These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Anatomy and function of sensory hepatic nerves.  

PubMed

Vagal and spinal afferent innervation of the portal hepatic area has not been studied as thoroughly as the innervation of other important organs. It is generally agreed that unlike noradrenergic sympathetic efferent nerve fibers, sensory nerve fibers of either vagal or dorsal root/spinal origin do not directly innervate hepatocytes, but are restricted to the stroma surrounding triades of hepatic vasculature and bile ducts, and to extrahepatic portions of the portal vein and bile ducts. For vagal afferent innervation, retrograde and anterograde tracing studies in the rat have clearly shown that only a minor portion of the common hepatic branch innervates the liver area, while the major portion descends in the gastroduodenal branch toward duodenum, pancreas, and pylorus. Hepatic paraganglia, bile ducts, and portal vein receive the densest vagal afferent innervation. Calretinin may be a relatively specific marker for vagal afferent innervation of the portal-hepatic space. Calcitonin gene-related peptide (CGRP) is a specific marker for dorsal root afferents, and CGRP-immunoreactive fibers are mainly present near the intrahepatic vascular bundles and bile ducts, and in the same extrahepatic compartments that contain vagal afferents. Because of the specific anatomical organization of hepatic nerves, selective hepatic denervation, whether selective for the vagal or sympathetic division, or for efferents and afferents, is nearly impossible. Great caution is therefore necessary when interpreting functional outcomes of so-called specific hepatic denervation studies. PMID:15382018

Berthoud, Hans-Rudolf

2004-09-01

2

Functional Recovery of Denervated Skeletal Muscle with Sensory or Mixed Nerve Protection: A Pilot Study  

PubMed Central

Functional recovery is usually poor following peripheral nerve injury when reinnervation is delayed. Early innervation by sensory nerve has been indicated to prevent atrophy of the denervated muscle. It is hypothesized that early protection with sensory axons is adequate to improve functional recovery of skeletal muscle following prolonged denervation of mixed nerve injury. In this study, four groups of rats received surgical denervation of the tibial nerve. The proximal and distal stumps of the tibial nerve were ligated in all animals except for those in the immediate repair group. The experimental groups underwent denervation with nerve protection of peroneal nerve (mixed protection) or sural nerve (sensory protection). The experimental and unprotected groups had a stage II surgery in which the trimmed proximal and distal tibial nerve stumps were sutured together. After 3 months of recovery, electrophysiological, histological and morphometric parameters were assessed. It was detected that the significant muscle atrophy and a good preserved structure of the muscle were observed in the unprotected and protective experimental groups, respectively. Significantly fewer numbers of regenerated myelinated axons were observed in the sensory-protected group. Enhanced recovery in the mixed protection group was indicated by the results of the muscle contraction force tests, regenerated myelinated fiber, and the results of the histological analysis. Our results suggest that early axons protection by mixed nerve may complement sensory axons which are required for promoting functional recovery of the denervated muscle natively innervated by mixed nerve. PMID:24244555

Li, Qing Tian; Zhang, Pei Xun; Yin, Xiao Feng; Han, Na; Kou, Yu Hui; Deng, Jiu Xu; Jiang, Bao Guo

2013-01-01

3

Improved functional recovery of denervated skeletal muscle after temporary sensory nerve innervation.  

PubMed

Prolonged muscle denervation results in poor functional recovery after nerve repair. The possible protective effect of temporary sensory innervation of denervated muscle, prior to motor nerve repair, has been examined in the rat. Soleus and gastrocnemius muscles were denervated by cutting the tibial nerve, and the peroneal nerve was then sutured to the transected distal tibial nerve stump either immediately or after two, four or six months. In half of the animals with delayed repair, the saphenous (sensory) nerve was temporarily attached to the distal nerve stump. Muscles were evaluated three months after the peroneal-to-tibial union, and were compared with each other, with unoperated control muscles and with untreated denervated muscles. After four to six months of sensory "protection", gastrocnemius muscles weighed significantly more than unprotected muscles, and both gastrocnemius and soleus muscles exhibited better preservation of their structure, with less fiber atrophy and connective tissue hyperplasia. The maximum compound action potentials were significantly larger in gastrocnemius and soleus muscles following sensory protection, irrespective of the delay in motor nerve union. Isometric force, although less than in control animals and in those with immediate nerve repair, remained reasonably constant after sensory protection, while in unprotected muscles there was a progressive and significant decline as the period of denervation lengthened. We interpret these results as showing that, although incapable of forming excitable neuromuscular junctions, sensory nerves can nevertheless exert powerful trophic effects on denervated muscle fibers. We propose that these findings indicate a useful strategy for improving the outcome of peripheral nerve surgery. PMID:11246164

Bain, J R; Veltri, K L; Chamberlain, D; Fahnestock, M

2001-01-01

4

Peripheral Nerve Damage Facilitates Functional Innervation of Brain Grafts in Adult Sensory Cortex  

NASA Astrophysics Data System (ADS)

The neuralb pathways that relay information from cutaneous receptors to the cortex provide the somatic sensory information needed for cortical function. The last sensory relay neurons in this pathway have cell bodies in the thalamus and axons that synapse on neurons in the somatosensory cortex. After cortical lesions that damage mature thalamocortical fibers in the somatosensory cortex, we have attempted to reestablish somatosensory cortical function by grafting embryonic neocortical cells into the lesioned area. Such grafts survive in adult host animals but are not innervated by thalamic neurons, and consequently the grafted neurons show little if any spontaneous activity and no responses to cutaneous stimuli. We have reported that transection of peripheral sensory nerves prior to grafting ``conditions'' or ``primes'' the thalamic neurons in the ventrobasal complex so that they extend axons into grafts subsequently placed in the cortical domain of the cut nerve. In this report we present evidence that the ingrowth of ventrobasal fibers leads to graft neurons that become functionally integrated into the sensory circuitry of the host brain. Specifically, the conditioning lesions made prior to grafting produce graft neurons that are spontaneously active and can be driven by natural activation of cutaneous receptors or electrical stimulation of the transected nerve after it regenerates. Furthermore, oxidative metabolism in these grafts reaches levels that are comparable to normal cortex, whereas without prior nerve cut, oxidative metabolism is abnormally low in neocortical grafts. We conclude that damage to the sensory periphery transsynaptically stimulates reorganization of sensory pathways through mechanisms that include axonal elongation and functional synaptogenesis.

Ebner, Ford F.; Erzurumlu, Reha S.; Lee, Stefan M.

1989-01-01

5

Manually-stimulated recovery of motor function after facial nerve injury requires intact sensory input.  

PubMed

We have recently shown in rat that daily manual stimulation (MS) of vibrissal muscles promotes recovery of whisking and reduces polyinnervation of muscle fibers following repair of the facial nerve (facial-facial anastomosis, FFA). Here, we examined whether these positive effects were: (1) correlated with alterations of the afferent connections of regenerated facial motoneurons, and (2) whether they were achieved by enhanced sensory input through the intact trigeminal nerve. First, we quantified the extent of total synaptic input to motoneurons in the facial nucleus using synaptophysin immunocytochemistry following FFA with and without subsequent MS. We found that, without MS, this input was reduced compared to intact animals. The number of synaptophysin-positive terminals returned to normal values following MS. Thus, MS appears to counteract the deafferentation of regenerated facial motoneurons. Second, we performed FFA and, in addition, eliminated the trigeminal sensory input to facial motoneurons by extirpation of the ipsilateral infraorbital nerve (IONex). In this paradigm, without MS, vibrissal motor performance and pattern of end-plate reinnervation were as aberrant as after FFA without MS. MS did not influence the reinnervation pattern after IONex and functional recovery was even worse than after IONex without MS. Thus, when the sensory system is intact, MS restores normal vibrissal function and reduces the degree of polyinnervation. When afferent inputs are abolished, these effects are eliminated or even reversed. We conclude that rehabilitation strategies must be carefully designed to take into account the extent of motor and/or sensory damage. PMID:18381213

Pavlov, Stoyan P; Grosheva, Maria; Streppel, Michael; Guntinas-Lichius, Orlando; Irintchev, Andrey; Skouras, Emmanouil; Angelova, Srebrina K; Kuerten, Stefanie; Sinis, Nektarios; Dunlop, Sarah A; Angelov, Doychin N

2008-05-01

6

The relationship of nerve fibre pathology to sensory function in entrapment neuropathy.  

PubMed

Surprisingly little is known about the impact of entrapment neuropathy on target innervation and the relationship of nerve fibre pathology to sensory symptoms and signs. Carpal tunnel syndrome is the most common entrapment neuropathy; the aim of this study was to investigate its effect on the morphology of small unmyelinated as well as myelinated sensory axons and relate such changes to somatosensory function and clinical symptoms. Thirty patients with a clinical and electrophysiological diagnosis of carpal tunnel syndrome [17 females, mean age (standard deviation) 56.4 (15.3)] and 26 age and gender matched healthy volunteers [18 females, mean age (standard deviation) 51.0 (17.3)] participated in the study. Small and large fibre function was examined with quantitative sensory testing in the median nerve territory of the hand. Vibration and mechanical detection thresholds were significantly elevated in patients with carpal tunnel syndrome (P < 0.007) confirming large fibre dysfunction and patients also presented with increased thermal detection thresholds (P < 0.0001) indicative of C and A?-fibre dysfunction. Mechanical and thermal pain thresholds were comparable between groups (P > 0.13). A skin biopsy was taken from a median nerve innervated area of the proximal phalanx of the index finger. Immunohistochemical staining for protein gene product 9.5 and myelin basic protein was used to evaluate morphological features of unmyelinated and myelinated axons. Evaluation of intraepidermal nerve fibre density showed a striking loss in patients (P < 0.0001) confirming a significant compromise of small fibres. The extent of Meissner corpuscles and dermal nerve bundles were comparable between groups (P > 0.07). However, patients displayed a significant increase in the percentage of elongated nodes (P < 0.0001), with altered architecture of voltage-gated sodium channel distribution. Whereas neither neurophysiology nor quantitative sensory testing correlated with patients' symptoms or function deficits, the presence of elongated nodes was inversely correlated with a number of functional and symptom related scores (P < 0.023). Our findings suggest that carpal tunnel syndrome does not exclusively affect large fibres but is associated with loss of function in modalities mediated by both unmyelinated and myelinated sensory axons. We also document for the first time that entrapment neuropathies lead to a clear reduction in intraepidermal nerve fibre density, which was independent of electrodiagnostic test severity. The presence of elongated nodes in the target tissue further suggests that entrapment neuropathies affect nodal structure/myelin well beyond the focal compression site. Interestingly, nodal lengthening may be an adaptive phenomenon as it inversely correlates with symptom severity. PMID:25348629

Schmid, Annina B; Bland, Jeremy D P; Bhat, Manzoor A; Bennett, David L H

2014-12-01

7

The relationship of nerve fibre pathology to sensory function in entrapment neuropathy  

PubMed Central

Surprisingly little is known about the impact of entrapment neuropathy on target innervation and the relationship of nerve fibre pathology to sensory symptoms and signs. Carpal tunnel syndrome is the most common entrapment neuropathy; the aim of this study was to investigate its effect on the morphology of small unmyelinated as well as myelinated sensory axons and relate such changes to somatosensory function and clinical symptoms. Thirty patients with a clinical and electrophysiological diagnosis of carpal tunnel syndrome [17 females, mean age (standard deviation) 56.4 (15.3)] and 26 age and gender matched healthy volunteers [18 females, mean age (standard deviation) 51.0 (17.3)] participated in the study. Small and large fibre function was examined with quantitative sensory testing in the median nerve territory of the hand. Vibration and mechanical detection thresholds were significantly elevated in patients with carpal tunnel syndrome (P < 0.007) confirming large fibre dysfunction and patients also presented with increased thermal detection thresholds (P < 0.0001) indicative of C and A?-fibre dysfunction. Mechanical and thermal pain thresholds were comparable between groups (P > 0.13). A skin biopsy was taken from a median nerve innervated area of the proximal phalanx of the index finger. Immunohistochemical staining for protein gene product 9.5 and myelin basic protein was used to evaluate morphological features of unmyelinated and myelinated axons. Evaluation of intraepidermal nerve fibre density showed a striking loss in patients (P < 0.0001) confirming a significant compromise of small fibres. The extent of Meissner corpuscles and dermal nerve bundles were comparable between groups (P > 0.07). However, patients displayed a significant increase in the percentage of elongated nodes (P < 0.0001), with altered architecture of voltage-gated sodium channel distribution. Whereas neither neurophysiology nor quantitative sensory testing correlated with patients’ symptoms or function deficits, the presence of elongated nodes was inversely correlated with a number of functional and symptom related scores (P < 0.023). Our findings suggest that carpal tunnel syndrome does not exclusively affect large fibres but is associated with loss of function in modalities mediated by both unmyelinated and myelinated sensory axons. We also document for the first time that entrapment neuropathies lead to a clear reduction in intraepidermal nerve fibre density, which was independent of electrodiagnostic test severity. The presence of elongated nodes in the target tissue further suggests that entrapment neuropathies affect nodal structure/myelin well beyond the focal compression site. Interestingly, nodal lengthening may be an adaptive phenomenon as it inversely correlates with symptom severity. PMID:25348629

Schmid, Annina B.; Bland, Jeremy D. P.; Bhat, Manzoor A.

2014-01-01

8

Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart  

SciTech Connect

Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy. During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.

Sridharan, Vijayalakshmi; Tripathi, Preeti [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Sharma, Sunil [Department of Radiation Oncology, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Moros, Eduardo G. [Department of Radiation Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida (United States); Zheng, Junying [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Hauer-Jensen, Martin [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas (United States); Boerma, Marjan, E-mail: mboerma@uams.edu [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States)

2014-01-01

9

Sensory nerves in lung and airways.  

PubMed

Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases. PMID:24692141

Lee, Lu-Yuan; Yu, Jerry

2014-01-01

10

Sensory transduction in cough-associated nerves  

Microsoft Academic Search

Before a tussive stimulus in the airways can evoke a cough reflex it must first cause action potential discharge in cough-associated vagal sensory nerves. This is initiated by the stimulus first interacting with the receptors and ion channels in the terminal membrane of the sensory fiber in a manner that leads to membrane depolarization. If the stimulus-induced membrane depolarization, referred

Marian Kollarik; Bradley J. Undem

2006-01-01

11

Differential effects on sensory functions and measures of epidermal nerve fiber density after application of a lidocaine patch (5%) on healthy human skin.  

PubMed

Topical application of lidocaine is an effective approach for treatment of post-herpetic neuralgia and other painful neuropathies. Lidocaine inhibits voltage-gated Na(+) channels and it most likely reduces excitability of cutaneous sensory neurons which can be hyperexcitable or spontaneously active in states of neuropathic pain. However, lidocaine and other local anesthetics also exert a pronounced neurotoxicity and they activate the irritant receptors TRPV1 and TRPA1. In this randomized and double-blinded study, we explored the ability of lidocaine patches (5%) to alter sensory function and epidermal nerve fiber density in skin of healthy volunteers. As assessed by quantitative sensory testing, significantly elevated thresholds for touch, pin prick pain and mechanically induced wind-up were observed in skin treated with lidocaine patches. These effects reversed to baseline values within 2days after termination of the treatment. Pressure pain and thresholds for heat and cold-induced pain were not affected by the lidocaine patch. A moderate but significant decrease in epidermal nerve fiber density was observed in skin blister roofs obtained after 42days of treatment with lidocaine patches. The placebo patch did not induce any changes in sensory thresholds or nerve fiber density. In conclusion, lidocaine patches seem to have differential effects on sensory modalities in healthy skin. A degeneration of epidermal nerve fibers has previously been demonstrated for patches containing the TRPV1-agonist capsaicin and our findings suggest that this effect might also be relevant for lidocaine patches. These data warrant further studies on molecular mechanisms mediating a relief of neuropathic pain by topical lidocaine. PMID:21530339

Wehrfritz, Andreas; Namer, Barbara; Ihmsen, Harald; Mueller, Christiane; Filitz, Jörg; Koppert, Wolfgang; Leffler, Andreas

2011-10-01

12

Leptin-sensitive sensory nerves innervate white fat  

PubMed Central

Leptin, the primary white adipose tissue (WAT) adipokine, is thought to convey lipid reserve information to the brain via the circulation. Because WAT responds to environmental/internal signals in a fat pad-specific (FPS) manner, systemic signals such as leptin would fail to communicate such distinctive information. Saturation of brain leptin transport systems also would fail to convey increased lipid levels beyond that point. WAT possesses sensory innervation exemplified by proven sensory-associated peptides in nerves within the tissue and by viral sensory nerve-specific transneuronal tract tracer, H129 strain of herpes simplex virus 1 labeling of dorsal root ganglia (DRG) pseudounipolar neurons, spinal cord and central sensory circuits. Leptin as a paracrine factor activating WAT sensory innervation could supply the brain with FPS information. Therefore, we tested for and found the presence of the long form of the leptin receptor (Ob-Rb) on DRG pseudounipolar neurons immunohistochemically labeled after injections of Fluorogold, a retrograde tract tracer, into inguinal WAT (IWAT). Intra-IWAT leptin injections (300 ng) significantly elevated IWAT nerve spike rate within 5 min and persisted for at least 30 min. Intra-IWAT leptin injections also induced significant c-Fos immunoreactivity (ir), indicating neural activation across DRG pseudounipolar sensory neurons labeled with Fluorogold IWAT injections. Intraperitoneal leptin injection did not increase c-Fos-ir in DRG or the arcuate nucleus, nor did it increase arcuate signal transducer and activator of transcription 3 phosphorylation-ir. Collectively, these results strongly suggest that endogenous leptin secreted from white adipocytes functions as a paracrine factor to activate spinal sensory nerves innervating the tissue. PMID:23612999

Murphy, Keegan T.; Schwartz, Gary J.; Nguyen, Ngoc Ly T.; Mendez, Jennifer M.; Ryu, Vitaly

2013-01-01

13

Reduced intraepidermal nerve fiber density in HIV-associated sensory  

E-print Network

diagnostic tool in idiopathic small-fiber sensory neuropathy3,4 and diabetic neuropathy,5 but has not yetReduced intraepidermal nerve fiber density in HIV-associated sensory neuropathy M. Polydefkis, MD nerve fiber (IENF) density in HIV-associated sensory neuropathy (HIV-SN) to measurements of neuropathy

Steinbach, Joe Henry

14

Sensory Nerve Terminal Mitochondrial Dysfunction Activates Airway Sensory Nerves via Transient Receptor Potential (TRP) Channels  

PubMed Central

Mitochondrial dysfunction and subsequent oxidative stress has been reported for a variety of cell types in inflammatory diseases. Given the abundance of mitochondria at the peripheral terminals of sensory nerves and the sensitivity of transient receptor potential (TRP) ankyrin 1 (A1) and TRP vanilloid 1 (V1) to reactive oxygen species (ROS) and their downstream products of lipid peroxidation, we investigated the effect of nerve terminal mitochondrial dysfunction on airway sensory nerve excitability. Here we show that mitochondrial dysfunction evoked by acute treatment with antimycin A (mitochondrial complex III Qi site inhibitor) preferentially activated TRPA1-expressing “nociceptor-like” mouse bronchopulmonary C-fibers. Action potential discharge was reduced by the TRPA1 antagonist HC-030031. Inhibition of TRPV1 further reduced C-fiber activation. In mouse dissociated vagal neurons, antimycin A induced Ca2+ influx that was significantly reduced by pharmacological inhibition or genetic knockout of either TRPA1 or TRPV1. Inhibition of both TRPA1 and TRPV1 was required to abolish antimycin A-induced Ca2+ influx in vagal neurons. Using an HEK293 cell expression system, antimycin A induced concentration-dependent activation of both hTRPA1 and hTRPV1 but failed to activate nontransfected cells. Myxothiazol (complex III Qo site inhibitor) inhibited antimycin A-induced TRPA1 activation, as did the reducing agent dithiothreitol. Scavenging of both superoxide and hydrogen peroxide inhibited TRPA1 activation following mitochondrial modulation. In conclusion, we present evidence that acute mitochondrial dysfunction activates airway sensory nerves preferentially via TRPA1 through the actions of mitochondrially-derived ROS. This represents a novel mechanism by which inflammation may be transduced into nociceptive electrical signaling. PMID:23444014

Nesuashvili, Lika; Hadley, Stephen H.; Bahia, Parmvir K.

2013-01-01

15

Axonal regeneration of sensory nerves is delayed by continuous intrathecal infusion of nerve growth factor.  

PubMed

While it is well established that nerve growth factor is growth promoting for sensory neurons in culture, it is unclear whether it serves such a function in vivo. In fact, our previous studies led to the hypothesis that nerve growth factor could actually impair axonal regeneration by reducing the neuronal cell body response to injury. In the present study, the consequence of continuous intrathecal infusion of nerve growth factor on regeneration of sensory neurons was examined in rats given a bilateral sciatic nerve crush. Rats received nerve growth factor (125 ng/h) as a continuous infusion into the subarachnoid space of the lumbar spinal cord via an osmotic minipump (Alzet); controls received cytochrome C. At seven or 10 days, the pump was removed and L4 or L5 dorsal root ganglion exposed and injected with 50 microCi of (3H)leucine. Animals were killed 24 h later, the sciatic nerves removed, cut into 3 mm segments and the radioactivity in each segment determined by liquid scintillation spectrophotometry. Maximal regeneration distances (determined from the front of the resultant transport curves) were similarly reduced (by approximately 6 mm) in nerve growth factor-infused compared to cytochrome C-infused rats. Thus, regeneration rates (determined between eight and 11 days) were unaltered by nerve growth factor infusion; regeneration rates from cytochrome C-infused and nerve growth factor-infused animals were 2.8 mm/day and 3.1 mm/day, respectively. However, nerve growth factor significantly (P < 0.005) increased the delay to onset for regeneration by two days. Taken together, the present study demonstrates that nerve growth factor delays the onset of regeneration without affecting the rate of regeneration. The results implicate the involvement of at least two signals in the regulation of axonal regeneration in dorsal root ganglion neurons. It is suggested that the loss of nerve growth factor serves as an early, induction signal regulating the onset of regeneration and that a second, unidentified signal independently serves to maintain regeneration. PMID:9027875

Gold, B G

1997-02-01

16

Degeneration and regeneration of motor and sensory nerves: a stereological study of crush lesions in rat facial and mental nerves.  

PubMed

The aim of this study was to evaluate the degeneration and regeneration of a sensory nerve and a motor nerve at the histological level after a crush injury. Twenty-five female Wistar rats had their mental nerve and the buccal branch of their facial nerve compressed unilaterally against a glass rod for 30s. Specimens of the compressed nerves and the corresponding control nerves were dissected at 3, 7, and 19 days after surgery. Nerve cross-sections were stained with osmium tetroxide and toluidine blue and analysed using two-dimensional stereology. We found differences between the two nerves both in the normal anatomy and in the regenerative pattern. The mental nerve had a larger cross-sectional area including all tissue components. The mental nerve had a larger volume fraction of myelinated axons and a correspondingly smaller volume fraction of endoneurium. No differences were observed in the degenerative pattern; however, at day 19 the buccal branch had regenerated to the normal number of axons, whereas the mental nerve had only regained 50% of the normal number of axons. We conclude that the regenerative process is faster and/or more complete in the facial nerve (motor function) than it is in the mental nerve (somatosensory function). PMID:23731889

Barghash, Z; Larsen, J O; Al-Bishri, A; Kahnberg, K-E

2013-12-01

17

Antagonism of cholinergic nerve-mediated contractions by the sensory nerve inhibitory system in rat bronchi.  

PubMed

The purpose of this study was to examine the potential functional significance of the sensory nerve inhibitory system in modulating contraction. Tension development in response to electrical field stimulation (EFS) and exogenous acetylcholine was monitored in segments of intrapulmonary bronchi isolated from male Sprague-Dawley rats. Contractile responses to EFS were enhanced by desensitization of sensory nerves with capsaicin, by antagonizing neurokinin NK1 receptors with RP-67580, and by inhibition of cyclooxygenase with meclofenamate. Except for RP-67580, which had a slight inhibitory effect on acetylcholine-induced contractions, these interventions were without effect on contraction to acetylcholine. Incubation of capsaicin-desensitized airway segments with substance P attenuated contractions evoked by a half-maximal frequency of EFS by approximately 92%, whereas contractions elicited by a half-maximal concentration of acetylcholine were not affected. Contractile responses elicited by a lower concentration of acetylcholine were inhibited by approximately 50% by substance P. The inhibitory effect of substance P was blocked by RP-67580, meclofenamate, and epithelial denudation. We conclude that the sensory nerve inhibitory system modulates cholinergic contractions and thus plays a role in the regulation of airway smooth muscle tone. PMID:8828673

Szarek, J L; Spurlock, B

1996-07-01

18

Intradermal Injection of Capsaicin in Humans Produces Degeneration and Subsequent Reinnervation of Epidermal Nerve Fibers: Correlation with Sensory Function  

Microsoft Academic Search

fibers and the subepidermal neural plexus in capsaicin-treated skin, as indicated by the loss of immunoreactivity for PGP 9.5 and CGRP. The effect of capsaicin on dermal nerve fibers immunoreactive for SP was less obvious. Capsaicin decreased sensitivity to pain produced by sharp mechanical stimuli and nearly eliminated heat-evoked pain within the injected area. Limited reinnervation of the epidermis and

Donald A. Simone; Maria Nolano; Timothy Johnson; Gwen Wendelschafer-Crabb; William R. Kennedy

1998-01-01

19

Sensory Protection of Rat Muscle Spindles following Peripheral Nerve Injury and Reinnervation  

PubMed Central

Background Skeletal muscle structure and function are dependent on intact Richard Butler, Ph.D. innervation. Prolonged muscle denervation results in irreversible muscle fiber James R. Bain, M.D. atrophy, connective tissue hyperplasia, and deterioration of muscle spindles, Margaret Fahnestock, Ph.D. specialized sensory receptors necessary for proper skeletal muscle function. The protective effect of temporary sensory innervation on denervated muscle, before motor nerve repair, has been shown in the rat. Sensory-protected muscles exhibit less fiber atrophy and connective tissue hyperplasia and maintain greater functional capacity than denervated muscles. The purpose of this study was to determine whether temporary sensory innervation also protects muscle spindles from degeneration. Methods Rat tibial nerve was transected and repaired with either the saphenous or the original transected nerve. Negative controls remained denervated. After 3 to 6 months, the electrophysiologic response of the nerve to stretch in the rat gastrocnemius muscle was measured (n = 3 per group). After the animals were euthanized, the gastrocnemius muscle was removed, sectioned, stained, and examined for spindle number (n = 3 per group) and morphology (one rat per group). Immunohistochemical assessment of muscle spindle innervation was examined in four additional animals. Results Significant deterioration of muscle spindles was seen in denervated muscle, whereas in muscle reinnervated with the tibial or the saphenous nerve, spindle number and morphology were improved. Histologic and functional evidence of spindle reinnervation by the sensory nerve was obtained. Conclusion These findings add to the known means by which motor or sensory nerves exert protective effects on denervated muscle, and further promote the use of sensory protection for improving the outcome after peripheral nerve injury. PMID:19952642

Elsohemy, Amal; Butler, Richard; Bain, James R.; Fahnestock, Margaret

2012-01-01

20

The effects of extreme cold on sensory nerves.  

PubMed Central

The effects of extreme cold on sensory nerves are discussed and a clinical application of these effects is proposed. The structural changes observed following the freezing of sensory nerves in the rat are described and correlated with the clinical results in patients with chronic facial pain treated by cryogenic peripheral nerve blockade. It is suggested that this technique offers features which are not shown by any other method for interrupting peripheral pain pathways and provides a useful alternative to existing methods of treatment for chronic pain. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:7396346

Barnard, D.

1980-01-01

21

Contribution of the distal nerve sheath to nerve and muscle preservation following denervation and sensory protection.  

PubMed

The goal of this study was to determine the contribution of the distal nerve sheath to sensory protection. Following tibial nerve transection, rats were assigned to one of the following groups: (1) saphenous-to-tibial nerve neurorrhaphy; (2) saphenous-to-gastrocnemius neurotization; (3) unprotected controls (tibial nerve transection); or (4) immediate common peroneal-to-tibial nerve neurorrhaphy. After a 6-month denervation period and motor reinnervation, ultrastructural, histologic, and morphometric analyses were performed on the distal tibial nerve and gastrocnemius muscle cross-sections. Sensory axons neurotized to muscle maintain existing muscle integrity, as demonstrated by less fibrosis, collagenization, and fat deposition, more than unprotected muscle, and preserve the distribution pattern of fast twitch fibers. However, neurorrhaphy of the sensory nerve to the distal tibial nerve (involving the distal nerve sheath) improves existing endoneurial sheath structure, demonstrated by reduced collagen, and enhances regeneration, shown by improved axon-to-Schwann cell coupling and increased axon area. The authors conclude that sensory protection of muscle does not require the distal nerve sheath, but that preservation of the distal sheath may contribute to enhanced nerve regeneration. PMID:15672322

Veltri, Karen; Kwiecien, Jacek M; Minet, Wyatt; Fahnestock, Margaret; Bain, James R

2005-01-01

22

Sensory recovery following decellularized nerve allograft transplantation for digital nerve repair.  

PubMed

This study reported preliminary clinical experience of using decelluarised nerve allograft material for repair of digital nerve defect in five hand injury patients. From October 2009 to July 2010, five patients with traumatic nerve defect were treated with nerve repair using AxoGen® nerve allograft (AxoGen Inc, Alachua, FL) in California Hospital Medical Center. All patients were followed at least for 12 months, and sensory recovery and signs of infection or rejection were documented by a hand therapist. Average two-point discrimination was 6 mm, and average Semmes-Weinstein Monofilaments test was 4.31. No wound infections or signs of rejections were observed at wound site. All patients reported sensory improvement during the follow-up period after operation. It is believed that decellularised nerve allografts may provide a readily available option for repair of segmental nerve defect. PMID:23848418

Guo, Yang; Chen, Gary; Tian, Guanglei; Tapia, Carla

2013-12-01

23

Functional relationships between sensory nerve fibers and mast cells of dura mater in normal and inflammatory conditions  

Microsoft Academic Search

In this study, we have characterized the phenotype of mast cells in rat dura mater and their topological and functional relationships with C-fibers in normal and inflammatory conditions. Three mast cell populations with different size, morphology and localization were characterized by their content of specific neutral serine proteases. They showed immunoreactivity corresponding to rat mast cell protease I, rat mast

V Dimitriadou; A Rouleau; M. D Trung Tuong; G. J. F Newlands; H. R. P Miller; G Luffau; J.-C Schwartz; M Garbarg

1997-01-01

24

Intrafascicular stimulation of monkey arm nerves evokes coordinated grasp and sensory responses.  

PubMed

High-count microelectrode arrays implanted in peripheral nerves could restore motor function after spinal cord injury or sensory function after limb loss. In this study, we implanted Utah Slanted Electrode Arrays (USEAs) intrafascicularly at the elbow or shoulder in arm nerves of rhesus monkeys (n = 4) under isoflurane anesthesia. Input-output curves indicated that pulse-width-modulated single-electrode stimulation in each arm nerve could recruit single muscles with little or no recruitment of other muscles. Stimulus trains evoked specific, natural, hand movements, which could be combined via multielectrode stimulation to elicit coordinated power or pinch grasp. Stimulation also elicited short-latency evoked potentials (EPs) in primary somatosensory cortex, which might be used to provide sensory feedback from a prosthetic limb. These results demonstrate a high-resolution, high-channel-count interface to the peripheral nervous system for restoring hand function after neural injury or disruption or for examining nerve structure. PMID:23076108

Ledbetter, Noah M; Ethier, Christian; Oby, Emily R; Hiatt, Scott D; Wilder, Andrew M; Ko, Jason H; Agnew, Sonya P; Miller, Lee E; Clark, Gregory A

2013-01-01

25

Autonomic and sensory nerve dysfunction in primary biliary cirrhosis  

Microsoft Academic Search

AIM: Cardiovascular autonomic and peripheral sensory neuropathy is a known complication of chronic alcoholic and non-alcoholic liver diseases. We aimed to assess the prevalence and risk factors for peripheral sensory nerve and autonomic dysfunction using sensitive methods in patients with primary biliary cirrhosis (PBC). METHODS: Twenty-four AMA M2 positive female patients with clinical, biochemical and histological evidence of PBC and

Katalin Keresztes; Ildikó Istenes; Aniko Folhoffer; Peter L Lakatos; Andrea Horvath; Timea Csak; Peter Varga; Peter Kempler; Ferenc Szalay; Lakatos PL

26

Sensory Nerve Innervation of Epineurial Arterioles of the Sciatic Nerve Containing Calcitonin Gene-Related Peptide: Effect of Streptozotocin-Induced Diabetes  

PubMed Central

The authors have determined that epineurial arterioles of the sciatic nerve are innervated by nonadrenergic, noncholinergic nerves that contribute to the regulation of vasodilation. Using immunohistochemistry, the authors determined that nerves innervating epineurial arterioles contain the neuropeptide calcitonin gene–related peptide (CGRP). Using streptozotocin-induced diabetic rats, the authors demonstrated that CGRP content in sensory nerves innervating epineurial arterioles and vasodilation in response to exogenous CGRP was decreased. In summary, epineurial arterioles of the sciatic nerve are innervated by sensory nerves containing the neuropeptide CGRP. The diabetes-like condition induced by streptozotocin reduces the content of CGRP in these nerves and exogenous CGRPmediated vasodilation. CGRP is likely an important regulator of vascular tone and compromising its function could contribute to nerve ischemia and diabetic neuropathy. PMID:15512786

Coppey, L. J.; Gellett, J. S.; Davidson, E. P.

2004-01-01

27

Sensory nerve innervation of epineurial arterioles of the sciatic nerve containing calcitonin gene-related peptide: effect of streptozotocin-induced diabetes.  

PubMed

The authors have determined that epineurial arterioles of the sciatic nerve are innervated by nonadrenergic, noncholinergic nerves that contribute to the regulation of vasodilation. Using immunohistochemistry, the authors determined that nerves innervating epineurial arterioles contain the neuropeptide calcitonin gene-related peptide (CGRP). Using streptozotocin-induced diabetic rats, the authors demonstrated that CGRP content in sensory nerves innervating epineurial arterioles and vasodilation in response to exogenous CGRP was decreased. In summary, epineurial arterioles of the sciatic nerve are innervated by sensory nerves containing the neuropeptide CGRP. The diabetes-like condition induced by streptozotocin reduces the content of CGRP in these nerves and exogenous CGRP-mediated vasodilation. CGRP is likely an important regulator of vascular tone and compromising its function could contribute to nerve ischemia and diabetic neuropathy. PMID:15512786

Yorek, M A; Coppey, L J; Gellett, J S; Davidson, E P

2004-01-01

28

Patterns of slow transport in sensory nerves  

Microsoft Academic Search

An examination of the pattern of outflow of radioactivity in sciatic nerves was made at times from 1 to 82 days in the rat and up to 132 days in the cat after injecting the L5 and L7 dorsal root ganglia, respectively, with 3H-leucine. Slow waves moving at a rate of 1-2 mm\\/day were looked for on the basis of

D. P. Stromska; S. Ochs

1981-01-01

29

Neurotrophin-4 dependency of intraepithelial vagal sensory nerve terminals that selectively contact pulmonary NEBs in mice.  

PubMed

Important physiological functions of neurotrophins (NTs) in airways and lungs are the early development, differentiation and maintenance of peripheral sensory neurons. The main pulmonary sensory innervation is of vagal origin, with several nerve fibre populations that selectively contact complex morphologically well-characterized receptor end-organs, called neuroepithelial bodies (NEBs). NEBs in mouse lungs are innervated by at least two separate myelinated vagal sensory nerve fibre populations, of which the neurochemical coding is suggestive of a mechanosensory function. Since neurotrophin-4 (NT-4) has been especially described to be important for the maintenance of mechanosensory nerve terminals, the present study aimed at investigating the NT-4 dependency of the two myelinated vagal sensory nerve fibre populations innervating mouse pulmonary NEBs. Multiple immunostaining in 21-day-old and adult mouse lungs revealed the expression of the NT-4 receptor TrkB on the two different myelinated vagal sensory nerve fibre populations, i.e., the vesicular glutamate transporter/calbindin-positive and the P2X2/3-positive fibres, which selectively contact pulmonary NEBs. Examination of the effect of the lack of NT-4 on these NEB-related nerve fibre populations, by comparing adult NT-4-/- and wild-type mice, revealed that in NT-4-/- mice the percentage of NEBs contacted by P2X2/3+ is reduced by 75%, while the VGLUT+/CB+ population seemed to be unaffected. This study demonstrated that although mouse pulmonary NEBs are contacted by two distinct TrkB expressing populations of vagal myelinated afferents, only one is distinctly reduced in NT-4 deficient mice, suggesting the involvement of NTs. In view of the growing evidence for the involvement of NTs in neuronal plasticity associated with airway diseases, pulmonary NEBs innervated by NT-sensitive vagal afferents may play a significant role. PMID:20552548

Oztay, Fusun; Brouns, Inge; Pintelon, Isabel; Raab, Marion; Neuhuber, Winfried; Timmermans, Jean-Pierre; Adriaensen, Dirk

2010-08-01

30

Noninvasive Peroneal Sensory and Motor Nerve Conduction Recordings in the Rabbit Distal Hindlimb: Feasibility, Variability and Neuropathy Measure  

PubMed Central

The peroneal nerve anatomy of the rabbit distal hindlimb is similar to humans, but reports of distal peroneal nerve conduction studies were not identified with a literature search. Distal sensorimotor recordings may be useful for studying rabbit models of length-dependent peripheral neuropathy. Surface electrodes were adhered to the dorsal rabbit foot overlying the extensor digitorum brevis muscle and the superficial peroneal nerve. The deep and superficial peroneal nerves were stimulated above the ankle and the common peroneal nerve was stimulated at the knee. The nerve conduction studies were repeated twice with a one-week intertest interval to determine measurement variability. Intravenous vincristine was used to produce a peripheral neuropathy. Repeat recordings measured the response to vincristine. A compound muscle action potential and a sensory nerve action potential were evoked in all rabbits. The compound muscle action potential mean amplitude was 0.29 mV (SD ± 0.12) and the fibula head to ankle mean motor conduction velocity was 46.5 m/s (SD ± 2.9). The sensory nerve action potential mean amplitude was 22.8 ?V (SD ± 2.8) and the distal sensory conduction velocity was 38.8 m/s (SD ± 2.2). Sensorimotor latencies and velocities were least variable between two test sessions (coefficient of variation ?=? 2.6–5.9%), sensory potential amplitudes were intermediate (coefficient of variation ?=? 11.1%) and compound potential amplitudes were the most variable (coefficient of variation ?=?19.3%). Vincristine abolished compound muscle action potentials and reduced sensory nerve action potential amplitudes by 42–57% while having little effect on velocity. Rabbit distal hindlimb nerve conduction studies are feasible with surface recordings and stimulation. The evoked distal sensory potentials have amplitudes, configurations and recording techniques that are similar to humans and may be valuable for measuring large sensory fiber function in chronic models of peripheral neuropathies. PMID:24658286

Hotson, John R.

2014-01-01

31

Sensory Nerve Conduction in Demyelinating and Axonal Guillain-Barré Syndromes  

Microsoft Academic Search

Guillain-Barré syndrome is divided into acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN) based on motor nerve conduction studies. We investigated whether sensory nerve conduction studies contribute to the electrodiagnosis of AIDP and AMAN. In consecutive 59 patients with AIDP (n = 26) or AMAN (n = 33), results of sensory nerve conduction studies in the median,

Satoshi Kuwabara; Kazue Ogawara; Sonoko Misawa; Keiko Mizobuchi; Jia-Ying Sung; Yukiko Kitano; Masahiro Mori; Takamichi Hattori

2004-01-01

32

A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake  

Microsoft Academic Search

Sensory innervation of the gastrointestinal (GI) tract by the vagus nerve plays important roles in regulation of GI function and feeding behavior. This innervation is composed of a large number of sensory pathways, each arising from a different population of sensory receptors. Progress in understanding the functions of these pathways has been impeded by their close association with vagal efferent,

Edward Alan Fox

2006-01-01

33

Functions of the Renal Nerves.  

ERIC Educational Resources Information Center

Discusses renal neuroanatomy, renal vasculature, renal tubules, renin secretion, renorenal reflexes, and hypertension as related to renal nerve functions. Indicates that high intensitites of renal nerve stimulation have produced alterations in several renal functions. (A chart with various stimulations and resultant renal functions and 10-item,…

Koepke, John P.; DiBona, Gerald F.

1985-01-01

34

[Should biopsy be done on the sensory branch of the radial nerve in leprosy patients? Apropos of 112 cases].  

PubMed

Biopsies of the superficial sensory branch of the radial nerve are contested. Some authors mention it to be simple and without harm, but others are formally against this procedure. At ILAD, 274 biopsies were made between 1986 to 1992. We present a review of 112 leprosy patients for whom biopsy was done. On 112 reexamined patients, we observed 2 benign neuroma, hence 2%. The comparison of nerve function before biopsy and after, of 63 of the 112 patients, reexamination shows no significant modification of the functional score. Given even the occurrence of benign neuroma in only 2% of the cases, the authors do not recommend the biopsy of the superficial sensory branch of the radial nerve. For research purposes on neuritis in leprosy, as well as to assure diagnosis in primary neuritic leprosy, we propose the biopsy of the sensory branch of the musculo cutaneous nerve at elbow level. PMID:9131938

Grauwin, M Y; Dieye, M; Mane, I; Cartel, J L

1997-01-01

35

Morphological differences in skeletal muscle atrophy of rats with motor nerve and/or sensory nerve injury?  

PubMed Central

Skeletal muscle atrophy occurs after denervation. The present study dissected the rat left ventral root and dorsal root at L4-6 or the sciatic nerve to establish a model of simple motor nerve injury, sensory nerve injury or mixed nerve injury. Results showed that with prolonged denervation time, rats with simple motor nerve injury, sensory nerve injury or mixed nerve injury exhibited abnormal behavior, reduced wet weight of the left gastrocnemius muscle, decreased diameter and cross-sectional area and altered ultrastructure of muscle cells, as well as decreased cross-sectional area and increased gray scale of the gastrocnemius muscle motor end plate. Moreover, at the same time point, the pathological changes were most severe in mixed nerve injury, followed by simple motor nerve injury, and the changes in simple sensory nerve injury were the mildest. These findings indicate that normal skeletal muscle morphology is maintained by intact innervation. Motor nerve injury resulted in larger damage to skeletal muscle and more severe atrophy than sensory nerve injury. Thus, reconstruction of motor nerves should be considered first in the clinical treatment of skeletal muscle atrophy caused by denervation. PMID:25337102

Zhao, Lei; Lv, Guangming; Jiang, Shengyang; Yan, Zhiqiang; Sun, Junming; Wang, Ling; Jiang, Donglin

2012-01-01

36

Painful nerve injury decreases sarco-endoplasmic reticulum Ca²?-ATPase activity in axotomized sensory neurons.  

PubMed

The sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) is a critical pathway by which sensory neurons sequester cytosolic Ca(2+) and thereby maintain intracellular Ca(2+) homeostasis. We have previously demonstrated decreased intraluminal endoplasmic reticulum Ca(2+) concentration in traumatized sensory neurons. Here we examine SERCA function in dissociated sensory neurons using Fura-2 fluorometry. Blocking SERCA with thapsigargin (1 ?M) increased resting [Ca(2+)](c) and prolonged recovery (?) from transients induced by neuronal activation (elevated bath K(+)), demonstrating SERCA contributes to control of resting [Ca(2+)](c) and recovery from transient [Ca(2+)](c) elevation. To evaluate SERCA in isolation, plasma membrane Ca(2+) ATPase was blocked with pH 8.8 bath solution and mitochondrial buffering was avoided by keeping transients small (? 400 nM). Neurons axotomized by spinal nerve ligation (SNL) showed a slowed rate of transient recovery compared to control neurons, representing diminished SERCA function, whereas neighboring non-axotomized neurons from SNL animals were unaffected. Injury did not affect SERCA function in large neurons. Repeated depolarization prolonged transient recovery, showing that neuronal activation inhibits SERCA function. These findings suggest that injury-induced loss of SERCA function in small sensory neurons may contribute to the generation of pain following peripheral nerve injury. PMID:23219911

Duncan, C; Mueller, S; Simon, E; Renger, J J; Uebele, V N; Hogan, Q H; Wu, H-E

2013-02-12

37

Spatial interactions between dendritic cells and sensory nerves in allergic airway inflammation.  

PubMed

Neuroimmune interactions play a critical role in the pathogenesis of asthma. Symptoms like wheezing and cough have been attributed to neural dysregulation, whereas sensitization and the induction of allergic inflammation have been linked with the activity of dendritic cells. Neuropeptides were previously shown to control dendritic cell function in vitro, suggesting interactions between dendritic cells and sensory nerves. Here we characterized the anatomical basis of the interactions between dendritic cells and nerves in the airways of mice and monitored the changes during allergic inflammation. Airway microdissection, whole-mount immunohistology, and confocal microscopy were used for the three-dimensional quantitative mapping of airway nerves and dendritic cells along the main axial pathway of nonsensitized versus ovalbumin-sensitized and -challenged CD11c-enhanced yellow fluorescent protein (CD11c-EYFP) transgenic mice. CD11c-EYFP-positive airway mucosal dendritic cells were contacted by calcitonin gene-related peptide-immunoreactive sensory fibers and their co-localization increased in allergic inflammation. Moreover, protein gene product 9.5-positive neuroepithelial bodies and airway ganglia were associated with dendritic cells. In human airways, human leukocyte antigen DR-positive mucosal dendritic cells were found in the close proximity of sensory nerves and neuroepithelial cells. These results provide morphologic evidence of the interactions between dendritic cells and the neural network of the airways at multiple anatomical sites. PMID:17600312

Veres, Tibor Z; Rochlitzer, Sabine; Shevchenko, Marina; Fuchs, Barbara; Prenzler, Frauke; Nassenstein, Christina; Fischer, Axel; Welker, Lutz; Holz, Olaf; Müller, Meike; Krug, Norbert; Braun, Armin

2007-11-01

38

Uses of Skin Biopsy for Sensory and Autonomic Nerve Assessment  

PubMed Central

Skin biopsy is a valuable diagnostic tool for small-fiber-predominant neuropathy by the quantification of intra-epidermal nerve fiber density (IENFD). It has the unique advantage of being a minimally invasive procedure with the potential for longitudinal evaluation of both sensory and autonomic fibers. Unmyelinated small fibers are not otherwise quantified objectively with such a level of sensitivity as has been reported with IENFD. Recent advances include an expansion of the skin punch biopsy technique to evaluate larger myelinated fibers and mechanoreceptors, and recent work has also focused on additional methods of quantifying dermal fibers and densely innervated autonomic structures. This review discusses current work using skin biopsy for the pathologic analysis of peripheral nerve fibers in neuropathy of various causes as well as its use in clinical trials. PMID:23250768

Myers, M. Iliza; Peltier, Amanda C.

2013-01-01

39

Does low-intensity helium-neon laser irradiation alter sensory nerve active potentials or distal latencies  

SciTech Connect

The effect of 1 mW helium neon continuous-wave (0.633 microns) laser irradiation on superficial radical sensory and median sensory nerve function was examined in a double-blind, controlled study involving 40 volunteers. No differences in action potential amplitudes, distal latencies, or forearm skin temperatures were found between the treated and control groups either at the time of irradiation or at subsequent evaluations 15 and 30 minutes later. As a result, we are unable to confirm reports that low-energy lasers of this power and wavelength alter nerve function.

Basford, J.R.; Daube, J.R.; Hallman, H.O.; Millard, T.L.; Moyer, S.K. (Mayo Clinic and Foundation, Rochester, MN (USA))

1990-01-01

40

Accumulation of F-Spondin in Injured Peripheral Nerve Promotes the Outgrowth of Sensory Axons  

Microsoft Academic Search

F-spondin, an extracellular matrix protein, is present in periph- eral nerve during embryonic development, but its amount di- minishes by birth. Axotomy of adult rat sciatic nerve, however, causes a massive upregulation of both F-spondin mRNA and protein distal to the lesion. F-spondin in the distal stump of axotomized nerve promotes neurite outgrowth of sensory neu-

Tal Burstyn-Cohen; Ayala Frumkin; Yi-Tian Xu; Steven S. Scherer; Avihu Klar

1998-01-01

41

Photostimulation of sensory neurons of the rat vagus nerve  

NASA Astrophysics Data System (ADS)

We studied the effect of infrared (IR) stimulation on rat sensory neurons. Primary sensory neurons were prepared by enzymatic dissociation of the inferior (or "nodose") ganglia from the vagus nerves of rats. The 1.85-?m output of a diode laser, delivered through a 200-?m silica fiber, was used for photostimulation. Nodose neurons express the vanilloid receptor, TRPV1, which is a non-selective cation channel that opens in response to significant temperature jumps above 37 C. Opening TRPV1 channels allows entry of cations, including calcium (Ca 2+), into the cell to cause membrane depolarization. Therefore, to monitor TRPV1 activation consequent to photostimulation, we used fura-2, a fluorescent Ca 2+ indicator, to monitor the rise in intracellular Ca 2+ concentration ([Ca 2+]i). Brief trains of 2-msec IR pulses activated TRPV1 rapidly and reversibly, as evidenced by transient rises in [Ca 2+]i (referred to as Ca 2+ transients). Consistent with the Ca 2+ transients arising from influx of Ca 2+, identical photostimulation failed to evoke Ca 2+ responses in the absence of extracellular Ca 2+. Furthermore, the photo-induced Ca 2+ signals were abolished by capsazepine, a specific blocker of TRPV1, indicating that the responses were indeed mediated by TRPV1. We discuss the feasibility of using focal IR stimulation to probe neuronal circuit properties in intact neural tissue, and compare IR stimulation with another photostimulation technique-focal photolytic release of "caged" molecules.

Rhee, Albert Y.; Li, Gong; Wells, Jonathon; Kao, Joseph P. Y.

2008-02-01

42

Arnold's nerve cough reflex: evidence for chronic cough as a sensory vagal neuropathy  

PubMed Central

Arnold’s nerve ear-cough reflex is recognised to occur uncommonly in patients with chronic cough. In these patients, mechanical stimulation of the external auditory meatus can activate the auricular branch of the vagus nerve (Arnold’s nerve) and evoke reflex cough. This is an example of hypersensitivity of vagal afferent nerves, and there is now an increasing recognition that many cases of refractory or idiopathic cough may be due to a sensory neuropathy of the vagus nerve. We present two cases where the cause of refractory chronic cough was due to sensory neuropathy associated with ear-cough reflex hypersensitivity. In both cases, the cough as well as the Arnold’s nerve reflex hypersensitivity were successfully treated with gabapentin, a treatment that has previously been shown to be effective in the treatment of cough due to sensory laryngeal neuropathy (SLN). PMID:25383210

Gibson, Peter G.; Birring, Surinder S.

2014-01-01

43

Sensory nerves, neurogenic inflammation and pain: missing components of alternative irritation strategies? A review and a potential strategy.  

PubMed

The eyes and skin are highly innervated by sensory nerves; stimulation of these nerves by irritants may give rise to neurogenic inflammation, leading to sensory irritation and pain. Few in vitro models of neurogenic inflammation have been described in conjunction with alternative skin and eye irritation methods, despite the fact that the sensory innervation of these organs is well-documented. To date, alternative approaches to the Draize skin and eye irritation tests have proved largely successful at classifying severe irritants, but are generally poor at discriminating between agents with mild to moderate irritant potential. We propose that the development of in vitro models for the prediction of sensory stimulation will assist in the re-classification of the irritant potential of agents that are under-predicted by current in vitro strategies. This review describes the range of xenobiotics known to cause inflammation and pain through the stimulation of sensory nerves, as well as the endogenous mediators and receptor types that are involved. In particular, it focuses on the vanilloid receptor, its activators and its regulation, as these receptors function as integrators of responses to numerous noxious stimuli. Cell culture models and ex vivo preparations that have the potential to serve as predictors of sensory irritation are also described. In addition, as readily available sensory neuron cell line models are few in number, stem cell lines (with the capacity to differentiate into sensory neurons) are explored. Finally, a preliminary strategy to enable assessment of whether incorporation of a sensory component will enhance the predictive power of current in vitro eye and skin testing strategies is proposed. PMID:15612874

Garle, Michael J; Fry, Jeffrey R

2003-01-01

44

Changes in sensory activity of ocular surface sensory nerves during allergic keratoconjunctivitis.  

PubMed

Peripheral neural mechanisms underlying the sensations of irritation, discomfort, and itch accompanying the eye allergic response have not been hitherto analyzed. We explored this question recording the changes in the electrical activity of corneoconjunctival sensory nerve fibers of the guinea pig after an ocular allergic challenge. Sensitization was produced by i.p. ovalbumin followed by repeated application in the eye of 10% ovalbumin on days 14 to 18. Blinking and tearing rate were measured. Spontaneous and stimulus-evoked (mechanical, thermal, chemical) impulse activity was recorded from mechanonociceptor, polymodal nociceptor and cold corneoscleral sensory afferent fibers. After a single (day 14) or repeated daily exposures to the allergen during the following 3 to 4days, tearing and blinking rate increased significantly. Also, sensitization was observed in mechanonociceptors (transient reduction of mechanical threshold only on day 14) and in polymodal nociceptors (sustained enhancement of the impulse response to acidic stimulation). In contrast, cold thermoreceptors showed a significant decrease in basal ongoing activity and in the response to cooling. Treatment with the TRPV1 and TRPA1 blockers capsazepine and HC-030031 reversed the augmented blinking. Only capsazepine attenuated tearing rate increase and sensitization of the polymodal nociceptors response to CO2. Capsazepine also prevented the decrease in cold thermoreceptor activity caused by the allergic challenge. We conclude that changes in nerve impulse activity accompanying the ocular allergic response, primarily mediated by activation of nociceptor's TRPV1 and to a lesser degree by activation of TRPA1 channels, explain the eye discomfort sensations accompanying allergic episodes. PMID:23867735

Acosta, M Carmen; Luna, Carolina; Quirce, Susana; Belmonte, Carlos; Gallar, Juana

2013-11-01

45

Longitudinal intrafascicular electrodes in collection and analysis of sensory signals of the peripheral nerve in a feline model.  

