Science.gov

Sample records for sensory neurons-based biosensors

  1. Biosensors.

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1988-01-01

    Describes theory and principles behind biosensors that incorporate biological components as part of a sensor or probe. Projects major applications in medicine and veterinary medicine, biotechnology, food and agriculture, environmental studies, and the military. Surveys current use of biosensors. (ML)

  2. BIOSENSORS

    EPA Science Inventory

    It has recently been proposed under the International Union of Pure and Applied Chemistry (IUPAC) Commission that biosensors be regarded as a subgroup of chemical sensors in which a biologically based mechanism is used for detection of the analyte. hemical sensors are defined und...

  3. Optical biosensors

    PubMed Central

    Damborský, Pavel; Švitel, Juraj

    2016-01-01

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. PMID:27365039

  4. Optical biosensors.

    PubMed

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. PMID:27365039

  5. Neuron-based heredity and human evolution

    PubMed Central

    Gash, Don M.; Deane, Andrew S.

    2015-01-01

    It is widely recognized that human evolution has been driven by two systems of heredity: one DNA-based and the other based on the transmission of behaviorally acquired information via nervous system functions. The genetic system is ancient, going back to the appearance of life on Earth. It is responsible for the evolutionary processes described by Darwin. By comparison, the nervous system is relatively newly minted and in its highest form, responsible for ideation and mind-to-mind transmission of information. Here the informational capabilities and functions of the two systems are compared. While employing quite different mechanisms for encoding, storing and transmission of information, both systems perform these generic hereditary functions. Three additional features of neuron-based heredity in humans are identified: the ability to transfer hereditary information to other members of their population, not just progeny; a selection process for the information being transferred; and a profoundly shorter time span for creation and dissemination of survival-enhancing information in a population. The mechanisms underlying neuron-based heredity involve hippocampal neurogenesis and memory and learning processes modifying and creating new neural assemblages changing brain structure and functions. A fundamental process in rewiring brain circuitry is through increased neural activity (use) strengthening and increasing the number of synaptic connections. Decreased activity in circuitry (disuse) leads to loss of synapses. Use and disuse modifying an organ to bring about new modes of living, habits and functions are processes in line with Neolamarckian concepts of evolution (Packard, 1901). Evidence is presented of bipartite evolutionary processes—Darwinian and Neolamarckian—driving human descent from a common ancestor shared with the great apes. PMID:26136649

  6. Review of Micro/Nanotechnologies for Microbial Biosensors

    PubMed Central

    Lim, Ji Won; Ha, Dogyeong; Lee, Jongwan; Lee, Sung Kuk; Kim, Taesung

    2015-01-01

    A microbial biosensor is an analytical device with a biologically integrated transducer that generates a measurable signal indicating the analyte concentration. This method is ideally suited for the analysis of extracellular chemicals and the environment, and for metabolic sensory regulation. Although microbial biosensors show promise for application in various detection fields, some limitations still remain such as poor selectivity, low sensitivity, and impractical portability. To overcome such limitations, microbial biosensors have been integrated with many recently developed micro/nanotechnologies and applied to a wide range of detection purposes. This review article discusses micro/nanotechnologies that have been integrated with microbial biosensors and summarizes recent advances and the applications achieved through such novel integration. Future perspectives on the combination of micro/nanotechnologies and microbial biosensors will be discussed, and the necessary developments and improvements will be strategically deliberated. PMID:26029689

  7. Plants as Environmental Biosensors

    PubMed Central

    Ranatunga, Don Rufus A

    2006-01-01

    Plants are continuously exposed to a wide variety of perturbations including variation of temperature and/or light, mechanical forces, gravity, air and soil pollution, drought, deficiency or surplus of nutrients, attacks by insects and pathogens, etc., and hence, it is essential for all plants to have survival sensory mechanisms against such perturbations. Consequently, plants generate various types of intracellular and intercellular electrical signals mostly in the form of action and variation potentials in response to these environmental changes. However, over a long period, only certain plants with rapid and highly noticeable responses for environmental stresses have received much attention from plant scientists. Of particular interest to our recent studies on ultra fast action potential measurements in green plants, we discuss in this review the evidence supporting the foundation for utilizing green plants as fast biosensors for molecular recognition of the direction of light, monitoring the environment, and detecting the insect attacks as well as the effects of pesticides, defoliants, uncouplers, and heavy metal pollutants. PMID:19521490

  8. Sensory mononeuropathies.

    PubMed

    Massey, E W

    1998-01-01

    The clinical neurologist frequently encounters patients with a variety of focal sensory symptoms and signs. This article reviews the clinical features, etiologies, laboratory findings, and management of the common sensory mononeuropathies including meralgia paresthetica, cheiralgia paresthetica, notalgia paresthetica, gonyalgia paresthetica, digitalgia paresthetica, intercostal neuropathy, and mental neuropathy. PMID:9608615

  9. Engineered PQQ-Glucose Dehydrogenase as a Universal Biosensor Platform.

    PubMed

    Guo, Zhong; Murphy, Lindy; Stein, Viktor; Johnston, Wayne A; Alcala-Perez, Siro; Alexandrov, Kirill

    2016-08-17

    Biosensors with direct electron output hold promise for nearly seamless integration with portable electronic devices. However, so far, they have been based on naturally occurring enzymes that significantly limit the spectrum of detectable analytes. Here, we present a novel biosensor architecture based on analyte-driven intermolecular recombination and activity reconstitution of a re-engineered component of glucometers: PQQ-glucose dehydrogenase. We demonstrate that this sensor architecture can be rapidly adopted for the detection of immunosuppressant drugs, α-amylase protein, or protease activity of thrombin and Factor Xa. The biosensors could be stored in dried form without appreciable loss of activity. We further show that ligand-induced activity of the developed biosensors could be directly monitored by chronoamperometry, enabling construction of disposable sensory electrodes. We expect that this architecture could be expanded to the detection of other biochemical activities, post-translational modifications, nucleic acids, and inorganic molecules. PMID:27463000

  10. Biosensors for Cell Analysis.

    PubMed

    Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander

    2015-01-01

    Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis. PMID:26274599

  11. Sensory analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensory evaluation can answer questions about a product that instruments cannot. The human subject is the instrument, and data can provide a wealth of information for a product developer, or results can be very variable and erroneous if all the precautions to minimize bias and external noise are no...

  12. Sensory Dysfunction

    MedlinePlus

    ... to Web version Sensory Dysfunction Overview Why are smell and taste important? Your senses of smell and taste let you fully enjoy the scents ... bitter and sour. Flavor involves both taste and smell. For example, because a person is able to ...

  13. Genomagnetic Electrochemical Biosensors

    NASA Astrophysics Data System (ADS)

    Wang, Joseph; Erdem, Arzum

    The use of nucleic acid technologies has significantly improved preparation and diagnostic procedures in life sciences. Nucleic acid layers combined with electrochemical or optical transducers produce a new kind of affinity biosensors as DNA Biosensor for small molecular weight molecules. Electrochemical DNA biosensors are attractive devices for converting the hybridization event into an analytical signal for obtaining sequence-specific information in connection with clinical, environmental or forensic investigations. DNA hybridization biosensors, based on electrochemical transduction of hybridization, couple the high specificity of hybridization reactions with the excellent sensitivity and portability of electrochemical transducers. The main goal in all researches is to design DNA biosensors for preparing a basis for the future DNA microarray system. DNA chip has now become a powerful tool in biological research, however the real clinic assay is still under development. Recently, there has been a great interest to the magnetic beads and/or nanoparticles labelled with metals such as gold, cadmium, silver, etc. for designing of novel electrochemical DNA biosensor approaches resulting in efficient separation. The attractive features of this technology include simple approach, rapid results, multi-analyte detection, low-cost per measurument, stable, and non-hazardous reagents, and reduced waste handling. Some of these new approaches and applications of the electrochemical DNA biosensors based on magnetic beads and its combining with nanoparticles labelled with metals are described and discussed.

  14. Introduction to biosensors.

    PubMed

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello; Estrela, Pedro

    2016-06-30

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. PMID:27365030

  15. Introduction to biosensors

    PubMed Central

    Bhalla, Nikhil; Jolly, Pawan; Formisano, Nello

    2016-01-01

    Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available. PMID:27365030

  16. Design and Fabrication of Biosensor Device by Use of Receptor Proteins

    NASA Astrophysics Data System (ADS)

    Kuwana, Yoshihiko; Kojima, Katsura; Tamada, Yasushi

    We have been studying a new type of biosensor that uses and mimics sensory functions of insects. The biosensor can be characterized in combination with immobilized signal transduction biomolecules, i.e., receptor proteins, and a semiconductor device as a transducer. We have developed a lipid bilayer membrane for receptor immobilization and combined it with an insulated-gate field-effect transistor (IGFET). By using this bilayer-IGFET device, we have measured changes in the bilayer membrane potential after introducing α-hemolysin, which acts as a model of receptors. This indicates that the developed device could be used for the biosensor using receptor proteins.

  17. BIOSENSORS FOR ENVIRONMENTAL APPLICATIONS

    EPA Science Inventory

    A review, with 19 references, is given on challenges and possible opportunities for the development of biosensors for environmental monitoring applications. The high cost and slow turnaround times typically associated with the measurement of regulated pollutants clearly indicates...

  18. Triggered optical biosensor

    DOEpatents

    Song, Xuedong; Swanson, Basil I.

    2001-10-02

    An optical biosensor is provided for the detection of a multivalent target biomolecule, the biosensor including a substrate having a bilayer membrane thereon, a recognition molecule situated at the surface, the recognition molecule capable of binding with the multivalent target biomolecule, the recognition molecule further characterized as including a fluorescence label thereon and as being movable at the surface and a device for measuring a fluorescence change in response to binding between the recognition molecule and the multivalent target biomolecule.

  19. Fiber optic choline biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong

    2001-10-01

    A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.

  20. Recent Trends in Biosensors

    NASA Astrophysics Data System (ADS)

    Karube, Isao

    The determination of organic compounds in foods is very important in food industries. A various compounds are contained in foods, selective determination methods are required for food processing and analysis. Electrochemical monitoring devices (biosensors) employing immobilized biocatalysts such as immobilized enzymes, organelles, microorganisms, and tissue have definite advantages. The enzyme Sensors consisted of immobilized enzymes and electrochemical devices. Enzyme sensors could be used for the determination of sugars, amino acids, organic acids, alcohols, lipids, nucleic acid derivatives, etc.. Furthermore, a multifunctional biosensor for the determination of several compounds has been developed for food processing. On the other hand, microbial sensors consisted of immobilized microorganisms and electrodes have been used for industrial and environmental analysis. Microbial sensors were applied for the determination of sugars, organic acids, alcohols, amino acids, mutagens, me thane, ammonia, and BOD. Furthermore, micro-biosensors using immobilized biocatalysts and ion sensitive field effect transistor or microelectrodes prepared by silicon fabrication technologies have been developed for medical ap. plication and food processing. This review summarizes the design and application of biosensors.

  1. Biosensors for bioprocesses

    SciTech Connect

    Van Brunt, J.

    1987-05-01

    The advent of biosensors has been touted as the marriage of the century - a marriage of microelectronics and biotechnology. But exactly what is a biosensor. Actually, the term is used interchangeably for two sometimes very different classes of devices - those that measure biological molecules and particles and those that use biomolecules as part of the sensing mechanism. The basic conceptual design of a biosensor is simple: a biological receptor is coupled to an electronic tranducer in such a way that the transducer converts biochemical activity at one end into electrical activity at the other. The biological component is usually an enzyme (for selective chemical catalysis) or an antibody (for highly selective binding), although cell membrane receptors, tissue slices, and microbial cells are used as well. The electronic component measures voltage (potentiometric), current (amperometric), light, sound, temperaure, or mass (piezoelectric). Biosensors display several unique features that make them especially attractive. They are small. They are simple to use many procedures require one step, no additional reagents, and no radioactivity. They are portable. And they are inexpensive and perfect for data processing.

  2. Nanomaterial-Based Electrochemical Biosensors and Bioassays

    SciTech Connect

    Liu, Guodong; Mao, Xun; Gurung, Anant; Baloda, Meenu; Lin, Yuehe; He, Yuqing

    2010-08-31

    This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

  3. Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences

    PubMed Central

    Hochreiter, Bernhard; Pardo Garcia, Alan; Schmid, Johannes A.

    2015-01-01

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them. PMID:26501285

  4. Conducting polymer based electrochemical biosensors.

    PubMed

    Aydemir, Nihan; Malmström, Jenny; Travas-Sejdic, Jadranka

    2016-03-28

    Conducting polymer (CP)-based electrochemical biosensors have gained great attention as such biosensor platforms are easy and cost-effective to fabricate, and provide a direct electrical readout for the presence of biological analytes with high sensitivity and selectivity. CP materials themselves are both sensing elements and transducers of the biological recognition event at the same time, simplifying sensor designs. This review summarizes the advances in electrochemical biosensors based on CPs. Recognition probe immobilisation techniques, transduction mechanisms and detection of various target biomolecules have been discussed in detail. Efforts to miniaturize CP-based electrochemical biosensors and fabrication of sensor arrays are also briefly reviewed. PMID:26948182

  5. Carbon Nanotube Biosensors

    NASA Astrophysics Data System (ADS)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  6. Carbon nanotube biosensors

    PubMed Central

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  7. Towards optoelectronic urea biosensors.

