homogeneous Cu2ZnSnSe4 nanocrystals/graphene oxide (CZTSe@GO) nanocomposite as hole transport layer (HTL) applied in polymer solar cells has been fabricated through a simple and solution-processed strategy, which not only arrests the aggregation of nanoparticles caused by ligand-exchanging, but also guarantees the intimate interfacial contact between graphene oxide and semiconductor nanocrystals. Comparing with Cu2ZnSnSe4 nanocrystals, the optimization of interfacial charge carrier transfer pathways for CZTSe@GO nanocomposites makes it more suitable as HTL which shows enhanced charge carrier transport and electron-blocking capacity, and well-matched work function facilitating collection of charges to anode. Besides, it also affords an efficient way to manufacture multifunctional nanocomposites based on nanocrystals.

  19. Penternary chalcogenides nanocrystals as catalytic materials for efficient counter electrodes in dye-synthesized solar cells

    PubMed Central

    Özel, Faruk; Sarılmaz, Adem; İstanbullu, Bilal; Aljabour, Abdalaziz; Kuş, Mahmut; Sönmezoğlu, Savaş

    2016-01-01

    The penternary chalcogenides Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 were successfully synthesized by hot-injection method, and employed as a catalytic materials for efficient counter electrodes in dye-synthesized solar cells (DSSCs). The structural, compositional, morphological and optical properties of these pentenary semiconductors were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS) and ultraviolet-visible (UV–Vis) spectroscopy. The Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 nanocrystals had a single crystalline, kesterite phase, adequate stoichiometric ratio, 18–25 nm particle sizes which are forming nanospheres, and band gap energy of 1.18 and 1.45 eV, respectively. Furthermore, the electrochemical impedance spectroscopy and cyclic voltammograms indicated that Cu2CoSn(SeS)4 nanocrystals as counter electrodes exhibited better electrocatalytic activity for the reduction of iodine/iodide electrolyte than that of Cu2ZnSn(SeS)4 nanocrystals and conventional platinum (Pt). The photovoltaic results demonstrated that DSSC with a Cu2CoSn(SeS)4 nanocrystals-based counter electrode achieved the best efficiency of 6.47%, which is higher than the same photoanode employing a Cu2ZnSn(SeS)4 nanocrystals (3.18%) and Pt (5.41%) counter electrodes. These promising results highlight the potential application of penternary chalcogen Cu2CoSn(SeS)4 nanocrystals in low-cost, high-efficiency, Pt-free DSSCs. PMID:27380957

  20. Penternary chalcogenides nanocrystals as catalytic materials for efficient counter electrodes in dye-synthesized solar cells.

    PubMed

    Özel, Faruk; Sarılmaz, Adem; İstanbullu, Bilal; Aljabour, Abdalaziz; Kuş, Mahmut; Sönmezoğlu, Savaş

    2016-01-01

    The penternary chalcogenides Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 were successfully synthesized by hot-injection method, and employed as a catalytic materials for efficient counter electrodes in dye-synthesized solar cells (DSSCs). The structural, compositional, morphological and optical properties of these pentenary semiconductors were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS) and ultraviolet-visible (UV-Vis) spectroscopy. The Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 nanocrystals had a single crystalline, kesterite phase, adequate stoichiometric ratio, 18-25 nm particle sizes which are forming nanospheres, and band gap energy of 1.18 and 1.45 eV, respectively. Furthermore, the electrochemical impedance spectroscopy and cyclic voltammograms indicated that Cu2CoSn(SeS)4 nanocrystals as counter electrodes exhibited better electrocatalytic activity for the reduction of iodine/iodide electrolyte than that of Cu2ZnSn(SeS)4 nanocrystals and conventional platinum (Pt). The photovoltaic results demonstrated that DSSC with a Cu2CoSn(SeS)4 nanocrystals-based counter electrode achieved the best efficiency of 6.47%, which is higher than the same photoanode employing a Cu2ZnSn(SeS)4 nanocrystals (3.18%) and Pt (5.41%) counter electrodes. These promising results highlight the potential application of penternary chalcogen Cu2CoSn(SeS)4 nanocrystals in low-cost, high-efficiency, Pt-free DSSCs. PMID:27380957

  1. Penternary chalcogenides nanocrystals as catalytic materials for efficient counter electrodes in dye-synthesized solar cells

    NASA Astrophysics Data System (ADS)

    Özel, Faruk; Sarılmaz, Adem; Istanbullu, Bilal; Aljabour, Abdalaziz; Kuş, Mahmut; Sönmezoğlu, Savaş

    2016-07-01

    The penternary chalcogenides Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 were successfully synthesized by hot-injection method, and employed as a catalytic materials for efficient counter electrodes in dye-synthesized solar cells (DSSCs). The structural, compositional, morphological and optical properties of these pentenary semiconductors were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS) and ultraviolet-visible (UV–Vis) spectroscopy. The Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 nanocrystals had a single crystalline, kesterite phase, adequate stoichiometric ratio, 18–25 nm particle sizes which are forming nanospheres, and band gap energy of 1.18 and 1.45 eV, respectively. Furthermore, the electrochemical impedance spectroscopy and cyclic voltammograms indicated that Cu2CoSn(SeS)4 nanocrystals as counter electrodes exhibited better electrocatalytic activity for the reduction of iodine/iodide electrolyte than that of Cu2ZnSn(SeS)4 nanocrystals and conventional platinum (Pt). The photovoltaic results demonstrated that DSSC with a Cu2CoSn(SeS)4 nanocrystals-based counter electrode achieved the best efficiency of 6.47%, which is higher than the same photoanode employing a Cu2ZnSn(SeS)4 nanocrystals (3.18%) and Pt (5.41%) counter electrodes. These promising results highlight the potential application of penternary chalcogen Cu2CoSn(SeS)4 nanocrystals in low-cost, high-efficiency, Pt-free DSSCs.

  2. Cellulose nanocrystals: synthesis, functional properties, and applications.

    PubMed

    George, Johnsy; Sabapathi, S N

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  3. Cellulose nanocrystals: synthesis, functional properties, and applications

    PubMed Central

    George, Johnsy; Sabapathi, SN

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  4. Comparison of carrier multiplication yields in PbS and PbSe nanocrystals: The role of competing energy-loss processes

    SciTech Connect

    Stewart, John T.; Padilha, Lazaro A.; Qazilbash, M. M.; Pietryga, Jeffrey M.; Midgett, Aaron G.; Luther, Joseph M.; Beard, Matthew C.; Nozik, Arthur J.; Klimov, Victor I.

    2012-02-08

    Infrared band gap semiconductor nanocrystals are promising materials for exploring generation III photovoltaic concepts that rely on carrier multiplication or multiple exciton generation, the process in which a single high-energy photon generates more than one electron–hole pair. In this work, we present measurements of carrier multiplication yields and biexciton lifetimes for a large selection of PbS nanocrystals and compare these results to the well-studied PbSe nanocrystals. The similar bulk properties of PbS and PbSe make this an important comparison for discerning the pertinent properties that determine efficient carrier multiplication. We observe that PbS and PbSe have very similar biexciton lifetimes as a function of confinement energy. Together with the similar bulk properties, this suggests that the rates of multiexciton generation, which is the inverse of Auger recombination, are also similar. The carrier multiplication yields in PbS nanocrystals, however, are strikingly lower than those observed for PbSe nanocrystals. We suggest that this implies the rate of competing processes, such as phonon emission, is higher in PbS nanocrystals than in PbSe nanocrystals. Indeed, our estimations for phonon emission mediated by the polar Fröhlich-type interaction indicate that the corresponding energy-loss rate is approximately twice as large in PbS than in PbSe.

  5. Comparison of carrier multiplication yields in PbS and PbSe nanocrystals: the role of competing energy-loss processes.

    PubMed

    Stewart, John T; Padilha, Lazaro A; Qazilbash, M Mumtaz; Pietryga, Jeffrey M; Midgett, Aaron G; Luther, Joseph M; Beard, Matthew C; Nozik, Arthur J; Klimov, Victor I

    2012-02-01

    Infrared band gap semiconductor nanocrystals are promising materials for exploring generation III photovoltaic concepts that rely on carrier multiplication or multiple exciton generation, the process in which a single high-energy photon generates more than one electron-hole pair. In this work, we present measurements of carrier multiplication yields and biexciton lifetimes for a large selection of PbS nanocrystals and compare these results to the well-studied PbSe nanocrystals. The similar bulk properties of PbS and PbSe make this an important comparison for discerning the pertinent properties that determine efficient carrier multiplication. We observe that PbS and PbSe have very similar biexciton lifetimes as a function of confinement energy. Together with the similar bulk properties, this suggests that the rates of multiexciton generation, which is the inverse of Auger recombination, are also similar. The carrier multiplication yields in PbS nanocrystals, however, are strikingly lower than those observed for PbSe nanocrystals. We suggest that this implies the rate of competing processes, such as phonon emission, is higher in PbS nanocrystals than in PbSe nanocrystals. Indeed, our estimations for phonon emission mediated by the polar Fröhlich-type interaction indicate that the corresponding energy-loss rate is approximately twice as large in PbS than in PbSe. PMID:22148950

  6. Energy transfer processes in semiconductor quantum dots: bacteriorhodopsin hybrid system

    NASA Astrophysics Data System (ADS)

    Rakovich, Aliaksandra; Sukhanova, Alyona; Bouchonville, Nicolas; Molinari, Michael; Troyon, Michel; Cohen, Jacques H. M.; Rakovich, Yury; Donegan, John F.; Nabiev, Igor

    2009-05-01

    The potential impact of nanoscience on energy transfer processes in biomolecules was investigated on the example of a complex between fluorescent semiconductor nanocrystals and photochromic membrane protein. The interactions between colloidal CdTe quantum dots (QDs) and bacteriorhodopsin (bR) protein were studied by a variety of spectroscopic techniques, including integrated and time-resolved fluorescence spectroscopies, zeta potential and size measurement, and fluorescence correlation spectroscopy. QDs' luminescence was found to be strongly modulated by bacteriorhodopsin, but in a controllable way. Decreasing emission lifetimes and blue shifts in QDs' emission at increasing protein concentrations suggest that quenching occurs via Förster resonance energy transfer. On the other hand, concave Stern-Volmer plots and sigmoidal photoluminescence quenching curves imply that the self-assembling of NCs and bR exists, and the number of nanocrystals (NCs) per bacteriorhodopsin contributing to energy transfer can be determined from the inflection points of sigmoidal curves. This number was found to be highly dependent not only on the spectral overlap between NC emission and bR absorption bands, but also on nanocrystal surface charge. These results demonstrate the potential of how inorganic nanoscale materials can be employed to improve the generic molecular functions of biomolecules. The observed interactions between CdTe nanocrystals and bacteriorhodopsin can provide the basis for the development of novel functional materials with unique photonic properties and applications in areas such as all-optical switching, photovoltaics and data storage.

  7. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods.

    PubMed

    Kan, Shihai; Mokari, Taleb; Rothenberg, Eli; Banin, Uri

    2003-03-01

    Dimensionality and size are two factors that govern the properties of semiconductor nanostructures. In nanocrystals, dimensionality is manifested by the control of shape, which presents a key challenge for synthesis. So far, the growth of rod-shaped nanocrystals using a surfactant-controlled growth mode, has been limited to semiconductors with wurtzite crystal structures, such as CdSe (ref. 3). Here, we report on a general method for the growth of soluble nanorods applied to semiconductors with the zinc-blende cubic lattice structure. InAs quantum rods with controlled lengths and diameters were synthesized using the solution-liquid-solid mechanism with gold nanocrystals as catalysts. This provides an unexpected link between two successful strategies for growing high-quality nanomaterials, the vapour-liquid-solid approach for growing nanowires, and the colloidal approach for synthesizing soluble nanocrystals. The rods exhibit both length- and shape-dependent optical properties, manifested in a red-shift of the bandgap with increased length, and in the observation of polarized emission covering the near-infrared spectral range relevant for telecommunications devices. PMID:12612671

  8. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods

    NASA Astrophysics Data System (ADS)

    Kan, Shihai; Mokari, Taleb; Rothenberg, Eli; Banin, Uri

    2003-03-01

    Dimensionality and size are two factors that govern the properties of semiconductor nanostructures. In nanocrystals, dimensionality is manifested by the control of shape, which presents a key challenge for synthesis. So far, the growth of rod-shaped nanocrystals using a surfactant-controlled growth mode, has been limited to semiconductors with wurtzite crystal structures, such as CdSe (ref. 3). Here, we report on a general method for the growth of soluble nanorods applied to semiconductors with the zinc-blende cubic lattice structure. InAs quantum rods with controlled lengths and diameters were synthesized using the solution-liquid-solid mechanism with gold nanocrystals as catalysts. This provides an unexpected link between two successful strategies for growing high-quality nanomaterials, the vapour-liquid-solid approach for growing nanowires, and the colloidal approach for synthesizing soluble nanocrystals. The rods exhibit both length- and shape-dependent optical properties, manifested in a red-shift of the bandgap with increased length, and in the observation of polarized emission covering the near-infrared spectral range relevant for telecommunications devices.

  9. Synthesis and size control of luminescent ZnSe nanocrystals by a microemulsion-gas contacting technique.

    PubMed

    Karanikolos, Georgios N; Alexandridis, Paschalis; Itskos, Grigorios; Petrou, Athos; Mountziaris, T J

    2004-02-01

    A scalable method for controlled synthesis of luminescent compound semiconductor nanocrystals (quantum dots) using microemulsion-gas contacting at room temperature is reported. The technique exploits the dispersed phase of a microemulsion to form numerous identical nanoreactors. ZnSe quantum dots were synthesized by reacting hydrogen selenide gas with diethylzinc dissolved in the heptane nanodroplets of a microemulsion formed by self-assembly of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) amphiphilic block copolymer in formamide. A single nanocrystal is grown in each nanodroplet, thus allowing good control of particle size by manipulation of the initial diethylzinc concentration in the heptane. The ZnSe nanocrystals exhibit size-dependent luminescence and excellent photostability. PMID:15773072

  10. High resolution photoemission study of CdSe and CdSe/ZnS core-shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Borchert, H.; Talapin, D. V.; McGinley, C.; Adam, S.; Lobo, A.; de Castro, A. R. B.; Möller, T.; Weller, H.

    2003-07-01

    Colloidally prepared CdSe and CdSe/ZnS core-shell nanocrystals passivated with trioctylphosphine/trioctylphosphine oxide and hexadecylamine have been studied by photoelectron spectroscopy with tuneable synchrotron radiation. High-resolution spectra of the Se 3d level in CdSe nanocrystals indicate the bonding of organic ligands not only to surface Cd but also to surface Se atoms. The investigation of the CdSe/ZnS core-shell nanocrystals allows us to determine the average thickness of the ZnS shell and to study the interface between the two semiconductor nanomaterials. The photoemission spectra indicate a rather well ordered interface. No evidence for interfacial bonds other than Cd-S and Se-Zn is found.

  11. Modeling and simulation of floating gate nanocrystal FET devices and circuits

    NASA Astrophysics Data System (ADS)

    Hasaneen, El-Sayed A. M.

    The nonvolatile memory market has been growing very fast during the last decade, especially for mobile communication systems. The Semiconductor Industry Association International Technology Roadmap for Semiconductors states that the difficult challenge for nonvolatile semiconductor memories is to achieve reliable, low power, low voltage performance and high-speed write/erase. This can be achieved by aggressive scaling of the nonvolatile memory cells. Unfortunately, scaling down of conventional nonvolatile memory will further degrade the retention time due to the charge loss between the floating gate and drain/source contacts and substrate which makes conventional nonvolatile memory unattractive. Using nanocrystals as charge storage sites reduces dramatically the charge leakage through oxide defects and drain/source contacts. Floating gate nanocrystal nonvolatile memory, FG-NCNVM, is a candidate for future memory because it is advantageous in terms of high-speed write/erase, small size, good scalability, low-voltage, low-power applications, and the capability to store multiple bits per cell. Many studies regarding FG-NCNVMs have been published. Most of them have dealt with fabrication improvements of the devices and device characterizations. Due to the promising FG-NCNVM applications in integrated circuits, there is a need for circuit a simulation model to simulate the electrical characteristics of the floating gate devices. In this thesis, a FG-NCNVM circuit simulation model has been proposed. It is based on the SPICE BSIM simulation model. This model simulates the cell behavior during normal operation. Model validation results have been presented. The SPICE model shows good agreement with experimental results. Current-voltage characteristics, transconductance and unity gain frequency (fT) have been studied showing the effect of the threshold voltage shift (DeltaVth) due to nanocrystal charge on the device characteristics. The threshold voltage shift due to

  12. Silicon Nanocrystal Nonvolatile Memories

    NASA Astrophysics Data System (ADS)

    Muralidhar, R.; Sadd, M. A.; White, B. E.

    In 1959, physicist Richard Feynman delivered his "There's Plenty of Room Left at the Bottom" lecture [1] to the American Physical Society that spawned the field of nanotechnology. In that lecture, Feynman discussed two themes that are critical to the work presented here. The first was the recognition of the tremendous opportunities associated with the ability to miniaturize computers. At the time of his lecture, the most powerful computers consumed entire rooms, and Feynman realized the tremendous gains that could be realized in performance if the technology could be reduced to the size of one's thumbnail. The second important area Feynman touched on was the unique opportunities that surround the manipulation of matter at the atomic level to create materials with unique and, hopefully, useful properties. Both of these ideas have now been realized as evidenced by the exponential growth of the semiconductor industry over the last 40 years and the tremendous explosion in nanotechnology research, development, and product introduction over the last decade

  13. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  14. Al-doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Kadam, Pratibha; Agashe, Chitra; Mahamuni, Shailaja

    2008-11-01

    Al3+-doped ZnO nanocrystals were differently obtained by wet chemical and an electrochemical route. An increase in forbidden gap due to change in crystal size and also due to Al3+ doping in ZnO is critically analyzed. The Moss-Burstein type shift in Al3+-doped ZnO nanocrystals provides an evidence of successful Al3+ doping in ZnO nanocrystals. The possibility of varying the carrier concentration in ZnO nanocrystals is the indirect implication of the present investigations.