PubMed

The purpose of this study was to evaluate the value of utilizing longitudinal intrafascicular electrodes (LIFEs) in collecting and analyzing sensory signals from the peripheral nerve. The longitudinal intrafascicular electrodes were made of 25-microm Teflon-insulated Pt/Ir wire and implanted into the fascicle of the superficial peroneal nerves in a feline model. The sensory signals at rest status and induced with various stimulations were recorded. The action potential area, frequency, coefficient of variation (CV) of the peak, and functional spectrum were then analyzed by the MF Lab version 3.01 software package. The results showed that the sensory nerve action potentials (SNAPs) were 0-2 spikes per second at rest state; the count was increased when stimulation was administered. SNAPs were 16-24 spikes per second when scraping stimulation was applied. The pulse intervals and the waveform remained consistent. SNAPs burst and were clustered when stress stimulation was given. The comparison of area, frequency, and CV of the peak showed statistically significant differences between these parameters receiving different stimulations. The functional spectrum analysis showed that the frequency of action potential increased when the stress stimulation was applied. In conclusion, LIFEs can sensitively collect sensory signals and provide a good interface to analyze sensory information from peripheral fasciculi. These data provide useful information for further study of control of electronic prostheses. PMID:16145684

Li, Li-Jun; Zhang, Jian; Zhang, Feng; Lineaweaver, William C; Chen, Tong-Yi; Chen, Zhong-Wei

2005-01-01

46

Sensory axon regeneration: rebuilding functional connections in the spinal cord  

PubMed Central

Functional regeneration within the adult spinal cord remains a formidable task. A major barrier to regeneration of sensory axons into the spinal cord is the dorsal root entry zone. This region displays many of the inhibitory features characteristic of other central nervous system injuries. Several experimental treatments, including inactivation of inhibitory molecules (such as Nogo and chondroitin sulfate proteoglycans) or administration of neurotrophic factors (such as nerve growth factor, neurotrophin3, glial derived neurotrophic factor and artemin), have been found to promote anatomical and functional regeneration across this barrier. There have been relatively few experiments, however, to determine if regenerating axons project back to their appropriate target areas within the spinal cord. This review focuses on recent advances in sensory axon regeneration, including studies assessing the ability of sensory axons to reconnect with their original synaptic targets. PMID:22137336

Smith, George M.; Falone, Anthony E.; Frank, Eric

2011-01-01

47

Selective Targeting of TRPV1 Expressing Sensory Nerve Terminals in the Spinal Cord for Long Lasting Analgesia  

PubMed Central

Chronic pain is a major clinical problem and opiates are often the only treatment, but they cause significant problems ranging from sedation to deadly respiratory depression. Resiniferatoxin (RTX), a potent agonist of Transient Receptor Potential Vanilloid 1 (TRPV1), causes a slow, sustained and irreversible activation of TRPV1 and increases the frequency of spontaneous excitatory postsynaptic currents, but causes significant depression of evoked EPSCs due to nerve terminal depolarization block. Intrathecal administration of RTX to rats in the short-term inhibits nociceptive synaptic transmission, and in the long-term causes a localized, selective ablation of TRPV1-expressing central sensory nerve terminals leading to long lasting analgesia in behavioral models. Since RTX actions are selective for central sensory nerve terminals, other efferent functions of dorsal root ganglion neurons can be preserved. Preventing nociceptive transmission at the level of the spinal cord can be a useful strategy to treat chronic, debilitating and intractable pain. PMID:19753113

Sikand, Parul; Parihar, Arti; Evans, M. Steven; Premkumar, Louis S.

2009-01-01

48

[Mixed neuropathies in rheumatoid arthritis. Motor and sensory nerve conduction velocities].  

PubMed

Nerve conduction studies and analysis of the sensory action potential (110 nerves investigated) demons treated abnormalities in 15 to 20 patients with rheumatoid arthritis. It is concluded that moderate, often subclinical peripheral neuropathy is a common complication in rheumatoid arthritis. PMID:184511

Frenay, J; Goor, C; Kievitis, J H; Endtz, J

1976-01-01

49

Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas  

NASA Technical Reports Server (NTRS)

Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

1998-01-01

50

Functional and topographic segregation of glomeruli revealed by local staining of antennal sensory neurons in the honeybee Apis mellifera.  

PubMed

In the primary olfactory center of animals, glomeruli are the relay stations where sensory neurons expressing cognate odorant receptors converge onto interneurons. In cockroaches, moths, and honeybees, sensory afferents from sensilla on the anterodorsal surface and the posteroventral surface of the flagellum form two nerves of almost equal thicknesses. In this study, double labeling of the two nerves, or proximal/distal regions of the nerves, with fluorescent dyes was used to investigate topographic organization of sensory afferents in the honeybee. The sensory neurons of ampullaceal sensilla responsive to CO2, coelocapitular sensilla responsive to hygrosensory, and thermosensory stimuli and coeloconic sensilla of unknown function were characterized with large somata and supplied thick axons exclusively to the ventral nerve. Correspondingly, all glomeruli innervated by sensory tract (T) 4 received thick axonal processes exclusively from the ventral nerve. Almost all T1-3 glomeruli received a similar number of sensory afferents from the two nerves. In the macroglomerular complexes of the drone, termination fields of afferents from the two nerves almost completely overlapped; this differs from moths and cockroaches, which show heterogeneous terminations in the glomerular complex. In T1-3 glomeruli, sensory neurons originating from more distal flagellar segments tended to terminate within the inner regions of the cortical layer. These results suggest that some degree of somatotopic organization of sensory afferents exist in T1-3 glomeruli, and part of T4 glomeruli serve for processing of hygro- and thermosensory signals. PMID:19412930

Nishino, Hiroshi; Nishikawa, Michiko; Mizunami, Makoto; Yokohari, Fumio

2009-07-10

51

Hydrophilic Polymers Enhance Early Functional Outcomes after Nerve Autografting  

PubMed Central

Background Approximately 12% of operations for traumatic neuropathy are for patients with segmental nerve loss and less than 50% of these injuries obtain meaningful functional recovery. Polyethylene glycol (PEG) therapy has been shown to improve functional outcomes after nerve severance and we hypothesized this therapy could also benefit nerve autografting. Methods A segmental rat sciatic nerve injury model was used, whereby a 0.5 cm defect was repaired with an autograft using microsurgery. Experimental animals were treated with solutions containing methylene blue (MB) and PEG; control animals did not receive PEG. Compound Actions Potentials (CAPs) were recorded before nerve transection, after solution therapy, and at 72 hours postoperatively. The animals underwent behavioral testing at 24 and 72 hours postoperatively. After sacrifice, nerves were fixed, sectioned, and immunostained to allow for quantitative morphometric analysis. Results The introduction of hydrophilic polymers greatly improved morphological and functional recovery of rat sciatic axons at 1–3 days following nerve autografting. PEG therapy restored CAPs in all animals and CAPs were still present 72 hours postoperatively. No CAPS were detectable in control animals. Footfall asymmetry scores and sciatic functional index scores were significantly improved for PEG therapy group at all time points (p <0.05 and p<0.001; p <0.001 and p <0.01). Sensory and motor axon counts were increased distally in nerves treated with PEG compared to control (p = 0.0189 and p = 0.0032). Conclusions PEG therapy improves early physiologic function, behavioral outcomes, and distal axonal density after nerve autografting. PMID:22521220

Sexton, Kevin W.; Pollins, Alonda C.; Cardwell, Nancy L.; Del Corral, Gabriel A.; Bittner, George D.; Shack, R. Bruce; Nanney, Lillian B.; Thayer, Wesley P.

2014-01-01

52

Morphology and Nanomechanics of Sensory Neurons Growth Cones following Peripheral Nerve Injury  

PubMed Central

A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins. PMID:23418549

Szabo, Vivien; Vegh, Attila-Gergely; Lucas, Olivier; Cloitre, Thierry; Scamps, Frederique; Gergely, Csilla

2013-01-01

53

Optical survey of initial expression of synaptic function in the embryonic chick trigeminal sensory nucleus.  

PubMed

We examined the initial expression of synaptic function in the embryonic chick trigeminal nucleus using voltage-sensitive dye recording. Brainstem preparations with three trigeminal nerve afferents, the ophthalmic nerve (N.V1), maxillary nerve (N.V2) and mandibular nerve (N.V3), were dissected from 5.5- to 6.5-day-old chick embryos. In our previous study [Sato et al., 1999], we detected slow signals corresponding to glutamatergic excitatory postsynaptic potentials and identified the principal sensory nucleus of the trigeminal nerve (Pr5), spinal sensory nucleus of the trigeminal nerve (Sp5) and trigeminal motor nucleus. In this study, we examined the effects of removing Mg(2+) from the physiological solution, which enhanced N-methyl-d-aspartate receptor function in the sensory nuclei. In 6.5-day-old (St 29) embryos, the slow signal was observed in Pr5 and Sp5 only when N.V1 was stimulated, whereas it appeared in Mg(2+)-free solution with every nerve stimulation. In 6-day-old (St 28) embryos, the slow signal was observed in Sp5 with N.V1 stimulation, and the appearance of synaptic function in Mg(2+)-free solution varied, depending on the nerves and preparations used. In 5.5-day-old (St 27) embryos, synaptic function was not detected even when external Mg(2+) was removed. These results indicate that the initial expression of synaptic function in the trigeminal system occurs earlier than previously considered, and that the developmental organization of synaptic function differs among the three trigeminal nerves and between the two sensory nuclei. PMID:24769319

Momose-Sato, Yoko; Sato, Katsushige

2014-06-01

54

Effect of pulsed infrared lasers on neural conduction and axoplasmic transport in sensory nerves  

NASA Astrophysics Data System (ADS)

Over the past ten years there has been an increasing interest in the use of lasers for neurosurgical and neurological procedures. Novel recent applications range from neurosurgical procedures such as dorsal root entry zone lesions made with argon and carbon dioxide microsurgical lasers to pain relief by low power laser irradiation of the appropriate painful nerve or affected region1 '2 However, despite the widespread clinical applications of laser light, very little is known about the photobiological interactions between laser light and nervous tissue. The present studies were designed to evaluate the effects of pulsed Nd:YAG laser light on neural impulse conduction and axoplasmic transport in sensory nerves in rats and cats. Our data indicate that Q-switched Nd:YAG laser irradiation can induce a preferential impairment of (1) the synaptic effects of small afferent fibers on dorsal horn cells in the spinal cord and of (2) small slow conducting sensory nerve fibers in dorsal roots and peripheral nerves. These results imply that laser light might have selective effects on impulse conduction in slow conducting sensory nerve fibers. In agreement with our elecirophysiological observations recent histological data from our laboratory show, that axonal transport of the enzyme horseradish peroxidase is selectively impaired in small sensory nerve fibers. In summary these data indicate, that Q-switched Nd:YAG laser irradiation can selectively impair neural conduction and axoplasmic transport in small sensory nerve fibers as compared to fast conducting fibers. A selective influence of laser irradiation on slow conducting fibers could have important clinical applications, especially for the treatment of chronic pain.

Wesselmann, Ursula; Rymer, William Z.; Lin, Shien-Fong

1990-06-01

55

Effect of helium-neon laser irradiation on peripheral sensory nerve latency  

SciTech Connect

The purpose of this randomized, double-blind study was to determine the effect of a helium-neon (He-Ne) laser on latency of peripheral sensory nerve. Forty healthy subjects with no history of right upper extremity pathological conditions were assigned to either a Laser or a Placebo Group. Six 1-cm2 blocks along a 12-cm segment of the subjects' right superficial radial nerve received 20-second applications of either the He-Ne laser or a placebo. We assessed differences between pretest and posttest latencies with t tests for correlated and independent samples. The Laser Group showed a statistically significant increase in latency that corresponded to a decrease in sensory nerve conduction velocity. Short-duration He-Ne laser application significantly increased the distal latency of the superficial radial nerve. This finding provides information about the mechanism of the reported pain-relieving effect of the He-Ne laser.

Snyder-Mackler, L.; Bork, C.E.

1988-02-01

56

Intraepithelial Vagal Sensory Nerve Terminals in Rat Pulmonary Neuroepithelial Bodies Express P2X 3 Receptors  

Microsoft Academic Search

The neurotransmitters\\/modulators involved in the interaction between pulmonary neuroepithelial bodies (NEBs) and the va- gal sensory component of their innervation have not yet been elucidated. Because P2X 3 purinoreceptors are known to be strongly expressed in peripheral sensory neurons, the aim of the present study was to examine the localization of nerve endings expressing P2X 3 purinoreceptors in the rat

Inge Brouns; Dirk Adriaensen; Geoff Burnstock; Jean-Pierre Timmermans

57

Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats.  

PubMed

Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a promising strategy for peripheral nerve repair. PMID:24076387

Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin

2013-10-18

58

Various types of total laparoscopic nerve-sparing radical hysterectomies and their effects on bladder function  

PubMed Central

Objective This study was conducted to ascertain the correlation between preserved pelvic nerve networks and bladder function after laparoscopic nerve-sparing radical hysterectomy. Methods Between 2009 and 2011, 53 patients underwent total laparoscopic radical hysterectomies. They were categorized into groups A, B, and C based on the status of preserved pelvic nerve networks: complete preservation of the pelvic nerve plexus (group A, 27 cases); partial preservation (group B, 13 cases); and complete sacrifice (group C, 13 cases). To evaluate bladder function, urodynamic studies were conducted preoperatively and postoperatively at 1, 3, 6, and 12 months after surgery. Results No significant difference in sensory function was found between groups A and B. However, the sensory function of group C was significantly lower than that of the other groups. Group A had significantly better motor function than groups B and C. No significant difference in motor function was found between groups B and C. Results showed that the sensory nerve is distributed predominantly at the dorsal half of the pelvic nerve networks, but the motor nerve is predominantly distributed at the ventral half. Conclusion Various types of total laparoscopic nerve-sparing radical hysterectomies can be tailored to patients with cervical carcinomas. PMID:25045432

Fujiwara, Kazuko; Ebisawa, Keiko; Hada, Tomonori; Ota, Yoshiaki; Andou, Masaaki

2014-01-01

59

Long-term changes in neurotrophic factor expression in distal nerve stump following denervation and reinnervation with motor or sensory nerve  

PubMed Central

Several factors have been proposed to account for poor motor recovery after prolonged denervation, including motor neuron cell death and incomplete or poor regeneration of motor fibers into the muscle. Both may result from failure of the muscle and the distal motor nerve stump to continue expression of neurotrophic factors following delayed muscle reinnervation. This study investigated whether regenerating motor or sensory axons modulate distal nerve neurotrophic factor expression. We found that transected distal tibial nerve up-regulated brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) mRNA, down-regulated neuro-trophin-3 and ciliary neurotrophic factor mRNA, and that although these levels returned to normal with regeneration, the chronically denervated distal nerve stump continued to express these neurotrophic factors for at least 6 months following injury. A sensory nerve (the cutaneous saphenous nerve) sutured to distal tibial nerve lowered injury-induced BDNF and GDNF mRNA levels in distal stump, but repair with a mixed nerve (peroneal, containing muscle and cutaneous axons) was more effective. Repair with sensory or mixed nerves did not affect nerve growth factor or neurotrophin-3 expression. Thus, distal nerve contributed to a neurotrophic environment for nerve regeneration for at least 6 months, and sensory nerve repair helped normalize distal nerve neurotrophic factor mRNA expression following denervation. Furthermore, as BDNF and GDNF levels in distal stump increased following denervation and returned to control levels following reinnervation, their levels serve as markers for the status of regeneration by either motor or sensory nerve. PMID:18194437

Michalski, B.; Bain, J. R.; Fahnestock, M.

2012-01-01

60

Long-term changes in neurotrophic factor expression in distal nerve stump following denervation and reinnervation with motor or sensory nerve.  

PubMed

Several factors have been proposed to account for poor motor recovery after prolonged denervation, including motor neuron cell death and incomplete or poor regeneration of motor fibers into the muscle. Both may result from failure of the muscle and the distal motor nerve stump to continue expression of neurotrophic factors following delayed muscle reinnervation. This study investigated whether regenerating motor or sensory axons modulate distal nerve neurotrophic factor expression. We found that transected distal tibial nerve up-regulated brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) mRNA, down-regulated neurotrophin-3 and ciliary neurotrophic factor mRNA, and that although these levels returned to normal with regeneration, the chronically denervated distal nerve stump continued to express these neurotrophic factors for at least 6 months following injury. A sensory nerve (the cutaneous saphenous nerve) sutured to distal tibial nerve lowered injury-induced BDNF and GDNF mRNA levels in distal stump, but repair with a mixed nerve (peroneal, containing muscle and cutaneous axons) was more effective. Repair with sensory or mixed nerves did not affect nerve growth factor or neurotrophin-3 expression. Thus, distal nerve contributed to a neurotrophic environment for nerve regeneration for at least 6 months, and sensory nerve repair helped normalize distal nerve neurotrophic factor mRNA expression following denervation. Furthermore, as BDNF and GDNF levels in distal stump increased following denervation and returned to control levels following reinnervation, their levels serve as markers for the status of regeneration by either motor or sensory nerve. PMID:18194437

Michalski, B; Bain, J R; Fahnestock, M

2008-05-01

61

Demonstration of sensory cutaneous nerve fibers in guinea-pig lip using endogenous oxidase histochemistry  

Microsoft Academic Search

We developed a new histochemical method based on endogenous oxidase activity for the detection of cutaneous nerves in guinea-pig lips. After the application of a reaction mixture containing 0.14 mM 3,3'-diaminobenzidine(DAB) and 15 mM nickel ammonium sulfate in Tris-HCl buffer (pH 7.6), many blue-black sensory fibers were observed, i.e., dermal nerve fiber bundles, perifollicular plexuses, Merkel-cell endings, and Meissner-like nerve

A. Kaji; H. Imai; T. Maeda; S. Watanabe

1986-01-01

62

Serotonin and sensory nerves: meeting in the cardiovascular system.  

PubMed

Blood pressure regulation by 5-HT has proven to be a complex story to unravel. The work by Cuesta et al., in this issue of Vascular Pharmacology adds another layer of complexity by providing sound in vivo data that 5-HT, through the 5-HT7 receptor, can inhibit the vasodepressor actions of the sensory nervous system and thereby promote blood pressure maintenance. This interaction of 5-HT with the sensory nervous system is inhibitory, whereas 5-HT is understood to be stimulatory in other systems. Moreover, activation of the 5-HT7 receptor has been linked to both reduction and elevation of blood pressure. These interactions are discussed in this mini-review, as are potential steps forward in understanding the interplay of 5-HT, the sensory nervous system and blood pressure. PMID:25181552

Watts, Stephanie W

2014-10-01

63

Systemic acetyl- l -carnitine eliminates sensory neuronal loss after peripheral axotomy: a new clinical approach in the management of peripheral nerve trauma  

Microsoft Academic Search

Several hundred thousand peripheral nerve injuries occur each year in Europe alone. Largely due to the death of around 40%\\u000a of primary sensory neurons, sensory outcome remains disappointingly poor despite considerable advances in surgical technique;\\u000a yet no clinical therapies currently exist to prevent this neuronal death. Acetyl-l-carnitine (ALCAR) is a physiological peptide with roles in mitochondrial bioenergetic function, which may

Andrew McKay Hart; Mikael Wiberg; Mike Youle; Giorgio Terenghi

2002-01-01

64

Heightened motor and sensory (mirror-touch) referral induced by nerve block or topical anesthetic.  

PubMed

Mirror neurons allow us to covertly simulate the sensation and movement of others. If mirror neurons are sensory and motor neurons, why do we not actually feel this simulation- like "mirror-touch synesthetes"? Might afferent sensation normally inhibit mirror representations from reaching consciousness? We and others have reported heightened sensory referral to phantom limbs and temporarily anesthetized arms. These patients, however, had experienced illness or injury of the deafferented limb. In the current study we observe heightened sensory and motor referral to the face after unilateral nerve block for routine dental procedures. We also obtain double-blind, quantitative evidence of heightened sensory referral in healthy participants completing a mirror-touch confusion task after topical anesthetic cream is applied. We suggest that sensory and motor feedback exist in dynamic equilibrium with mirror representations; as feedback is reduced, the brain draws more upon visual information to determine- perhaps in a Bayesian manner- what to feel. PMID:23791606

Case, Laura K; Gosavi, Radhika; Ramachandran, Vilayanur S

2013-08-01

65

Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats  

SciTech Connect

Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a promising strategy for peripheral nerve repair.

Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin, E-mail: chengleiyx@126.com

2013-10-18

66

Early social isolation provokes electrophysiological and structural changes in cutaneous sensory nerves of adult male rats.  

PubMed

Sensory and social deprivation from the mother and littermates during early life disturbs the development of the central nervous system, but little is known about its effect on the development of the peripheral nervous system. To assess peripheral effects of early isolation, male rat pups were reared artificially in complete social isolation (AR); reared artificially with two same-age conspecifics (AR-Social); or reared by their mothers and with littermates (MR). As adults, the electrophysiological properties of the sensory sural (SU) nerve were recorded. We found that the amplitude and normalized area (with respect to body weight) of the compound action potential (CAP) response provoked by single electrical pulses of graded intensity in the SU nerves of AR animals were shorter than the CAP recorded in SU nerves from MR and AR-Social animals. The slope of the stimulus-response curve of AR SU nerves was smaller than that of the other nerves. The histological characterization of axons in the SU nerves was made and showed that the myelin thickness of axons in AR SU nerves was significant lower (2-7µm) than that of the axons in the other nerves. Furthermore, the area and axon diameter of SU nerves of both AR and AR-Social animals were significant lower than in MR animals. This is the first report to show that maternal and littermate deprivation by AR disturbs the development of the myelination and electrophysiological properties of axons in the SU nerve; the replacement of social cues prevents most of the effects. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1184-1193, 2014. PMID:24897933

Segura, Bertha; Melo, Angel I; Fleming, Alison S; Mendoza-Garrido, Maria Eugenia; González Del Pliego, Margarita; Aguirre-Benitez, Elsa L; Hernández-Falcón, Jesús; Jiménez-Estrada, Ismael

2014-12-01

67

Phenotyping sensory nerve endings in vitro in the mouse  

PubMed Central

This protocol details methods to identify and record from cutaneous primary afferent axons in an isolated mammalian skin–saphenous nerve preparation. The method is based on extracellular recordings of propagated action potentials from single-fiber receptive fields. Cutaneous nerve endings show graded sensitivities to various stimulus modalities that are quantified by adequate and controlled stimulation of the superfused skin with heat, cold, touch, constant punctate pressure or chemicals. Responses recorded from single-fibers are comparable with those obtained in previous in vivo experiments on the same species. We describe the components and the setting-up of the basic equipment of a skin–nerve recording station (few days), the preparation of the skin and the adherent saphenous nerve in the mouse (15–45 min) and the isolation and recording of neurons (approximately 1–3 h per recording). In addition, stimulation techniques, protocols to achieve single-fiber recordings, issues of data acquisition and action potential discrimination are discussed in detail. PMID:19180088

Zimmermann, Katharina; Hein, Alexander; Hager, Ulrich; Kaczmarek, Jan Stefan; Turnquist, Brian P; Clapham, David E; Reeh, Peter W

2014-01-01

68

Changes induced by peripheral nerve injury in the morphology and nanomechanics of sensory neurons  

NASA Astrophysics Data System (ADS)

Peripheral nerve injury in vivo promotes a regenerative growth in vitro characterized by an improved neurite regrowth. Knowledge of the conditioning injury effects on both morphology and mechanical properties of live sensory neurons could be instrumental to understand the cellular and molecular mechanisms leading to this regenerative growth. In the present study, we use differential interference contrast microscopy, fluorescence microscopy and atomic force microscopy (AFM) to show that conditioned axotomy, induced by sciatic nerve injury, does not increase somatic size of sensory neurons from adult mice lumbar dorsal root ganglia but promotes the appearance of longer and larger neurites and growth cones. AFM on live neurons is also employed to investigate changes in morphology and membrane mechanical properties of somas of conditioned neurons following sciatic nerve injury. Mechanical analysis of the soma allows distinguishing neurons having a regenerative growth from control ones, although they show similar shapes and sizes.

Benzina, Ouafa; Szabo, Vivien; Lucas, Olivier; Saab, Marie-belle; Cloitre, Thierry; Scamps, Frédérique; Gergely, Csilla; Martin, Marta

2013-06-01

69

Aging profoundly delays functional recovery from gustatory nerve injury  

PubMed Central

The peripheral taste system remains plastic during adulthood. Sectioning the chorda tympani (CT) nerve, which sends sensory information from the anterior tongue to the CNS, causes degeneration of distal fibers and target taste buds. However, taste function is restored after about 40 days in young adult rodents. We tested whether aging impacts the reappearance of neural responses after unilateral CT nerve injury. Taste bud regeneration was minimal at day 50–65 after denervation, and most aged animals died before functional recovery could be assessed. A subset (n=3/5) of old rats exhibited normal CT responses at day 85 post-sectioning, suggesting the potential for efficient recovery. The aged taste system is fairly resilient to sensory receptor loss and major functional changes in normal aging. However, injury to the taste system reveals a surprising vulnerability in old rodents. The gustatory system provides an excellent model to study mechanisms underlying delayed recovery from peripheral nerve injury. Strategies to accelerate recovery and restore normal function will be of interest as the elderly population continues to grow. PMID:22387273

He, Lianying; Yadgarov, Arkadiy; Sharif, Shan; McCluskey, Lynnette Phillips

2012-01-01

70

Cutaneous sensory nerve fibers are decreased in number after peripheral and central nerve damage  

Microsoft Academic Search

Two dermatologic patients displaying peripheral and central nerve damage, respectively, are described. Cutaneous nerve fibers in both patients were studied in skin biopsy specimens taken from neuropathic areas and from the contralateral side, immunocytochemistry being applied to a pan-neuronal marker, a protein gene-product (PGP 9.5). One of the patients, suffering from compression of the ulnar nerve, had dyshidrotic eczema of

Joanna Wallengren; Eva Tegner; Frank Sundler

2002-01-01

71

Chronic electrical stimulation of transected peripheral nerves preserves anatomy and function in the primary somatosensory cortex.  

PubMed

The structure and function of the central nervous system strongly depend on the organization and efficacy of the incoming sensory input. A disruption of somesthetic input severely alters the metabolic activity, electrophysiological properties and even gross anatomical features of the primary somatosensory cortex. Here we examined, in the rat somatosensory cortex, the neuroprotective and therapeutic effects of artificial sensory stimulation after irreversible unilateral transection of a peripheral sensory nerve (the infraorbital branch of the trigeminal nerve). The proximal stump of the nerve was inserted into a silicon tube with stimulating electrodes, through which continuous electrical stimulation was applied for 12 h/day (square pulses of 100 ?s, 3.0 V, at 20 Hz) for 4 weeks. Deafferented animals showed significant decreases in cortical evoked potentials, cytochrome oxidase staining intensity (layers II-IV), cortical volume (layer IV) and number of parvalbumin-expressing (layers II-IV) and calbindin-D28k-expressing (layers II/III) interneurons. These deafferentation-dependent effects were largely absent in the nerve-stimulated animals. Together, these results provide evidence that chronic electrical stimulation has a neuroprotective and preservative effect on the sensory cortex, and raise the possibility that, by controlling the physical parameters of an artificial sensory input to a sectioned peripheral nerve, chronically deafferented brain regions could be maintained at near-'normal' conditions. Our findings could be important for the design of sensory neuroprostheses and for therapeutic purposes in brain lesions or neural degenerative processes. PMID:23006217

Herrera-Rincon, Celia; Torets, Carlos; Sanchez-Jimenez, Abel; Avendaño, Carlos; Panetsos, Fivos

2012-12-01

72

Cough Sensors. III. Opioid and Cannabinoid Receptors on Vagal Sensory Nerves  

Microsoft Academic Search

Cough is a persistent symptom of many inflammatory airways' diseases. Cough is mediated by receptors sited on sensory nerves\\u000a and then through vagal afferent pathways, which terminate in the brainstem respiratory centre. Cough is often described as\\u000a an unmet clinical need. Opioids are the only prescription-based anti-tussives currently available in the UK. They possess\\u000a limited efficacy and exhibit serious unwanted

M. G. Belvisi; D. J. Hele

73

The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse".  

PubMed

It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse." PMID:24719355

Perez-Burgos, Azucena; Mao, Yu-Kang; Bienenstock, John; Kunze, Wolfgang A

2014-07-01

74

On the identification of sensory information from mixed nerves by using single-channel cuff electrodes  

PubMed Central

Background Several groups have shown that the performance of motor neuroprostheses can be significantly improved by detecting specific sensory events related to the ongoing motor task (e.g., the slippage of an object during grasping). Algorithms have been developed to achieve this goal by processing electroneurographic (ENG) afferent signals recorded by using single-channel cuff electrodes. However, no efforts have been made so far to understand the number and type of detectable sensory events that can be differentiated from whole nerve recordings using this approach. Methods To this aim, ENG afferent signals, evoked by different sensory stimuli were recorded using single-channel cuff electrodes placed around the sciatic nerve of anesthetized rats. The ENG signals were digitally processed and several features were extracted and used as inputs for the classification. The work was performed on integral datasets, without eliminating any noisy parts, in order to be as close as possible to real application. Results The results obtained showed that single-channel cuff electrodes are able to provide information on two to three different afferent (proprioceptive, mechanical and nociceptive) stimuli, with reasonably good discrimination ability. The classification performances are affected by the SNR of the signal, which in turn is related to the diameter of the fibers encoding a particular type of neurophysiological stimulus. Conclusions Our findings indicate that signals of acceptable SNR and corresponding to different physiological modalities (e.g. mediated by different types of nerve fibers) may be distinguished. PMID:20423488

2010-01-01

75

Satellite cells of sensory neurons after various types of sciatic nerve trauma in the rat.  

PubMed

Sciatic nerve crushing, transection, and ligation models were used in rats to study the reactions of and changes in the numbers of satellite cells (SC) in spinal dorsal root ganglia in the lumbar segment. Nerve transection was followed by the appearance of neurons surrounded by two layers of SC. The thickness of SC processes and the areas of contacts with neurons increased as a result of invaginations into neuron perikarya. After nerve ligation, SC and their processes were located around parts of large and intermediate neurons in several tightly appressed layers; the area of contact between SC and neuron perikarya showed increased development of invaginations such that lamellar structures appeared in the SC cytoplasm, along with contacts with SC processes surrounding neighboring neurons. The greatest increases in SC numbers were seen after ligation of the nerve. Transection was followed by increases in the numbers of small and intermediate neurons surrounded by vimentin-positive SC. The number of large neurons surrounded by these cells decreased. At all time points following ligation of the nerve, all neurons in the study ganglia were surrounded by vimentin-positive SC. Post-traumatic changes in structure and numbers differed in SC associated with sensory neurons of individual size populations and depended on the type of trauma applied to efferent conductors. PMID:20532986

Arkhipova, S S; Raginov, I S; Mukhitov, A R; Chelyshev, Y A

2010-07-01

76

Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation  

NASA Technical Reports Server (NTRS)

Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

1994-01-01

77

Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain?  

PubMed Central

The normal intervertebral disc (IVD) is a poorly innervated organ supplied only by sensory (mainly nociceptive) and postganglionic sympathetic (vasomotor efferents) nerve fibers. Interestingly, upon degeneration, the IVD becomes densely innervated even in regions that in normal conditions lack innervation. This increased innervation has been associated with pain of IVD origin. The mechanisms responsible for nerve growth and hyperinnervation of pathological IVDs have not been fully elucidated. Among the molecules that are presumably involved in this process are some members of the family of neurotrophins (NTs), which are known to have both neurotrophic and neurotropic properties and regulate the density and distribution of nerve fibers in peripheral tissues. NTs and their receptors are expressed in healthy IVDs but much higher levels have been observed in pathological IVDs, thus suggesting a correlation between levels of expression of NTs and density of innervation in IVDs. In addition, NTs also play a role in inflammatory responses and pain transmission by increasing the expression of pain-related peptides and modulating synapses of nociceptive neurons at the spinal cord. This article reviews current knowledge about the innervation of IVDs, NTs and NT receptors, expression of NTs and their receptors in IVDs as well as in the sensory neurons innervating the IVDs, the proinflammatory role of NTs, NTs as nociception regulators, and the potential network of discogenic pain involving NTs. PMID:20456524

García-Cosamalón, José; del Valle, Miguel E; Calavia, Marta G; García-Suárez, Olivia; López-Muñiz, Alfonso; Otero, Jesús; Vega, José A

2010-01-01

78

Conversion of functional synapses into silent synapses in the trigeminal brainstem after neonatal peripheral nerve transection.  

PubMed

One of the major consequences of neonatal infraorbital nerve damage is irreversible morphological reorganization in the principal sensory nucleus (PrV) of the trigeminal nerve in the brainstem. We used the voltage-clamp technique to study synaptic transmission in the normal and the denervated PrV of neonatal rats in an in vitro brainstem preparation. Most of the synapses in the PrV are already functional at birth. Three days after peripheral deafferentation, functional synapses become silent, lacking AMPA receptor-mediated currents. Without sensory inputs from the whiskers, silent synapses persist through the second postnatal week, indicating that the maintenance of AMPA receptor function depends on sensory inputs. High-frequency (50 Hz) electrical stimulation of the afferent pathway, which mimics sensory input, restores synaptic function, whereas low-frequency (1 Hz) stimulation has no effect. Application of glycine, which promotes AMPA receptor exocytosis, also restores synaptic function. Therefore, normal synaptic function in the developing PrV requires incoming activity via sensory afferents and/or enhanced AMPA receptor exocytosis. Sensory deprivation most likely results in AMPA receptor endocytosis and/or lateral diffusion to the extrasynaptic membrane. PMID:17475801

Lo, Fu-Sun; Erzurumlu, Reha S

2007-05-01

79

Peripheral Nerve Regeneration and NGF-Dependent Neurite Outgrowth of Adult Sensory Neurons Converge on STAT3 Phosphorylation Downstream of Neuropoietic Cytokine Receptor gp130.  

PubMed

After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130(-/-) mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130(-/-) compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130(-/-) mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons. PMID:25253866

Quarta, Serena; Baeumer, Bastian E; Scherbakov, Nadja; Andratsch, Manfred; Rose-John, Stefan; Dechant, Georg; Bandtlow, Christine E; Kress, Michaela

2014-09-24

80

Peripheral Nerve Regeneration and NGF-Dependent Neurite Outgrowth of Adult Sensory Neurons Converge on STAT3 Phosphorylation Downstream of Neuropoietic Cytokine Receptor gp130  

PubMed Central

After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130?/? mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130?/? compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130?/? mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons. PMID:25253866

Quarta, Serena; Baeumer, Bastian E.; Scherbakov, Nadja; Andratsch, Manfred; Rose-John, Stefan; Dechant, Georg; Bandtlow, Christine E.

2014-01-01

81

Dual sensory-motor function for a molluskan statocyst network.  

PubMed

In mollusks, statocyst receptor cells (SRCs) interact with each other forming a neural network; their activity is determined by both the animal's orientation in the gravitational field and multimodal inputs. These two facts suggest that the function of the statocysts is not limited to sensing the animal's orientation. We studied the role of the statocysts in the organization of search motion during hunting behavior in the marine mollusk, Clione limacina. When hunting, Clione swims along a complex trajectory including numerous twists and turns confined within a definite space. Search-like behavior could be evoked pharmacologically by physostigmine; application of physostigmine to the isolated CNS produced "fictive search behavior" monitored by recordings from wing and tail nerves. Both in behavioral and in vitro experiments, we found that the statocysts are necessary for search behavior. The motor program typical of searching could not be produced after removing the statocysts. Simultaneous recordings from single SRCs and motor nerves showed that there was a correlation between the SRCs activity and search episodes. This correlation occurred even though the preparation was fixed and, therefore the sensory stimulus was constant. The excitation of individual SRCs could in some cases precede the beginning of search episodes. A biologically based model showed that, theoretically, the hunting search motor program could be generated by the statocyst receptor network due to its intrinsic dynamics. The results presented support for the idea that the statocysts are actively involved in the production of the motor program underlying search movements during hunting behavior. PMID:14507988

Levi, R; Varona, P; Arshavsky, Y I; Rabinovich, M I; Selverston, A I

2004-01-01

82

[Structure of the sensory nerve apparatus of the branchial arteries of several representatives of bony fishes].  

PubMed

The innervation of bony arteries was studied in 19 fishes (6 perches, 11 breams and 2 pikes) by the silver impregnation method after Kajal--Faworski and Bielschowski--Gross. In the first branchial arc as well as in others the receptors of two kinds were revealed: those having the main type of branching and diffuse arborescent vessels. In rare cases granular terminations were revealed. The number of terminations found in the first branchial arc was twice as great as that in each of the rest arcs. A characteristic feature of the sensory nerve terminations of the branchial apparatus in fishes is their arborescent structure, a diffuse disposition of terminal branches and absence of special cells from the receptor. The structure of the receptory terminations in the first branchial arc of fishes is morphologically similar to the de Castro Ist type sensory terminations which he has found in the carotid sinus wall of mammals. PMID:999536

Morozov, E K

1976-07-01

83

Cutaneous sensory nerve as a substitute for auditory nerve in solving deaf-mutes' hearing problem: an innovation in multi-channel-array skin-hearing technology.  

PubMed

The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice signals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass filtering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequency analysis, the frequency range of the band-pass filter can also be determined. These findings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to distinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes' hearing problems. Scientific hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized. PMID:25317171

Li, Jianwen; Li, Yan; Zhang, Ming; Ma, Weifang; Ma, Xuezong

2014-08-15

84

Cutaneous sensory nerve as a substitute for auditory nerve in solving deaf-mutes' hearing problem: an innovation in multi-channel-array skin-hearing technology  

PubMed Central

The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice signals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass filtering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequency analysis, the frequency range of the band-pass filter can also be determined. These findings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to distinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes’ hearing problems. Scientific hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized. PMID:25317171

Li, Jianwen; Li, Yan; Zhang, Ming; Ma, Weifang; Ma, Xuezong

2014-01-01

85

Functional reorganization of barrel cortex following atypical sensory rearing experiences: the effect on cortical spike synchrony.  

E-print Network

??Functional reorganization of primary sensory cortex following peripheral sensory deprivation and other atypical sensory experience typically focused on changes in single neuron deficits till date.… (more)

Ghoshal, Ayan

2011-01-01

86

Effects of Colistin on the Sensory Nerve Conduction Velocity and F-wave in Mice.  

PubMed

The aim of this study was to examine the changes of sensory nerve conduction velocity (SNCV) and F-wave for colistin-induced peripheral neurotoxicity using a mouse model. Mice were administered with colistin 5, 7.5 and 15 mg/kg/day via a 3-min. intravenous infusion. The sensory nerve conduction velocity (SNCV) and F-wave were measured using the bipolar recording electrodes. The SNCV and F-wave latency changed in a dose- and time-dependent manner. The significant increase of F-wave latency and significant decrease of SNCV appeared on day 3 (p < 0.05 and 0.01, respectively) in the 15 mg/kg/day group, and they were markedly changed on day 7 in the 7.5 mg/kg/day (p < 0.01 and 0.05, respectively) and 15 mg/kg/day groups (both p < 0.01). In addition, F-wave latency also significantly increased on day 7 in the 5 mg/kg/day group (p < 0.05) without any clinical signs. These results indicate that SNCV and F-wave latency were more sensitive in colistin-induced neurotoxicity in mice, which highlights the early monitoring tool of polymyxins neurotoxicity in the clinic. PMID:24861773

Dai, Chongshan; Tang, Shusheng; Li, Jichang; Wang, Jiping; Xiao, Xilong

2014-12-01

87

From genes to pain: nerve growth factor and hereditary sensory and autonomic neuropathy type V.  

PubMed

Hereditary sensory and autonomic neuropathy type V (HSAN V) is an autosomal recessive disorder characterized by the loss of deep pain perception. The anomalous pain and temperature sensations are due to the absence of nociceptive sensory innervation. The neurotrophin nerve growth factor (NGF), by binding to tropomyosin receptor A (TrkA) and p75NTR receptors, is essential for the development and survival of sensory neurons, and for pain perception during adulthood. Recently a homozygous missense mutation (R100W) in the NGF gene has been identified in HSAN V patients. Interestingly, alterations in NGF signalling, due to mutations in the NGF TRKA gene, have also been involved in another congenital insensitivity to pain, HSAN IV, characterized not only by absence of reaction to painful stimuli, but also anhidrosis and mental retardation. These symptoms are absent in HSAN V patients. Unravelling the mechanisms that underlie the differences between HSAN IV and V could assist in better understanding NGF biology. This review highlights the recent key findings in the understanding of HSAN V, including insights into the molecular mechanisms of the disease, derived from genetic studies of patients with this disorder. PMID:24494679

Capsoni, Simona

2014-02-01

88

Impaired responsiveness of renal sensory nerves in streptozotocin-treated rats and obese Zucker diabetic fatty rats: role of angiotensin.  

PubMed

Increasing afferent renal nerve activity decreases efferent renal nerve activity and increases urinary sodium excretion. Activation of renal pelvic mechanosensory nerves is impaired in streptozotocin (STZ)-treated rats (model of type 1 diabetes). Decreased activation of renal sensory nerves would lead to increased efferent renal nerve activity, sodium retention, and hypertension. We examined whether the reduced activation of renal sensory nerves in STZ rats was due to increased renal angiotensin activity and whether activation of the renal sensory nerves was impaired in obese Zucker diabetic fatty (ZDF) rats (model of type 2 diabetes). In an isolated renal pelvic wall preparation from rats treated with STZ for 2 wk, PGE2 failed to increase the release of substance P, from 5 +/- 1 to 6 +/- 1 pg/min. In pelvises from sham STZ rats, PGE2 increased substance P release from 6 +/- 1 to 13 +/- 2 pg/min. Adding losartan to the incubation bath increased PGE2-mediated release of substance P in STZ rats, from 5 +/- 1 to 10 +/- 2 pg/min, but had no effect in sham STZ rats. In pelvises from obese ZDF rats (22-46 wk old), PGE2 increased substance P release from 12.0 +/- 1.2 to 18.3 +/- 1.2 pg/min, which was less than that from lean ZDF rats (10.3 +/- 1.6 to 22.5 +/- 2.4 pg/min). Losartan had no effect on the PGE2-mediated substance P release in obese or lean ZDF rats. We conclude that the mechanisms involved in the decreased responsiveness of the renal sensory nerves in STZ rats involve activation of the renin angiotensin system in STZ but not in obese ZDF rats. PMID:18199587

Kopp, Ulla C; Cicha, Michael Z; Yorek, Mark A

2008-03-01

89

Functional Dyspepsia: Motor Abnormalities, Sensory Dysfunction, and Therapeutic Options  

Microsoft Academic Search

Functional dyspepsia is a common condition, but as yet, the underlying etiology is unclear. In this article, upper gastrointestinal motor and sensory physiology are reviewed and the current evidence for motor and\\/or sensory functional abnormalities causing dyspeptic symptoms is presented. The complex interrelationship between abnormal motor activity and sensation is explored, as well as the potential roles for autonomic dysfunction

Suzanne Timmons; Richard Liston; Kieran J. Moriarty

2001-01-01

90

Vagal Nerve Function in Obesity: Therapeutic Implications  

Microsoft Academic Search

The primal need for nutrients is satisfied by mechanisms for sensing internal stores and detecting food; ATP is the most primitive\\u000a signal. With increasing density of sensory neurons and glia (the primordial brain) and the emergence of autonomic neural activity\\u000a throughout the endoderm, transmitters and other signaling molecules enable alimentation before the appearance of innate storage\\u000a functions. Memory and, ultimately,

John G. Kral; Wencesley Paez; Bruce M. Wolfe

2009-01-01

91

The effect of aging on the density of the sensory nerve fiber innervation of bone and acute skeletal pain  

PubMed Central

As humans age there is a decline in most sensory systems including vision, hearing, taste, smell, and tactile acuity. In contrast, the frequency and severity of musculoskeletal pain generally increases with age. To determine whether the density of sensory nerve fibers that transduce skeletal pain changes with age, calcitonin gene related peptide (CGRP) and neurofilament 200 kDa (NF200) sensory nerve fibers that innervate the femur were examined in the femurs of young (4 month old), middle-aged (13 month) and old (36 month) male F344/BNF1 rats. Whereas the bone quality showed a significant age-related decline, the density of CGRP+ and NF200+ nerve fibers that innervate the bone remained remarkably unchanged as well as the severity of acute skeletal fracture pain. Thus, while bone mass, quality and strength undergo a significant decline with age, the density of sensory nerve fibers that transduce noxious stimuli remain largely intact. These data may in part explain why musculoskeletal pain increases with age. PMID:20947214

Jimenez-Andrade, Juan M.; Mantyh, William G.; Bloom, Aaron P.; Freeman, Katie T.; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

2010-01-01

92

Sensory nerve conduction in the human spinal cord: epidural recordings made during scoliosis surgery  

Microsoft Academic Search

This report describes the waveform and properties of somatosensory evoked potentials recorded from various levels of the human spinal cord, with electrodes inserted into the epidural space and the stimulus delivered to the posterior tibial nerve at the knee. The object was to provide a means of monitoring spinal cord function during surgery for the correction of spinal deformities. The

S J Jones; M A Edgar; A O Ransford

1982-01-01

93

VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity  

PubMed Central

Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and enhanced VEGF content may be associated with visceral hyperalgesia, abdominal discomfort, and/or pelvic pain. PMID:23249422

2012-01-01

94

Electro-acupuncture on functional peripheral nerve regeneration in mice: a behavioural study  

PubMed Central

Background The improvement of axonal regeneration is a major objective in the treatment of peripheral nerve injuries. The aim of this study was to evaluate the effects of electro-acupuncture on the functional recovery of sensorimotor responses following left sciatic nerve crush in mice. Methods Sciatic nerve crush was performed on seven week old female mice. Following the injury, the control group was untreated while the experimental group received an electro-acupuncture application to the injured limb under isoflurane anesthesia at acupoints GB 30 and GB 34. Mechanical and heat sensitivity tests were performed to evaluate sensory recovery. Gait analysis was performed to assess sensorimotor recovery. Results Our results show that normal sensory recovery is achieved within five to six weeks with a two-week period of pain preceding the recovery to normal sensitivity levels. While electro-acupuncture did not accelerate sensory recovery, it did alleviate pain-related behaviour but only when applied during this period. Application before the development of painful symptoms did not prevent their occurrence. The analysis of gait in relation to the sensory tests suggests that the electro-acupuncture specifically improved motor recovery. Conclusions This study demonstrates that electro-acupuncture exerts a positive influence on motor recovery and is efficient in the treatment of pain symptoms that develop during target re-innervation. PMID:22937957

2012-01-01

95

Immediate sensory nerve-mediated respiratory responses to irritants in healthy and allergic airway-diseased mice.  

PubMed

The immediate responses of the upper respiratory tract (URT) to the irritants acrolein and acetic acid were examined in healthy and allergic airway-diseased C57Bl/6J mice. Acrolein (1.1 ppm) and acetic acid (330 ppm) vapors induced an immediate increase in flow resistance, as measured in the surgically isolated URT of urethane-anesthetized healthy animals. Acrolein, but not acetic acid, induced a small URT vasodilatory response. In awake spontaneously breathing mice, both vapors induced a prolonged pause at the start of expiration (a response mediated via stimulation of nasal trigeminal nerves) and an increase in total respiratory specific airway flow resistance, the magnitude of which was similar to that observed in the isolated URT. Both responses were significantly reduced in animals pretreated with large doses of capsaicin to defunctionalize sensory nerves, strongly suggesting a role for sensory nerves in development of these responses. The breathing pattern and/or obstructive responses were enhanced in mice with ovalbumin-induced allergic airway disease. These results suggest that the primary responses to acrolein and acetic acid vapors are altered breathing patterns and airway obstruction, that sensory nerves play an important role in these responses, and that these responses are enhanced in animals with allergic airway disease. PMID:12626476

Morris, John B; Symanowicz, Peter T; Olsen, Joshua E; Thrall, Roger S; Cloutier, Michelle M; Hubbard, Andrea K

2003-04-01

96

Vascular endothelial growth factor promotes anatomical and functional recovery of injured peripheral nerves in the avascular cornea  

PubMed Central

Peripheral nerve injury is a major neurological disorder that can cause severe motor and sensory dysfunction. Neurogenic effects of vascular endothelial growth factor (VEGF) have been found in the central nervous system, and we examined whether VEGF could promote anatomical and functional recovery of peripheral nerves after injury using an avascular corneal nerve injury model. We found that VEGF enhanced neurite elongation in isolated trigeminal ganglion neurons in a dose-dependent manner. This effect was suppressed by neutralizing antibodies for VEGF receptor (VEGFR) 1 and 2 or neuropilin receptor 1 or by VEGFR2 inhibitors (SU 1498 and Ki 8751). In vivo, mice receiving sustained VEGF via implanted pellets showed increased corneal nerve regeneration after superficial injury compared with those receiving vehicle. VEGF injected subconjunctivally at the time of injury accelerated reinnervation, the recovery of mechanosensation, and epithelial wound healing. Endogenous VEGF expression was up-regulated in the corneal epithelium and stroma after wounding. Thus, VEGF can mediate peripheral neuron growth but requires the activation of multiple VEGF receptor types. In addition, VEGF can accelerate the return of sensory and trophic functions of damaged peripheral nerves. Wounding induces the expression of VEFG, which may modulate physiological nerve repair.—Pan, Z., Fukuoka, S., Karagianni, N., Guaiquil, V. H., Rosenblatt, M. I. Vascular endothelial growth factor promotes anatomical and functional recovery of injured peripheral nerves in the avascular cornea. PMID:23568776

Pan, Zan; Fukuoka, Shima; Karagianni, Natalia; Guaiquil, Victor H.; Rosenblatt, Mark I.

2013-01-01

97

Differentiation of peripheral nerve functions and properties with spectral analysis and Karnovsky-Roots staining: a preliminary study  

PubMed Central

Objective: The purpose of this study was to explore the possibility for analyzing and differentiating between motor and sensory functions of peripheral nerve axons using spectral technology. Methods: 10 ?m slide section of S1 anterior and posterior rabbit spinal nerve roots were made and then stained with Karnovsky-Roots method for molecular hyperspectral imaging microscopy analysis. In addition, Raman spectra data of nerve axons on each slide was collected after Karnovsky-Roots staining for 30 minutes. Results: Motor axons were differentiated from sensory axons in a nerve axon section hyperspectral image via Spectral angle mapper algorithm. Raman scatterings could be detected near 2110 cm-1, and 2155 cm-1 in motor axons after Karnvosky-Roots staining. The value of I2100/I1440 in motor axons are significantly different (P0.001) than in sensory axons after staining for 30 minutes. Conclusions: Motor and sensory nerve axons can be differentiated from their counterparts in 30 minutes by using Raman micro-spectroscopy analysis assisted with Karnovsky-Roots staining.

Xu, Qintong; Chen, Zenggan; Li, Qiong; Liu, Haifei; Zhang, Jian; Yao, Wenhua; Zhang, Ren; Li, Qingli; Liu, Hongying; Zhang, Feng; Lineaweaver, William C

2014-01-01

98

Sensory and Cognitive Factors Influencing Functional Ability in Older Adults  

Microsoft Academic Search

Background: Age-related sensory and cognitive impairments have been related to functional performance in older adults. With regard to cognitive abilities, processing speed in particular may be strongly related to older adults’ abilities to perform everyday tasks. Identifying and comparing cognitive correlates of functional performance is particularly important in order to design interventions to promote independence and prevent functional disability. Objective:

Kimberly M. Wood; Jerri D. Edwards; Olivio J. Clay; Virginia G. Wadley; Daniel L. Roenker; Karlene K. Ball

2005-01-01

99

Increased Nerve Growth Factor Signaling in Sensory Neurons of Early Diabetic Rats Is Corrected by Electroacupuncture  

PubMed Central

Diabetic polyneuropathy (DPN), characterized by early hyperalgesia and increased nerve growth factor (NGF), evolves in late irreversible neuropathic symptoms with reduced NGF support to sensory neurons. Electroacupuncture (EA) modulates NGF in the peripheral nervous system, being effective for the treatment of DPN symptoms. We hypothesize that NGF plays an important pathogenic role in DPN development, while EA could be useful in the therapy of DPN by modulating NGF expression/activity. Diabetes was induced in rats by streptozotocin (STZ) injection. One week after STZ, EA was started and continued for three weeks. NGF system and hyperalgesia-related mediators were analyzed in the dorsal root ganglia (DRG) and in their spinal cord and skin innervation territories. Our results show that four weeks long diabetes increased NGF and NGF receptors and deregulated intracellular signaling mediators of DRG neurons hypersensitization; EA in diabetic rats decreased NGF and NGF receptors, normalized c-Jun N-terminal and p38 kinases activation, decreased transient receptor potential vanilloid-1 ion channel, and possibly activated the nuclear factor kappa-light-chain-enhancer of activated B cells (Nf-?B). In conclusion, NGF signaling deregulation might play an important role in the development of DPN. EA represents a supportive tool to control DPN development by modulating NGF signaling in diabetes-targeted neurons. PMID:23710226

Nori, Stefania Lucia; Rocco, Maria Luisa; Florenzano, Fulvio; Ciotti, Maria Teresa; Aloe, Luigi

2013-01-01

100

Neonatal infraorbital nerve crush-induced CNS synaptic plasticity and functional recovery.  

PubMed

Infraorbital nerve (ION) transection in neonatal rats leads to disruption of whisker-specific neural patterns (barrelettes), conversion of functional synapses into silent synapses, and reactive gliosis in the brain stem trigeminal principal nucleus (PrV). Here we tested the hypothesis that neonatal peripheral nerve crush injuries permit better functional recovery of associated central nervous system (CNS) synaptic circuitry compared with nerve transection. We developed an in vitro whisker pad-trigeminal ganglion (TG)-brain stem preparation in neonatal rats and tested functional recovery in the PrV following ION crush. Intracellular recordings revealed that 68% of TG cells innervate the whisker pad. We used the proportion of whisker pad-innervating TG cells as an index of ION function. The ION function was blocked by ?64%, immediately after mechanical crush, then it recovered beginning after 3 days postinjury and was complete by 7 days. We used this reversible nerve-injury model to study peripheral nerve injury-induced CNS synaptic plasticity. In the PrV, the incidence of silent synapses increased to ?3.5 times of control value by 2-3 days postinjury and decreased to control levels by 5-7 days postinjury. Peripheral nerve injury-induced reaction of astrocytes and microglia in the PrV was also reversible. Neonatal ION crush disrupted barrelette formation, and functional recovery was not accompanied by de novo barrelette formation, most likely due to occurrence of recovery postcritical period (P3) for pattern formation. Our results suggest that nerve crush is more permissive for successful regeneration and reconnection (collectively referred to as "recovery" here) of the sensory inputs between the periphery and the brain stem. PMID:24478162

Lo, Fu-Sun; Zhao, Shuxin; Erzurumlu, Reha S

2014-04-01

101

Clinical application of sensory protection of denervated muscle.  