    PubMed

    Pokrzywnicka, Marta; Koncki, Robert; Tymecki, Łukasz

    2015-03-01

    Integration of immobilized enzymes with light-emitting diodes (LEDs) leads to the development of optoelectronic enzyme-based biosensors. In this work, urease, used as a model enzyme, immobilized in the form of an open-tubular microbioreactor or biosensing membrane that has been integrated with two red LEDs. It forms complete, fiberless, miniaturized, and extremely economic biooptoelectronic devices useful for nonstationary measurements under flow analysis conditions. Both enzyme-based biodevices, operating according to the paired emitter detector diode (PEDD) principle, allow relatively fast, highly sensitive, and well-reproducible urea detection in the millimolar range of concentrations. Potential analytical applications of the developed urea bioPEDDs have been announced. Both presented constructions will be easily adapted for the development of other optoelectronic biosensors exploring various enzyme-based schemes of biodetection. PMID:25619983

  8. Micro-algal biosensors.

    PubMed

    Brayner, Roberta; Couté, Alain; Livage, Jacques; Perrette, Catherine; Sicard, Clémence

    2011-08-01

    Fighting against water pollution requires the ability to detect pollutants for example herbicides or heavy metals. Micro-algae that live in marine and fresh water offer a versatile solution for the construction of novel biosensors. These photosynthetic microorganisms are very sensitive to changes in their environment, enabling the detection of traces of pollutants. Three groups of micro-algae are described in this paper: chlorophyta, cyanobacteria, and diatoms. PMID:21626188

  9. Nanobiomaterials for Electrochemical Biosensors

    NASA Astrophysics Data System (ADS)

    Pumera, M.

    2007-08-01

    I will discuss main techniques and methods which use nanoscale materials for construction of electrochemical biosensors with emphasis on methods developed by myself and my coworkers. Described approaches include carbon nanotube based electrodes relying on double wall and multiwall carbon nanotubes, novel binding materials and mass production technology; and nanoscale materials as biomolecule tracers, including gold nanoparticles for DNA detection. Specific issues related to electrochemistry of nanoscale materials will be discussed. Various applications for genomic and proteomic analysis will be described.

  10. Thermoresponsive amperometric glucose biosensor.

    PubMed

    Pinyou, Piyanut; Ruff, Adrian; Pöller, Sascha; Barwe, Stefan; Nebel, Michaela; Alburquerque, Natalia Guerrero; Wischerhoff, Erik; Laschewsky, André; Schmaderer, Sebastian; Szeponik, Jan; Plumeré, Nicolas; Schuhmann, Wolfgang

    2016-03-01

    The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(ω-ethoxytriethylenglycol methacrylate-co-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-ω-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 °C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol)methacrylate-co-butyl acrylate-co-2-(dimethylamino)ethyl methacrylate)-[Os(bpy)2(4-(((2-(2-(2-aminoethoxy)ethoxy)ethyl)amino)methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on- to an off-state without heating of the surrounding analyte solution. PMID:26702635

  11. Serotonin-immunoreactive sensory neurons in the antenna of the cockroach Periplaneta americana.

    PubMed

    Watanabe, Hidehiro; Shimohigashi, Miki; Yokohari, Fumio

    2014-02-01

    The antennae of insects contain a vast array of sensory neurons that process olfactory, gustatory, mechanosensory, hygrosensory, and thermosensory information. Except those with multimodal functions, most sensory neurons use acetylcholine as a neurotransmitter. Using immunohistochemistry combined with retrograde staining of antennal sensory neurons in the cockroach Periplaneta americana, we found serotonin-immunoreactive sensory neurons in the antenna. These were selectively distributed in chaetic and scolopidial sensilla and in the scape, the pedicel, and first 15 segments of the flagellum. In a chaetic sensillum, A single serotonin-immunoreactive sensory neuron cohabited with up to four serotonin-negative sensory neurons. Based on their morphological features, serotonin-immunopositive and -negative sensory neurons might process mechanosensory and contact chemosensory modalities, respectively. Scolopidial sensilla constitute the chordotonal and Johnston's organs within the pedicel and process antennal vibrations. Immunoelectron microscopy clearly revealed that serotonin-immunoreactivities selectively localize to a specific type of mechanosensory neuron, called type 1 sensory neuron. In a chordotonal scolopidial sensillum, a serotonin-immunoreactive type 1 neuron always paired with a serotonin-negative type 1 neuron. Conversely, serotonin-immunopositive and -negative type 1 neurons were randomly distributed in Johnston's organ. In the deutocerebrum, serotonin-immunoreactive sensory neuron axons formed three different sensory tracts and those from distinct types of sensilla terminated in distinct brain regions. Our findings indicate that a biogenic amine, serotonin, may act as a neurotransmitter in peripheral mechanosensory neurons. PMID:23852943

  12. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals.

    PubMed

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2013-02-15

    Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411

  13. Electrochemical biosensors and nanobiosensors.

    PubMed

    Hammond, Jules L; Formisano, Nello; Estrela, Pedro; Carrara, Sandro; Tkac, Jan

    2016-06-30

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market.In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. PMID:27365037

  14. Improved Biosensors for Soils

    NASA Astrophysics Data System (ADS)

    Silberg, J. J.; Masiello, C. A.; Cheng, H. Y.

    2014-12-01

    Microbes drive processes in the Earth system far exceeding their physical scale, affecting crop yields, water quality, the mobilization of toxic materials, and fundamental aspects of soil biogeochemistry. The tools of synthetic biology have the potential to significantly improve our understanding of microbial Earth system processes: for example, synthetic microbes can be be programmed to report on environmental conditions that stimulate greenhouse gas production, metal oxidation, biofilm formation, pollutant degradation, and microbe-plant symbioses. However, these tools are only rarely deployed in the lab. This research gap arises because synthetically programmed microbes typically report on their environment by producing molecules that are detected optically (e.g., fluorescent proteins). Fluorescent reporters are ideal for petri-dish applications and have fundamentally changed how we study human health, but their usefulness is quite limited in soils where detecting fluorescence is challenging. Here we describe the construction of gas-reporting biosensors, which release nonpolar gases that can be detected in the headspace of incubation experiments. These constructs can be used to probe microbial processes within soils in real-time noninvasive lab experiments. These biosensors can be combined with traditional omics-based approaches to reveal processes controlling soil microbial behavior and lead to improved environmental management decisions.

  15. Multiplexed Biosensors for Mycotoxins.

    PubMed

    Maragos, Chris M

    2016-07-01

    Significant progress has been made in the development of biosensors that can be used to detect low-MW toxins produced by fungi (mycotoxins). The number of formats that have been investigated is impressive and is an indication of the importance attached to finding easy-to-use, accurate, and rapid methods for detecting these toxins in commodities and foods. This review explores the details of multiplexed biosensors based on many formats, including multiplexed immunoassays, suspension arrays, membrane-based devices (flow-through and immunochromatographic), and planar microarrays. Each assay format has its own strengths and areas that need improvement. Certain formats, such as multiplexed immunochromatographic devices, are well developed and relatively easy to use, and in some cases, commercial products are being sold. Others, such as the suspension arrays and microarrays, are laboratory-based assays that, although more complicated, are also more amenable to a larger scale of multiplexing. The diversity of such efforts and the multitude of formats under investigation suggest that multiple solutions will be found to satisfy the need for multiplexed toxin detection. PMID:27455928

  16. Electrochemical biosensors and nanobiosensors

    PubMed Central

    Hammond, Jules L.; Formisano, Nello; Carrara, Sandro; Tkac, Jan

    2016-01-01

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications–in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market. In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. PMID:27365037

  17. Sensory Conversion Devices

    NASA Astrophysics Data System (ADS)

    Medelius, Pedro

    The human body has five basic sensory functions: touch, vision, hearing, taste, and smell. The effectiveness of one or more of these human sensory functions can be impaired as a result of trauma, congenital defects, or the normal ageing process. Converting one type of function into another, or translating a function to a different part of the body, could result in a better quality of life for a person with diminished sensorial capabilities.

  18. Biosensor commercialization strategy - a theoretical approach.

    PubMed

    Lin, Chin-Tsai; Wang, Su-Man

    2005-01-01

    Biosensors are analytical devices, which use biological interactions to provide either qualitative or quantitative results. They are extensively employed in many fields such as clinical diagnosis and biomedicine, military applications, anti-terrorism, farm, garden and veterinary analysis, process control, fermentation control and analysis, pharmaceutical and drug analysis, food and drink production and analysis, pollution control and monitoring, microbiology, bacterial and viral analysis, mining, and industrial and toxic gases. The biosensor market has significantly increased and will be mushrooming in the next decade. The total biosensor market is estimated to be 10.8 billion dollars by 2007. The emerging biosensor market presents both opportunities and obstacles to start-up biosensor entrepreneurs. The major challenge and threat for these entrepreneurs is how to predict the biosensor market and how to convert promising biosensor technology into commercialized biosensors. By adopting a simple commercialization strategy framework, we identify two key elements of biosensor commercialization strategy: excludability and complementary asset. We further divide biosensor commercialization environments into four distinct sub-environments: the Attacker's Advantage, Reputation-Based Idea Trading, Greenfield Competition and Ideas Factories. This paper explains how the interaction between these two key elements shapes biosensor commercialization strategy and biosensor industry dynamics. This paper also discusses alternative commercialization strategies for each specific commercialization environment and how to choose from these alternatives. The analysis of this study further provides a good reference for start-up biosensor entrepreneurs to formulate effective biosensor commercialization strategy. PMID:15574353

  19. Signaling by Sensory Receptors

    PubMed Central

    Julius, David; Nathans, Jeremy

    2012-01-01

    Sensory systems detect small molecules, mechanical perturbations, or radiation via the activation of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled receptors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR-based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illustrate the integration of diverse modulatory signals at the receptor, as seen in the thermosensory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous examples in which gene duplication and sequence divergence have created novel sensory specificities. This is the evolutionary basis for the observed diversity in temperature- and ligand-dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche. The many specialized anatomic structures, such as the eye and ear, that house primary sensory neurons further enhance the detection of relevant stimuli. PMID:22110046

  20. Glycan and lectin biosensors

    PubMed Central

    Belický, Štefan; Katrlík, Jaroslav

    2016-01-01

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  1. Noninvasive biosensor for hypoglycemia

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, Karunakaran

    2003-01-01

    Hypoglycemia-abnormal decrease in blood sugar- is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This is especially a concern in early childhood years when the nervous system is still developing. Hypoglycemic unawareness (in which the body"s normal ability to signal low blood sugar doesn"t work and an oncoming low blood sugar episode proceeds undetected) is a particularly frightening problem for many people with diabetes. Researchers have now uncovered evidence that repeated bouts of insulin-induced hypoglycemia can harm the brain over time, causing confusion, abnormal behavior, loss of consciousness, and seizures. Extreme cases have resulted in coma and death. In this paper, a non-invasive biosensor in a wrist watch along with a wireless data downloading system is proposed.

  2. The electrophotonic silicon biosensor.

    PubMed

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E; Scullion, Mark G; Krauss, Thomas F; Johnson, Steven D

    2016-01-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale. PMID:27624590

  3. Glycan and lectin biosensors.

    PubMed

    Belický, Štefan; Katrlík, Jaroslav; Tkáč, Ján

    2016-06-30

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  4. DNA nanotechnology-enabled biosensors.

    PubMed

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors. PMID:26212206

  5. Slotted photonic crystal biosensors

    NASA Astrophysics Data System (ADS)

    Scullion, Mark Gerard

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them result in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This thesis presents a new platform for optical biosensors, namely slotted photonic crystals, which engender higher sensitivities due to their ability to confine, spatially and temporally, the peak of optical mode within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. High sensitivities were observed in smaller structures than most competing devices in the literature. Initial tests with cellular material for real applications was also performed, and shown to be of promise. In addition, groundwork to make an integrated device that includes the spectrometer function was also carried out showing that slotted photonic crystals themselves can be used for on-chip wavelength specific filtering and spectroscopy, whilst gas-free microvalves for automation were also developed. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  6. Sensory Correlations in Autism

    ERIC Educational Resources Information Center

    Kern, Janet K.; Trivedi, Madhukar H.; Grannemann, Bruce D.; Garver, Carolyn R.; Johnson, Danny G.; Andrews, Alonzo A.; Savla, Jayshree S.; Mehta, Jyutika A.; Schroeder, Jennifer L.

    2007-01-01

    This study examined the relationship between auditory, visual, touch, and oral sensory dysfunction in autism and their relationship to multisensory dysfunction and severity of autism. The Sensory Profile was completed on 104 persons with a diagnosis of autism, 3 to 56 years of age. Analysis showed a significant correlation between the different…

  7. NEUROPHYSIOLOGICAL EVALUATION OF SENSORY SYSTEMS'

    EPA Science Inventory

    Exposure to many neurotoxic compounds has been shown to produce a sensory system dysfunction. Neurophysiological assessment of sensory function in humans and animal models often uses techniques known as sensory evoked potentials. Because both humans and animals show analogous res...