  15. Electronic structure of cobalt nanocrystals suspended inliquid

    SciTech Connect

    Liu, Hongjian; Guo, Jinghua; Yin, Yadong; Augustsson, Andreas; Dong, Chungli; Nordgren, Joseph; Chang, Chinglin; Alivisatos, Paul; Thornton, Geoff; Ogletree, D. Frank; Requejo, Felix G.; de Groot, Frank; Salmeron, Miquel

    2007-07-16

    The electronic structure of cobalt nanocrystals suspended in liquid as a function of size has been investigated using in-situ x-ray absorption and emission spectroscopy. A sharp absorption peak associated with the ligand molecules is found that increases in intensity upon reducing the nanocrystal size. X-ray Raman features due to d-d and to charge-transfer excitations of ligand molecules are identified. The study reveals the local symmetry of the surface of {var_epsilon}-Co phase nanocrystals, which originates from a dynamic interaction between Co nanocrystals and surfactant + solvent molecules.

  16. Electronic Structure of Germanium Nanocrystal Films Probed with Synchrotron Radiation

    SciTech Connect

    Bostedt, C

    2002-05-01

    The fundamental structure--property relationship of semiconductor quantum dots has been investigated. For deposited germanium nanocrystals strong quantum confinement effects have been determined with synchrotron radiation based x-ray absorption and photoemission techniques. The nanocrystals are condensed out of the gas phase with a narrow size distribution and subsequently deposited in situ onto various substrates. The particles are crystalline in the cubic phase with a structurally disordered surface shell and the resulting film morphology depends strongly on the substrate material and condition. The disordered surface region has an impact on the overall electronic structure of the particles. In a size-dependent study, the conduction and valence band edge of germanium nanocrystals have been measured for the first time and compared to the bulk crystal. The band edges move to higher energies as the particle size is decreased, consistent with quantum confinement theory. To obtain a more accurate analysis of confinement effects in the empty states, a novel analysis method utilizing an effective particle size for the x-ray absorption experiment, which allows a deconvolution of absorption edge broadening effects, has been introduced. Comparison of the present study to earlier studies on silicon reveals that germanium exhibits stronger quantum confinement effects than silicon. Below a critical particle size of 2.3 {+-} 0.7 nm, the band gap of germanium becomes larger than that of silicon--even if it is the opposite for bulk materials. This result agrees phenomenologically with effective mass and tight binding theories but contradicts the findings of recent pseudopotential calculations. The discrepancy between theory and experiments is attributed to the differences in the theoretical models and experimental systems. The experimentally observed structural disorder of the particle surface has to be included in the theoretical models.

  17. Plasmon dynamics in colloidal Cu₂-xSe nanocrystals.

    PubMed

    Scotognella, Francesco; Della Valle, Giuseppe; Srimath Kandada, Ajay Ram; Dorfs, Dirk; Zavelani-Rossi, Margherita; Conforti, Matteo; Miszta, Karol; Comin, Alberto; Korobchevskaya, Kseniya; Lanzani, Guglielmo; Manna, Liberato; Tassone, Francesco

    2011-11-01

    The optical response of metallic nanostructures after intense excitation with femtosecond-laser pulses has recently attracted increasing attention: such response is dominated by ultrafast electron-phonon coupling and offers the possibility to achieve optical modulation with unprecedented terahertz bandwidth. In addition to noble metal nanoparticles, efforts have been made in recent years to synthesize heavily doped semiconductor nanocrystals so as to achieve a plasmonic behavior with spectrally tunable features. In this work, we studied the dynamics of the localized plasmon resonance exhibited by colloidal Cu(2-x)Se nanocrystals of 13 nm in diameter and with x around 0.15, upon excitation by ultrafast laser pulses via pump-probe experiments in the near-infrared, with ∼200 fs resolution time. The experimental results were interpreted according to the two-temperature model and revealed the existence of strong nonlinearities in the plasmonic absorption due to the much lower carrier density of Cu(2-x)Se compared to noble metals, which led to ultrafast control of the probe signal with modulation depth exceeding 40% in transmission. PMID:21939261

  18. Superior Optical Properties of Perovskite Nanocrystals as Single Photon Emitters.

    PubMed

    Hu, Fengrui; Zhang, Huichao; Sun, Chun; Yin, Chunyang; Lv, Bihu; Zhang, Chunfeng; Yu, William W; Wang, Xiaoyong; Zhang, Yu; Xiao, Min

    2015-12-22

    The power conversion efficiency of photovoltaic devices based on semiconductor perovskites has reached ∼20% after just several years of research efforts. With concomitant discoveries of other promising applications in lasers, light-emitting diodes, and photodetectors, it is natural to anticipate what further excitement these exotic perovskites could bring about. Here we report on the observation of single photon emission from single CsPbBr3 perovskite nanocrystals (NCs) synthesized from a facile colloidal approach. Compared with traditional metal-chalcogenide NCs, these CsPbBr3 NCs exhibit nearly 2 orders of magnitude increase in their absorption cross sections at similar emission colors. Moreover, the radiative lifetime of CsPbBr3 NCs is greatly shortened at both room and cryogenic temperatures to favor an extremely fast output of single photons. The above superior optical properties have paved the way toward quantum-light applications of perovskite NCs in various quantum information processing schemes. PMID:26522082

  19. High-performance thermoelectric nanocomposites from nanocrystal building blocks

    NASA Astrophysics Data System (ADS)

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu

    2016-03-01

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.

  20. Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating.

    PubMed

    Palui, Goutam; Aldeek, Fadi; Wang, Wentao; Mattoussi, Hedi

    2015-01-01

    Interfacing inorganic nanoparticles and biological systems with the aim of developing novel imaging and sensing platforms has generated great interest and much activity. However, the effectiveness of this approach hinges on the ability of the surface ligands to promote water-dispersion of the nanoparticles with long term colloidal stability in buffer media. These surface ligands protect the nanostructures from the harsh biological environment, while allowing coupling to target molecules, which can be biological in nature (e.g., proteins and peptides) or exhibit specific photo-physical characteristics (e.g., a dye or a redox-active molecule). Amphiphilic block polymers have provided researchers with versatile molecular platforms with tunable size, composition and chemical properties. Hence, several groups have developed a wide range of polymers as ligands or micelle capsules to promote the transfer of a variety of inorganic nanomaterials to buffer media (including magnetic nanoparticles and semiconductor nanocrystals) and render them biocompatible. In this review, we first summarize the established synthetic routes to grow high quality nanocrystals of semiconductors, metals and metal oxides. We then provide a critical evaluation of the recent developments in the design, optimization and use of various amphiphilic copolymers to surface functionalize the above nanocrystals, along with the strategies used to conjugate them to target biomolecules. We finally conclude by providing a summary of the most promising applications of these polymer-coated inorganic platforms in sensor design, and imaging of cells and tissues. PMID:25029116

  1. Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals.

    PubMed

    Javaux, C; Mahler, B; Dubertret, B; Shabaev, A; Rodina, A V; Efros, Al L; Yakovlev, D R; Liu, F; Bayer, M; Camps, G; Biadala, L; Buil, S; Quelin, X; Hermier, J-P

    2013-03-01

    Applications of semiconductor nanocrystals such as biomarkers and light-emitting optoelectronic devices require that their fluorescence quantum yield be close to 100%. However, such quantum yields have not been obtained yet, in part, because non-radiative Auger recombination in charged nanocrystals could not be suppressed completely. Here, we synthesize colloidal core/thick-shell CdSe/CdS nanocrystals with 100% quantum yield and completely quenched Auger processes at low temperatures, although the nanocrystals are negatively photocharged. Single particle and ensemble spectroscopy in the temperature range 30-300 K shows that the non-radiative Auger recombination is thermally activated around 200 K. Experimental results are well described by a model suggesting a temperature-dependent delocalization of one of the trion electrons from the CdSe core and enhanced Auger recombination at the abrupt CdS outer surface. These results point to a route for the design of core/shell structures with 100% quantum yield at room temperature. PMID:23396313

  2. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer

    NASA Astrophysics Data System (ADS)

    Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P.

    1994-08-01

    ELECTROLUMINESCENT devices have been developed recently that are based on new materials such as porous silicon1 and semiconducting polymers2,3. By taking advantage of developments in the preparation and characterization of direct-gap semiconductor nanocrystals4-6, and of electroluminescent polymers7, we have now constructed a hybrid organic/inorganic electroluminescent device. Light emission arises from the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV)8-10 with electrons injected into a multilayer film of cadmium selenide nanocrystals. Close matching of the emitting layer of nanocrystals with the work function of the metal contact leads to an operating voltage11 of only 4V. At low voltages emission from the CdSe layer occurs. Because of the quantum size effect19-24 the colour of this emission can be varied from red to yellow by changing the nanocrystal size. At higher voltages green emission from the polymer layer predominates. Thus this device has a degree of voltage tunability of colour.

  3. Enhancing the performance of polymer solar cells using CuPc nanocrystals as additives

    NASA Astrophysics Data System (ADS)

    Zhang, Yajie; Wei, Zhixiang

    2015-05-01

    There is an increasing interest in the use of different nanoparticles as additives in polymer solar cells for enhancing the light absorption of active layers as well as their power conversion efficiency (PCE). In this paper, we report a PCE enhancement by simply adding copper phthalocyanine (CuPc) nanocrystals into photovoltaic devices based on a poly(3-hexylthiophene) (P3HT): fullerene system. Two kinds of device structure were studied: the first one is a CuPc nanocrystal suspension spin coated on the poly(3,4-ethylenedioxythiophene) polystyrene sulfonate-coated substrate; the second one is the CuPc nanocrystal suspension added into the active layer solutions. It is proved that incorporating organic semiconductor nanocrystals into the active layer can help trap light and enhance the crystallinity of the active layers, thus improving the device performance. This strategy might be generally compatible with a broad range of organic photovoltaic materials and offers an effective approach to enhance the device performance.

  4. Enhancing the performance of polymer solar cells using CuPc nanocrystals as additives.

    PubMed

    Zhang, Yajie; Wei, Zhixiang

    2015-05-22

    There is an increasing interest in the use of different nanoparticles as additives in polymer solar cells for enhancing the light absorption of active layers as well as their power conversion efficiency (PCE). In this paper, we report a PCE enhancement by simply adding copper phthalocyanine (CuPc) nanocrystals into photovoltaic devices based on a poly(3-hexylthiophene) (P3HT): fullerene system. Two kinds of device structure were studied: the first one is a CuPc nanocrystal suspension spin coated on the poly(3,4-ethylenedioxythiophene) polystyrene sulfonate-coated substrate; the second one is the CuPc nanocrystal suspension added into the active layer solutions. It is proved that incorporating organic semiconductor nanocrystals into the active layer can help trap light and enhance the crystallinity of the active layers, thus improving the device performance. This strategy might be generally compatible with a broad range of organic photovoltaic materials and offers an effective approach to enhance the device performance. PMID:25912794

  5. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    PubMed Central

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.

    2016-01-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core–shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core–shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals. PMID:27160371

  6. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

    PubMed Central

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; De Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V.

    2015-01-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ∼10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440–700 nm) with low pump thresholds down to 5±1 μJ cm−2 and high values of modal net gain of at least 450±30 cm−1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals. PMID:26290056

  7. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; de Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V.

    2015-08-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ~10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440-700 nm) with low pump thresholds down to 5+/-1 μJ cm-2 and high values of modal net gain of at least 450+/-30 cm-1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals.

  8. Colloidal nanocrystals for quality lighting and displays: milestones and recent developments

    NASA Astrophysics Data System (ADS)

    Erdem, Talha; Demir, Hilmi Volkan

    2016-06-01

    Recent advances in colloidal synthesis of nanocrystals have enabled high-quality high-efficiency light-emitting diodes, displays with significantly broader color gamut, and optically-pumped lasers spanning the whole visible regime. Here we review these colloidal platforms covering the milestone studies together with recent developments. In the review, we focus on the devices made of colloidal quantum dots (nanocrystals), colloidal quantum rods (nanorods), and colloidal quantum wells (nanoplatelets) as well as those of solution processed perovskites and phosphor nanocrystals. The review starts with an introduction to colloidal nanocrystal photonics emphasizing the importance of colloidal materials for light-emitting devices. Subsequently,we continue with the summary of important reports on light-emitting diodes, in which colloids are used as the color converters and then as the emissive layers in electroluminescent devices. Also,we review the developments in color enrichment and electroluminescent displays. Next, we present a summary of important reports on the lasing of colloidal semiconductors. Finally, we summarize and conclude the review presenting a future outlook.

  9. Efficiency of the coherent biexciton admixture mechanism for multiple exciton generation in InAs nanocrystals

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr; Machnikowski, Paweł

    2015-12-01

    We study the coherent mixing between two-particle (single exciton) and four-particle (biexciton) states of a semiconductor nanocrystal resulting from the Coulomb coupling between states with different numbers of electron-hole pairs. Using a simple model of the nanocrystal wave functions and an envelope function approach, we estimate the efficiency of the multiple exciton generation (MEG) process resulting from such coherent admixture mechanism, including all the relevant states in a very broad energy interval. We show that in a typical ensemble of nanocrystals with an average radius of 3nm, the onset of the MEG process appears about 1 eV above the lower edge of the biexciton density of states. This is due to the angular momentum conservation that imposes selection rules and limits the available MEG pathways, thus taking over the role of momentum conservation that hinders this process in bulk. The efficiency of the MEG process reaches 50% for photon energies around 5 eV. The MEG onset shifts to lower energies and therefore the efficiency increases in a certain energy range as the radius grows. The energy dependence of the MEG efficiency differs considerably between ensembles with small and large inhomogeneity of nanocrystal sizes.

  10. Quantitative tunneling spectroscopy of nanocrystals

    SciTech Connect

    First, Phillip N; Whetten, Robert L; Schaaff, T Gregory

    2007-05-25

    The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene" refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]). Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics

  11. Photoelectrosynthesis at semiconductor electrodes

    SciTech Connect

    Nozik, A. J.

    1980-12-01

    The general principles of photoelectrochemistry and photoelectrosynthesis are reviewed and some new developments in photoelectrosynthesis are discussed. Topics include energetics of semiconductor-electrolyte interfaces(band-edge unpinning); hot carrier injection at illuminated semiconductor-electrolyte junctions; derivatized semiconductor electrodes; particulate photoelectrochemical systems; layered compounds and other new materials; and dye sensitization. (WHK)

  12. Photorefractive Semiconductors and Applications

    NASA Technical Reports Server (NTRS)

    Chen, Li-Jen; Luke, Keung L.

    1993-01-01

    Photorefractive semiconductors are attractive for information processing, becuase of fast material response, compatibility with semiconductor lasers, and availability of cross polarization diffraction for enhancing signal-to-noise ration. This paper presents recent experimental results on information processing using photorefractive GaAs, InP and CdTe, including image processing with semiconductor lasers.

  13. Formation of Copper Zinc Tin Sulfide Thin Films from Colloidal Nanocrystal Dispersions via Aerosol-Jet Printing and Compaction.

    PubMed

    Williams, Bryce A; Mahajan, Ankit; Smeaton, Michelle A; Holgate, Collin S; Aydil, Eray S; Francis, Lorraine F

    2015-06-01

    A three-step method to create dense polycrystalline semiconductor thin films from nanocrystal liquid dispersions is described. First, suitable substrates are coated with nanocrystals using aerosol-jet printing. Second, the porous nanocrystal coatings are compacted using a weighted roller or a hydraulic press to increase the coating density. Finally, the resulting coating is annealed for grain growth. The approach is demonstrated for making polycrystalline films of copper zinc tin sulfide (CZTS), a new solar absorber composed of earth-abundant elements. The range of coating morphologies accessible through aerosol-jet printing is examined and their formation mechanisms are revealed. Crack-free albeit porous films are obtained if most of the solvent in the aerosolized dispersion droplets containing the nanocrystals evaporates before they impinge on the substrate. In this case, nanocrystals agglomerate in flight and arrive at the substrate as solid spherical agglomerates. These porous coatings are mechanically compacted, and the density of the coating increases with compaction pressure. Dense coatings annealed in sulfur produce large-grain (>1 μm) polycrystalline CZTS films with microstructure suitable for thin-film solar cells. PMID:25989610

  14. Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes.

    PubMed

    Nguyen, Hue M; Seitz, Oliver; Peng, Weina; Gartstein, Yuri N; Chabal, Yves J; Malko, Anton V

    2012-06-26

    We demonstrate efficient excitonic sensitization of crystalline Si nanomembranes via combined effects of radiative (RET) and nonradiative (NRET) energy transfer from a proximal monolayer of colloidal semiconductor nanocrystals. Ultrathin, 25-300 nm Si films are prepared on top of insulating SiO(2) substrates and grafted with a monolayer of CdSe/ZnS nanocrystals via carboxy-alkyl chain linkers. The wet chemical preparation ensures that Si surfaces are fully passivated with a negligible number of nonradiative surface state defects and that the separation between nanocrystals and Si is tightly controlled. Time-resolved photoluminescence measurements combined with theoretical modeling allow us to quantify individual contributions from RET and NRET. Overall efficiency of ET into Si is estimated to exceed 85% for a short distance of about 4 nm from nanocrystals to the Si surface. Effective and longer-range radiative coupling of nanocrystal's emission to waveguiding modes of Si films is clearly revealed. This demonstration supports the feasibility of an advanced thin-film hybrid solar cell concept that relies on energy transfer between strong light absorbers and adjacent high-mobility Si layers. PMID:22584256

  15. Structure Map for Embedded Binary Alloy Nanocrystals

    SciTech Connect

    Yuan, C.W.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Stone, P.R.; Watanabe, M.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-09-20

    The equilibrium structure of embedded nanocrystals formed from strongly segregating binary-alloys is considered within a simple thermodynamic model. The model identifies two dimensionlessinterface energies that dictate the structure, and allows prediction of the stable structure for anychoice of these parameters. The resulting structure map includes three distinct nanocrystal mor-phologies: core/shell, lobe/lobe, and completely separated spheres.

  16. Biosensing with Luminescent Semiconductor Quantum Dots

    PubMed Central

    Sapsford, Kim E.; Pons, Thomas; Medintz, Igor L.; Mattoussi, Hedi

    2006-01-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) are a recently developed class of nanomaterial whose unique photophysical properties are helping to create a new generation of robust fluorescent biosensors. QD properties of interest for biosensing include high quantum yields, broad absorption spectra coupled to narrow size-tunable photoluminescent emissions and exceptional resistance to both photobleaching and chemical degradation. In this review, we examine the progress in adapting QDs for several predominantly in vitro biosensing applications including use in immunoassays, as generalized probes, in nucleic acid detection and fluorescence resonance energy transfer (FRET) - based sensing. We also describe several important considerations when working with QDs mainly centered on the choice of material(s) and appropriate strategies for attaching biomolecules to the QDs.