PubMed

Following proximal peripheral nerve injury, motor recovery is often poor due to prolonged muscle denervation and loss of regenerative potential. The transfer of a sensory nerve to denervated muscle results in improved functional recovery in experimental models. The authors here report the first clinical case of sensory protection. Following a total hip arthroplasty, this patient experienced a complete sciatic nerve palsy with no recovery at 3 months postsurgery and profound denervation confirmed electrodiagnostically. He underwent simultaneous neurolysis of the sciatic nerve and saphenous nerve transfers to the tibialis anterior branch of the peroneal nerve and gastrocnemius branch from the tibial nerve. He noted an early proprioceptive response. Electromyography demonstrated initially selective amelioration of denervation potentials followed by improved motor recovery in sensory protected muscles only. The patient reported clinically significant functional improvements in activities of daily living. The authors hypothesize that the presence of a sensory nerve during muscle denervation can improve functional motor recovery. PMID:18976091

Bain, James R; Hason, Yaniv; Veltri, Karen; Fahnestock, Margaret; Quartly, Caroline

2008-11-01

102

The neurochemistry and innervation patterns of extrinsic sensory and sympathetic nerves in the myenteric plexus of the C57Bl6 mouse jejunum  

Microsoft Academic Search

In vitro anterograde tracing of axons in mesenteric nerve trunks using biotinamide in combination with immunohistochemical labelling was used to characterize the extrinsic nerve projections in the myenteric plexus of the mouse jejunum. Anterogradely-labelled spinal sensory fibres innervating the enteric nervous system were identified by their immunoreactivity for calcitonin gene-related peptide (CGRP), while sympathetic noradrenergic fibres were detected with tyrosine

L. L. Tan; J. C. Bornstein; C. R. Anderson

2010-01-01

103

Histopathologic and functional effects of facial nerve following electrical stimulation  

Microsoft Academic Search

The aim of the study is to investigate the functional and histopathologic changes in facial nerve due to the application of\\u000a various violent and numerous electrical stimuli to the facial nerve. The study was carried out with Wistar rats weighing between\\u000a 200 and 300 g. The facial nerves of the subjects were located and stimulated with electrical stimulator. Then five groups

Emrah Sapmaz; Irfan Kaygusuz; Hayrettin Cengiz Alpay; Nusret Akpolat; Erol Keles; Turgut Karlidag; Israfil Orhan; Sinasi Yalcin

2010-01-01

104

Laterality effects of human pudendal nerve stimulation on corticoanal pathways: evidence for functional asymmetry  

PubMed Central

BACKGROUND—Although motor and sensory pathways to the human external anal sphincter are bilateral, a unilateral pudendal neuropathy may still disrupt anal continence. Anal continence can, however, be preserved despite unilateral pudendal damage, and so to explain those differing observations, we postulated that pudendal innervation might be asymmetric.?AIMS—To explore the individual effects of right and left pudendal nerve stimulation on the corticofugal pathways to the human external anal sphincter and thus assess evidence for functional asymmetric pelvic innervation.?METHODS—In eight healthy subjects, anal sphincter electromyographic responses, evoked to transcranial magnetic stimulation of the motor cortex, were recorded 5-500 msec after digital transrectal electrical conditioning stimuli applied to each pudendal nerve.?RESULTS—Right or left pudendal nerve stimulation evoked anal responses of similar latencies but asymmetric amplitudes in six subjects: dominant responses (>50% contralateral side) from the right pudendal in four subjects and from the left in two. Cortical stimulation also evoked anal responses with amplitude 448 (121) µV and latency 20.9 (1.1) msec. When cortical stimulation was preceded by pudendal nerve stimulation, the cortical responses were facilitated at interstimulus intervals of 5-20 msec. Dominant pudendal nerve stimulation induced greater facilitation of the cortically evoked responses than the non-dominant nerve.?CONCLUSIONS—Cortical pathways to the external anal sphincter are facilitated by pudendal nerve conditioning, in an asymmetric manner. This functional asymmetry may explain the presence and absence of anal incontinence after unilateral pudendal nerve injury.???Keywords: cerebral cortex; continence; electromyography; external anal sphincter; incontinence; magnetic stimulation PMID:10369705

Hamdy, S; Enck, P; Aziz, Q; Uengoergil, S; Hobson, A; Thompson, D

1999-01-01

105

A comparison between complete immobilisation and protected active mobilisation in sensory nerve recovery following isolated digital nerve injury  

Microsoft Academic Search

Post-operative immobilisation following isolated digital nerve repair remains a controversial issue amongst the microsurgical community. Protocols differ from unit to unit and even, as evidenced in our unit, may differ from consultant to consultant. We undertook a retrospective review of 46 patients who underwent isolated digital nerve repair over a 6-month period. Follow-up ranged from 6 to 18 months. Twenty-four

F. P. Henry; R. I. Farkhad; F. S. Butt; M. O’Shaughnessy; S. T. O’Sullivan

2012-01-01

106

Effect of Delayed Peripheral Nerve Repair on Nerve Regeneration, Schwann Cell Function and Target Muscle Recovery  

PubMed Central

Despite advances in surgical techniques for peripheral nerve repair, functional restitution remains incomplete. The timing of surgery is one factor influencing the extent of recovery but it is not yet clearly defined how long a delay may be tolerated before repair becomes futile. In this study, rats underwent sciatic nerve transection before immediate (0) or 1, 3, or 6 months delayed repair with a nerve graft. Regeneration of spinal motoneurons, 13 weeks after nerve repair, was assessed using retrograde labeling. Nerve tissue was also collected from the proximal and distal stumps and from the nerve graft, together with the medial gastrocnemius (MG) muscles. A dramatic decline in the number of regenerating motoneurons and myelinated axons in the distal nerve stump was observed in the 3- and 6-months delayed groups. After 3 months delay, the axonal number in the proximal stump increased 2–3 folds, accompanied by a smaller axonal area. RT-PCR of distal nerve segments revealed a decline in Schwann cells (SC) markers, most notably in the 3 and 6 month delayed repair samples. There was also a progressive increase in fibrosis and proteoglycan scar markers in the distal nerve with increased delayed repair time. The yield of SC isolated from the distal nerve segments progressively fell with increased delay in repair time but cultured SC from all groups proliferated at similar rates. MG muscle at 3- and 6-months delay repair showed a significant decline in weight (61% and 27% compared with contra-lateral side). Muscle fiber atrophy and changes to neuromuscular junctions were observed with increased delayed repair time suggestive of progressively impaired reinnervation. This study demonstrates that one of the main limiting factors for nerve regeneration after delayed repair is the distal stump. The critical time point after which the outcome of regeneration becomes too poor appears to be 3-months. PMID:23409189

Jonsson, Samuel; Wiberg, Rebecca; McGrath, Aleksandra M.; Novikov, Lev N.; Wiberg, Mikael; Novikova, Liudmila N.; Kingham, Paul J.

2013-01-01

107

Edaravone promotes functional recovery after mechanical peripheral nerve injury  

PubMed Central

Edaravone has been shown to reduce ischemia/reperfusion-induced peripheral nerve injury. However, the therapeutic effect of edaravone on peripheral nerve injury caused by mechanical factors is unknown. In the present study, we established a peripheral nerve injury model by crushing the sciatic nerve using hemostatic forceps, and then administered edaravone 3 mg/kg intraperitoneally. The sciatic functional index and superoxide dismutase activity of the sciatic nerve were increased, and the malondialdehyde level was decreased in animals in the edaravone group compared with those in the model group. Bcl-2 expression was increased, but Bax expression was decreased in anterior horn cells of the L4-6 spinal cord segments. These results indicated that edaravone has a neuroprotective effect following peripheral nerve injury caused by mechanical factors through alleviating free radical damage to cells and inhibiting lipid peroxidation, as well as regulating apoptosis-related protein expression. PMID:25374594

Zhang, Teng; Li, Zhengwei; Dong, Jianli; Nan, Feng; Li, Tao; Yu, Qing

2014-01-01

108

Glycomimetic functionalized collagen hydrogels for peripheral nerve repair  

NASA Astrophysics Data System (ADS)

Despite the innate regenerative potential of the peripheral nervous system, functional recovery is often limited. The goal of this dissertation was to develop a clinically relevant biomaterial strategy to (1) encourage the regrowth of axons and (2) direct them down their appropriate motor tracts. To this end, we use peptide mimics of two glycans, polysialic acid (PSA) and an epitope first discovered on human natural killer cells (HNK-1), to functionalize type I collagen hydrogels. Previous studies have shown that these molecules, in their glycan and glycomimetic form, are associated with acceleration of neurite outgrowth, glial cell proliferation, and motoneuron targeting. In vitro, we demonstrated the retained functionality of the peptide glycomimetics after conjugation to a type I collagen backbone. While HNK-functionalized collagen increased motor neurite outgrowth, PSA-functionalized collagen encouraged motor and sensory neurite outgrowth and Schwann cell extension and proliferation. When we introduce these glycomimetic-functionalized collagen hydrogels into a critical gap femoral nerve model, we show that both PSA and HNK-functionalized hydrogels yielded a significant increase in functional recovery when compared to saline, native and scramble-coupled hydrogels. However, there was an interesting divergence in the morphological results: PSA-functionalized hydrogels increased axon count and HNK-functionalized hydrogels increased motoneuron targeting and myelination. We believed that these differences may be attributed to distinct mechanisms by which the glycomimetics impart their benefit. Interestingly, however, we found no synergistic gain in recovery with the use of our composite hydrogels which we speculated may be due to an inadequate dose of the individual glycomimetic. To address this possibility, we show that increasing the amount of functionalized peptide functionalized in our composite hydrogels led to increases in axon count and area of regeneration, but does not affect the degree of functional recovery. Finally, in order to assess potential mechanisms by which our glycomimetics impart benefit, we describe a novel platform for studying neural cell/biomaterial interaction through the use of two types of motoneuron cultures, dissociated spinal cord neurons and organotypic spinal cord slices. We show promising evidence that this strategy can be used to probe signaling pathways potentially involved in the action of these bioactives.

Masand, Shirley Narain

109

Myosin function in nervous and sensory systems  

Microsoft Academic Search

Development of the nervous system requires remarkable changes in cell structure that are dependent upon the cytoskeleton. The importance of specific components of the neuronal cytoskeleton, such as microtubules and neurofilaments, to neuronal func- tion and development has been well established. Re- cently, increasing focus has been put on understanding the functional role of the actin cytoskeleton in neurons. Important

Michael E. Brown; Paul C. Bridgman

2004-01-01

110

The method of isolation of the crayfish abdominal stretch receptor maintaining a connection of the sensory neuron to the ventral nerve cord ganglion.  

PubMed

The crayfish stretch receptor consisting of the single mechanoreceptor neurons enveloped by satellite glial cells is the simplest functioning neuroglial preparation. However, during isolation, its axons are usually transected that eliminates afferent regulation and induces complex axotomy-related signaling responses in neurons and satellite glia. We developed new microsurgical method of crayfish stretch receptor isolation, which preserves connections of sensory neurons to the ventral nerve cord ganglion. The stretch receptor may either remain on the abdominal carapace, or be completely isolated. In both cases, it may be either intact, or axotomized. The integrity of axons was confirmed by firing recording from proximal and distal axon points. Normal, necrotic and apoptotic cells were visualized using double fluorochroming with Hoechst 33342 and propidium iodide. The isolated mechanoreceptor neurons maintain regular firing during 8-10 or more hours. Glial cells surrounding non-axotomized neurons demonstrate lower necrosis and apoptosis levels than the axotomized ones. Unlike the existing method, in which the sensory neurons were axotomized, the present method preserves links between the sensory neurons and the ganglion and makes possible to avoid consequences of axotomy in neurons and satellite glia. The present neuroglial preparation may be used as a simple but informative model object in studies of axotomy-induced degeneration and survival of peripheral neurons, the role of glia in neuron injury, the signaling mechanisms of neuroglial interactions, and the effects of diverse physical and chemical factors on neuronal and glial cells. PMID:25374161

Khaitin, Andrej M; Rudkovskii, Mikhail V; Uzdensky, Anatoly B

2015-03-01

111

Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy  

PubMed Central

Quantification of intra-epidermal nerve fibers (iENFs) is an important approach to stage diabetic peripheral neuropathy (DPN) and is a promising clinical endpoint for identifying beneficial therapeutics. Mechanistically, diabetes decreases neuronal mitochondrial function and enhancing mitochondrial respiratory capacity may aid neuronal recovery from glucotoxic insults. We have proposed that modulating the activity and expression of heat shock proteins (Hsp) may be of benefit in treating DPN. KU-32 is a C-terminal Hsp90 inhibitor that improved thermal hypoalgesia in diabetic C57Bl/6 mice but it was not determined if this was associated with an increase in iENF density and mitochondrial function. After 16 weeks of diabetes, Swiss Webster mice showed decreased electrophysiological and psychosensory responses and a >30% loss of iENFs. Treatment of the mice with ten weekly doses of 20 mg/kg KU-32 significantly reversed pre-existing deficits in nerve conduction velocity and responses to mechanical and thermal stimuli. KU-32 therapy significantly reversed the pre-existing loss of iENFs despite the identification of a sub-group of drug-treated diabetic mice that showed improved thermal sensitivity but no increase in iENF density. To determine if the improved clinical indices correlated with enhanced mitochondrial activity, sensory neurons were isolated and mitochondrial bioenergetics assessed ex vivo using extracellular flux technology. Diabetes decreased maximal respiratory capacity in sensory neurons and this deficit was improved following KU-32 treatment. In conclusion, KU-32 improved physiological and morphologic markers of degenerative neuropathy and drug efficacy may be related to enhanced mitochondrial bioenergetics in sensory neurons. PMID:22465570

Urban, Michael J.; Pan, Pan; Farmer, Kevin L.; Zhao, Huiping; Blagg, Brian S.J.; Dobrowsky, Rick T.

2012-01-01

112

Peripheral nerve lengthening as a regenerative strategy  

PubMed Central

Peripheral nerve injury impairs motor, sensory, and autonomic function, incurring substantial financial costs and diminished quality of life. For large nerve gaps, proximal lesions, or chronic nerve injury, the prognosis for recovery is particularly poor, even with autografts, the current gold standard for treating small to moderate nerve gaps. In vivo elongation of intact proximal stumps towards the injured distal stumps of severed peripheral nerves may offer a promising new strategy to treat nerve injury. This review describes several nerve lengthening strategies, including a novel internal fixator device that enables rapid and distal reconnection of proximal and distal nerve stumps.

Vaz, Kenneth M.; Brown, Justin M.; Shah, Sameer B.

2014-01-01

113

Peripheral nerve surgery: primer for the imagers.  

PubMed

Peripheral nerve surgery represents a broad field of pathologic conditions, medical specialties, and anatomic regions of the body. Anatomic understanding of hierarchical nerve structure and the peripheral nervous system aids diagnosis and management of nerve lesions. Many peripheral nerves coalesce into organized arrays, including the cervical, brachial, and lumbosacral plexuses, controlling motor and sensory functions of the trunk and extremities. Individual or groups of nerves may be affected by various pathologic conditions, including trauma, entrapment, tumor, or iatrogenic damage. Current research efforts focus on enhancing the peripheral nerve regenerative process by targeting Schwann cells, nerve growth factors, and nerve allografts. PMID:24210320

Pindrik, Jonathan; Belzberg, Allan J

2014-02-01

114

Olfactory Cilia: Linking Sensory Cilia Function and Human Disease  

PubMed Central

The olfactory system gives us an awareness of our immediate environment by allowing us to detect airborne stimuli. The components necessary for detection of these odorants are compartmentalized in the cilia of olfactory sensory neurons. Cilia are microtubule-based organelles, which can be found projecting from the surface of almost any mammalian cell, and are critical for proper olfactory function. Mislocalization of ciliary proteins and/or the loss of cilia cause impaired olfactory function, which is now recognized as a clinical manifestation of a broad class of human diseases, termed ciliopathies. Future work investigating the mechanisms of olfactory cilia function will provide us important new information regarding the pathogenesis of human sensory perception diseases. PMID:19406873

Jenkins, Paul M.; McEwen, Dyke P.

2009-01-01

115

Specificity of retrograde transport of nerve growth factor (NGF) in sensory neurons: a biochemical and morphological study.  

PubMed

In previous studies it has been shown that nerve growth factor (NGF) is taken up with a high selectivity by adrenergic nerve terminals and is transported retrogradely to the perikaryon11,22. It was the aim of the present experiments to investigate whether the sensory neurons exhibit the same high degree of selectivity for retrograde transport throughout the whole life cycle, although it is known that their dramatic response to NGF is confined to a short period of ontogenetic development. Unilateral injection of [125I]NGF into the forepaw of adult rats was followed by a preferential accumulation of radioactivity in the sensory ganglia (C6-C7) of the injected side. However, this preferential accumulation was not detectable earlier than 6 h after injection and reached a maximum (ratio between injected and non-injected side, 5:1) after 11-16 h. Transection of the plexus brachialis abolished and local administration of colchicine prior to that of [125I]NGF greatly reduced the preferential accumulation of radioactivity in the ganglia of the injected side. The rate of retrograde transport of NGF in sensory neurons was calculated to be 13 mm/h which is about 5 times faster than that in adrenergic neurons. The selectivity of this retrograde transport was demonstrated by the fact that injection of 125I-labeled bovine serum albumin and cytochrome c did not result in a preferential accumulation of radioactivity in the sensory ganglia of the injected side. Light microscopic autoradiography revealed heavily labeled cells in the sensory ganglia (C6-C7) of the injected side after administration of [125I]NGF into the forepaw. Only cells belonging to the large cell type were labeled. Prolonged (7 mug/g/day over 5 days) injection of NGF into the forepaw of 10-day-old rats did not result in a hypertropic response of the sensory neurons as far as can be judged from morphometric studies at the light microscopic level. PMID:50114

Stoeckel, K; Schwab, M; Thoenen, H

1975-05-16

116

The influence of mechanoreceptor structures on regenerating sensory axons after cutaneous nerve transection in the cat.  

PubMed

After nerve transection, cutaneous type I mechanoreceptors (Haarscheiben or tactile domes) preferentially reappear at old loci, although some do appear at new locations. The mechanism by which this topological specificity is maintained was studied by transecting the femoral cutaneous nerve in cats in which about half of the Haarscheiben were removed by cauterization. Thirteen months after nerve transection, domes were found on uncauterized sites at a rate significantly greater than that expected by chance alone, but on cauterized old dome sites at a rate expected by chance alone. It is concluded the reappearance of type I receptors at old receptor sites following nerve transection is primarily due to intrinsic properties of the receptor sites, rather than to guidance of regenerating axonal sprouts to these sites by the endoneurial matrix of the distal stump of the lesioned nerve. PMID:7177492

Horch, K

1982-10-23

117

Polychlorinated biphenyl poisoning: correlation of sensory and motor nerve conduction, neurologic symptoms, and blood levels of polychlorinated biphenyls, quaterphenyls, and dibenzofurans.  

PubMed

In 1979 in Taiwan, more than 2000 people were poisoned with rice cooking oil contaminated with polychlorinated biphenyls (PCB). One hundred ten patients were studied within one year of the exposure. The blood PCB levels were 39.3 +/- 16.6 ppb. The blood levels of the PCB derivatives, polychlorinated quaterphenyls (PCQ) and polychlorinated dibenzofurans (PCDF), were 8.6 +/- 4.8 and 0.076 +/- 0.038 ppb, respectively. Both the sensory and motor nerve conduction velocities (NCV) of the patients were significantly lower than the control. Abnormal slowing of sensory NCV was found in 43.6% and abnormal slowing of motor NCV was seen in 21.8%. Patients who had higher PCQ blood levels had significantly slower median nerve sensory NCV than those with lower PCQ levels. Patients with higher PCB blood levels had significantly slower peroneal nerve motor NCV than those with lower PCB levels. PMID:3926478

Chen, R C; Tang, S Y; Miyata, H; Kashimoto, T; Chang, Y C; Chang, K J; Tung, T C

1985-08-01

118

Dietary sodium modulates the interaction between efferent and afferent renal nerve activity by altering activation of ?2-adrenoceptors on renal sensory nerves  

PubMed Central

Activation of efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA), which then reflexively decreases ERSNA via activation of the renorenal reflexes to maintain low ERSNA. The ERSNA-ARNA interaction is mediated by norepinephrine (NE) that increases and decreases ARNA by activation of renal ?1-and ?2-adrenoceptors (AR), respectively. The ERSNA-induced increases in ARNA are suppressed during a low-sodium (2,470 ± 770% s) and enhanced during a high-sodium diet (5,670 ± 1,260% s). We examined the role of ?2-AR in modulating the responsiveness of renal sensory nerves during low- and high-sodium diets. Immunohistochemical analysis suggested the presence of ?2A-AR and ?2C-AR subtypes on renal sensory nerves. During the low-sodium diet, renal pelvic administration of the ?2-AR antagonist rauwolscine or the AT1 receptor antagonist losartan alone failed to alter the ARNA responses to reflex increases in ERSNA. Likewise, renal pelvic release of substance P produced by 250 pM NE (from 8.0 ± 1.3 to 8.5 ± 1.6 pg/min) was not affected by rauwolscine or losartan alone. However, rauwolscine+losartan enhanced the ARNA responses to reflex increases in ERSNA (4,680 ± 1,240%·s), and renal pelvic release of substance P by 250 pM NE, from 8.3 ± 0.6 to 14.2 ± 0.8 pg/min. During a high-sodium diet, rauwolscine had no effect on the ARNA response to reflex increases in ERSNA or renal pelvic release of substance P produced by NE. Losartan was not examined because of low endogenous ANG II levels in renal pelvic tissue during a high-sodium diet. Increased activation of ?2-AR contributes to the reduced interaction between ERSNA and ARNA during low-sodium intake, whereas no/minimal activation of ?2-AR contributes to the enhanced ERSNA-ARNA interaction under conditions of high sodium intake. PMID:21106912

Cicha, Michael Z.; Smith, Lori A.; Ruohonen, Saku; Scheinin, Mika; Fritz, Nicolas; Hokfelt, Tomas

2011-01-01

119

Genome-wide association study of sensory disturbances in the inferior alveolar nerve after bilateral sagittal split ramus osteotomy  

PubMed Central

Background Bilateral sagittal split ramus osteotomy (BSSRO) is a common orthognatic surgical procedure. Sensory disturbances in the inferior alveolar nerve, including hypoesthesia and dysesthesia, are frequently observed after BSSRO, even without distinct nerve injury. The mechanisms that underlie individual differences in the vulnerability to sensory disturbances have not yet been elucidated. Methods The present study investigated the relationships between genetic polymorphisms and the vulnerability to sensory disturbances after BSSRO in a genome-wide association study (GWAS). A total of 304 and 303 patients who underwent BSSRO were included in the analyses of hypoesthesia and dysesthesia, respectively. Hypoesthesia was evaluated using the tactile test 1 week after surgery. Dysesthesia was evaluated by interview 4 weeks after surgery. Whole-genome genotyping was conducted using Illumina BeadChips including approximately 300,000 polymorphism markers. Results Hypoesthesia and dysesthesia occurred in 51 (16.8%) and 149 (49.2%) subjects, respectively. Significant associations were not observed between the clinical data (i.e., age, sex, body weight, body height, loss of blood volume, migration length of bone fragments, nerve exposure, duration of anesthesia, and duration of surgery) and the frequencies of hypoesthesia and dysesthesia. Significant associations were found between hypoesthesia and the rs502281 polymorphism (recessive model: combined ?2 = 24.72, nominal P = 6.633 × 10-7), between hypoesthesia and the rs2063640 polymorphism (recessive model: combined ?2 = 23.07, nominal P = 1.563 × 10-6), and between dysesthesia and the nonsynonymous rs2677879 polymorphism (trend model: combined ?2 = 16.56, nominal P = 4.722 × 10-5; dominant model: combined ?2 = 16.31, nominal P = 5.369 × 10-5). The rs502281 and rs2063640 polymorphisms were located in the flanking region of the ARID1B and ZPLD1 genes on chromosomes 6 and 3, whose official names are “AT rich interactive domain 1B (SWI1-like)” and “zona pellucida-like domain containing 1”, respectively. The rs2677879 polymorphism is located in the METTL4 gene on chromosome 18, whose official name is “methyltransferase like 4”. Conclusions The GWAS of sensory disturbances after BSSRO revealed associations between genetic polymorphisms located in the flanking region of the ARID1B and ZPLD1 genes and hypoesthesia and between a nonsynonymous genetic polymorphism in the METTL4 gene and dysesthesia. PMID:23834954

2013-01-01

120

Motor and sensory nerve conduction velocity in the baboon: normal values and changes during acrylamide neuropathy  

PubMed Central

Nerve conduction velocity and the amplitude of nerve and muscle action potentials have been measured in the median and anterior tibial nerves of normal adult and infant baboons. The effect of altered temperature on velocity has also been investigated. Seven adult baboons were intoxicated with acrylamide. In animals given 10-15 mg/kg/day, the gradual development of a peripheral neuropathy was accompanied by a decline in the amplitude of both muscle and nerve action potentials. There was also a gradual fall in conduction velocity. In some cases maximal motor velocity in the median nerve fell by as much as 34%, and in the anterior tibial nerve by as much as 49%, the largest falls being seen in animals showing the greatest reductions in response amplitude. Histological studies, reported elsewhere, have shown that the main pathological change in our animals was a degeneration of the peripheral nerves, with little demyelination. Fibre diameter histograms indicated that large fibres were particularly severely affected, and it seems likely that the reduced maximal conduction velocities were due to this selective loss of large-diameter fibres. PMID:4328885

Hopkins, A. P.; Gilliatt, R. W.

1971-01-01

121

Advanced Glycation End Products in Extracellular Matrix Proteins Contribute to the Failure of Sensory Nerve Regeneration in Diabetes  

PubMed Central

OBJECTIVE The goal of this study was to characterize glycation adducts formed in both in vivo extracellular matrix (ECM) proteins of endoneurium from streptozotocin (STZ)-induced diabetic rats and in vitro by glycation of laminin and fibronectin with methylglyoxal and glucose. We also investigated the impact of advanced glycation end product (AGE) residue content of ECM on neurite outgrowth from sensory neurons. RESEARCH DESIGN AND METHODS Glycation, oxidation, and nitration adducts of ECM proteins extracted from the endoneurium of control and STZ-induced diabetic rat sciatic nerve (3–24 weeks post-STZ) and of laminin and fibronectin that had been glycated using glucose or methylglyoxal were examined by liquid chromatography with tandem mass spectrometry. Methylglyoxal-glycated or unmodified ECM proteins were used as substrata for dissociated rat sensory neurons as in vitro models of regeneration. RESULTS STZ-induced diabetes produced a significant increase in early glycation N?-fructosyl-lysine and AGE residue contents of endoneurial ECM. Glycation of laminin and fibronectin by methylglyoxal and glucose increased glycation adduct residue contents with methylglyoxal-derived hydroimidazolone and N?-fructosyl-lysine, respectively, of greatest quantitative importance. Glycation of laminin caused a significant decrease in both neurotrophin-stimulated and preconditioned sensory neurite outgrowth. This decrease was prevented by aminoguanidine. Glycation of fibronectin also decreased preconditioned neurite outgrowth, which was prevented by aminoguanidine and nerve growth factor. CONCLUSIONS Early glycation and AGE residue content of endoneurial ECM proteins increase markedly in STZ-induced diabetes. Glycation of laminin and fibronectin causes a reduction in neurotrophin-stimulated neurite outgrowth and preconditioned neurite outgrowth. This may provide a mechanism for the failure of collateral sprouting and axonal regeneration in diabetic neuropathy. PMID:19720799

Duran-Jimenez, Beatriz; Dobler, Darin; Moffatt, Sarah; Rabbani, Naila; Streuli, Charles H.; Thornalley, Paul J.; Tomlinson, David R.; Gardiner, Natalie J.

2009-01-01

122

Influence of Breaching the Connective Sheaths of the Donor Nerve on Its Myelinated Sensory Axons and on Their Sprouting into the End-to-Side Coapted Nerve in the Rat  

PubMed Central

Abstract The influence of breaching the connective sheaths of the donor sural nerve on axonal sprouting into the end-to-side coapted peroneal nerve was examined in the rat. In parallel, the effect of these procedures on the donor nerve was assessed. The sheaths of the donor nerve at the coaptation site were either left completely intact (group A) or they were breached by epineurial sutures (group B), an epineurial window (group C), or a perineurial window (group D). In group A, the compound action potential (CAP) of sensory axons was detected in ?10% and 40% of the recipient nerves at 4 and 8 weeks, respectively, which was significantly less frequently than in group D at both recovery periods. In addition, the number of myelinated axons in the recipient nerve was significantly larger in group D than in other groups at 4 weeks. At 8 weeks, the number of axons in group A was only ?15% of the axon numbers in other groups (p<0.05). Focal subepineurial degenerative changes in the donor nerves were only seen after 4 weeks, but not later. The average CAP area and the total number of myelinated axons in the donor nerves were not different among the experimental groups. In conclusion, myelinated sensory axons are able to penetrate the epiperineurium of donor nerves after end-to-side nerve coaption; however, their ingrowth into recipient nerves is significantly enhanced by breaching the epiperineurial sheets at the coaptation site. Breaching does not cause permanent injury to the donor nerve. PMID:22873667

Zele, Tilen; Tomsic, Martin; Sketelj, Janez; Bajrovic, Fajko F.

2012-01-01

123

Secretion of EGF-like domain of heregulin? promotes axonal growth and functional recovery of injured sciatic nerve  

Microsoft Academic Search

Neuregulin 1 (NRG1) and epidermal growth factor receptor (ErbB) signaling pathways control Schwann cells during axonal regeneration\\u000a in an injured peripheral nervous system. We investigated whether a persistent supply of recombinant NRG1 to the injury site\\u000a could improve axonal growth and recovery of sensory and motor functions in rats during nerve regeneration. We generated a\\u000a recombinant adenovirus expressing a secreted

Insil Joung; Minjoo Yoo; Ji Hyoun Woo; Chi Young Chang; Hwon Heo; Yunhee Kim Kwon

2010-01-01

124

Accelerating sensory recovery after sciatic nerve crush: non-selective versus melanocortin MC 4 receptor-selective peptides  

Microsoft Academic Search

Melanocortin receptor ligands accelerate functional recovery after peripheral nerve crush. It is not known which mechanism is involved or via which melanocortin receptor this effect occurs, albeit indirect evidence favours the melanocortin MC4 receptor. To test whether the melanocortin MC4 receptor is involved in the effects of melanocortins on functional recovery, we used melanocortin compounds that distinguish the melanocortin MC4

Wouter A. J. Nijenhuis; Nienke Wanders; John A. W. Kruijtzer; Rob M. Liskamp; Willem Hendrik Gispen; Roger A. H. Adana

2004-01-01

125

Reciprocal sympatho-sensory control: functional role of nucleotides and calcitonin gene-related peptide in a peripheral neuroeffector junction.  

PubMed

The rat vas deferens has scattered sensory afferens plus a dense network of sympathetic motor efferens; these fibers are not known to interact functionally. We ascertained whether sensory fibers modulate the release of sympathetic transmitters through the release of calcitonin gene-related peptide (CGRP) and reciprocally assessed whether sympathetic transmitters modulate the overflow of ir-CGRP from sensory fibers. The tissue overflow of electrically evoked sympathetic co-transmitters (ATP/metabolites, noradrenaline (NA), and immunoreactive neuropeptide tyrosine (ir-NPY)) and the motor responses elicited were quantified following either exogenous CGRP or capsaicin application to elicit peptide release. Conversely, the outflow of ir-CGRP was examined in the presence of sympathetic transmitters. Exogenous CGRP reduced in a concentration-dependent manner the electrically evoked outflow of ATP/metabolites, NA, and ir-NPY with EC(50) values of 1.3, 0.18, and 1.9 nM, respectively. CGRP also reduced the basal NA overflow. The CGRP-evoked modulation was blocked by CGRP8-37 or H-89. Release of endogenous CGRP by capsaicin significantly reduced the basal overflow of NA, ir-NPY, and the electrically evoked sympathetic transmitter release. ADP, 2-methylthioadenosine-5'-O-diphosphate (2-MeSADP), or UTP decreased the electrically evoked ir-CGRP overflow, whereas clonidine, ?,?-methyleneadenosine 5'-triphosphate (?,?-mATP), or adenosine (ADO) were inactive. CGRP acting postjunctionally also reduced the motor responses elicited by exogenous NA, ATP, or electrically evoked contractions. We conclude that CGRP exerts a presynaptic modulator role on sympathetic nerve endings and reciprocally ATP or related nucleotides influence the release of ir-CGRP from sensory fibers, highlighting a dynamic sympatho-sensory control between sensory fibers and sympathetic nerve ending. Postjunctional CGRP receptors further contribute to reduce the tissue sympathetic motor tone implying a pre and postjunctional role of CGRP as a sympathetic tone modulator. PMID:22178987

Donoso, M V; Hermosilla, D; Navarrete, C; Álvarez, P; Lillo, J G; Huidobro-Toro, J P

2012-02-17

126

Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections  

PubMed Central

Background Although many nerve prostheses have been proposed in recent years, in the case of consistent loss of nervous tissue peripheral nerve injury is still a traumatic pathology that may impair patient's movements by interrupting his motor-sensory pathways. In the last few decades tissue engineering has opened the door to new approaches;: however most of them make use of rigid channel guides that may cause cell loss due to the lack of physiological local stresses exerted over the nervous tissue during patient's movement. Electrospinning technique makes it possible to spin microfiber and nanofiber flexible tubular scaffolds composed of a number of natural and synthetic components, showing high porosity and remarkable surface/volume ratio. Results In this study we used electrospun tubes made of biodegradable polymers (a blend of PLGA/PCL) to regenerate a 10-mm nerve gap in a rat sciatic nerve in vivo. Experimental groups comprise lesioned animals (control group) and lesioned animals subjected to guide conduits implantated at the severed nerve stumps, where the tubular scaffolds are filled with saline solution. Four months after surgery, sciatic nerves failed to reconnect the two stumps of transected nerves in the control animal group. In most of the treated animals the electrospun tubes induced nervous regeneration and functional reconnection of the two severed sciatic nerve tracts. Myelination and collagen IV deposition have been detected in concurrence with regenerated fibers. No significant inflammatory response has been found. Neural tracers revealed the re-establishment of functional neuronal connections and evoked potential results showed the reinnervation of the target muscles in the majority of the treated animals. Conclusion Corroborating previous works, this study indicates that electrospun tubes, with no additional biological coating or drug loading treatment, are promising scaffolds for functional nervous regeneration. They can be knitted in meshes and various frames depending on the cytoarchitecture of the tissue to be regenerated. The versatility of this technique gives room for further scaffold improvements, like tuning the mechanical properties of the tubular structure or providing biomimetic functionalization. Moreover, these guidance conduits can be loaded with various fillers like collagen, fibrin, or self-assembling peptide gels or loaded with neurotrophic factors and seeded with cells. Electrospun scaffolds can also be synthesized in different micro-architectures to regenerate lesions in other tissues like skin and bone. PMID:18405347

Panseri, Silvia; Cunha, Carla; Lowery, Joseph; Del Carro, Ubaldo; Taraballi, Francesca; Amadio, Stefano; Vescovi, Angelo; Gelain, Fabrizio

2008-01-01

127

A new paradigm of electrical stimulation to enhance sensory neural function.  

PubMed

The ability to improve peripheral neural transmission would have significant therapeutic potential in medicine. A technology of this kind could be used to restore and/or enhance sensory function in individuals with depressed sensory function, such as older adults or patients with peripheral neuropathies. The goal of this study was to investigate if a new paradigm of subsensory electrical noise stimulation enhances somatosensory function. Vibration (50Hz) was applied with a Neurothesiometer to the plantar aspect of the foot in the presence or absence of subsensory electrical noise (1/f type). The noise was applied at a proximal site, on a defined region of the tibial nerve path above the ankle. Vibration perception thresholds (VPT) of younger adults were measured in control and experimental conditions, in the absence or presence of noise respectively. An improvement of ?16% in VPT was found in the presence of noise. These are the first data to demonstrate that modulation of axonal transmission with externally applied electrical noise improves perception of tactile stimuli in humans. PMID:24894033

Breen, Paul P; ÓLaighin, Gearóid; McIntosh, Caroline; Dinneen, Sean F; Quinlan, Leo R; Serrador, Jorge M

2014-08-01

128

The effect of glycomimetic functionalized collagen on peripheral nerve repair  

PubMed Central

Increasing evidence suggests that the improper synaptic reconnection of regenerating axons is a significant cause of incomplete functional recovery following peripheral nerve injury. In this study, we evaluate the use of collagen hydrogels functionalized with two peptide glycomimetics of naturally occurring carbohydrates—polysialic acid (PSA) and human natural killer cell epitope epitope (HNK-1)—that have been independently shown to encourage nerve regeneration and axonal targeting. Our novel biomaterial was used to bridge a critical gap size (5 mm) in a mouse femoral nerve injury model. Functional recovery was assessed using gait and hind limb extension, and was significantly better in all glycomimetic peptide-coupled collagen conditions versus non-functional scrambled peptide-coupled collagen, native collagen, and saline controls. Analysis of cross-sections of the regenerated nerve demonstrated that hydrogels coupled with the PSA glycomimetic, but not HNK, had significant increases in the number of myelinated axons over controls. Conversely, hydrogels coupled with HNK, but not PSA, showed improvement in myelination. Additionally, significantly more correctly projecting motoneurons were observed in groups containing coupled HNK-1 mimicking peptide, but not PSA mimicking peptide. Given the distinct morphological outcomes between the two glycomimetics, our study indicates that the enhancement of recovery following peripheral nerve injury induced by PSA- and HNK-functionalized collagen hydrogels likely occurs through distinct mechanisms. PMID:22917737

Masand, Shirley N.; Chen, Jian; Perron, Isaac J.; Hammerling, Babette C.; Loers, Gabriele; Schachner, Melitta; Shreiber, David I.

2012-01-01

129

Semantic Relevance, Domain Specificity and the Sensory/Functional Theory of Category-Specificity  

ERIC Educational Resources Information Center

According to the sensory/functional theory of semantic memory, Living items rely more on Sensory knowledge than Non-living ones. The sensory/functional explanation of category-specificity assumes that semantic features are organised on the basis of their content. We report here a study on DAT patients with impaired performance on Living items and…

Sartori, Giuseppe; Gnoato, Francesca; Mariani, Ilenia; Prioni, Sara; Lombardi, Luigi

2007-01-01

130

Slower nerve conduction velocity in individuals with functional ankle instability.  

PubMed

The purpose of this study is to quantify nerve conduction velocity differences in individuals with functional ankle instability compared to a "healthy" population. 38 participants ages 18-30 were recruited from a large university with approximately 43,000 students. 19 subjects (9 men and 10 women; age=21.0±1.4 years; height=172.0±9.3?cm; mass=74.4±1 2.4?kg) with symptoms of functional ankle instability were in the functional ankle instability group. 19 subjects (10 men, 9 women; age=22.0±2.6 years; height=169.8±9.1?cm; mass=69.0±14.8?kg) with "healthy" ankles were in the control group. Nerve conduction velocity was conducted using one trial at 2 different sites: posterior to the fibular head (fibular), and 10?cm superior/posterior of the first site (popliteal). Nerve conduction velocity (m/sec) was assessed using a SierraWave II system (Cadwell Laboratories; Kennewick, WA). A MANCOVA was performed on the two dependent variables (fibular and popliteal). Covariates included surface temperature of the leg, body mass index, and age. The independent variable was group (functional ankle instability and control). The effect of group was significantly related to nerve conduction velocity at the fibular site (F(1, 27)?=16.49, p=0.01) and popliteal site (F(1, 27)=4.51, p=0.01), with responses significantly faster for individuals in the control group than the functional ankle instability group. These results indicate that patients with functional ankle instability might have damage to the peroneal nerve which results in slower peroneal nerve conduction velocity. PMID:24577859

Simon, J; Docherty, C

2014-08-01

131

A system-based study of the variation in the amplitude of the compound sensory nerve action potential recorded using surface electrodes  

Microsoft Academic Search

This study arose from the impression that there is a wide variation in the amplitude of the compound sensory nerve action potential (SNAP) when recorded using surface electrodes. Both the physiological factors influencing the SNAP and the method of measurement itself can be viewed as inputs to a system that produces the recorded value as its output. Taking a systems

Matthew C. Pitt

1996-01-01

132

Ultrastructural changes of the sensory nerve terminals in frog muscle spindle during dynamic stretch  

Microsoft Academic Search

Summary The sensory ending of the frog muscle spindle consists of bulbous swellings interconnected by thin, tube-like axonal branches. This study was made to determine if the bulb or thin tube regions are deformed to the same degree during dynamic stretch, by comparing spindles prepared in the relaxed and stretched states. Isolated muscle spindles were rapidly frozen, either in a

Nobuhiro Kim; Noriaki Fujitsuka; Fumio Ito

1985-01-01

133

Thermographic evaluation of hind paw skin temperature and functional recovery of locomotion after sciatic nerve crush in rats  

PubMed Central

INTRODUCTION: Peripheral nerves are often damaged by direct mechanical injury, diseases, and tumors. The peripheral nerve injuries that result from these conditions can lead to a partial or complete loss of motor, sensory, and autonomic functions, which in turn are related to changes in skin temperature, in the involved segments of the body. The aim of this study was to evaluate the changes in hind paw skin temperature after sciatic nerve crush in rats in an attempt to determine whether changes in skin temperature correlate with the functional recovery of locomotion. METHODS: Wistar rats were divided into three groups: control (n?=?7), sham (n?=?25), and crush (n?=?25). All groups were subjected to thermographic, functional, and histological assessments. RESULTS: ?T in the crush group was different from the control and sham groups at the 1st, 3rd and 7rd postoperative days (p<0.05). The functional recovery from the crush group returned to normal values between the 3rd and 4th week post-injury, and morphological analysis of the nerve revealed incomplete regeneration at the 4th week after injury. DISCUSSION: This study is the first demonstration that sciatic nerve crush in rats induces an increase in hind paw skin temperature and that skin temperature changes do not correlate closely with functional recovery PMID:21876984

Z. Sacharuk, Viviane; A. Lovatel, Gisele; Ilha, Jocemar; Marcuzzo, Simone; Severo do Pinho, Alexandre; L. Xavier, Leder; A. Zaro, Milton; Achaval, Matilde

2011-01-01

134

Nitrooleic Acid, an Endogenous Product of Nitrative Stress, Activates Nociceptive Sensory Nerves via the Direct Activation of TRPA1  

PubMed Central

Transient Receptor Potential A1 (TRPA1) is a nonselective cation channel, preferentially expressed on a subset of nociceptive sensory neurons, that is activated by a variety of reactive irritants via the covalent modification of cysteine residues. Excessive nitric oxide during inflammation (nitrative stress), leads to the nitration of phospholipids, resulting in the formation of highly reactive cysteine modifying agents, such as nitrooleic acid (9-OA-NO2). Using calcium imaging and electrophysiology, we have shown that 9-OA-NO2 activates human TRPA1 channels (EC50, 1 ?M), whereas oleic acid had no effect on TRPA1. 9-OA-NO2 failed to activate TRPA1 in which the cysteines at positions 619, 639, and 663 and the lysine at 708 had been mutated. TRPA1 activation by 9-OA-NO2 was not inhibited by the NO scavenger carboxy-PTIO. 9-OA-NO2 had no effect on another nociceptive-specific ion channel, TRPV1. 9-OA-NO2 activated a subset of mouse vagal and trigeminal sensory neurons, which also responded to the TRPA1 agonist allyl isothiocyanate and the TRPV1 agonist capsaicin. 9-OA-NO2 failed to activate neurons derived from TRPA1(-/-) mice. The action of 9-OA-NO2 at nociceptive nerve terminals was investigated using an ex vivo extracellular recording preparation of individual bronchopulmonary C fibers in the mouse. 9-OA-NO2 evoked robust action potential discharge from capsaicin-sensitive fibers with slow conduction velocities (0.4-0.7 m/s), which was inhibited by the TRPA1 antagonist AP-18. These data demonstrate that nitrooleic acid, a product of nitrative stress, can induce substantial nociceptive nerve activation through the selective and direct activation of TRPA1 channels. PMID:19171673

Taylor-Clark, Thomas E.; Ghatta, Srinivas; Bettner, Weston; Undem, Bradley J.

2009-01-01

135

Sensory Neuron Signaling to the Brain: Properties of Transmitter Release from Olfactory Nerve Terminals  

Microsoft Academic Search

olfactory bulb glomeruli. To better understand the process by which information contained in the odorant-evoked firing of ORNs is transmitted to the brain, we examined the properties of glutamate release from olfactory nerve (ON) terminals in slices of the rat olfactory bulb. We show that marked paired pulse depression is the same in simultaneously recorded periglomerular and tufted neurons, and

Gabe J. Murphy; Lindsey L. Glickfeld; Zev Balsen; Jeffry S. Isaacson

2004-01-01

136

Nerve growth factor: structure/function relationships.  

PubMed Central

Nerve growth factor (NGF), which has a tertiary structure based on a cluster of 3 cystine disulfides and 2 very extended, but distorted beta-hairpins, is the prototype of a larger family of neurotrophins. Prior to the availability of cloning techniques, the mouse submandibular gland was the richest source of NGF and provided sufficient material to enable its biochemical characterization. It binds as a dimer to at least 2 cell-surface receptor types expressed in a variety of neuronal and non-neuronal cells. Residues involved in these interactions and in the maintenance of tertiary and quaternary structure have been identified by chemical modification and site-directed mutagenesis, and this information can be related to their location in the 3-dimensional structure. For example, interactions between aromatic residues contribute to the stability of the NGF dimer, and specific surface lysine residues participate in receptor contacts. The conclusion from these studies is that receptor interactions involve broad surface regions, which may be composed of residues from both promoters in the dimer. PMID:7703837

Bradshaw, R. A.; Murray-Rust, J.; Ibanez, C. F.; McDonald, N. Q.; Lapatto, R.; Blundell, T. L.

1994-01-01

137

The superior laryngeal nerve: function and dysfunction.  

PubMed

Despite long-standing clinical interest in SLN dysfunction, most aspects of this entity continue to require clarification. The replacement of the laryngeal mirror by flexible fiberoptic and rigid rod-lens laryngoscopy (including stroboscopy) and the resulting improvement in laryngeal visualization and documentation of examination has not resulted in a better definition of characteristic signs. Symptoms are often vague, and most are shared with other voice disorders. Under the circumstances, there is good reason to suppose that SLN dysfunction yields a clinical picture at least as heterogeneous as recurrent laryngeal nerve injury and a good deal more subtle. Faced with significant inconsistencies in clinical presentation, the clinician is hard-pressed to draw conclusions regarding prevalence, patterns of dysfunction, natural history, treatment, and even about its overall significance. EMG. used judiciously and complemented by frequency range testing, seems to hold more promise as a means of reliable diagnosis than laryngoscopic examination and may serve to resolve some of the confusion surrounding SLN dysfunction. It is equally important that the otolaryngologist guard against falling into the easy habit of attributing vocal disturbance that cannot be otherwise explained to SLN dysfunction in the absence of EMG evidence. If ambiguities surrounding SLN paralysis and paresis are to be clarified, diagnostic rigor is essential. PMID:15062693

Sulica, Lucian

2004-02-01

138

Yield of the sural/radial ratio versus the medial plantar nerve in sensory neuropathies with a normal sural response.  

PubMed

The electrodiagnostic yield of the medial plantar nerve action potential (NAP) amplitude versus the sural/radial amplitude ratio (SRAR) was determined in 110 consecutive patients with clinically diagnosed distal sensory polyneuropathy (SN) and normal sural responses. Forty-five consecutive patients with clinically diagnosed lumbosacral radiculopathy served as disease controls. Of the 110 SN patients, 32 were classified clinically as SN with large-fiber involvement (SN-LFI), whereas 78 had clinically pure small-fiber SN. Plantar NAP amplitudes were abnormal in 18 of 32 patients (56%) with SN-LFI, and 15 of 78 (19%) with small-fiber SN. A SRAR <0.21 (fifth percentile of normal) was found in 7 of 32 patients (22%) with SN-LFI and 8 of 78 (10%) with small-fiber SN. In the control group, the medial plantar NAP was normal in all 45 subjects (100%), whereas the SRAR was >0.21 in 43 subjects (96%). Thus, for a 50% pretest probability of SN-LFI, the positive predictive value of an abnormal medial plantar was 100% versus 85% for a SRAR <0.21. The medial plantar NAP amplitude is a more useful measure of SN, than is the SRAR, in patients under age 70, with suspected SN-LFI. The yield of the SRAR and plantar NAP amplitude is poor when clinical signs of large-fiber sensory dysfunction are lacking. PMID:18340276

Sullivan, John P; Logigian, Eric L; Kocharian, Naira; Herrmann, David N

2008-04-01

139

Microscale Electrode Implantation during Nerve Repair: Effects on Nerve Morphology, Electromyography, and Recovery of Muscle Contractile Function  

PubMed Central

Background Our goal is to develop a peripheral nerve electrode with long-term stability and fidelity for use in nerve-machine interfaces. Microelectromechanical systems (MEMS) use silicon probes that contain multi-channel actuators, sensors, and electronics. We tested the null hypothesis that implantation of MEMS probes do not have a detrimental effect on peripheral nerve function or regeneration. Methods A rat hindlimb, peroneal nerve model was utilized in all experimental groups: a) intact nerve (Control, n= 10); b) nerve division and repair (Repair, n= 9); and c) Nerve division, insertion of MEMS probe, and repair (Repair + Probe, n=9). Nerve morphology, nerve to muscle compound action potential (CMAP) studies, walking tracks, and extensor digitorum longus (EDL) muscle function tests were evaluated following an 80 day recovery. Results Repair and Repair + Probe showed no differences in axon count, axon size, percent non-neural area, CMAP amplitude, latency, muscle mass, muscle force, or walking track scores. Though there was some local fibrosis around each MEMS probe, this did not lead to measurable detrimental effects in any anatomic or functional outcome measurements. Conclusions The lack of a significant difference between Repair and Repair + Probe groups in histology, CMAP, walking tracks, and muscle force suggests that MEMS electrodes are compatible with regenerating axons and show promise for establishing chemical and electrical interfaces with peripheral nerves. PMID:21921739

Urbanchek, Melanie G; Wei, Benjamin; Egeland, Brent M; Abidian, Mohammad R; Kipke, Daryl R; Cederna, Paul S

2011-01-01

140

Characterization of tests of functional recovery after median and ulnar nerve injury and repair in the rat forelimb.  

PubMed

The majority of human peripheral nerve injuries occur in the upper limb but the majority of studies in the rat are performed in the hindlimb. The upper and lower limbs differ in dexterity and control by supraspinal systems, so an upper limb model is a better representation of the common form of human injury. The purpose of this study was to further develop a rat model involving lesions of the median and ulnar nerves. To produce different degrees of misdirection of axons following nerve repair, we studied nerve crush, cut and repair of the two nerves, and cut and repair with crossover. Assessment of functional recovery was performed using a battery of motor and sensory tests: the staircase test, which assesses skilled forepaw reaching; grip strength meter, which assesses grip strength; pawprint analysis, which assesses toe spread and print length; horizontal ladder, which assesses forepaw placement during skilled locomotion; modified Randall-Selitto device and electronic von Frey probes, which assess fine touch; and cold probes, which assess temperature sensation. All tests revealed deficits in forepaw function after nerve injury except the print length and modified Randall-Selitto device. The time course of functional recovery was observed over 15 weeks. The final degree of functional recovery achieved was related to the misdirection of axon regeneration. The tests that most clearly revealed the effects of axon misdirection on function were the skilled paw reaching and grip strength tests. The lesion model and functional tests that we have developed will be useful in testing therapeutic strategies for treating the consequences of inaccurate axon regeneration following peripheral nerve injury in humans. PMID:17374098

Galtrey, Clare M; Fawcett, James W

2007-03-01

141

The impact and specificity of nerve perturbation on novel vibrotactile sensory letter learning.  

PubMed

Abstract The purposes of this study were to determine if induced radiating paresthesia interferes with (a) acquisition and/or (b) utilization of complex tactile information, and (c) identify whether interference reflects tactile masking or response competition. Radiating ulnar (experiment 1) and median (experiment 2) nerve paresthesia was quantified on ulnar innervated vibrotactile Morse code letter acquisition and recollection tasks. Induced paresthesia differentially impacted letter acquisition and recollection, but only when presented to the same anatomical spatial location. PMID:24844345

Passmore, Steven R; Bosse, Jessica; Murphy, Bernadette; Lee, Timothy D

2014-12-01

142

Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation.  