  8. BIOSENSORS FOR ENVIRONMENTAL MONITORING: A REGULATORY PERSPECTIVE

    EPA Science Inventory

    Biosensors show the potential to complement laboratory-based analytical methods for environmental applications. Although biosensors for potential environmental-monitoring applications have been reported for a wide range of environmental pollutants, from a regulatory perspective, ...

  9. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    EPA Science Inventory

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  10. Biosensor for metal analysis and speciation

    DOEpatents

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  11. Porous silicon biosensor: current status.

    PubMed

    Dhanekar, Saakshi; Jain, Swati

    2013-03-15

    Biosensing technologies cater to modern day diagnostics and point of care multi-specialty clinics, hospitals and laboratories. Biosensors aggregate the sensitivity of detection methodologies and constitutional selectivity of biomolecules. Endeavors to develop highly sensitive, fast, stable and low cost biosensors have been made possible by extensive and arduous research. Immense research work is going on for detection of molecules using various materials as immobilization substrate and sensing elements. Amongst materials being used as bio-sensing substrates, nano-porous silicon (PS) has amassed attention and gained popularity in recent years. It has captivating and tunable features like ease of fabrication, special optico-physico properties, tailored morphological structure and versatile surface chemistry enhancing its prospects as transducer for fabricating biosensors. The present review describes the fabrication of PS and its biosensing capabilities for detection of various analytes including, but not limited to, glucose, DNA, antibodies, bacteria and viruses. Attention has been consecrated on the various methodologies such as electrical, electrochemical, optical and label free techniques along with the performances of these biosensors. It concludes with some future prospects and challenges of PS based biosensors. PMID:23122704

  12. DNA biosensors that reason.

    PubMed

    Sainz de Murieta, Iñaki; Rodríguez-Patón, Alfonso

    2012-08-01

    Despite the many designs of devices operating with the DNA strand displacement, surprisingly none is explicitly devoted to the implementation of logical deductions. The present article introduces a new model of biosensor device that uses nucleic acid strands to encode simple rules such as "IF DNA_strand(1) is present THEN disease(A)" or "IF DNA_strand(1) AND DNA_strand(2) are present THEN disease(B)". Taking advantage of the strand displacement operation, our model makes these simple rules interact with input signals (either DNA or any type of RNA) to generate an output signal (in the form of nucleotide strands). This output signal represents a diagnosis, which either can be measured using FRET techniques, cascaded as the input of another logical deduction with different rules, or even be a drug that is administered in response to a set of symptoms. The encoding introduces an implicit error cancellation mechanism, which increases the system scalability enabling longer inference cascades with a bounded and controllable signal-noise relation. It also allows the same rule to be used in forward inference or backward inference, providing the option of validly outputting negated propositions (e.g. "diagnosis A excluded"). The models presented in this paper can be used to implement smart logical DNA devices that perform genetic diagnosis in vitro. PMID:22406690

  13. Biosensors for termite control

    NASA Astrophysics Data System (ADS)

    Farkhanda, M.

    2013-12-01

    Termites are major urban pests in Pakistan and cause damage to wooden structures and buildings. Termite management has two parts: prevention and control. The most difficult part of termite control is termite detection as most of them are subterranean in Pakistan and have tunneling habit.Throughout the world, chemical termiticides are going to be replaced by baits, microwave and sensor technology. Termite species are distinct biologically and have specific foraging behaviors. Termite Detection Radar, Moisture meter and Remote Thermal Sensor with Laser are available throughout the world. These can detect termites underground and use fewer chemicals than traditional methods. For wooden buildings, a termite sensor and an intrusion detection system for detecting termites are designed. A pair of electrodes is disposed inside the container. A pair of terminals is connected to these electrodes, these extend outside the container. Termites are detected by a change of conductivity between the electrodes, when termites are detected a warning device generates a warning signal. In Pakistan, there is dire need to develop such biosensoring devices locally, then apply control methods that would save money and protect the environment.

  14. Fluidics cube for biosensor miniaturization

    NASA Technical Reports Server (NTRS)

    Dodson, J. M.; Feldstein, M. J.; Leatzow, D. M.; Flack, L. K.; Golden, J. P.; Ligler, F. S.

    2001-01-01

    To create a small, portable, fully automated biosensor, a compact means of fluid handling is required. We designed, manufactured, and tested a "fluidics cube" for such a purpose. This cube, made of thermoplastic, contains reservoirs and channels for liquid samples and reagents and operates without the use of any internal valves or meters; it is a passive fluid circuit that relies on pressure relief vents to control fluid movement. We demonstrate the ability of pressure relief vents to control fluid movement and show how to simply manufacture or modify the cube. Combined with the planar array biosensor developed at the Naval Research Laboratory, it brings us one step closer to realizing our goal of a handheld biosensor capable of analyzing multiple samples for multiple analytes.

  15. Modelling a Peroxidase-based Optical Biosensor

    PubMed Central

    Baronas, Romas; Gaidamauskaite, Evelina; Kulys, Juozas

    2007-01-01

    The response of a peroxidase-based optical biosensor was modelled digitally. A mathematical model of the optical biosensor is based on a system of non-linear reaction-diffusion equations. The modelling biosensor comprises two compartments, an enzyme layer and an outer diffusion layer. The digital simulation was carried out using finite difference technique. The influence of the substrate concentration as well as of the thickness of both the enzyme and diffusion layers on the biosensor response was investigated. Calculations showed complex kinetics of the biosensor response, especially at low concentrations of the peroxidase and of the hydrogen peroxide.

  16. Biosensors for hepatitis B virus detection.

    PubMed

    Yao, Chun-Yan; Fu, Wei-Ling

    2014-09-21

    A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed. PMID:25253948

  17. Neurocontrol in sensory cortex

    NASA Astrophysics Data System (ADS)

    Ritt, Jason; Nandi, Anirban; Schroeder, Joseph; Ching, Shinung

    Technology to control neural ensembles is rapidly advancing, but many important challenges remain in applications, such as design of controls (e.g. stimulation patterns) with specificity comparable to natural sensory encoding. We use the rodent whisker tactile system as a model for active touch, in which sensory information is acquired in a closed loop between feedforward encoding of sensory information and feedback guidance of sensing motions. Motivated by this system, we present optimal control strategies that are tailored for underactuation (a large ratio of neurons or degrees of freedom to stimulation channels) and limited observability (absence of direct measurement of the system state), common in available stimulation technologies for freely behaving animals. Using a control framework, we have begun to elucidate the feedback effect of sensory cortex activity on sensing in behaving animals. For example, by optogenetically perturbing primary sensory cortex (SI) activity at varied timing relative to individual whisker motions, we find that SI modulates future sensing behavior within 15 msec, on a whisk by whisk basis, changing the flow of incoming sensory information based on past experience. J.T.R. and S.C. hold Career Awards at the Scientific Interface from the Burroughs Wellcome Fund.

  18. Examining Sensory Quadrants in Autism

    ERIC Educational Resources Information Center

    Kern, Janet K.; Garver, Carolyn R.; Carmody, Thomas; Andrews, Alonzo A.; Trivedi, Madhukar H.; Mehta, Jyutika A.

    2007-01-01

    The purpose of this study was to examine sensory quadrants in autism based on Dunn's Theory of Sensory Processing. The data for this study was collected as part of a cross-sectional study that examined sensory processing (using the Sensory Profile) in 103 persons with autism, 3-43 years of age, compared to 103 age- and gender-matched community…

  19. Biosensors and their applications – A review

    PubMed Central

    Mehrotra, Parikha

    2016-01-01

    The various types of biosensors such as enzyme-based, tissue-based, immunosensors, DNA biosensors, thermal and piezoelectric biosensors have been deliberated here to highlight their indispensable applications in multitudinous fields. Some of the popular fields implementing the use of biosensors are food industry to keep a check on its quality and safety, to help distinguish between the natural and artificial; in the fermentation industry and in the saccharification process to detect precise glucose concentrations; in metabolic engineering to enable in vivo monitoring of cellular metabolism. Biosensors and their role in medical science including early stage detection of human interleukin-10 causing heart diseases, rapid detection of human papilloma virus, etc. are important aspects. Fluorescent biosensors play a vital role in drug discovery and in cancer. Biosensor applications are prevalent in the plant biology sector to find out the missing links required in metabolic processes. Other applications are involved in defence, clinical sector, and for marine applications. PMID:27195214

  20. Biosensors in Clinical Practice: Focus on Oncohematology

    PubMed Central

    Fracchiolla, Nicola S.; Artuso, Silvia; Cortelezzi, Agostino

    2013-01-01

    Biosensors are devices that are capable of detecting specific biological analytes and converting their presence or concentration into some electrical, thermal, optical or other signal that can be easily analysed. The first biosensor was designed by Clark and Lyons in 1962 as a means of measuring glucose. Since then, much progress has been made and the applications of biosensors are today potentially boundless. This review is limited to their clinical applications, particularly in the field of oncohematology. Biosensors have recently been developed in order to improve the diagnosis and treatment of patients affected by hematological malignancies, such as the biosensor for assessing the in vitro pre-treatment efficacy of cytarabine in acute myeloid leukemia, and the fluorescence resonance energy transfer-based biosensor for assessing the efficacy of imatinib in chronic myeloid leukemia. The review also considers the challenges and future perspectives of biosensors in clinical practice. PMID:23673681

  1. Biosensors and their applications - A review.

    PubMed

    Mehrotra, Parikha

    2016-01-01

    The various types of biosensors such as enzyme-based, tissue-based, immunosensors, DNA biosensors, thermal and piezoelectric biosensors have been deliberated here to highlight their indispensable applications in multitudinous fields. Some of the popular fields implementing the use of biosensors are food industry to keep a check on its quality and safety, to help distinguish between the natural and artificial; in the fermentation industry and in the saccharification process to detect precise glucose concentrations; in metabolic engineering to enable in vivo monitoring of cellular metabolism. Biosensors and their role in medical science including early stage detection of human interleukin-10 causing heart diseases, rapid detection of human papilloma virus, etc. are important aspects. Fluorescent biosensors play a vital role in drug discovery and in cancer. Biosensor applications are prevalent in the plant biology sector to find out the missing links required in metabolic processes. Other applications are involved in defence, clinical sector, and for marine applications. PMID:27195214

  2. Electrical Percolation Based Biosensors

    PubMed Central

    Bruck, Hugh Alan; Yang, Minghui; Kostov, Yordan; Rasooly, Avraham

    2013-01-01

    A new approach to label free biosensing has been developed based on the principle of “electrical percolation”. In electrical percolation, long-range electrical connectivity is formed in randomly oriented and distributed systems of discrete elements. By applying this principle to biological interactions, it is possible to measure biological components both directly and electronically. The main element for electrical percolation biosensor is the biological semiconductor (BSC) which is a multi-layer 3-D carbon nanotube-antibody network. In the BSC, molecular interactions, such as binding of antigens to the antibodies, disrupt the network continuity causing increased resistance of the network. BSCs can be fabricated by immobilizing conducting elements, such as pre-functionalized single-walled carbon nanotubes (SWNTs)-antibody complex, directly onto a substrate, such as a Poly(methyl methacrylate) (PMMA) surface (also known as plexi-glass or Acrylic). BSCs have been demonstrated for direct (label-free) electronic measurements of antibody-antigen binding using SWNTs. If the concentration of the SWNT network is slightly above the electrical percolation threshold, then binding of a specific antigen to the pre-functionalized SWNT dramatically increases the electrical resistance due to changes in the tunneling between the SWNTs. Using anti-Staphylococcal enterotoxin B (SEB) IgG as a “gate” and SEB as an “actuator”, it was demonstrated that the BSC was able to detect SEB at concentrations of 1 ng/ml. Based on this concept, an automated configuration for BSCs is described here that enables real time continuous detection. The new BSC configuration may permit assembly of multiple sensors on the same chip to create “Biological Central Processing Units (CPUs)” with multiple biological elements, capable of processing and sorting out information on multiple analytes simultaneously. PMID:24041756

  3. A luminescent nisin biosensor

    NASA Astrophysics Data System (ADS)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  4. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  5. DESIGN OF INTEGRATING WAVEGUIDE BIOSENSOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Integrating Waveguide Biosensor allows for rapid and sensitive detection of pathogenic agents, cells and proteins via immunoassay or PCR products. The analytes are captured on the surface of the waveguide and then tagged with fluorescent labels. The waveguides are illuminated by excitation light...

  6. Improved Ion-Channel Biosensors

    NASA Technical Reports Server (NTRS)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  7. A high content assay for biosensor validation and for examining stimuli that affect biosensor activity

    PubMed Central

    Slattery, Scott D.; Hahn, Klaus M.