  17. Chemical aerosol flow synthesis of semiconductor nanoparticles.

    PubMed

    Didenko, Yuri T; Suslick, Kenneth S

    2005-09-01

    Nanometer-sized semiconductor particles (quantum dots) have been the subject of intense research during the past decade owing to their novel electronic, catalytic, and optical properties. Fundamental properties of these nanoparticles (1-20 nm diameter) can be systematically changed simply by controlling the size of the crystals while holding their chemical composition constant. We describe here a new methodology for the continuous production of fluorescent CdS, CdSe, and CdTe nanoparticles using ultrasonically generated aerosols of high boiling point solvents. Each submicron droplet serves as a separate nanoscale chemical reactor, with reactions proceeding as the liquid droplets (which hold both reactants and surface stabilizers) are heated in a gas stream. The method is inexpensive, scalable, and allows for the synthesis of high quality nanocrystals. This chemical aerosol flow synthesis (CAFS) can be extended to the synthesis of nanostructured metals, oxides, and other materials. PMID:16131177

  18. Time Dependent Study of Multiple Exciton Generation in Nanocrystal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Damtie, Fikeraddis A.; Wacker, Andreas

    2016-03-01

    We study the exciton dynamics in an optically excited nanocrystal quantum dot. Multiple exciton formation is more efficient in nanocrystal quantum dots compared to bulk semiconductors due to enhanced Coulomb interactions and the absence of conservation of momentum. The formation of multiple excitons is dependent on different excitation parameters and the dissipation. We study this process within a Lindblad quantum rate equation using the full many-particle states. We optically excite the system by creating a single high energy exciton ESX in resonance to a double exciton EDX. With Coulomb electron-electron interaction, the population can be transferred from the single exciton to the double exciton state by impact ionisation (inverse Auger process). The ratio between the recombination processes and the absorbed photons provide the yield of the structure. We observe a quantum yield of comparable value to experiment assuming typical experimental conditions for a 4 nm PbS quantum dot.

  19. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  20. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  1. Nanocrystal technology, drug delivery and clinical applications

    PubMed Central

    Junghanns, Jens-Uwe A H; Müller, Rainer H

    2008-01-01

    Nanotechnology will affect our lives tremendously over the next decade in very different fields, including medicine and pharmacy. Transfer of materials into the nanodimension changes their physical properties which were used in pharmaceutics to develop a new innovative formulation principle for poorly soluble drugs: the drug nanocrystals. The drug nanocrystals do not belong to the future; the first products are already on the market. The industrially relevant production technologies, pearl milling and high pressure homogenization, are reviewed. The physics behind the drug nanocrystals and changes of their physical properties are discussed. The marketed products are presented and the special physical effects of nanocrystals explained which are utilized in each market product. Examples of products in the development pipelines (clinical phases) are presented and the benefits for in vivo administration of drug nanocrystals are summarized in an overview. PMID:18990939

  2. Copper Selenide Nanocrystals for Photothermal Therapy

    PubMed Central

    Hessel, Colin M.; Pattani, Varun; Rasch, Michael; Panthani, Matthew G.; Koo, Bonil; Tunnell, James W.; Korgel, Brian A.

    2011-01-01

    Ligand-stabilized copper selenide (Cu2−xSe) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 107 cm−1 M−1 at 980 nm. When excited with 800 nm light, the Cu2−xSe nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu2−xSe nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 minutes of laser irradiation at 33 W/cm2, demonstrating the viabilitiy of Cu2−xSe nanocrystals for photothermal therapy applications. PMID:21553924

  3. Synthesis of colloidal uranium-dioxide nanocrystals.

    PubMed

    Wu, Huimeng; Yang, Yongan; Cao, Y Charles

    2006-12-27

    In this paper, we have developed an organic-phase synthesis method for producing size-controlled, nearly monodispersed, colloidal uranium-dioxide nanocrystals. These UO2 nanocrystals are potentially important to applications such as nuclear fuel materials, catalysts, and thermopower materials. In addition, we have systematically mapped out the functions of the solvents (oleic acid, oleylamine, and 1-octadecene) in the synthesis, and we found that N-(cis-9-octadecenyl)oleamide-a product of the condensation of oleic acid and oleylamine-can substantially affect the formation of UO2 nanocrystals. Importantly, these results provide fundamental insight into the mechanisms of UO2 nanocrystal synthesis. Moreover, because a mixture of oleic acid and oleylamine has been widely used in synthesizing a variety of high-quality metal or metal-oxide nanocrystals, the results herein should also be important for understanding the detailed mechanisms of these syntheses. PMID:17177400

  4. Copper selenide nanocrystals for photothermal therapy.

    PubMed

    Hessel, Colin M; Pattani, Varun P; Rasch, Michael; Panthani, Matthew G; Koo, Bonil; Tunnell, James W; Korgel, Brian A

    2011-06-01

    Ligand-stabilized copper selenide (Cu(2-x)Se) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near-infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 10(7) cm(-1) M(-1) at 980 nm. When excited with 800 nm light, the Cu(2-x)Se nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu(2-x)Se nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 min of laser irradiation at 33 W/cm(2), demonstrating the viabilitiy of Cu(2-x)Se nanocrystals for photothermal therapy applications. PMID:21553924

  5. Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris(tert-butyldimethylsilyl)phosphine.

    PubMed

    Joung, Somyoung; Yoon, Sungwoo; Han, Chang-Soo; Kim, Youngjo; Jeong, Sohee

    2012-01-01

    Colloidal III-V semiconductor nanocrystal quantum dots [NQDs] have attracted interest because they have reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals are limited by difficulties in their synthesis. In particular, it is difficult to control nucleation because the molecular bonds in III-V semiconductors are highly covalent. A synthetic approach of InP NQDs was presented using newly synthesized organometallic phosphorus [P] precursors with different functional moieties while preserving the P-Si bond. Introducing bulky side chains in our study improved the stability while facilitating InP formation with strong confinement at a readily low temperature regime (210°C to 300°C). Further shell coating with ZnS resulted in highly luminescent core-shell materials. The design and synthesis of P precursors for high-quality InP NQDs were conducted for the first time, and we were able to control the nucleation by varying the reactivity of P precursors, therefore achieving uniform large-sized InP NQDs. This opens the way for the large-scale production of high-quality Cd-free nanocrystal quantum dots. PMID:22289352

  6. Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris( tert-butyldimethylsilyl)phosphine

    NASA Astrophysics Data System (ADS)

    Joung, Somyoung; Yoon, Sungwoo; Han, Chang-Soo; Kim, Youngjo; Jeong, Sohee

    2012-01-01

    Colloidal III-V semiconductor nanocrystal quantum dots [NQDs] have attracted interest because they have reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals are limited by difficulties in their synthesis. In particular, it is difficult to control nucleation because the molecular bonds in III-V semiconductors are highly covalent. A synthetic approach of InP NQDs was presented using newly synthesized organometallic phosphorus [P] precursors with different functional moieties while preserving the P-Si bond. Introducing bulky side chains in our study improved the stability while facilitating InP formation with strong confinement at a readily low temperature regime (210°C to 300°C). Further shell coating with ZnS resulted in highly luminescent core-shell materials. The design and synthesis of P precursors for high-quality InP NQDs were conducted for the first time, and we were able to control the nucleation by varying the reactivity of P precursors, therefore achieving uniform large-sized InP NQDs. This opens the way for the large-scale production of high-quality Cd-free nanocrystal quantum dots.

  7. Exploiting the colloidal nanocrystal library to construct electronic devices

    NASA Astrophysics Data System (ADS)

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T.; Murray, Christopher B.; Kagan, Cherie R.

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high–dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second.

  8. Exploiting the colloidal nanocrystal library to construct electronic devices.

    PubMed

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high-dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second. PMID:27124455

  9. Continuous Growth of Metal Oxide Nanocrystals: Enhanced Control of Nanocrystal Size and Radial Dopant Distribution.

    PubMed

    Jansons, Adam W; Hutchison, James E

    2016-07-26

    The ability to precisely control the composition of nanocrystals, similar to the way organic chemists control the structure of small molecules, remains an important challenge in nanoscience. Rather than dictating nanocrystal size through the nucleation event, growth of nanocrystals through continuous precursor addition would allow fine structural control. Herein, we present a method of growth for indium oxide nanocrystals that relies on the slow addition of an indium carboxylate precursor into hot oleyl alcohol. Nanocrystal size and structure can be governed at a subnanometer scale, and it is possible to precisely control core size over a range of three to at least 22 nm with dispersities as low as 7%. Growth can be stopped and restarted repeatedly without aggregation or passivation. We show that the volume of the nanocrystal core (and thus molecular weight) increases linearly with added monomer and the number of nanocrystals remains constant throughout the growth process, yielding an extremely predictable approach to size control. It is also possible to place metal oxide shells (e.g., Sn-doped In2O3 (ITO)) at various radial positions within the nanocrystal, and we use this approach to synthesize ITO/In2O3 core/shell nanocrystals as well as In2O3/ITO/In2O3 core/shell/shell nanocrystals. PMID:27328328

  10. Superconductivity in colloidal lead nanocrystals

    NASA Astrophysics Data System (ADS)

    Zolotavin, Pavlo

    Monodisperse colloidal lead nanoparticles with diameters ranging from 4.4 to 20 nm were prepared by a self-limiting growth method. The nanoparticles are protected from oxidation by an amorphous lead-tin oxide shell of 1.5-2 nm thickness. The magnetic susceptibility of the particles was measured as a function of size, temperature and magnetic field. The Meissner effect was observed indicating the superconducting transition. For the 20 and 16 nm particles, the critical temperature is suppressed to 6.9 K from the bulk value of 7.2 K and is further reduced for smaller particles. Depending on the size of the particles, the critical field is enhanced by 60 to 140 times. The coupling between particles was in situ controlled through the conversion of the oxides present on the surface of the nanoparticles to chalcogenides. This transformation allows for a 109-fold increase in the conductivity. The temperature of the onset of the superconductivity was found to depend upon the degree of coupling of the nanoparticles in the vicinity of the insulator - superconductor transition. The critical current density of the best sample of Pb/PbSe nanocrystals at zero magnetic field was determined to be 4 x 103 A/cm 2. In turn, the critical field of the sample shows 50-fold enhancement compared to bulk Pb. A method to convert the original Pb/PbO nanocrystals into colloidal Pb/PbS (Se, Te) particle was developed. This alleviates the necessity of chemical post processing and provides a truly colloidal superconductor. Paramagnetic Meissner effect of abnormally large amplitude is observed for Pb/PbTe nanocrystal assemblies. The material described in this manuscript is the first nanostructured superconductor prepared by the bottom-up approach starting from colloidal nanoparticles.

  11. Plasmonic nanocrystal solar cells utilizing strongly confined radiation.

    PubMed

    Kholmicheva, Natalia; Moroz, Pavel; Rijal, Upendra; Bastola, Ebin; Uprety, Prakash; Liyanage, Geethika; Razgoniaev, Anton; Ostrowski, Alexis D; Zamkov, Mikhail

    2014-12-23

    The ability of metal nanoparticles to concentrate light via the plasmon resonance represents a unique opportunity for funneling the solar energy in photovoltaic devices. The absorption enhancement in plasmonic solar cells is predicted to be particularly prominent when the size of metal features falls below 20 nm, causing the strong confinement of radiation modes. Unfortunately, the ultrashort lifetime of such near-field radiation makes harvesting the plasmon energy in small-diameter nanoparticles a challenging task. Here, we develop plasmonic solar cells that harness the near-field emission of 5 nm Au nanoparticles by transferring the plasmon energy to band gap transitions of PbS semiconductor nanocrystals. The interfaces of Au and PbS domains were designed to support a rapid energy transfer at rates that outpace the thermal dephasing of plasmon modes. We demonstrate that central to the device operation is the inorganic passivation of Au nanoparticles with a wide gap semiconductor, which reduces carrier scattering and simultaneously improves the stability of heat-prone plasmonic films. The contribution of the Au near-field emission toward the charge carrier generation was manifested through the observation of an enhanced short circuit current and improved power conversion efficiency of mixed (Au, PbS) solar cells, as measured relative to PbS-only devices. PMID:25403025

  12. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  13. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  14. The Physics of Semiconductors

    NASA Astrophysics Data System (ADS)

    Grundmann, Marius

    The historic development of semiconductor physics and technology began in the second half of the 19th century. Interesting discussions of the early history of the physics and chemistry of semiconductors can be found in treatises of G. Busch [2] and Handel [3]. The history of semiconductor industry can be followedin the text of Morris [4] and Holbrook et al. [5]. In 1947, the realization of the transistor was the impetus to a fast-paced development that created the electronics and photonics industries. Products founded on the basis of semiconductor devices such as computers (CPUs, memories), optical-storage media (lasers for CD, DVD), communication infrastructure (lasers and photodetectors for optical-fiber technology, high frequency electronics for mobile communication), displays (thin film transistors, LEDs), projection (laser diodes) and general lighting (LEDs) are commonplace. Thus, fundamental research on semiconductors and semiconductor physics and its offspring in the form of devices has contributed largely to the development of modern civilization and culture.

  15. Photon-induced formation of CdS nanocrystals in selected areas of polymer matrices

    NASA Astrophysics Data System (ADS)

    Athanassiou, Athanassia; Cingolani, Roberto; Tsiranidou, Elsa; Fotakis, Costas; Laera, Anna Maria; Piscopiello, Emanuela; Tapfer, Leander

    2007-10-01

    We demonstrate light-induced formation of semiconductor quantum dots in TOPAS® polymer matrix with very high control of their size and their spatial localization. Irradiation with UV laser pulses of polymer films embedding Cd thiolate precursors results in the formation of cadmium sulfide nanocrystals well confined in the irradiation area, through a macroscopically nondestructive procedure for the host matrix. With increasing number of laser pulses, we accomplish the formation of nanoparticles with gradually increasing dimensions, resulting in the dynamic change of the spectra emitted by the formed nanocomposite areas. The findings are supported by x-ray diffraction and transmission electron microscopy measurements.

  16. Photon-induced formation of CdS nanocrystals in selected areas of polymer matrices

    SciTech Connect

    Athanassiou, Athanassia; Cingolani, Roberto; Tsiranidou, Elsa; Fotakis, Costas; Laera, Anna Maria; Piscopiello, Emanuela; Tapfer, Leander

    2007-10-08

    We demonstrate light-induced formation of semiconductor quantum dots in TOPAS registered polymer matrix with very high control of their size and their spatial localization. Irradiation with UV laser pulses of polymer films embedding Cd thiolate precursors results in the formation of cadmium sulfide nanocrystals well confined in the irradiation area, through a macroscopically nondestructive procedure for the host matrix. With increasing number of laser pulses, we accomplish the formation of nanoparticles with gradually increasing dimensions, resulting in the dynamic change of the spectra emitted by the formed nanocomposite areas. The findings are supported by x-ray diffraction and transmission electron microscopy measurements.

  17. Spinel ferrite nanocrystals embedded inside ZnO: Magnetic, electronic, and magnetotransport properties

    NASA Astrophysics Data System (ADS)

    Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Markó, D.; Mücklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.; Schmidt, H.

    2009-09-01

    In this paper we show that spinel ferrite nanocrystals ( NiFe2O4 , and CoFe2O4 ) can be texturally embedded inside a ZnO matrix by ion implantation and postannealing. The two kinds of ferrites show different magnetic properties, e.g., coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magnetoelectronics. This hybrid system can be tuned by selecting different transition-metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.

  18. Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties

    SciTech Connect

    Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Marko, D.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.; Schmidt, H.

    2009-08-21

    In this paper we show that spinel ferrite nanocrystals (NiFe{sub 2}O{sub 4}, and CoFe{sub 2}O{sub 4}) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.

  19. Progress in the study of drug nanocrystals.

    PubMed

    Shi, Jing; Guo, Fei; Zheng, Aiping; Zhang, Xiaoyan; Sun, Jianxu

    2015-12-01

    The poor water solubility of many candidate drugs remains a major obstacle to their development and clinical use, especially for oral drug delivery. Nanocrystal technology can improve the solubility and dissolution rates of many poorly water-soluble drugs very effectively, significantly improving their oral bioavailability and decreasing the food effect. For this reason, this technology is becoming a key area of drug delivery research. This review presents much of the recent progress in nanocrystal drug pharmaceuticals, including the characteristics, composition, preparation technology, and clinical applications of these drugs. Finally, the effect of nanocrystal technology on insoluble drugs is quantified and described. PMID:26817271

  20. Semiconductor microcavity lasers

    SciTech Connect

    Gourley, P.L.; Wendt, J.R.; Vawter, G.A.; Warren, M.E.; Brennan, T.M.; Hammons, B.E.

    1994-02-01

    New kinds of semiconductor microcavity lasers are being created by modern semiconductor technologies like molecular beam epitaxy and electron beam lithography. These new microcavities exploit 3-dimensional architectures possible with epitaxial layering and surface patterning. The physical properties of these microcavities are intimately related to the geometry imposed on the semiconductor materials. Among these microcavities are surface-emitting structures which have many useful properties for commercial purposes. This paper reviews the basic physics of these microstructured lasers.