PubMed

We present a case study of a novel variation of the targeted sensory reinnervation technique that provides additional control over sensory restoration after transhumeral amputation. The use of intraoperative somatosensory evoked potentials on individual fascicles of the median and ulnar nerves allowed us to specifically target sensory fascicles to reroute to target cutaneous nerves at a distance away from anticipated motor sites in a transhumeral amputee. This resulted in restored hand maps of the median and ulnar nerve in discrete spatially separated areas. In addition, the subject was able to use native and reinnervated muscle sites to control a robotic arm while simultaneously sensing touch and force feedback from the robotic gripper in a physiologically correct manner. This proof of principle study is the first to demonstrate the ability to have simultaneous dual flow of information (motor and sensory) within the residual limb. In working towards clinical deployment of a sensory integrated prosthetic device, this surgical method addresses the important issue of restoring a usable access point to provide natural hand sensation after upper limb amputation. PMID:24760915

Hebert, Jacqueline S; Olson, Jaret L; Morhart, Michael J; Dawson, Michael R; Marasco, Paul D; Kuiken, Todd A; Chan, K Ming

2014-07-01

143

Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges  

PubMed Central

Background One of the hallmarks of multicellular organisms is the ability of their cells to trigger responses to the environment in a coordinated manner. In recent years primary cilia have been shown to be present as ‘antennae’ on almost all animal cells, and are involved in cell-to-cell signaling in development and tissue homeostasis; how this sophisticated sensory system arose has been little-studied and its evolution is key to understanding how sensation arose in the Animal Kingdom. Sponges (Porifera), one of the earliest evolving phyla, lack conventional muscles and nerves and yet sense and respond to changes in their fluid environment. Here we demonstrate the presence of non-motile cilia in sponges and studied their role as flow sensors. Results Demosponges excrete wastes from their body with a stereotypic series of whole-body contractions using a structure called the osculum to regulate the water-flow through the body. In this study we show that short cilia line the inner epithelium of the sponge osculum. Ultrastructure of the cilia shows an absence of a central pair of microtubules and high speed imaging shows they are non-motile, suggesting they are not involved in generating flow. In other animals non-motile, ‘primary’, cilia are involved in sensation. Here we show that molecules known to block cationic ion channels in primary cilia and which inhibit sensory function in other organisms reduce or eliminate sponge contractions. Removal of the cilia using chloral hydrate, or removal of the whole osculum, also stops the contractions; in all instances the effect is reversible, suggesting that the cilia are involved in sensation. An analysis of sponge transcriptomes shows the presence of several transient receptor potential (TRP) channels including PKD channels known to be involved in sensing changes in flow in other animals. Together these data suggest that cilia in sponge oscula are involved in flow sensation and coordination of simple behaviour. Conclusions This is the first evidence of arrays of non-motile cilia in sponge oscula. Our findings provide support for the hypothesis that the cilia are sensory, and if true, the osculum may be considered a sensory organ that is used to coordinate whole animal responses in sponges. Arrays of primary cilia like these could represent the first step in the evolution of sensory and coordination systems in metazoans. PMID:24410880

2014-01-01

144

Substitution of natural sensory input by artificial neurostimulation of an amputated trigeminal nerve does not prevent the degeneration of basal forebrain cholinergic circuits projecting to the somatosensory cortex  

PubMed Central

Peripheral deafferentation downregulates acetylcholine (ACh) synthesis in sensory cortices. However, the responsible neural circuits and processes are not known. We irreversibly transected the rat infraorbital nerve and implanted neuroprosthetic microdevices for proximal stump stimulation, and assessed cytochrome-oxidase and choline- acetyl-transferase (ChAT) in somatosensory, auditory and visual cortices; estimated the number and density of ACh-neurons in the magnocellular basal nucleus (MBN); and localized down-regulated ACh-neurons in basal forebrain using retrograde labeling from deafferented cortices. Here we show that nerve transection, causes down regulation of MBN cholinergic neurons. Stimulation of the cut nerve reverses the metabolic decline but does not affect the decrease in cholinergic fibers in cortex or cholinergic neurons in basal forebrain. Artifical stimulation of the nerve also has no affect of ACh-innervation of other cortices. Cortical ChAT depletion is due to loss of corticopetal MBN ChAT-expressing neurons. MBN ChAT downregulation is not due to a decrease of afferent activity or to a failure of trophic support. Basalocortical ACh circuits are sensory specific, ACh is provided to each sensory cortex “on demand” by dedicated circuits. Our data support the existence of a modality-specific cortex-MBN-cortex circuit for cognitive information processing.

Herrera-Rincon, Celia; Panetsos, Fivos

2014-01-01

145

Neurosensory testing of the medial calcaneal and medial plantar nerves in patients with plantar heel pain  

Microsoft Academic Search

Eighty-two patients with a chief complaint of plantar heel pain were evaluated for sensory abnormalities within the cutaneous distribution of both the medial calcaneal nerve and the medial plantar nerve, using quantitative neurosensory testing with a pressure-specified sensory device. The results showed that 22.68% of the patients displayed isolated abnormal sensory function within the distribution of the medial calcaneal nerve,

Jonathan D. Rose; D. Scot Malay; Dean L. Sorrento

2003-01-01

146

Video-Gait Analysis of Functional Recovery of Nerve Repaired with Chitosan Nerve Guides  

E-print Network

guides is commonly evaluated through histomorphometry and walking track analysis. We conducted a unique of nerve guide tubes is considered an alternative method to achieve nerve regeneration of transected nerves method of autografts.5­9 Currently a vast amount of research is being pursued to engineer the ideal nerve

VandeVord, Pamela

147

Nerve conduits for nerve reconstruction  

Microsoft Academic Search

Although autogenous nerve grafting remains the gold standard for repair of peripheral nerve defects, the use of various conduits can be a substitute provided these conduits meet the above-mentioned prerequisites. For the moment, autogenous vein grafts or denatured muscle grafts can be used to bridge short defects, especially in distal sensory nerves. Incorporation of muscle into a vein graft expands

Huan Wang; William C. Lineaweaver

2002-01-01

148

A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake.  

PubMed

Sensory innervation of the gastrointestinal (GI) tract by the vagus nerve plays important roles in regulation of GI function and feeding behavior. This innervation is composed of a large number of sensory pathways, each arising from a different population of sensory receptors. Progress in understanding the functions of these pathways has been impeded by their close association with vagal efferent, sympathetic, and enteric systems, which makes it difficult to selectively label or manipulate them. We suggest that a genetic approach may overcome these barriers. To illustrate the potential value of this strategy, as well as to gain insights into its application, investigations of CNS pathways and peripheral tissues involved in energy balance that benefited from the use of gene manipulations are reviewed. Next, our studies examining the feasibility of using mutations of developmental genes for manipulating individual vagal afferent pathways are reviewed. These experiments characterized mechanoreceptor morphology, density and distribution, and feeding patterns in four viable mutant mouse strains. In each strain a single population of vagal mechanoreceptors innervating the muscle wall of the GI tract was altered, and was associated with selective effects on feeding patterns, thus supporting the feasibility of this strategy. However, two limitations of this approach must be addressed for it to achieve its full potential. First, mutation effects in tissues outside the GI tract can contribute to changes in GI function or feeding. Additionally, knockouts of developmental genes are often lethal, preventing analysis of mature innervation and ingestive behavior. To address these issues, we propose to develop conditional gene knockouts restricted to specific GI tract tissues. Two genes of interest are brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), which are essential for vagal afferent development. Creating conditional knockouts of these genes requires knowledge of their GI tract expression during development, which little is known about. Preliminary investigation revealed that during development BDNF and NT-3 are each expressed in several GI tract regions, and that their expression patterns overlap in some tissues, but are distinct in others. Importantly, GI tissues that express BDNF or NT-3 are innervated by vagal afferents, and expression of these neurotrophins occurs during the periods of axon invasion and receptor formation, consistent with roles for BDNF or NT-3 in these processes and in receptor survival. These results provide a basis for targeting BDNF or NT-3 knockouts to specific GI tract tissues, and potentially altering vagal afferent innervation only in that tissue (e.g., smooth muscle vs. mucosa). Conditional BDNF or NT-3 knockouts that are successful in selectively altering a vagal GI afferent pathway will be valuable for developing an understanding of that pathway's roles in GI function and food intake. PMID:16677865

Fox, Edward Alan

2006-06-30

149

Depletion of Calcium Stores in Injured Sensory Neurons: Anatomic and Functional Correlates  

PubMed Central

Background Painful nerve injury leads to disrupted Ca2+ signaling in primary sensory neurons, including decreased endoplasmic reticulum (ER) Ca2+ storage. The present study examines potential causes and functional consequences of Ca2+ store limitation after injury. Methods Neurons were dissociated from axotomized fifth lumbar (L5) and the adjacent L4 dorsal root ganglia following L5 spinal nerve ligation that produced hyperalgesia, and were compared to neurons from control animals. Intracellular Ca2+ levels were measured with Fura-2 microfluorometry, and ER was labeled with probes or antibodies. Ultrastructural morphology was analyzed by electron microscopy of nondissociated dorsal root ganglia, and intracellular electrophysiological recordings were obtained from intact ganglia. Results Live neuron staining with BODIPY FL-X thapsigargin (Invitrogen, Carlsbad, CA) revealed a 40% decrease in sarco-endoplasmic reticulum Ca2+-ATPase binding in axotomized L5 neurons and a 34% decrease in L4 neurons. Immunocytochemical labeling for the ER Ca2+-binding protein calreticulin was unaffected by injury. Total length of ER profiles in electron micrographs was reduced by 53% in small axotomized L5 neurons, but increased in L4 neurons. Cisternal stacks of ER and aggregation of ribosomes occurred less frequently in axotomized neurons. Ca2+-induced Ca2+ release, examined by microfluorometry with dantrolene, was eliminated in axotomized neurons. Pharmacologic blockade of Ca2+-induced Ca2+ release with dantrolene produced hyperexcitability in control neurons, confirming its functional importance. Conclusions After axotomy, ER Ca2+ stores are reduced by anatomic loss and possibly diminished sarco-endoplasmic reticulum Ca2+-ATPase. The resulting disruption of Ca2+-induced Ca2+ release and protein synthesis may contribute to the generation of neuropathic pain. PMID:19602957

Gemes, Geza; Rigaud, Marcel; Weyker, Paul D.; Abram, Stephen E.; Weihrauch, Dorothee; Poroli, Mark; Zoga, Vasiliki; Hogan, Quinn H.

2010-01-01

150

Nerve growth factor stimulates synthesis of calcitonin gene-related peptide in dorsal root ganglion cells during sensory regeneration in capsaicin-treated rats  

Microsoft Academic Search

Administration of human recombinant nerve growth factor (rhNGF) into one hindpaw of capsaicin-treated rats can locally facilitate the regeneration of calcitonin gene-related peptide (CGRP)-containing primary sensory neurons (Schicho, R., Skofitsch, G., Donnerer, J., 1999. Brain Res. 815, 60–69). In this study we used in situ hybridization histochemistry (ISH) to determine synthesis of CGRP mRNA in lumbar L4 dorsal root ganglion

Rudolf Schicho; Josef Donnerer

1999-01-01

151

Relationship of estimated dietary intake of n-3 polyunsaturated fatty acids from fish with peripheral nerve function after adjusting for mercury exposure  

PubMed Central

Background Some clinical studies have suggested that ingestion of n-3 polyunsaturated fatty acids (PUFA) has neuroprotective effects on peripheral nerve function. However, few epidemiological studies have examined the effect of dietary n-3 PUFA intake from fish consumption on peripheral nerve function, and none have controlled for co-occurrence of methylmercury exposure from fish consumption. Objectives We evaluated the effect of estimated dietary n-3 PUFA intake on peripheral nerve function after adjusting for biomarkers of methylmercury and elemental mercury in a convenience sample of 515 dental professionals. Methods We measured sensory nerve conduction (peak latency and amplitude) of the median, ulnar and sural nerves and total mercury concentrations in hair and urine samples. We estimated daily intake (mg/day) of the total n-3 PUFA, n-3 docosahexaenoic acid (DHA), and n-3 eicosapentaenoic acid (EPA) based on a self-administrated fish consumption frequency questionnaire. We also collected information on mercury exposure, demographics and other covariates. Results The estimated median intakes of total n-3 PUFA, n-3 EPA, and n-3 DHA were 447, 105, and 179 mg/day, respectively. The mean mercury concentrations in urine (1.05?g/L) and hair (0.49?g/g) were not significantly different from the US general population. We found no consistent association between n-3 PUFA intake and sensory nerve conduction after adjusting for mercury concentrations in hair and urine although some positive associations were observed with the sural nerve. Conclusions In a convenience sample of dental professionals, we found little evidence suggesting that dietary intake of n-3 PUFAs from fish has any impact on peripheral nerve function after adjustment for methylmercury exposure from fish and elemental mercury exposure from dental amalgam. PMID:23538138

Wang, Yi; Goodrich, Jaclyn M.; Werner, Robert; Gillespie, Brenda; Basu, Niladri; Franzblau, Alfred

2013-01-01

152

A Reevaluation of the Common Factor Theory of Shared Variance Among Age, Sensory Function, and Cognitive Function in Older Adults  

Microsoft Academic Search

The common cause hypothesis of the relationship among age, sensory measures, and cognitive measures in very old adults was reevaluated. Both sensory function and processing speed were evaluated as mediators of the rela- tionship between age and cognitive function. Cognitive function was a latent variable that comprised 3 factors in- cluding memory, speed, and verbal ability. The sample was population

Kaarin J. Anstey; Mary A. Luszcz; Linnett Sanchez

2001-01-01

153

Signaling the brain in the early sickness syndrome: are sensory nerves involved?  

PubMed

Nonspecific manifestations (sickness symptoms) of inflammation and infection occur as two sequential syndromes, the early and late. This review deals with the early sickness syndrome, which occurs at the onset of the inflammatory process and manifests itself with a high deep body temperature, hyperalgesia/allodynia, arousal, motor agitation, and arterial hypertension. Two rat models of intravenous lipopolysaccharide (LPS)-induced fever are used to study the early syndrome: 1) a monophasic response to low, just suprathreshold doses of LPS and 2) the first rise in body temperature (Phase I) of the polyphasic response to higher doses. Experiments in the first model reveal a blockade of monophasic fever by total subdiaphragmatic or selective hepatic vagotomy, thus suggesting mediation of this response by the hepatic vagal fibers, presumably afferent. Experiments in the second model show that Phase I of polyphasic fever is insensitive to surgical vagotomy but does not occur in animals desensitized with low intraperitoneal doses of capsaicin (an agonist of the vanilloid receptor VR1). These findings suggest that Phase I is mediated by intra-abdominal, VR1-receptor-bearing afferents, either splanchnic or possibly splanchnic and vagal. The involvement of the splanchnic nerve and VR1 receptor in Phase I of LPS fever is currently under investigation in our laboratory. Based on studies completed so far, neural signaling mechanisms are involved in both monophasic fever and Phase I of polyphasic fever. We speculate that these mechanisms are triggered by peripherally originated, blood-borne prostaglandin E2. PMID:14766385

Romanovsky, Andrej A

2004-01-01

154

Functional Recovery After Facial and Sciatic Nerve Crush Injury in the Rat  

Microsoft Academic Search

Objectives: To systematically record rat facial nerve re- covery following crush injury to the main trunk with re- spect to ocular and vibrissial function and to compare the rates of facial and sciatic nerve recovery from crush injury in the same animals. This serves as a means of vali- dating the functional parameters of facial nerve recov- ery against the

Tessa A. Hadlock; James Heaton; Mack Cheney; Susan E. Mackinnon

2005-01-01

155

Local isoform-specific NOS inhibition: a promising approach to promote motor function recovery after nerve injury.  

PubMed

Physical injury to a nerve is the most frequent cause of acquired peripheral neuropathy, which is responsible for loss of motor, sensory and/or autonomic functions. Injured axons in the peripheral nervous system maintain the capacity to regenerate in adult mammals. However, after nerve transection, stumps of damaged nerves must be surgically joined to guide regenerating axons into the distal nerve stump. Even so, severe functional limitations persist after restorative surgery. Therefore, the identification of molecules that regulate degenerative and regenerative processes is indispensable in developing therapeutic tools to accelerate and improve functional recovery. Here, I consider the role of nitric oxide (NO) synthesized by the three major isoforms of NO synthases (NOS) in motor neuropathy. Neuronal NOS (nNOS) seems to be the primary source of NO that is detrimental to the survival of injured motoneurons. Endothelial NOS (eNOS) appears to be the major source of NO that interferes with axonal regrowth, at least soon after injury. Finally, NO derived from inducible NOS (iNOS) or nNOS is critical to the process of lipid breakdown for Wallerian degeneration and thereby benefits axonal regrowth. Specific inhibitors of these isoforms can be used to protect injured neurons from degeneration and promote axonal regeneration. A cautious proposal for the treatment of acquired motor neuropathy using therapeutic tools that locally interfere with eNOS/nNOS activities seems to merit consideration. PMID:20143424

Moreno-López, Bernardo

2010-07-01

156

Collagen VI regulates peripheral nerve myelination and function.  

PubMed

Collagen VI is an extracellular matrix protein with broad distribution in several tissues. Although Col6a1 is expressed by Schwann cells, the role of collagen VI in the peripheral nervous system (PNS) is yet unknown. Here we show that Schwann cells, but not axons, contribute to collagen VI deposition in peripheral nerves. By using Col6a1-null mice, in which collagen VI deposition is compromised, we demonstrate that lack of collagen VI leads to increased myelin thickness (P<0.001) along with 60-130% up-regulation in myelin-associated proteins and disorganized C fibers in the PNS. The hypermyelination of PNS in Col6a1(-/-) mice is supported by alterations of signaling pathways involved in myelination, including increase of P-FAK, P-AKT, P-ERK1, P-ERK2, and P-p38 (4.15, 1.67, 2.47, 3.34, and 2.60-fold, respectively) and reduction of vimentin (0.49-fold), P-JNK (0.74-fold), and P-c-Jun (0.50-fold). Pathologically, Col6a1(-/-) mice display an impairment of nerve conduction velocity and motor coordination (P<0.05), as well as a delayed response to acute pain stimuli (P<0.001), indicating that lack of collagen VI causes functional defects of peripheral nerves. Altogether, these results indicate that collagen VI is a critical component of PNS contributing to the structural integrity and proper function of peripheral nerves. PMID:24277578

Chen, Peiwen; Cescon, Matilde; Megighian, Aram; Bonaldo, Paolo

2014-03-01

157

Effects of ibogaine on sensory-motor function, activity, and spatial learning in rats  

Microsoft Academic Search

Ibogaine, a naturally occurring alkaloid, has been show to reduce naloxone-precipitated withdrawal symptoms from morphine. Given the clinical possibilities, it is important to determine ibogaine's effects on sensory-motor function, activity, learning, and memory. Long-Evans rats injected with doses of 20–60 mg\\/kg of ibogaine displayed slower response times on sensory and sensory-motor tests and were impaired in performing specific motor reflexes

Raymond P. Kesner; Pamela Jackson-Smith; Clarissa Henry; Kelly Amann

1995-01-01

158

Functional Recovery Following an End to Side Neurorrhaphy of the Accessory Nerve to the Suprascapular Nerve: Case Report  

PubMed Central

The use of end-to-side neurrorhaphy remains a controversial topic in peripheral nerve surgery. The authors report the long-term functional outcome following a modified end-to-side motor reinnervation using the spinal accessory to innervate the suprascapular nerve following a C5 to C6 avulsion injury. Additionally, functional outcomes of an end-to-end neurotization of the triceps branch to the axillary nerve and double fascicular transfer of the ulnar and medial nerve to the biceps and brachialis are presented. Excellent functional recoveries are found in respect to shoulder abduction and flexion and elbow flexion. Electronic supplementary material The online version of this article (doi:10.1007/s11552-009-9242-3) contains supplementary material, which is available to authorized users. PMID:19902308

Ray, Wilson Z.; Kasukurthi, Rahul; Yee, Andrew

2009-01-01

159

Effects of Local Compression on Peroneal Nerve Function in Humans  

NASA Technical Reports Server (NTRS)

A new apparatus was developed to compress the anterior compartment selectively and reproducibly in humans. Thirty-five normal volunteers were studied to determine short-term thresholds of local tissue pressure that produce significant neuromuscular dysfunction. Local tissue fluid pressure adjacent to the deep peroneal nerve was elevated by the compression apparatus and continuously monitored for 2-3 h by the slit catheter technique. Elevation of tissue fluid pressure to within 35-40 mm Hg of diastolic blood pressure (approx. 40 mm Hg of in situ pressure in our subjects) elicited a consistent progression of neuromuscular deterioration including, in order, (a) gradual loss of sensation, as assessed by Semmes-Weinstein monofilaments, (b) subjective complaints, (c) reduced nerve conduction velocity, (d) decreased action potential amplitude of the extensor digitorum brevis muscle, and (e) motor weakness of muscles within the anterior compartment. Generally, higher intracompartment at pressures caused more rapid deterioration of neuromuscular function. In two subjects, when in situ compression levels were 0 and 30 mm Hg, normal neuromuscular function was maintained for 3 h. Threshold pressures for significant dysfunction were not always the same for each functional parameter studied, and the magnitudes of each functional deficit did not always correlate with compression level. This variable tolerance to elevated pressure emphasizes the need to monitor clinical signs and symptoms carefully in the diagnosis of compartment syndromes. The nature of the present studies was short term; longer term compression of myoneural tissues may result in dysfunction at lower pressure thresholds.

Hargens, Alan R.; Botte, Michael J.; Swenson, Michael R.; Gelberman, Richard H.; Rhoades, Charles E.; Akeson, Wayne H.

1993-01-01

160

Delay-period Activity in the Prefrontal Cortex: One Function Is Sensory Gating  

Microsoft Academic Search

The prefrontal cortex (PFC ) contributes to working memory functions via executive control processes that do not entail the storage, per se, of mnemonic representations. One of these control processes may be a sensory gating mechanism that facilitates retention of representations in working memory by down-regulating the gain of the sensory processing of intervening irrelevant stimuli. This idea was tested

Bradley R. Postle

2005-01-01

161

Functionally Approached Body (FAB) Strategies for Young Children Who Have Behavioral and Sensory Processing Challenges  

ERIC Educational Resources Information Center

Functionally Approached Body (FAB) Strategies offer a clinical approach to help parents of young children with behavioral and sensory processing strategies. This article introduces the FAB Strategies, clinical strategies developed by the author for understanding and addressing young children's behavioral and sensory processing challenges. The FAB…

Pagano, John

2005-01-01

162

Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings  

PubMed Central

M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 ?M XE991 sensitized A?- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many A?-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on A?-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive A?-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991. PMID:22593734

Passmore, Gayle M.; Reilly, Joanne M.; Thakur, Matthew; Keasberry, Vanessa N.; Marsh, Stephen J.; Dickenson, Anthony H.; Brown, David A.

2012-01-01

163

Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings.  

PubMed

M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 ?M XE991 sensitized A?- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many A?-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on A?-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive A?-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991. PMID:22593734

Passmore, Gayle M; Reilly, Joanne M; Thakur, Matthew; Keasberry, Vanessa N; Marsh, Stephen J; Dickenson, Anthony H; Brown, David A

2012-01-01

164

Overexpression of nerve growth factor by murine smooth muscle cells: role of the p75 neurotrophin receptor on sympathetic and sensory sprouting.  

PubMed

Elevating levels of nerve growth factor (NGF) can have pronounced effects on the survival and maintenance of distinct populations of neurons. We have generated a line of transgenic mice in which NGF is expressed under the control of the smooth muscle ?-actin promoter. These transgenic mice have augmented levels of NGF protein in the descending colon and urinary bladder, so these tissues display increased densities of NGF-sensitive sympathetic efferents and sensory afferents. Here we provide a thorough examination of sympathetic and sensory axonal densities in the descending colon and urinary bladder of NGF transgenic mice with and without the expression of the p75 neurotrophin receptor (p75NTR). In response to elevated NGF levels, sympathetic axons (immunostained for tyrosine hydroxylase) undergo robust collateral sprouting in the descending colon and urinary bladder of adult transgenic mice (i.e., those tissues having smooth muscle cells); this sprouting is not augmented in the absence of p75NTR expression. As for sensory axons (immunostained for calcitonin gene-related peptide) in the urinary bladders of transgenic mice, fibers undergo sprouting that is further increased in the absence of p75NTR expression. Sympathetic axons are also seen invading the sensory ganglia of transgenic mice; these fibers form perineuronal plexi around a subpopulation of sensory somata. Our results reveal that elevated levels of NGF in target tissues stimulate sympathetic and sensory axonal sprouting and that an absence of p75NTR by sensory afferents (but not by sympathetic efferents) leads to a further increase of terminal arborization in certain NGF-rich peripheral tissues. PMID:23322532

Petrie, Casey N; Smithson, Laura J; Crotty, Anne-Marie; Michalski, Bernadeta; Fahnestock, Margaret; Kawaja, Michael D

2013-08-01

165

Partial Recovery of Respiratory Function and Diaphragm Reinnervation following Unilateral Vagus Nerve to Phrenic Nerve Anastomosis in Rabbits  

PubMed Central

Respiratory dysfunction is the leading cause of mortality following upper cervical spinal cord injury (SCI). Reinnervation of the paralyzed diaphragm via an anastomosis between phrenic nerve and a donor nerve is a potential strategy to mitigate ventilatory deficits. In this study, anastomosis of vagus nerve (VN) to phrenic nerve (PN) in rabbits was performed to assess the potential capacity of the VN to compensate for lost PN inputs. At first, we compared spontaneous discharge pattern, nerve thickness and number of motor fibers between these nerves. The PN exhibited a highly rhythmic discharge while the VN exhibited a variable frequency discharge pattern. The rabbit VN had fewer motor axons (105.3±12.1 vs. 268.1±15.4). Nerve conduction and respiratory function were measured 20 weeks after left PN transection with or without left VN-PN anastomosis. Compared to rabbits subjected to unilateral phrenicotomy without VN-PN anastomosis, diaphragm muscle action potential (AP) amplitude was improved by 292%, distal latency by 695%, peak inspiratory flow (PIF) by 22.6%, peak expiratory flow (PRF) by 36.4%, and tidal volume by 21.8% in the anastomosis group. However, PIF recovery was only 28.0%, PEF 28.2%, and tidal volume 31.2% of Control. Our results suggested that VN-PN anastomosis is a promising therapeutic strategy for partial restoration of diaphragm reinnervation, but further modification and improvements are necessary to realize the full potential of this technique. PMID:24265777

Li, Lijun; Sun, Guixin; Tan, Jun

2013-01-01

166

Age as a factor in sensory integration function in Taiwanese children  

PubMed Central

Objective Sensory integration progresses along a normal developmental sequence. However, few studies have explored how age difference affects the way sensory integration functions in Taiwanese children as they develop. Therefore, this study aims to pinpoint the role of age in sensory integration. Method A purposive sampling plan was employed. The study population comprised 1,000 Chinese children aged 36 to 131 months (mean = 74.48 months, standard deviation = 25.69 months). Subjects were scored on seven subsets of the Test of Sensory Integration Function (TSIF). An analysis of variance (ANOVA) was used to identify differences between four age groups (ages 3–4, 5–6, 7–8, and 9–10 years), in the categories of the TSIF. Results ANOVA revealed that age is a significant factor in each of the seven tasks of sensory integration associated with various stages of development. The effect of age was significant in all four groups for the subscale of Bilateral Integration Sequences. The function of sensory integration for the children aged 5–8 years did not produce statistically significant results for the subscale of Postural Movement, Sensory Discrimination, Sensory Seeking, or Attention and Activity. For the subscale of Sensory Modulation and Emotional Behavior, the effect of age was significant in only group 1 (children aged 3–4 years) and group 2 (children aged 5–6 years). Conclusion There was significant difference between group 1 and group 2 for seven categories. Significant differences were contributed by the differences from group 1 (3–4 years) and group 4 (9–10 years) in five subscales (Postural Movement, Bilateral Integration Sequences, Sensory Discrimination, Sensory Seeking, and Attention and Activity). There were three developmental trends in the seven categories of the TSIF. PMID:23940418

Lin, Chin-Kai; Wu, Huey-Min; Wang, Hsin-Yi; Tseng, Mei-Hui; Lin, Chung-Hui

2013-01-01

167

Sensory axon guidance with semaphorin 6A and nerve growth factor in a biomimetic choice point model.  

PubMed

The direct effect of guidance cues on developing and regenerating axons in vivo is not fully understood, as the process involves a multiplicity of attractive and repulsive signals, presented both as soluble and membrane-bound ligands. A better understanding of axon guidance is critical to functional recovery following injury to the nervous system through improved outgrowth and mapping of damaged nerves. Due to their implications as inhibitors to central nervous system regeneration, we investigated the repulsive properties of semaphorin 6A and ephrin-B3 on E15 rat dorsal root ganglion explants, as well as possible interactions with soluble gradients of chemoattractive nerve growth factor (NGF). We employed a 3D biomimetic in vitro choice point model, which enabled the simple and rapid preparation of patterned gel growth matrices with quantifiable presentation of guidance cues in a specifiable manner that resembles the in vivo presentation of soluble and/or immobilized ligands. Neurites demonstrated an inhibitory response to immobilized Sema6A by lumbosacral dorsal root ganglion explants, while no such repulsion was observed for immobilized ephrin-B3 by explants at any spinal level. Interestingly, Sema6A inhibition could be partially attenuated in a concentration-dependent manner through the simultaneous presentation of soluble NGF gradients. The in vitro model described herein represents a versatile and valuable investigative tool in the quest for understanding developmental processes and improving regeneration following nervous system injury. PMID:25189126

Curley, J Lowry; Catig, Gary C; Horn-Ranney, Elaine L; Moore, Michael J

2014-09-01

168

Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration  

PubMed Central

Myelin-associated glycoprotein (MAG) binds to the nerve cell surface and inhibits nerve regeneration. The nerve cell surface ligand(s) for MAG are not established, although sialic acid-bearing glycans have been implicated. We identify the nerve cell surface gangliosides GD1a and GT1b as specific functional ligands for MAG-mediated inhibition of neurite outgrowth from primary rat cerebellar granule neurons. MAG-mediated neurite outgrowth inhibition is attenuated by (i) neuraminidase treatment of the neurons; (ii) blocking neuronal ganglioside biosynthesis; (iii) genetically modifying the terminal structures of nerve cell surface gangliosides; and (iv) adding highly specific IgG-class antiganglioside mAbs. Furthermore, neurite outgrowth inhibition is mimicked by highly multivalent clustering of GD1a or GT1b by using precomplexed antiganglioside Abs. These data implicate the nerve cell surface gangliosides GD1a and GT1b as functional MAG ligands and suggest that the first step in MAG inhibition is multivalent ganglioside clustering. PMID:12060784

Vyas, Alka A.; Patel, Himatkumar V.; Fromholt, Susan E.; Heffer-Lauc, Marija; Vyas, Kavita A.; Dang, Jiyoung; Schachner, Melitta; Schnaar, Ronald L.

2002-01-01

169

Normalized motor function but impaired sensory function after unilateral non-reconstructed ACL injury: patients compared with uninjured controls  

Microsoft Academic Search

Improvement in motor function after anterior cruciate ligament (ACL) injury is achieved by appropriate rehabilitation. However,\\u000a it has been questioned whether training after injury can lead to sensory improvement. We hypothesized that motor function\\u000a can be restored after unilateral non-reconstructed ACL injury, whereas the sensory function cannot, i.e., there would be no\\u000a difference in functional performance or knee muscle strength

Eva Ageberg; Thomas Fridén

2008-01-01

170

Cytokine and Chemokine Regulation of Sensory Neuron Function  

PubMed Central

Pain normally subserves a vital role in the survival of the organism, prompting the avoidance of situations associated with tissue damage. However, the sensation of pain can become dissociated from its normal physiological role. In conditions of neuropathic pain, spontaneous or hypersensitive pain behavior occurs in the absence of the appropriate stimuli. Our incomplete understanding of the mechanisms underlying chronic pain hypersensitivity accounts for the general ineffectiveness of currently available options for the treatment of chronic pain syndromes. Despite its complex pathophysiological nature, it is clear that neuropathic pain is associated with short- and long-term changes in the excitability of sensory neurons in the dorsal root ganglia (DRG) as well as their central connections. Recent evidence suggests that the upregulated expression of inflammatory cytokines in association with tissue damage or infection triggers the observed hyperexcitability of pain sensory neurons. The actions of inflammatory cytokines synthesized by DRG neurons and associated glial cells, as well as by astrocytes and microglia in the spinal cord, can produce changes in the excitability of nociceptive sensory neurons. These changes include rapid alterations in the properties of ion channels expressed by these neurons, as well as longer-term changes resulting from new gene transcription. In this chapter we review the diverse changes produced by inflammatory cytokines in the behavior of sensory neurons in the context of chronic pain syndromes. PMID:19655114

Miller, Richard J.; Jung, Hosung; Bhangoo, Sonia K.; White, Fletcher A.

2009-01-01

171

Damage-Induced Neuronal Endopeptidase (DINE\\/ECEL) Expression Is Regulated by Leukemia Inhibitory Factor and Deprivation of Nerve Growth Factor in Rat Sensory Ganglia after Nerve Injury  

Microsoft Academic Search

Damage-induced neuronal endopeptidase (DINE) is a novel metallopeptidase and is expressed in response to various neu- ronal injuries. The expression regulation of DINE mRNA in the dorsal root ganglia (DRGs) after sciatic nerve injury is examined. A substantial increase of DINE mRNA expression was observed in relatively small-sized DRG neurons after nerve injury. The expression was observed in isolectin B4-negative

Ryuichi Kato; Sumiko Kiryu-Seo; Hiroshi Kiyama

2002-01-01

172

Functional identification of sensory mechanisms required for developmental song learning  

PubMed Central

A young male zebra finch (Taeniopygia guttata) learns to sing by copying the vocalizations of an older tutor in a process that parallels human speech acquisition. Brain pathways that control song production are well defined, but little is known about the sites and mechanisms of tutor song memorization. Here we test the hypothesis that molecular signaling in a sensory brain area outside of the song system is required for developmental song learning. Using controlled tutoring and a pharmacological inhibitor, we transiently suppressed the extracellular signal–regulated kinase signaling pathway in a portion of the auditory forebrain specifically during tutor song exposure. On maturation, treated birds produced poor copies of tutor song, whereas controls copied the tutor song effectively. Thus the foundation of normal song learning, the formation of a sensory memory of tutor song, requires a conserved molecular pathway in a brain area that is distinct from the circuit for song motor control. PMID:18391944

London, Sarah E; Clayton, David F

2008-01-01

173

Weighted needle pinprick sensory thresholds: a simple test of sensory function in diabetic peripheral neuropathy.  

PubMed Central

A simple device is described, consisting of 12 weighted 23 gauge disposable needles (0.2 to 5.2 g), for testing sensation in busy diabetic clinics. The pinprick sensory threshold (PPT) is the lightest weighted needle which consistently elicits a sharp sensation. The subjects were 48 healthy controls (hospital staff), 44 diabetic patients without neuropathic symptoms, and 35 diabetic patients with chronic painful neuropathy. In the controls, the mean PPT from the right hand and foot obtained on two test occasions a week apart did not differ significantly. In diabetic patients without symptomatic neuropathy, the mean PPT in the right hand and right foot were significantly higher than in the controls. The diabetic patients with painful neuropathy had clearly increased mean PPT in the right hand and foot compared with controls. Marstock thermal limen in diabetic patients with painful neuropathy correlated significantly with PPT determinations. PPT and thermal thresholds probably give comparable information on small fibre dysfunction in diabetic patients with symptomatic neuropathy. Compared with thermal threshold determinations however, the weighted needle apparatus is inexpensive, simple, and rapid to use. PMID:1312581

Chan, A W; MacFarlane, I A; Bowsher, D; Campbell, J A

1992-01-01

174

Hypothalamic-pituitary function in children with optic nerve hypoplasia.  

PubMed

We studied the clinical characteristics and hypothalamic-pituitary function in 23 patients with optic nerve hypoplasia (ONH), 6 months to 19 years old. All patients had decreased visual acuity and small optic discs; the septum pellucidum was absent in five of 19. Nine of 11 patients had minor EEG abnormalities, and two had microcephaly. The height, weight, and growth rate were normal in all patients 6 months to 3 1/2 years old. Hypopituitarism was found in 15 patients. Fasting and stimulated prolactin levels and the area under the prolactin curve after thyrotropin releasing hormone were significantly greater than in controls and in patients with idiopathic hypopituitarism. These results associate ONH with a high incidence of hypopituitarism, hyperprolactinemia, and neurologic abnormalities. The normal growth in the absence of measurable growth hormone suggests that hyperprolactinemia may stimulate growth temporarily and that a normal height in childhood or the presence of the septum pellucidum do not exclude the possibility of hypopituitarism. PMID:2983530

Costin, G; Murphree, A L

1985-03-01

175

Ipsilateral facial sensory and motor responses to basal fronto-temporal cortical stimulation: Evidence suggesting direct activation of cranial nerves  

Microsoft Academic Search

To clarify the generator mechanism of sensory and motor facial responses ipsilateral to electrical stimulation of the inferior fronto-temporal cortex in epilepsy patients. Out of 30 patients who have been evaluated with chronically implanted subdural electrodes for medically intractable partial seizure or brain tumor involving the basal frontal or temporal cortex, 4 patients (age ranging 24–57 years) showed sensory and

Tahamina Begum; Akio Ikeda; Masao Matsuhashi; Nobuhiro Mikuni; Susumu Miyamoto; Nobuo Hashimoto; Takashi Nagamine; Hidenao Fukuyama; Hiroshi Shibasaki

2006-01-01

176

A Modified Mid-Femoral Approach to the Sciatic Nerve Block: A Correlation Between Evoked Motor Response and Sensory Block  

Microsoft Academic Search

BACKGROUND: The lateral sciatic mid-femoral block (LSMF), proved to be reliable, safe, and effective on both branches of the sciatic nerve with a single injection. However, we do not know which component of the sciatic nerve (the tibial (T) or the common peroneal (CP)) produces a better success rate when performing a LSMF with a single injection technique. In this

Antoine Pianezza; Marie-Luce Gilbert; Vincent Minville; Daren Filsinger; Quentin Gobert; Olivier Fourcade

2007-01-01

177

Enhanced release of adenosine in rat hind paw following spinal nerve ligation: involvement of capsaicin-sensitive sensory afferents  

Microsoft Academic Search

Modulation of endogenous adenosine levels by inhibition of adenosine metabolism produces a peripheral antinociceptive effect in a neuropathic pain model. The present study used microdialysis to investigate the neuronal mechanisms modulating extracellular adenosine levels in the rat hind paw following tight ligation of the L5 and L6 spinal nerves. Subcutaneous injection of 50 ?l saline into the nerve-injured paw induced

X. J Liu; T. D White; J Sawynok

2002-01-01

178

On sex-related differences in auditory and visual sensory functioning.  

PubMed

The present study was designed to elucidate sex-related differences in two basic auditory and one basic visual aspect of sensory functioning, namely sensory discrimination of pitch, loudness, and brightness. Although these three aspects of sensory functioning are of vital importance in everyday life, little is known about whether men and women differ from each other in these sensory functions. Participants were 100 male and 100 female volunteers ranging in age from 18 to 30 years. Since sensory sensitivity may be positively related to individual levels of intelligence and musical experience, measures of psychometric intelligence and musical background were also obtained. Reliably better performance for men compared to women was found for pitch and loudness, but not for brightness discrimination. Furthermore, performance on loudness discrimination was positively related to psychometric intelligence, while pitch discrimination was positively related to both psychometric intelligence and levels of musical training. Additional regression analyses revealed that each of three predictor variables (sex, psychometric intelligence, and musical training) accounted for a statistically significant portion of unique variance in pitch discrimination. With regard to loudness discrimination, regression analysis yielded a statistically significant portion of unique variance for sex as a predictor variable, whereas psychometric intelligence just failed to reach statistical significance. The potential influence of sex hormones on sex-related differences in sensory functions is discussed. PMID:22183583

Rammsayer, Thomas H; Troche, Stefan J

2012-06-01

179

Nerve Growth Factor Mediates a Switch in Intracellular Signaling for PGE2-Induced Sensitization of Sensory Neurons from Protein Kinase A to Epac  

PubMed Central

We examined whether nerve growth factor (NGF), an inflammatory mediator that contributes to chronic hypersensitivity, alters the intracellular signaling that mediates the sensitizing actions of PGE2 from activation of protein kinase A (PKA) to exchange proteins directly activated by cAMP (Epacs). When isolated sensory neurons are grown in the absence of added NGF, but not in cultures grown with 30 ng/ml NGF, inhibiting protein kinase A (PKA) activity blocks the ability of PGE2 to augment capsaicin-evoked release of the neuropeptide CGRP and to increase the number of action potentials (APs) evoked by a ramp of current. Growing sensory neurons in culture in the presence of increasing concentrations of NGF increases the expression of Epac2, but not Epac1. An intradermal injection of complete Freund's adjuvant into the rat hindpaw also increases the expression of Epac2, but not Epac1 in the dorsal root ganglia and spinal cord: an effect blocked by intraplantar administration of NGF antibodies. Treating cultures grown in the presence of 30 ng/ml NGF with Epac1siRNA significantly reduced the expression of Epac1, but not Epac2, and did not block the ability of PGE2 to augment capsaicin-evoked release of CGRP from sensory neurons. Exposing neuronal cultures grown in NGF to Epac2siRNAreduced the expression of Epac2, but not Epac1 and prevented the PGE2-induced augmentation of capsaicin and potassium-evoked CGRP release in sensory neurons and the PGE2-induced increase in the number of APs generated by a ramp of current. In neurons grown with no added NGF, Epac siRNAs did not attenuate PGE2-induced sensitization. These results demonstrate that NGF, through increasing Epac2 expression, alters the signaling cascade that mediates PGE2-induced sensitization of sensory neurons, thus providing a novel mechanism for maintaining PGE2-induced hypersensitivity during inflammation. PMID:25126967

Vasko, Michael R.; Habashy Malty, Ramy; Guo, Chunlu; Duarte, Djane B.; Zhang, Yihong; Nicol, Grant D.

2014-01-01

180

Electrical Stimulation as a Therapeutic Option to Improve Eyelid Function in Chronic Facial Nerve Disorders  

Microsoft Academic Search

PURPOSE. TO establish whether it is possible to improve orbicularis oculi muscle function in the eyelids of patients with a chronic seventh cranial nerve palsy by using transcutaneous electrical stimulation to the point at which electrical stimulation induces a functional blink. METHODS. Ten subjects (one woman, nine men) aged 36 to 76 with chronic, moderate to severe facial nerve palsy

John Gittins; Kevin Martin; James Sbeldrick; Ashwin Reddy; Leonard Tbean

181

Functional recovery after facial nerve crush is delayed in severe combined immunodeficient mice  

Microsoft Academic Search

The goal of the current study was to determine if T and B lymphocytes play a role in functional recovery after peripheral nerve injury. The time course of behavioral recovery following facial nerve crush injury at the stylomastoid foramen was established in scid mice which lack functional T and B cells and reconstituted scid mice as compared to wild-type mice.

Craig J. Serpe; Julie E. Tetzlaff; Susanna Coers; Virginia M. Sanders; Kathryn J. Jones

2002-01-01

182

Functional recovery after implantation of artificial nerve grafts in the rat- a systematic review  

Microsoft Academic Search

PURPOSE: The aim of this study was to compare functional data of different nerve-gap bridging materials evaluated in rat experiments by means of a systematic review. MATERIALS AND METHODS: A systematic review was conducted, searching MEDLINE, HTS and CENTRAL to identify all trials evaluating functional recovery of artificial nerve conduits in the rat model. RESULTS: There was a trend towards

Nektarios Sinis; Armin Kraus; Nikolaos Tselis; Max Haerle; Frank Werdin; Hans-Eberhard Schaller

2009-01-01

183

Clinical examination of motor and sensory functions of the adult oral cavity  

Microsoft Academic Search

Alterations in oral motor and sensory performance are common. A traditional head and neck examination, however, does not fully\\u000a assess these functions of the oral-facial region. This article presents an examination that emphasizes the clinical evaluation\\u000a of oral motor and oral sensory abilities. These procedures should be considered as an addition to a routine assessment of\\u000a the head and neck.

Barbara C. Sonies; James Weiffenbach; Jane C. Atkinson; Jaime Brahim; Alice Macynski; Philip C. Fox

1987-01-01

184

Historically, perception has been viewed as a modular function, with the different sensory modalities operating independently of  

E-print Network

stimulation [3­6]. Cross-modal plasticity has also been reported in humans that have had sensory deprivation in early life [7­13]. The typical finding in these studies has been that sensory deprivation in one505 Historically, perception has been viewed as a modular function, with the different sensory

Shams, Ladan B.

185

Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice  

PubMed Central

Background Paclitaxel, a widely-used antineoplastic drug, produces a painful peripheral neuropathy that in rodents is associated with peripheral-nerve mitochondrial alterations. The sigma-1 receptor (?1R) is a ligand-regulated molecular chaperone involved in mitochondrial calcium homeostasis and pain hypersensitivity. This receptor plays a key role in paclitaxel-induced neuropathic pain, but it is not known whether it also modulates mitochondrial abnormalities. In this study, we used a mouse model of paclitaxel-induced neuropathic pain to test the involvement of the ?1R in the mitochondrial abnormalities associated with paclitaxel, by using genetic (?1R knockout mice) and pharmacological (?1R antagonist) approaches. Results Paclitaxel administration to wild-type (WT) mice produced cold- and mechanical-allodynia, and an increase in the frequency of swollen and vacuolated mitochondria in myelinated A-fibers, but not in C-fibers, of the saphenous nerve. Behavioral and mitochondrial alterations were marked at 10 days after paclitaxel-administration and had resolved at day 28. In contrast, paclitaxel treatment did not induce allodynia or mitochondrial abnormalities in ?1R knockout mice. Moreover, the prophylactic treatment of WT mice with BD-1063 also prevented the neuropathic pain and mitochondrial abnormalities induced by paclitaxel. Conclusions These results suggest that activation of the ?1R is necessary for development of the sensory nerve mitochondrial damage and neuropathic pain produced by paclitaxel. Therefore, ?1R antagonists might have therapeutic value for the prevention of paclitaxel-induced neuropathy. PMID:24517272

2014-01-01

186

Restoration of visual function following optic nerve regeneration in bluegill ~Lepomis macrochirus!  

E-print Network

! pumpkinseed ~Lepomis gibbosus! hybrid sunfish MICHAEL P. CALLAHAN1,2 and ALLEN F. MENSINGER1 1 Department ~Lepomis macrochirus! pumpkinseed ~Lepomis gibbosus! hybrid sunfish. Regenerating optic nerve axonsRestoration of visual function following optic nerve regeneration in bluegill ~Lepomis macrochirus

Mensinger, Allen F.

187

Genetics of congenital insensitivity to pain with anhidrosis (CIPA) or hereditary sensory and autonomic neuropathy type IV. Clinical, biological and molecular aspects of mutations in TRKA(NTRK1) gene encoding the receptor tyrosine kinase for nerve growth factor.  

PubMed

Congenital insensitivity to pain with anhidrosis (CIPA) or hereditary sensory and autonomic neuropathy type IV (HSAN-IV) is an autosomal recessive disorder characterized by recurrent episodic fevers, anhidrosis (inability to sweat), absence of reaction to noxious (or painful) stimuli, self-mutilating behavior and mental retardation. The anomalous pain and temperature sensation and anhidrosis in CIPA are due to the absence of afferent neurons activated by tissue-damaging stimuli and a loss of innervation of eccrine sweat glands, respectively. Nerve growth factor (NGF) supports the survival of nociceptive sensory and autonomic sympathetic neurons as well as cholinergic neurons of the basal forebrain. The human TRKA (NTRKI) gene located on chromosome 1 (1q21-q22) encodes a receptor tyrosine kinase (RTK) which is autophosphorylated in response to NGF, thus, activating various pathways of intracellular signal transduction. We earlier identified the genetic basis of CIPA by detecting mutations in TRKA gene of patients. Defects in NGF signal transduction at its receptor lead to failure to survive as various NGF dependent neurons are not maintained, most probably due to apoptosis during development. TRKA mutations are distributed in an extracellular domain involved in NGF binding, as well as in the intracellular signal-transduction domain. Missense mutations with loss of function provide considerable insight into the structure-function relationship in the RTK family. In view of the fact that defects in TRKA cause CIPA, the molecular pathology of CIPA provides unique opportunities to explore critical roles of the NGF-TRKA receptor system. Thus, CIPA can serve as a useful model to determine mechanisms of development and maintenance of NGF-dependent neurons in autonomic, sensory and central nervous systems, as well as the physiology of these neurons in humans. PMID:12102460

Indo, Yasuhiro

2002-05-01

188

Diisopropylphosphorofluoridate and Tabun: Enzymatic Hydrolysis and Nerve Function  

Microsoft Academic Search

Squid nerve contains an enzyme that hydrolyzes the nerve gas Tabun at about one-tenth the rate it hydrolyzes diisopropylphosphorofluoridate (DFP), and at about one-third to one-fourth the rate it hydrolyzes Sarin and Soman. Tabun is a more potent inhibitor of acetylcholinesterase than is DFP, is both lipid- and water-soluble, and penetrates readily into the squid giant axon in its inhibitory

Francis C. G. Hoskin

1971-01-01

189

Research on recovery function of two drugs combination on rat sciatic nerve injury regeneration model.  

PubMed

This paper aims to study the recovery function of two drugs combination on rat sciatic nerve injury regeneration model. Sixty rats were divided into groups randomly and averagely. All animals after dividing left sciatic nerve were given epineurium-interrupted suture for constructing peripheral nerve injury model. Muscle on operation side in medication administration team was injected 0.5 ml drug while the contrat group was given equal amount of normal saline. Sciatic nerve function evaluation and nerve electrophysiology index detection were conducted after operation at fixed period. We drew materials for morphological observation 12 weeks after operation. The results showed that group with independent administration of nerve growth factor (NGF) and nimodipine (ND) in large dose was superior than group in small dose in nerve electro physiology index (P<0.05) and group with combination administration of NGF and ND in large dose was also superior than group in small dose (P<0.05). In addition, regeneration effect of combination administration group was better than that of independent administration group when using same dose. The larger the dose was, the better the effect was. We can conclude that two-drug combination can promote recovery function on rat sciatic nerve injury regeneration model. PMID:25262521

Ju, Liang; Zhang, Xia; Zhang, Tong; Zheng, Jianping

2014-09-01

190

Involvement of calcium-activated potassium channels in the inhibitory prejunctional effect of morphine on peripheral sensory nerves  

Microsoft Academic Search

We examined the contribution of potassium channels to the inhibitory effect of morphine on the increase in substance P release and cutaneous blood flow evoked by antidromic stimulation of the sectioned sciatic nerve. Cutaneous blood flow in the instep of the rat hind paw was measured by the non-invasive technique of laser Doppler flowmetry. Antidromic stimulation of the sectioned sciatic

Norifumi Yonehara; Sou Takiuchi

1997-01-01

191

Clinical Strategies to Enhance Nerve Regeneration in Composite Tissue Allotransplantation  

PubMed Central

Synopsis Reinnervation of a hand transplant ultimately dictates functional recovery but provides a significant regenerative challenge. The authors present a review highlighting interventions to enhance nerve regeneration through acceleration of axonal regeneration or augmentation of Schwann cell supportand discuss their relevance to composite tissue allotransplantation. Surgical techniques that may be performed at the time of transplantation to optimize intrinsic muscle recovery—including appropriate alignment of ulnar nerve motor and sensory components, transfer of the distal anterior interosseous nerve to the recurrent motor branch of the median nerve, and prophylactic release of potential nerve entrapment points—are also presented. PMID:22051390

Glaus, Simone W.; Johnson, Philip J.; Mackinnon, Susan E.

2011-01-01

192

Beyond traditional approaches to understanding the functional role of neuromodulators in sensory cortices  

PubMed Central

Over the last two decades, a vast literature has described the influence of neuromodulatory systems on the responses of sensory cortex neurons (review in Gu, 2002; Edeline, 2003; Weinberger, 2003; Metherate, 2004, 2011). At the single cell level, facilitation of evoked responses, increases in signal-to-noise ratio, and improved functional properties of sensory cortex neurons have been reported in the visual, auditory, and somatosensory modality. At the map level, massive cortical reorganizations have been described when repeated activation of a neuromodulatory system are associated with a particular sensory stimulus. In reviewing our knowledge concerning the way the noradrenergic and cholinergic system control sensory cortices, I will point out that the differences between the protocols used to reveal these effects most likely reflect different assumptions concerning the role of the neuromodulators. More importantly, a gap still exists between the descriptions of neuromodulatory effects and the concepts that are currently applied to decipher the neural code operating in sensory cortices. Key examples that bring this gap into focus are the concept of cell assemblies and the role played by the spike timing precision (i.e., by the temporal organization of spike trains at the millisecond time-scale) which are now recognized as essential in sensory physiology but are rarely considered in experiments describing the role of neuromodulators in sensory cortices. Thus, I will suggest that several lines of research, particularly in the field of computational neurosciences, should help us to go beyond traditional approaches and, ultimately, to understand how neuromodulators impact on the cortical mechanisms underlying our perceptual abilities. PMID:22866031

Edeline, Jean-Marc

2012-01-01

193

Quantitative Analysis of Respiratory, Motor, and Sensory Function After Supraclavicular Block  

Microsoft Academic Search

The incidence and clinical significance of hemidia- phragmatic paresis after supraclavicular block of the brachial plexus is unknown. Eight healthy volunteers received a supraclavicular block with a standard tech- nique using 30 mL of 1.5% lidocaine. Respiratory func- tion was assessed with ultrasound of the diaphragm, respiratory inductive plethysmography (RIP), and pul- monary function tests (PFT) every 20 min. Sensory

Joseph M. Neal; James M. Moore; Dan J. Kopacz; Spencer S. Liu; Dawna J. Kramer; J. Joshua Plorde

1998-01-01

194

A Comparative Study Of Nerve Conduction Velocity Between Left And Right Handed Subjects  

PubMed Central

Background & Objectives Nerve conduction velocity is being used as a widespread measure of diagnosis of nerve function abnormalities. Dependence of nerve conduction parameters on intrinsic factors like age and sex, as well as extrinsic factors like temperature is well known. Lateralization of various cerebral functions like speech, language, visuospatial relations, analysis of face, recognition of musical themes and use of hand for fine motor movements have also been studied. Some differences have been noted between left and right hander for nerve conduction. The aim of this study is to compare the nerve conduction velocity between left handed and right handed subjects using median nerve and find out whether there is any difference in nerve conduction velocity (motor or sensory) with handedness. Method The study was carried out in students of B J Medical College by the use of standard 2 channel physiograph. Comparison of motor and sensory nerve conduction velocity between left and right handed subjects was done under paired-t test. Results Hemispheric specialization is primarily responsible for difference of dexterity. Some skills like music, sports activities are also due to hemispheric difference. On comparison of nerve conduction velocity between left and right handed persons the study shows that there is significant difference in sensory nerve conduction velocity between left and right handed subjects. Interpretation & Conclusion From the results we can conclude that there should be different set of standards for sensory nerve conduction velocity of left and right handed subjects.

Patel, Anup; Mehta, Anju

2014-01-01

195

Improved gold chloride staining method for anatomical analysis of sensory nerve endings in the shoulder capsule and labrum as examples of loose and dense fibrous tissues.  