    2015-01-01

    Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor’s maximally activated and inactivated state, and examine response to specific proteins. This involves considerable labor and expense, as expression conditions must be optimized to saturate the biosensor with the regulator, and multiple replicates and controls are required. We describe here a protocol for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays allows visual inspection (eg for cell health and biosensor or regulator localization). Optimization of single chain and dual chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for variations in upstream molecules. PMID:25447074

  8. Sensory activity affects sensory axon development in C. elegans.

    PubMed

    Peckol, E L; Zallen, J A; Yarrow, J C; Bargmann, C I

    1999-05-01

    The simple nervous system of the nematode C. elegans consists of 302 neurons with highly reproducible morphologies, suggesting a hard-wired program of axon guidance. Surprisingly, we show here that sensory activity shapes sensory axon morphology in C. elegans. A class of mutants with deformed sensory cilia at their dendrite endings have extra axon branches, suggesting that sensory deprivation disrupts axon outgrowth. Mutations that alter calcium channels or membrane potential cause similar defects. Cell-specific perturbations of sensory activity can cause cell-autonomous changes in axon morphology. Although the sensory axons initially reach their targets in the embryo, the mutations that alter sensory activity cause extra axon growth late in development. Thus, perturbations of activity affect the maintenance of sensory axon morphology after an initial pattern of innervation is established. This system provides a genetically tractable model for identifying molecular mechanisms linking neuronal activity to nervous system structure. PMID:10101123

  9. Tiny Medicine: Nanomaterial-Based Biosensors

    PubMed Central

    Yun, Yeo-Heung; Eteshola, Edward; Bhattacharya, Amit; Dong, Zhongyun; Shim, Joon-Sub; Conforti, Laura; Kim, Dogyoon; Schulz, Mark J.; Ahn, Chong H.; Watts, Nelson

    2009-01-01

    Tiny medicine refers to the development of small easy to use devices that can help in the early diagnosis and treatment of disease. Early diagnosis is the key to successfully treating many diseases. Nanomaterial-based biosensors utilize the unique properties of biological and physical nanomaterials to recognize a target molecule and effect transduction of an electronic signal. In general, the advantages of nanomaterial-based biosensors are fast response, small size, high sensitivity, and portability compared to existing large electrodes and sensors. Systems integration is the core technology that enables tiny medicine. Integration of nanomaterials, microfluidics, automatic samplers, and transduction devices on a single chip provides many advantages for point of care devices such as biosensors. Biosensors are also being used as new analytical tools to study medicine. Thus this paper reviews how nanomaterials can be used to build biosensors and how these biosensors can help now and in the future to detect disease and monitor therapies. PMID:22291565

  10. Integrated optical biosensor for rapid detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2016-02-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  11. Integrated optical biosensor for rapid detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2015-12-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  12. Plasmonic nanoparticles: Towards the fabrication of biosensors

    NASA Astrophysics Data System (ADS)

    Shen, Hui

    2015-07-01

    Au and Ag nanoparticles are mainly employed in the fabrication of biosensors owing to their unique optical properties compared to other noble metal nanoparticles. Many biosensors are fabricated for the rapid detection of different analytes such as organic and inorganic molecules, biomolecules like DNA, proteins, biotoxins and pathogens. In this mini review we mainly discuss on the usage of Au and Ag nanoparticles for the fabrication of colorimetric, SERS and two photon based photoluminescence biosensors.

  13. Recent Development in Optical Fiber Biosensors

    PubMed Central

    Bosch, María Espinosa; Sánchez, Antonio Jesús Ruiz; Rojas, Fuensanta Sánchez; Ojeda, Catalina Bosch

    2007-01-01

    Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  14. Structured Sensory Trauma Interventions

    ERIC Educational Resources Information Center

    Steele, William; Kuban, Caelan

    2010-01-01

    This article features the National Institute of Trauma and Loss in Children (TLC), a program that has demonstrated via field testing, exploratory research, time series studies, and evidence-based research studies that its Structured Sensory Intervention for Traumatized Children, Adolescents, and Parents (SITCAP[R]) produces statistically…

  15. Recording Sensory Words

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2007-01-01

    From children's viewpoints, what they experience in the world is what the world is like--for everyone. "What do others experience with their senses when they are in the same situation?" is a question that young children can explore by collecting data as they use a "feely box," or take a "sensory walk." There are many ways to focus the children's…

  16. Studying Sensory Perception.

    ERIC Educational Resources Information Center

    Ackerly, Spafford C.

    2001-01-01

    Explains the vestibular organ's role in balancing the body and stabilizing the visual world using the example of a hunter. Describes the relationship between sensory perception and learning. Recommends using optical illusions to illustrate the distinctions between external realities and internal perceptions. (Contains 13 references.) (YDS)

  17. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  18. Zinc oxide interdigitated electrode for biosensor application

    NASA Astrophysics Data System (ADS)

    Sin L., L.; Arshad, M. K. Md.; Fathil, M. F. M.; Adzhri, R.; M. Nuzaihan M., N.; Ruslinda, A. R.; Gopinath, Subash C. B.; Hashim, U.

    2016-07-01

    In biosensors, zinc oxide (ZnO) thin film plays a crucial role in term of stability, sensitivity, biocompatibility and low cost. Interdigitated electrode (IDE) design is one of the device architecture in biosensor for label free, stability and sensitivity. In this paper, we discuss the fabrication of zinc oxide deposited on the IDE as a transducer for sensing of biomolecule. The formation of APTES had increase the performance of the surface functionalization..Furthermore we extend the discuss on the surface functionalization process which is utilized for probe attachment onto the surface of biosensor through surface immobilization process, thus enables the sensing of biomolecules for biosensor application.

  19. Survey of the 1998 optical biosensor literature.

    PubMed

    Myszka, D G

    1999-01-01

    The utilization of optical biosensors to study molecular interactions continues to expand. In 1998, 384 articles relating to the use of commercial biosensors were published in 130 different journals. While significant strides in new applications and methodology were made, a majority of the biosensor literature is of rather poor quality. Basic information about experimental conditions is often not presented and many publications fail to display the experimental data, bringing into question the credibility of the results. This review provides suggestions on how to collect, analyze and report biosensor data. PMID:10611648

  20. Sensory analysis of lipstick.

    PubMed

    Yap, K C S; Aminah, A

    2011-06-01

    Sensory analysis of lipstick product by trained panellists started with recruiting female panels who are lipstick users, in good health condition and willing to be a part of sensory members. This group of people was further scrutinized with duo-trio method using commercial lipstick samples that are commonly used among them. About 40% of the 15 panels recruited were unable to differentiate the lipstick samples they usually use better than chance. The balance of nine panels that were corrected at least with 65% across all trials in panels screening process was formed a working group to develop sensory languages as a means of describing product similarities and differences and a scoring system. Five sessions with each session took about 90 min were carried out using 10 types of lipsticks with different waxes mixture ratio in the formulation together with six commercial lipsticks that are the most common to the panels. First session was focus on listing out the panels' perception towards the characteristic of the lipstick samples after normal application on their lips. Second session was focus on the refining and categorizing the responses gathered from the first session and translated into sensory attributes with its definition. Third session was focus on the scoring system. Fourth and fifth sessions were repetition of the third session to ensure consistency. In a collective effort of the panels, sensory attributes developed for lipstick were Spreadability, Off flavour, Hardness, Smoothness, Moist, Not messy, Glossy and Greasy. Analysis of variance was able to provide ample evidence on gauging the panel performance. A proper panels selecting and training was able to produce a reliable and sensitive trained panel for evaluating the product based on the procedures being trained. PMID:21272038

  1. Biosensor based on magnetostrictive microcantilever

    NASA Astrophysics Data System (ADS)

    Li, Suiqiong; Orona, Lisa; Li, Zhimin; Cheng, Z.-Y.

    2006-02-01

    Magnetostrictive microcantilever (MSMC) as remote biosensor platform is reported. The mass sensitivity of the MSMCs is simulated and compared with the other microcantilevers. MSMCs with a thickness of 30-35μm and different lengths and widths were fabricated from the magnetostrictive metal glass coated with a copper layer by sputtering. The resonance behavior of the MSMCs was experimentally determined. It is experimentally found that the MSMCs work well in either air or liquid. For MSMCs operated in air, a Q value of more than 500 was obtained. For MSMCs operated in water, the Q value reaches more than 30. The application of a MSMC as a biosensor platform is demonstrated by in situ detection of the yeast cells in water using the MSMC sensor.

  2. Modular neuron-based body estimation: maintaining consistency over different limbs, modalities, and frames of reference.

    PubMed

    Ehrenfeld, Stephan; Herbort, Oliver; Butz, Martin V

    2013-01-01

    This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control. PMID:24191151

  3. Modular neuron-based body estimation: maintaining consistency over different limbs, modalities, and frames of reference

    PubMed Central

    Ehrenfeld, Stephan; Herbort, Oliver; Butz, Martin V.

    2013-01-01

    This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control. PMID:24191151

  4. Optical biosensors for environmental monitoring

    SciTech Connect

    Tamiya, Eiichi

    1996-12-31

    Environmental assessment is important to evaluate the overall health and ecological impact of domestic and industrial wastes. Biosensors are kinds of analytical devices which consist of biomaterials and transducers. Photoluminescence of recombinant E. coli containing lux related genes were used as indicators of environmental pollutions. This paper deals with sensitive and rapid optical sensing systems for monitoring BOD (Biochemical Oxygen Demand), toxic compounds and mutagens.

  5. Plasmonic Nanostructures for Biosensor Applications

    NASA Astrophysics Data System (ADS)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  6. Biosensors for DNA sequence detection

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  7. Understanding Sensory Integration. ERIC Digest.

    ERIC Educational Resources Information Center

    DiMatties, Marie E.; Sammons, Jennifer H.

    This brief paper summarizes what is known about sensory integration and sensory integration dysfunction (DSI). It outlines evaluation of DSI, treatment approaches, and implications for parents and teachers, including compensatory strategies for minimizing the impact of DSI on a child's life. Review of origins of sensory integration theory in the…

  8. Biosensors based on nanomechanical systems.

    PubMed

    Tamayo, Javier; Kosaka, Priscila M; Ruz, José J; San Paulo, Álvaro; Calleja, Montserrat

    2013-02-01

    The advances in micro- and nanofabrication technologies enable the preparation of increasingly smaller mechanical transducers capable of detecting the forces, motion, mechanical properties and masses that emerge in biomolecular interactions and fundamental biological processes. Thus, biosensors based on nanomechanical systems have gained considerable relevance in the last decade. This review provides insight into the mechanical phenomena that occur in suspended mechanical structures when either biological adsorption or interactions take place on their surface. This review guides the reader through the parameters that change as a consequence of biomolecular adsorption: mass, surface stress, effective Young's modulus and viscoelasticity. The mathematical background needed to correctly interpret the output signals from nanomechanical biosensors is also outlined here. Other practical issues reviewed are the immobilization of biomolecular receptors on the surface of nanomechanical systems and methods to attain that in large arrays of sensors. We then describe some relevant realizations of biosensor devices based on nanomechanical systems that harness some of the mechanical effects cited above. We finally discuss the intrinsic detection limits of the devices and the limitation that arises from non-specific adsorption. PMID:23152052

  9. Biosensor of endotoxin and sepsis

    NASA Astrophysics Data System (ADS)

    Shao, Yang; Wang, Xiang; Wu, Xi; Gao, Wei; He, Qing-hua; Cai, Shaoxi

    2001-09-01

    To investigate the relation between biosensor of endotoxin and endotoxin of plasma in sepsis. Method: biosensor of endotoxin was designed with technology of quartz crystal microbalance bioaffinity sensor ligand of endotoxin were immobilized by protein A conjugate. When a sample soliton of plasma containing endotoxin 0.01, 0.03, 0.06, 0.1, 0.5, 1.0Eu, treated with perchloric acid and injected into slot of quartz crystal surface respectively, the ligand was released from the surface of quartz crystal to form a more stable complex with endotoxin in solution. The endotoxin concentration corresponded to the weight change on the crystal surface, and caused change of frequency that occurred when desorbed. The result was biosensor of endotoxin might detect endotoxin of plasma in sepsis, measurements range between 0.05Eu and 0.5Eu in the stop flow mode, measurement range between 0.1Eu and 1Eu in the flow mode. The sensor of endotoxin could detect the endotoxin of plasm rapidly, and use for detection sepsis in clinically.

  10. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  11. CRYPTOGENIC SENSORY POLYNEUROPATHY

    PubMed Central

    Pasnoor, Mamatha; Dimachkie, Mazen M.; Barohn, Richard J.