  1. Structural Investigations of Surfaces and Orientation-SpecificPhenomena in Nanocrystals and Their Assemblies

    SciTech Connect

    Aruguete, Deborah Michiko

    2006-06-17

    Studies of colloidal nanocrystals and their assemblies are presented. Two of these studies concern the atomic-level structural characterization of the surfaces, interfaces, and interiors present in II-VI semiconductor nanorods. The third study investigates the crystallographic arrangement of cobalt nanocrystals in self-assembled aggregates. Crystallographically-aligned assemblies of colloidal CdSe nanorods are examined with linearly-polarized Se-EXAFS spectroscopy, which probes bonding along different directions in the nanorod. This orientation-specific probe is used, because it is expected that the presence of specific surfaces in a nanorod might cause bond relaxations specific to different crystallographic directions. Se-Se distances are found to be contracted along the long axis of the nanorod, while Cd-Se distances display no angular dependence, which is different from the bulk. Ab-initio density functional theory calculations upon CdSe nanowires indicate that relaxations on the rod surfaces cause these changes. ZnS/CdS-CdSe core-shell nanorods are studied with Se, Zn, Cd, and S X-ray absorption spectroscopy (XAS). It is hypothesized that there are two major factors influencing the core and shell structures of the nanorods: the large surface area-to-volume ratio, and epitaxial strain. The presence of the surface may induce bond rearrangements or relaxations to minimize surface energy; epitaxial strain might cause the core and shell lattices to contract or expand to minimize strain energy. A marked contraction of Zn-S bonds is observed in the core-shell nanorods, indicating that surface relaxations may dominate the structure of the nanorod (strain might otherwise drive the Zn-S lattice to accommodate the larger CdS or CdSe lattices via bond expansion). EXAFS and X-ray diffraction (XRD) indicate that Cd-Se bond relaxations might be anisotropic, an expected phenomenon for a rod-shaped nanocrystal. Ordered self-assembled aggregates of cobalt nanocrystals are

  2. Structural investigations of surfaces and orientation-specific phenomena in nanocrystals and their assemblies

    NASA Astrophysics Data System (ADS)

    Aruguete, Deborah Michiko

    Studies of colloidal nanocrystals and their assemblies are presented. Two of these studies concern the atomic-level structural characterization of the surfaces, interfaces, and interiors present in II-VI semiconductor nanorods. The third study investigates the crystallographic arrangement of cobalt nanocrystals in self-assembled aggregates. Crystallographically-aligned assemblies of colloidal CdSe nanorods are examined with linearly-polarized Se-EXAFS spectroscopy, which probes bonding along different directions in the nanorod. This orientation-specific probe is used, because it is expected that the presence of specific surfaces in a nanorod might cause bond relaxations specific to different crystallographic directions. Se-Se distances are found to be contracted along the long axis of the nanorod, while Cd-Se distances display no angular dependence, which is different from the bulk. Ab-initio density functional theory calculations upon CdSe nanowires indicate that relaxations on the rod surfaces cause these changes. ZnS/CdS-CdSe core-shell nanorods are studied with Se, Zn, Cd, and S X-ray absorption spectroscopy (XAS). It is hypothesized that there are two major factors influencing the core and shell structures of the nanorods: the large surface area-to-volume ratio, and epitaxial strain. The presence of the surface may induce bond rearrangements or relaxations to minimize surface energy, epitaxial strain might cause the core and shell lattices to contract or expand to minimize strain energy. A marked contraction of Zn-S bonds is observed in the core-shell nanorods, indicating that surface relaxations may dominate the structure of the nanorod (strain might otherwise drive the Zn-S lattice to accommodate the larger US or CdSe lattices via bond expansion). EXAFS and X-ray diffraction (XRD) indicate that Cd-Se bond relaxations might be anisotropic, an expected phenomenon for a rod-shaped nanocrystal. Ordered self-assembled aggregates of cobalt nanocrystals are

  3. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  4. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  5. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  6. CDTE CERAMICS BASED ON COMPRESSION OF NANOCRYSTAL POWDER.

    SciTech Connect

    KOLESNIKOV, N.N.; BORISENKO, E.B.; BORISENKO, D.N.; JAMES, R.B.; KVEDER, V.V.; GARTMAN, V.K.; GNESIN, G.A.

    2005-07-01

    Wide-gap II-VI semiconductor crystalline materials are conventionally used in laser optics, light emitting devices, and nuclear detectors. The advances made in the studies of nanocrystals and in the associated technologies have created great interest in the design of semiconductor devices based on these new materials. The objectives of this work are to study the microstructure and the properties of the new material produced through CdTe nanopowder compression and to consider the prospects of its use in the design of ionizing-radiation detectors and in laser optics. Highly dense material produced of 7-10 nm CdTe particles under pressure of 20-600 MPa at temperatures from 20 to 200 C was analyzed using x-ray diffractometry, texture analysis; light and scanning electron microscopy, and optical spectrophotometry. The mechanical and electrical properties of the compacted material were measured and compared with similar characteristics of the conventionally grown single crystals. Phase transformation from metastable to stable crystal structure caused by deformation was observed in the material. Sharp crystallographic texture {l_brace}001{r_brace} that apparently affects specific mechanical, electrical and optical characteristics of compacted CdTe was observed. The specific resistivity calculated from the linear current-voltage characteristics was about 10{sup 10} Ohm x cm, which is a promisingly high value regarding the possibility of using this material in the design of semiconductor radiation detectors. The optical spectra show that the transmittance in the infrared region is sufficient to consider the prospects of possible applications of CdTe ceramics in laser optics.

  7. Materials chemistry. Composition-matched molecular "solders" for semiconductors.

    PubMed

    Dolzhnikov, Dmitriy S; Zhang, Hao; Jang, Jaeyoung; Son, Jae Sung; Panthani, Matthew G; Shibata, Tomohiro; Chattopadhyay, Soma; Talapin, Dmitri V

    2015-01-23

    We propose a general strategy to synthesize largely unexplored soluble chalcogenidometallates of cadmium, lead, and bismuth. These compounds can be used as "solders" for semiconductors widely used in photovoltaics and thermoelectrics. The addition of solder helped to bond crystal surfaces and link nano- or mesoscale particles together. For example, CdSe nanocrystals with Na2Cd2Se3 solder was used as a soluble precursor for CdSe films with electron mobilities exceeding 300 square centimeters per volt-second. CdTe, PbTe, and Bi2Te3 powders were molded into various shapes in the presence of a small additive of composition-matched chalcogenidometallate or chalcogel, thus opening new design spaces for semiconductor technologies. PMID:25569110

  8. Semiconductor Quantum Rods as Single Molecule FluorescentBiological Labels

    SciTech Connect

    Fu, Aihua; Gu, Weiwei; Boussert, Benjamine; Koski, Kristie; Gerion, Daniele; Manna, Liberato; Le Gros, Mark; Larabell, Carolyn; Alivisatos, A. Paul

    2006-05-29

    In recent years, semiconductor quantum dots have beenapplied with great advantage in a wide range of biological imagingapplications. The continuing developments in the synthesis of nanoscalematerials and specifically in the area of colloidal semiconductornanocrystals have created an opportunity to generate a next generation ofbiological labels with complementary or in some cases enhanced propertiescompared to colloidal quantum dots. In this paper, we report thedevelopment of rod shaped semiconductor nanocrystals (quantum rods) asnew fluorescent biological labels. We have engineered biocompatiblequantum rods by surface silanization and have applied them fornon-specific cell tracking as well as specific cellular targeting. Theproperties of quantum rods as demonstrated here are enhanced sensitivityand greater resistance for degradation as compared to quantum dots.Quantum rods have many potential applications as biological labels insituations where their properties offer advantages over quantumdots.

  9. Solvent-like ligand-coated ultrasmall cadmium selenide nanocrystals: strong electronic coupling in a self-organized assembly

    NASA Astrophysics Data System (ADS)

    Lawrence, Katie N.; Johnson, Merrell A.; Dolai, Sukanta; Kumbhar, Amar; Sardar, Rajesh

    2015-07-01

    Strong inter-nanocrystal electronic coupling is a prerequisite for delocalization of exciton wave functions and high conductivity. We report 170 meV electronic coupling energy of short chain poly(ethylene glycol) thiolate-coated ultrasmall (<2.5 nm in diameter) CdSe semiconductor nanocrystals (SNCs) in solution. Cryo-transmission electron microscopy analysis showed the formation of a pearl-necklace assembly of nanocrystals in solution with regular inter-nanocrystal spacing. The electronic coupling was studied as a function of CdSe nanocrystal size where the smallest nanocrystals exhibited the largest coupling energy. The electronic coupling in spin-cast thin-film (<200 nm in thickness) of poly(ethylene glycol) thiolate-coated CdSe SNCs was studied as a function of annealing temperature, where an unprecedentedly large, ~400 meV coupling energy was observed for 1.6 nm diameter SNCs, which were coated with a thin layer of poly(ethylene glycol) thiolates. Small-angle X-ray scattering measurements showed that CdSe SNCs maintained an order array inside the films. The strong electronic coupling of SNCs in a self-organized film could facilitate the large-scale production of highly efficient electronic materials for advanced optoelectronic device application.Strong inter-nanocrystal electronic coupling is a prerequisite for delocalization of exciton wave functions and high conductivity. We report 170 meV electronic coupling energy of short chain poly(ethylene glycol) thiolate-coated ultrasmall (<2.5 nm in diameter) CdSe semiconductor nanocrystals (SNCs) in solution. Cryo-transmission electron microscopy analysis showed the formation of a pearl-necklace assembly of nanocrystals in solution with regular inter-nanocrystal spacing. The electronic coupling was studied as a function of CdSe nanocrystal size where the smallest nanocrystals exhibited the largest coupling energy. The electronic coupling in spin-cast thin-film (<200 nm in thickness) of poly(ethylene glycol) thiolate

  10. Lifetime blinking in nonblinking nanocrystal quantum dots.

    PubMed

    Galland, Christophe; Ghosh, Yagnaseni; Steinbrück, Andrea; Hollingsworth, Jennifer A; Htoon, Han; Klimov, Victor I

    2012-01-01

    Nanocrystal quantum dots are attractive materials for applications as nanoscale light sources. One impediment to these applications is fluctuations of single-dot emission intensity, known as blinking. Recent progress in colloidal synthesis has produced nonblinking nanocrystals; however, the physics underlying blinking suppression remains unclear. Here we find that ultra-thick-shell CdSe/CdS nanocrystals can exhibit pronounced fluctuations in the emission lifetimes (lifetime blinking), despite stable nonblinking emission intensity. We demonstrate that lifetime variations are due to switching between the neutral and negatively charged state of the nanocrystal. Negative charging results in faster radiative decay but does not appreciably change the overall emission intensity because of suppressed nonradiative Auger recombination for negative trions. The Auger process involving excitation of a hole (positive trion pathway) remains efficient and is responsible for charging with excess electrons, which occurs via Auger-assisted ionization of biexcitons accompanied by ejection of holes. PMID:22713750

  11. Zirconia nanocrystals as submicron level biological label

    NASA Astrophysics Data System (ADS)

    Smits, K.; Liepins, J.; Gavare, M.; Patmalnieks, A.; Gruduls, A.; Jankovica, D.

    2012-08-01

    Inorganic nanocrystals are of increasing interest for their usage in biology and pharmacology research. Our interest was to justify ZrO2 nanocrystal usage as submicron level biological label in baker's yeast Saccharomyces cerevisia culture. For the first time (to our knowledge) images with sub micro up-conversion luminescent particles in biologic media were made. A set of undoped as well as Er and Yb doped ZrO2 samples at different concentrations were prepared by sol-gel method. The up-conversion luminescence for free standing and for nanocrystals with baker's yeast cells was studied and the differences in up-conversion luminescence spectra were analyzed. In vivo toxic effects of ZrO2 nanocrystals were tested by co-cultivation with baker's yeast.

  12. Colloidal nanocrystals and method of making

    SciTech Connect

    Kahen, Keith

    2015-10-06

    A tight confinement nanocrystal comprises a homogeneous center region having a first composition and a smoothly varying region having a second composition wherein a confining potential barrier monotonically increases and then monotonically decreases as the smoothly varying region extends from the surface of the homogeneous center region to an outer surface of the nanocrystal. A method of producing the nanocrystal comprises forming a first solution by combining a solvent and at most two nanocrystal precursors; heating the first solution to a nucleation temperature; adding to the first solution, a second solution having a solvent, at least one additional and different precursor to form the homogeneous center region and at most an initial portion of the smoothly varying region; and lowering the solution temperature to a growth temperature to complete growth of the smoothly varying region.

  13. A Unique Ternary Semiconductor-(Semiconductor/Metal) Nano-Architecture for Efficient Photocatalytic Hydrogen Evolution.

    PubMed

    Zhuang, Tao-Tao; Liu, Yan; Sun, Meng; Jiang, Shen-Long; Zhang, Ming-Wen; Wang, Xin-Chen; Zhang, Qun; Jiang, Jun; Yu, Shu-Hong

    2015-09-21

    It has been a long-standing demand to design hetero-nanostructures for charge-flow steering in semiconductor systems. Multi-component nanocrystals exhibit multifunctional properties or synergistic performance, and are thus attractive materials for energy conversion, medical therapy, and photoelectric catalysis applications. Herein we report the design and synthesis of binary and ternary multi-node sheath hetero-nanorods in a sequential chemical transformation procedure. As verified by first-principles simulations, the conversion from type-I ZnS-CdS heterojunction into type-II ZnS-(CdS/metal) ensures well-steered collections of photo-generated electrons at the exposed ZnS nanorod stem and metal nanoparticles while holes at the CdS node sheaths, leading to substantially improved photocatalytic hydrogen-evolution performance. PMID:26276905

  14. Semiconductor nanoplatelets: a new colloidal system for low-threshold high-gain stimulated emission (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pelton, Matthew A.; She, Chunxing; Fedin, Igor; Dolzhnikov, Dmitriy; Ithurria, Sandrine; Baghani, Erfan; O'Leary, Stephen K.; Demortiere, Arnaud; Schaller, Richard D.; Talapin, Dmitri V.

    2015-10-01

    Quantum wells (QWs) are thin semiconductor layers than confine electrons and holes in one dimension. They are widely used for optoelectronic devices, particularly semiconductor lasers, but have so far been produced using expensive epitaxial crystal-growth techniques. This has motivated research into the use of colloidal semiconductor nanocrystals, which can be synthesized chemically at low cost, and can be processed in the solution phase. However, initial demonstrations of optical gain from colloidal nanocrystals involved high thresholds. Recently, colloidal synthesis methods have been developed for the production of thin, atomically flat semiconductor nanocrystals, known as nanoplatelets (NPLs). We investigated relaxation of high-energy carriers in colloidal CdSe NPLs, and found that the relaxation is characteristic of a QW system. Carrier cooling and relaxation on time scales from picoseconds to hundreds of picoseconds are dominated by Auger-type exciton-exciton interactions. The picosecond-scale cooling of hot carriers is much faster than the exciton recombination rate, as required for use of these NPLs as optical gain and lasing materials. We therefore investigated amplified spontaneous emission using close-packed films of NPLs. We observed thresholds that were more than 4 times lower than the best reported value for colloidal nanocrystals. Moreover, gain in these films is 4 times higher than gain reported for other colloidal nanocrystals, and saturates at pump fluences more than two orders of magnitude above the ASE threshold. We attribute this exceptional performance to large optical cross-sections, relatively slow Auger recombination rates, and narrow ensemble emission linewidths.

  15. Tailorable, Visible Light Emission From Silicon Nanocrystals

    SciTech Connect

    Samara, G.A.; Wilcoxon, J.P.

    1999-07-20

    J. P. Wilcoxon and G. A. Samara Crystalline, size-selected Si nanocrystals in the size range 1.8-10 nm grown in inverse micellar cages exhibit highly structured optical absorption and photoluminescence (PL) across the visible range of the spectrum. The most intense PL for the smallest nanocrystals produced This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. to induce a useful level of visible photoluminescence (PL) from silicon (Si). The approaches understood. Visible PL has been observed from Si nanocrystals, or quantum dots, produced by a variety of techniques including aerosols,2 colloids,3 and ion implantation.4 However, all of The optical absorption spectra of our nanocrystals are much richer in spectral features spectrum of bulk Si where the spectral features reflect the details of the band structure shown in nanocrystals estimated to have a Si core diameter of 1-2 nm. These measured quantum those in the spectrum of bulk Si in Fig. 1 are striking indicating that nanocrystals of this size 8-Room temperature PL results on an HPLC size-selected, purified 2 nm nanocrystals but blue shifted by -0.4 eV due to quantum confinement. Excitation at 245 nm yields

  16. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant

    SciTech Connect

    Huang, LM; Liu, SY; Van Tassell, BJ; Liu, XH; Byro, A; Zhang, HN; Leland, ES; Akins, DL; Steingart, DA; Li, J; O'Brien, S

    2013-09-24

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized. (Ba; Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of. (Ba; Sr ) TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated

  17. Optical refrigeration of Yb3+:YAG nanocrystals

    NASA Astrophysics Data System (ADS)

    Nemova, Galina; Kashyap, Raman

    2015-03-01

    We have theoretically investigated the laser cooling process in Yb3+:YAG nanocrystals. We have developed an approach, which permits not only estimate the cooling process in Yb3+:YAG nanocrystals but compare this process with the laser cooling of the Yb3+:YAG bulk samples. The temperature dependences of all parameters of the system are taken into account. The cooperative effects such as re-absorption, the energy migration and cooperative luminescence have been considered.

  18. Spin injection into semiconductors

    NASA Astrophysics Data System (ADS)

    Oestreich, M.; Hübner, J.; Hägele, D.; Klar, P. J.; Heimbrodt, W.; Rühle, W. W.; Ashenford, D. E.; Lunn, B.

    1999-03-01

    The injection of spin-polarized electrons is presently one of the major challenges in semiconductor spin electronics. We propose and demonstrate a most efficient spin injection using diluted magnetic semiconductors as spin aligners. Time-resolved photoluminescence with a Cd0.98Mn0.02Te/CdTe structure proves the feasibility of the spin-alignment mechanism.

  19. Frequency-domain optical probing of coherent spins in nanocrystal quantum dots.

    PubMed

    Frey, J A; Berezovsky, J

    2012-08-27

    Spin-photon interactions such as the Faraday effect provide techniques for measuring coherent spin dynamics in semiconductors. In contrast to typical ultrafast pulsed laser techniques, which measure spin dynamics in the time domain with an intense, spectrally broad probe pulse, we demonstrate a frequency-domain spin-photon resonance effect using modulated continuous-wave lasers which enables measurement of GHz-scale coherent spin dynamics in semiconductors with minimal spectral linewidth. This technique permits high-resolution spectroscopic measurements not possible with ultrafast methods. We have employed this effect to observe coherent spin dynamics in CdSe nanocrystals using standard diode lasers. By fitting the results to the expected model, we extract electron g-factors, and spin coherence and dephasing times in agreement with time-domain measurements. PMID:23037054

  20. 3D Assembly of All-Inorganic Colloidal Nanocrystals into Gels and Aerogels.

    PubMed

    Sayevich, Vladimir; Cai, Bin; Benad, Albrecht; Haubold, Danny; Sonntag, Luisa; Gaponik, Nikolai; Lesnyak, Vladimir; Eychmüller, Alexander

    2016-05-17

    We report an efficient approach to assemble a variety of electrostatically stabilized all-inorganic semiconductor nanocrystals (NCs) by their linking with appropriate ions into multibranched gel networks. These all-inorganic non-ordered 3D assemblies benefit from strong interparticle coupling, which facilitates charge transport between the NCs with diverse morphologies, compositions, sizes, and functional capping ligands. Moreover, the resulting dry gels (aerogels) are highly porous monolithic structures, which preserve the quantum confinement of their building blocks. The inorganic semiconductor aerogel made of 4.5 nm CdSe colloidal NCs capped with I(-) ions and bridged with Cd(2+) ions had a large surface area of 146 m(2)  g(-1) . PMID:27100131

  1. Solution synthesis of germanium nanocrystals

    DOEpatents

    Gerung, Henry; Boyle, Timothy J.; Bunge, Scott D.