PubMed

Consistency in gold chloride staining is essential for anatomical analysis of sensory nerve endings. The gold chloride stain for this purpose has been modified by many investigators, but often yields inconsistent staining, which makes it difficult to differentiate structures and to determine nerve ending distribution in large tissue samples. We introduce additional steps and major changes to the modified Gairns' protocol. We controlled the temperature and mixing rate during tissue staining to achieve consistent staining and complete solution penetration. We subjected samples to sucrose dehydration to improve cutting efficiency. We then exposed samples to a solution containing lemon juice, formic acid and paraformaldehyde to produce optimal tissue transparency with minimal tissue deformity. We extended the time for gold chloride impregnation 1.5 fold. Gold chloride was reduced in the labrum using 25% formic acid in water for 18 h and in the capsule using 25% formic acid in citrate phosphate buffer for 2 h. Citrate binds gold nanoparticles, which minimizes aggregation in the tissue. We stored samples in fresh ultrapure water at 4° C to slow reduction and to maintain color contrast in the tissue. Tissue samples were embedded in Tissue Tek and sectioned at 80 and 100 ?m instead of using glycerin and teasing the tissue apart as in Gairns' modified gold chloride method. We attached sections directly to gelatin subbed slides after sectioning with a cryostat. The slides then were processed and coverslipped with Permount. Staining consistency was demonstrated throughout the tissue sections and neural structures were clearly identifiable. PMID:24476562

Witherspoon, J W; Smirnova, I V; McIff, T E

2014-07-01

196

Differential upregulation in DRG neurons of an ?2?-1 splice variant with a lower affinity for gabapentin after peripheral sensory nerve injury  

PubMed Central

The ?2?-1 protein is an auxiliary subunit of voltage-gated calcium channels, critical for neurotransmitter release. It is upregulated in dorsal root ganglion (DRG) neurons following sensory nerve injury, and is also the therapeutic target of the gabapentinoid drugs, which are efficacious in both experimental and human neuropathic pain conditions. ?2?-1 has 3 spliced regions: A, B, and C. A and C are cassette exons, whereas B is introduced via an alternative 3? splice acceptor site. Here we have examined the presence of ?2?-1 splice variants in DRG neurons, and have found that although the main ?2?-1 splice variant in DRG is the same as that in brain (?2?-1 ?A+B+C), there is also another ?2?-1 splice variant (?A+B?C), which is expressed in DRG neurons and is differentially upregulated compared to the main DRG splice variant ?2?-1 ?A+B+C following spinal nerve ligation. Furthermore, this differential upregulation occurs preferentially in a small nonmyelinated DRG neuron fraction, obtained by density gradient separation. The ?2?-1 ?A+B?C splice variant supports CaV2 calcium currents with unaltered properties compared to ?2?-1 ?A+B+C, but shows a significantly reduced affinity for gabapentin. This variant could therefore play a role in determining the efficacy of gabapentin in neuropathic pain. PMID:24315988

Lana, Beatrice; Schlick, Bettina; Martin, Stuart; Pratt, Wendy S.; Page, Karen M.; Goncalves, Leonor; Rahman, Wahida; Dickenson, Anthony H.; Bauer, Claudia S.; Dolphin, Annette C.

2014-01-01

197

Peripheral nerve regeneration through collagen devices with different in vivo degradation characteristics  

E-print Network

In the United States more than 200,000 people are treated each year for peripheral nerve injuries that require surgery. Functional recovery of motor and sensory capability is limited following autograft, the most common ...

Harley, Brendan A. (Brendan Andrew), 1978-

2002-01-01

198

Inferior alveolar nerve injury following orthognathic surgery: a review of assessment issues  

PubMed Central

SUMMARY The sensory branches of the trigeminal nerve encode information about facial expressions, speaking and chewing movements, and stimuli that come into contact with the orofacial tissues. Whatever the cause, damage to the inferior alveolar nerve negatively affects the quality of facial sensibility as well as the patient's ability to translate patterns of altered nerve activity into functionally meaningful motor behaviours. There is no generally accepted, standard method of estimating sensory disturbances in the distribution of the inferior alveolar nerve following injury. Assessment of sensory alterations can be conducted using three types of measures: (i) objective electrophysiological measures of nerve conduction, (ii) sensory testing (stimulus) measures and (iii) patient report. Each type of measure with advantages and disadvantages for use are reviewed. PMID:21058973

PHILLIPS, C.; ESSICK, G.

2011-01-01

199

Airway nerves: in vivo electrophysiology  

Microsoft Academic Search

Information about the activity of airway sensory afferent nerves in vivo can be obtained electrophysiologically by extracellular recording of action potentials. Apart from data capture, the basic techniques used for recording sensory nerve activity have not advanced greatly in 50 years. However, clearly they continue to contribute vastly to our understanding of the role of these nerves in the control

John J Adcock

2002-01-01

200

Sensory and cognitive functions of the basal ganglia  

Microsoft Academic Search

Recent studies have found that the basal ganglia are involved in diverse behavioral activities and suggest that they have executive functions. Highlights from the past year include anatomical and clinical studies that have used sophisticated, novel methods to confirm a role for the basal ganglia in somatosensory discrimination, visual perception, spatial working memory and habit learning.

Lucy L Brown; Jay S Schneider; Theodore I Lidsky

1997-01-01

201

Sensory and cognitive functions of the basal ganglia.  

PubMed

Recent studies have found that the basal ganglia are involved in diverse behavioral activities and suggest that they have executive functions. Highlights from the past year include anatomical and clinical studies that have used sophisticated, novel methods to confirm a role for the basal ganglia in somatosensory discrimination, visual perception, spatial working memory and habit learning. PMID:9142758

Brown, L L; Schneider, J S; Lidsky, T I

1997-04-01

202

Intrinsic and therapeutic factors determining the recovery of motor function after peripheral nerve transection.  

PubMed

Insufficient recovery after peripheral nerve injury has been attributed to (i) poor pathfinding of regrowing axons, (ii) excessive collateral axonal branching at the lesion site and (iii) polyneuronal innervation of the neuromuscular junctions (NMJ). The facial nerve transection model has been used initially to measure restoration of function after varying therapies and to examine the mechanisms underlying their effects. Since it is very difficult to control the navigation of several thousand axons, efforts concentrated on collateral branching and NMJ-polyinnervation. Treatment with antibodies against trophic factors to combat branching improved the precision of reinnervation, but had no positive effects on functional recovery. This suggested that polyneuronal reinnervation--rather than collateral branching--may be the critical limiting factor. The former could be reduced by pharmacological agents known to perturb microtubule assembly and was followed by recovery of function. Because muscle polyinnervation is activity-dependent and can be manipulated, attempts to design a clinically feasible therapy were performed by electrical stimulation or by soft tissue massage. Electrical stimulation applied to the transected facial nerve or to paralysed facial muscles did not improve vibrissal motor performance and failed to diminish polyinnervation. In contrast, gentle stroking of the paralysed muscles (vibrissal, orbicularis oculi, tongue musculature) resulted in full recovery of function. This manual stimulation was also effective after hypoglossal-facial nerve suture and after interpositional nerve grafting, but not after surgical reconstruction of the median nerve. All these findings raise hopes that clinically feasible and effective therapies could be soon designed and tested. PMID:21458252

Skouras, Emmanouil; Ozsoy, Umut; Sarikcioglu, Levent; Angelov, Doychin N

2011-07-01

203

Analyzing sensory systems with the information distortion function.  

PubMed

The nature and information content of neural signals have been discussed extensively in the neuroscience community. They are important ingredients in many theories on neural function, yet there is still no agreement on the details of neural coding. There have been various suggestions about how information is encoded in neural spike trains: by the number of spikes, by temporal correlations, through single spikes, or by spike patterns in one, or across many neurons. The latter scheme is most general and encompasses many others. We present an algorithm which can recover a coarse representation of a pattern coding scheme, through quantization to a reproduction set of smaller size. Among many possible quantizations, we choose one which preserves as much of the informativeness of the original stimulus/response relation as possible, through the use of an information-based distortion function. This method allows us to study coarse but highly informative models of a coding scheme, and then to refine them when more data becomes available. We shall describe a model in which full recovery is possible and present example for cases with partial recovery. PMID:11262945

Dimitrov, A G; Miller, J P

2001-01-01

204

Functional diversity among sensory receptors in a Drosophila olfactory circuit  

PubMed Central

The ability of an animal to detect, discriminate, and respond to odors depends on the function of its olfactory receptor neurons (ORNs), which in turn depends ultimately on odorant receptors. To understand the diverse mechanisms used by an animal in olfactory coding and computation, it is essential to understand the functional diversity of its odor receptors. The larval olfactory system of Drosophila melanogaster contains 21 ORNs and a comparable number of odorant receptors whose properties have been examined in only a limited way. We systematically screened them with a panel of ?500 odorants, yielding >10,000 receptor–odorant combinations. We identify for each of 19 receptors an odorant that excites it strongly. The responses elicited by each of these odorants are analyzed in detail. The odorants elicited little cross-activation of other receptors at the test concentration; thus, low concentrations of many of these odorants in nature may be signaled by a single ORN. The receptors differed dramatically in sensitivity to their cognate odorants. The responses showed diverse temporal dynamics, with some odorants eliciting supersustained responses. An intriguing question in the field concerns the roles of different ORNs and receptors in driving behavior. We found that the cognate odorants elicited behavioral responses that varied across a broad range. Some odorants elicited strong physiological responses but weak behavioral responses or weak physiological responses but strong behavioral responses. PMID:23690583

Mathew, Dennis; Martelli, Carlotta; Kelley-Swift, Elizabeth; Brusalis, Christopher; Gershow, Marc; Samuel, Aravinthan D. T.; Emonet, Thierry; Carlson, John R.

2013-01-01

205

Functional stimulation of graft nerves has minor effects on insulin release from transplanted rat pancreatic islets  

PubMed Central

Introduction. Morphological evidence for reinnervation of pancreatic islet grafts is plentiful. However, to what extent intra-graft nerves influence the endocrine functions of the islet transplant is largely unknown. We therefore aimed to directly stimulate nerves leading to islet grafts with electrodes and measure insulin secretion in response to this. Methods. We implanted syngeneic islets under the renal capsule of rats, and examined them 1 or 7–9 months later. In anesthetized rats blood samples were collected from the renal vein and femoral artery, respectively, during electrode stimulation of the nerves leading to the islet grafts. Results. As expected, nerve stimulation decreased renal blood flow. However, serum insulin concentrations in samples derived from the renal vein or femoral artery changed in concert with one another, both during normoglycemia and acute hyperglycemia. Conclusion. Reinnervation which occurs after islet transplantation under the renal capsule has minor effects on graft endocrine function. PMID:23977866

Kampf, Caroline; Kallskog, Orjan

2013-01-01

206

Sciatic nerve injury induces functional pro-nociceptive chemokine receptors in bladder-associated primary afferent neurons in the rat  

PubMed Central

Visceral sensory afferents during disease or following injury often produce vague, diffuse body sensations and pain referred to somatic targets. Alternatively, injury due to trauma or disease of somatic nerve targets can also lead to referred pain in visceral targets via a somatovisceral reflex. Both phenomenons are thought to be due to convergence of visceral and somatic afferents within the spinal cord. To investigate a potential peripheral influence for referred pain in visceral targets following somatic nerve injury, we examined whether a sciatic nerve injury known to produce known to produce hindpaw tactile hyperalgesia alters the frequency of micturition and the sensitivity of bladder-associated sensory neurons to pro-nociceptive chemokines. Adult female Sprague-Dawley rats received injections of cholera toxin b subunit conjugated to 555 into urinary bladder wall to retrogradely label visceral primary afferent neurons. Seven days later, the right sciatic nerve of these animals was subjected to a lysophosphatidylcholine (LPC)-induced focal demyelination injury. Pre- and post-injury tactile sensitivity in the hind paw and micturition frequency were assayed. Animals were allowed to survive for 14–28 days. Lumbosacral and lumbar dorsal root ganglia (DRG) ipsilateral to the nerve injury were acutely dissociated from sham and nerve injured animals. Bladder wall-associated sensory neurons identified via the retrograde marker were assayed for fluxes in intracellular calcium following administration of pro-nociceptive chemokines. The assayed chemokines included monocyte chemoattractant protein-1 (MCP1/CCL2) and stromal cell derived factor-1 alpha (SDF1/CXCL12). LPC nerve injured animals exhibited tactile hyperalgesia and increased micturition frequency for at least 28 days. Focal demyelination of the sciatic nerve also increased the number of injured L4L5 and non-injured L6-S2 bladder-associated sensory neurons that responded to MCP1 and SDF1 when compared with sensory neurons derived from uninjured naïve and sham-injured control animals. Taken together, this data suggests that some visceral hypersensitivity states may have a somatic origin. More importantly, nociceptive somatovisceral sensation may be mediated by upregulation of chemokine signaling in visceral sensory neurons. PMID:21458542

Foster, Risha; Jung, Jeanette; Farooq, Ahmer; McClung, Christopher; Ripsch, Matthew S.; Fitzgerald, Mary P.

2011-01-01

207

Peripheral Nerve Reconstruction after Injury: A Review of Clinical and Experimental Therapies  

PubMed Central

Unlike other tissues in the body, peripheral nerve regeneration is slow and usually incomplete. Less than half of patients who undergo nerve repair after injury regain good to excellent motor or sensory function and current surgical techniques are similar to those described by Sunderland more than 60 years ago. Our increasing knowledge about nerve physiology and regeneration far outweighs our surgical abilities to reconstruct damaged nerves and successfully regenerate motor and sensory function. It is technically possible to reconstruct nerves at the fascicular level but not at the level of individual axons. Recent surgical options including nerve transfers demonstrate promise in improving outcomes for proximal nerve injuries and experimental molecular and bioengineering strategies are being developed to overcome biological roadblocks limiting patient recovery.

Grinsell, D.; Keating, C. P.

2014-01-01

208

Clinical Evaluation of the Effectiveness of Sensory Integrative and Perceptual Motor Therapy in Improving Sensory Integrative Function in Children with Learning Disabilities.  

ERIC Educational Resources Information Center

After 72 sessions for 3 hours per week, significantly more children aged 5-9 receiving sensory integration (SI) therapy (n=35) and perceptual motor training (n=35) showed improvement in SI functioning compared to 33 receiving no treatment. Similar effects were found for subgroups with vestibular dysfunction only (n=11, 13, and 11 respectively).…

Humphries, Thomas W.; And Others

1993-01-01

209

Functional recovery of odor representations in regenerated sensory inputs to the olfactory bulb.  

PubMed

The olfactory system has a unique capacity for recovery from peripheral damage. After injury to the olfactory epithelium (OE), olfactory sensory neurons (OSNs) regenerate and re-converge on target glomeruli of the olfactory bulb (OB). Thus far, this process has been described anatomically for only a few defined populations of OSNs. Here we characterize this regeneration at a functional level by assessing how odor representations carried by OSN inputs to the OB recover after massive loss and regeneration of the sensory neuron population. We used chronic imaging of mice expressing synaptopHluorin in OSNs to monitor odor representations in the dorsal OB before lesion by the olfactotoxin methyl bromide and after a 12 week recovery period. Methyl bromide eliminated functional inputs to the OB, and these inputs recovered to near-normal levels of response magnitude within 12 weeks. We also found that the functional topography of odor representations recovered after lesion, with odorants evoking OSN input to glomerular foci within the same functional domains as before lesion. At a finer spatial scale, however, we found evidence for mistargeting of regenerated OSN axons onto OB targets, with odorants evoking synaptopHluorin signals in small foci that did not conform to a typical glomerular structure but whose distribution was nonetheless odorant-specific. These results indicate that OSNs have a robust ability to reestablish functional inputs to the OB and that the mechanisms underlying the topography of bulbar reinnervation during development persist in the adult and allow primary sensory representations to be largely restored after massive sensory neuron loss. PMID:24431990

Cheung, Man C; Jang, Woochan; Schwob, James E; Wachowiak, Matt

2013-01-01

210

Rare communication between the musculocutaneous and median nerves in the forearm: its clinical significance.  

PubMed

Morphologic classifications of communication between musculocutaneous and median nerves are not based on the distribution and the function of the communicating branch. The authors report a rare case of such a communication with passage of the median nerve through the pronator teres muscle and discuss its clinical significance. The musculocutaneous nerve was divided into a lateral branch that continued to the lateral antebrachial cutaneous nerve and a medial branch that joined the median nerve in the forearm. The authors separated the nerve bundles and noted that the communicating branch derived from the sixth to seventh cervical nerves and supplied nerve fibers to the pronator teres muscle and the proper palmar digital nerve of the thumb. In addition, the median nerve penetrated the humeral head of the pronator teres muscle. Isolated musculocutaneous neuropathy with such a communication may cause unexpected symptoms such as sensory deficit in the palm and muscular weakness of the forearm and the thumb. PMID:25122101

Liu, Hong-Fu; Won, Hyung-Sun; Chung, In-Hyuk; Kim, Seung-Min; Kim, In-Beom

2014-10-01

211

Ultrastructural Changes in Spinal Motoneurons and Locomotor Functional Study after Sciatic Nerve Repair in Conduit Tube  

PubMed Central

Objective(s) Motor deficit and neuron degeneration is seen after nerve transection. The aim of this study is to determine whether a poled polyvinelidene fluoride (PVDF) tube with other supportive strategies can protect the neuronal morphology and motor function after sciatic nerve transaction in rats. Materials and Methods After transection of the left sciatic nerve in 60 male Wistar rats (200-250 g), the epineural group was sutured end to end. In the autograft rats, a 10 mm piece of sciatic nerve was rotated 180 °C and sutured back into the nerve gap. In the nerve guidance channel (NGC) group, polarized piezoelectric PVDF tube containing NGF and collagen gel was sutured in the gap. In control group sciatic nerve was removed (10 mm) without repair. After one, four and eight weeks, the L4-L6 spinal cord segment was removed for histological study using transmission electron microscope. Functional outcome was assessed using the Basso, Bresnahan and Beattie (BBB) locomotor scale at both four and eight weeks after the lesion. Results Chromatin condensation was seen after 4 weeks in the repair groups. Cell membrane shrinkage and mitochondrial degeneration was observed after 4 and 8 weeks respectively, in the autografted and NGC rats. In the control group, chromatin condensation, cell membrane shrinkage with mitochondrial degeneration and vacuolization of perikaryon was seen after 1, 4 and 8 weeks, respectively. At 56 days, the functional recovery of the epineural rats significantly increased in comparison to the other groups (P< 0.05). Conclusion The epineural suture has more efficacies, and NGC may be used as a proper substitute for autograft in nerve injury. PMID:23492837

Delaviz, Hamdollah; Faghihi, Abolfazel; Mohamadi, Jamshid; Roozbehi, Amrollah

2012-01-01

212

Imaging of the facial nerve.  

PubMed

The facial nerve is responsible for the motor innervation of the face. It has a visceral motor function (lacrimal, submandibular, sublingual glands and secretion of the nose); it conveys a great part of the taste fibers, participates to the general sensory of the auricle (skin of the concha) and the wall of the external auditory meatus. The facial mimic, production of tears, nasal flow and salivation all depend on the facial nerve. In order to image the facial nerve it is mandatory to be knowledgeable about its normal anatomy including the course of its efferent and afferent fibers and about relevant technical considerations regarding CT and MR to be able to achieve high-resolution images of the nerve. PMID:20456888

Veillona, F; Ramos-Taboada, L; Abu-Eid, M; Charpiot, A; Riehm, S

2010-05-01

213

NGF, BDNF, NT-3, and GDNF mRNA expression in rat skeletal muscle following denervation and sensory protection.  

PubMed

Poor muscle and nerve functional recovery after nerve damage is a serious clinical problem, particularly if there is prolonged delay before nerve-muscle contact is reestablished. Our previous studies showed that sensory nerve cross-anastomosis (sensory protection) provides support to the denervated muscle. In the present study, we analyzed neurotrophic factor mRNA expression by RT-PCR in denervated rat gastrocnemius muscle receiving sensory protection with the saphenous nerve, compared to normal innervated muscle, to denervated muscle, and to denervated muscle repaired immediately with the peroneal (motor) nerve, after periods of 3 days to 3 months. No significant differences in mRNA levels of beta-actin, nerve growth factor, brain-derived neurotrophic factor or neurotrophin-3 were found between the sensory protection treatment and the denervated or the motor repair groups. However, sensory protection resulted in levels of muscle glial cell line-derived neurotrophic factor mRNA expression that were lower than in denervated muscle and higher than in muscle given immediate motor repair. These results demonstrate that glial cell line-derived neurotrophic factor mRNA is elevated following denervation but is partially down-regulated by sensory protection. Our study suggests that sensory protection provides a modified trophic environment by modulating neurotrophic factor synthesis in muscle. PMID:15672636

Zhao, Chunnian; Veltri, Karen; Li, Songlin; Bain, James R; Fahnestock, Margaret

2004-10-01

214

Failure of action potential propagation in sensory neurons: mechanisms and loss of afferent filtering in C-type units after painful nerve injury  

PubMed Central

The T-junction of sensory neurons in the dorsal root ganglion (DRG) is a potential impediment to action potential (AP) propagation towards the CNS. Using intracellular recordings from rat DRG neuronal somata during stimulation of the dorsal root, we determined that the maximal rate at which all of 20 APs in a train could successfully transit the T-junction (following frequency) was lowest in C-type units, followed by A-type units with inflected descending limbs of the AP, and highest in A-type units without inflections. In C-type units, following frequency was slower than the rate at which AP trains could be produced in either dorsal root axonal segments or in the soma alone, indicating that the T-junction is a site that acts as a low-pass filter for AP propagation. Following frequency was slower for a train of 20 APs than for two, indicating that a cumulative process leads to propagation failure. Propagation failure was accompanied by diminished somatic membrane input resistance, and was enhanced when Ca2+-sensitive K+ currents were augmented or when Ca2+-sensitive Cl? currents were blocked. After peripheral nerve injury, following frequencies were increased in axotomized C-type neurons and decreased in axotomized non-inflected A-type neurons. These findings reveal that the T-junction in sensory neurons is a regulator of afferent impulse traffic. Diminished filtering of AP trains at the T-junction of C-type neurons with axotomized peripheral processes could enhance the transmission of activity that is ectopically triggered in a neuroma or the neuronal soma, possibly contributing to pain generation. PMID:23148321

Gemes, Geza; Koopmeiners, Andrew; Rigaud, Marcel; Lirk, Philipp; Sapunar, Damir; Bangaru, Madhavi Latha; Vilceanu, Daniel; Garrison, Sheldon R; Ljubkovic, Marko; Mueller, Samantha J; Stucky, Cheryl L; Hogan, Quinn H

2013-01-01

215

New satiety hormone nesfatin-1 protects gastric mucosa against stress-induced injury: mechanistic roles of prostaglandins, nitric oxide, sensory nerves and vanilloid receptors.  

PubMed

Nesfatin-1 belongs to a family of anorexigenic peptides, which are responsible for satiety and are identified in the neurons and endocrine cells within the gut. These peptides have been implicated in the control of food intake; however, very little is known concerning its contribution to gastric secretion and gastric mucosal integrity. In this study the effects of nesfatin-1 on gastric secretion and gastric lesions induced in rats by 3.5h of water immersion and restraint stress (WRS) were determined. Exogenous nesfatin-1 (5-40?g/kg i.p.) significantly decreased gastric acid secretion and attenuated gastric lesions induced by WRS, and this was accompanied by a significant rise in plasma NUCB2/nefatin-1 levels, the gastric mucosal blood flow (GBF), luminal NO concentration, generation of PGE2 in the gastric mucosa, an overexpression of mRNA for NUBC2 and cNOS, as well as a suppression of iNOS and proinflammatory cytokine IL-1? and TNF-? mRNAs. Nesfatin-1-induced protection was attenuated by suppression of COX-1 and COX-2 activity, the inhibition of NOS with L-NNA, the deactivation of afferent nerves with neurotoxic doses of capsaicin, and the pretreatment with capsazepine to inhibit vanilloid VR1 receptors. This study shows for the first time that nesfatin-1 exerts a potent protective action in the stomach of rats exposed to WRS and these effects depend upon decrease in gastric secretion, hyperemia mediated by COX-PG and NOS-NO systems, the activation of vagal and sensory nerves and vanilloid receptors. PMID:23978788

Szlachcic, Alexandra; Sliwowski, Zbigniew; Krzysiek-Maczka, Gracjana; Majka, Jolanta; Surmiak, Marcin; Pajdo, Robert; Drozdowicz, Danuta; Konturek, Stanislaw J; Brzozowski, Tomasz

2013-11-01

216

Sensory syndromes.  

PubMed

Somatosensory deficit syndromes represent a common impairment following stroke and have a prevalence rate of around 80% in stroke survivors. These deficits restrict the ability of survivors to explore and manipulate their environment and are generally associated with a negative impact on quality of life and personal safety. Sensory impairments affect different sensory modalities in diverse locations at varying degrees, ranging from complete hemianesthesia of multiple modalities to dissociated impairment of somatosensory submodalities within a particular region of the body. Sensory impairments induce typical syndromal patterns which can be differentiated by means of a careful neurological examination, allowing the investigator to deduce location and size of the underlying stroke. In particular, a stroke located in the brainstem, thalamus, and the corticoparietal cortex result in well-differentiable sensory syndromes. Sensory function following stroke can be regained during rehabilitation even without specific sensory training. However, there is emerging evidence that specialized sensory interventions can result in improvement of somatosensory and motor function. Herein, we summarize the clinical presentations, examination, differential diagnoses, and therapy of sensory syndromes in stroke. PMID:22377851

Klingner, Carsten M; Witte, Otto W; Günther, Albrecht

2012-01-01

217

The effect of chronic skeletal muscle stimulation on capillary growth in the rat: are sensory nerve fibres involved?  

PubMed Central

Indirect chronic electrical stimulation of skeletal muscle activates not only efferent but also afferent nerve fibres. To investigate effects specific to this on capillary growth, one of the earliest changes, cell proliferation and capillary ultrastructure were studied in ankle flexors of rats with and without deafferentation of the stimulated side. Two weeks after preganglionic section of dorsal roots L4-L6, the peroneal nerve was stimulated (10 Hz, 8 h day?1) for 2 or 7 days. Proliferating nuclei labelled by bromodeoxyuridine or proliferating cell nuclear antigen staining were colocalized to alkaline phosphatase-stained capillaries (Lc) or other interstitial nuclei (Li) in frozen sections of extensor digitorum longus. Capillary fine structure was examined in extensor hallucis proprius by transmission electron microscopy. The stimulation-induced increase in capillary and interstitial proliferation (Lc 9.9 ± 1.9 %, Li 8.8 ± 2.1 % vs. Lc 2.6 ± 0.4 %, Li 1.9 ± 0.3 % in controls, P < 0.05) was depressed at 2 days by dorsal root section (Lc 4.8 ± 0.7 %, Li 3.2 ± 0.9 %, P < 0.05), an effect likely to be mainly on fibroblasts; no depression was seen at 7 days. Dorsal root section reduced stimulation-induced capillary endothelial swelling at both time points. In contralateral muscles of intact rats, stimulation increased interstitial cell proliferation and capillary swelling, both effects being eliminated by dorsal root section. Capillary growth induced by stimulation (24 % increase in capillary:fibre ratio at 7 days) was unaffected by deafferentation. The reduction in capillary ultrastructural changes and interstitial proliferation in both stimulated and contralateral muscles implies that stimulation of afferent fibres leads directly to release of humoral factors and/or activation via dorsal roots of fibres that release humoral substances. Contralateral muscles are an inadequate control for the effects of chronic stimulation in the intact animal. PMID:12563006

Hudlicka, Olga; Graciotti, Laura; Fulgenzi, Gianluca; Brown, Margaret D; Egginton, S; Milkiewicz, Malgorzata; Granata, Anna-Luisa

2003-01-01

218

Peripheral Nerve Repair in Rats Using Composite Hydrogel-Filled Aligned Nanofiber Conduits with Incorporated Nerve Growth Factor  

PubMed Central

Repair of peripheral nerve defects with current synthetic, tubular nerve conduits generally shows inferior recovery when compared with using nerve autografts, the current gold standard. We tested the ability of composite collagen and hyaluronan hydrogels, with and without the nerve growth factor (NGF), to stimulate neurite extension on a promising aligned, nanofiber poly-L-lactide-co-caprolactone (PLCL) scaffold. In vitro, the hydrogels significantly increased neurite extension from dorsal root ganglia explants. Consistent with these results, the addition of hydrogels as luminal fillers within aligned, nanofiber tubular PLCL conduits led to improved sensory function compared to autograft repair in a critical-size defect in the sciatic nerve in a rat model. Sensory recovery was assessed 3 and 12 weeks after repair using a withdrawal assay from thermal stimulation. The addition of hydrogel did not enhance recovery of motor function in the rat model. The NGF led to dose-dependent improvements in neurite out-growth in vitro, but did not have a significant effect in vivo. In summary, composite collagen/hyaluronan hydrogels enhanced sensory neurite outgrowth in vitro and sensory recovery in vivo. The use of such hydrogels as luminal fillers for tubular nerve conduits may therefore be useful in assisting restoration of protective sensation following peripheral nerve injury. PMID:23659607

Jin, Jenny; Limburg, Sonja; Joshi, Sunil K.; Landman, Rebeccah; Park, Michelle; Zhang, Qia; Kim, Hubert T.

2013-01-01

219

Experimentally induced ulcers and gastric sensory-motor function in rats.  

PubMed

Prior studies have demonstrated that inflammation can sensitize visceral afferent neurons, contributing to the development of hyperalgesia. We hypothesized that both afferent and efferent pathways are affected, resulting in changes in motor and sensory function. Kissing ulcers (KU) were induced in the distal stomach by injecting 60% acetic acid for 45 s into a clamped area of the stomach. In controls, saline was injected into the stomach. A balloon catheter was surgically placed into the stomach, and electromyographic responses to gastric distension were recorded from the acromiotrapezius muscle at various times after ulcer induction. The accommodation reflex was assessed by slowly infusing saline into the distally occluded stomach. Gastric pressure changes in response to vagal stimulation were measured in anesthetized rats. Contractile function of circular muscle strips was examined in vitro using force-displacement transducers. KU caused gastric hypersensitivity that persisted for at least 14 days. Fluid distension of the stomach led to a rapid pressure increase in KU but not in control animals, consistent with an impaired accommodation reflex. Gastric ulcers enhanced the contractile response to vagal stimulation, whereas the effect of cholinergic stimulation on smooth muscle in vitro was not changed. These data suggest that inflammation directly alters gastric sensory and motor function. Increased activation of afferents will trigger vagovagal reflexes, thereby further changing motility and indirectly activating sensory neurons. Thus afferent and efferent pathways both contribute to the development of dyspeptic symptoms. PMID:15388487

Kang, Y M; Lamb, K; Gebhart, G F; Bielefeldt, K

2005-02-01

220

Schwann cell-specific JAM-C-deficient mice reveal novel expression and functions for JAM-C in peripheral nerves  

PubMed Central

Junctional adhesion molecule-C (JAM-C) is an adhesion molecule expressed at junctions between adjacent endothelial and epithelial cells and implicated in multiple inflammatory and vascular responses. In addition, we recently reported on the expression of JAM-C in Schwann cells (SCs) and its importance for the integrity and function of peripheral nerves. To investigate the role of JAM-C in neuronal functions further, mice with a specific deletion of JAM-C in SCs (JAM-C SC KO) were generated. Compared to wild-type (WT) controls, JAM-C SC KO mice showed electrophysiological defects, muscular weakness, and hypersensitivity to mechanical stimuli. In addressing the underlying cause of these defects, nerves from JAM-C SC KO mice were found to have morphological defects in the paranodal region, exhibiting increased nodal length as compared to WTs. The study also reports on previously undetected expressions of JAM-C, namely on perineural cells, and in line with nociception defects of the JAM-C SC KO animals, on finely myelinated sensory nerve fibers. Collectively, the generation and characterization of JAM-C SC KO mice has provided unequivocal evidence for the involvement of SC JAM-C in the fine organization of peripheral nerves and in modulating multiple neuronal responses.—Colom, B., Poitelon, Y., Huang, W., Woodfin, A., Averill, S., Del Carro, U., Zambroni, D., Brain, S. D., Perretti, M., Ahluwalia, A., Priestley, J. V., Chavakis, T., Imhof, B. A., Feltri, M. L., Nourshargh, S. Schwann cell-specific JAM-C-deficient mice reveal novel expression and functions for JAM-C in peripheral nerves. PMID:22090315

Colom, Bartomeu; Poitelon, Yannick; Huang, Wenlong; Woodfin, Abigail; Averill, Sharon; Del Carro, Ubaldo; Zambroni, Desiree; Brain, Susan D.; Perretti, Mauro; Ahluwalia, Amrita; Priestley, John V.; Chavakis, Triantafyllos; Imhof, Beat A.; Feltri, M. Laura; Nourshargh, Sussan

2012-01-01

221

Characteristics of bilateral hand function in individuals with unilateral dystonia due to perinatal stroke: sensory and motor aspects.  

PubMed

The authors assessed bilateral motor and sensory function in individuals with upper limb dystonia due to unilateral perinatal stroke and explored interrelationships of motor function and sensory ability. Reach kinematics and tactile sensation were measured in 7 participants with dystonia and 9 healthy volunteers. The dystonia group had poorer motor (hold time, reach time, shoulder/elbow correlation) and sensory (spatial discrimination, stereognosis) outcomes than the control group on the nondominant side. On the dominant side, only sensation (spatial discrimination, stereognosis) was poorer in the dystonia group compared with the control group. In the dystonia group, although sensory and motor outcomes were uncorrelated, dystonia severity was related to poorer stereognosis, longer hold and reach times, and decreased shoulder/elbow coordination. Findings of bilateral sensory deficits in dystonia can be explained by neural reorganization. Visual compensation for somatosensory changes in the nonstroke hemisphere may explain the lack of bilateral impairments in reaching. PMID:24396131

de Campos, Ana Carolina; Kukke, Sahana N; Hallett, Mark; Alter, Katharine E; Damiano, Diane L

2014-05-01

222

Effects of the Nerve Mobilization Technique on Lower Limb Function in Patients with Poststroke Hemiparesis  

PubMed Central

[Purpose] The purpose of the study was to determine the effects of a sciatic nerve mobilization technique on improvement of lower limb function in patient with poststroke hemiparesis. [Subjects] Twenty- two stroke patients participated in this study. [Methods] They were randomly selected based on selection criteria and divided into two groups. In the subject group (n=10), sciatic nerve mobilization with conventional physical therapy was applied to patients. In the control group (n=10), only conventional physical therapy was applied to stroke patients. [Results] There were significant differences between the two groups in pressure, sway, total pressure, angle of the knee joint, and functional reaching test results in the intervention at two weeks and at four weeks. [Conclusion] The present study showed that sciatic nerve mobilization with conventional physical therapy was more effective for lower limb function than conventional physical therapy alone in patient with poststroke hemiparesis. PMID:25140078

Cha, Hyun-Kyu; Cho, Hyuk-Shin; Choi, Jong-Duk

2014-01-01

223

Nerve and Nerve Root Biomechanics  

Microsoft Academic Search

\\u000a Together, the relationship between the mechanical response of neural tissues and the related mechanisms of injury provide\\u000a a foundation for defining relevant thresholds for injury. The nerves and nerve roots are biologic structures with specific\\u000a and important functions, and whose response to mechanical loading can have immediate, long-lasting and widespread consequences.\\u000a In particular, when nerves or nerve roots are mechanically

Kristen J. Nicholson; Beth A. Winkelstein

224

Loss of sensory attenuation in patients with functional (psychogenic) movement disorders.  

PubMed

Functional movement disorders require attention to manifest yet patients report the abnormal movement to be out of their control. In this study we explore the phenomenon of sensory attenuation, a measure of the sense of agency for movement, in this group of patients by using a force matching task. Fourteen patients and 14 healthy control subjects were presented with forces varying from 1 to 3 N on the index finger of their left hand. Participants were required to match these forces; either by pressing directly on their own finger or by operating a robot that pressed on their finger. As expected, we found that healthy control subjects consistently overestimated the force required when pressing directly on their own finger than when operating a robot. However, patients did not, indicating a significant loss of sensory attenuation in this group of patients. These data are important because they demonstrate that a fundamental component of normal voluntary movement is impaired in patients with functional movement disorders. The loss of sensory attenuation has been correlated with the loss of sense of agency, and may help to explain why patients report that they do not experience the abnormal movement as voluntary. PMID:25161293

Pareés, Isabel; Brown, Harriet; Nuruki, Atsuo; Adams, Rick A; Davare, Marco; Bhatia, Kailash P; Friston, Karl; Edwards, Mark J

2014-11-01

225

Olfactory stimulatory with grapefruit and lavender oils change autonomic nerve activity and physiological function.  

PubMed

This review summarizes the effects of olfactory stimulation with grapefruit and lavender oils on autonomic nerve activity and physiological function. Olfactory stimulation with the scent of grapefruit oil (GFO) increases the activity of sympathetic nerves that innervate white and brown adipose tissues, the adrenal glands, and the kidneys, decreases the activity of the gastric vagal nerve in rats and mice. This results in an increase in lipolysis, thermogenesis, and blood pressure, and a decrease in food intake. Olfactory stimulation with the scent of lavender oil (LVO) elicits the opposite changes in nerve activity and physiological variables. Olfactory stimulation with scent of limonene, a component of GFO, and linalool, a component of LVO, has similar effects to stimulation with GFO and LVO, respectively. The histamine H1-receptor antagonist, diphenhydramine, abolishes all GFO-induced changes in nerve activity and physiological variables, and the hitstamine H3-receptor antagonist, thioperamide, eliminates all LVO-induced changes. Lesions to the hypothalamic suprachiasmatic nucleus and anosmic treatment with ZnSO4 also abolish all GFO- and LVO-induced changes. These findings indicate that limonene and linalool might be the active substances in GFO and LVO, and suggest that the suprachiasmatic nucleus and histamine are involved in mediating the GFO- and LVO-induced changes in nerve activity and physiological variables. PMID:25002406

Nagai, Katsuya; Niijima, Akira; Horii, Yuko; Shen, Jiao; Tanida, Mamoru

2014-10-01

226

Erectile function recovery in patients after non-nerve sparing radical prostatectomy.  

PubMed

Few studies have looked at erectile function recovery (EFR) rates in men undergoing non-nerve sparing resection during radical prostatectomy (RP). Existing studies show great variation in EFR rates owing to multiple factors that minimize their utility in counselling RP patients. We investigated the EFR rate and its predictors in unilateral cavernous nerve resection and bilateral cavernous nerve resection patients 24 months after RP. We conducted a population-based, prospective cohort study of 966 patients who underwent RP at a tertiary cancer centre from 2008 to 2012. Cavernous nerve condition was evaluated on a 4-point nerve sparing score and assigned to one of three groups: bilateral sparing, unilateral resection (UNR) and bilateral nerve resection (BNR). EF was assessed pre-RP and 24-30 months post-op using a validated 5-point patient-reported scale (1 = fully rigid; 5 = no tumescence). EFR was defined as a post-op EF grade of 1-2. Statistical analysis included descriptive statistics, anova, chi-square, Fisher's exact test and logistic regression. Mean baseline EF was 1.84 ± 1.3 and 2.74 ± 1.5 for UNR and BNR patients respectively. Thirty-three percent of UNR patients and 13% of BNR patients exhibited EFR. Age, baseline EF were predictors of EFR. Multivariable analysis showed baseline EF was a significant predictor of EFR at 24 months for UNR. For BNR patients, pre-RP EF was the only factor predictive of EFR. Patients undergoing nerve resection still have a significant chance of achieving true EFR, with UNR surgery patients showing more potential for improvement than patients undergoing BNR surgery. Age and baseline EFR characterize recovery prospects in these two groups. Physicians should thus measure and account for baseline EF in addition to age and the degree of nerve resection when advising patients about expectations for successful EF following RP. PMID:25270277

Krishnan, R; Katz, D; Nelson, C J; Mulhall, J P

2014-11-01

227

Selective fascicular nerve repair: a rapid method for intraoperative motorsensory differentiation by acetylcholinesterase histochemistry  

Microsoft Academic Search

The selective reunion of motor and sensory fascicles of severed mixed nerves appears indispensible for optimal recovery of the impaired motor function. Procedures available for rapid identification of motor and sensory fascicles rendered ambiguous results. The only highly reliable and simple method marking motor fascicles, namely acetylcholinesterase histochemistry, neccessitated two operations due to its long duration (28 h). In the

M. J. Szabolcs; H. Gruben; G. E. Schaden; G. Freilinger; M. Deutinger; W. Girsch; W. Happak

1991-01-01

228

Effects of compression and devascularisation on ulnar nerve function. A quantitative study of regional blood flow and nerve conduction in monkeys.  

PubMed

This study investigated the effects of compression, devascularisation and ischaemia with compression on blood flow and function of the ulnar nerve in monkeys. The hydrogen washout technique assessed blood flow; nerve conduction tests determined nerve function. 100 g of external compression produced a significant but incomplete reduction of intraneural blood flow, when conduction velocity decreased significantly and response amplitude deteriorated to zero 28 minutes after the onset of compression. Short-segment devascularisation stopped blood flow but did not influence response latency or velocity. Amplitude was diminished significantly 44 minutes after devascularisation. Tourniquet ischaemia followed by compression produced temporary variability in latency and velocity, while amplitude was diminished only during the compression phase following ischaemia. The overall results suggested that compression and ischaemia influence the nerve conduction response differently and that the effects of compression are potentiated by previous ischaemia, even if this was of short duration. PMID:2007800

Ogata, K; Shimon, S; Owen, J; Manske, P R

1991-02-01

229

Effects of alleviated tension at the nerve repair site using biodegradable tubular conduits: Histological, electrophysiological and functional results in a rat model  

Microsoft Academic Search

Summary  BACKGROUND: The effect of mobilization on the functional regeneration of peripheral nerves remains controversial. Functional efficacy of alleviated tension at the nerve repair site in a full range of motion model in the rat was recently published elsewhere. This study sought to determine the effect of alleviated tension at the nerve repair site using biodegradable tubular conduits for segmental nerve

R. Schmidhammer; S. Zandieh; R. Hopf; T. Hausner; L. E. Pelinka; A. Kroepfl; H. Redl

2005-01-01

230

Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve  

PubMed Central

Objective Electrical stimulation of the pudendal nerve (PN) is being developed as a means to restore bladder function in persons with spinal cord injury. A single nerve cuff electrode placed on the proximal PN trunk may enable selective stimulation of distinct fascicles to maintain continence or evoke micturition. The objective of this study was to design a nerve cuff that enabled selective stimulation of the PN. Approach We evaluated the performance of both flat interface nerve electrode (FINE) cuff and round cuff designs, with a range of FINE cuff heights and number of contacts, as well as multiple contact orientations. This analysis was performed using a computational model, in which the nerve and fascicle cross-sectional positions from five human PN trunks were systematically reshaped within the nerve cuff. These cross-sections were used to create finite element models, with electric potentials calculated and applied to a cable model of a myelinated axon to evaluate stimulation selectivity for different PN targets. Subsequently, the model was coupled to a genetic algorithm (GA) to identify solutions that used multiple contact activation to maximize selectivity and minimize total stimulation voltage. Main results Simulations did not identify any significant differences in selectivity between FINE and round cuffs, although the latter required smaller stimulation voltages for target activation due to preserved localization of targeted fascicle groups. Further, it was found that a 10 contact nerve cuff generated sufficient selectivity for all PN targets, with the degree of selectivity dependent on the relative position of the target within the nerve. The GA identified solutions that increased fitness by 0.7–45.5% over single contact activation by decreasing stimulation of non-targeted fascicles. Significance This study suggests that using an optimal nerve cuff design and multiple contact activation could enable selective stimulation of the human PN trunk for restoration of bladder function. PMID:23594706

Kent, Alexander R; Grill, Warren M

2013-01-01

231

Preservation of facial, cochlear, and other nerve functions in acoustic neuroma treatment.  

PubMed

Between March 1966 and September 1992, 1400 acoustic neuromas were treated in Paris, France, by surgical excision. The findings over the last 7 years are presented. The translabyrinthine approach has been used in more than 85% of cases. Where hearing preservation is attempted, the middle fossa approach has been adapted for intracanilicular tumors and the retrosigmoid approach for small tumors extending into the cerebellopontine angle, in which the fundus of the internal meatus is free of tumor. The main goal is to achieve a grade I or II result in facial function within 1 month of surgery. Results improved during 1991 after the introduction of continuous facial nerve monitoring and the use of the Beaver mini-blade for dissection of tumor from nerve. With these techniques, facial function of grade I or II at 1 month improved from 20% to 52% for large tumors (larger than 3 cm), from 42% to 81% for medium tumors (2 to 3 cm). and from 70% to 92% for small tumors (up to and including 2 cm extracanalicular). The facial nerve was at greater risk using the retrosigmoid or middle fossa approaches than by the translabyrinthine route. Since 1985, success in hearing preservation has changed little, with useful hearing being preserved in 38.2% of cases operated on by means of the retrosigmoid route and a 36.4% of cases after the middle fossa approach. In older patients with good hearing and small tumors, observation with periodic MRI scanning is recommended. Despite earlier diagnosis, the number of patients suitable for hearing preservation surgery remains very limited and careful selection is required. Trigeminal nerve signs were present in 20% of cases preoperatively, in 10% postoperatively, and recovered spontaneously. Palsies of the other cranial nerves after surgery were much rarer and were as follows: sixth nerve (abducens), 0.5%; ninth nerve (glossopharyngeal), 1.4%; and tenth nerve (vagus), 0.7%. The importance of preservation of function of the nervus intermedius of Wrisberg is stressed. These results emphasize the advantages of the translabyrinthine approach, offering greater security to the facial nerve and lower morbidity. PMID:8108149

Sterkers, J M; Morrison, G A; Sterkers, O; El-Dine, M M

1994-02-01

232

Concurrent functional magnetic resonance imaging and electroencephalography assessment of sensory gating in schizophrenia.  

PubMed

Schizophrenia is frequently accompanied by deficits in basic information processing, such as sensory gating. The sources behind deficient sensory gating in schizophrenia patients are, however, still largely unclear. The aim of the current study was to identify the brain structures involved in deficient sensory gating in schizophrenia patients. Twenty healthy male volunteers and 23 male schizophrenia patients were initially assessed in a somatosensory P50 suppression paradigm using concurrent electroencephalography (EEG)/functional magnetic resonance imaging (fMRI) methodology. The trials consisted of single stimuli or pairs of identical stimuli with either 500 ms or 1,000 ms interstimulus intervals. Not all subjects showed a P50 waveform as a result of the somatosensory stimuli: It was detected in 13 schizophrenia patients and 15 control subjects. Significant P50 suppression was found in the 500 ms trials in controls only. Region of interest analyses were performed for a priori chosen regions. Significant negative correlations between P50 ratios and the BOLD response were found bilaterally in the hippocampus, thalamus, anterior and posterior superior temporal gyrus (STG), and in the left inferior frontal gyrus pars opercularis. However, significant group differences were found in the hippocampus and the thalamus only. This is the first study in which P50 suppression was assessed in schizophrenia patients with concurrent fMRI/EEG methodology. The data support that the STG, thalamus, inferior frontal gyrus, and the hippocampus are involved in P50 suppression. However, of these structures only the hippocampus and thalamus appeared involved in the altered sensory processing found in schizophrenia. PMID:24375687

Bak, Nikolaj; Rostrup, Egill; Larsson, Henrik B W; Glenthøj, Birte Y; Oranje, Bob

2014-08-01

233

Concurrent functional magnetic resonance imaging and electroencephalography assessment of sensory gating in schizophrenia  

PubMed Central

Schizophrenia is frequently accompanied by deficits in basic information processing, such as sensory gating. The sources behind deficient sensory gating in schizophrenia patients are, however, still largely unclear. The aim of the current study was to identify the brain structures involved in deficient sensory gating in schizophrenia patients. Twenty healthy male volunteers and 23 male schizophrenia patients were initially assessed in a somatosensory P50 suppression paradigm using concurrent electroencephalography (EEG)/functional magnetic resonance imaging (fMRI) methodology. The trials consisted of single stimuli or pairs of identical stimuli with either 500 ms or 1,000 ms interstimulus intervals. Not all subjects showed a P50 waveform as a result of the somatosensory stimuli: It was detected in 13 schizophrenia patients and 15 control subjects. Significant P50 suppression was found in the 500 ms trials in controls only. Region of interest analyses were performed for a priori chosen regions. Significant negative correlations between P50 ratios and the BOLD response were found bilaterally in the hippocampus, thalamus, anterior and posterior superior temporal gyrus (STG), and in the left inferior frontal gyrus pars opercularis. However, significant group differences were found in the hippocampus and the thalamus only. This is the first study in which P50 suppression was assessed in schizophrenia patients with concurrent fMRI/EEG methodology. The data support that the STG, thalamus, inferior frontal gyrus, and the hippocampus are involved in P50 suppression. However, of these structures only the hippocampus and thalamus appeared involved in the altered sensory processing found in schizophrenia. Hum Brain Mapp 35:3578–3587, 2014. © 2013 Wiley Periodicals, Inc. PMID:24375687

Bak, Nikolaj; Rostrup, Egill; Larsson, Henrik BW; Glenthøj, Birte Y; Oranje, Bob

2014-01-01

234

Structure/Function assessment of synapses at motor nerve terminals  

PubMed Central

The release of transmitter at neuromuscular junctions (NMJ) of the opener muscle in crayfish is quantal in nature. This NMJ offers the advantage of being able to record quantal events at specific visually identified release sites, thus allowing measurement of the physiological parameters of vesicle release and its response to be directly correlated with synaptic structure. These experiments take advantage of areas between the varicosities on the nerve terminal that we define as “stems”. Stems were chosen as the region to study because of their low synaptic output due to fewer synaptic sites. Through 3-D reconstruction from hundreds of serial sections, obtained by transmission electron microscopy (TEM), at a site in which focal macropatch recordings were obtained, the number of synapses and AZs are revealed. Thus, physiological profiles with various stimulation conditions can be assessed in regards to direct synaptic structure. Here we used the properties of the quantal shape to determine if distinct subsets of quantal signatures existed and if differences in the distributions are present depending on the frequency of stimulation. Such a quantal signature could come about by parameters of area, rise time, peak amplitude, latency and tau decay. In this study, it is shown that even at defined sites on the stem, with few active zones, synaptic transmission is still complex and the quantal responses appear to be variable even for a given synapse over time. In this study we could not identify a quantal signature for the conditions utilized. PMID:20730805

Johnstone, A. F. M.; Viele, K.; Cooper, R. L.

2010-01-01

235

Functional testing in lumbar nerve root compression syndromes. An evaluation in patients with normal neurological findings  

Microsoft Academic Search

Summary A functional test using downhill walking was evaluated in relation to the myelopgraphical examination in 33 patients with a suspected lumbar nerve root compression syndrome despite normal neurological findings. Any changes of motor or reflex signs or of straight leg raising were accepted as test results. They were noted in a decision matrix and the positive and negative predictive

O. H. Jensen; V. Kjær Hansen; S. Schmidt-Olsen

1991-01-01

236

Experimental approaches to promote functional recovery after severe peripheral nerve injuries  

Microsoft Academic Search

Summary  INTRODUCTION: Reduced regenerative capacity of chronically axotomized neurons and reduced growth support by atrophic Schwann cells are key factors that account for the poor functional outcomes after proximal nerve injuries. In this study we examine two strategies aimed to circumvent deleterious effects of chronic axotomy and chronic denervation on axonal regeneration: (1) exogenous application of neurotrophic factors to chronically axotomized

T. Gordon; J. G. Boyd; O. A. R. Sulaiman

2005-01-01

237

Functional regeneration of severed peripheral nerve using an implantable electrical stimulator  

Microsoft Academic Search

This paper presents functional regeneration of severed peripheral nerve using a polymer-based implantable electrical stimulator. A polyimide based conduit electrode was made by micro-fabrication and a stimulation chip was designed to generate biphasic current pulse for electrical stimulation. The stimulation chip was packaged with a battery using silicone elastomer, and integrated with the electrode. The implantable electrical stimulator was implanted

Tae Hyung Lee; Hui Pan; In Sook Kim; Soon Jung Hwang; S. J. Kim

2010-01-01

238

Effects of safranal, a constituent of saffron, and vitamin E on nerve functions and histopathology following crush injury of sciatic nerve in rats.  

PubMed

Safranal is one of the major components of saffron and has many biological effects such as antioxidant property. The present study investigated the effects of safranal on sciatic nerve function after induction of crush injury. We also used of vitamin E as a reference potent antioxidant agent. In anesthetized rats, right sciatic nerve was crushed using a small haemostatic forceps. Functional recovery was assessed using sciatic functional index (SFI). Acetone spray and von Frey filament tests were used for neuropathic pain assay. Histopathological changes including severities of Wallerian degeneration of sciatic nerve and gastrocnemius muscle atrophy were investigated by light microscopy. Blood levels of malodialdehyde (MDA) were also measured. The SFI values were accelerated, cold and mechanical allodynia were suppressed, the severities of Wallerian degeneration and muscular atrophy were improved, and the increased MDA level was reversed with 10 consecutive days intraperitoneal injections of 0.2 and 0.8 mg/kg of safranal and 100 mg/kg of vitamin E. It is concluded that safranal and vitamin E produced same improving effects on crushed-injured sciatic nerve functions. Inhibition of oxidative stress pathway may be involved in improving effects of safranal and vitamin E on functions and histopathology of an injured peripheral nerve. PMID:24315349

Tamaddonfard, Esmaeal; Farshid, Amir Abbas; Maroufi, Shirin; Kazemi-Shojaei, Sharare; Erfanparast, Amir; Asri-Rezaei, Siamak; Taati, Mina; Dabbaghi, Milad; Escort, Mona

2014-04-15

239

Immediate and delayed nerve repair: improved muscle mass and function with leukemia inhibitory factor.  