    2014-01-01

    Chronic sensory or sensorimotor polyneuropathy is a common cause for referral to neurologists. Despite extensive diagnostic testing, up to one-third of these patients remain without a known cause. They are referred to as having cryptogenic sensory peripheral neuropathy (CSPN). The age of onset is variable but usually in the sixth to seventh decade of life, affecting men and women equally. CSPN symptoms progress slowly, most patients present with distal leg paresthesias or pain that progressed over years to involve the hands. On examination, there may be additional mild toe flexion and extension weakness. Electrophysiologic testing and histology reveals axonal neuropathy. Prognosis is usually favorable as most patients maintain independent ambulation. Besides patient education and reassurance, management is focused on pharmacotherapy of neuropathic pain (see Treatment of Painful Peripheral Neuropathy chapter) and physical therapy for balance training and occasionally assistive devices. PMID:23642719

  12. Segregated labeling of olfactory bulb projection neurons based on their birthdates.

    PubMed

    Imamura, Fumiaki; Greer, Charles A

    2015-01-01

    Mitral and tufted cells are the projection neurons of the olfactory bulb (OB). We previously reported that somata location and innervation patterns were different between early- and late-born mitral cells (Imamura et al., 2011). Here, we introduced a plasmid that drives the expression of a GFP gene into the mouse OB using in utero electroporation, and demonstrated that we can deliver the plasmid vectors into distinct subsets of OB projection neurons by changing the timing of electroporation after fertilisation. The electroporation performed at embryonic day (E)10 preferentially labeled mitral cells in the accessory OB and main OB mitral cells in dorsomedial mitral cell layer (MCL). In contrast, the E12 electroporation introduced the plasmid vectors preferentially into main OB mitral cells in the ventrolateral MCL and tufted cells. Combining these data with BrdU injections, we confirmed that E10 and E12 electroporation preferentially labeled early- and late-born projection neurons, respectively. This work introduces a novel method for segregated labeling of mouse olfactory bulb projection neurons based on their birthdates. With this technique we found that early- and late-born projection neurons extend their secondary dendrites in the deep and superficial external plexiform layer (EPL), respectively. Although a similar segregation has been suggested for mitral vs. tufted cell dendrites, we found mitral cells projecting secondary dendrites into the superficial EPL in E12-electroporated main OB. Our observations indicate that timing of neurogenesis regulates not only somata location and innervation patterns but also the laminar organisation of projection neuron dendrites in the EPL. PMID:25393912

  13. Segregated labeling of olfactory bulb projection neurons based on their birthdates

    PubMed Central

    Imamura, Fumiaki; Greer, Charles A.

    2014-01-01

    Mitral and tufted cells are the projection neurons of the olfactory bulb (OB). We previously reported that somata location and innervation patterns were different between early- and late-born mitral cells (Imamura et al., 2011). Here, we introduced a plasmid that drives the expression of a GFP gene into the mouse OB using in utero electroporation, and demonstrated that we can deliver the plasmid vectors into distinct subsets of OB projection neurons by changing the timing of electroporation after fertilization. The electroporation performed at embryonic day (E) 10 preferentially labeled mitral cells in the accessory OB and main OB mitral cells in dorsomedial mitral cell layer (MCL). In contrast, the E12 electroporation introduced the plasmid vectors preferentially into main OB mitral cells in the ventrolateral MCL and tufted cells. Combining these data with BrdU injections, we confirmed that E10 and E12 electroporation preferentially labeled early- and late-born projection neurons, respectively. This work introduces a novel method for segregated labeling of mouse olfactory bulb projection neurons based on their birthdates. With this technique we found that early- and late-born projection neurons extend their secondary dendrites in the deep and superficial external plexiform layer (EPL), respectively. Although a similar segregation has been suggested for mitral versus tufted cell dendrites, we found mitral cells projecting secondary dendrites into the superficial EPL in E12 electroporated main OB. Our observations indicate that timing of neurogenesis regulates not only somata location and innervation patterns, but also the laminar organization of projection neuron dendrites in the EPL. PMID:25393912

  14. A creatinine biosensor based on admittance measurement

    NASA Astrophysics Data System (ADS)

    Ching, Congo Tak-Shing; Sun, Tai-Ping; Jheng, Deng-Yun; Tsai, Hou-Wei; Shieh, Hsiu-Li

    2015-08-01

    Regular check of blood creatinine level is very important as it is a measurement of renal function. Therefore, the objective of this study is to develop a simple and reliable creatinine biosensor based on admittance measurement for precise determination of creatinine. The creatinine biosensor was fabricated with creatinine deiminase immobilized on screen-printed carbon electrodes. Admittance measurement at a specific frequency ranges (22.80 - 84.71 Hz) showed that the biosensor has an excellent linear (r2 > 0.95) response range (50 - 250 uM), which covers the normal physiological and pathological ranges of blood creatinine levels. Intraclass correlation coefficient (ICC) showed that the biosensor has excellent reliability and validity (ICC = 0.98). In conclusion, a simple and reliable creatinine biosensor was developed and it is capable of precisely determining blood creatinine levels in both the normal physiological and pathological ranges.

  15. Biosensoric potential of microbial fuel cells.

    PubMed

    Schneider, György; Kovács, Tamás; Rákhely, Gábor; Czeller, Miklós

    2016-08-01

    Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based. PMID:27401925

  16. Renewable Surface Biosensors with Optical Detection

    SciTech Connect

    Bruckner-Lea, Cindy J.; Ackerman, Eric J.; Dockendorff, Brian P.; Holman, David A.; Grate, Jay W.

    2001-04-30

    One major challenge in the development of biosensors is the limited lifetime of a chemically selective surface that includes biomolecules. Renewable surface biosensors address this issue by using fresh aliquots of derivatized microbeads for each analysis. The analyte detection can then occur on the microbeads, or downstream from the microbeads. In this paper, we will describe two types of renewable surface biosensors. The first renewable biosensor system includes on-column optical detection for monitoring the binding of biomolecules onto protein or DNA-derivatized Sepharose beads. The second renewable biosensor system includes detection downstream from the microparticles and is based on the use of derivatized magnetic particles for selective binding. The magnetic particles are fluidically captured and released in a sequential injection system to allow the automation of an Enzyme Linked ImmunoSorbent Assay.

  17. Renewable Surface Biosensors With Optical Detection

    SciTech Connect

    Bruckner-Lea, Cynthia J.; Ackerman, Eric J.; Dockendorff, Brian P.; Holman, David A.; Grate, Jay W.

    2001-12-01

    One major challenge in the development of biosensors is the limited lifetime of a chemically selective surface that includes biomolecules. Renewable surface biosensors address this issue by using fresh aliquots of derivatized microbeads for each analysis. The analyte detection can then occur on the microbeads, or downstream from the microbeads. In this paper, we will describe two types of renewable surface biosensors. The first renewable biosensor system includes on-column optical detection for monitoring the binding of biomolecules onto protein or DNA-derivatized Sepharose beads. The second renewable biosensor system includes detection downstream from the microparticles and is based on the use of derivatized magnetic particles for selective binding. The magnetic particles are fluidically captured and released in a sequential injection system to allow the automation of an Enzyme Linked ImmunoSorbent Assay.

  18. Nanomaterials based biosensors for cancer biomarker detection

    NASA Astrophysics Data System (ADS)

    Malhotra, Bansi D.; Kumar, Saurabh; Mouli Pandey, Chandra

    2016-04-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection.

  19. Super-Sensitive and Robust Biosensors from Supported Polymer Bilayers

    SciTech Connect

    Paxton, Walter F.

    2015-09-01

    Biological organisms are potentially the most sensitive and selective biological detection systems known, yet we are currently severely limited in our ability to exploit biological interactions in sensory devices, due in part to the limited stability of biological systems and derived materials. This proposal addresses an important aspect of integrating biological sensory materials in a solid state device. If successful, such technology could enable entirely new classes of robust biosensors that could be miniaturized and deployed in the field. The critical aims of the proposed work were 1) the calibration of a more versatile approach to measuring pH, 2) the use of this method to monitor pH changes caused by the light-induced pumping of protons across vesicles with bacteriorhodopsin integrated into the membranes (either polymer or lipid); 3) the preparation of bilayer assemblies on platinum surfaces; 4) the enhanced detection of lightinduced pH changes driven by bR-loaded supported bilayers. I have developed a methodology that may enable that at interfaces and developed a methodology to characterize the functionality of bilayer membranes with reconstituted membrane proteins. The integrity of the supported bilayer films however must be optimized prior to the full realization of the work originally envisioned in the original proposal. Nevertheless, the work performed on this project and the encouraging results it has produced has demonstrated that these goals are challenging yet within reach.

  20. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells

    PubMed Central

    Bohórquez, Diego V.; Shahid, Rafiq A.; Erdmann, Alan; Kreger, Alex M.; Wang, Yu; Calakos, Nicole; Wang, Fan; Liddle, Rodger A.

    2015-01-01

    Satiety and other core physiological functions are modulated by sensory signals arising from the surface of the gut. Luminal nutrients and bacteria stimulate epithelial biosensors called enteroendocrine cells. Despite being electrically excitable, enteroendocrine cells are generally thought to communicate indirectly with nerves through hormone secretion and not through direct cell-nerve contact. However, we recently uncovered in intestinal enteroendocrine cells a cytoplasmic process that we named neuropod. Here, we determined that neuropods provide a direct connection between enteroendocrine cells and neurons innervating the small intestine and colon. Using cell-specific transgenic mice to study neural circuits, we found that enteroendocrine cells have the necessary elements for neurotransmission, including expression of genes that encode pre-, post-, and transsynaptic proteins. This neuroepithelial circuit was reconstituted in vitro by coculturing single enteroendocrine cells with sensory neurons. We used a monosynaptic rabies virus to define the circuit’s functional connectivity in vivo and determined that delivery of this neurotropic virus into the colon lumen resulted in the infection of mucosal nerves through enteroendocrine cells. This neuroepithelial circuit can serve as both a sensory conduit for food and gut microbes to interact with the nervous system and a portal for viruses to enter the enteric and central nervous systems. PMID:25555217

  1. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells.

    PubMed

    Bohórquez, Diego V; Shahid, Rafiq A; Erdmann, Alan; Kreger, Alex M; Wang, Yu; Calakos, Nicole; Wang, Fan; Liddle, Rodger A

    2015-02-01

    Satiety and other core physiological functions are modulated by sensory signals arising from the surface of the gut. Luminal nutrients and bacteria stimulate epithelial biosensors called enteroendocrine cells. Despite being electrically excitable, enteroendocrine cells are generally thought to communicate indirectly with nerves through hormone secretion and not through direct cell-nerve contact. However, we recently uncovered in intestinal enteroendocrine cells a cytoplasmic process that we named neuropod. Here, we determined that neuropods provide a direct connection between enteroendocrine cells and neurons innervating the small intestine and colon. Using cell-specific transgenic mice to study neural circuits, we found that enteroendocrine cells have the necessary elements for neurotransmission, including expression of genes that encode pre-, post-, and transsynaptic proteins. This neuroepithelial circuit was reconstituted in vitro by coculturing single enteroendocrine cells with sensory neurons. We used a monosynaptic rabies virus to define the circuit's functional connectivity in vivo and determined that delivery of this neurotropic virus into the colon lumen resulted in the infection of mucosal nerves through enteroendocrine cells. This neuroepithelial circuit can serve as both a sensory conduit for food and gut microbes to interact with the nervous system and a portal for viruses to enter the enteric and central nervous systems. PMID:25555217

  2. Measurement in Sensory Modulation: The Sensory Processing Scale Assessment

    PubMed Central

    Miller, Lucy J.; Sullivan, Jillian C.

    2014-01-01

    OBJECTIVE. Sensory modulation issues have a significant impact on participation in daily life. Moreover, understanding phenotypic variation in sensory modulation dysfunction is crucial for research related to defining homogeneous groups and for clinical work in guiding treatment planning. We thus evaluated the new Sensory Processing Scale (SPS) Assessment. METHOD. Research included item development, behavioral scoring system development, test administration, and item analyses to evaluate reliability and validity across sensory domains. RESULTS. Items with adequate reliability (internal reliability >.4) and discriminant validity (p < .01) were retained. Feedback from the expert panel also contributed to decisions about retaining items in the scale. CONCLUSION. The SPS Assessment appears to be a reliable and valid measure of sensory modulation (scale reliability >.90; discrimination between group effect sizes >1.00). This scale has the potential to aid in differential diagnosis of sensory modulation issues. PMID:25184464

  3. Orientational nanoparticle assemblies and biosensors.

    PubMed

    Ma, Wei; Xu, Liguang; Wang, Libing; Kuang, Hua; Xu, Chuanlai

    2016-05-15

    Assemblies of nanoparticles (NPs) have regional correlated properties with new features compared to individual NPs or random aggregates. The orientational NP assembly contributes greatly to the collective interaction of individual NPs with geometrical dependence. Therefore, orientational NPs assembly techniques have emerged as promising tools for controlling inorganic NPs spatial structures with enhanced interesting properties. The research fields of orientational NP assembly have developed rapidly with characteristics related to the different methods used, including chemical, physical and biological techniques. The current and potential applications, important challenges remain to be investigated. An overview of recent developments in orientational NPs assemblies, the multiple strategies, biosensors and challenges will be discussed in this review. PMID:26708241

  4. Microfabricated silicon biosensors for microphysiometry

    NASA Technical Reports Server (NTRS)

    Bousse, L. J.; Libby, J. M.; Parce, J. W.

    1993-01-01

    Microphysiometers are biosensor devices that measure the metabolic rate of living cells by detecting the rate of extracellular acidification caused by a small number of cells. The cells are entrapped in a microvolume chamber, whose bottom surface is a silicon sensor chip. In a further miniaturization step, we have recently fabricated multichannel flow-through chips that will allow greater throughput and multiplicity. Microphysiometer technology can be applied to the detection of microorganisms. We describe the sensitive detection of bacteria and yeast. Further applications of microphysiometry to the characterization of microorganisms can be anticipated.