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  2. Polyimide Cellulose Nanocrystal Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  3. A luminescent nanocrystal stress gauge

    SciTech Connect

    Choi, Charina; Koski, Kristie; Olson, Andrew; Alivisatos, Paul

    2010-10-25

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe/CdS core/shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress, and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution.

  4. Soft epitaxy of nanocrystal superlattices

    NASA Astrophysics Data System (ADS)

    Rupich, Sara M.; Castro, Fernando C.; Irvine, William T. M.; Talapin, Dmitri V.

    2014-12-01

    Epitaxial heterostructures with precise registry between crystal layers play a key role in electronics and optoelectronics. In a close analogy, performance of nanocrystal (NC) based devices depends on the perfection of interfaces formed between NC layers. Here we systematically study the epitaxial growth of NC layers for the first time to enable the fabrication of coherent NC layers. NC epitaxy reveals an exceptional strain tolerance. It follows a universal island size scaling behaviour and shows a strain-driven transition from layer-by-layer to Stranski-Krastanov growth with non-trivial island height statistics. Kinetic bottlenecks play an important role in NC epitaxy, especially in the transition from sub-monolayer to multilayer coverage and the epitaxy of NCs with anisotropic shape. These findings provide a foundation for the rational design of epitaxial structures in a fundamentally and practically important size regime between atomic and microscopic systems.

  5. Electrochemical studies of the effects of the size, ligand and composition on the band structures of CdSe, CdTe and their alloy nanocrystals.

    PubMed

    Liu, Jinjin; Yang, Wanting; Li, Yunchao; Fan, Louzhen; Li, Yongfang

    2014-03-14

    In this paper, we have elucidated the fundamental principle of employing CV to investigate the band structures of semiconductor nanocrystals (SNCs), and have also built up an optimal protocol for performing such investigation. By utilizing this protocol, we are able to obtain well-defined and characteristic electrochemical redox signals of SNCs, which allows us to intensively explore the influences of the particle size, the surface ligand and particle composition on the band structures of CdSe, CdTe and their alloy nanocrystals. The size-, ligand- and composition-dependent band structures of CdSe and CdTe nanocrystals (NCs) have therefore been mapped out, respectively, which are generally consistent with the previous theoretical and experimental reports. We believe that the optimal protocol and the original results regarding electrochemical characterization of SNCs demonstrated in this paper will definitely benefit the better understanding, modulation and application of the unique electronic and optical properties of SNCs. PMID:24468655

  6. Symmetry-Defying Iron Pyrite (FeS2) Nanocrystals through Oriented Attachment

    PubMed Central

    Gong, Maogang; Kirkeminde, Alec; Ren, Shenqiang

    2013-01-01

    Iron pyrite (fool's gold, FeS2) is a promising earth abundant and environmentally benign semiconductor material that shows promise as a strong and broad absorber for photovoltaics and high energy density cathode material for batteries. However, controlling FeS2 nanocrystal formation (composition, size, shape, stoichiometry, etc.) and defect mitigation still remains a challenge. These problems represent significant limitations in the ability to control electrical, optical and electrochemical properties to exploit pyrite's full potential for sustainable energy applications. Here, we report a symmetry-defying oriented attachment FeS2 nanocrystal growth by examining the nanostructure evolution and recrystallization to uncover how the shape, size and defects of FeS2 nanocrystals changes during growth. It is demonstrated that a well-controlled reaction temperature and annealing time results in polycrystal-to-monocrystal formation and defect annihilation, which correlates with the performance of photoresponse devices. This knowledge opens up a new tactic to address pyrite's known defect problems. PMID:23807691

  7. Photoluminescence of CuInS2 nanocrystals: effect of surface modification

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin

    2011-09-01

    We have synthesized highly luminescent Cu-In-S(CIS) nanocrystals (NCs) by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS NCs with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS NCs was above 50%, which is 10 times higher than the initial QY of CIS NCs before surface modification (QY=3%). Detailed study on the luminescence mechanism implies that etching of the surface of NCs by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are known to be major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S NCs with less toxic and highly stable precursors. Investigation with the timeand the temperature-dependent photoluminescence showed that the trap related emission was minimized by surface modification and the donor-acceptor pair recombination was enhanced by controlling copper stoichiometry.xb

  8. Physical preparation and optical properties of CuSbS2 nanocrystals by mechanical alloying process

    NASA Astrophysics Data System (ADS)

    Zhang, Huihui; Xu, Qishu; Tan, Guolong

    2016-08-01

    CuSbS2 nanocrystals have been synthesized through mechanical alloying Cu, Sb and S elemental powders for 40 hs. The optical spectrum of as-milled CuSbS2 nano-powders demonstrates a direct gap of 1.35 eV and an indirect gap of 0.36 eV, which are similar to that of silicon and reveals the evidence for the indirect semiconductor characterization of CuSbS2. Afterwards, CuSbS2 nanocrystals were capped with trioctylphosphine oxide/trioctylphosphine/pyridine (TOPO/TOP). There appear four sharp absorption peaks within the region of 315 to 355 nm for the dispersion solution containing the capped nanocrystals. The multiple peaks are proposed to be originating from the energy level splitting of 1S electronic state into four discrete sub-levels, where electrons were excited into the conduction band and thus four exciton absorption peaks were produced. [Figure not available: see fulltext.

  9. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals.

    PubMed

    Mahler, Benoît; Lequeux, Nicolas; Dubertret, Benoît

    2010-01-27

    We report the synthesis of CdSe/CdS semiconductor core/shell nanocrystals with very thick (5 nm) CdS shells. As in the case of core CdSe nanocrystals, we show that a thick-shell CdSe/CdS core/shell structure can be synthesized in either a pure wurtzite (W) or a zinc-blende (ZB) crystal structure. While the growth of thick-shell wurtzite CdSe/CdS is quite straightforward, we observe that the growth of a CdS shell on zinc-blende CdSe cores is more difficult and leads to wurtzite/zinc-blende polytypism when primary amines are present during the shell formation. Using absorption spectra analysis to differentiate zinc blende from wurtzite CdSe, we show that primary amines can induce a nearly complete structural transformation of CdSe ZB cores into W cores. This better understanding of the CdSe ligand-dependent crystal structural evolution during shell growth is further used to grow large (10 nm)-diameter perfect zinc-blende CdSe core crystals emitting above 700 nm, and perfect ZB thick-shell CdSe/CdS nanocrystals. We observed that all thick-shell CdSe/CdS QDs have extremely reduced blinking events compared to thin-shell QDs, without any significant influence of crystalline structure and polytypism. PMID:20043669

  10. Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals.

    PubMed

    Senden, Tim; Rabouw, Freddy T; Meijerink, Andries

    2015-02-24

    Nanocrystals (NCs) doped with luminescent ions form an emerging class of materials. In contrast to excitonic transitions in semiconductor NCs, the optical transitions are localized and not affected by quantum confinement. The radiative decay rates of the dopant emission in NCs are nevertheless different from their bulk analogues due to photonic effects, and also the luminescence quantum yield (QY, important for applications) is affected. In the past, different theoretical models have been proposed to describe the photonic effects for dopant emission in NCs, with little experimental validation. In this work we investigate the photonic effects on the radiative decay rate of luminescent doped NCs using 4 nm LaPO4 NCs doped with Ce(3+) or Tb(3+) ions in different refractive index solvents and bulk crystals. We demonstrate that the measured influence of the refractive index on the radiative decay rate of the Ce(3+) emission, having near unity QY, is in excellent agreement with the theoretical nanocrystal-cavity model. Furthermore, we show how the nanocrystal-cavity model can be used to quantify the nonunity QY of Tb(3+)-doped LaPO4 NCs and demonstrate that, as a general rule, the QY is higher in media with higher refractive index. PMID:25584627

  11. Fabrication of nanostructure and formation of nanocrystal for non-volatile memory.

    PubMed

    Jung, Sungwook; Parm, I O; Jang, Kyung Soo; Park, Dae-Ho; Sohn, Byeong-Hyeok; Jung, Jin Chul; Zin, Wang Cheol; Choi, Suk-Ho; Dhungel, S K; Yi, J

    2006-11-01

    In this work, we have demonstrated that the nanocrystal created by combining the self-assembled block copolymer thin film with regular semiconductor processing can be applicable to non-volatile memory device with increased charge storage capacity over planar structures. Self-assembled block copolymer thin film for nanostructures with critical dimensions below photolithographic resolution limits has been used during all experiments. Nanoporous thin film from PS-b-PMMA diblock copolymer thin film with selective removal of PMMA domains was used to fabricate nanostructure and nanocrystal. We have also reported about surface morphologies and electrical properties of the nano-needle structure formed by RIE technique. The details of nanoscale pattern of the very uniform arrays using RIE are presented. We fabricated different surface structure of nanoscale using block copolymer. We also deposited Si-rich SiNx layer using ICP-CVD on the silicon surface of nanostructure. The deposited films were studied after annealing. PL studies demonstrated nanocrystal in Si-rich SiNx film on nanostructure of silicon. PMID:17252830

  12. Semiconductor materials: From gemstone to semiconductor

    NASA Astrophysics Data System (ADS)

    Nebel, Christoph E.

    2003-07-01

    For diamond to be a viable semiconductor it must be possible to change its conductivity by adding impurities - known as dopants. With the discovery of a new dopant that generates electron conductivity at room temperature, diamond emerges as an electronic-grade material.

  13. Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells

    NASA Astrophysics Data System (ADS)

    Lefrançois, Aurélie; Luszczynska, Beata; Pepin-Donat, Brigitte; Lombard, Christian; Bouthinon, Benjamin; Verilhac, Jean-Marie; Gromova, Marina; Faure-Vincent, Jérôme; Pouget, Stéphanie; Chandezon, Frédéric; Sadki, Saïd; Reiss, Peter

    2015-01-01

    Geminate recombination of bound polaron pairs at the donor/acceptor interface is one of the major loss mechanisms in organic bulk heterojunction solar cells. One way to overcome Coulomb attraction between opposite charge carriers and to achieve their full dissociation is the introduction of high dielectric permittivity materials such as nanoparticles of narrow band gap semiconductors. We selected CuInS2 nanocrystals of 7.4 nm size, which present intermediate energy levels with respect to poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM). Efficient charge transfer from P3HT to nanocrystals takes place as evidenced by light-induced electron spin resonance. Charge transfer between nanocrystals and PCBM only occurs after replacing bulky dodecanethiol (DDT) surface ligands with shorter 1,2-ethylhexanethiol (EHT) ligands. Solar cells containing in the active layer a ternary blend of P3HT:PCBM:CuInS2-EHT nanocrystals in 1:1:0.5 mass ratio show strongly improved short circuit current density and a higher fill factor with respect to the P3HT:PCBM reference device. Complementary measurements of the absorption properties, external quantum efficiency and charge carrier mobility indicate that enhanced charge separation in the ternary blend is at the origin of the observed behavior. The same trend is observed for blends using the glassy polymer poly(triarylamine) (PTAA).

  14. Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells

    PubMed Central

    Lefrançois, Aurélie; Luszczynska, Beata; Pepin-Donat, Brigitte; Lombard, Christian; Bouthinon, Benjamin; Verilhac, Jean-Marie; Gromova, Marina; Faure-Vincent, Jérôme; Pouget, Stéphanie; Chandezon, Frédéric; Sadki, Saïd; Reiss, Peter

    2015-01-01

    Geminate recombination of bound polaron pairs at the donor/acceptor interface is one of the major loss mechanisms in organic bulk heterojunction solar cells. One way to overcome Coulomb attraction between opposite charge carriers and to achieve their full dissociation is the introduction of high dielectric permittivity materials such as nanoparticles of narrow band gap semiconductors. We selected CuInS2 nanocrystals of 7.4 nm size, which present intermediate energy levels with respect to poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM). Efficient charge transfer from P3HT to nanocrystals takes place as evidenced by light-induced electron spin resonance. Charge transfer between nanocrystals and PCBM only occurs after replacing bulky dodecanethiol (DDT) surface ligands with shorter 1,2-ethylhexanethiol (EHT) ligands. Solar cells containing in the active layer a ternary blend of P3HT:PCBM:CuInS2-EHT nanocrystals in 1:1:0.5 mass ratio show strongly improved short circuit current density and a higher fill factor with respect to the P3HT:PCBM reference device. Complementary measurements of the absorption properties, external quantum efficiency and charge carrier mobility indicate that enhanced charge separation in the ternary blend is at the origin of the observed behavior. The same trend is observed for blends using the glassy polymer poly(triarylamine) (PTAA). PMID:25588811

  15. A facile strategy to decorate Cu9S5 nanocrystals on polyaniline nanowires and their synergetic catalytic properties

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Feng; Bian, Xiu-Jie; Li, Zhi-Cheng; Chao, Dan-Ming; Wang, Ce

    2013-10-01

    Here, we demonstrated a novel method to decorate Cu9S5 nanocrystals on polyaniline (PANI) nanowires using the dopant of mercaptoacetic acid (MAA) in the PANI matrix as the sulfur source under a hydrothermal reaction. TEM images showed that Cu9S5 nanocrystals with a size in the range of 5-20 nm were uniformly formed on the surface of PANI nanowires. Significantly, the as-prepared PANI/Cu9S5 composite nanowires have been proven to be novel peroxidase mimics toward the oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. Due to the synergetic effects between polyaniline nanowires and Cu9S5 nanocrystals, the obtained PANI/Cu9S5 composite nanowires exhibit superior catalytic activity over the independent components. This work not only presents a simple and versatile method to decorate semiconductor nanocrystals on the surface of conducting polymer nanostructures, but also provides fundamental guidelines for further investigations into the synergetic effect between conducting polymers and other materials.

  16. A facile strategy to decorate Cu9S5 nanocrystals on polyaniline nanowires and their synergetic catalytic properties

    PubMed Central

    Lu, Xiao-feng; Bian, Xiu-jie; Li, Zhi-cheng; Chao, Dan-ming; Wang, Ce

    2013-01-01

    Here, we demonstrated a novel method to decorate Cu9S5 nanocrystals on polyaniline (PANI) nanowires using the dopant of mercaptoacetic acid (MAA) in the PANI matrix as the sulfur source under a hydrothermal reaction. TEM images showed that Cu9S5 nanocrystals with a size in the range of 5–20 nm were uniformly formed on the surface of PANI nanowires. Significantly, the as-prepared PANI/Cu9S5 composite nanowires have been proven to be novel peroxidase mimics toward the oxidation of the peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2. Due to the synergetic effects between polyaniline nanowires and Cu9S5 nanocrystals, the obtained PANI/Cu9S5 composite nanowires exhibit superior catalytic activity over the independent components. This work not only presents a simple and versatile method to decorate semiconductor nanocrystals on the surface of conducting polymer nanostructures, but also provides fundamental guidelines for further investigations into the synergetic effect between conducting polymers and other materials. PMID:24129741

  17. Surface treatment of nanocrystal quantum dots after film deposition

    DOEpatents

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  18. Synthesis and characterization of luminescent oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Seo, Sooyeon

    Oxide nanocrystals with controlled geometries exhibit unique shape dependent optical and structural properties. Shape-controlled synthesis of rare earth doped gadolinium oxide (Gd2O3: Eu3+, Tb3+ or Er3+) and zinc gallate (ZnGa2O 4:Eu3+) nanocrystals by non-hydrolytic high temperature (˜300°C) methods are reported. Various shapes of Gd2O 3 nanocrystals were synthesized, including spheres and plates and advanced shapes such as curved rods and triangles. The nanocrystal shape was shown to be a function of the synthesis parameters, such as metal precursors (acetate, acetyl acetonate, chloride or octanoate) and surfactant type (tri-octyl phosphine oxide-TOPO, or hexadecanediol-HDD) and concentration (metal precursor: surfactant molar ratios of 1:2 to 1:5), as well as heating rate (5-25°C/min.) between pre-heat (200°C) and reaction (290°C) temperatures. The effects of these parameters upon nanocrystal shape were explained based on nucleation and growth of oxide nanocrystals. The photoluminescence intensity from Gd 2O3:Eu3+ was shown to increase as the concentration of dopant incorporated into the nanocrystals increased. The doping efficiency, defined to be the percentage of dopant incorporated into the nanocrystals, ranged from 0.57-6.1 mol%, was a function of shape of the Gd2O 3: Eu3 and was discussed in terms of the rate of reaction, product yield and crystal structure. To be used for labeling biomolecules such as DNA, RNA, or proteins, water soluble luminescent nanocrystals are required. Doped Gd2O 3 nanocrystals prepared by the non-hydrolytic hot solution method are hydrophobic and are not soluble in water due to organic surfactant encapsulation. A general strategy to convert hydrophobic luminescent nanocrystals (e.g. Gd 2O3) to water soluble particles by over-coating the hydrophobic surface with amphiphilic polymers is reported. Specifically, octylamine modified surfaces were coated with poly (acrylic acid) and water dispersions of Gd 2O3: Eu3+ were still

  19. Tunable surface plasmon resonance and enhanced electrical conductivity of In doped ZnO colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Ghosh, Sirshendu; Saha, Manas; de, S. K.