PubMed

In this study we examined the effect of leukemia inhibitory factor (LIF) on delayed repair of injured nerves. In a standard entubulation gap repair model of sciatic nerve in the rat, repair was performed immediately and after delays of 1 day, 1 week, and 4 weeks. Repaired nerves were treated with either LIF (10 ng) or saline, and assessment was by muscle mass and force contraction at 12 weeks after repair. After immediate nerve repair LIF administration resulted in 2.5- to 3-fold improvements compared with saline. In the 1-day delayed group, both saline and LIF treatment groups were comparable with that achieved with immediate repair combined with LIF. This result is consistent with the concept of preconditioning. In the 1-week delayed repair groups with LIF, muscle mass recovery and maximum force contraction were improved by 32% and 55%, respectively, compared with saline, whereas repairs delayed for 4 weeks showed increases of 50% and 36%. All delayed repairs treated with LIF were more effective than immediate repair with saline, but not as effective as primary repair with LIF. Our findings support the view that factors such as LIF may be efficacious for improving recovery of function in cases of delayed peripheral nerve repair. PMID:12457356

Brown, David L; Bennett, Timothy M; Dowsing, Bruce J; Hayes, Alan; Abate, Massimo; Morrison, Wayne A

2002-11-01

240

Expression and Function of Junctional Adhesion Molecule-C in Myelinated Peripheral Nerves  

PubMed Central

JAM-C is an adhesion molecule that is expressed on cells within the vascular compartment and epithelial cells and, to date, has been largely studied in the context of inflammatory events. Using immunolabeling procedures in conjunction with confocal and electron microscopy, we show here that JAM-C is also expressed in peripheral nerves and that this expression is localized to Schwann cells at junctions between adjoining myelin end loops. Sciatic nerves from JAM-C–deficient [having the JAM-C gene knocked out (KO)] mice exhibited loss of integrity of the myelin sheath and defective nerve conduction as indicated by morphological and electrophysiological studies, respectively. In addition, behavioral tests showed motor abnormalities in the KO animals. JAM-C was also expressed in human sural nerves with an expression profile similar to that seen in mice. These results demonstrate that JAM-C is a component of the autotypic junctional attachments of Schwann cells and plays an important role in maintaining the integrity and function of myelinated peripheral nerves. PMID:18048693

Scheiermann, Christoph; Meda, Paolo; Aurrand-Lions, Michel; Madani, Rime; Yiangou, Yiangos; Coffey, Peter; Salt, Thomas E.; Ducrest-Gay, Dominique; Caille, Dorothee; Howell, Owain; Reynolds, Richard; Lobrinus, Alexander; Adams, Ralf H.; Yu, Alan S. L.; Anand, Praveen; Imhof, Beat A.; Nourshargh, Sussan

2012-01-01

241

Preventive and curative effect of edaravone on nerve functions and oxidative stress in experimental diabetic neuropathy.  

PubMed

Oxidative stress is implicated as a final common pathway in the development of diabetic neuropathy and pharmacological interventions targeted at inhibiting free radical production have shown beneficial effects. In the present study, we have investigated the effects of edaravone (3 mg/kg; 3-Methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger (relatively selective to hydroxyl radicals) in streptozotocin (50 mg/kg i.p.) induced diabetic neuropathy in male Sprague-Dawley rats. Significant reduction (18%) in motor nerve conduction velocity, nerve blood flow (55%) and tail flick latency in cold (53%) and hot (50%) immersion test was observed in diabetic rats compared to age matched non-diabetic rats. Preventive (8 week) and curative (2 week) treatment of edaravone significantly improved the nerve conduction velocity and nociception but not nerve blood flow in diabetic rats. The changes in lipid peroxidation status and anti-oxidant enzymes (Superoxide dismutase and Catalase) levels observed in diabetic rats were significantly restored by edaravone treatment. Increase in blood pressure and vascular resistance was also significantly attenuated by edaravone treatment. This study provides experimental evidence to preventive and curative effect of edaravone on nerve function and oxidative stress in animal model of diabetic neuropathy. Hence edaravone may be tried clinically for the treatment of diabetic neuropathy since it is clinically used in stroke patients. PMID:17521626

Saini, Anuj Kumar; Kumar H S, Arun; Sharma, Shyam Sunder

2007-07-30

242

Stimulation of trigeminal afferents improves motor recovery after facial nerve injury: functional, electrophysiological and morphological proofs.  

PubMed

Recovery of mimic function after facial nerve transection is poor: the successful regrowth of axotomized motoneurons to their targets is compromised by (1) poor axonal navigation and excessive collateral branching, (2) abnormal exchange of nerve impulses between adjacent regrowing axons, and (3) insufficient synaptic input to facial motoneurons. As a result, axotomized motoneurons get hyperexcitable and unable to discharge. Since improvement of growth cone navigation and reduction of the ephaptic cross talk between axons turn out be very difficult, we concentrated our efforts on the third detrimental component and proposed that an intensification of the trigeminal input to axotomized electrophysiologically silent facial motoneurons might improve specificity of reinnervation. To test our hypothesis we compared behavioral, electrophysiological, and morphological parameters after single reconstructive surgery on the facial nerve (or its buccal branch) with those obtained after identical facial nerve surgery but combined with direct or indirect stimulation of the ipsilateral infraorbital (ION) nerve. We found that in all cases, trigeminal stimulation was beneficial for the outcome by improving the quality of target reinnervation and recovery of vibrissa! motor performance. PMID:23322155

Skouras, Emmanouil; Pavlov, Stoyan; Bendella, Habib; Angelov, Doychin N

2013-01-01

243

A Novel Internal Fixator Device for Peripheral Nerve Regeneration  

PubMed Central

Recovery from peripheral nerve damage, especially for a transected nerve, is rarely complete, resulting in impaired motor function, sensory loss, and chronic pain with inappropriate autonomic responses that seriously impair quality of life. In consequence, strategies for enhancing peripheral nerve repair are of high clinical importance. Tension is a key determinant of neuronal growth and function. In vitro and in vivo experiments have shown that moderate levels of imposed tension (strain) can encourage axonal outgrowth; however, few strategies of peripheral nerve repair emphasize the mechanical environment of the injured nerve. Toward the development of more effective nerve regeneration strategies, we demonstrate the design, fabrication, and implementation of a novel, modular nerve-lengthening device, which allows the imposition of moderate tensile loads in parallel with existing scaffold-based tissue engineering strategies for nerve repair. This concept would enable nerve regeneration in two superposed regimes of nerve extension—traditional extension through axonal outgrowth into a scaffold and extension in intact regions of the proximal nerve, such as that occurring during growth or limb-lengthening. Self-sizing silicone nerve cuffs were fabricated to grip nerve stumps without slippage, and nerves were deformed by actuating a telescoping internal fixator. Poly(lactic co-glycolic) acid (PLGA) constructs mounted on the telescoping rods were apposed to the nerve stumps to guide axonal outgrowth. Neuronal cells were exposed to PLGA using direct contact and extract methods, and they exhibited no signs of cytotoxic effects in terms of cell morphology and viability. We confirmed the feasibility of implanting and actuating our device within a sciatic nerve gap and observed axonal outgrowth following device implantation. The successful fabrication and implementation of our device provides a novel method for examining mechanical influences on nerve regeneration. PMID:23102114

Chuang, Ting-Hsien; Wilson, Robin E.; Love, James M.; Fisher, John P.

2013-01-01

244

Sensory biology: it takes Piezo2 to tango.  

PubMed

A trio of papers has resolved an outstanding controversy regarding the function of Merkel cells and their afferent nerve fiber partners. Merkel cells sense mechanical stimuli (through Piezo2), fire action potentials, and are sufficient to activate downstream sensory neurons. PMID:24937283

Vásquez, Valeria; Scherrer, Gregory; Goodman, Miriam B

2014-06-16

245

Mitochondrial dysfunction in distal axons contribute to HIV sensory neuropathy  

PubMed Central

Objective Accumulation of mitochondrial DNA (mtDNA) damage has been associated with aging and abnormal oxidative metabolism. We hypothesized that in human immunodeficiency virus associated sensory neuropathy (HIV-SN), damaged mtDNA accumulates in distal nerve segments and that a spatial pattern of mitochondrial dysfunction contribute to the distal degeneration of sensory nerve fibers. Methods We measured levels of common deletion mutations in mtDNA and expression levels of mitochondrial respiratory chain complexes of matched proximal and distal nerve specimens from patients with and without HIV-SN. In mitochondria isolated from peripheral nerves of simian immunodeficiency virus (SIV) infected macaques, a model of HIV-SN, we measured mitochondrial function and generation of reactive oxygen species. Results We identified increased levels of mtDNA common deletion mutation in post-mortem sural nerves of patients with HIV-SN as compared to uninfected patients or HIV patients without sensory neuropathy. Furthermore, we found that common deletion mutation in mtDNA was more prevalent in distal sural nerves compared to dorsal root ganglia. In a primate model of HIV-SN, freshly isolated mitochondria from sural nerves of macaques infected with a neurovirulent strain of SIV showed impaired mitochondrial function compared to mitochondria from proximal nerve segments. Interpretation Our findings suggest that mtDNA damage accumulates in distal mitochondria of long axons, especially in patients with HIV-SN, and that this may lead to reduced mitochondrial function in distal nerves relative to proximal segments. Although our findings are based on HIV-SN, if confirmed in other neuropathies, these observations could explain the length-dependent nature of most axonal peripheral neuropathies. PMID:21280080

Lehmann, Helmar C.; Chen, Weiran; Borzan, Jasenka; Mankowski, Joseph; Hoke, Ahmet

2010-01-01

246

A Pilot Study Examining Activity Participation, Sensory Responsiveness, and Competence in Children with High Functioning Autism Spectrum Disorder  

Microsoft Academic Search

This pilot study explored activity patterns in children with and without ASD and examined the role of sensory responsiveness\\u000a in determining children’s level of competence in activity performance. Twenty-six children with high functioning ASD and twenty-six\\u000a typically-developing children 6–12 years old were assessed using the Sensory Profile and the Child Behavior Checklist. Results\\u000a reflect differences in the types of activities and

Stacey ReynoldsRoxanna; Roxanna M. Bendixen; Tami Lawrence

247

Transplantation of Embryonic Stem Cells Improves Nerve Repair and Functional Recovery After Severe Sciatic Nerve Axotomy in Rats  

Microsoft Academic Search

Extensive research has focused on transplantation of pluripo- tent stem cells for the treatment of central nervous system disorders, the therapeutic potential of stem cell therapy for injured peripheral nerves is largely unknown. We used a rat sciatic nerve transection model to test the ability of implanted embryonic stem (ES) cell-derived neural progenitor cells (ES- NPCs) in promoting repair of

Lin Cui; Jun Jiang; Ling Wei; Xin Zhou; Jamie L. Fraser; B. Joy Snider; Shan Ping Yu

2008-01-01

248

PROCESSES OF EXCITATION IN THE DENDRITES AND IN THE SOMA OF SINGLE ISOLATED SENSORY NERVE CELLS OF THE LOBSTER AND CRAYFISH  

PubMed Central

The stretch receptor organs of Alexandrowicz in lobster and crayfish possess sensory neurons which have their cell bodies in the periphery. The cell bodies send dendrites into a fine nearby muscle strand and at the opposite pole they give rise to an axon running to the central nervous system. Mechanisms of excitation between dendrites, cell soma, and axon have been studied in completely isolated receptor structures with the cell components under visual observation. Two sensory neuron types were investigated, those which adapt rapidly to stretch, the fast cells, and those which adapt slowly, the slow cells. 1. Potentials recorded from the cell body of the neurons with intracellular leads gave resting potentials of 70 to 80 mv. and action potentials which in fresh preparations exceeded the resting potentials by about 10 to 20 mv. In some experiments chymotrypsin or trypsin was used to make cell impalement easier. They did not appreciably alter resting or action potentials. 2. It has been shown that normally excitation starts in the distal portion of dendrites which are depolarized by stretch deformation. The changed potential within the dendritic terminals can persist for the duration of stretch and is called the generator potential. Secondarily, by electrotonic spread, the generator potential reduces the resting potential of the nearby cell soma. This excitation spread between dendrites and soma is seen best during subthreshold excitation by relatively small stretches of normal cells. It is also seen during the whole range of receptor stretch in neurons in which nerve conduction has been blocked by an anesthetic. The electrotonic changes in the cells are graded, reflecting the magnitude and rate of rise of stretch, and presumably the changing levels of the generator potential. Thus in the present neurons the resting potential and the excitability level of the cell soma can be set and controlled over a wide range by local events within the dendrites. 3. Whenever stretch reduces the resting membrane potential, measured in the relaxed state in the cell body, by 8 to 12 mv. in slow cells and by 17 to 22 mv. in fast cells, conducted impulses are initiated. It is thought that in slow cells conducted impulses are initiated in the dendrites while in fast cells they arise in the cell body or near to it. In fresh preparations the speed of stretch does not appreciably influence the membrane threshold for discharges, while during developing fatigue the firing level is higher when extension is gradual. 4. Some of the specific neuron characteristics are: Fast receptor cells have a relatively high threshold to stretch. During prolonged stretch the depolarization of the cell soma is not well maintained, presumably due to a decline in the generator potential, resulting in cessation of discharges in less than a minute. This appears to be the basis of the relatively rapid adaptation. A residual subthreshold depolarization can persist for many minutes of stretch. Slow cells which resemble the sensory fibers of vertebrate spindles are excited by weak stretch. Their discharge rate remains remarkably constant for long periods. It is concluded that, once threshold excitation is reached, the generator potential within slow cell dendrites is well maintained for the duration of stretch. Possible reasons for differences in discharge properties between fast and slow cells are discussed. 5. If stretch of receptor cells is gradually continued above threshold, the discharge frequency first increases over a considerable range without an appreciable change in the firing level for discharges. Beyond that range the membrane threshold for conducted responses of the cell soma rises, the impulses become smaller, and partial conduction in the soma-axon boundary region occurs. At a critical depolarization level which may be maintained for many minutes, all conduction ceases. These overstretch phenomena are reversible and resemble cathodal block. 6. The following general scheme of excitation is proposed: stretch deformation of dendritic terminals ? generat

Eyzaguirre, Carlos; Kuffler, Stephen W.

1955-01-01

249

A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ.  

PubMed Central

The Drosophila adult external sensory organ, comprising a neuron and its support cells, is derived from a single precursor cell via several asymmetric cell divisions. To identify molecules involved in sensory organ development, we conducted a tissue-specific gain-of-function screen. We screened 2293 independent P-element lines established by P. Rorth and identified 105 lines, carrying insertions at 78 distinct loci, that produced misexpression phenotypes with changes in number, fate, or morphology of cells of the adult external sensory organ. On the basis of the gain-of-function phenotypes of both internal and external support cells, we subdivided the candidate lines into three classes. The first class (52 lines, 40 loci) exhibits partial or complete loss of adult external sensory organs. The second class (38 lines, 28 loci) is associated with increased numbers of entire adult external sensory organs or subsets of sensory organ cells. The third class (15 lines, 10 loci) results in potential cell fate transformations. Genetic and molecular characterization of these candidate lines reveals that some loci identified in this screen correspond to genes known to function in the formation of the peripheral nervous system, such as big brain, extra macrochaetae, and numb. Also emerging from the screen are a large group of previously uncharacterized genes and several known genes that have not yet been implicated in the development of the peripheral nervous system. PMID:10835395

Abdelilah-Seyfried, S; Chan, Y M; Zeng, C; Justice, N J; Younger-Shepherd, S; Sharp, L E; Barbel, S; Meadows, S A; Jan, L Y; Jan, Y N

2000-01-01

250

Raman microspectroscopy for visualization of peripheral nerves  

NASA Astrophysics Data System (ADS)

The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery is essential for improving quality of life of patients. To preserve peripheral nerves, detection of ne peripheral nerves that cannot be identi ed by human eye or under white light imaging is necessary. In this study, we sought to provide a proof-of-principle demonstration of a label-free detection technique of peripheral nerve tissues against adjacent tissues that employs spontaneous Raman microspectroscopy. A line-illumination confocal Raman microscope was used for the experiment. A laser operating at the wavelength of 532 nm was used as an excitation laser light. We obtained Raman spectra of peripheral nerve, brous connective tissue, skeletal muscle, blood vessel, and adipose tissue of Wistar rats, and extracted speci c spectral features of peripheral nerves and adjacent tissues. By applying multivariate image analysis, peripheral nerves were clearly detected against adjacent tissues without any preprocessing neither xation nor staining. These results suggest the potential of the Raman spectroscopic observation for noninvasive and label-free nerve detection, and we expect this method could be a key technique for nerve-sparing surgery.

Minamikawa, Takeo; Harada, Yoshinori; Koizumi, Noriaki; Takamatsu, Tetsuro

2013-02-01

251

Loudness function derives from data on electrical discharge rates in auditory nerve fibers  

NASA Technical Reports Server (NTRS)

Judgements of the loudness of pure-tone sound stimuli yield a loudness function which relates perceived loudness to stimulus amplitude. A loudness function is derived from physical evidence alone without regard to human judgments. The resultant loudness function is L=K(q-q0), where L is loudness, q is effective sound pressure (specifically q0 at the loudness threshold), and K is generally a weak function of the number of stimulated auditory nerve fibers. The predicted function is in agreement with loudness judgment data reported by Warren, which imply that, in the suprathreshold loudness regime, decreasing the sound-pressure level by 6 db results in halving the loudness.

Howes, W. L.

1973-01-01

252

Expression of leukemia inhibitory factor in human nerve following injury.  

PubMed

In animal models of peripheral nerve injury, leukemia inhibitory factor (LIF) is normally expressed at very low levels. Following nerve injury, its expression is rapidly increased in the nerve at the injury site and promotes both sensory and motor neuron survival. Once normal nerve function is restored, LIF expression returns to negligible levels. For this reason, LIF is considered to be a peripheral nerve trauma factor. We wished to determine whether LIF is also upregulated in human nerves following trauma and whether it is expressed in neuromas of varying age. Immunohistochemical staining for the presence of LIF was performed on injured and control human nerves from a number of subjects. Results demonstrate that LIF expression is increased in nerves within hours of injury and, in the case of neuroma formation, can persist for several years. LIF immunoreactivity was consistently found in Schwann cells, in peripheral nerve axons, and, at stages when an inflammatory response was present, also in neutrophils, mast cells, macrophages, and blood vessel walls. The level of staining within the connective tissue of injured nerves was elevated compared to control nerves, which may be due to the presence of LIF bound to the soluble secreted form of the LIF receptor. Whether the continued expression of LIF is unhealed injured nerves promotes the development of neuromas remains to be resolved. PMID:11721746

Dowsing, B J; Romeo, R; Morrison, W A

2001-11-01

253

Set and setting: how behavioral state regulates sensory function and plasticity  

PubMed Central

Recently developed neuroimaging and electrophysiological techniques are allowing us to answer fundamental questions about how behavioral states regulate our perception of the external environment. Studies using these techniques have yielded surprising insights into how sensory processing is affected at the earliest stages by attention and motivation, and how new sensory information received during wakefulness (e.g., during learning) continues to affect sensory brain circuits (leading to plastic changes) during subsequent sleep. This review aims to describe how brain states affect sensory response properties among neurons in primary and secondary sensory cortices, and how this relates to psychophysical detection thresholds and performance on sensory discrimination tasks. This is not intended to serve as a comprehensive overview of all brain states, or all sensory systems, but instead as an illustrative description of how three specific state variables (attention, motivation, and vigilance [i.e., sleep vs. wakefulness]) affect sensory systems in which they have been best studied. PMID:23792020

Aton, Sara J.

2013-01-01

254

Subthreshold continuous electrical stimulation facilitates functional recovery of facial nerve after crush injury in rabbit.  

PubMed

We sought to determine whether electrical stimulation (ES) with subthreshold, continuous, low-frequency impulses is a viable clinical method for improving functional recovery after facial nerve crush injury. In 10 rabbits, bilateral crush injuries were made on the facial nerve by compression for 30 s with mosquito forceps, causing complete facial paralysis. Subthreshold continuous direct current ES with 20-Hz square-wave pulses was applied to the proximal stump on one side for 4 weeks. Vibrissae movement returned significantly earlier on the ES side, with a less variable recovery time. Electrophysiologically, the stimulated side had a significantly shorter latency, longer duration, and faster conduction velocity. Light and transmission electron microscopy revealed that the electrical stimulation also markedly decreased Wallerian degeneration. The average numbers of fluorescent, double-labeled nerve cells were significantly different between the ES and non-ES sides. This study shows that subthreshold, continuous, low-frequency ES immediately after a crush injury of the facial nerve results in earlier recovery of facial function and shorter overall recovery time. PMID:21254091

Kim, Jin; Han, Su Jin; Shin, Dong Hyun; Lee, Won-Sang; Choi, Jae Young

2011-02-01

255

The neglected cranial nerve: nervus terminalis (cranial nerve N).  

PubMed

The nervus terminalis (NT; terminal nerve) was clearly identified as an additional cranial nerve in humans more than a century ago yet remains mostly undescribed in modern anatomy textbooks. The nerve is referred to as the nervus terminalis because in species initially examined its fibers were seen entering the brain in the region of the lamina terminalis. It has also been referred to as cranial nerve 0, but because there is no Roman symbol for zero, an N for the Latin word nulla is a better numerical designation. This nerve is very distinct in human fetuses and infants but also has been repeatedly identified in adult human brains. The NT fibers are unmyelinated and emanate from ganglia. The fibers pass through the cribriform plate medial to those of the olfactory nerve fila. The fibers end in the nasal mucosa and probably arise from autonomic/neuromodulatory as well as sensory neurons. The NT has been demonstrated to release luteinizing-releasing luteinizing hormone and is therefore thought to play a role in reproductive behavior. Based on the available evidence, the NT appears to be functional in adult humans and should be taught in medical schools and incorporated into anatomy/neuroanatomy textbooks. PMID:22836597

Vilensky, Joel A

2014-01-01

256

Microelectronic neural bridge for signal regeneration and function rebuilding over two separate nerves  

NASA Astrophysics Data System (ADS)

According to the feature of neural signals, a micro-electronic neural bridge (MENB) has been designed. It consists of two electrode arrays for neural signal detection and functional electrical stimulation (FES), and a microelectronic circuit for signal amplifying, processing, and FES driving. The core of the system is realized in 0.5-?m CMOS technology and used in animal experiments. A special experimental strategy has been designed to demonstrate the feasibility of the system. With the help of the MENB, the withdrawal reflex function of the left/right leg of one spinal toad has been rebuilt in the corresponding leg of another spinal toad. According to the coherence analysis between the source and regenerated neural signals, the controlled spinal toad's sciatic nerve signal is delayed by 0.72 ms in relation to the sciatic nerve signal of the source spinal toad and the cross-correlation function reaches a value of 0.73. This shows that the regenerated signal is correlated with the source sciatic signal significantly and the neural activities involved in reflex function have been regenerated. The experiment demonstrates that the MENB is useful in rebuilding the neural function between nerves of different bodies.

Xiaoyan, Shen; Zhigong, Wang; Xiaoying, Lü; Shushan, Xie; Zonghao, Huang

2011-06-01

257

Corneal confocal microscopy reveals trigeminal small sensory fiber neuropathy in amyotrophic lateral sclerosis  

PubMed Central

Although subclinical involvement of sensory neurons in amyotrophic lateral sclerosis (ALS) has been previously demonstrated, corneal small fiber sensory neuropathy has not been reported to-date. We examined a group of sporadic ALS patients with corneal confocal microscopy, a recently developed imaging technique allowing in vivo observation of corneal small sensory fibers. Corneal confocal microscopy (CCM) examination revealed a reduction of corneal small fiber sensory nerve number and branching in ALS patients. Quantitative analysis demonstrated an increase in tortuosity and reduction in length and fractal dimension of ALS patients’ corneal nerve fibers compared to age-matched controls. Moreover, bulbar function disability scores were significantly related to measures of corneal nerve fibers anatomical damage. Our study demonstrates for the first time a corneal small fiber sensory neuropathy in ALS patients. This finding further suggests a link between sporadic ALS and facial-onset sensory and motor neuronopathy (FOSMN) syndrome, a rare condition characterized by early sensory symptoms (with trigeminal nerve distribution), followed by wasting and weakness of bulbar and upper limb muscles. In addition, the finding supports a model of neurodegeneration in ALS as a focally advancing process. PMID:25360111

Ferrari, Giulio; Grisan, Enrico; Scarpa, Fabio; Fazio, Raffaella; Comola, Mauro; Quattrini, Angelo; Comi, Giancarlo; Rama, Paolo; Riva, Nilo

2014-01-01

258

Are age-related changes in cognitive function driven by age-related changes in sensory processing?  

PubMed

Although there has been keen interest in the association among measures of sensory function and cognitive function for many years, in general, measures of sensory function have been confined to one or two senses and measures of threshold sensitivity (acuity). In this study, rigorous psychophysical measures of threshold sensitivity, temporal gap detection, temporal order identification, and temporal masking have been obtained, in hearing, vision, and touch. In addition, all subjects completed 15 subtests of the Wechsler Adult Intelligence Scale, 3rd edition (WAIS-III). Data were obtained from 245 adults (18-87 years old) for the WAIS-III and for 40 measures of threshold sensitivity and temporal processing. The focus in this report is on individual differences in performance for the entire data set. Principal-components (PC) factor analysis reduced the 40 psychophysical measures to eight correlated factors, which were reduced further to a single global sensory processing factor. Similarly, PC factor analysis of the 15 WAIS-III scores resulted in three correlated factors that were further reduced to a single global cognitive function factor. Age, global sensory processing, and global cognitive function were all moderately and significantly correlated with one another. However, paired partial correlations, controlling for the third of these three measures, revealed that the moderate correlation between age and global cognitive function went to zero when global sensory processing was controlled for; the other two partial correlations remained intact. Structural models confirmed this result. These analyses suggest that the long-standing observation of age-related changes in cognitive function may be mediated by age-related changes in global sensory processing. PMID:23254452

Humes, Larry E; Busey, Thomas A; Craig, James; Kewley-Port, Diane

2013-04-01

259

Influence of putrescine and carnauba wax on functional and sensory quality of pomegranate (Punica granatum L.) fruits during storage.  

PubMed

Functional properties (anthocyanins, antioxidant, ascorbic acid and tannin) and sensory score were determined in pomegranate fruits at two storage temperatures (3 and 5 °C) after treatment with 2 mM putrescine and 1 : 10 carnauba wax (carnauba wax : water). The treatments (putrescine and carnauba wax) were given by immersion method followed by storage up to 60 days. Both treatments retained significantly higher anthocyanins, antioxidant, ascorbic acid, tannin and sensory qualities as compared with control fruits under both the storage conditions. Combined application of putrescine + carnauba wax showed better response in retaining functional properties than putrescine treated or nontreated fruits. The impacts of putrescine and carnauba wax treatments were found more pronounced after 30 days at 3-5 °C storage temperature in retaining functional and sensory qualities. After 60 days of storage, putrescine + carnauba wax retained about 25% higher antioxidant activity both at 3 and 5 °C storage temperatures. PMID:24426055

Barman, Kalyan; Asrey, Ram; Pal, R K; Kaur, Charanjit; Jha, S K

2014-01-01

260

Erectile Function Outcomes in the Current Era of Anatomic Nerve-Sparing Radical Prostatectomy  

PubMed Central

The contemporary use of anatomic nerve-sparing radical prostatectomy, which entails preserving the autonomic nerve supply to the penis required for penile erection, has led to improved erectile function outcomes compared with what has been seen historically. However, delay of postoperative recovery of erection for as long as 2 years is common, such that dysfunctional erection status lingers as a major postoperative problem. Several possible strategies to improve overall recovery rates and to hasten postoperative recovery of erectile function are currently being advanced. These include pharmacologic rehabilitation therapy and neuromodulatory therapy. Rigorous basic scientific investigation and clinical assessment of these new strategic approaches are critically important to establish their actual therapeutic benefits. PMID:17021626

Burnett, Arthur L

2006-01-01

261

Sacral nerve function in child patients after ileal j-pouch-anal anastomosis for ulcerative colitis.  

PubMed

Abstract To clarify the neurological function of the puborectalis muscle (PM) in child patients with soiling after ileal J-pouch-anal anastomosis (IPAA) for ulcerative colitis (UC), we examined the terminal motor latency in the sacral nerves that regulate the PM. Eight patients after IPAA for UC were studied (6 males and 2 females aged 11 to 13 years with a mean age of 12.8 years). All patients 6 months after IPAA showed soiling (group A) and these patients showed continence at 2 years after IPAA (group B). Group C serving as controls consisted of 16 subjects (10 males and 6 females aged 12 to 17 years with a mean age of 14.4 years). Left- and right-sided sacral nerve terminal motor latency (SNTML) tests were performed at 6 months and 2 years after IPAA in order to measure the latency of the response in the bilateral PM following magnetic stimulation of sacral nerve root segments 2 to 4 (S2-S4) of the spinal column overlying the cauda equina. The following results were obtained. (1) Right-sided SNTML: group A exhibited significant prolongation compared with groups B and C (P < 0.0001 and P < 0.0001, respectively). There was no significant difference between groups B and C (P = 0.2329). (2) Left-sided SNTML: group A exhibited significant prolongation compared with groups B and C (P = 0.0002 and P < 0.0001, respectively). There was no significant difference between groups B and C (P = 0.2315). Note that significant differences were not established between SNTML values measured on the right and left sides. Soiling in child patients 6 months after IPAA may be caused by damage to the bilateral sacral nerves during the operation. However, the damage to the sacral motor nerve improves within 2 years after IPAA. PMID:25216412

Tomita, Ryouichi; Sugito, Kiminobu; Sakurai, Kenichi; Fujisaki, Shigeru; Koshinaga, Tsugumichi

2014-01-01

262

Case report: Double nerve transfer of the anterior and posterior interosseous nerves to treat a high ulnar nerve defect at the elbow.  

PubMed

Double neurotization of the deep branch of ulnar nerve (DBUN) and superficial branch of ulnar nerve using the anterior interosseous nerve (AIN) and the recurrent (thenar) branch of the median nerve was first described by Battiston and Lanzetta. This article details the postoperative results after 18months of a patient who underwent this technique using the posterior interosseous nerve (PIN) instead of the recurrent branch of the median nerve for sensory reconstruction. A 35-year-old, right-handed man suffered major trauma to his right upper limb following a serious motor vehicle accident. One year later, a pseudocystic neuroma of the ulnar nerve was evident on ultrasound examination and MRI. After the neuroma had been resected, the nerve defect was estimated at 8cm. One and a half years after the initial trauma, with the patient still at M0/S0, we transferred the AIN and PIN onto the deep and superficial branches of the ulnar nerve respectively. Nerve recovery was monitored clinically every month and by electromyography (EMG) every three months initially and then every six months. At 18months postoperative, 5th digit abduction/adduction was 28mm. Sensation was present at the base of the 5th digit. The patient was graded M3/S2. Clear re-innervation of the abductor digiti minimi was demonstrated by EMG (motor conduction velocity 50m/s). Given that the ulnar nerve could not be excited at the elbow, this re-innervation had to be the result of the double nerve transfer. Neurotization of the DBUN using the AIN produces functional results as early as 1year after surgery. Using PIN for sensory neurotization is easy to perform, has no negative consequences for the donor site, and leads to good recovery of sensation (graded as S2) after 18months. PMID:25260763

Delclaux, S; Aprédoaei, C; Mansat, P; Rongières, M; Bonnevialle, P

2014-10-01

263

Toward the functional oligomerization state of tryptophan-rich sensory proteins.  

PubMed

A conserved family of tryptophan-rich sensory proteins (TspO) mediates the transport of heme degradation intermediates across membranes. In eukaryotes, the homologous mitochondrial translocator protein (TSPO) binds cholesterol and radioligands as monomer. On the basis of the mammalian TSPO structure, bioinformatic analysis, and a 10 Å resolution electron microscopy map of TspO from Rhodobacter sphaeroides, we developed a model of the tertiary and quaternary structure of TspO that is in agreement with available mutagenesis data. Our study provides insight into the conformational basis for the restricted interaction of bacterial TspO with radioligands and the functional oligomerization state of bacterial TspO proteins. PMID:24817333

Jaremko, Lukasz; Jaremko, Mariusz; Becker, Stefan; Zweckstetter, Markus

2014-08-01

264

Sensing the Underground - Ultrastructure and Function of Sensory Organs in Root-Feeding Melolontha melolontha (Coleoptera: Scarabaeinae) Larvae  

PubMed Central

Introduction Below ground orientation in insects relies mainly on olfaction and taste. The economic impact of plant root feeding scarab beetle larvae gave rise to numerous phylogenetic and ecological studies. Detailed knowledge of the sensory capacities of these larvae is nevertheless lacking. Here, we present an atlas of the sensory organs on larval head appendages of Melolontha melolontha. Our ultrastructural and electrophysiological investigations allow annotation of functions to various sensory structures. Results Three out of 17 ascertained sensillum types have olfactory, and 7 gustatory function. These sensillum types are unevenly distributed between antennae and palps. The most prominent chemosensory organs are antennal pore plates that in total are innervated by approximately one thousand olfactory sensory neurons grouped into functional units of three-to-four. In contrast, only two olfactory sensory neurons innervate one sensillum basiconicum on each of the palps. Gustatory sensilla chaetica dominate the apices of all head appendages, while only the palps bear thermo-/hygroreceptors. Electrophysiological responses to CO2, an attractant for many root feeders, are exclusively observed in the antennae. Out of 54 relevant volatile compounds, various alcohols, acids, amines, esters, aldehydes, ketones and monoterpenes elicit responses in antennae and palps. All head appendages are characterized by distinct olfactory response profiles that are even enantiomer specific for some compounds. Conclusions Chemosensory capacities in M. melolontha larvae are as highly developed as in many adult insects. We interpret the functional sensory units underneath the antennal pore plates as cryptic sensilla placodea and suggest that these perceive a broad range of secondary plant metabolites together with CO2. Responses to olfactory stimulation of the labial and maxillary palps indicate that typical contact chemo-sensilla have a dual gustatory and olfactory function. PMID:22848471

Hansson, Bill S.; Hilker, Monika; Reinecke, Andreas

2012-01-01

265

A comparative morphological, electrophysiological and functional analysis of axon regeneration through peripheral nerve autografts genetically modified to overexpress BDNF, CNTF, GDNF, NGF, NT3 or VEGF.  

PubMed

The clinical outcome of microsurgical repair of an injured peripheral nerve with an autograft is suboptimal. A key question addressed here is: can axon regeneration through an autograft be further improved? In this article the impact of six neurotrophic factors (BDNF, CNTF, GDNF, NGF, NT3 or VEGF) on axon regeneration was compared after delivery to a 1cm long nerve autograft by gene therapy. To distinguish between early and late effects, regeneration was assessed at 2 and 20weeks post-surgery by histological, electrophysiological and functional analysis. BDNF, GDNF and NGF exhibited a spectrum of effects, including early stimulatory effects on axons entering the autograft and excessive axon growth and Schwann cell proliferation at 20weeks post-surgery. Persistent expression of these factors in autografts interfered with target cell reinnervation and functional recovery in a modality specific way. Autografts overexpressing VEGF displayed hypervascularization, while grafts transduced with CNTF and NT3 were indistinguishable from control grafts. These three factors did not have detectable pro-regenerative effects. In conclusion, autograft-based repair combined with gene therapy for three of the six growth factors investigated (BDNF, GDNF, NGF) showed considerable promise since these factors enhanced modality specific axon outgrowth in autografts. The remarkable and selective effects of BDNF, GDNF and NGF on motor or sensory regeneration will be exploited in future experiments that aim to carefully regulate their temporal and spatial expression since this has the potential to overcome the adverse effects on long-distance regeneration observed after uncontrolled delivery. PMID:25128265

Hoyng, Stefan A; De Winter, Fred; Gnavi, Sara; de Boer, Ralph; Boon, Lennard I; Korvers, Laura M; Tannemaat, Martijn R; Malessy, Martijn J A; Verhaagen, Joost

2014-11-01

266

The nerve injury and the dying neurons: diagnosis and prevention  

Microsoft Academic Search

Following distal nerve injury significant sensory neuronal cell death occurs in the dorsal root ganglia, while after a more proximal injury, such as brachial plexus injury, a sizeable proportion of spinal motoneurons also undergo cell death. This phenomenon has been undervalued for a long time, but it has a significant role in the lack of functional recuperation, as neuronal cells

G. Terenghi; A. Hart; M. Wiberg

2011-01-01

267

Functional electrical stimulation of the left recurrent laryngeal nerve using a vagus nerve stimulator in a normal horse.  

PubMed

The aim of this study was to assess the feasibility of implanting an existing vagus nerve stimulating (VNS) electrode around the recurrent laryngeal nerve. The stimulus response characteristics required to achieve abduction of the ipsilateral arytenoid by the VNS electrode in the normal horse could then be determined. The electrode was wound around the left recurrent laryngeal nerve at the cervical level and connected to a pulse generator. Stimulus response characteristics were obtained by measuring stimulated arytenoid displacement endoscopically in the standing, non-sedated horse. A full and sustained abduction of the arytenoid was obtained with a stimulation frequency of 25 Hz and intensity of 1 mA with a pulse width of 250 ?s. PMID:20724182

Vanschandevijl, Katleen; Nollet, Heidi; Vonck, Kristl; Raedt, Rorecht; Boon, Paul; Roost, DirkVan; Martens, Ann; Deprez, Piet

2011-09-01

268

[Axon-reflex based nerve fiber function assessment in the detection of autonomic neuropathy].  

PubMed

Axon-reflex-based tests of peripheral small nerve fiber function including techniques to quantify vasomotor and sudomotor responses following acetylcholine iontophoresis are used in the assessment of autonomic neuropathy. However, the established axon-reflex-based techniques, laser Doppler flowmetry (LDF) to assess vasomotor function and quantitative sudomotor axon-reflex test (QSART) to measure sudomotor function, are limited by technically demanding settings as well as interindividual variability and are therefore restricted to specialized clinical centers. New axon-reflex tests are characterized by quantification of axon responses with both temporal and spatial resolution and include "laser Doppler imaging (LDI) axon-reflex flare area test" to assess vasomotor function, the quantitative direct and indirect test of sudomotor function (QDIRT) to quantify sudomotor function, as well as the quantitative pilomotor axon-reflex test (QPART), a technique to measure pilomotor nerve fiber function using adrenergic cutaneous stimulation through phenylephrine iontophoresis. The effectiveness of new axon-reflex tests in the assessment of neuropathy is currently being investigated in clinical studies. PMID:25047406

Siepmann, T; Illigens, B M-W; Reichmann, H; Ziemssen, T

2014-10-01

269

INTRATHECAL MIDAZOLAM REGULATES SPINAL AMPA RECEPTOR EXPRESSION AND FUNCTION AFTER NERVE INJURY IN RATS  

PubMed Central

Spinal ?-aminobutyric acid (GABA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors have been implicated in the mechanisms of neuropathic pain after nerve injury; however, how these two receptors interact at the spinal level remains unclear. Here we show that intrathecal midazolam through activation of spinal GABAA receptors attenuated the expression and function of spinal AMPA receptors in rats following peripheral nerve injury. Thermal hyperalgesia and mechanical allodynia induced by chronic constriction nerve injury (CCI) in rats were attenuated by the short-acting benzodiazepine midazolam (20=10>5 ?g > vehicle) administered intrathecally once daily for seven postoperative days. CCI-induced upregulation of AMPA receptors within the spinal cord dorsal horn was also significantly reduced by the intrathecal midazolam (10, 20 ?g) treatment. The inhibitory effects of midazolam (10, 20 ?g) on neuropathic pain behaviors and AMPA receptor expression were prevented by co-administration of midazolam with the GABAA receptor antagonist bicuculline (3 ?g), whereas intrathecal treatment with bicuculline (1 or 3 ?g) alone in naive rats induced the upregulation of spinal AMPA receptor expression and nociceptive responses, indicating a tonic regulatory effect from endogenous GABAergic activity on the AMPA receptor expression and spinal nociceptive processing. These results indicate that modulation of spinal AMPA receptor expression and function by the GABAergic activity may serve as a mechanism contributory to the spinal nociceptive processing. PMID:17049496

Lim, Jeongae; Lim, Grewo; Sung, Backil; Wang, Shuxing; Mao, Jianren

2007-01-01

270

Nerve Regeneration Restores Supraspinal Control of Bladder Function after Complete Spinal Cord Injury  

PubMed Central

A life-threatening disability after complete spinal cord injury is urinary dysfunction, which is attributable to lack of regeneration of supraspinal pathways that control the bladder. Although numerous strategies have been proposed that can promote the regrowth of severed axons in the adult CNS, at present, the approaches by which this can be accomplished after complete cord transection are quite limited. In the present study, we modified a classic peripheral nerve grafting technique with the use of chondroitinase to facilitate the regeneration of axons across and beyond an extensive thoracic spinal cord transection lesion in adult rats. The novel combination treatment allows for remarkably lengthy regeneration of certain subtypes of brainstem and propriospinal axons across the injury site and is followed by markedly improved urinary function. Our studies provide evidence that an enhanced nerve grafting strategy represents a potential regenerative treatment after severe spinal cord injury. PMID:23804083

Lin, Ching-Yi; Jiang, Hai-Hong; DePaul, Marc; Lin, Vernon W.

2013-01-01

271

Peripheral Nerve Injuries and Transplantation of Olfactory Ensheathing Cells for Axonal Regeneration and Remyelination: Fact or Fiction?  

PubMed Central

Successful nerve regeneration after nerve trauma is not only important for the restoration of motor and sensory functions, but also to reduce the potential for abnormal sensory impulse generation that can occur following neuroma formation. Satisfying functional results after severe lesions are difficult to achieve and the development of interventional methods to achieve optimal functional recovery after peripheral nerve injury is of increasing clinical interest. Olfactory ensheathing cells (OECs) have been used to improve axonal regeneration and functional outcome in a number of studies in spinal cord injury models. The rationale is that the OECs may provide trophic support and a permissive environment for axonal regeneration. The experimental transplantation of OECs to support and enhance peripheral nerve regeneration is much more limited. This chapter reviews studies using OECs as an experimental cell therapy to improve peripheral nerve regeneration. PMID:23202929

Radtke, Christine; Kocsis, Jeffery D.

2012-01-01

272

Early Interfaced Neural Activity from Chronic Amputated Nerves  

PubMed Central

Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices has been proposed as a strategy for achieving natural motor control and sensory perception of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-electrode arrays placed in the brain and peripheral nerves have been used successfully to convey neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, axonopathy and excessive inflammation currently limit their long-term use. Here we demonstrate that enticement of peripheral nerve regeneration through a non-obstructive multi-electrode array, after either acute or chronic nerve amputation, offers a viable alternative to obtain early neural recordings and to enhance long-term interfacing of nerve activity. Non-restrictive electrode arrays placed in the path of regenerating nerve fibers allowed the recording of action potentials as early as 8?days post-implantation with high signal-to-noise ratio, as long as 3?months in some animals, and with minimal inflammation at the nerve tissue-metal electrode interface. Our findings suggest that regenerative multi-electrode arrays of open design allow early and stable interfacing of neural activity from amputated peripheral nerves and might contribute towards conveying full neural control and sensory feedback to users of robotic prosthetic devices. PMID:19506704

Garde, Kshitija; Keefer, Edward; Botterman, Barry; Galvan, Pedro; Romero, Mario I.

2009-01-01

273

Deletion of Nrf2 impairs functional recovery, reduces clearance of myelin debris and decreases axonal remyelination after peripheral nerve injury  

PubMed Central

Oxidative stress is generated in several peripheral nerve injury models. In response to oxidative stress, the transcription factor Nrf2 is activated to induce expression of antioxidant responsive element (ARE) genes. The role of Nrf2 in peripheral nerve injury has not been studied to date. In this study, we used a sciatic nerve crush model to examine how deletion of Nrf2 affects peripheral nerve degeneration and regeneration. Our study demonstrated that functional recovery in the Nrf2-/- mice were impaired compared to the wild type mice after sciatic nerve crush. Larger myelin debris were present in the distal nerve stump of the Nrf2-/- mice than in the wild type mice. The presence of larger myelin debris in the Nrf2-/- mice coincides with less macrophages accumulation in the distal nerve stump. Less accumulation of macrophages may have contributed to slower clearance of myelin and thus resulted in the presence of larger myelin debris. Meanwhile, axonal regeneration is comparatively lower in the Nrf2-/- mice than in the wild type mice. Even after 3 months post the injury, more thinly myelinated axon fibers were present in the Nrf2-/- mice than in the wild type mice. Taken collectively, these data support the concept of therapeutic intervention with Nrf2 activators following nerve injury. PMID:23328769

Zhang, Linxia; Johnson, Delinda; Johnson, Jeffrey A.

2013-01-01

274

Motor Function of the Upper-Extremity after Transection of the Second Thoracic Nerve Root during Total En Bloc Spondylectomy  

PubMed Central

Background In total en bloc spondylectomy (TES) of upper thoracic spine including the second thoracic (T2) vertebra, T2 nerve roots are usually transected. In this study, we examined the association between transection of the T2 nerve roots and upper-extremity motor function in patients with upper thoracic TES. Methods We assessed 16 patients who underwent upper thoracic TES with bilateral transection of the T2 nerve roots. Patients were divided into three groups: 3 patients without any processing of T1 and upper nerve roots (T2 group), 7 with extensive dissection of T1 nerve roots (T1–2 group), and 6 with extensive dissection of T1 and upper nerve roots (C–T2 group). Postoperative upper-extremity motor function was compared between the groups. Results Postoperative deterioration of upper-extremity motor function was observed in 9 of the 16 patients (56.3%). Three of the 7 patients in the T1–2 group and all 6 patients in the C–T2 group showed deterioration of upper-extremity motor function, but there was no deterioration in the T2 group. In the T1–2 group, 3 patients showed mild deterioration that did not affect their activities of daily living and they achieved complete recovery at the latest follow-up examination. In contrast, severe dysfunction occurred frequently in the C–T2 group, without recovery at the latest follow-up. Conclusions The transection of the T2 nerve roots alone did not result in upper-extremity motor dysfunction; rather, the dysfunction is caused by the extensive dissection of the T1 and upper nerve roots. Therefore, transection of the T2 nerve roots in upper thoracic TES seems to be an acceptable procedure with satisfactory outcomes. PMID:25333299

Yokogawa, Noriaki; Murakami, Hideki; Demura, Satoru; Kato, Satoshi; Yoshioka, Katsuhito; Hayashi, Hiroyuki; Ishii, Takayoshi; Fujii, Moriyuki; Igarashi, Takashi; Tsuchiya, Hiroyuki

2014-01-01

275

Effect of lycium barbarum (wolfberry) polysaccharides on preserving retinal function after partial optic nerve transection.  

PubMed

Lycium Barbarum Polysaccharides (LBP) are the active components of Wolfberry (a traditional Chinese medicine) which has long been used for improving visual function. This study aims to investigate localized changes of retinal function in a partial optic nerve transection (PONT) model, and effects of LBP on visual function. The multifocal electroretinograms (mfERG) were obtained from 30 eyes of 30 Sprague-Dawley rats. The rats were divided into 6 groups (five treatment groups and one control group). Starting from the first day of the experiment, the rats in the (PONT+LBP) group and the (LBP) group were dosed with LBP; rats in the (PONT+PBS (phosphate buffered saline)) group and the (PBS) group were dosed with PBS via nasogastric tube every day until euthanized. The dorsal part of the optic nerve was transected in the (PONT), (PONT+LBP) and (PONT+PBS) groups at the end of week 1 (day 7 after LBP or PBS feeding began). The mfERG was measured at three time points: week 2, week 3 and week 5. Significant reduction of P1 and PhNR amplitudes of the mfERG were observed in all retinal regions a week after PONT. Feeding with LBP prior to PONT preserved retinal function. All mfERG responses returned to the normal range in the superior retina, which corresponds to the transected dorsal region of the optic nerve, while most of the inferior retinal responses were significantly increased at week 4 after PONT. The ventral part of the retina had secondary degeneration which was not only limited to the ganglion cell layer, but is a widespread effect affecting the outer retina. LBP altered the functional reduction caused by PONT by regulating the signal from the outer retina. PMID:24339917

Chu, Patrick H W; Li, Hong-Ying; Chin, Man-Pan; So, Kwok-fai; Chan, Henry H L

2013-01-01

276

Effect of Lycium Barbarum (Wolfberry) Polysaccharides on Preserving Retinal Function after Partial Optic Nerve Transection  

PubMed Central

Lycium Barbarum Polysaccharides (LBP) are the active components of Wolfberry (a traditional Chinese medicine) which has long been used for improving visual function. This study aims to investigate localized changes of retinal function in a partial optic nerve transection (PONT) model, and effects of LBP on visual function. The multifocal electroretinograms (mfERG) were obtained from 30 eyes of 30 Sprague-Dawley rats. The rats were divided into 6 groups (five treatment groups and one control group). Starting from the first day of the experiment, the rats in the (PONT+LBP) group and the (LBP) group were dosed with LBP; rats in the (PONT+PBS (phosphate buffered saline)) group and the (PBS) group were dosed with PBS via nasogastric tube every day until euthanized. The dorsal part of the optic nerve was transected in the (PONT), (PONT+LBP) and (PONT+PBS) groups at the end of week 1 (day 7 after LBP or PBS feeding began). The mfERG was measured at three time points: week 2, week 3 and week 5. Significant reduction of P1 and PhNR amplitudes of the mfERG were observed in all retinal regions a week after PONT. Feeding with LBP prior to PONT preserved retinal function. All mfERG responses returned to the normal range in the superior retina, which corresponds to the transected dorsal region of the optic nerve, while most of the inferior retinal responses were significantly increased at week 4 after PONT. The ventral part of the retina had secondary degeneration which was not only limited to the ganglion cell layer, but is a widespread effect affecting the outer retina. LBP altered the functional reduction caused by PONT by regulating the signal from the outer retina. PMID:24339917

Chin, Man-Pan; So, Kwok-fai; Chan, Henry H. L.

2013-01-01

277

Nerve regeneration with aid of nanotechnology and cellular engineering.  

PubMed

Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability. In the last few years, numerous microsurgical techniques, such as coaptation, nerve autograft, and different biological or polymeric nerve conduits, have been developed to reconstruct a long segment of damaged peripheral nerve. A few of these techniques are promising and have become popular among surgeons. Advancements in the field of tissue engineering have led to development of synthetic nerve conduits as an alternative for the nerve autograft technique, which is the current practice to bridge nerve defects with gaps larger than 30 mm. However, to date, despite significant progress in this field, no material has been found to be an ideal alternative to the nerve autograft. This article briefly reviews major up-to-date published studies using different materials as an alternative to the nerve autograft to bridge peripheral nerve gaps in an attempt to assess their ability to support and enhance nerve regeneration and their prospective drawbacks, and also highlights the promising hope for nerve regeneration with the next generation of nerve conduits, which has been significantly enhanced with the tissue engineering approach, especially with the aid of nanotechnology in development of the three-dimensional scaffold. The goal is to determine potential alternatives for nerve regeneration and repair that are simply and directly applicable in clinical conditions. PMID:21995532

Sedaghati, Tina; Yang, Shi Yu; Mosahebi, Afshin; Alavijeh, Mohammad S; Seifalian, Alexander M

2011-01-01

278

Putative lateral inhibition in sensory processing for directional turns  

PubMed Central

Computing targeted responses is a general problem in goal-directed behaviors. We sought the sensory template for directional turning in the predatory sea slug Pleurobranchaea californica, which calculates precise turn angles by averaging multiple stimulus sites on its chemotactile oral veil (Yafremava LS, Anthony CW, Lane L, Campbell JK, Gillette R. J Exp Biol 210: 561–569, 2007). Spiking responses to appetitive chemotactile stimulation were recorded in the two bilateral pairs of oral veil nerves, the large oral veil nerve (LOVN) and the tentacle nerve (TN). The integrative abilities of the peripheral nervous system were significant. Nerve spiking responses to punctate, one-site stimulation of the oral veil followed sigmoid relations as stimuli moved between lateral tentacle and the midline. Receptive fields of LOVN and TN were unilateral, overlapping, and oppositely weighted for responsiveness across the length of oral veil. Simultaneous two-site stimulation caused responses of amplitudes markedly smaller than the sum of corresponding one-site responses. Plots of two-site nerve responses against the summed approximate distances from midline of each site were markedly linear. Thus the sensory paths in the peripheral nervous system show reciprocal occlusion similar to lateral inhibition. This outcome suggests a novel neural function for lateral inhibitory mechanisms, distinct from simple contrast enhancement, in computation of both sensory maps and targeted motor actions. PMID:21490281

Yafremava, Liudmila S.

2011-01-01

279

Sensory Conversion Devices  

NASA Astrophysics Data System (ADS)

The human body has five basic sensory functions: touch, vision, hearing, taste, and smell. The effectiveness of one or more of these human sensory functions can be impaired as a result of trauma, congenital defects, or the normal ageing process. Converting one type of function into another, or translating a function to a different part of the body, could result in a better quality of life for a person with diminished sensorial capabilities.

Medelius, Pedro

280

Neuroprotectin D1 Restores Corneal Nerve Integrity and Function After Damage From Experimental Surgery  

PubMed Central

Purpose. To investigate if topical treatment of neuroprotectin D1 (NPD1) increases regeneration of functional nerves after lamellar keratectomy. Methods. An 8-mm stromal dissection was performed in the left eye of each rabbit. The rabbits were treated with NPD1, pigment epithelial-derived factor (PEDF) in combination with docosahexaenoic acid (DHA) or vehicle for 6 weeks, and corneas were obtained at 8 weeks. After fixation, corneal wholemounts were stained with mouse monoclonal anti-?III-tubulin antibody and double stained with chicken anti-calcitonin gene-related peptide (CGRP) antibody. Corneal sensitivity and tear secretion were measured using the Cochet-Bonnet esthesiometer and the Schirmer's test, respectively. Additional rabbits were treated with NPD1, PEDF+DHA, or vehicle, and corneal sections were stained with a rat monoclonal anti-neutrophil antibody. Cultures of trigeminal ganglia from 5-day-old mice were treated with NPD1, PEDF+DHA, lipoxin A4 (LXA4), 12- or 15-hydroxyeicosatetraenoic acid (12[S] or 15[S]-HETE), and nerve growth factor (NGF) as positive control. Results. NPD1 increased subepithelial corneal nerve area three times compared with vehicle-treated rabbits. The effect was similar to PEDF+DHA–treated animals. There was recovery of CGRP-positive neurons and an increase in corneal sensitivity and tear secretion in NPD1-treated animals. NPD1 decreased neutrophil infiltration after 2 and 4 days of treatment. In the in vitro cultures, NPD1 and PEDF+DHA induced a 3-fold increase in neurite outgrowth compared with cultures without supplementation. Treatments with LXA4, 12(S)-, and 15(S)- HETE did not stimulate neurite outgrowth. Conclusions. NPD1 has anti-inflammatory and nerve regenerative properties. This study demonstrates that NPD1 may offer an effective treatment for neurotrophic corneas. PMID:23702780

Cortina, Maria Soledad; He, Jiucheng; Russ, Tiffany; Bazan, Nicolas G.; Bazan, Haydee E. P.