  5. Nanotubes, Nanowires, and Nanocantilevers in Biosensor Development

    SciTech Connect

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2007-03-08

    In this chapter, the reviews on biosensor development based on 1-D nanomaterials, CNTs, semiconducting nanowires, and some cantilevers will be introduced. The emphasis of this review will be placed on CNTs and electrochemical/electronic biosensor developments. Section 2 of this chapter gives a detailed description of carbon nanotubes-based biosensor development, from fabrication of carbon nanotubes, the strategies for construction of carbon nanotube based biosensors to their bioapplications. In the section of the applications of CNTs based biosensors, various detection principles, e. g. electrochemical, electronic, and optical method, and their applications are reviewed in detail. Section 3 introduces the method for synthesis of semiconducting nanowires, e.g. silicon nanowires, conducting polymer nanowires and metal oxide nanowires and their applications in DNA and proteins sensing. Section 4 simply describes the development for nanocantilevers based biosensors and their application in DNA and protein diagnosis. Each section starts from a brief introduction and then goes into details. Finally in the Conclusion section, the development of 1-D nanomaterials based biosensor development is summarized.

  6. Electrochemical application of DNA biosensors

    NASA Astrophysics Data System (ADS)

    Mascini, M.; Lucarelli, F.; Palchetti, I.; Marrazza, G.

    2001-09-01

    Disposable electrochemical DNA-based biosensors are reviewed; they have been used for the determination of low- molecular weight compounds with affinity for nucleic acids and for the detection of hybridization reaction. The first application is related to the molecular interaction between surface-linked DNA and pollutants or drugs, in order to develop a simple device for rapid screening of toxic compounds. The determination of such compounds was measured by their effect simple device for rapid screening of toxic compounds. The determination of such compounds was measured by their effect on the oxidation signal of the guanine peak of calf thymus DNA immobilized on the electrode surface and investigated by chronopotentiometric or voltammetric analysis. Applicability to river and wastewater sample is demonstrated. Moreover, disposable electrochemical sensors for the detection of a specific sequence of DNA were realized by immobilizing synthetic single-stranded oligonucleotides onto a graphite screen-printed electrode. The probes because hybridized with different concentrations of complementary sequences present in the sample. The hybrids formed on the electrode surface were evaluated by chronopotentiometric analysis using daunomycin as the indicator of the hybridization reaction. The hybridization was also performed using real samples. Application to apolipoprotein E is described, in this case samples have to be amplified by PCR and then analyzed by the DNA biosensor. The extension of such procedures to samples of environmental interest or to contamination of food is discussed.

  7. Comparative advantages of mechanical biosensors

    PubMed Central

    Arlett, J.L.; Myers, E.B.; Roukes, M.L.

    2013-01-01

    Mechanical interactions are fundamental to biology. Mechanical forces of chemical origin determine motility and adhesion on the cellular scale, and govern transport and affinity on the molecular scale. Biological sensing in the mechanical domain provides unique opportunities to measure forces, displacements and mass changes from cellular and subcellular processes. Nanomechanical systems are particularly well matched in size with molecular interactions, and provide a basis for biological probes with single-molecule sensitivity. Here we review micro- and nanoscale biosensors, with a particular focus on fast mechanical biosensing in fluid by mass- and force-based methods, and the challenges presented by non-specific interactions. We explain the general issues that will be critical to the success of any type of next-generation mechanical biosensor, such as the need to improve intrinsic device performance, fabrication reproducibility and system integration. We also discuss the need for a greater understanding of analyte–sensor interactions on the nanoscale and of stochastic processes in the sensing environment. PMID:21441911

  8. Biosensor Approach to Psychopathology Classification

    PubMed Central

    Koshelev, Misha; Lohrenz, Terry; Vannucci, Marina; Montague, P. Read

    2010-01-01

    We used a multi-round, two-party exchange game in which a healthy subject played a subject diagnosed with a DSM-IV (Diagnostic and Statistics Manual-IV) disorder, and applied a Bayesian clustering approach to the behavior exhibited by the healthy subject. The goal was to characterize quantitatively the style of play elicited in the healthy subject (the proposer) by their DSM-diagnosed partner (the responder). The approach exploits the dynamics of the behavior elicited in the healthy proposer as a biosensor for cognitive features that characterize the psychopathology group at the other side of the interaction. Using a large cohort of subjects (n = 574), we found statistically significant clustering of proposers' behavior overlapping with a range of DSM-IV disorders including autism spectrum disorder, borderline personality disorder, attention deficit hyperactivity disorder, and major depressive disorder. To further validate these results, we developed a computer agent to replace the human subject in the proposer role (the biosensor) and show that it can also detect these same four DSM-defined disorders. These results suggest that the highly developed social sensitivities that humans bring to a two-party social exchange can be exploited and automated to detect important psychopathologies, using an interpersonal behavioral probe not directly related to the defining diagnostic criteria. PMID:20975934

  9. Early Lung Cancer Diagnosis by Biosensors

    PubMed Central

    Zhang, Yuqian; Yang, Dongliang; Weng, Lixing; Wang, Lianhui

    2013-01-01

    Lung cancer causes an extreme threat to human health, and the mortality rate due to lung cancer has not decreased during the last decade. Prognosis or early diagnosis could help reduce the mortality rate. If microRNA and tumor-associated antigens (TAAs), as well as the corresponding autoantibodies, can be detected prior to clinical diagnosis, such high sensitivity of biosensors makes the early diagnosis and prognosis of cancer realizable. This review provides an overview of tumor-associated biomarker identifying methods and the biosensor technology available today. Laboratorial researches utilizing biosensors for early lung cancer diagnosis will be highlighted. PMID:23892596

  10. Remote sensing using an airborne biosensor

    SciTech Connect

    Ligler, F.S.; Anderson, G.P.; Davidson, P.T.; Stenger, D.A.; Ives, J.T.; King, K.D.; Page, G.; Whelan, J.P.

    1998-08-15

    There is no current method for remote identification of aerosolized bacteria. In particular, such a capability is required to warn of a biological warfare attack prior to human exposure. A fiber optic biosensor, capable of running four simultaneous immunoassays, was integrated with an automated fluidics unit, a cyclone-type air sampler, a radio transceiver, and batteries on a small, remotely piloted airplane capable of carrying a 4.5-kg payload. The biosensor system was able to collect aerosolized bacteria in flight, identify them, and transmit the data to the operator on the ground. The results demonstrate the feasibility of integrating a biosensor into a portable, remotely operated system for environmental analysis.

  11. Non-antibody protein-based biosensors.

    PubMed

    Ko Ferrigno, Paul

    2016-06-30

    Biosensors that depend on a physical or chemical measurement can be adversely affected by non-specific interactions. For example, a biosensor designed to measure specifically the levels of a rare analyte can give false positive results if there is even a small amount of interaction with a highly abundant but irrelevant molecule. To overcome this limitation, the biosensor community has frequently turned to antibody molecules as recognition elements because they are renowned for their exquisite specificity. Unfortunately antibodies can often fail when immobilised on inorganic surfaces, and alternative biological recognition elements are needed. This article reviews the available non-antibody-binding proteins that have been successfully used in electrical and micro-mechanical biosensor platforms. PMID:27365032

  12. Non-antibody protein-based biosensors

    PubMed Central

    2016-01-01

    Biosensors that depend on a physical or chemical measurement can be adversely affected by non-specific interactions. For example, a biosensor designed to measure specifically the levels of a rare analyte can give false positive results if there is even a small amount of interaction with a highly abundant but irrelevant molecule. To overcome this limitation, the biosensor community has frequently turned to antibody molecules as recognition elements because they are renowned for their exquisite specificity. Unfortunately antibodies can often fail when immobilised on inorganic surfaces, and alternative biological recognition elements are needed. This article reviews the available non-antibody-binding proteins that have been successfully used in electrical and micro-mechanical biosensor platforms. PMID:27365032

  13. REVIEW ARTICLE: Environmental applications of analytical biosensors

    NASA Astrophysics Data System (ADS)

    Marco, María-Pilar; Barceló, Damià

    1996-11-01

    A review of the fundamental aspects and environmental applications of biosensors is presented. The bases of different transducer principles such as electrochemical, optical and piezoelectric are discussed. Various examples are given of the applications of such principles to develop immunosensor devices to determine common environmental contaminants. Attention is also paid to catalytic biosensors, using enzymes as sensing elements. Biosensor devices based on the use of cholinesterase and various oxidase enzymes such as tyrosinase, laccase, peroxidase and aldehyde dehydrogenase are reported. Some examples are given of the applications of other biomolecules such as whole cells, DNA or proteins, to determine pollution. Validation studies are presented comparing biosensors with chromatographic techniques to determine organophosphorus pesticides and phenolic compounds in environmental samples.

  14. Recent Advances in Nanotechnology Applied to Biosensors

    PubMed Central

    Zhang, Xueqing; Guo, Qin; Cui, Daxiang

    2009-01-01

    In recent years there has been great progress the application of nanomaterials in biosensors. The importance of these to the fundamental development of biosensors has been recognized. In particular, nanomaterials such as gold nanoparticles, carbon nanotubes, magnetic nanoparticles and quantum dots have been being actively investigated for their applications in biosensors, which have become a new interdisciplinary frontier between biological detection and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination. PMID:22399954

  15. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  16. Enzyme Nanoparticles-Based Electronic Biosensor

    SciTech Connect

    Liu, Guodong; Lin, Yuehe; Ostatna, V.; Wang, Joseph

    2005-06-28

    A novel method for fabricating electronic biosensors based on coupling enzyme nanoparticles and self assembly technology is illustrated. Redox horseradish peroxidase nanoparticles were prepared by desolvation with ethanol and subsequent crosslinking with glutaraldehyde. The cross-linked enzyme nanoparticles were functionalized by cysteine to introduce thiol groups on the nanoparticle surface. Immobilized enzyme nanoparticle on the gold electrode by self-assembly kept redox and electrocatalytic activities, and was used to develop reagentless biosensors for H2O2 detection without promoters and mediators. The new approach is simple, low cost and circumvents complications associated with solution systems. It is a universal immobilization method for biosensor, biomedical devices, biofuel cells and enzymatic bioreactors fabrication and expected to open new opportunities for biosensor, clinical diagnostics, and for bioanalysis, in general.

  17. Sensory adaptation for timing perception

    PubMed Central

    Roseboom, Warrick; Linares, Daniel; Nishida, Shin'ya

    2015-01-01

    Recent sensory experience modifies subjective timing perception. For example, when visual events repeatedly lead auditory events, such as when the sound and video tracks of a movie are out of sync, subsequent vision-leads-audio presentations are reported as more simultaneous. This phenomenon could provide insights into the fundamental problem of how timing is represented in the brain, but the underlying mechanisms are poorly understood. Here, we show that the effect of recent experience on timing perception is not just subjective; recent sensory experience also modifies relative timing discrimination. This result indicates that recent sensory history alters the encoding of relative timing in sensory areas, excluding explanations of the subjective phenomenon based only on decision-level changes. The pattern of changes in timing discrimination suggests the existence of two sensory components, similar to those previously reported for visual spatial attributes: a lateral shift in the nonlinear transducer that maps relative timing into perceptual relative timing and an increase in transducer slope around the exposed timing. The existence of these components would suggest that previous explanations of how recent experience may change the sensory encoding of timing, such as changes in sensory latencies or simple implementations of neural population codes, cannot account for the effect of sensory adaptation on timing perception. PMID:25788590

  18. Sensory aspects of movement disorders

    PubMed Central

    Patel, Neepa; Jankovic, Joseph; Hallett, Mark

    2016-01-01

    Movement disorders, which include disorders such as Parkinson’s disease, dystonia, Tourette’s syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed. PMID:24331796

  19. Biosensors for Inorganic and Organic Arsenicals

    PubMed Central

    Chen, Jian; Rosen, Barry P.

    2014-01-01

    Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted. PMID:25587436

  20. Gold coated ZnO nanorod biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anuradha; Jain, Chhavi; Rao, V. Padmanapan; Banerjee, S.

    2012-06-01

    Gold coated ZnO nanorod based biosensor has been fabricated for its glucose detecting abilities and compared with that of ZnO nanorod based biosensor. SEM images of electrochemically grown ZnO nanorods show hexagonally grown ZnO nanorods on an ITO substrate. Electrochemical analysis show that gold coated ZnO based biosensors have higher sensitivity, lower limit of detection and a wider linear range for glucose detection. The results demonstrate that gold coated ZnO nanorod based biosensors are a promising material for biosensor applications over single component ZnO nanorod based biosensor.

  1. Integrated optical biosensor system (IOBS)

    DOEpatents

    Grace, Karen M.; Sweet, Martin R.; Goeller, Roy M.; Morrison, Leland Jean; Grace, Wynne Kevin; Kolar, Jerome D.

    2007-10-30

    An optical biosensor has a first enclosure with a pathogen recognition surface, including a planar optical waveguide and grating located in the first enclosure. An aperture is in the first enclosure for insertion of sample to be investigated to a position in close proximity to the pathogen recognition surface. A laser in the first enclosure includes means for aligning and means for modulating the laser, the laser having its light output directed toward said grating. Detection means are located in the first enclosure and in optical communication with the pathogen recognition surface for detecting pathogens after interrogation by the laser light and outputting the detection. Electronic means is located in the first enclosure and receives the detection for processing the detection and outputting information on the detection, and an electrical power supply is located in the first enclosure for supplying power to the laser, the detection means and the electronic means.