    2014-05-01

    We report a new synthesis process of colloidal indium (In) doped zinc oxide (ZIO) nanocrystals by a hot injection technique. By fine tuning the synthesis we reached the same nucleation temperature for indium oxide and zinc oxide which helped us to study a dopant precursor dependent In incorporation into the ZnO matrix by using different In sources. The dopant induced shape evolution changes the hexagonal pyramid structured ZnO to a platelet like structure upon 8% In doping. The introduction of trivalent In3+ into the ZnO lattice and consequent substitution of divalent Zn2+ generates free electrons in the conduction band which produces a plasmonic resonance in the infrared region. The electron concentration controls plasmon frequency as well as the band gap of host ZnO. The variation of the band gap and the modification of the conduction band have been explained by the Burstein-Moss effect and Mie's theory respectively. The In dopant changes the defect chemistry of pure ZnO nanocrystals which has been studied by photoluminescence and other spectroscopic measurements. The nanocrystals are highly stable in the organic medium and can be deposited as a crack free thin film on different substrates. Careful ligand exchange and thermal annealing of the spin cast film lead to a good conductive film (720 Ω per square to 120 Ω per square) with stable inherent plasmonic absorption in the infrared and 90% transmittance in the visible region. A temperature induced metal-semiconductor transition was found for doped ZnO nanocrystals. The transition temperature shifts to a lower temperature with increase of the doping concentration.We report a new synthesis process of colloidal indium (In) doped zinc oxide (ZIO) nanocrystals by a hot injection technique. By fine tuning the synthesis we reached the same nucleation temperature for indium oxide and zinc oxide which helped us to study a dopant precursor dependent In incorporation into the ZnO matrix by using different In sources. The

  20. Tuning the surface oxygen concentration of {111} surrounded ceria nanocrystals for enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Younis, Adnan; Chu, Dewei; Kaneti, Yusuf Valentino; Li, Sean

    2015-12-01

    For oxide semiconductors, the morphology, particle size and oxygen vacancies are usually considered as key influential parameters for photocatalytic degradation of organic pollutants/dyes. It is widely accepted that cation doping not only modifies their phase and microstructures but also introduces variations in oxygen vacancy concentration. Herein, we report the fabrication of sub-10 nm sized pure and indium doped CeO2 nanocrystals (NCs) via a facile, green hydrothermal method for the investigation of photocatalytic activities. X-ray diffraction and transmission electron microscopy were employed to examine the crystal phase and morphology of the as-prepared nanocrystals. Raman and X-ray photoelectron spectroscopy techniques were implemented to investigate the presence and variations in oxygen vacancy concentration in un-doped and indium doped CeO2 nanocrystals. The photocatalytic activity results revealed that 10 at% doping is the optimal indium doping level to demonstrate superior dye removal efficiency (~40%) over un-doped and doped CeO2 NCs. Moreover, the 10% In-doped CeO2 nanocrystals expressed excellent cycling stability and superior photocatalytic performance toward other dye pollutants. Finally, on the basis of our findings, a possible photocatalytic mechanism in which indium doping can generate more surface oxygen vacancies in the ceria lattice which delay the electron-hole recombination rates, thus increasing the lifetime of electron-hole separation for enhanced photocatalytic performances was proposed.For oxide semiconductors, the morphology, particle size and oxygen vacancies are usually considered as key influential parameters for photocatalytic degradation of organic pollutants/dyes. It is widely accepted that cation doping not only modifies their phase and microstructures but also introduces variations in oxygen vacancy concentration. Herein, we report the fabrication of sub-10 nm sized pure and indium doped CeO2 nanocrystals (NCs) via a facile

  1. Organization and magnetic properties of cigar-shaped ferrite nanocrystals

    NASA Astrophysics Data System (ADS)

    Ngo, A. T.; Pileni, M. P.

    2002-11-01

    Cigar-shaped maghemite (gamma-Fe2O3) nanocrystals dispersed in aqueous solution are subjected to a magnetic field during the deposition (process) on graphite. The nanocrystals can thus be oriented along their long axis to form ribbons at a mesoscopic scale whereas without a field the nanocrystals remain randomly oriented on the substrate. The magnetic properties markedly depend on the organization of the nanocrystals within the mesostructures.

  2. Controlled synthesis of hyper-branched inorganic nanocrystals withrich three-dimensional structures

    SciTech Connect

    Kanaras, Antonios G.; Sonnichsen, Carsten; Liu, Haitao; Alivisatos, A. Paul

    2005-07-27

    Studies of crystal growth kinetics are tightly integrated with advances in the creation of new nanoscale inorganic building blocks and their functional assemblies 1-11. Recent examples include the development of semiconductor nanorods which have potential uses in solar cells 12-17, and the discovery of a light driven process to create noble metal particles with sharp corners that can be used in plasmonics 18,19. In the course of studying basic crystal growth kinetics we developed a process for preparing branched semiconductor nanocrystals such as tetrapods and inorganic dendrimers of precisely controlled generation 20,21. Here we report the discovery of a crystal growth kinetics regime in which a new class of hyper-branched nanocrystals are formed. The shapes range from 'thorny balls', to tree-like ramified structures, to delicate 'spider net'-like particles. These intricate shapes depend crucially on a delicate balance of branching and extension. The multitudes of resulting shapes recall the diverse shapes of snowflakes 22.The three dimensional nature of the branch points here, however, lead to even more complex arrangements than the two dimensionally branched structures observed in ice. These hyper-branched particles not only extend the available three-dimensional shapes in nanoparticle synthesis ,but also provide a tool to study growth kinetics by carefully observing and modeling particle morphology.

  3. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect.

    PubMed

    Li, Haidong; Sang, Yuanhua; Chang, Sujie; Huang, Xin; Zhang, Yan; Yang, Rusen; Jiang, Huaidong; Liu, Hong; Wang, Zhong Lin

    2015-04-01

    An electric field built inside a crystal was proposed to enhance photoinduced carrier separation for improving photocatalytic property of semiconductor photocatalysts. However, a static built-in electric field can easily be saturated by the free carriers due to electrostatic screening, and the enhancement of photocatalysis, thus, is halted. To overcome this problem, here, we propose sonophotocatalysis based on a new hybrid photocatalyst, which combines ferroelectric nanocrystals (BaTiO3) and semiconductor nanoparticles (Ag2O) to form an Ag2O-BaTiO3 hybrid photocatalyst. Under periodic ultrasonic excitation, a spontaneous polarization potential of BaTiO3 nanocrystals in responding to ultrasonic wave can act as alternating built-in electric field to separate photoinduced carriers incessantly, which can significantly enhance the photocatalytic activity and cyclic performance of the Ag2O-BaTiO3 hybrid structure. The piezoelectric effect combined with photoelectric conversion realizes an ultrasonic-wave-driven piezophototronic process in the hybrid photocatalyst, which is the fundamental of sonophotocatalysis. PMID:25803813

  4. Nanocrystal Bioassembly: Asymmetry, Proximity, and Enzymatic Manipulation

    SciTech Connect

    Claridge, Shelley A.

    2008-05-01

    Research at the interface between biomolecules and inorganic nanocrystals has resulted in a great number of new discoveries. In part this arises from the synergistic duality of the system: biomolecules may act as self-assembly agents for organizing inorganic nanocrystals into functional materials; alternatively, nanocrystals may act as microscopic or spectroscopic labels for elucidating the behavior of complex biomolecular systems. However, success in either of these functions relies heavily uponthe ability to control the conjugation and assembly processes.In the work presented here, we first design a branched DNA scaffold which allows hybridization of DNA-nanocrystal monoconjugates to form discrete assemblies. Importantly, the asymmetry of the branched scaffold allows the formation of asymmetric2assemblies of nanocrystals. In the context of a self-assembled device, this can be considered a step toward the ability to engineer functionally distinct inputs and outputs.Next we develop an anion-exchange high performance liquid chromatography purification method which allows large gold nanocrystals attached to single strands of very short DNA to be purified. When two such complementary conjugates are hybridized, the large nanocrystals are brought into close proximity, allowing their plasmon resonances to couple. Such plasmon-coupled constructs are of interest both as optical interconnects for nanoscale devices and as `plasmon ruler? biomolecular probes.We then present an enzymatic ligation strategy for creating multi-nanoparticle building blocks for self-assembly. In constructing a nanoscale device, such a strategy would allow pre-assembly and purification of components; these constructs can also act as multi-label probes of single-stranded DNA conformational dynamics. Finally we demonstrate a simple proof-of-concept of a nanoparticle analog of the polymerase chain reaction.

  5. Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures

    SciTech Connect

    Dukovic, Gordana; Merkle, Maxwell G.; Nelson, James H.; Hughes, Steven M.; Alivisatos, A. Paul

    2008-08-06

    Semiconductor photocatalysis has been identified as a promising avenue for the conversion of solar energy into environmentally friendly fuels, most notably by the production of hydrogen from water.[1-5] Nanometer-scale materials in particular have attracted considerable scientific attention as the building blocks for light-harvesting applications.[6,7] Their desirable attributes include tunability of the optical properties with size, amenability to relatively inexpensive low-temperature processing, and a high degree of synthetic sophistication leading to increasingly complex and multi-functional architectures. For photocatalysis in particular, the high surface-to-volume ratios in nanoscale materials should lead to an increased availability of carriers for redox reactions on the nanoparticle surface. Recombination of photoexcited carriers directly competes with photocatalytic activity.[3] Charge separation is often achieved with multi-component heterostructures. An early example is the case of TiO2 powders functionalized with Pt and RuO2 particles, where photoexcited electrons are transferred to Pt (the reduction site) and holes to RuO2 (the oxidation site).[8] More recently, many colloidally synthesized nanometer-scale metal-semiconductor heterostructures have been reported.[7,9,10] A majority of these structures are made by thermal methods.[7,10] We have chosen to study photochemical formation of metal-semiconductor heterostructures. The detailed understanding of the mechanisms involved in photodeposition of metals on nanometer-scale semiconductors is necessary to enable a high degree of synthetic control. At the same time, because the results of metal deposition can be directly observed by electron microscopy, it can be used to understand how factors such as nanocrystal composition, shape, carrier dynamics, and surface chemistry influence the photochemical properties of semiconductor nanocrystals. In this communication, we report on the photodeposition of Pt on

  6. Diversity of sub-bandgap states in lead-sulfide nanocrystals: real-space spectroscopy and mapping at the atomic-scale

    NASA Astrophysics Data System (ADS)

    Gervasi, Christian F.; Kislitsyn, Dmitry A.; Allen, Thomas L.; Hackley, Jason D.; Maruyama, Ryuichiro; Nazin, George V.

    2015-11-01

    Colloidal semiconductor nanocrystals have emerged as a promising class of technological materials with optoelectronic properties controllable through quantum-confinement effects. Despite recent successes in this field, an important factor that remains difficult to control is the impact of the nanocrystal surface structure on the photophysics and electron transport in nanocrystal-based materials. In particular, the presence of surface defects and irregularities can result in the formation of localized sub-bandgap states that can dramatically affect the dynamics of charge carriers and electronic excitations. Here we use Scanning Tunneling Spectroscopy (STS) to investigate, in real space, sub-bandgap states in individual ligand-free PbS nanocrystals. In the majority of studied PbS nanocrystals, spatial mapping of electronic density of states with STS shows atomic-scale variations attributable to the presence of surface reconstructions. STS spectra show that the presence of surface reconstructions results in formation of surface-bound sub-bandgap electronic states. The nature of the surface reconstruction varies depending on the surface stoichiometry, with lead-rich surfaces producing unoccupied sub-bandgap states, and sulfur-rich areas producing occupied sub-bandgap states. Highly off-stoichiometric areas produce both occupied and unoccupied states showing dramatically reduced bandgaps. Different reconstruction patterns associated with specific crystallographic directions are also found for different nanocrystals. This study provides insight into the mechanisms of sub-bandgap state formation that, in a modified form, are likely to be applicable to ligand-passivated nanocrystal surfaces, where steric hindrance between ligands can result in under-coordination of surface atoms.Colloidal semiconductor nanocrystals have emerged as a promising class of technological materials with optoelectronic properties controllable through quantum-confinement effects. Despite recent

  7. Tunable surface plasmon resonance and enhanced electrical conductivity of In doped ZnO colloidal nanocrystals.

    PubMed

    Ghosh, Sirshendu; Saha, Manas; De, S K

    2014-06-21

    We report a new synthesis process of colloidal indium (In) doped zinc oxide (ZIO) nanocrystals by a hot injection technique. By fine tuning the synthesis we reached the same nucleation temperature for indium oxide and zinc oxide which helped us to study a dopant precursor dependent In incorporation into the ZnO matrix by using different In sources. The dopant induced shape evolution changes the hexagonal pyramid structured ZnO to a platelet like structure upon 8% In doping. The introduction of trivalent In(3+) into the ZnO lattice and consequent substitution of divalent Zn(2+) generates free electrons in the conduction band which produces a plasmonic resonance in the infrared region. The electron concentration controls plasmon frequency as well as the band gap of host ZnO. The variation of the band gap and the modification of the conduction band have been explained by the Burstein-Moss effect and Mie's theory respectively. The In dopant changes the defect chemistry of pure ZnO nanocrystals which has been studied by photoluminescence and other spectroscopic measurements. The nanocrystals are highly stable in the organic medium and can be deposited as a crack free thin film on different substrates. Careful ligand exchange and thermal annealing of the spin cast film lead to a good conductive film (720 Ω per square to 120 Ω per square) with stable inherent plasmonic absorption in the infrared and 90% transmittance in the visible region. A temperature induced metal-semiconductor transition was found for doped ZnO nanocrystals. The transition temperature shifts to a lower temperature with increase of the doping concentration. PMID:24842309

  8. Biomolecularly capped uniformly sized nanocrystalline materials: glutathione-capped ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Torres-Martínez, Claudia L.; Nguyen, Liem; Kho, Richard; Bae, Weon; Bozhilov, Krassimir; Klimov, Victor; Mehra, Rajesh K.

    1999-09-01

    Micro-organisms such as bacteria and yeasts form CdS to detoxify toxic cadmium ions. Frequently, CdS particles formed in yeasts and bacteria were found to be associated with specific biomolecules. It was later determined that these biomolecules were present at the surface of CdS. This coating caused a restriction in the growth of CdS particles and resulted in the formation of nanometre-sized semiconductors (NCs) that exhibited typical quantum confinement properties. Glutathione and related phytochelatin peptides were shown to be the biomolecules that capped CdS nanocrystallites synthesized by yeasts Candida glabrata and Schizosaccharomyces pombe. Although early studies showed the existence of specific biochemical pathways for the synthesis of biomolecularly capped CdS NCs, these NCs could be formed in vitro under appropriate conditions. We have recently shown that cysteine and cysteine-containing peptides such as glutathione and phytochelatins can be used in vitro to dictate the formation of discrete sizes of CdS and ZnS nanocrystals. We have evolved protocols for the synthesis of ZnS or CdS nanocrystals within a narrow size distribution range. These procedures involve three steps: (1) formation of metallo-complexes of cysteine or cysteine-containing peptides, (2) introduction of stoichiometric amounts of inorganic sulfide into the metallo-complexes to initiate the formation of nanocrystallites and finally (3) size-selective precipitation of NCs with ethanol in the presence of Na+. The resulting NCs were characterized by optical spectroscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction and electron diffraction. HRTEM showed that the diameter of the ZnS-glutathione nanocrystals was 3.45+/-0.5 nm. X-ray diffraction and electron diffraction analyses indicated ZnS-glutathione to be hexagonal. Photocatalytic studies suggest that glutathione-capped ZnS nanocrystals prepared by our procedure are highly efficient in degrading a test model

  9. Metal halide solid-state surface treatment for nanocrystal materials

    DOEpatents

    Luther, Joseph M.; Crisp, Ryan; Beard, Matthew C.

    2016-04-26

    Methods of treating nanocrystal and/or quantum dot devices are described. The methods include contacting the nanocrystals and/or quantum dots with a solution including metal ions and halogen ions, such that the solution displaces native ligands present on the surface of the nanocrystals and/or quantum dots via ligand exchange.

  10. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  11. Redox Chemistries and Plasmon Energies of Photodoped In2O3 and Sn-Doped In2O3 (ITO) Nanocrystals

    SciTech Connect

    Schimpf, AM; Lounis, SD; Runnerstrom, EL; Milliron, DJ; Gamelin, DR

    2015-01-14

    Plasmonic doped semiconductor nanocrystals promise exciting opportunities for new technologies, but basic features of the relationships between their structures, compositions, electronic structures, and optical properties remain poorly understood. Here, we report a quantitative assessment of the impact of composition on the energies of localized surface plasmon resonances (LSPRs) in colloidal tin-doped indium oxide (Sn:In2O3, or ITO) nanocrystals. Using a combination of aliovalent doping and photodoping, the effects of added electrons and impurity ions on the energies of LSPRs in colloidal In2O3 and ITO nanocrystals have been evaluated. Photodoping allows electron densities to be tuned post-synthetically in ITO nanocrystals, independent of their Sn content. Because electrons added photochemically are easily titrated, photodoping also allows independent quantitative determination of the dependence of the LSPR energy on nanocrystal composition and changes in electron density. The data show that ITO LSPR energies are affected by both electron and Sn concentrations, with composition yielding a broader plasmon tuning range than achievable by tuning carrier densities alone. Aspects of the photodoping energetics, as well as magneto-optical properties of these ITO LSPRs, are also discussed.

  12. Optical properties of colloidal germanium nanocrystals

    SciTech Connect

    WILCOXON,JESS P.; PROVENCIO,PAULA P.; SAMARA,GEORGE A.

    2000-05-01

    Highly crystalline germanium (Ge) nanocrystals in the size range 2--10 nm were grown in inverse micelles and purified and size-separated by high pressure liquid chromatography with on-line optical and electrical diagnostics. The nanocrystals retain the diamond structure of bulk Ge down to at least 2.0 nm (containing about 150 Ge atoms). The background- and impurity-free extinction and photoluminescence (PL) spectra of these nanocrystals revealed rich structure which was interpreted in terms of the bandstructure of Ge shifted to higher energies by quantum confinement. The shifts ranged from {minus}0.1 eV to over 1 eV for the various transitions. PL in the range 350--700 nm was observed from nanocrystals 2--5 nm in size. The 2.0 nm nanocrystals yielded the most intense PL (at 420 nm) which is believed to be intrinsic and attributed to direct recombination at {Gamma}. Excitation at high energy (250 nm) populates most of the conduction bands resulting in competing recombination channels and the observed broad PL spectra.

  13. Diversity of sub-bandgap states in lead-sulfide nanocrystals: real-space spectroscopy and mapping at the atomic-scale.