2013-01-01

281

Hey2 functions in parallel with Hes1 and Hes5 for mammalian auditory sensory organ development  

PubMed Central

Background During mouse development, the precursor cells that give rise to the auditory sensory organ, the organ of Corti, are specified prior to embryonic day 14.5 (E14.5). Subsequently, the sensory domain is patterned precisely into one row of inner and three rows of outer sensory hair cells interdigitated with supporting cells. Both the restriction of the sensory domain and the patterning of the sensory mosaic of the organ of Corti involve Notch-mediated lateral inhibition and cellular rearrangement characteristic of convergent extension. This study explores the expression and function of a putative Notch target gene. Results We report that a putative Notch target gene, hairy-related basic helix-loop-helix (bHLH) transcriptional factor Hey2, is expressed in the cochlear epithelium prior to terminal differentiation. Its expression is subsequently restricted to supporting cells, overlapping with the expression domains of two known Notch target genes, Hairy and enhancer of split homolog genes Hes1 and Hes5. In combination with the loss of Hes1 or Hes5, genetic inactivation of Hey2 leads to increased numbers of mis-patterned inner or outer hair cells, respectively. Surprisingly, the ectopic hair cells in Hey2 mutants are accompanied by ectopic supporting cells. Furthermore, Hey2-/-;Hes1-/- and Hey2-/-;Hes1+/- mutants show a complete penetrance of early embryonic lethality. Conclusion Our results indicate that Hey2 functions in parallel with Hes1 and Hes5 in patterning the organ of Corti, and interacts genetically with Hes1 for early embryonic development and survival. Our data implicates expansion of the progenitor pool and/or the boundaries of the developing sensory organ to account for patterning defects observed in Hey2 mutants. PMID:18302773

Li, Shuangding; Mark, Sharayne; Radde-Gallwitz, Kristen; Schlisner, Rebecca; Chin, Michael T; Chen, Ping

2008-01-01

282

Disentangling different functional roles of evoked K-complex components: Mapping the sleeping brain while quenching sensory processing.  

PubMed

During non-REM sleep the largest EEG response evoked by sensory stimulation is the K-complex (eKC), composed of an initial positive bump (P200) followed by a bistable cortical response: a giant negative deflection (N550) and a large positive one (P900), respectively reflecting down states and up states of < 1 Hz oscillations.Sensory-modality-independent topology of N550 and P900, with maximal detection rate on fronto-central areas, has been consistently reported, suggesting that sensory inputs arise to the cortex avoiding specific primary sensory areas. However, these studies neglected latencies of all KC components as a function of electrode sites.Our aim is to identify, component by component, which topological/dynamical properties of eKCs depend on stimulus modality and which are mainly related to local cortical properties. We measured temporal and morphological features of acoustic, tactile and visual eKCs to disentangle specific sensory excitatory activities from aspecific responses due to local proneness to bistability, measured by means of the N550 descending steepness (synchronization in falling into down state).While confirming the sensory-modality independence of N550 and P900 topology with maximal detection rate in fronto-central areas, four main original results emerge from this study: (i) the topology of P200 latency depends on the sensory modality with earliest waves in the stimulation-related primary sensory areas; (ii) P200 rapidly travels as a cortical excitation; (iii) P200-like excitations when KCs are not evoked are detected over the scalp with significantly smaller amplitudes in fronto-central areas, compared to eKC P200s; and (iv) N550 latency mirrors its mean local steepness which is a function of topological proneness to bistability.From these results we can describe the emergence N550/P900 complex as the interplay between a waxing P200 cortical travel and higher fronto-central proneness to bistability.In conclusion, eKCs exhibit a physiological dichotomy: P200 acts as a traveling cortical excitation whose function is to induce the bistable cortical response (N550/P900), which in turn is crucial for maintaining sleep and unconsciousness. PMID:24513527

Laurino, Marco; Menicucci, Danilo; Piarulli, Andrea; Mastorci, Francesca; Bedini, Remo; Allegrini, Paolo; Gemignani, Angelo

2014-02-01

283

Effect of M40403 treatment of diabetic rats on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve.  

PubMed

1. To further explore the effect of antioxidants in preventing diabetes-induced vascular and neural dysfunction we treated streptozotocin-induced diabetic rats daily with subcutaneous injections of 10 mg kg(-1) of M40403 (n=11) and compared the results obtained from 17 control rats and 14 untreated diabetic rats. M40403 is a manganese(II) complex with a bis(cyclo-hexylpyridine)-substituted macrocyclic ligand that was designed to be a selective functional mimetic of superoxide dismutase. Thus, M40403 provides a useful tool to evaluate the roles of superoxide in disease states. 2. Treatment with M40403 significantly improved diabetes-induced decrease in endoneurial blood flow, acetylcholine-mediated vascular relaxation in arterioles that provide circulation to the region of the sciatic nerve, and motor nerve conduction velocity (P<0.05). M40403 treatment also reduced the appearance of superoxide in the aorta and epineurial vessels and peroxynitrite in epineurial vessels. Treating diabetic rats with M40403 reduced the diabetes-induced increase in thiobarbituric acid reactive substances in serum but did not prevent the decrease in lens glutathione level. Treating diabetic rats with M40403 did not improve sciatic nerve Na(+)/K(+) ATPase activity or the sorbitol, fructose or myo-inositol content of the sciatic nerve. 3. These studies provide additional evidence that diabetes-induced oxidative stress and the generation of superoxide and perhaps peroxynitrite may be partially responsible for the development of diabetic vascular and neural complications. PMID:11522593

Coppey, L J; Gellett, J S; Davidson, E P; Dunlap, J A; Lund, D D; Salvemini, D; Yorek, M A

2001-09-01

284

Effect of M40403 treatment of diabetic rats on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve  

PubMed Central

To further explore the effect of antioxidants in preventing diabetes-induced vascular and neural dysfunction we treated streptozotocin-induced diabetic rats daily with subcutaneous injections of 10?mg?kg?1 of M40403 (n=11) and compared the results obtained from 17 control rats and 14 untreated diabetic rats. M40403 is a manganese(II) complex with a bis(cyclo-hexylpyridine)-substituted macrocyclic ligand that was designed to be a selective functional mimetic of superoxide dismutase. Thus, M40403 provides a useful tool to evaluate the roles of superoxide in disease states. Treatment with M40403 significantly improved diabetes-induced decrease in endoneurial blood flow, acetylcholine-mediated vascular relaxation in arterioles that provide circulation to the region of the sciatic nerve, and motor nerve conduction velocity (P<0.05). M40403 treatment also reduced the appearance of superoxide in the aorta and epineurial vessels and peroxynitrite in epineurial vessels. Treating diabetic rats with M40403 reduced the diabetes-induced increase in thiobarbituric acid reactive substances in serum but did not prevent the decrease in lens glutathione level. Treating diabetic rats with M40403 did not improve sciatic nerve Na+/K+ ATPase activity or the sorbitol, fructose or myo-inositol content of the sciatic nerve. These studies provide additional evidence that diabetes-induced oxidative stress and the generation of superoxide and perhaps peroxynitrite may be partially responsible for the development of diabetic vascular and neural complications. PMID:11522593

Coppey, Lawrence J; Gellett, Jill S; Davidson, Eric P; Dunlap, Joyce A; Lund, Donald D; Salvemini, Daniela; Yorek, Mark A

2001-01-01

285

Molecular Evolution of the Infrared Sensory Gene TRPA1 in Snakes and Implications for Functional Studies  

PubMed Central

TRPA1 is a calcium ion channel protein recently identified as the infrared receptor in pit organ-containing snakes. Therefore, understanding the molecular evolution of TRPA1 may help to illuminate the origin of “heat vision” in snakes and reveal the molecular mechanism of infrared sensitivity for TRPA1. To this end, we sequenced the infrared sensory gene TRPA1 in 24 snake species, representing nine snake families and multiple non-snake outgroups. We found that TRPA1 is under strong positive selection in the pit-bearing snakes studied, but not in other non-pit snakes and non-snake vertebrates. As a comparison, TRPV1, a gene closely related to TRPA1, was found to be under strong purifying selection in all the species studied, with no difference in the strength of selection between pit-bearing snakes and non-pit snakes. This finding demonstrates that the adaptive evolution of TRPA1 specifically occurred within the pit-bearing snakes and may be related to the functional modification for detecting infrared radiation. In addition, by comparing the TRPA1 protein sequences, we identified 11 amino acid sites that were diverged in pit-bearing snakes but conserved in non-pit snakes and other vertebrates, 21 sites that were diverged only within pit-vipers but conserved in the remaining snakes. These specific amino acid substitutions may be potentially functional important for infrared sensing. PMID:22163322

Jiang, Ke; Zhang, Peng

2011-01-01

286

Improvement of sensorimotor functions in old age by passive sensory stimulation  

PubMed Central

Sensorimotor functions decrease in old age. The well-documented loss of tactile acuity in elderly is accompanied by deterioration of haptic performance and fine manipulative movements. Physical training and exercise can maintain sensorimotor fitness into high age. However, regular schedules of training require discipline and physical fitness. We here present an alternative interventional paradigm to enhance tactile, haptic, and fine motor performance based on passive, sensory stimulation by means of tactile coactivation. This approach is based on patterned, synchronous tactile stimulation applied to the fingertips for 3 hours. The stimulation drives plastic reorganizational changes in somatosensory cortex that affect perception and behavior: We demonstrate that following 3 hours of coactivation tactile acuity as well as haptic object exploration and fine motor performance are improved for at least 96 hours. Because this kind of intervention does not require active participation or attention of the subjects, we anticipate that coactivation is a prime candidate for future therapeutic interventions in patients with impaired sensorimotor abilities. It can be assumed that the maintenance and restoration of sensorimotor functions can ensure and preserve independence of daily living. Further optimizing of the stimulation protocol can be assumed to strengthen both the range and durability of its efficacy. PMID:19281060

Kalisch, Tobias; Tegenthoff, Martin; Dinse, Hubert R

2008-01-01

287

Molecular evolution of the infrared sensory gene TRPA1 in snakes and implications for functional studies.  

PubMed

TRPA1 is a calcium ion channel protein recently identified as the infrared receptor in pit organ-containing snakes. Therefore, understanding the molecular evolution of TRPA1 may help to illuminate the origin of "heat vision" in snakes and reveal the molecular mechanism of infrared sensitivity for TRPA1. To this end, we sequenced the infrared sensory gene TRPA1 in 24 snake species, representing nine snake families and multiple non-snake outgroups. We found that TRPA1 is under strong positive selection in the pit-bearing snakes studied, but not in other non-pit snakes and non-snake vertebrates. As a comparison, TRPV1, a gene closely related to TRPA1, was found to be under strong purifying selection in all the species studied, with no difference in the strength of selection between pit-bearing snakes and non-pit snakes. This finding demonstrates that the adaptive evolution of TRPA1 specifically occurred within the pit-bearing snakes and may be related to the functional modification for detecting infrared radiation. In addition, by comparing the TRPA1 protein sequences, we identified 11 amino acid sites that were diverged in pit-bearing snakes but conserved in non-pit snakes and other vertebrates, 21 sites that were diverged only within pit-vipers but conserved in the remaining snakes. These specific amino acid substitutions may be potentially functional important for infrared sensing. PMID:22163322

Geng, Jie; Liang, Dan; Jiang, Ke; Zhang, Peng

2011-01-01

288

Differential effects of distal and proximal nerve lesions on carbonic anhydrase activity in rat primary sensory neurons, ventral and dorsal root axons  

Microsoft Academic Search

The effect of proximal and distal peripheral nerve injuries on the histochemistry of carbonic anhydrase (CA) in rat dorsal root ganglion (DRG) neurons, and myelinated (MyF) dorsal and ventral root fibers was studied. Sciatic neurectomy induced no change. Contrariwise, 7 days after lumbar spinal nerve section the numbers of CA-stained ventral root MyF and DRG cells at the L4 and

J. M. Peyronnard; L. F. Charron; J. P. Messier; J. Lavoie

1988-01-01

289

High-resolution magnetic resonance imaging of the lower extremity nerves.  

PubMed

Magnetic resonance (MR) imaging of the nerves, commonly known as MR neurography is increasingly being used as noninvasive means of diagnosing peripheral nerve disease. High-resolution imaging protocols aimed at imaging the nerves of the hip, thigh, knee, leg, ankle, and foot can demonstrate traumatic or iatrogenic injury, tumorlike lesions, or entrapment of the nerves, causing a potential loss of motor and sensory function in the affected area. A thorough understanding of normal MR imaging and gross anatomy, as well as MR findings in the presence of peripheral neuropathies will aid in accurate diagnosis and ultimately help guide clinical management. PMID:24210318

Burge, Alissa J; Gold, Stephanie L; Kuong, Sharon; Potter, Hollis G

2014-02-01

290

Nitric oxide as an endogenous peripheral modulator of visceral sensory neuronal function.  

PubMed

Nitric oxide (NO) plays important roles in CNS and smooth muscle function. Here we reveal an additional function in peripheral sensory transmission. We hypothesized that endogenous NO modulates the function of gastrointestinal vagal afferent endings. The nonselective NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester hydrochloride increased responses to tactile mechanical stimuli of mucosal afferent endings in two species, in some cases severalfold. This was mimicked by a neuronal NOS inhibitor but not an endothelial NOS inhibitor. NOS inhibitors did not affect the responsiveness of smooth muscle afferent endings, suggesting that the endogenous source of NO is exclusively accessible to mucosal receptors. The role of the NO-soluble guanylyl cyclase (sGC)-cGMP pathway was confirmed using the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one and the cGMP phosphodiesterase 5' inhibitor sildenafil. The first enhanced and the second inhibited mechanosensory function. Exogenous NO, from the donor S-nitroso-N-acetylpenicillamine, significantly reduced mechanosensitivity of both types of ending. Up to one-third of stomach-projecting afferent neurons in the nodose ganglia expressed neuronal NOS (nNOS). However, anterograde-traced vagal endings were nNOS negative, indicating NOS is not transported peripherally and there are alternative sources of NO for afferent modulation. A subpopulation of enteroendocrine cells in the gut mucosa were nNOS positive, which were found anatomically in close apposition with mucosal vagal afferent endings. These results indicate an inhibitory neuromodulatory role of epithelial NO, which targets a select population of vagal afferents. This interaction is likely to play a role in generation of symptoms and behaviors from the upper gastrointestinal system. PMID:19494147

Page, Amanda J; O'Donnell, Tracey A; Cooper, Nicole J; Young, Richard L; Blackshaw, L Ashley

2009-06-01

291

Use of Vein Conduit and Isolated Nerve Graft in Peripheral Nerve Repair: A Comparative Study  

PubMed Central

Aims and Objectives. The aim of this study was to evaluate the effectiveness of vein conduit in nerve repair compared with isolated nerve graft. Materials and Methods. This retrospective study was conducted at author's centre and included a total of 40 patients. All the patients had nerve defect of more than 3?cm and underwent nerve repair using nerve graft from sural nerve. In 20 cases, vein conduit (study group) was used whereas no conduit was used in other 20 cases. Patients were followed up for 2 years at the intervals of 3 months. Results. Patients had varying degree of recovery. Sensations reached to all the digits at 1 year in study groups compared to 18 months in control group. At the end of second year, 84% patients of the study group achieved 2-point discrimination of <10?mm compared to 60% only in control group. In terms of motor recovery, 82% patients achieved satisfactory hand function in study group compared to 56% in control group (P < .05). Conclusions. It was concluded that the use of vein conduit in peripheral nerve repair is more effective method than isolated nerve graft providing good sensory and motor recovery.

Ahmad, Imran; Akhtar, Md. Sohaib

2014-01-01

292

Quantitative parameters of facial motor evoked potential during vestibular schwannoma surgery predict postoperative facial nerve function  

Microsoft Academic Search

Background  Facial motor evoked potential (FMEP) amplitude ratio reduction at the end of the surgery has been identified as a good predictor\\u000a for postoperative facial nerve outcome. We sought to investigate variations in FMEP amplitude and waveform morphology during\\u000a vestibular schwannoma (VS) resection and to correlate these measures with postoperative facial function immediately after\\u000a surgery and at the last follow-up.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  Intraoperative

Marcus André Acioly; Alireza Gharabaghi; Marina Liebsch; Carlos Henrique Carvalho; Paulo Henrique Aguiar; Marcos Tatagiba

2011-01-01

293

Conserved Dopamine Neurotrophic Factor-Transduced Mesenchymal Stem Cells Promote Axon Regeneration and Functional Recovery of Injured Sciatic Nerve  

PubMed Central

Peripheral nerve injury (PNI) is a common disease that often results in axonal degeneration and the loss of neurons, ultimately leading to limited nerve regeneration and severe functional impairment. Currently, there are no effective treatments for PNI. In the present study, we transduced conserved dopamine neurotrophic factor (CDNF) into mesenchymal stem cells (MSCs) in collagen tubes to investigate their regenerative effects on rat peripheral nerves in an in vivo transection model. Scanning electron microscopy of the collagen tubes demonstrated their ability to be resorbed in vivo. We observed notable overexpression of the CDNF protein in the distal sciatic nerve after application of CDNF-MSCs. Quantitative analysis of neurofilament 200 (NF200) and S100 immunohistochemistry showed significant enhancement of axonal and Schwann cell regeneration in the group receiving CDNF-MSCs (CDNF-MSCs group) compared with the control groups. Myelination thickness, axon diameter and the axon-to fiber diameter ratio (G-ratio) were significantly higher in the CDNF-MSCs group at 8 and 12 weeks after nerve transection surgery. After surgery, the sciatic functional index, target muscle weight, wet weight ratio of gastrocnemius muscle and horseradish peroxidase (HRP) tracing demonstrated functional recovery. Light and electron microscopy confirmed successful regeneration of the sciatic nerve. The greater numbers of HRP-labeled neuron cell bodies and increased sciatic nerve index values (SFI) in the CDNF-MSCs group suggest that CDNF exerts neuroprotective effects in vivo. We also observed higher target muscle weights and a significant improvement in muscle atrophism in the CDNF-MSCs group. Collectively, these findings indicate that CDNF gene therapy delivered by MSCs is capable of promoting nerve regeneration and functional recovery, likely because of the significant neuroprotective and neurotrophic effects of CDNF and the superior environment offered by MSCs and collagen tubes. PMID:25343619

Liu, Yi; Nie, Lin; Zhao, Hua; Zhang, Wen; Zhang, Yuan-Qiang; Wang, Shuai-Shuai; Cheng, Lei

2014-01-01

294

Conserved dopamine neurotrophic factor-transduced mesenchymal stem cells promote axon regeneration and functional recovery of injured sciatic nerve.  

PubMed

Peripheral nerve injury (PNI) is a common disease that often results in axonal degeneration and the loss of neurons, ultimately leading to limited nerve regeneration and severe functional impairment. Currently, there are no effective treatments for PNI. In the present study, we transduced conserved dopamine neurotrophic factor (CDNF) into mesenchymal stem cells (MSCs) in collagen tubes to investigate their regenerative effects on rat peripheral nerves in an in vivo transection model. Scanning electron microscopy of the collagen tubes demonstrated their ability to be resorbed in vivo. We observed notable overexpression of the CDNF protein in the distal sciatic nerve after application of CDNF-MSCs. Quantitative analysis of neurofilament 200 (NF200) and S100 immunohistochemistry showed significant enhancement of axonal and Schwann cell regeneration in the group receiving CDNF-MSCs (CDNF-MSCs group) compared with the control groups. Myelination thickness, axon diameter and the axon-to fiber diameter ratio (G-ratio) were significantly higher in the CDNF-MSCs group at 8 and 12 weeks after nerve transection surgery. After surgery, the sciatic functional index, target muscle weight, wet weight ratio of gastrocnemius muscle and horseradish peroxidase (HRP) tracing demonstrated functional recovery. Light and electron microscopy confirmed successful regeneration of the sciatic nerve. The greater numbers of HRP-labeled neuron cell bodies and increased sciatic nerve index values (SFI) in the CDNF-MSCs group suggest that CDNF exerts neuroprotective effects in vivo. We also observed higher target muscle weights and a significant improvement in muscle atrophism in the CDNF-MSCs group. Collectively, these findings indicate that CDNF gene therapy delivered by MSCs is capable of promoting nerve regeneration and functional recovery, likely because of the significant neuroprotective and neurotrophic effects of CDNF and the superior environment offered by MSCs and collagen tubes. PMID:25343619

Liu, Yi; Nie, Lin; Zhao, Hua; Zhang, Wen; Zhang, Yuan-Qiang; Wang, Shuai-Shuai; Cheng, Lei

2014-01-01

295

Polyimide cuff electrodes for peripheral nerve stimulation.  

PubMed

This paper describes a new tripolar spiral cuff electrode, composed of a thin (10 microm) and flexible polyimide insulating carrier and three circumneural platinum electrodes, suitable for stimulation of peripheral nerves. The cuffs were implanted around the sciatic nerve of two groups of ten rats each, one in which the polyimide ribbon was attached to a plastic connector to characterize the in vivo stimulating properties of the electrode, and one without a connector for testing possible mechanical nerve damage by means of functional and histological methods. The polyimide cuff electrodes induced only a very mild foreign body reaction and did not change the nerve shape over a 2-6 month implantation period. There were no changes in the motor and sensory nerve conduction tests, nociceptive responses and walking track pattern over follow-up, and no morphological evidence of axonal loss or demyelination, except in one case with partial demyelination of some large fibers after 6 months. By delivering single electrical pulses through the cuff electrodes graded recruitment curves of alpha-motor nerve fibers were obtained. Recruitment of all motor units was achieved with a mean charge density lower than 4 microC/cm(2) for a pulse width of 50 micros at the time of implantation as well as 45 days thereafter. These data indicate that the polyimide cuff electrode is a stable stimulating device, with physical properties and dimensions that avoid nerve compression or activity-induced axonal damage. PMID:10880824

Rodríguez, F J; Ceballos, D; Schüttler, M; Valero, A; Valderrama, E; Stieglitz, T; Navarro, X

2000-06-01

296

Single session of brief electrical stimulation immediately following crush injury enhances functional recovery of rat facial nerve.  

PubMed

Peripheral nerve injuries lead to a variety of pathological conditions, including paresis or paralysis when the injury involves motor axons. We have been studying ways to enhance the regeneration of peripheral nerves using daily electrical stimulation (ES) following a facial nerve crush injury. In our previous studies, ES was not initiated until 24 h after injury. The current experiment tested whether ES administered immediately following the crush injury would further decrease the time for complete recovery from facial paralysis. Rats received a unilateral facial nerve crush injury and an electrode was positioned on the nerve proximal to the crush site. Animals received daily 30 min sessions of ES for 1 d (day of injury only), 2 d, 4 d, 7 d, or daily until complete functional recovery. Untreated animals received no ES. Animals were observed daily for the return of facial function. Our findings demonstrated that one session of ES was as effective as daily stimulation at enhancing the recovery of most functional parameters. Therefore, the use of a single 30 min session of ES as a possible treatment strategy should be studied in human patients with paralysis as a result of acute nerve injuries. PMID:22773203

Foecking, Eileen M; Fargo, Keith N; Coughlin, Lisa M; Kim, James T; Marzo, Sam J; Jones, Kathryn J

2012-01-01

297

Transplantation of olfactory ensheathing cells to evaluate functional recovery after peripheral nerve injury.  

PubMed

Olfactory ensheathing cells (OECs) are neural crest cells which allow growth and regrowth of the primary olfactory neurons. Indeed, the primary olfactory system is characterized by its ability to give rise to new neurons even in adult animals. This particular ability is partly due to the presence of OECs which create a favorable microenvironment for neurogenesis. This property of OECs has been used for cellular transplantation such as in spinal cord injury models. Although the peripheral nervous system has a greater capacity to regenerate after nerve injury than the central nervous system, complete sections induce misrouting during axonal regrowth in particular after facial of laryngeal nerve transection. Specifically, full sectioning of the recurrent laryngeal nerve (RLN) induces aberrant axonal regrowth resulting in synkinesis of the vocal cords. In this specific model, we showed that OECs transplantation efficiently increases axonal regrowth. OECs are constituted of several subpopulations present in both the olfactory mucosa (OM-OECs) and the olfactory bulbs (OB-OECs). We present here a model of cellular transplantation based on the use of these different subpopulations of OECs in a RLN injury model. Using this paradigm, primary cultures of OB-OECs and OM-OECs were transplanted in Matrigel after section and anastomosis of the RLN. Two months after surgery, we evaluated transplanted animals by complementary analyses based on videolaryngoscopy, electromyography (EMG), and histological studies. First, videolaryngoscopy allowed us to evaluate laryngeal functions, in particular muscular cocontractions phenomena. Then, EMG analyses demonstrated richness and synchronization of muscular activities. Finally, histological studies based on toluidine blue staining allowed the quantification of the number and profile of myelinated fibers. All together, we describe here how to isolate, culture, identify and transplant OECs from OM and OB after RLN section-anastomosis and how to evaluate and analyze the efficiency of these transplanted cells on axonal regrowth and laryngeal functions. PMID:24637657

Guerout, Nicolas; Paviot, Alexandre; Bon-Mardion, Nicolas; Honoré, Axel; Obongo, Rais; Duclos, Célia; Marie, Jean-Paul

2014-01-01

298

The contribution of sensory inputs to the function of a central tar-get has traditionally been investigated through deprivation or lesion  

E-print Network

investigated through deprivation or lesion experiments in which central sensory structures are temporarilyThe contribution of sensory inputs to the function of a central tar- get has traditionally been or permanently deprived of their inputs1­8. In these experiments, the role of inputs is inferred from

Sur, Mriganka

299

Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections  

E-print Network

Background: Although many nerve prostheses have been proposed in recent years, in the case of consistent loss of nervous tissue peripheral nerve injury is still a traumatic pathology that may impair patient's movements by ...

Panseri, Silvia

300

Muscle Sympathetic Nerve Activity Is Related to a Surrogate Marker of Endothelial Function in Healthy Individuals  

PubMed Central

Background Evidence from animal studies indicates the importance of an interaction between the sympathetic nervous system and the endothelium for cardiovascular regulation. However the interaction between these two systems remains largely unexplored in humans. The aim of this study was to investigate whether directly recorded sympathetic vasoconstrictor outflow is related to a surrogate marker of endothelial function in healthy individuals. Methods and Results In 10 healthy normotensive subjects (3 f/7 m), (age 37±11 yrs), (BMI 24±3 kg/m2) direct recordings of sympathetic action potentials to the muscle vascular bed (MSNA) were performed and endothelial function estimated with the Reactive Hyperaemia- Peripheral Arterial Tonometry (RH-PAT) technique. Blood samples were taken and time spent on leisure-time physical activities was estimated. In all subjects the rate between resting flow and the maximum flow, the Reactive Hyperemic index (RH-PAT index), was within the normal range (1,9–3,3) and MSNA was as expected for age and gender (13–44 burst/minute). RH-PAT index was inversely related to MSNA (r?=??0.8, p?=?0.005). RH-PAT index and MSNA were reciprocally related to time (h/week) spent on physical activity (p?=?0.005 and p?=?0.006 respectively) and platelet concentration (PLT) (p?=?0.02 and p?=?0.004 respectively). Conclusions Our results show that sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy normotensive individuals, indicating that sympathetic outflow may be modulated by changes in endothelial function. In this study time spent on physical activity is identified as a predictor of sympathetic nerve activity and endothelial function in a group of healthy individuals. The results are of importance in understanding mechanisms underlying sympathetic activation in conditions associated with endothelial dysfunction and emphasise the importance of a daily exercise routine for maintenance of cardiovascular health. PMID:20174639

Sverrisdottir, Yrsa Bergmann; Jansson, Linda Marie; Hagg, Ulrika; Gan, Li-Ming

2010-01-01

301

Leukemia inhibitory factor enhances the regeneration of transected rat sciatic nerve and the function of reinnervated muscle.  

PubMed

The cytokine leukemia inhibitory factor (LIF) favors the survival and growth of axons in vitro and in vivo. Fibronectin has been shown to enhance nerve regeneration when added in combination with various growth factors including LIF. The goal of this study was to evaluate the effect of LIF plus fibronectin on the regeneration of transected nerve and functional recovery of reinnervated skeletal muscle, in one experimental model of peripheral nerve repair, at two recovery times. The rat sciatic nerve was cut at mid-thigh level and a silicone cuff containing either saline (control), LIF, or LIF plus fibronectin (L+F) was used to bridge the proximal and distal nerve stumps leaving a 1 cm gap between them. Rats were then explored at 6 or 12 weeks following the initial surgery. Regenerating nerves were assessed by measuring the diameter of myelinated axons, conduction velocity, and number of myelinated fibers. Muscle reinnervation was assessed by measuring muscle mass, force of contraction, and histologically for changes in muscle fiber type (type I and type II). In this report we demonstrate that at 6 weeks there were significant increases in 1) nerve conduction velocity, 2) myelinated axon diameter, and 3) number of myelinated axons over that of control (saline-treated) animals. Both LIF groups demonstrated a shift in type II muscle fiber area compared to saline-treated controls, with the L+F group having a significant increase in muscle mass. At 12 weeks there was an improved recovery over and above that demonstrated at 6 weeks. Muscle mass was 65% and 42% greater than control for LIF and L+F, respectively. Force of contraction, conduction velocity, myelinated fiber number, and diameter were also significantly greater for both LIF- and L+F-treated rats than saline-treated rats. These results demonstrate that LIF significantly improves the regeneration of damaged peripheral nerves and the preservation of muscle viability, resulting in greatly enhanced recovery of skeletal muscle function. PMID:9008151

Tham, S; Dowsing, B; Finkelstein, D; Donato, R; Cheema, S S; Bartlett, P F; Morrison, W A

1997-01-15

302

Influence of maturation on infant diaphragm function assessed by magnetic stimulation of phrenic nerves.  

PubMed

Infant diaphragm function may be adversely affected in a variety of disorders and conditions. Key to establishing an accurate diagnosis are appropriate control data. The aim of this study was to determine the effect of maturation on diaphragm function, using a nonvolitional test. Diaphragm function was assessed by measuring the transdiaphragmatic pressure (Pdi) generated by magnetic stimulation of the phrenic nerves. Ballon catheters were positioned in the lower third of the esophagus and stomach. Esophageal (Pes) and gastric (Pgas) pressure changes were measured using differential pressure transducers. The pressure signals were amplified and displayed in real time on a computer (running Labview trade mark software) and Pdi derived by online subtraction of Pes from Pgas. Twenty-nine infants (14 born preterm), at a median gestational age of 37 (range, 25-42) weeks, were studied at a median postconceptional age (PCA) of 39 (range, 32-44) weeks. At time of measurement, none had respiratory problems or were hyperinflated (functional residual capacity ranged from 23-35 mL/kg). The preterm infants had significantly lower transdiaphragmatic pressures responses following median left (4.0, range 2.5-6.8 cmH(2)O vs. 4.8, range 2.8-7.2 cmH(2)O) and median right phrenic nerve stimulation (3.6, range 2.6-4.8 cmH(2)O vs. 4.3, range 2.7-6.8 cmH(2)O) (P < 0.05) than term infants. Following left and right phrenic nerve stimulation, Pdi correlated significantly with gestational age (r = 0.4, P < 0.05, and r = 0.4, P < 0.05, respectively) and PCA (r = 0.37, P = 0.05, and r = 0.56, P < 0.01, respectively). We conclude that gestational age at birth and postconceptional age at time of measurements must be taken into account when interpreting the results of infant diaphragm function tests. PMID:12461734

Dimitriou, Gabriel; Greenough, Anne; Moxham, John; Rafferty, Gerrard F

2003-01-01

303

Hereditary motor and sensory neuropathy--Lom, a novel demyelinating neuropathy associated with deafness in gypsies. Clinical, electrophysiological and nerve biopsy findings  

Microsoft Academic Search

Summary A previously unrecognized neuropathy was identified in Bulgarian gypsies, and was designated hereditary motor and sensory neuropathy-Lom (HMSNL) after the town where the initial cases were found. It was subsequently identified in other gypsy communities. The disorder, which is of autosomal recessive inheritance, was mapped to chromosome 8q24. It begins consistently in the first decade of life with gait

Luba Kalaydjieva; Amelia Nikolova; Ivo Turnev; Julia Petrova; Anna Hristova; Boryana Ishpekova; Iva Petkova; Alexander Shmarov; Stella Stancheva; L. Middleton; Luciano Merlini; A. Trogu; J. R. Muddle; R. H. M. King; P. K. Thomas

1998-01-01

304

Cavernous nerve regeneration using acellular nerve grafts  

Microsoft Academic Search

Introduction  The restoration of erectile function following complete transection of nerve tissue during surgery remains challenging. Recently,\\u000a graft procedures using sural nerve grafts during radical prostatectomy have had favorable outcomes, and this has rekindled\\u000a interest in the applications of neural repair in a urologic setting. Although nerve repair using autologous donor graft is\\u000a the gold standard of treatment currently, donor nerve

Stephen S. Connolly; James J. Yoo; Mohamed Abouheba; Shay Soker; W. Scott McDougal; Anthony Atala

2008-01-01

305

Structure-Function Relationship Between Corneal Nerves and Conventional Small-Fiber Tests in Type 1 Diabetes  

PubMed Central

OBJECTIVE In vivo corneal confocal microscopy (IVCCM) has been proposed as a noninvasive technique to assess small nerve fiber structural morphology. We investigated the structure-function relationship of small fibers in diabetic sensorimotor polyneuropathy (DSP). RESEARCH DESIGN AND METHODS Ninety-six type 1 diabetic subjects with a spectrum of clinical DSP and 64 healthy volunteers underwent IVCCM examinations to determine corneal nerve structure, including corneal nerve fiber length (CNFL), fiber density (CNFD), branch density (CNBD), and fiber tortuosity (CNFT). Small nerve fiber function was assessed by cooling detection thresholds (CDTs), axon reflex–mediated neurogenic vasodilatation in response to cutaneous heating by laser Doppler imaging flare technique (LDIFLARE), and heart rate variability (HRV). Linear associations between structural and functional measures in type 1 diabetic subjects were determined using Spearman correlation coefficients and linear regression analysis. RESULTS Of the type 1 diabetic subjects, with a mean age of 38.2 ± 15.5 years and a mean HbA1c of 7.9 ± 1.4%, 33 (34%) had DSP according to the consensus definition. Modest correlations were observed between CNFL, CNFD, and CNBD and all functional small-fiber tests (rs = 0.25 to 0.41; P ? 0.01 for all comparisons). For example, quantitatively every 1 mm/mm2 lower CNFL was associated with a 0.61°C lower CDT, a 0.07 cm2 lower LDIFLARE area, and a 1.78% lower HRV. No significant associations were observed for CNFT and the functional small-fiber measures. CONCLUSIONS Small nerve fiber structural morphology assessed by IVCCM correlated well with functional measures of small nerve fiber injury. In particular, CNFL, CNFD, and CNBD demonstrated clear structure-function relationships. PMID:23579181

Sivaskandarajah, Gavasker A.; Halpern, Elise M.; Lovblom, Leif E.; Weisman, Alanna; Orlov, Steven; Bril, Vera; Perkins, Bruce A.

2013-01-01

306

Functional magnetic resonance imaging of motor, sensory, and posterior parietal cortical areas during performance of sequential typing movements  

Microsoft Academic Search

We investigated the activation of sensory and motor areas involved in the production of typing movements using functional\\u000a magnetic resonance imaging (fMRI). Eleven experienced typists performed tasks, in which the spatial and temporal requirements\\u000a as well as the number of digits involved were varied. These included a simple uni-digit repetitive task, a uni-digit sequential\\u000a task, a dual-digit sequential task, a

A. M. Gordon; J.-H. Lee; D. Flament; K. Ugurbil; T. J. Ebner

1998-01-01

307

Can a battery of functional and sensory tests corroborate the sensorineural complaints of subjects working with vibrating tools?  

Microsoft Academic Search

Objectives: The objective of the present paper is to study the relationship between the early sensorineural symptoms, classified according\\u000a to the Stockholm scale, and the results of the main functional and sensory tests described in the literature, in subjects\\u000a working with vibrating tools. Methods: Three groups of male workers were selected from industry: one group (69?subjects) exposed to hand-arm vibration

N. Cock; A. Piette; J. Malchaire

2000-01-01

308

Capsaicin-sensitive sensory neurons regulate myocardial nitric oxide and cGMP signaling  

Microsoft Academic Search

We studied whether tissue levels of nitric oxide (NO) and cGMP are regulated by sensory nerves in normoxic and ischemic hearts. Wistar rats were treated with capsaicin to deplete neurotransmitters from capsaicin-sensitive sensory nerves. In separate experiments, capsaicin was applied perineurally to both vagus nerves for selective chemodenervation of vagal cardiac afferent nerves. Systemic capsaicin administration significantly decreased basal myocardial

Tamás Csont; Csaba Csonka; Péter Kovács; Gábor Jancsó; Péter Ferdinandy

2003-01-01

309

Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex  

PubMed Central

Correlations in local neocortical spiking activity can provide insight into the underlying organization of cortical microcircuitry. However, identifying structure in patterned multi-neuronal spiking remains a daunting task due to the high dimensionality of the activity. Using two-photon imaging, we monitored spontaneous circuit dynamics in large, densely sampled neuronal populations within slices of mouse primary auditory, somatosensory, and visual cortex. Using the lagged correlation of spiking activity between neurons, we generated functional wiring diagrams to gain insight into the underlying neocortical circuitry. By establishing the presence of graph invariants, which are label-independent characteristics common to all circuit topologies, our study revealed organizational features that generalized across functionally distinct cortical regions. Regardless of sensory area, random and -nearest neighbors null graphs failed to capture the structure of experimentally derived functional circuitry. These null models indicated that despite a bias in the data towards spatially proximal functional connections, functional circuit structure is best described by non-random and occasionally distal connections. Eigenvector centrality, which quantifies the importance of a neuron in the temporal flow of circuit activity, was highly related to feedforwardness in all functional circuits. The number of nodes participating in a functional circuit did not scale with the number of neurons imaged regardless of sensory area, indicating that circuit size is not tied to the sampling of neocortex. Local circuit flow comprehensively covered angular space regardless of the spatial scale that we tested, demonstrating that circuitry itself does not bias activity flow toward pia. Finally, analysis revealed that a minimal numerical sample size of neurons was necessary to capture at least 90 percent of functional circuit topology. These data and analyses indicated that functional circuitry exhibited rules of organization which generalized across three areas of sensory neocortex. PMID:25010654

Gururangan, Suchin S.; Sadovsky, Alexander J.; MacLean, Jason N.

2014-01-01

310

Origins, actions and dynamic expression patterns of the neuropeptide VGF in rat peripheral and central sensory neurones following peripheral nerve injury  

Microsoft Academic Search

BACKGROUND: The role of the neurotrophin regulated polypeptide, VGF, has been investigated in a rat spared injury model of neuropathic pain. This peptide has been shown to be associated with synaptic strengthening and learning in the hippocampus and while it is known that VGFmRNA is upregulated in dorsal root ganglia following peripheral nerve injury, the role of this VGF peptide

Andrew Moss; Rachel Ingram; Stephanie Koch; Andria Theodorou; Lucie Low; Mark Baccei; Gareth J Hathway; Michael Costigan; Stephen R Salton; Maria Fitzgerald

2008-01-01

311

Effect of an Adipose-Derived Stem Cell and Nerve Growth Factor-Incorporated Hydrogel on Recovery of Erectile Function in a Rat Model of Cavernous Nerve Injury  

PubMed Central

Postprostatectomy erectile dysfunction (ED) is the major problem for patients with clinically localized prostate cancer. Recently, gene and stem cell-based therapy of the corpus cavernosum has been attempted for postprostatectomy ED, but those therapies are limited by rapid blood flow and disruption of the normal architecture of the corpus cavernosum. In this study, we attempted to regenerate the damaged cavernous nerve (CN), which is the main cause of ED. We investigated the effectiveness of human adipose-derived stem cell (hADSC) and nerve growth factor-incorporated hyaluronic acid-based hydrogel (NGF-hydrogel) application on the CN in a rat model of bilateral cavernous nerve crush injury. Four weeks after the operation, erectile function was assessed by detecting the intracavernous pressure (ICP)/arterial pressure level by CN electrostimulation. The ICP was significantly increased by application of hADSC with NGF-hydrogel compared to the other experimental groups. CN and penile tissue were collected for histological examination. PKH-26 labeled hADSC colocalized with beta III tubulin were shown in CN tissue sections. hADSC/NGF-hydrogel treatment prevented smooth muscle atrophy in the corpus cavernosum. In addition, the hADSC/NGF-hydrogel group showed increased endothelial nitric oxide synthase protein expression. This study suggests that application of hADSCs with NGF-hydrogel on the CN might be a promising treatment for postprostatectomy ED. PMID:22834730

Kim, In Gul; Piao, Shuyu; Lee, Ji Young; Hong, Sung Hoo; Hwang, Tae-Kon; Kim, Sae Woong; Kim, Choung Soo; Ra, Jeong Chan; Noh, Insup

2013-01-01

312

Emergence of a Powerful Connection Between Sensory and Cognitive Functions Across the Adult Life Span: A New Window to the Study of Cognitive Aging?  

Microsoft Academic Search

Six hundred eighty seven individuals ages 25–103 years were studied cross-sectionally to examine the relationship between measures of sensory functioning (visual and auditory acuity) and intelligence (14 cognitive tasks representing a 5-factor space of psychometric intelligence). As predicted, the average proportion of individual differences in intellectual functioning connected to sensory functioning increased from 11% in adulthood (25–69 years) to 31%

Paul B. Baltes; Ulman Lindenberger

1997-01-01

313

Effects of Electroacupuncture on Facial Nerve Function and HSV-1 DNA Quantity in HSV-1 Induced Facial Nerve Palsy Mice  

PubMed Central

Acupuncture is a common and effective therapeutic method to treat facial nerve palsy (FNP). However, its underlying mechanism remains unclear. This study was aimed to investigate the effects of electroacupuncture on symptoms and content of HSV-1 DNA in FNP mice. Mice were randomized into four groups, an electroacupuncture treatment group, saline group, model animal group, and blank control group. Electroacupuncture was applied at Jiache (ST6) and Hegu (LI4) in electroacupuncture group once daily for 14 days, while electroacupuncture was not applied in model animal group. In electroacupuncture group, mice recovered more rapidly and HSV-1 DNA content also decreased more rapidly, compared with model animal group. We conclude that electroacupuncture is effective to alleviate symptoms and promote the reduction of HSV-1 in FNP. PMID:24991226

Tang, Hongzhi; Feng, Shuwei; Chen, Jiao; Yang, Mingxiao; Zhong, Zhendong; Li, Ying; Liang, Fanrong

2014-01-01

314

Communication between neuronal somata and satellite glial cells in sensory ganglia  

PubMed Central

Studies of the structural organization and functions of the cell body of a neuron (soma) and its surrounding satellite glial cells (SGCs) in sensory ganglia have led to the realization that SGCs actively participate in the information processing of sensory signals from afferent terminals to the spinal cord. SGCs use a variety ways to communicate with each other and with their enwrapped soma. Changes in this communication under injurious conditions often lead to abnormal pain conditions. “What are the mechanisms underlying the neuronal soma and SGC communication in sensory ganglia” and “how do tissue or nerve injuries affect the communication?” are the main questions addressed in this review. PMID:23918214

Huang, Li-Yen M.; Gu, Yanping; Chen, Yong

2013-01-01

315

Effect of vitamin B12 on functional recovery and histopathologic changes of tibial nerve-crushed rats.  

PubMed

Recent studies have suggested a neuroprotective effect for vitamin B12. The present study investigated the effects of vitamin B12, diclofenac and celecoxib in separate and combined treatments on functional recovery of crushed tibial nerve in rats. In ketamine plus xylazin anesthetized rats, right tibial nerve was crushed using a small hemoatatic forceps. Footprints were recorded 1 day before and on days 7, 14 and 21 after induction of nerve injury. Tibial functional index (TFI) was used to evaluate the recovery of tibial nerve function. Histological changes of tibial nerve were investigated by light microscopy. The recovery of TFI values were significantly accelerated with 10 consecutive days treatments with 0.1 and 0.5?mg/kg of vitamin B12, 5?mg/kg of diclofenac and 1 and 5?mg/kg of celecoxib. The severity of Wallerian degeneration was reduced by above-mentioned doses of vitamin B12, diclofenac and celecoxib. Documented effects were observed when 0.1?mg/kg of vitamin B12 was concurrently used with 1?mg/kg of diclofenac and or 0.2?mg/kg of celecoxib. In the present study, vitamin B12, celecoxib and diclofenac (at a high dose) showed neuroprotective effects. Inhibition of cyclooxygenase (COX) 1 and 2 pathways may be involved in neuroprotective effect of vitamin B12. PMID:24470311

Tamaddonfard, E; Farshid, A A; Samadi, F; Eghdami, K

2014-09-01

316

Active compounds and distinctive sensory features provided by American ginseng (Panax quinquefolius L.) extract in a new functional milk beverage.  

PubMed

American ginseng (Panax quinquefolius L.) has recognized neurocognitive effects, and a ginsenoside-rich extract of the root of the plant has been shown to improve cognitive functions in young adults. This study aimed at assessing the chemical and sensory profiles of a UHT-treated, low-lactose functional milk containing American ginseng. Individual ginsenosides in the milk were analyzed by HPLC. Descriptive sensory analysis was performed by a trained panel to quantitatively document sensory changes resulting from the addition of ginseng and the UHT process on flavored and unflavored milks. Consumer acceptance of the product was also investigated. Total ginsenoside content in the UHT-treated milk enriched with the ginseng extract after UHT process treatment was 7.52 mg/100 g of milk, corresponding to a recovery of 67.6% compared with the content in the unprocessed extract. The intake of 150 to 300 mL of this ginseng-enriched milk provides the amount of total ginsenosides (11.5 to 23 mg) necessary to improve cognitive function after its consumption. Both the presence of ginsenosides and their thermal treatment affected some sensory properties of the milk, most notably an increase in bitterness and metallic taste, the appearance of a brownish color, and a decrease in milky flavor. Levels of brown color, bitterness, and metallic taste were highest in the industrially processed ginseng-enriched milk. The bitterness attributable to ginseng extract was reduced by addition of vanilla flavor and sucralose. A consumer exploratory study revealed that a niche of consumers exists who are willing to consume this type of product. PMID:22818438

Tárrega, A; Salvador, A; Meyer, M; Feuillère, N; Ibarra, A; Roller, M; Terroba, D; Madera, C; Iglesias, J R; Echevarría, J; Fiszman, S

2012-08-01

317

Long-term facial nerve function evaluation following surgery for large acoustic neuromas via retrosigmoid transmeatal approach  

Microsoft Academic Search

Purpose  By evaluating the postoperative facial nerve function of large acoustic neuromas, the purpose of this study was to analyze\\u000a the factors that influence the facial nerve function outcome and to explore the surgical strategy for large acoustic neuromas.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  A retrospective study of surgical outcome was performed on 89 patients with large acoustic neuromas. All operations were performed\\u000a via the retrosigmoid

Xu Zhao; Zhigang Wang; Yong Ji; Chengwei Wang; Rui Yu; Xuan Ding; Shengcheng Wei

2010-01-01

318

Sensory quality of functional beverages: bitterness perception and bitter masking of olive leaf extract fortified fruit smoothies.  

PubMed

Olive leaf extract (OLE) contains high amounts of oleuropein and hydroxytyrosol. The antioxidant capacity of these polyphenols makes OLE a promising ingredient for functional food. OLE causes very strong bitterness perception and can therefore only be formulated in low concentrations. In this research, bitter detection and recognition thresholds of OLE-fortified fruit smoothies were determined by a trained sensory panel (n = 11). Masking of the OLE's bitter taste was investigated with addition of sodium cyclamate, sodium chloride, and sucrose by means of a standardized ranking method and a scale test. Detection (5.78 mg/100 g) and recognition thresholds (8.05 mg/100 g) of OLE polyphenols confirmed the low formulation limits when bitterness was not masked by other substances. At higher polyphenol levels of 20 mg/100 g, sodium cyclamate and sucrose were able to reduce bitter taste perception by 39.9% and 24.9%, respectively, whereas sodium chloride could not effectively mask bitterness. Practical Application: Development of functional food poses new challenges for the food industry. A major problem in this field is the high bitterness of natural polyphenol-containing extracts with potential health benefits. This research was conducted to understand the sensory impact of olive leaf extract (OLE), a novel food ingredient with very bitter taste. In product development, the data of this research can be considered for formulation limits and the general sensory quality of OLE-fortified food and beverages. PMID:20722953

Kranz, Peter; Braun, Nina; Schulze, Nadine; Kunz, Benno

2010-08-01

319

Pharmacological Induction of Molecular Chaperones Restores Mitochondrial Function in Hyperglycemically Stressed Sensory Neurons  

E-print Network

-acetyl glucosamine OGTT Oral glucose tolerances test OxPhos Oxidative phosphorylation OCR Oxygen consumption rate PBS Phosphate buffered saline PI Phosphoinositol PAI-1 Plasminogen activator inhibitor-1 PKC Protein kinase C ROS Reactive oxygen species rh...: Synthesis and Evaluation of Novologues as C-Terminal Hsp90 Inhibitors with Cytoprotective Activity against Sensory Neuron Glucotoxicity................................... 141 Abstract...

Zhang, Liang

2012-12-31

320

EVALUATION OF SENSORY SYSTEM FUNCTION USING REFLEX MODIFICATION OF THE STARTLE RESPONSE  

EPA Science Inventory

Methods to measure damage to sensory systems following toxicant exposure vary from rapid and subjective tests (e.g., pinna reflex) to time-consuming and objective tests (e.g., psychophysical tests). eflex modification of the startle response represents an alternative technique in...

321

Trapping of organophosphorus chemical nerve agents in water with amino acid functionalized baskets.  

PubMed

We prepared eleven amino-acid functionalized baskets and used (1) H NMR spectroscopy to quantify their affinity for entrapping dimethyl methylphosphonate (DMMP, 118?Å(3) ) in aqueous phosphate buffer at pH=7.0±0.1; note that DMMP guest is akin in size to chemical nerve agent sarin (132?Å(3) ). The binding interaction (Ka ) was found to vary with the size of substituent groups at the basket's rim. In particular, the degree of branching at the first carbon of each substituent had the greatest effect on the host-guest interaction, as described with the Verloop's B1 steric parameter. The branching at the remote carbons, however, did not perturb the encapsulation, which is important for guiding the design of more effective hosts and catalysts in future. PMID:24616086

Ruan, Yian; Dalkiliç, Erdin; Peterson, Paul W; Pandit, Aroh; Dastan, Arif; Brown, Jason D; Polen, Shane M; Hadad, Christopher M; Badji?, Jovica D

2014-04-01

322

Evidence for Glutamate as a Neuroglial Transmitter within Sensory Ganglia  

PubMed Central

This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold. PMID:23844184

Kung, Ling-Hsuan; Gong, Kerui; Adedoyin, Mary; Ng, Johnson; Bhargava, Aditi; Ohara, Peter T.; Jasmin, Luc

2013-01-01

323

Neuromuscular recovery using calcium protease inhibition after median nerve repair in primates.  

PubMed Central

Inhibition of calcium-activated neutral protease, in muscle and nerve, by the tripeptide leupeptin after median nerve transection and epineural repair in monkeys (Cebus apella) was studied. Results indicate that inhibition of the protease after nerve repair facilitates morphologic recovery in denervated thenar muscles and in distal thenar nerve branches. In addition, functional recovery was facilitated in leupeptin-treated animals after nerve repair as measured by sensory and motor conduction velocities. Toxicologic testing showed that leupeptin, administered at 18 mg/kg, intramuscularly, twice daily, for 6 months did not adversely affect hematology, clotting, or plasma complement component C3 profiles. These data indicate that leupeptin is an effective and safe adjunct to peripheral nerve repair. Images PMID:2548194

Badalamente, M A; Hurst, L C; Stracher, A

1989-01-01

324

Morphological studies of the vestibular nerve  

NASA Technical Reports Server (NTRS)

The anatomy of the intratemporal part of the vestibular nerve in man, and the possible age related degenerative changes in the nerve were studied. The form and structure of the vestibular ganglion was studied with the light microscope. A numerical analysis of the vestibular nerve, and caliber spectra of the myelinated fibers in the vestibular nerve branches were studied in individuals of varying ages. It was found that the peripheral endings of the vestibular nerve form a complicated pattern inside the vestibular sensory epithelia. A detailed description of the sensory cells and their surface organelles is included.

Bergstroem, B.

1973-01-01

325

The Anatomy of Two Functional Types of Mechanoreceptive `Free' Nerve-Ending in the Head Skin of Xenopus Embryos  

Microsoft Academic Search

The structure of the two functional types of `free' nerve-ending in the head skin of late Xenopus embryos has been examined by horseradish peroxidase staining through their cells in the trigeminal ganglion and by electron microscopy. Type I neurites are identified as the `movement' detectors by their purely homolateral innervation. They have many fine branches between the superficial skin cells,

B. P. Hayes; Alan Roberts

1983-01-01

326

Function-Triggering Antibodies to the Adhesion Molecule L1 Enhance Recovery after Injury of the Adult Mouse Femoral Nerve  

PubMed Central

L1 is among the few adhesion molecules that favors repair after trauma in the adult central nervous system of vertebrates by promoting neuritogenesis and neuronal survival, among other beneficial features. In the peripheral nervous system, L1 is up-regulated in Schwann cells and regrowing axons after nerve damage, but the functional consequences of this expression remain unclear. Our previous study of L1-deficient mice in a femoral nerve injury model showed an unexpected improved functional recovery, attenuated motoneuronal cell death, and enhanced Schwann cell proliferation, being attributed to the persistent synthesis of neurotrophic factors. On the other hand, transgenic mice over-expressing L1 in neurons led to improved remyelination, but not improved functional recovery. The present study was undertaken to investigate whether the monoclonal L1 antibody 557 that triggers beneficial L1 functions in vitro would trigger these also in femoral nerve repair. We analyzed femoral nerve regeneration in C57BL/6J mice that received this antibody in a hydrogel filled conduit connecting the cut and sutured nerve before its bifurcation, leading to short-term release of antibody by diffusion. Video-based quantitative analysis of motor functions showed improved recovery when compared to mice treated with conduits containing PBS in the hydrogel scaffold, as a vehicle control. This improved recovery was associated with attenuated motoneuron loss, remyelination and improved precision of preferential motor reinnervation. We suggest that function-triggering L1 antibodies applied to the lesion site at the time of injury over a limited time period will not only be beneficial in peripheral, but also central nervous system regeneration. PMID:25393007

Guseva, Daria; Loers, Gabriele; Schachner, Melitta

2014-01-01

327

Effect of facial sensory re-training on sensory thresholds.  