  2. Biosensors in clinical chemistry: An overview.

    PubMed

    Murugaiyan, Sathish Babu; Ramasamy, Ramesh; Gopal, Niranjan; Kuzhandaivelu, V

    2014-01-01

    Biosensors are small devices that employ biological/biochemical reactions for detecting target analytes. Basically, the device consists of a biocatalyst and a transducer. The biocatalyst may be a cell, tissue, enzyme or even an oligonucleotide. The transducers are mainly amperometric, potentiometric or optical. The classification of biosensors is based on (a) the nature of the recognition event or (b) the intimacy between the biocatalyst and the transducer. Bioaffinity and biocatalytic devices are examples for the former and the first, whereas second and third generation instruments are examples for the latter. Cell-based biosensors utilizing immobilized cells, tissues as also enzyme immunosensors and DNA biosensors find variegated uses in diagnostics. Enzyme nanoparticle-based biosensors make use of small particles in the nanometer scale and are currently making a mark in laboratory medicine. Nanotechnology can help in optimizing the diagnostic biochips, which would facilitate sensitive, rapid, accurate and precise bedside monitoring. Biosensors render themselves as capable diagnostic tools as they meet most of the above-mentioned criteria. PMID:24627875

  3. Integration of biosensors into digital microfluidics: Impact of hydrophilic surface of biosensors on droplet manipulation.

    PubMed

    Samiei, Ehsan; Luka, George S; Najjaran, Homayoun; Hoorfar, Mina

    2016-07-15

    Several studies have been performed on the integration of biosensors into digital microfluidics (DMF). Despite the general success in their detection capabilities, there are still two challenges associated with the integration of biosensors into DMF: (1) complete removal of the droplet containing the analytes from the sensing surface; and (2) biochemical regeneration of the biosensor involving detaching the target analyte from the receptor after each round of sensing. The latter is case dependent and the solution can vary from one application to another. Our research aims at addressing the former, the solution to which is applicable to all biosensors integrated to DMF. This paper presents a thorough characterization of the hydrophilic surface of the biosensor in terms of wettability and geometry, taking into account the overall configuration of the DMF platform. Consequently, we identify the optimal geometry of the sensing surface and the DMF platform providing successful removal of the target droplet from the sensing surface after detection. Based on the results, the gap height is suggested to be chosen at the upper limit of the applicable range. Also, the biosensor, patterned on the device top plate, is recommended to be designed with a high aspect ratio and aligned with the center of the actuating electrode. As a proof of concept, the optimum configuration is implemented on a DMF platform with an interdigitated capacitive biosensor to detect different concentrations of Cryptosporidium, for which it is shown that the sample droplet is removed successfully from the superhydrophilic surface of the biosensor. PMID:27016626

  4. Living productively with sensory loss.

    PubMed

    Kinderknecht, C H; Garner, J D

    1993-01-01

    As the avenues for fully perceiving and experiencing life, our sensory organs are the bridge between Self and the outside world. Of the many disorders affecting the senses of the older woman, those that affect vision and hearing have the greatest potential for disrupting her activities of daily living, and diminishing her quality of life and level of independence. While adapting to and coping successfully with sensory loss may require significant effort and adjustment on the part of the afflicted older woman, strategies designed to maximize the older woman's function, her sense of personal control, and her social support system can mediate the negative effects of the sensory loss. PMID:23077999

  5. SIRE-technology-based biosensors: will they do the job?

    NASA Astrophysics Data System (ADS)

    Kriz, Dario

    1997-06-01

    A new biosensor technology (SIRE--sensors based on injectable recognition elements) is described. Its application in laboratory equipment, medical survey equipment and process monitoring is reviewed. Furthermore, the promising practical and commercial relevance of SIRE- Biosensors is discussed.

  6. Optimization of Xenon Biosensors for Detection of ProteinInteractions

    SciTech Connect

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E..

    2005-08-03

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length.

  7. New Interfacial Nanochemistry on Sensory Bioscaffold-Membranes of Nanobelts

    NASA Astrophysics Data System (ADS)

    Chen, Feng

    Nanostructured bioscaffolds and biosensors are evolving as popular and powerful tools in life science and biotechnology, due to the possible control of their surface and structural properties at the nm-scale. Being seldom discussed in literature and long-underexploited in materials and biomedical sciences, development of nanofiber-based sensory bioscaffolds has great promises and grand challenges in finding an ideal platform for low-cost quantifications of biological and chemical species in real-time, label-free, and ultrasensitive fashion. In this study, titanate nanobelts were first of all synthesized, from hydrothermal reactions of a NaOH (or KOH solution) with TiO2 powder, to possess underexploited structure and surface vital to the rapid and label-free electrochemical detections of protein (cytochrome c) and neurotransmitter (dopamine). This work is based on a suite of new physical and chemical properties on the titanate nanobelt in water, including high surface area, zwitterionic surface, chemical- and photochemical-durability, cation-exchange and anion- and cation-sorption capacities, protein- and cell-compatibility, thermal-stability, and charge conductivity. The Fourier transform infrared (FTIR) was used for identifying any denaturing of the cytochrome c pre-immobilized on the titanate nanobelts. On that basis, the pheochromocytoma cells (PC-12 cell) were chosen to grow on the titanate nanobelts. These experiments prove that the sensory bioscaffolds of titanate nanobelt-membrane is a multiplex platform for developing new tools for energy, environmental and life sciences.

  8. Device considerations for development of conductance-based biosensors

    PubMed Central

    Lee, Kangho; Nair, Pradeep R.; Scott, Adina; Alam, Muhammad A.; Janes, David B.

    2009-01-01

    Design and fabrication of electronic biosensors based on field-effect-transistor (FET) devices require understanding of interactions between semiconductor surfaces and organic biomolecules. From this perspective, we review practical considerations for electronic biosensors with emphasis on molecular passivation effects on FET device characteristics upon immobilization of organic molecules and an electrostatic model for FET-based biosensors. PMID:24753627

  9. Nanomaterial-mediated Biosensors for Monitoring Glucose

    PubMed Central

    Taguchi, Masashige; Ptitsyn, Andre; McLamore, Eric S.

    2014-01-01

    Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of detection. A wide range of new biosensors that incorporate nanomaterials such as lab-on-chip and nanosensor devices are currently being developed for in vivo and in vitro glucose sensing. These real-time monitoring tools represent a powerful diagnostic and monitoring tool for measuring glucose in diabetes research and point of care diagnostics. However, concerns over the possible toxicity of some nanomaterials limit the application of these devices for in vivo sensing. This review provides a general overview of the state of the art in nanomaterial-mediated biosensors for in vivo and in vitro glucose sensing, and discusses some of the challenges associated with nanomaterial toxicity. PMID:24876594

  10. Field-Friendly Tuberculosis Biosensor

    NASA Astrophysics Data System (ADS)

    Proper, Nathan; Stone, Jeremy; Jevsevar, Kristen L.; Scherman, Michael; McNeil, Michael R.; Krapf, Diego

    2010-03-01

    Tuberculosis is a fading threat in the United States, but in the developing world it is still a major health-care concern. With the rising number of cases and lack of resources, there is a desperate need for an affordable, portable detection system. Here, we demonstrate the feasibility of a field-friendly immunological biosensor that utilizes florescence and specialized surface chemistries. We observe fluorescently labeled antibodies as they bind to a glass slide. Slides are treated with biotinylated polyethylene glycol to inhibit non-specific interactions and facilitate the binding of primary antibodies allowing for a high degree of specificity. Solutions of tuberculosis-specific antigens where mixed with fluorescently labeled secondary antibodies and incubated on the treated surfaces. An array of different concentrations of antigens bound to fluorescent tags is then read in an epifluorescnece microscope. This assay was used in the portable detector to show that higher concentrations of bound labeled antigens produce a greater emission when excited by a HeNe laser. Home-built electronics, off-the-shelf optics, and a Si photodiode (PD) were used. The data collected from multiple concentrations show a measurable photocurrent. Work is now underway to incorporate a avalanche (PD), flow-cell technology, in a portable box.

  11. MRI Biosensors: A Short Primer

    PubMed Central

    Louie, Angelique

    2013-01-01

    Interest in Magnetic Resonance Imaging (MRI) contrast agents for molecular imaging of biological function experienced a surge of excitement approximately 20 years ago with the development of the first activatable contrast agents that could act as biosensors and turn “on” in response to a specific biological activity. This brief tutorial, based on a short course lecture from the 2011 ISMRM meeting, provides an overview of underlying principles governing the design of biosensing contrast agents. We describe mechanisms by which a magnetic resonance imaging (MRI) contrast agent can be made into a sensor for both T1 and T2 types contrast agents. Examples of biological activities that can interact with a contrast agent are discussed using specific examples from the recent literature to illustrate the primary mechanisms of action that have been utilized to achieve activation. MRI sensors for pH, ion binding, enzyme cleavage, and oxidation-reduction are presented. This article is not meant to be an exhaustive review, but an illustrative primer to explain how activation can be achieved for an MRI contrast agent. Chemical exchange saturation transfer (CEST) is not covered as these agents were covered in a separate lecture. PMID:23996662

  12. Graphene-Based Optical Biosensors and Imaging

    SciTech Connect

    Tang, Zhiwen; He, Shijiang; Pei, Hao; Du, Dan; Fan, Chunhai; Lin, Yuehe

    2014-01-13

    This chapter focuses on the design, fabrication and application of graphene based optical nanobiosensors. The emerging graphene based optical nanobiosensors demonstrated the promising bioassay and biomedical applications thanking to the unique optical features of graphene. According to the different applications, the graphene can be tailored to form either fluorescent emitter or efficient fluorescence quencher. The exceptional electronic feature of graphene makes it a powerful platform for fabricating the SPR and SERS biosensors. Today the graphene based optical biosensors have been constructed to detect various targets including ions, small biomolecules, DNA/RNA and proteins. This chapter reviews the recent progress in graphene-based optical biosensors and discusses the opportunities and challenges in this field.

  13. Antibodies and antibody-derived analytical biosensors

    PubMed Central

    Sharma, Shikha; Byrne, Hannah

    2016-01-01

    The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described. PMID:27365031

  14. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  15. Hydrogen peroxide biosensor based on titanium oxide

    NASA Astrophysics Data System (ADS)

    Halim, Nur Hamidah Abdul; Heng, Lee Yook; Hashim, Uda

    2015-09-01

    In this work, a biosensor utilizing modified titania, TiO2 particles using aminopropyl-triethoxy-silane, (APTS) for developing hydrogen peroxide biosensor is presented. The surface of Ti-APTS particles is used as a support for hemoglobin immobilization via covalent bonding. The performance of the biosensor is determined by differential pulse voltammetry. The linear response was observed at the reduction current of redox mediator probe [FeCN6]3-/4- at potential between 0.22 V to 0.24 V. The preliminary result for electrochemistry study on this modified electrode is reported. The preliminary linear range is obtained from 1×10-2 M to 1×10-8 M.

  16. Antibodies and antibody-derived analytical biosensors.

    PubMed

    Sharma, Shikha; Byrne, Hannah; O'Kennedy, Richard J

    2016-06-30

    The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described. PMID:27365031

  17. Microfabricated glucose biosensor for culture well operation.

    PubMed

    Pemberton, R M; Cox, T; Tuffin, R; Sage, I; Drago, G A; Biddle, N; Griffiths, J; Pittson, R; Johnson, G; Xu, J; Jackson, S K; Kenna, G; Luxton, R; Hart, J P

    2013-04-15

    A water-based carbon screen-printing ink formulation, containing the redox mediator cobalt phthalocyanine (CoPC) and the enzyme glucose oxidase (GOx), was investigated for its suitability to fabricate glucose microbiosensors in a 96-well microplate format: (1) the biosensor ink was dip-coated onto a platinum (Pt) wire electrode, leading to satisfactory amperometric performance; (2) the ink was deposited onto the surface of a series of Pt microelectrodes (10-500 μm diameter) fabricated on a silicon substrate using MEMS (microelectromechanical systems) microfabrication techniques: capillary deposition proved to be successful; a Pt microdisc electrode of ≥100 μm was required for optimum biosensor performance; (3) MEMS processing was used to fabricate suitably sized metal (Pt) tracks and pads onto a silicon 96 well format base chip, and the glucose biosensor ink was screen-printed onto these pads to create glucose microbiosensors. When formed into microwells, using a 340 μl volume of buffer, the microbiosensors produced steady-state amperometric responses which showed linearity up to 5 mM glucose (CV=6% for n=5 biosensors). When coated, using an optimised protocol, with collagen in order to aid cell adhesion, the biosensors continued to show satisfactory performance in culture medium (linear range to 2 mM, dynamic range to 7 mM, CV=5.7% for n=4 biosensors). Finally, the operation of these collagen-coated microbiosensors, in 5-well 96-well format microwells, was tested using a 5-channel multipotentiostat. A relationship between amperometric response due to glucose, and cell number in the microwells, was observed. These results indicate that microphotolithography and screen-printing techniques can be combined successfully to produce microbiosensors capable of monitoring glucose metabolism in 96 well format cell cultures. The potential application areas for these microbiosensors are discussed. PMID:23265827