    PubMed

    Gervasi, Christian F; Kislitsyn, Dmitry A; Allen, Thomas L; Hackley, Jason D; Maruyama, Ryuichiro; Nazin, George V

    2015-12-14

    Colloidal semiconductor nanocrystals have emerged as a promising class of technological materials with optoelectronic properties controllable through quantum-confinement effects. Despite recent successes in this field, an important factor that remains difficult to control is the impact of the nanocrystal surface structure on the photophysics and electron transport in nanocrystal-based materials. In particular, the presence of surface defects and irregularities can result in the formation of localized sub-bandgap states that can dramatically affect the dynamics of charge carriers and electronic excitations. Here we use Scanning Tunneling Spectroscopy (STS) to investigate, in real space, sub-bandgap states in individual ligand-free PbS nanocrystals. In the majority of studied PbS nanocrystals, spatial mapping of electronic density of states with STS shows atomic-scale variations attributable to the presence of surface reconstructions. STS spectra show that the presence of surface reconstructions results in formation of surface-bound sub-bandgap electronic states. The nature of the surface reconstruction varies depending on the surface stoichiometry, with lead-rich surfaces producing unoccupied sub-bandgap states, and sulfur-rich areas producing occupied sub-bandgap states. Highly off-stoichiometric areas produce both occupied and unoccupied states showing dramatically reduced bandgaps. Different reconstruction patterns associated with specific crystallographic directions are also found for different nanocrystals. This study provides insight into the mechanisms of sub-bandgap state formation that, in a modified form, are likely to be applicable to ligand-passivated nanocrystal surfaces, where steric hindrance between ligands can result in under-coordination of surface atoms. PMID:26556538

  14. Nanocrystal-based biomimetic system for quantitative flow cytometry

    NASA Astrophysics Data System (ADS)

    Yim, Peter; Dobrovolskaia, Marina; Kang, HyeongGon; Clarke, Matthew; Patri, Anil K.; Hwang, Jeeseong

    2007-02-01

    Flow cytometry has been instrumental in rapid analysis of single cells since the 1970s. One of the common approaches is the immunofluorescence study involving labeling of cells with antibodies conjugated to organic fluorophores. More recently, as the application of flow cytometry extended from simple cell detection to single-cell proteomic analysis, the need of determining the actual number of antigens in a single cell has driven the flow cytomery technique towards a quantitative methodology. However, organic fluorophores are challenging to use as probes for quantitative detection due to the lack of photostability and of quantitative fluorescence standards. National Institute of Standards and Technologies (NIST) provides a set of fluorescein isothiocyanate (FITC) labeled beads, RM 8640, which is the only nationally recognized fluorescent particle standard. On the other hand, optical characteristics of semiconductor nanocrystals or quantum dots or QDs are superior to traditional dye molecules for the use as tags for biological and chemical fluorescent sensors and detectors. Compelling advantages of QDs include long photostability, broad spectral coverage, easy excitation, and suitability for multiplexed sensing. Recently, novel surface coatings have been developed to render QDs water soluble and bio-conjugation ready, leading to their use as fluorescent tags and sensors for a variety of biological applications including immunolabeling of cells. Here, we describe our approach of using fluorescent semiconductor QDs as a novel tool for quantitative flow cytometry detection. Our strategy involves the development of immuno-labeled QD-conjugated silica beads as "biomimetic cells." In addition to flow cytometry, the QD-conjugated silica beads were characterized by fluorescence microscopy to quantitate the number of QDs attached to a single silica bead. Our approach enables flow cytometry analysis to be highly sensitive, quantitative, and encompass a wide dynamic range of

  15. Shaping metal nanocrystals through epitaxial seeded growth

    SciTech Connect

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  16. Self-Organized Ultrathin Oxide Nanocrystals

    SciTech Connect

    Huo, Ziyang; Tsung, Chia-kuang; Huang, Wenyu; Fardy, Melissa; Yan, Ruoxue; Li, Yadong; Yang, Piedong; Zhang, Xiaofeng

    2009-01-08

    Sub-2-nm (down to one-unit cell) uniform oxide nanocrystals and highly ordered superstructures were obtained in one step using oleylamine and oleic acid as capping and structure directing agents. The cooperative nature of the nanocrystal growth and assembly resulted in mesoscopic one-dimensional ribbon-like superstructures made of these ultrathin nanocrystals. The process reported here is general and can be readily extended to the production of many other transition metal (TiO2, ZnO, Nb2O5) and rare earth oxide (Eu2O3, Sm2O3, Er2O3, Y2O3, Tb2O3, and Yb2O3) systems.

  17. Defect Engineering in Plasmonic Metal Oxide Nanocrystals.

    PubMed

    Runnerstrom, Evan L; Bergerud, Amy; Agrawal, Ankit; Johns, Robert W; Dahlman, Clayton J; Singh, Ajay; Selbach, Sverre M; Milliron, Delia J

    2016-05-11

    Defects may tend to make crystals interesting but they do not always improve performance. In doped metal oxide nanocrystals with localized surface plasmon resonance (LSPR), aliovalent dopants and oxygen vacancies act as centers for ionized impurity scattering of electrons. Such electronic damping leads to lossy, broadband LSPR with low quality factors, limiting applications that require near-field concentration of light. However, the appropriate dopant can mitigate ionized impurity scattering. Herein, we report the synthesis and characterization of a novel doped metal oxide nanocrystal material, cerium-doped indium oxide (Ce:In2O3). Ce:In2O3 nanocrystals display tunable mid-infrared LSPR with exceptionally narrow line widths and the highest quality factors observed for nanocrystals in this spectral region. Drude model fits to the spectra indicate that a drastic reduction in ionized impurity scattering is responsible for the enhanced quality factors, and high electronic mobilities reaching 33 cm(2)V(-1) s(-1) are measured optically, well above the optical mobility for tin-doped indium oxide (ITO) nanocrystals. We investigate the microscopic mechanisms underlying this enhanced mobility with density functional theory calculations, which suggest that scattering is reduced because cerium orbitals do not hybridize with the In orbitals that dominate the bottom of the conduction band. Ce doping may also reduce the equilibrium oxygen vacancy concentration, further enhancing mobility. From the absorption spectra of single Ce:In2O3 nanocrystals, we determine the dielectric function and by simulation predict strong near-field enhancement of mid-IR light, especially around the vertices of our synthesized nanocubes. PMID:27111427

  18. High-performance thermoelectric nanocomposites from nanocrystal building blocks

    PubMed Central

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu

    2016-01-01

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom–up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS–Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS–Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K. PMID:26948987

  19. Long-wavelength-emitting nanocrystals for bioassay applications

    NASA Astrophysics Data System (ADS)

    Leppert, Valerie J.; Harvey, Ashley S.; McCool, Geoff D.; Quinlan, Forest T.; Feng, Jun; Shan, Guomin; Stroeve, Pieter; Risbud, Subhash H.; Hammock, Bruce D.; Kennedy, Ian M.

    2002-11-01

    New fluorophores that can be excited using visible or near-infrared radiation are of considerable interest for application in environmental and complex bioassays, where background fluorescence is exacerbated by ultra-violet or blue excitation. Useful labels for biomolecules include infrared emitting semiconductor nanoparticles that can be blue-shifted into the near-infrared and visible through quantum confinement effects, oxides of iron, and rare earth oxides. In this work, the synthesis of 6 nm average diameter lead selenide nanocrystals (well below the Bohr exciton diameter of 92 nm) through a reverse micelle technique; and the synthesis of iron and europium oxides with particles less than 5 nm in diameter by pulsed laser ablation is reported. The europium oxide nanoparticles' emission showed a large Stokes shift (144 nm or 216 nm, depending on excitation wavelength); a narrow, symmetric emission line at 610 nm (FWHM of 8 nm); and long lifetime (300 μs). The Eu2O3 nanoparticles, which were coated with silica for functionalization, displayed a greatly enhanced sensitivity over a conventional ELISA (0.025 ng ml-1 vs. 0.1 ng ml-1) when run in an atrazine immunoassay.

  20. Robust, functional nanocrystal solids by infilling with atomic layer deposition

    SciTech Connect

    Liu, Yao; Gibbs, Markelle; Perkins, Craig L.; Tolentino, Jason; Zarghami, Mohammad H.; Bustamante, Jr., Jorge; Law, Matt

    2011-12-14

    Thin films of colloidal semiconductor nanocrystals (NCs) are inherently metatstable materials prone to oxidative and photothermal degradation driven by their large surface-to-volume ratios and high surface energies. The fabrication of practical electronic devices based on NC solids hinges on preventing oxidation, surface diffusion, ripening, sintering, and other unwanted physicochemical changes that can plague these materials. Here we use low-temperature atomic layer deposition (ALD) to infill conductive PbSe NC solids with metal oxides to produce inorganic nanocomposites in which the NCs are locked in place and protected against oxidative and photothermal damage. Infilling NC field-effect transistors and solar cells with amorphous alumina yields devices that operate with enhanced and stable performance for at least months in air. Furthermore, ALD infilling with ZnO lowers the height of the inter-NC tunnel barrier for electron transport, yielding PbSe NC films with electron mobilities of 1 cm² V-1 s-1. Our ALD technique is a versatile means to fabricate robust NC solids for optoelectronic devices.

  1. Color science of nanocrystal quantum dots for lighting and displays

    NASA Astrophysics Data System (ADS)

    Erdem, Talha; Demir, Hilmi Volkan

    2013-02-01

    Colloidal nanocrystals of semiconductor quantum dots (QDs) are gaining prominence among the optoelectronic materials in the photonics industry. Among their many applications, their use in artificial lighting and displays has attracted special attention thanks to their high efficiency and narrow emission band, enabling spectral purity and fine tunability. By employing QDs in color-conversion LEDs, it is possible to simultaneously accomplish successful color rendition of the illuminated objects together with a good spectral overlap between the emission spectrum of the device and the sensitivity of the human eye, in addition to a warm white color, in contrast to other conventional sources such as incandescent and fluorescent lamps, and phosphor-based LEDs, which cannot achieve all of these properties at the same time. In this review, we summarize the color science of QDs for lighting and displays, and present the recent developments in QD-integrated LEDs and display research. First, we start with a general introduction to color science, photometry, and radiometry. After presenting an overview of QDs, we continue with the spectral designs of QD-integrated white LEDs that have led to efficient lighting for indoor and outdoor applications. Subsequently, we discuss QD color-conversion LEDs and displays as proof-of-concept applications - a new paradigm in artificial lighting and displays. Finally, we conclude with a summary of research opportunities and challenges along with a future outlook.

  2. Colloidal nanocrystals integrated in epitaxial nanostructures: structural and optical properties

    NASA Astrophysics Data System (ADS)

    Arens, Ch.; Roussau, N.; Schikora, D.; Lischka, K.; Schöps, O.; Herz, E.; Woggon, U.; Litvinov, D.; Gerthsen, D.; Artemyev, M. V.

    2006-03-01

    Using the well established MBE process, we introduced colloidal nanocrystals (NCs) into monocrystalline semiconductor layers. CdSe nanorods (NRs) and CdSe(ZnS) core-shell nanodots (NDs) with radii R between 2 and 4 nm on a ZnSe surface are capped by thin (d 2R ) and thick (d > 2R ) MBE-grown ZnSe layers of a thickness d . This new growth technique does not rely on strain like the Stranski-Krastanow growth of CdSe/ZnSe quantum dot layers, and thus offers additional degrees of freedom for choosing the NC composition, shape and size. In- and ex- situ characterisations of the samples are showing a ZnSe cap layer of high crystalline quality. After the growth of the cap layer the dots preserve their shape and emission spectrum. High-resolution transmission electron microscope images show the direct connection of the NCs crystal lattice to the crystal lattices of the ZnSe buffer and the epitaxially grown cap layer.

  3. Magnetic relaxation of diluted and self-assembled cobalt nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Wen, G. H.; Xiao, Gang; Sun, Shouheng

    2003-04-01

    We have studied the magnetic relaxation of monodispersed 4 nm cubic ɛ-cobalt nanocrystals in both randomly oriented and pre-aligned assemblies. The blocking temperature TB, for the closely packed Co nanocrystal assemblies, is 30% higher than that of the highly diluted and well-dispersed Co nanocrystal-organic composites. This increase is attributed to the strong magnetic dipole interaction induced from the close packing of the nanocrystals. It is found that the frequency-dependent susceptibility data, obtained from the diluted samples, can be fitted to the half-circle Argand Diagrams, indicating a single barrier (or very narrow energy distribution) of the nanocrystals. This agrees well with the physical observation from TEM that the nanocrystals are monodispersed. The long time magnetic relaxation measurements reveal that energy barrier distribution in a pre-aligned nanocrystal assembly is significantly different from that in a randomly oriented one.

  4. Cloning nanocrystal morphology with soft templates

    NASA Astrophysics Data System (ADS)

    Thapa, Dev Kumar; Pandey, Anshu

    2016-08-01

    In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.

  5. Silicon and germanium nanocrystals: properties and characterization

    PubMed Central

    Carvalho, Alexandra; Coutinho, José

    2014-01-01

    Summary Group-IV nanocrystals have emerged as a promising group of materials that extends the realm of application of bulk diamond, silicon, germanium and related materials beyond their traditional boundaries. Over the last two decades of research, their potential for application in areas such as optoelectronic applications and memory devices has been progressively unraveled. Nevertheless, new challenges with no parallel in the respective bulk material counterparts have arisen. In this review, we consider what has been achieved and what are the current limitations with regard to growth, characterization and modeling of silicon and germanium nanocrystals and related materials. PMID:25383290

  6. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts.

    PubMed

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-10-21

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields. PMID:24056899

  7. Quantifying the density of surface capping ligands on semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Zhan, Naiqian; Palui, Goutam; Merkl, Jan-Philip; Mattoussi, Hedi

    2015-03-01

    We have designed a new set of coordinating ligands made of a lipoic acid (LA) anchor and poly(ethylene glycol) (PEG) hydrophilic moiety appended with a terminal aldehyde for the surface functionalization of QDs. This ligand design was combined with a recently developed photoligation strategy to prepare hydrophilic CdSe-ZnS QDs with good control over the fraction of intact aldehyde (-CHO) groups per nanocrystal. We further applied the efficient hydrazone ligation to react aldehyde-QDs with 2-hydrazinopyridine (2-HP). This covalent modification produces QD-conjugates with a well-defined absorption feature at 350 nm ascribed to the hydrazone chromophore. We exploited this unique optical signature to accurately measure the number of aldehyde groups per QD when the fraction of LA-PEG-CHO per nanocrystal was varied. This allowed us to extract an estimate for the number of LA-PEG ligands per QD. These results suggest that hydrazone ligation has the potential to provide a simple and general analytical method to estimate the number of surface ligands for a variety of nanocrystals such as metal, metal oxide and semiconductor nanocrystals.

  8. Connecting the Particles in the Box - Controlled Fusion of Hexamer Nanocrystal Clusters within an AB6 Binary Nanocrystal Superlattice

    PubMed Central

    Treml, Benjamin E.; Lukose, Binit; Clancy, Paulette; Smilgies, Detlef-M; Hanrath, Tobias

    2014-01-01

    Binary nanocrystal superlattices present unique opportunities to create novel interconnected nanostructures by partial fusion of specific components of the superlattice. Here, we demonstrate the binary AB6 superlattice of PbSe and Fe2O3 nanocrystals as a model system to transform the central hexamer of PbSe nanocrystals into a single fused particle. We present detailed structural analysis of the superlattices by combining high-resolution X-ray scattering and electron microscopy. Molecular dynamics simulations show optimum separation of nanocrystals in agreement with the experiment and provide insights into the molecular configuration of surface ligands. We describe the concept of nanocrystal superlattices as a versatile ‘nanoreactor' to create and study novel materials based on precisely defined size, composition and structure of nanocrystals into a mesostructured cluster. We demonstrate ‘controlled fusion' of nanocrystals in the clusters in reactions initiated by thermal treatment and pulsed laser annealing. PMID:25339169

  9. Method of doping a semiconductor

    DOEpatents

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  10. A flexible method for depositing dense nanocrystal thin films: impaction of germanium nanocrystals

    SciTech Connect

    Holman, Zachary C.; Kortshagen, Uwe R.

    2010-07-27

    Nanomaterials are exciting candidates for use in new optical and electronic devices ranging from solar cells to gas sensors. However, to reach their full potential, nanomaterials must be deposited as dense thin films on flexible substrates using inexpensive processing technologies such as roll-to-roll printing. We report a new, flexible technique for depositing aerosolized nanocrystals that lends itself to roll-to-roll processes. Germanium nanocrystals produced in a plasma are accelerated through a slit orifice by a supersonic gas jet and are impacted onto a translated substrate. A uniform nanocrystal film is quickly deposited over large areas, and features as small as 2 µm can then be patterned using conventional lift-off photolithography. The density of a deposited film depends on the pressures upstream and downstream of the orifice, their ratio, and the distance between the orifice and the substrate. Nanocrystal film densities exceeding 50% of the density of bulk germanium are routinely achieved with several sizes of nanocrystals, approaching the theoretical limit for randomly packed spheres. A simple model is presented that shows that the calculated nanocrystal velocity upon impaction is strongly correlated with the resulting film density.

  11. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  12. Superconductivity in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Bustarret, E.

    2015-07-01

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  13. Synthesis and the enhanced visible-light-driven photocatalytic activity of BiVO4 nanocrystals coupled with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, W. Z.; Meng, Shan; Tan, Miao; Jia, L. J.; Zhou, Y. X.; Wu, Shuang; Huang, X. W.; Liang, Y. J.; Shi, H. L.