PubMed

Nearly 100% of patients experience trauma to the trigeminal nerve during orthognathic surgery, impairing sensation and sensory function on the face. In a recent randomized clinical trial, people who performed sensory re-training exercises reported less difficulty related to residual numbness and decreased lip sensitivity than those who performed standard opening exercises only. We hypothesized that re-training reduces the impaired performance on neurosensory tests of tactile function that is commonly observed post-surgically. We analyzed thresholds for contact detection, two-point discrimination, and two-point perception, obtained during the clinical trial before and at 1, 3, and 6 months after surgery, to assess tactile detection and discriminative sensitivities, and subjective interpretation of tactile stimulation, respectively. Post-surgery, the retrained persons exhibited less impairment, on average, than non-retrained persons only in two-point perception (P < 0.025), suggesting that retrained persons experienced or interpreted the tactile stimuli differently than did non-retrained persons. PMID:17525360

Essick, G K; Phillips, C; Zuniga, J

2007-06-01

328

Electrophysiological investigation of central, peripheral and autonomic nerve function in workers with long-term low-level exposure to carbon disulphide in the viscose industry  

Microsoft Academic Search

Objective: Neurotoxicity of carbon disulphide (CS2) is well known. The air concentration at the workplace at which such adverse effects can first be observed is the subject\\u000a of controversial discussion. Methods: In a cross-sectional study on CS2-exposed workers peripheral motor and sensory nerve conduction studies, somatosensory evoked potentials, thermotesting and\\u000a investigation of forced respiration sinus arryhtmia have been carried out.

F. Reinhardt; H. Drexler; A. Bickel; D. Claus; K. Ulm; J. Angerer; G. Lehnert; B. Neundörfer

1997-01-01

329

Functional Laryngeal Results after Thyroidectomy and Extensive Recurrent Laryngeal Nerve Dissection without Neuromonitoring  

Microsoft Academic Search

Summary BACKGROUND: Permanent recurrent laryngeal nerve palsy (RLNP) is a major complication after thyroid surgery. Therefore methods are mandatory which reduce this complication. One strategy is the identification and dissection of the recurrent laryngeal nerve (RLN) in all patients as an inflexible rule. It is an ongoing discussion whether RLN neuromonitoring is helpful. METHODS: We prospectively investigated 624 surgical patients

M. Steurer; C. Passler; D. M. Denk; B. Schneider; G. Mancusi; B. Schickinger; B. Niederle; W. Bigenzahn

2003-01-01

330

Nerve Racking  

NSDL National Science Digital Library

This lesson describes the function and components of the human nervous system. It helps students understand the purpose of our brain, spinal cord, nerves and the five senses. How the nervous system is affected during spaceflight is also discussed in this lesson.

Integrated Teaching And Learning Program

331

Engineering Peripheral Nerve Repair  

PubMed Central

Current approaches for treating peripheral nerve injury have resulted in promising, yet insufficient functional recovery compared to the clinical standard of care, autologous nerve grafts. In order to design a construct that can match the regenerative potential of the autograft, all facets of nerve tissue must be incorporated in a combinatorial therapy. Engineered biomaterial scaffolds in the future will have to promote enhanced regeneration and appropriate reinnervation by targeting the highly sensitive response of regenerating nerves to their surrounding microenvironment. PMID:23790730

Marquardt, Laura; Sakiyama-Elbert, Shelly E.

2013-01-01

332

Social Effects via Olfactory Sensory Stimuli on Reproductive Function and Dysfunction in Cooperative Breeding Marmosets and Tamarins  

PubMed Central

Most primates are social species whose reproduction is influenced by their social relationships. The cotton-top tamarin, Saguinus oedipus, and the common marmoset, Callithrix jacchus, are cooperative breeding species where the family structure alters reproductive function in many ways. While primates receive social effects on reproduction via all sensory stimuli, the marmosets and tamarins are particularly influenced by olfactory/chemosensory stimuli. The olfactory sensory processing is the ‘social glue’ that keeps the family together. This review describes a number of studies using the marmosets and tamarins at the University of Wisconsin to demonstrate how odor cues are used for altering reproductive function and dysfunction. Several key studies will be discussed to show the role of odor signaling of the female reproductive state. The suppressive effects of odors are mediated by priming odors and can cause a suppressive influence on ovulation in young females via their mother’s scents. Additionally, odor cues from the infant function as priming odors to ensure that fathers and mothers are present and receptive to their parental care duties. Neural pathways occur via the processing of priming odors that consequently stimulate alterations in the behavioral and endocrine response to the stimuli. The dynamics of the cooperative breeding system ensure that offspring have essential needs met and that they develop in a family environment. Olfactory communication plays a key role in maintenance of the social system of Callitrichid monkeys. PMID:22890774

Ziegler, Toni E.

2012-01-01

333

Engineering a multimodal nerve conduit for repair of injured peripheral nerve  

NASA Astrophysics Data System (ADS)

Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate hydrogel. This indicates return of some feeling to the limb via the fully-configured conduit. Immunohistochemical analysis of the implanted conduits removed from the rats after the four-week implantation period confirmed the presence of myelinated axons within the conduit and distal to the site of implantation, further supporting that the conduit promoted nerve repair over this period of time. This study describes the design considerations and fabrication of a novel multicomponent, multimodal bio-engineered synthetic conduit for peripheral nerve repair.

Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

2013-02-01

334

Engineering a multimodal nerve conduit for repair of injured peripheral nerve.  

PubMed

Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate hydrogel. This indicates return of some feeling to the limb via the fully-configured conduit. Immunohistochemical analysis of the implanted conduits removed from the rats after the four-week implantation period confirmed the presence of myelinated axons within the conduit and distal to the site of implantation, further supporting that the conduit promoted nerve repair over this period of time. This study describes the design considerations and fabrication of a novel multicomponent, multimodal bio-engineered synthetic conduit for peripheral nerve repair. PMID:23283383

Quigley, A F; Bulluss, K J; Kyratzis, I L B; Gilmore, K; Mysore, T; Schirmer, K S U; Kennedy, E L; O'Shea, M; Truong, Y B; Edwards, S L; Peeters, G; Herwig, P; Razal, J M; Campbell, T E; Lowes, K N; Higgins, M J; Moulton, S E; Murphy, M A; Cook, M J; Clark, G M; Wallace, G G; Kapsa, R M I

2013-02-01

335

Restoration of visual function following optic nerve regeneration in bluegill (Lepomis macrochirus) x pumpkinseed (Lepomis gibbosus) hybrid sunfish.  

PubMed

Simple (dorsal light reflex) and complex (predator-prey interactions) visually mediated behaviors were used concurrently with morphological examination to assess restoration of visual function following optic nerve crush in bluegill (Lepomis macrochirus) x pumpkinseed (Lepomis gibbosus) hybrid sunfish. Regenerating optic nerve axons projected into the stratum opticum-stratum fibrosum et griseum superficiale by week 2, the stratum griseum centrale by week 4, and stratum album centrale by week 6. Initial projections into the laminae were diffuse and less stratified compared to controls. By week 12, the projection pattern of regenerating nerve fibers closely resembled the innervation of normal tecta. Visual improvements were correlated with increasing projections into the tectum. The dorsal light reflex improved from a 45 degrees vertical deviation following nerve crush to 4.5 degrees by week 16. Initial predator-prey interactions were exclusively mediated by the control eye. As regeneration progressed, there was a gradual expansion of the visual field. The reaction distance and attack angles within the visual field of the experimental eye were initially less than controls, however, these differences disappeared by week 10. Improvements in visual function were closely correlated with an increase of regenerating ganglion cell axons into the optic tectum indicating sufficient synaptogenesis to mediate both simple and complex visual behavior. PMID:17550642

Callahan, Michael P; Mensinger, Allen F

2007-01-01

336

Anatomical feasibility of the anterior obturator nerve transfer to restore bowel and bladder function.  

PubMed

Total sacrectomies are radical procedures required to treat tumorigenic processes involving the sacrum. The purpose of our anatomical study was to assess the feasibility of a novel nerve transfer involving the anterior obturator nerve to the pudendal and pelvic nerves to the rectum and bladder. Anterior dissection of the obturator nerve was performed in eight hemipelvis cadaver specimens. The common obturator nerve branched into the anterior and posterior at the level of the obturator foramen. The anterior branch then divided into two separate branches (adductor longus and gracilis). The branch to the gracilis was on average longer and also larger than the branch to the adductor longus (8.7 ± 2.1 cm vs. 6.7 ± 2.6 cm in length and 2.6 ± 0.2 mm vs 1.8 ± 0.4 mm in diameter). Each branch of the anterior obturator was long enough to reach the pelvic nerves. The novel transfer of the anterior branch of the obturator nerve to reinnervate the bladder and bowel is anatomically feasible. This represents a promising option with minimal donor site deficit. PMID:24710737

Houdek, Matthew T; Wagner, Eric R; Wyles, Cody C; Moran, Steven L

2014-09-01

337

Continuous Femoral Nerve Blocks: Varying Local Anesthetic Delivery Method (Bolus versus Basal) to Minimize Quadriceps Motor Block while Maintaining Sensory Block  

PubMed Central

Background Whether the method of local anesthetic administration for continuous femoral nerve blocks —basal infusion versus repeated hourly bolus doses —influences block effects remains unknown. Methods Bilateral femoral perineural catheters were inserted in volunteers (n = 11). Ropivacaine 0.1% was administered through both catheters concurrently: a 6-h continuous 5 ml/h basal infusion on one side and 6 hourly bolus doses on the contralateral side. The primary endpoint was the maximum voluntary isometric contraction (MVIC) of the quadriceps femoris muscle at Hour 6. Secondary end points included quadriceps MVIC at other time points, hip adductor MVIC, and cutaneous sensation 2 cm medial to the distal quadriceps tendon in the 22 h following local anesthetic administration initiation. Results Quadriceps MVIC for limbs receiving 0.1% ropivacaine as a basal infusion declined by a mean (SD) of 84% (19) compared with 83% (24) for limbs receiving 0.1% ropivacaine as repeated bolus doses between baseline and Hour 6 (paired t test P = 0.91). Intrasubject comparisons (left vs. right) reflected a lack of difference as well: the mean basal-bolus difference in quadriceps MVIC at Hour 6 was ?1.1% (95% CI ?22.0 to 19.8%). The similarity did not reach our a priori threshold for concluding equivalence, which was the 95% CI falling within ± 20%. There were similar minimal differences in the secondary endpoints during local anesthetic administration. Conclusions This study did not find evidence to support the hypothesis that varying the method of local anesthetic administration —basal infusion versus repeated bolus doses —influences continuous femoral nerve block effects to a clinically significant degree. PMID:21394001

Charous, Matthew T.; Madison, Sarah J.; Suresh, J.; Sandhu, NavParkash S.; Loland, Vanessa J.; Mariano, Edward R.; Donohue, Michael C.; Dutton, Pascual H.; Ferguson, Eliza J.; Ilfeld, Brian M.

2011-01-01

338

Different levels of the Tripartite motif protein, Anomalies in sensory axon patterning (Asap), regulate distinct axonal projections of Drosophila sensory neurons  

PubMed Central

The axonal projection pattern of sensory neurons typically is regulated by environmental signals, but how different sensory afferents can establish distinct projections in the same environment remains largely unknown. Drosophila class IV dendrite arborization (C4da) sensory neurons project subtype-specific axonal branches in the ventral nerve cord, and we show that the Tripartite motif protein, Anomalies in sensory axon patterning (Asap) is a critical determinant of the axonal projection patterns of different C4da neurons. Asap is highly expressed in C4da neurons with both ipsilateral and contralateral axonal projections, but the Asap level is low in neurons that have only ipsilateral projections. Mutations in asap cause a specific loss of contralateral projections, whereas overexpression of Asap induces ectopic contralateral projections in C4da neurons. We also show by biochemical and genetic analysis that Asap regulates Netrin signaling, at least in part by linking the Netrin receptor Frazzled to the downstream effector Pico. In the absence of Asap, the sensory afferent connectivity within the ventral nerve cord is disrupted, resulting in specific larval behavioral deficits. These results indicate that different levels of Asap determine distinct patterns of axonal projections of C4da neurons by modulating Netrin signaling and that the Asap-mediated axonal projection is critical for assembly of a functional sensory circuit. PMID:22084112

Morikawa, Rei K.; Kanamori, Takahiro; Yasunaga, Kei-ichiro; Emoto, Kazuo

2011-01-01

339

Dual Sensory Innervation of Pulmonary Neuroepithelial Bodies  

Microsoft Academic Search

The characteristics of the different populations of sensory nerve The correlation between the physiologically and mor- terminals that selectively contact pulmonary neuroepithelial phologically defined lung receptors, however, is far from bodies (NEBs) in rat lungs were investigated after chemical satisfactory. Although the number of studies dealing with denervation with capsaicin and compared with control lungs. the morphology of the sensory

Inge Brouns; Jeroen Van Genechten; Hiroyuki Hayashi; Mariusz Gajda; Toshiaki Gomi; Geoff Burnstock; Jean-Pierre Timmermans; Dirk Adriaensen

340

Nerve allografts and conduits in peripheral nerve repair.  

PubMed

Since the last update on nerve conduits and allograft in 2000, investigations have established the efficacy of these alternatives to autograft in the repair of small sensory neural gaps. However, limited insights into the biology of the regenerating nerve continue to preclude intelligent conduit design. Ongoing discoveries in neuroscience and biomaterial engineering hold promise for the eventual development of allograft and conduits with potential of surpassing nerve autografts in clinical efficacy. In this review, we summarize the history, recent advances, and emerging developments in nerve conduits and allograft. PMID:23895714

Lin, Michael Y; Manzano, Givenchy; Gupta, Ranjan

2013-08-01

341

Effect of treating streptozotocin-induced diabetic rats with sorbinil, myo-inositol or aminoguanidine on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve.  

PubMed

Previously we have demonstrated that diabetes causes impairment in vascular function of epineurial vessels, which precedes the slowing of motor nerve conduction velocity. Treatment of diabetic rats with aldose reductase inhibitors, aminoguanidine or myo-inositol supplementation have been shown to improve motor nerve conduction velocity and/or decreased endoneurial blood flow. However, the effect these treatments have on vascular reactivity of epineurial vessels of the sciatic nerve is unknown. In these studies we examined the effect of treating streptozotocin-induced rats with sorbinil, aminoguanidine or myo-inositol on motor nerve conduction velocity, endoneurial blood flow and endothelium-dependent vascular relaxation of arterioles that provide circulation to the region of the sciatic nerve. Treating diabetic rats with sorbinil, aminoguanidine or myo-inositol improved the reduction of endoneurial blood flow and motor nerve conduction velocity. However, only sorbinil treatment significantly improved the diabetes-induced impairment of acetylcholine-mediated vasodilation of epineurial vessels of the sciatic nerve. All three treatments were efficacious in preventing the appropriate metabolic derangements associated with either activation of the polyol pathway or increased nonenzymatic glycation. In addition, sorbinil was shown to prevent the diabetes-induced decrease in lens glutathione level. However, other markers of oxidative stress were not vividly improved by these treatments. These studies suggest that sorbinil treatment may be more effective in preventing neural dysfunction in diabetes than either aminoguanidine or myo-inositol. PMID:11900277

Coppey, Lawrence J; Gellett, Jill S; Davidson, Eric P; Dunlap, Joyce A; Yorek, Mark A

2002-01-01

342

Effect of Treating Streptozotocin-Induced Diabetic Rats With Sorbinil, Myo-Inositol or Aminoguanidine on Endoneurial Blood Flow, Motor Nerve Conduction Velocity and Vascular Function of Epineurial Arterioles of the Sciatic Nerve  

PubMed Central

Previously we have demonstrated that diabetes causes impairment in vascular function of epineurial vessels, which precedes the slowing of motor nerve conduction velocity. Treatment of diabetic rats with aldose reductase inhibitors, aminoguanidine or myo-inositol supplementation have been shown to improve motor nerve conduction velocity and/or decreased endoneurial blood flow. However, the effect these treatments have on vascular reactivity of epineurial vessels of the sciatic nerve is unknown. In these studies we examined the effect of treating streptozotocininduced rats with sorbinil, aminoguanidine or myo-inositol on motor nerve conduction velocity, endoneurial blood flow and endothelium dependent vascular relaxation of arterioles that provide circulation to the region of the sciatic nerve. Treating diabetic rats with sorbinil, aminoguanidine or myo-inositol improved the reduction of endoneurial blood flow and motor nerve conduction velocity. However, only sorbinil treatment significantly improved the diabetes-induced impairment of acetylcholinemediated vasodilation of epineurial vessels of the sciatic nerve. All three treatments were efficacious in preventing the appropriate metabolic derangements associated with either activation of the polyol pathway or increased nonenzymatic glycation. In addition, sorbinil was shown to prevent the diabetes-induced decrease in lens glutathione level. However, other markers of oxidative stress were not vividly improved by these treatments. These studies suggest that sorbinil treatment may be more effective in preventing neural dysfunction in diabetes than either aminoguanidine or myoinositol. PMID:11900277

Coppey, Lawrence J.; Gellett, Jill S.; Davidson, Eric P.; Dunlap, Joyce A.

2002-01-01

343

Effects of afferent renal nerve stimulation on renal hemodynamic and excretory functions.  

PubMed

In anesthetized cats (n = 9) renal afferent fibers were electrically stimulated for 11 min, and the response of the contralateral innervated kidney was compared with that of the ipsilateral denervated one. Before stimulation, renal blood flow, glomerular filtration rate, and water and sodium excretions were significantly lower in the innervated kidney than in the denervated one. Afferent renal nerve stimulation augmented arterial pressure and also increased sodium and water excretions from both kidneys without concomitant changes in glomerular filtration rates and renal blood flows. Absolute and percent changes in sodium and water excretions from the innervated kidney were similar to those observed in the denervated one. The same results were obtained in cats (n = 4) which underwent bilateral adrenalectomy to avoid the effect of circulating catecholamines. In another group of cats (n = 5), the increase in renal perfusion pressure due to the stimulation was prevented by an aortic snare: this resulted in a slight but equal decrease of all variables in both kidneys. These experiments do not show a reflex control of renal function from renal afferents. PMID:6496702

Stella, A; Golin, R; Busnardo, I; Zanchetti, A

1984-10-01

344

In vitro release of organophosphorus acid anhydrolase from functionalized mesoporous silica against nerve agents  

PubMed Central

We report here that under different physiological conditions, biomolecular drugs can be stockpiled in a nanoporous support and afterwards can be instantly released when needed for acute responses, and the biomolecular drug molecules can also be gradually released from the nanoporous support over a long time for a complete recovery. Organophosphorus acid anhydrolase (OPAA) was spontaneously and largely entrapped in functionalized mesoporous silica (FMS) due to the dominant electrostatic interaction. The OPAA-FMS composite exhibited a burst release in pH 9.0, NaHCO3-Na2CO3 buffer system and a gradual release in pH 7.4, simulated body fluid. The binding of OPAA to NH2-FMS can result in less Trp exposure of OPAA molecules to aqueous environment. The bound OPAA in FMS displayed lower activity than the free OPAA in solution prior to the enzyme entrapment. However, the released enzyme still displayed the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment. The in vitro results in the rabbit serum demonstrate that both OPAA-FMS and the released OPAA may be used as the medical measures against the organophosphorus nerve agents. PMID:22019765

Chen, Baowei; Shah, Saumil S.; Shin, Yongsoon; Lei, Chenghong; Liu, Jun

2011-01-01

345

Results of cable graft technique in repair of large nerve trunk lesions.  

PubMed

Cable grafting was reintroduced in the beginning of the 1980's as a modified method for repair of large polyfascicular nerves without group arrangement such as trunks and cords of the brachial plexus, sciatic nerve and its divisions, or the other main nerve trunks. We used this method in 25 patients with brachial plexus injury and 29 patients with injuries to the sciatic nerve. Results were analyzed according to the individual nerve elements and were available for 32 elements of the brachial plexus and for 19 tibial and 19 peroneal divisions of the sciatic nerve. We defined useful functional recovery according to the priorities in repair of the brachial plexus and sciatic nerve with lower limits M3 for relevant muscles and functions and S2 for sensory function. Results were especially favourable for the brachial plexus with a total rate of recovery 84% and for tibial division with the same total rate of recovery. On the basis of the results obtained we were able to conclude that the results of the modified cable grafting were at least similar to those of interfascicular nerve grafting and that this method could be useful for repair of large polyfascicular nerve trunks. However, the main advantage of this technique is a considerable gain in operative time. PMID:9870065

Samardzi?, M M; Rasuli?, L G; Grujici?, D M

1998-01-01

346

Changes in sciatic nerve and spinal cord function induced by a CNS viral infection.  

PubMed

Electrophysiologic response characteristics of mouse sciatic nerve and spinal cord were investigated following CNS infection with the temperature-sensitive (ts) vesicular stomatitis virus (VSV) mutant G31 KS5. Measurements were obtained before clinical symptoms of the virus-induced CNS disease appeared. Sciatic nerve peak conduction velocities were not different between virus and control inoculated groups. For all control groups, sciatic nerve response (SNR) recovery, characterized by the amplitude ratio of double pulse-evoked responses, followed a facilitation-depression time course. By 4 days after VSV inoculation, the time course of SNR recovery changed with the SNR amplitude ratios significantly depressed compared to control. Crossed spinal responses (CSRs) were measured from one sciatic nerve in response to stimulation of the contralateral sciatic nerve. For all control groups, CSR recovery, as characterized by area ratios calculated from single and double pulse evoked responses, followed a facilitation-depression time course. By 5 days after VSV inoculation, the time course of CSR recovery changed with the CSR area ratios significantly depressed compared to control. The results show that simple electrophysiologic techniques can be used to detect virus-induced changes in sciatic nerve and spinal cord previously undetectable by clinical measures. PMID:8044690

Gerren, R A; Johnson, T C

1994-01-01

347

Neurogenesis of Retinal Ganglion Cells Is Not Essential to Visual Functional Recovery after Optic Nerve Injury in Adult Zebrafish  

PubMed Central

Zebrafish central nervous system (CNS) possesses a strong neural regeneration ability to restore visual function completely after optic nerve injury (ONI). However, whether neurogenesis of retinal ganglion cell (RGC) contributes to functional recovery remains controversial. Our quantitative analysis of RGCs in different ONI models showed that almost all RGCs survived in optic nerve crush (ONC) model; while over 90% of RGCs survived in the first 2 weeks with 75% remaining after 7 weeks in optic nerve transection (ONT) model. Retrograde labeling from tectum revealed a surprising regeneration rate, with over 90% and over 50% of RGCs regrowing axons to tectum at the first week in ONC and ONT model respectively. In the latter one, the number of regenerative RGCs after 4 weeks had no significant difference from the control group. As for neurogenesis, newborn RGCs were rarely detected either by double retrograde labeling or BrdU marker. Since few RGCs died, microglia number showed a temporary increase at 3 days post injury (dpi) and a decrease at 14 dpi. Finally, myelin structure within retina kept integrity and optomotor response (OMR) test demonstrated visual functional restoration at 5 weeks post injury (wpi). In conclusion, our results have directly shown that RGC survival and axon regrowth are responsible for functional recovery after ONI in adult zebrafish. PMID:23437359

Zou, Suqi; Tian, Chen; Ge, Shuchao; Hu, Bing

2013-01-01

348

Convergence of cervical and trigeminal sensory afferents  

Microsoft Academic Search

Cranial nociceptive perception shows a distinct topographic distribution, with the trigeminal nerve receiving sensory information\\u000a from the anterior portions of the head, the greater occipital nerve, and branches of the upper cervical roots in the posterior\\u000a regions. However, this distribution is not respected during headache attacks, even if the etiology of the headache is specific\\u000a for only one nerve. Nociceptive

Elcio J. Piovesan; Pedro A. Kowacs; Michael L. Oshinsky

2003-01-01

349

Vagal nerve stimulation reverses aberrant dopamine system function in the methylazoxymethanol acetate rodent model of schizophrenia.  

PubMed

Vagal nerve stimulation (VNS) is an alternative therapy for epilepsy and treatment refractory depression. Here we examine VNS as a potential therapy for the treatment of schizophrenia in the methylozoxymethanol acetate (MAM) rodent model of the disease. We have previously demonstrated that hyperactivity within ventral regions of the hippocampus (vHipp) drives the dopamine system dysregulation in this model. Moreover, by targeting the vHipp directly, we can reverse aberrant dopamine system function and associated behaviors in the MAM model. Although the central effects of VNS have not been completely delineated, positron emission topographic measurements of cerebral blood flow in humans have consistently reported that VNS stimulation induces bilateral decreases in hippocampal activity. Based on our previous observations, we performed in vivo extracellular electrophysiological recordings in MAM- and saline-treated rats to evaluate the effect of chronic (2 week) VNS treatment on the activity of putative vHipp pyramidal neurons, as well as downstream dopamine neuron activity in the ventral tegmental area. Here we demonstrate that chronic VNS was able to reverse both vHipp hyperactivity and aberrant mesolimbic dopamine neuron function in the MAM model of schizophrenia. Additionally, VNS reversed a behavioral correlate of the positive symptoms of schizophrenia. Because current therapies for schizophrenia are far from adequate, with a large number of patients discontinuing treatment due to low efficacy or intolerable side effects, it is important to explore alternative nonpharmacological treatments. These data provide the first preclinical evidence that VNS may be a possible alternative therapeutic approach for the treatment of schizophrenia. PMID:25009259

Perez, Stephanie M; Carreno, Flavia R; Frazer, Alan; Lodge, Daniel J

2014-07-01

350

Temporal Modulation Transfer Functions Measured From Auditory-Nerve Responses Following Sensorineural Hearing Loss  

PubMed Central

The ability of auditory-nerve (AN) fibers to encode modulation frequencies, as characterized by temporal modulation transfer functions (TMTFs), generally shows a low-pass shape with a cut-off frequency that increases with fiber characteristic frequency (CF). Because AN-fiber bandwidth increases with CF, this result has been interpreted to suggest that peripheral filtering has a significant effect on limiting the encoding of higher modulation frequencies. Sensorineural hearing loss (SNHL), which is typically associated with broadened tuning, is thus predicted to increase the range of modulation frequencies encoded; however, perceptual studies have generally not supported this prediction. The present study sought to determine whether the range of modulation frequencies encoded by AN fibers is affected by SNHL, and whether the effects of SNHL on envelope coding are similar at all modulation frequencies within the TMTF passband. Modulation response gain for sinusoidally amplitude modulated (SAM) tones was measured as a function of modulation frequency, with the carrier frequency placed at fiber CF. TMTFs were compared between normal-hearing chinchillas and chinchillas with a noise-induced hearing loss for which AN fibers had significantly broadened tuning. Synchrony and phase responses for individual SAM-tone components were quantified to explore a variety of factors that can influence modulation coding. Modulation gain was found to be higher than normal in noise-exposed fibers across the entire range of modulation frequencies encoded by AN fibers. The range of modulation frequencies encoded by noise-exposed AN fibers was not affected by SNHL, as quantified by TMTF 3- and 10-dB cut-off frequencies. These results suggest that physiological factors other than peripheral filtering may have a significant role in determining the range of modulation frequencies encoded in AN fibers. Furthermore, these neural data may help to explain the lack of a consistent association between perceptual measures of temporal resolution and degraded frequency selectivity. PMID:22366500

Kale, Sushrut; Heinz, Michael G.

2012-01-01

351

Endogenous BDNF regulates induction of intrinsic neuronal growth programs in injured sensory neurons  

Microsoft Academic Search

Identification of the molecule(s) that globally induce a robust regenerative state in sensory neurons following peripheral nerve injury remains elusive. A potential candidate is brain-derived neurotrophic factor (BDNF), the sole neurotrophin upregulated in sensory neurons after peripheral nerve injury. Here we tested the hypothesis that BDNF plays a critical role in the regenerative response of mature rat sensory neurons following

Nicole M. Geremia; Lina M. E. Pettersson; J. C. Hasmatali; Todd Hryciw; Nils Danielsen; David J. Schreyer; Valerie M. K. Verge

2010-01-01

352

Intraoperative Monitoring of Segmental Spinal Nerve Root Function with FreeRun and Electrically-Triggered Electromyography and Spinal Cord Function with Reflexes and F-Responses  

Microsoft Academic Search

Background Context. Orthodromic ascending somatosensory evoked potentials and antidromic descending neurogenic somatosensory evoked potentials\\u000a monitor spinal cord sensory function. Transcranial motor stimulation monitors spinal cord motor function but only activates\\u000a 4–5% of the motor units innervating a muscle. Therefore, 95–96% of the motor spinal cord systems activating the motor units\\u000a are not monitored. To provide more comprehensive monitoring, 11 techniques

Ronald E. Leppanen; D. ABNM

2005-01-01

353

The effects of limb elevation and increased intramuscular pressure on nerve and muscle function in the human leg  

Microsoft Academic Search

In this study we investigated the effects of increased intramuscular pressure (IMP) on nerve and muscle function in the leg\\u000a and foot. In study A, muscle pressure was increased by inducing venous stasis in both legs, placed in plaster casts, of eight\\u000a healthy subjects having a mean age of 29?years. The results from elevated and non-elevated limbs were compared. In

Per Wiger; Qiuxia Zhang; Jorma Styf

2000-01-01

354

Small Nerve Fiber Pathology in Critical Illness  

PubMed Central

Background Degeneration of intraepidermal nerve fibers (IENF) is a hallmark of small fiber neuropathy of different etiology, whose clinical picture is dominated by neuropathic pain. It is unknown if critical illness can affect IENF. Methods We enrolled 14 adult neurocritical care patients with prolonged intensive care unit (ICU) stay and artificial ventilation (? 3 days), and no previous history or risk factors for neuromuscular disease. All patients underwent neurological examination including evaluation of consciousness, sensory functions, muscle strength, nerve conduction study and needle electromyography, autonomic dysfunction using the finger wrinkling test, and skin biopsy for quantification of IENF and sweat gland innervation density during ICU stay and at follow-up visit. Development of infection, sepsis and multiple organ failure was recorded throughout the ICU stay. Results Of the 14 patients recruited, 13 (93%) had infections, sepsis or multiple organ failure. All had severe and non-length dependent loss of IENF. Sweat gland innervation was reduced in all except one patient. Of the 7 patients available for follow-up visit, three complained of diffuse sensory loss and burning pain, and another three showed clinical dysautonomia. Conclusions Small fiber pathology can develop in the acute phase of critical illness and may explain chronic sensory impairment and pain in neurocritical care survivors. Its impact on long term disability warrants further studies involving also non-neurologic critical care patients. PMID:24098716

Latronico, Nicola; Filosto, Massimiliano; Fagoni, Nazzareno; Gheza, Laura; Guarneri, Bruno; Todeschini, Alice; Lombardi, Raffaella; Padovani, Alessandro; Lauria, Giuseppe

2013-01-01

355

Hydrogen sulphide-mediated vasodilatation involves the release of neurotransmitters from sensory nerves in pressurized mesenteric small arteries isolated from rats  

PubMed Central

Background and Purpose Hydrogen sulphide (H2S) is a gas that has recently been shown to have biological activity. In the majority of blood vessels studied so far, H2S has been shown to cause vasorelaxation, although contractile responses have been reported. In the present study, we have made a pharmacological assessment of the effects of H2S in mesenteric small arteries isolated from rats. Experimental Approach Rat mesenteric small arteries were studied using pressure myography. In pressurised arteries, responses were obtained to the H2S donor, sodium hydrogen sulphide (NaHS), in the absence and presence of the NOS inhibitor L-NAME, raised extracellular potassium, the KATP channel inhibitor glibenclamide, the Cl– channel blockers DIDS, NPPB and A9C, the TRPV1 receptor desensitizing agent, capsaicin, the CGRP antagonist, olcegepant, the TRPV1 channel blocker capsazepine and the TRPA1 channel blocker HC-030031. Key Results NaHS produced a vasodilator response in rat mesenteric small arteries held at 90 mmHg. Responses to NaHS were not reproducible. Neither, glibenclamide nor, L-NAME inhibited responses to NaHS. DIDS abolished vasodilator responses to NaHS, but these were unaffected by the chloride channel blockers, NPPB and A9C. Responses to NaHS were attenuated after capsaicin pre-treatment, by a CGRP receptor antagonist and an inhibitor of TRPA1 channels. Conclusions and Implications In small arteries isolated from the rat mesentery, NaHS caused a vasodilatation. This response was not reproducible in vitro, since it was mediated by the release of sensory neurotransmitters in a capsaicin-like action. This release was mediated by a H2S-induced activation of TRPA1 channels. PMID:22928888

White, Benjamin J O; Smith, Paul A; Dunn, William R

2013-01-01

356

Common peroneal nerve palsy due to hematoma at the fibular neck.  

PubMed

Common peroneal nerve palsy is an infrequent pathology mostly related to endogenous or exogenous compression. The exogenous compression is frequently related to trauma: knee fractures or hematoma arisen after a direct blow. Fractures may cause a direct lesion of the nerve; hematoma causes a compression of the nerve at the fibular neck causing pain and functional loss. Lesions of the common peroneal nerve can also be related to total knee arthroplasty. The clinical evaluation is characterized by muscle weakness with or without sensory abnormality. The etiopathogeneses of the compression have to be confirmed by ultrasound or magnetic resonance imaging before the surgical treatment. The purpose of this article is to describe a case of common peroneal nerve palsy due to a posttraumatic hematoma after a sport-related injury. We evaluated this case with dynamic ultrasound with good visualization of the morphology of the lesion and of the compression. PMID:23283631

Girolami, Mauro; Galletti, Stefano; Montanari, Giorgio; Mignani, Giuseppe; Schuh, Reinhard; Ellis, Scott; Di Motta, Daniele; D'Apote, Giulia; Bevoni, Roberto

2013-12-01

357

Regulation of early and delayed radiation responses in rat small intestine by capsaicin-sensitive nerves  

SciTech Connect

Purpose: Mast cells protect against the early manifestations of intestinal radiation toxicity, but promote chronic intestinal wall fibrosis. Intestinal sensory nerves are closely associated with mast cells, both anatomically and functionally, and serve an important role in the regulation of mucosal homeostasis. This study examined the effect of sensory nerve ablation on the intestinal radiation response in an established rat model. Methods and Materials: Rats underwent sensory nerve ablation with capsaicin or sham ablation. Two weeks later, a localized segment of ileum was X-irradiated or sham irradiated. Structural, cellular, and molecular changes were examined 2 weeks (early injury) and 26 weeks (chronic injury) after irradiation. The mast cell dependence of the effect of sensory nerve ablation on intestinal radiation injury was assessed using c-kit mutant (Ws/Ws) mast cell-deficient rats. Results: Capsaicin treatment caused a baseline reduction in mucosal mast cell density, crypt cell proliferation, and expression of substance P and calcitonin gene-related peptide, two neuropeptides released by sensory neurons. Sensory nerve ablation strikingly exacerbated early intestinal radiation toxicity (loss of mucosal surface area, inflammation, intestinal wall thickening), but attenuated the development of chronic intestinal radiation fibrosis (collagen I accumulation and transforming growth factor {beta} immunoreactivity). In mast cell-deficient rats, capsaicin treatment exacerbated postradiation epithelial injury (loss of mucosal surface area), but none of the other aspects of radiation injury were affected by capsaicin treatment. Conclusions: Ablation of capsaicin-sensitive enteric neurons exacerbates early intestinal radiation toxicity, but attenuates development of chronic fibroproliferative changes. The effect of capsaicin treatment on the intestinal radiation response is partly mast cell dependent.

Wang Junru [Department of Surgery, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR (United States); Zheng Huaien [Department of Surgery, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR (United States); Kulkarni, Ashwini [Department of Surgery, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR (United States); Ou Xuemei [Department of Surgery, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR (United States); Hauer-Jensen, Martin [Department of Surgery, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR (United States) and Department of Pathology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR (United States)]. E-mail: mhjensen@life.uams.edu

2006-04-01

358

Impaired Function of Prejunctional Adenosine A1 Receptors Expressed by Perivascular Sympathetic Nerves in DOCA-Salt Hypertensive Rats  

PubMed Central

Increased sympathetic nervous system activity contributes to deoxycorticosterone acetate (DOCA)-salt hypertension in rats. ATP and norepinephrine (NE) are coreleased from perivascular sympathetic nerves. NE acts at prejunctional ?2-adrenergic receptors (?2ARs) to inhibit NE release, and ?2AR function is impaired in DOCA-salt rats. Adenosine, an enzymatic ATP degradation product, acts at prejunctional A1 adenosine receptors (A1Rs) to inhibit NE release. We tested the hypothesis that prejunctional A1R function is impaired in sympathetic nerves supplying mesenteric arteries (MAs) and veins (MVs) of DOCA-salt rats. Electrically evoked NE release and constrictions of blood vessels were studied in vitro with use of amperometry to measure NE oxidation currents and video microscopy, respectively. Immunohistochemical methods were used to localize tyrosine hydroxylase (TH) and A1Rs in perivascular sympathetic nerves. TH and A1Rs colocalized to perivascular sympathetic nerves. Adenosine and N6-cyclopentyl-adenosine (CPA, A1R agonist) constricted MVs but not MAs. Adenosine and CPA (0.001–10 µM) inhibited neurogenic constrictions and NE release in MAs and MVs. DOCA-salt arteries were resistant to adenosine and CPA-mediated inhibition of NE release and constriction. The A2A adenosine receptor agonist CGS21680 (C23H29N7O6.HCl.xH2O) (0.001–0.1 ?M) did not alter NE oxidation currents. We conclude that there are prejunctional A1Rs in arteries and both pre- and postjunctional A1Rs in veins; thus, adenosine selectively constricts the veins. Prejunctional A1R function is impaired in arteries, but not veins, from DOCA-salt rats. Sympathetic autoreceptor dysfunction is not specific to ?2ARs, but there is a more general disruption of prejunctional mechanisms controlling sympathetic neurotransmitter release in DOCA-salt hypertension. PMID:23397055

Dong, Hua; Swain, Gregory M.; Galligan, James J.; Xu, Hui

2013-01-01

359

The Relationship between Retinal Ganglion Cell Function and Retinal Nerve Fiber Thickness in Early Glaucoma  

PubMed Central

PURPOSE To compare relative reduction of retinal ganglion cell (RGC) function and retinal nerve fiber layer (RNFL) thickness in early glaucoma by means of steady-state pattern electroretinogram (PERG) and optical coherence tomography (OCT), respectively. METHODS Eighty-four persons with suspected glaucoma due to disc abnormalities (GS: mean age 56.6 ± 13.8 years, standard automated perimetry [SAP] mean deviation [MD] -0.58 ± 1.34 dB) and 34 patients with early manifest glaucoma (EMG, mean age 65.9 ± 10.7 years, SAP MD -2.7 ± 4.5 dB) were tested with PERG and OCT. Both GS and EMG patients had small refractive errors, corrected visual acuity ?20/25, and no systemic or retinal disease other than glaucoma. RESULTS MDs from age-predicted normal values were larger for PERG amplitude (GS: -1.113 dB; EMG: -2.352 dB) compared with the PERG-matched RNFL thickness (GS: -0.217 dB; EMG: -0.725 dB). Deviations exceeding the lower 95% tolerance intervals of the normal population were more frequent for PERG amplitude (GS: 26%; EMG: 56%) than PERG-matched RNFL thickness (GS: 6%; EMG: 29%). CONCLUSIONS In early glaucoma, reduction in RGC electrical activity exceeds the proportion expected from lost RGC axons, suggesting that a population of viable RGCs in the central retina is dysfunctional. By combining PERG and OCT it is, in principle, possible to obtain unique information on reduced responsiveness of viable RGCs. PMID:16936103

Ventura, Lori M.; Sorokac, Nancy; Santos, Roosevelt De Los; Feuer, William J.; Porciatti, Vittorio

2006-01-01

360

Promoting nerve cell functions on hydrogels grafted with poly(L-lysine).  

PubMed

We present a novel photopolymerizable poly(L-lysine) (PLL) and use it to modify polyethylene glycol diacrylate (PEGDA) hydrogels for creating a better, permissive nerve cell niche. Compared with their neutral counterparts, these PLL-grafted hydrogels greatly enhance pheochromocytoma (PC12) cell survival in encapsulation, proliferation, and neurite growth and also promote neural progenitor cell proliferation and differentiation capacity, represented by percentages of both differentiated neurons and astrocytes. The role of efficiently controlled substrate stiffness in regulating nerve cell behavior is also investigated and a polymerizable cationic small molecule, [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (MTAC), is used to compare with this newly developed PLL. The results indicate that these PLL-grafted hydrogels are promising biomaterials for nerve repair and regeneration. PMID:22251248

Cai, Lei; Lu, Jie; Sheen, Volney; Wang, Shanfeng

2012-02-13

361

Near nerve potential of sural nerve in leprosy.  

PubMed

Leprosy neuropathy is characterized by initial involvement of the small nerve fibers, later followed by involvement of the large fibers, when routine nerve conduction studies become abnormal. To increase the diagnostic yield and precocity of these studies, we applied the near nerve technique to the sural nerve of 8 leprosy patients. Contrary to our expectations, the main component of the sural nerve sensory action potential was abnormal in all patients, but the minimum conduction velocity originating from small 3-6 mm fibers was normal or only mildly involved in three patients. Also, although Schwann cells are the first to be involved in leprosy, the results are suggestive of axonal degeneration instead of demyelination. To better understand the neurophysiology and physiology of leprosy and to increase the accuracy and precocity of the diagnosis, it will be necessary to investigate patients in the very early stages of the disease and to correlate these findings with the corresponding nerve pathology. PMID:15334210

Arruda, Ana Paula M; Marques, Wilson; Foss, Norma T; Garbino, José A; Virmond, Marcos; Barreira, Amilton A

2004-09-01

362

C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication.  

PubMed

Cells release extracellular vesicles (ECVs) that play important roles in intercellular communication and may mediate a broad range of physiological and pathological processes. Many fundamental aspects of ECV biogenesis and signaling have yet to be determined, with ECV detection being a challenge and obstacle due to the small size (100 nm) of the ECVs. We developed an in vivo system to visualize the dynamic release of GFP-labeled ECVs. We show here that specific Caenorhabdidits elegans ciliated sensory neurons shed and release ECVs containing GFP-tagged polycystins LOV-1 and PKD-2. These ECVs are also abundant in the lumen surrounding the cilium. Electron tomography and genetic analysis indicate that ECV biogenesis occurs via budding from the plasma membrane at the ciliary base and not via fusion of multivesicular bodies. Intraflagellar transport and kinesin-3 KLP-6 are required for environmental release of PKD-2::GFP-containing ECVs. ECVs isolated from wild-type animals induce male tail-chasing behavior, while ECVs isolated from klp-6 animals and lacking PKD-2::GFP do not. We conclude that environmentally released ECVs play a role in animal communication and mating-related behaviors. PMID:24530063

Wang, Juan; Silva, Malan; Haas, Leonard A; Morsci, Natalia S; Nguyen, Ken C Q; Hall, David H; Barr, Maureen M

2014-03-01

363

Chemical composition, functional and sensory characteristics of wheat-taro composite flours and biscuits.  

PubMed

The physicochemical, alveographic and sensory characteristics of precooked taro-wheat composite flours and their biscuits were investigated. A 2x7 factorial design consisting of two varieties of taro flour (Red Ibo Ngaoundere, RIN, and egg-like varieties) and 7 levels of wheat substitutions (0, 5, 10, 15, 20, 25 and 30 %) was used for this purpose. It was observed that water absorption capacity (range 95-152 g/100 g), water solubility index (range 18.8-29.5 g/100 g) and swelling capacity (range 125.4-204.6 mL/100 g) of composite flours significantly (p?

Himeda, Makhlouf; Njintang Yanou, Nicolas; Fombang, Edith; Facho, Balaam; Kitissou, Pierre; Mbofung, Carl M F; Scher, Joel

2014-09-01

364

[Transplantation in peripheral nerve injuries].  

PubMed

Autologous nerve grafting is the most commocommnlynly used operative technique in delayed primary, or secondary nerve repair after the peripheral nerve injuries. The aim of this procedure is to overcome nerve gaps that results from the injury itself, fibrous and elastic retraction forces, resection of the damaged parts of the nerve, position of the articulations and mobilisation of the nerve. In this study we analyse the results of operated patients with transections and lacerations of the peripheral nerves from 1979 to 2000 year. Gunshot injuries have not been analyzed in this study. The majority of the injuries were in the upper extremity (more than 87% of cases). Donor for nerve transplantation had usually been sural nerve, and only occasionally medial cutaneous nerve of the forearm was used. In about 93% of cases we used interfascicular nerve grafting, and cable nerve grafting was performed in the rest of them. Most of the grafts were 1 do 5 cm long (70% of cases). Functional recovery was achieved in more than 86% of cases, which is similar to the results of the other authors. Follow up period was minimum 2 years. We analyzed the influence of different factors on nerve recovery after the operation: patient's age, location and the extent (total or partial) of nerve injury, the length of the nerve graft, type of the nerve, timing of surgery, presence of multiple nerve injuries and associated osseal and soft tissue injuries of the upper and lower extremities. PMID:14619715

Grujici?, D; Samardzi?, M; Rasuli?, L; Savi?, D; Cvrkota, I; Simi?, V

2003-01-01

365

Upgraded nerve growth factor expression induced by low-intensity continuous-wave ultrasound accelerates regeneration of neurotometicly injured sciatic nerve in rats.  

PubMed

Low-intensity ultrasound (LIU) can stimulate injured nerve regeneration but the mechanism is still unclear. We investigated the stimulating effect and its mechanism of continuous-wave LIU on neurotometic injury of sciatic nerve. The right sciatic nerves of 64 adult Wistar rats were first crushed and then exposed (32 rats) or sham-exposed (32 rats) to LIU at the crush site. The LIU had a spatial averaged and temporal averaged intensity of 0.25 W/cm(2) operated at 1.0 MHz for 1 min every other day. At various stages (the second, fourth, sixth and eighth weeks) after LIU exposure, the sciatic nerve function index (SFI), the sensory nerve conduction velocity (SNCV), the expression of nerve growth factor (NGF) and sample histology were studied. It was found that the density of nerve fibers with myelin sheath, SFI, SNCV and NGF expression of the treatment group were higher than that of control group (p < 0.05). It has been determined that LIU treatment can accelerate the regeneration and functional recovery of neurotometic injured sciatic nerve at earlier stages after injury, the upgraded expression of NGF induced by LIU may be the primary mechanism of the acceleration effects. PMID:20620698

Chen, Wen-Zhi; Qiao, Hai; Zhou, Wei; Wu, Junru; Wang, Zhi-Biao

2010-07-01

366

Sensorimotor function of the upper-airway muscles and respiratory sensory processing in untreated obstructive sleep apnea  

PubMed Central

Numerous studies have demonstrated upper-airway neuromuscular abnormalities during wakefulness in snorers and obstructive sleep apnea (OSA) patients. However, the functional role of sensorimotor impairment in OSA pathogenesis/disease progression and its potential effects on protective upper-airway reflexes, measures of respiratory sensory processing, and force characteristics remain unclear. This study aimed to gain physiological insight into the potential role of sensorimotor impairment in OSA pathogenesis/disease progression by comparing sensory processing properties (respiratory-related evoked potentials; RREP), functionally important protective reflexes (genioglossus and tensor palatini) across a range of negative pressures (brief pulses and entrained iron lung ventilation), and tongue force and time to task failure characteristics between 12 untreated OSA patients and 13 controls. We hypothesized that abnormalities in these measures would be present in OSA patients. Upper-airway reflexes (e.g., genioglossus onset latency, 20 ± 1 vs. 19 ± 2 ms, P = 0.82), early RREP components (e.g., P1 latency 25 ± 2 vs. 25 ± 1 ms, P = 0.78), and the slope of epiglottic pressure vs. genioglossus activity during iron lung ventilation (?0.68 ± 1.0 vs. ?0.80 ± 2.0 cmH2O/%max, P = 0.59) were not different between patients and controls. Maximal tongue protrusion force was greater in OSA patients vs. controls (35 ± 2 vs. 27 ± 2 N, P < 0.01), but task failure occurred more rapidly (149 ± 24 vs. 254 ± 23 s, P < 0.01). Upper-airway protective reflexes across a range of negative pressures as measured by electromyography and the early P1 component of the RREP are preserved in OSA patients during wakefulness. Consistent with an adaptive training effect, tongue protrusion force is increased, not decreased, in untreated OSA patients. However, OSA patients may be vulnerable to fatigue of upper-airway dilator muscles, which could contribute to disease progression. PMID:21885797

Lo, Yu L.; Saboisky, Julian P.; Jordan, Amy S.; White, David P.; Malhotra, Atul

2011-01-01

367

The utility of clinical neurophysiological and quantitative sensory testing for trigeminal neuropathy.  

PubMed

This article reviews the utility of neurophysiological recordings and quantitative sensory testing (QST) in providing sensitive, quantitative, and objective tests for the diagnosis and localization of damage to the trigeminal nerve. Electromyography and recordings of the masseter reflex and compound muscle action potential evoked by transcranial magnetic stimulation or direct electrical stimulation of the masseteric nerve can be of value in evaluating the function of a motor neurons supplying the muscles of mastication. Orthodromic recording of the sensory action potential and trigeminal somatosensory-evoked potential recording with the near-nerve stimulation technique are sensitive tools for the investigation of trigeminal sensory Abeta afferents, whereas recordings of polysynaptic trigeminal brainstem reflexes and tactile QST are less sensitive. At late stages of recovery, the blink reflex and masseter inhibitory reflex are often normal, but at earlier stages, the blink reflex recording has good prognostic value, and the presence of a reflex response may confirm continuity of the nerve trunk after partial laceration. Trigeminal small-fiber function (Adelta and C) can be studied with thermal QST of the cool, warm, heat pain, and cold pain detection thresholds or with laser-evoked potential recording. Thermal QST may remain abnormal years after axonal damage and aids in the diagnosis of late sequelae of trigeminal nerve injury. In a study of the diagnostic value of neurography, blink reflex and thermal QST, and various commonly used clinical sensory tests, neurophysiologic tests and thermal QST had better sensitivity (50% to 88% vs 40% to 59%) and negative predictive values (78% to 100% vs 70% to 74%) compared to clinical examination, whereas the specificity (55% to 100%) and positive predictive values (48% to 73%) were similar. At 1 year after trigeminal nerve injury, the risk of a false negative finding with clinical sensory testing was 94%, whereas the combination of nerve conduction recordings and thermal QST increased the diagnostic yield to 100% in patients with long-standing postsurgical sensory alteration. In conclusion, clinical neurophysiological recordings and QST improve the diagnostic accuracy for trigeminal neuropathy. PMID:15636020

Jääskeläinen, Satu K

2004-01-01

368

Electrical Stimulation to Conductive Scaffold Promotes Axonal Regeneration and Remyelination in a Rat Model of Large Nerve Defect  

PubMed Central

Background Electrical stimulation (ES) has been shown to promote nerve regeneration when it was applied to the proximal nerve stump. However, the possible beneficial effect of establishing a local electrical environment between a large nerve defect on nerve regeneration has not been reported in previous studies. The present study attempted to establish a local electrical environment between a large nerve defect, and examined its effect on nerve regeneration and functional recovery. Methodology/Findings In the present study, a conductive scaffold was constructed and used to bridge a 15 mm sciatic nerve defect in rats, and intermittent ES (3 V, 20 Hz) was applied to the conductive scaffold to establish an electrical environment at the site of nerve defect. Nerve regeneration and functional recovery were examined after nerve injury repair and ES. We found that axonal regeneration and remyelination of the regenerated axons were significantly enhanced by ES which was applied to conductive scaffold. In addition, both motor and sensory functional recovery was significantly improved and muscle atrophy was partially reversed by ES localized at the conductive scaffold. Further investigations showed that the expression of S-100, BDNF (brain-derived neurotrophic factor), P0 and Par-3 was significantly up-regulated by ES at the conductive scaffold. Conclusions/Significance Establishing an electrical environment with ES localized at the conductive scaffold is capable of accelerating nerve regeneration and promoting functional recovery in a 15 mm nerve defect in rats. The findings provide new directions for exploring regenerative approaches to achieve better functional recovery in the treatment of large nerve defect. PMID:22737243

Zhang, Yongguang; Liang, Wei; Wu, Siyu; Luo, Zhuojing

2012-01-01

369

Gastric ulcers evoke hyperexcitability and enhance P2X receptor function in rat gastric sensory neurons.  

PubMed

Tissue inflammation contributes to the development of hyperalgesia, which is at least in part due to altered properties of primary afferent neurons. We hypothesized that gastric ulcers enhance the excitability of gastric sensory neurons and increase their response to purinergic agonists. The rat stomach was surgically exposed, and a retrograde tracer [1.1'-dioctadecyl-3,3,3,'3-tetramethylindocarbocyanine methanesulfonate (DiI)] was injected into the wall of the distal stomach. Kissing ulcers (KUs) were produced by a single injection of acetic acid (0.1 ml for 45 s; 60%) into the clamped gastric lumen. Saline injection served as control. Gastric nodose ganglion (NG) or dorsal root ganglion (DRG) cells were harvested 7 days later and acutely dissociated for whole cell recordings. Based on whole cell capacitance, gastric DRG neurons exhibited larger cell size than NG neurons. Significantly more control gastric DRG neurons compared with NG counterparts had TTX-resistant action potentials. Almost all control NG neurons (90%) compared with significantly less DRG neurons (< or =38%) responded to ATP or alpha,beta-metATP. Whereas none of the control cells exhibited spontaneous activity, about 20% of the neurons from KU animals generated spontaneous action potentials. KUs enhanced excitability as shown by a decrease in threshold for action potential generation, which was in part due to an increased input resistance. This was associated with an increase in the fraction of neurons with TTX-resistant action potentials and cells responding to capsaicin and purinergic agonists. KU doubled the current density evoked by the P2X receptor agonist alpha,beta-metATP and slowed decay of the slowly desensitizing component of the current without affecting the concentration dependence of the response. These data show that KU sensitizes vagal and spinal gastric afferents by affecting both voltage- and ligand-gated channels, thereby potentially contributing to the development of dyspeptic symptoms. PMID:15673552

Dang, K; Bielfeldt, K; Lamb, K; Gebhart, G F

2005-06-01

370

Nerve biopsy  

MedlinePLUS

Biopsy - nerve ... A nerve biopsy is most often done on a nerve in the ankle, forearm, or along a rib. The health care ... feel a prick and a mild sting. The biopsy site will be sore for a few days ...