    2015-03-01

    BiVO4 nanocrystals coupled with Ag nanoparticles (Ag-BiVO4 heterogeneous nanostructures) have been prepared by a new strategy via combining a hydrothermal route with a polyol process, in which BiVO4 nanocrystals were first synthesized by a hydrothermal route, and then, Ag nanoparticles were grown on the surfaces of the presynthesized BiVO4 nanocrystals through a polyol process. The photocatalytic evaluations demonstrate that BiVO4 nanocrystals coupled with Ag nanoparticles exhibit the enhanced visible-light-driven photocatalytic activity for the degradation of methylene blue (MB) and rhodamine B (RhB). The energy alignment and diffuse reflectance property of Ag-BiVO4 heterogeneous nanostructures demonstrate that Ag nanoparticles attached on the surfaces of BiVO4 nanocrystals play double roles for the enhanced visible-light-driven photocatalytic activity. First, the Ag nanoparticles grown on the surfaces of BiVO4 nanocrystals may act as electron sinks to retard the recombination of the photogenerated electrons and holes in BiVO4 so as to improve the charge separation on its surfaces. Second, the Ag nanoparticles increase the visible light absorption of the Ag-BiVO4 photocatalyst due to surface plasmon resonance (SPR) of Ag nanoparticles. These double roles of Ag nanoparticles make Ag-BiVO4 heterogeneous nanostructures to exhibit the enhanced photocatalytic activity to decompose MB and RhB under visible light irradiation, compared to the pure BiVO4 nanocrystals. The enhanced photocatalytic activity is attributed to the charge transfer from BiVO4 to the attached Ag nanoparticles as well as SPR absorption of Ag nanoparticles. The present work not only provides an efficient route to enhance visible-light-driven photocatalytic activity of BiVO4, but also offers a new strategy for fabricating metal-semiconductor heterogeneous nanostructure photocatalysts, which are expected to show considerable potential applications in solar-driven wastewater treatment and water

  14. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant

    NASA Astrophysics Data System (ADS)

    Huang, Limin; Liu, Shuangyi; Van Tassell, Barry J.; Liu, Xiaohua; Byro, Andrew; Zhang, Henan; Leland, Eli S.; Akins, Daniel L.; Steingart, Daniel A.; Li, Jackie; O'Brien, Stephen

    2013-10-01

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm2 and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The

  15. Giant Raman gain in silicon nanocrystals

    PubMed Central

    Sirleto, Luigi; Antonietta Ferrara, Maria; Nikitin, Timur; Novikov, Sergei; Khriachtchev, Leonid

    2012-01-01

    Nanostructured silicon has generated a lot of interest in the past decades as a key material for silicon-based photonics. The low absorption coefficient makes silicon nanocrystals attractive as an active medium in waveguide structures, and their third-order nonlinear optical properties are crucial for the development of next generation nonlinear photonic devices. Here we report the first observation of stimulated Raman scattering in silicon nanocrystals embedded in a silica matrix under non-resonant excitation at infrared wavelengths (~1.5 μm). Raman gain is directly measured as a function of the silicon content. A giant Raman gain from the silicon nanocrystals is obtained that is up to four orders of magnitude greater than in crystalline silicon. These results demonstrate the first Raman amplifier based on silicon nanocrystals in a silica matrix, thus opening new perspectives for the realization of more efficient Raman lasers with ultra-small sizes, which would increase the synergy between electronic and photonic devices. PMID:23187620

  16. Heterostructures Prepared by Surface Modification of Nanocrystals

    ERIC Educational Resources Information Center

    Lee, Bo Hyun

    2009-01-01

    Inorganic nanocrystals (NCs) have drawn the attention from many researchers due to their promising potentials for next generation technologies, from photovoltaics to biological applications. Various types of NCs have become available by synthetic protocols developed in the last two decades. In addition, multicomponent hybrid NCs which can be…

  17. Thick-shell nanocrystal quantum dots

    SciTech Connect

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  18. Macroscopic Crystallization of Nanocrystals into Supercrystals

    NASA Astrophysics Data System (ADS)

    Nakajima, Toshio; Nagasawa, Hiroshi; Maruyama, Minoru; Komatsu, Teruo; Isoda, Seiji; Nelson, Jon

    2004-03-01

    We report here the crystallization of spherical, 4.7-nm-diameter Ag nanocrystals, passivated with a fatty-acid surface coating, into well-facetted supercrystals up to 500-μm across and about 1-μm thick.

  19. Stabilization of Novel Narrow Gap Semiconductor Phases Through Size Reduction to the Nanoscale

    NASA Astrophysics Data System (ADS)

    Soriano, Ronald B.

    The work on this dissertation is aimed at (1) preparations of multinary narrow gap semiconductor nanoparticles using hot-injection technique, (2) stabilization of novel narrow gap semiconductor nanocrystal phases, (3) elucidate the resulting structure and investigate their properties, and (4) understand the thermodynamic stability of the prepared nanomaterials. The first colloidal synthetic route for the synthesis of amorphous GeTe NPs using an amido-germanium precursor was reported. Interestingly, the amorphous particles prepared at low temperature conditions exhibit a well-defined local structure related to that of high-pressure orthorhombic GeTe. Furthermore, the amorphous GeTe NPs display nearly spherical morphology, narrow size dispersity and undergo amorphous-to-crystalline phase transition at slightly elevated temperatures compared to the bulk material. Nearly all activity in nanoparticle science to date has focused on preparing nanocrystals of almost any known bulk phase to investigate size-dependent properties. An unexplored frontier in this field is stabilizing materials with compositions and structures in the nanoscale that do not exist in the bulk, representing an unprecedented approach with the potential to introduce entirely new nanomaterials. The synthesis of single phase semiconductor Pb 2-xSnxS2 nanocrystals with cubic rock salt structure (Fm m) in a composition range that exists in the bulk as an orthorhombic structure (0.6 < x < 1) was demonstrated. New ternary nanocrystals of Pb-Sb-Te with cubic rock-salt type structure, which are mixtures of PbTe and Sb2Te3 in the bulk was successfully prepared. Pbm Sb2n Tem+3n nanocrystals are single phases and tend to phase separate at moderately high temperature. The new Pbm Sb2n Tem+3n nanocrystals define a new class of nanomaterials that only exist on the nanoscale but are unstable in the bulk. This approach of stabilizing novel phases is extended to both Pb-Sb-Se and Pb-Sb-S systems. Novel Pbm Sb2n Sem+3n

  20. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  1. Kansas Advanced Semiconductor Project

    SciTech Connect

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  2. Chemically Derivatized Semiconductor Photoelectrodes.

    ERIC Educational Resources Information Center

    Wrighton, Mark S.

    1983-01-01

    Deliberate modification of semiconductor photoelectrodes to improve durability and enhance rate of desirable interfacial redox processes is discussed for a variety of systems. Modification with molecular-based systems or with metals/metal oxides yields results indicating an important role for surface modification in devices for fundamental study…

  3. Physics of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Brütting, Wolfgang

    2004-05-01

    Organic semiconductors are of steadily growing interest as active components in electronics and optoelectronics. Due to their flexibility, low cost and ease-of-production they represent a valid alternative to conventional inorganic semiconductor technology in a number of applications, such as flat panel displays and illumination, plastic integrated circuits or solar energy conversion. Although first commercial applications of this technology are being realized nowadays, there is still the need for a deeper scientific understanding in order to achieve optimum device performance.This special issue of physica status solidi (a) tries to give an overview of our present-day knowledge of the physics behind organic semiconductor devices. Contributions from 17 international research groups cover various aspects of this field ranging from the growth of organic layers and crystals, their electronic properties at interfaces, their photophysics and electrical transport properties to the application of these materials in different devices like organic field-effect transistors, photovoltaic cells and organic light-emitting diodes.Putting together such a special issue one soon realizes that it is simply impossible to fully cover the whole area of organic semiconductors. Nevertheless, we hope that the reader will find the collection of topics in this issue useful for getting an up-to-date review of a field which is still developing very dynamically.

  4. Three-Dimensional Percolation and Performance of Nanocrystal Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Aigner, Willi; Wiesinger, Markus; Wiggers, Hartmut; Stutzmann, Martin; Pereira, Rui N.

    2016-05-01

    The understanding of charge transport through films of semiconductor nanocrystals (NCs) is fundamental for most applications envisaged for these materials, e.g., light-emitting diodes, solar cells, and thin-film field-effect transistors (FETs). In this work, we show that three-dimensional film-thickness-dependent percolation effects taking place above the percolation threshold strongly affect the charge transport in NC films and greatly determine the performance of NC devices such as NC FETs. We use thin films of Si NCs with a wide range of thicknesses controllable by spray coating of NC inks to thoroughly investigate the electronic properties and charge transport in thin NC films. We find a steep (superlinear) increase of the electrical conductivity with increasing film thickness, which is not observed in bulk semiconductor thin films with bandlike charge transport. We explain this increase by an exponentially increasing number of charge percolation paths in a system dominated by hopping charge transport. Thin-film NC FETs reveal thickness-independent field-effect mobilities and threshold voltages, whereas on:off current ratios decrease quickly with increasing film thickness. We show that the steep enhancement of electrical conductivity with increasing film thickness provided by three-dimensional percolation effects is, in fact, responsible for the dramatic degradation of NC FET performance observed with increasing film thickness. Our work demonstrates that the performance of NC FETs is much more critically sensitive to film thickness than in conventional FET-based bulk semiconductor materials.

  5. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories

    SciTech Connect

    Zheng, Haimei; Smith, Rachel; Jun, Young-wook; Kisielowski, Christian; Dahmen, Ulrich; Alivisatos, A. Paul

    2009-02-09

    It is conventionally assumed that the growth of monodisperse colloidal nanocrystals requires a temporally discrete nucleation followed by monomer attachment onto the existing nuclei. However, recent studies have reported violations of this classical growth model, and have suggested that inter-particle interactions are also involved during the growth. Mechanisms of nanocrystal growth still remain controversial. Using in situ transmission electron microscopy, we show that platinum nanocrystals can grow either by monomer attachment from solution onto the existing particles or by coalescence between the particles. Surprisingly, an initially broad size distribution of the nanocrystals can spontaneously narrow. We suggest that nanocrystals take different pathways of growth based on their size- and morphology-dependent internal energies. These observations are expected to be highly relevant for other nanocrystal systems.

  6. All-inorganic Germanium nanocrystal films by cationic ligand exchange

    DOE PAGESBeta

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2016-01-21

    In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less

  7. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    NASA Astrophysics Data System (ADS)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  8. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    PubMed Central

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-01-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films. PMID:27143197

  9. Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid.

    PubMed

    Zhou, Jiang; Tong, Jin; Su, Xingguang; Ren, Lili

    2016-10-01

    Biodegradable starch nanocrystals prepared by an acid treatment process were modified through crosslinking modification using citric acid as reactant by a dry reaction method. The occurrence of crosslinking modification was evaluated by Fourier transform infrared spectroscopy and swelling degree. X-ray diffraction, wettability tests and contact angle measurements were used to characterize the modified starch nanocrystals. It was found that the crosslinked starch nanocrystals displayed a higher affinity for low polar solvents such as dichloromethane. The surface of starch nanocrystals became more roughness after crosslinking modification with citric acid and the size decreased as revealed by scanning electron microscopy and dynamic light scattering results. XRD analysis showed that the crystalline structure of starch nanocrystals was basically not changed after the crosslinking modification with shorter heating time. The resulting hydrophobic starch nanocrystals are versatile precursors to the development of nanocomposites. PMID:27365120

  10. All-Inorganic Germanium Nanocrystal Films by Cationic Ligand Exchange.

    PubMed

    Wheeler, Lance M; Nichols, Asa W; Chernomordik, Boris D; Anderson, Nicholas C; Beard, Matthew C; Neale, Nathan R

    2016-03-01

    We introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and (1)H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport in germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications. PMID:26796765

  11. Study of nanocrystals in the dynamic slip zone

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.; Kireenkova, S. M.; Morozov, Yu. A.; Smul'skaya, A. I.; Vettegren, V. I.; Kulik, V. B.; Mamalimov, R. I.

    2012-09-01

    Mineral composition is studied and a search to detect nanocrystals is conducted in the surface layers of slickensides formed due to dynamic slip in arkose sandstone. The infrared and Raman spectroscopy show that the slickensided layer is composed of nanocrystals of montmorillonite and anatase measuring ≈15 nm and 3 nm, respectively. The crystalline lattice of the nanocrystals of montmorillonite is stretched by ≈2.5% while the lattice of the nanocrystals of anatase is compressed by ≈0.12%. Deeper than 3 mm below the slickenside surface, the sandstone contains nanocrystals of montmorillonite, beidellite and nontronite, quartz, plagioclase, and anatase. The nanocrystals of anatase have a linear size of ≈8 nm. Their crystalline lattice is compressed by ≈0.03%. It is supposed that montmorillonite in the slickensides was formed due to hydrolytic decomposition of silicates under friction of the fault planes sliding past each other.

  12. Enhanced electroluminescence properties of doped ZnS nanorods formed by the self-assembly of colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Manzoor, K.; Aditya, V.; Vadera, S. R.; Kumar, N.; Kutty, T. R. N.

    2005-07-01

    Aggregation based meso-scale self-assembly of doped semiconductor nanocrystals leading to the formation of monocrystalline nanorods showing enhanced photo- and electro-luminescence properties is reported. ˜4 nm sized, polycrystalline ZnS nanoparticles of zinc-blende (cubic) structure, doped with Cu +-Al 3+ have been aggregated in the aqueous solution and grown into nanorods of length ˜400 nm and aspect ratio ˜12. Transmission electron microscopic (TEM) images indicate crystal growth mechanisms involving particle-to-particle oriented-attachment assisted by sulphur-sulphur catenation leading to covalent-linkage. The nanorods exhibit self-assembly dependant luminescence properties such as quenching of the lattice defect-related emissions accompanied by the enhancement in the dopant-related emission, efficient low-voltage electroluminescence (EL) and super-linear voltage-brightness EL characteristics. This study demonstrates the technological importance of aggregation based self-assembly in doped semiconductor nanosystems.

  13. Stable and efficient colour enrichment powders of nonpolar nanocrystals in LiCl

    NASA Astrophysics Data System (ADS)

    Erdem, Talha; Soran-Erdem, Zeliha; Sharma, Vijay Kumar; Kelestemur, Yusuf; Adam, Marcus; Gaponik, Nikolai; Demir, Hilmi Volkan

    2015-10-01

    In this work, we propose and develop the inorganic salt encapsulation of semiconductor nanocrystal (NC) dispersion in a nonpolar phase to make a highly stable and highly efficient colour converting powder for colour enrichment in light-emitting diode backlighting. Here the wrapping of the as-synthesized green-emitting CdSe/CdZnSeS/ZnS nanocrystals into a salt matrix without ligand exchange is uniquely enabled by using a LiCl ionic host dissolved in tetrahydrofuran (THF), which simultaneously disperses these nonpolar nanocrystals. We studied the emission stability of the solid films prepared using NCs with and without LiCl encapsulation on blue LEDs driven at high current levels. The encapsulated NC powder in epoxy preserved 95.5% of the initial emission intensity and stabilized at this level while the emission intensity of NCs without salt encapsulation continuously decreased to 34.7% of its initial value after 96 h of operation. In addition, we investigated the effect of ionic salt encapsulation on the quantum efficiency of nonpolar NCs and found the quantum efficiency of the NCs-in-LiCl to be 75.1% while that of the NCs in dispersion was 73.0% and that in a film without LiCl encapsulation was 67.9%. We believe that such ionic salt encapsulated powders of nonpolar NCs presented here will find ubiquitous use for colour enrichment in display backlighting.In this work, we propose and develop the inorganic salt encapsulation of semiconductor nanocrystal (NC) dispersion in a nonpolar phase to make a highly stable and highly efficient colour converting powder for colour enrichment in light-emitting diode backlighting. Here the wrapping of the as-synthesized green-emitting CdSe/CdZnSeS/ZnS nanocrystals into a salt matrix without ligand exchange is uniquely enabled by using a LiCl ionic host dissolved in tetrahydrofuran (THF), which simultaneously disperses these nonpolar nanocrystals. We studied the emission stability of the solid films prepared using NCs with and

  14. Shaped nanocrystal particles and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C; Manna, Liberato

    2013-12-17

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  15. Shaped nanocrystal particles and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2011-11-22

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  16. Room Temperature Hydrosilylation of Silicon Nanocrystals with Bifunctional Terminal Alkenes

    PubMed Central

    Yu, Yixuan; Hessel, Colin M.; Bogart, Timothy; Panthani, Matthew G.; Rasch, Michael R.; Korgel, Brian A.

    2013-01-01

    H-terminated Si nanocrystals undergo room temperature hydrosilylation with bifunctional alkenes with distal polar moieties—ethyl-, methyl-ester or carboxylic acids—without the aid of light or added catalyst. The passivated Si nanocrystals exhibit bright photoluminescence (PL) and disperse in polar solvents, including water. We propose a reaction mechanism in which ester or carboxylic acid groups facilitate direct nucleophilic attack of the highly curved Si surface of the nanocrystals by the alkene. PMID:23312033

  17. Bright White Light Emission from Ultrasmall Cadmium Selenide Nanocrystals

    SciTech Connect

    Rosson, Teresa; Claiborne, Sarah; McBride, James; Stratton, Benjamin S; Rosenthal, Sandra

    2012-01-01

    A simple treatment method using formic acid has been found to increase the fluorescence quantum yield of ultrasmall white light-emitting CdSe nanocrystals from 8% to 45%. Brighter white-light emission occurs with other carboxylic acids as well, and the magnitude of the quantum yield enhancement is shown to be dependent on the alkyl chain length. Additionally, the nanocrystal luminescence remains enhanced relative to the untreated nanocrystals over several days. This brightened emission opens the possibility for even further quantum yield improvement and potential for use of these white-light nanocrystals in solid-state lighting applications.

  18. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators.

    PubMed

    Sakellari, D; Brintakis, K; Kostopoulou, A; Myrovali, E; Simeonidis, K; Lappas, A; Angelakeris, M

    2016-01-01

    Colloidal nanocrystal assemblies (nanoclusters), consisting of 13 nm iron oxide nanocrystals, were synthesized in various sizes (45-98 nm), and were investigated as heating mediators for magnetic particle hyperthermia. The colloidal nanocrystal clusters show enhanced heating efficiency in comparison with their constituent primary iron oxide nanocrystals due to collective magnetic features. The fine tuning of intra-cluster magnetic interactions results to the domination of the hysteresis losses mechanism over the relaxation loss heating contributions and eventually to a versatile magnetic particle hyperthermia mediator. PMID:26478302

  19. Nonvolatile memory characteristics of nickel-silicon-nitride nanocrystal

    SciTech Connect

    Chen, W.-R.; Chang, T.-C.; Liu, P.-T.; Yeh, J.-L.; Tu, C.-H.; Lou, J.-C.; Yeh, C.-F.; Chang, C.-Y.

    2007-08-20

    The formation of nickel-silicon-nitride nanocrystals by sputtering a comixed target in the argon and nitrogen environment is proposed in this letter. High resolution transmission electron microscope analysis clearly shows the nanocrystals embedded in the silicon nitride and x-ray photoelectron spectroscopy also shows the chemical material analysis of nanocrystals. The memory window of nickel-silicon-nitride nanocrystals enough to define 1 and 0 states is obviously observed, and a good data retention characteristic to get up to 10 years is exhibited for the nonvolatile memory application.

  20. Light-Harvesting Antennae Based on Silicon Nanocrystals.

    PubMed

    Romano, Francesco; Yu, Yixuan; Korgel, Brian A; Bergamini, Giacomo; Ceroni, Paola

    2016-08-01

    Silicon (Si) nanocrystals are relatively strong light emitters, but are weak light absorbers as a result of their indirect band gap. One way to enhance light absorption is to functionalize the nanocrystals with chromophores that are strong light absorbers. By designing systems that enable efficient energy transfer from the chromophore to the Si nanocrystal, the brightness of the nanocrystals can be significantly increased. There have now been a few experimental systems in which covalent attachment of chromophores, efficient energy transfer and significantly increased brightness have been demonstrated. This review discusses progress on these systems and the remaining challenges. PMID:27573405