  18. Development of a biosensor for caffeine.

    PubMed

    Babu, V R Sarath; Patra, S; Karanth, N G; Kumar, M A; Thakur, M S

    2007-01-23

    We have utilized a microbe, which can degrade caffeine to develop an Amperometric biosensor for determination of caffeine in solutions. Whole cells of Pseudomonas alcaligenes MTCC 5264 having the capability to degrade caffeine were immobilized on a cellophane membrane with a molecular weight cut off (MWCO) of 3000-6000 by covalent crosslinking method using glutaraledhyde as the bifunctional crosslinking agent and gelatin as the protein based stabilizing agent (PBSA). The biosensor system was able to detect caffeine in solution over a concentration range of 0.1 to 1 mg mL(-1). With read-times as short as 3 min, this caffeine biosensor acts as a rapid analysis system for caffeine in solutions. Interestingly, successful isolation and immobilization of caffeine degrading bacteria for the analysis of caffeine described here was enabled by a novel selection strategy that incorporated isolation of caffeine degrading bacteria capable of utilizing caffeine as the sole source of carbon and nitrogen from soils and induction of caffeine degrading capacity in bacteria for the development of the biosensor. This biosensor is highly specific for caffeine and response to interfering compounds such as theophylline, theobromine, paraxanthine, other methyl xanthines and sugars was found to be negligible. Although a few biosensing methods for caffeine are reported, they have limitations in application for commercial samples. The development and application of new caffeine detection methods remains an active area of investigation, particularly in food and clinical chemistry. The optimum pH and temperature of measurement were 6.8 and 30+/-2 degrees C, respectively. Interference in analysis of caffeine due to different substrates was observed but was not considerable. Caffeine content of commercial samples of instant tea and coffee was analyzed by the biosensor and the results compared well with HPLC analysis. PMID:17386510

  19. Biosensor technology for pesticides--a review.

    PubMed

    Verma, Neelam; Bhardwaj, Atul

    2015-03-01

    Pesticides, due to their lucrative outcomes, are majorly implicated in agricultural fields for crop production enhancement. Due to their pest removal properties, pesticides of various classes have been designed to persist in the environment over a longer duration after their application to achieve maximum effectiveness. Apart from their recalcitrant structure and agricultural benefits, pesticides also impose acute toxicological effects onto the other various life forms. Their accumulation in the living system may prove to be detrimental if established in higher concentrations. Thus, their prompt and accurate analysis is a crucial matter of concern. Conventional techniques like chromatographic techniques (HPLC, GC, etc.) used for pesticides detection are associated with various limitations like stumpy sensitivity and efficiency, time consumption, laboriousity, requirement of expensive equipments and highly trained technicians, and many more. So there is a need to recruit the methods which can detect these neurotoxic compounds sensitively, selectively, rapidly, and easily in the field. Present work is a brief review of the pesticide effects, their current usage scenario, permissible limits in various food stuffs and 21st century advancements of biosensor technology for pesticide detection. Due to their exceptional performance capabilities, easiness in operation and on-site working, numerous biosensors have been developed for bio-monitoring of various environmental samples for pesticide evaluation immensely throughout the globe. Till date, based on sensing element (enzyme based, antibody based, etc.) and type of detection method used (Electrochemical, optical, and piezoelectric, etc.), a number of biosensors have been developed for pesticide detection. In present communication, authors have summarized 21st century's approaches of biosensor technology for pesticide detection such as enzyme-based biosensors, immunosensors, aptamers, molecularly imprinted polymers, and

  20. Assembling Amperometric Biosensors for Clinical Diagnostics

    PubMed Central

    Belluzo, María Soledad; Ribone, María Élida; Lagier, Claudia Marina

    2008-01-01

    Clinical diagnosis and disease prevention routinely require the assessment of species determined by chemical analysis. Biosensor technology offers several benefits over conventional diagnostic analysis. They include simplicity of use, specificity for the target analyte, speed to arise to a result, capability for continuous monitoring and multiplexing, together with the potentiality of coupling to low-cost, portable instrumentation. This work focuses on the basic lines of decisions when designing electron-transfer-based biosensors for clinical analysis, with emphasis on the strategies currently used to improve the device performance, the present status of amperometric electrodes for biomedicine, and the trends and challenges envisaged for the near future.

  1. Design and application of genetically encoded biosensors

    PubMed Central

    Palmer, Amy E.; Qin, Yan; Park, Jungwon Genevieve; McCombs, Janet E.

    2012-01-01

    In the past 5–10 years, the power of the green fluorescent protein (GFP) and its numerous derivatives has been harnessed toward the development of genetically encoded fluorescent biosensors. These sensors are incorporated into cells or organisms as plasmid DNA, which leads the transcriptional and translational machinery of the cell to express a functional sensor. To date, over 100 different genetically encoded biosensors have been developed for targets as diverse as ions, molecules and enzymes. Such sensors are instrumental in providing a window into the real-time biochemistry of living cells and whole organisms, and are providing unprecedented insight into the inner workings of a cell. PMID:21251723

  2. Fluorescent labels in biosensors for pathogen detection.

    PubMed

    Li, Bianmiao; Yu, Qiaoling; Duan, Yixiang

    2015-03-01

    Infectious diseases caused by pathogens have become a life-threatening problem for millions of people around the world in recent years. Therefore, the need of efficient, fast, low-cost and user-friendly biosensing systems to monitor pathogen has increased enormously in the last few years. This paper presents an overview of different fluorescent labels and the utilization of fluorescence-based biosensor techniques for rapid, direct, sensitive and real-time identification of bacteria. In these biosensors, organic dyes, nanomaterials and rare-earth elements are playing an increasing role in the design of biosensing systems with an interest for applications in bacterial analysis. PMID:23886349

  3. Mathematical Model of the Biosensors Acting in a Trigger Mode

    PubMed Central

    Baronas, Romas; Kulys, Juozas; Ivanauskas, Feliksas

    2004-01-01

    A mathematical model of biosensors acting in a trigger mode has been developed. One type of the biosensors utilized a trigger enzymatic reaction followed by the cyclic enzymatic and electrochemical conversion of the product (CCE scheme). Other biosensors used the enzymatic trigger reaction followed by the electrochemical and enzymatic product cyclic conversion (CEC scheme). The models were based on diffusion equations containing a non-linear term related to Michaelis-Menten kinetics of the enzymatic reactions. The digital simulation was carried out using the finite difference technique. The influence of the substrate concentration, the maximal enzymatic rate as well as the membrane thickness on the biosensor response was investigated. The numerical experiments demonstrated a significant gain (up to dozens of times) in biosensor sensitivity when the biosensor response was under diffusion control. In the case of significant signal amplification, the response time with triggering was up to several times longer than that of the biosensor without triggering.

  4. Sensory Transduction in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  5. Sensory neuropeptides and airway function.

    PubMed

    Solway, J; Leff, A R

    1991-12-01

    Sensory nerves synthesize tachykinins and calcitonin-gene related peptide and package these neuropeptides together in synaptic vesicles. Stimulation of these C-fibers by a range of chemical and physical factors results in afferent neuronal conduction that elicits central parasympathetic reflexes and in antidromic conduction that results in local release of neuropeptides through the axon reflex. In the airways, sensory neuropeptides act on bronchial smooth muscle, the mucosal vasculature, and submucosal glands to promote airflow obstruction, hyperemia, microvascular hyperpermeability, and mucus hypersecretion. In addition, tachykinins potentiate cholinergic neurotransmission. Proinflammatory effects of these peptides also promote the recruitment, adherence, and activation of granulocytes that may further exacerbate neurogenic inflammation (i.e., neuropeptide-induced plasma extravasation and vasodilation). Enzymatic degradation limits the physiological effects of tachykinins but may be impaired by respiratory infection or other factors. Given their sensitivity to noxious compounds and physical stimuli and their potent effects on airway function, it is possible that neuropeptide-containing sensory nerves play an important role in mediating airway responses in human disease. Supporting this view are the striking phenomenological similarities between hyperpnea-induced bronchoconstriction (HIB) in guinea pigs and HIB in patients with exercise-induced asthma. Endogenous tachykinins released from airway sensory nerves mediate HIB in guinea pigs and also cause hyperpnea-induced bronchovascular hyperpermeability in these animals. On the basis of these observations, it is reasonable to speculate that sensory neuropeptides participate in the pathogenesis of hyperpnea-induced airflow obstruction in human asthmatic subjects as well. PMID:1663932

  6. Kansei Biosensor and IT Society

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    A taste sensor with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information of taste substances into electric signal. The sensor output shows different patterns for chemical substances which have different taste qualities such as saltiness and sourness. Taste interactions such as suppression effect, which occurs between bitterness and sweetness, can be detected and quantified using the taste sensor. The taste and also smell of foodstuffs such as beer, coffee, mineral water, soup and milk can be discussed quantitatively. The taste sensor provides the objective scale for the human sensory expression. Multi-modal communication becomes possible using a taste/smell recognition microchip, which produces virtual taste. We are now standing at the beginning of a new age of communication using digitized taste.

  7. Biosensor Systems for Homeland Security

    SciTech Connect

    Bruckner-Lea, Cindy J.

    2004-05-30

    The detection of biological agents is important to minimize the effects of pathogens that can harm people, livestock, or plants. In addition to pathogens distributed by man, there is a need to detect natural outbreaks. Recent outbreaks of SARS, mad cow disease, pathogenic E. coli and Salmonella, as well as the discovery of letters filled with anthrax spores have highlighted the need for biosensor systems to aid in prevention, early warning, response, and recovery. Rapid detection can be used to prevent exposure; and detection on a longer timescale can be used to minimize exposure, define treatment, and determine whether contaminated areas are clean enough for reuse. The common types of biological agents of concern include bacteria, spores, and viruses (Figure 1). From a chemist’s point of view, pathogens are essentially complex packages of chemicals that are assembled into organized packages with somewhat predictable physical characteristics such as size and shape. Pathogen detection methods can be divided into three general approaches: selective detection methods for specific identification such as nucleic acid analysis and structural recognition, semi-selective methods for broad-spectrum detection (e.g. physical properties, metabolites, lipids), and function-based methods (e.g. effect of the pathogen on organisms, tissues, or cells). The requirements for biodetection systems depend upon the application. While detect to warn sensors may require rapid detection on the order one minute, detection times of many minutes or hours may be suitable for determining appropriate treatments or for forensic analysis. Of course ideal sensor systems will meet the needs of many applications, and will be sensitive, selective, rapid, and simultaneously detect all agents of concern. They will also be reliable with essentially no false negatives or false positives, small, easy to use, and low cost with minimal consumables.

  8. Sensory Neuronopathy and Autoimmune Diseases

    PubMed Central

    Martinez, Alberto R. M.; Nunes, Marcelo B.; Nucci, Anamarli; França, Marcondes C.

    2012-01-01

    Sensory neuronopathies (SNs) are a specific subgroup of peripheral nervous system diseases characterized by primary degeneration of dorsal root ganglia and their projections. Multifocal sensory symptoms often associated to ataxia are the classical features of SN. Several different etiologies have been described for SNs, but immune-mediated damage plays a key role in most cases. SN may herald the onset of some systemic autoimmune diseases, which further emphasizes how important the recognition of SN is in clinical practice. We have thus reviewed available clinical, neurophysiological, and therapeutic data on autoimmune disease-related SN, namely, in patients with Sjögren's syndrome, autoimmune hepatitis, and celiac disease. PMID:22312482

  9. Development and Applications of Portable Biosensors.

    PubMed

    Srinivasan, Balaji; Tung, Steve

    2015-08-01

    The significance of microfluidics-based and microelectromechanical systems-based biosensors has been widely acknowledged, and many reviews have explored their potential applications in clinical diagnostics, personalized medicine, global health, drug discovery, food safety, and forensics. Because health care costs are increasing, there is an increasing need to remotely monitor the health condition of patients by point-of-care-testing. The demand for biosensors for detection of biological warfare agents has increased, and research is focused on ways of producing small portable devices that would allow fast, accurate, and on-site detection. In the past decade, the demand for rapid and accurate on-site detection of plant disease diagnosis has increased due to emerging pathogens with resistance to pesticides, increased human mobility, and regulations limiting the application of toxic chemicals to prevent spread of diseases. The portability of biosensors for on-site diagnosis is limited due to various issues, including sample preparation techniques, fluid-handling techniques, the limited lifetime of biological reagents, device packaging, integrating electronics for data collection/analysis, and the requirement of external accessories and power. Many microfluidic, electronic, and biological design strategies, such as handling liquids in biosensors without pumps/valves, the application of droplet-based microfluidics, paper-based microfluidic devices, and wireless networking capabilities for data transmission, are being explored. PMID:25878051

  10. Biosensors for Whole-Cell Bacterial Detection

    PubMed Central

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  11. Application of the magnetoimpedance to biosensors

    NASA Astrophysics Data System (ADS)

    Song, Hoon; Park, Duck-gun

    2012-11-01

    A prototype of a giant magnetoimpedance (GMI) biosensor was designed and tested using an amorphous ribbon. The GMI response was measured with a suspension containing a CM01N/9077 bead from Bangs Laboratories. This bead was coated with streptavidin so that it could be used as biomolecular label with a specific antibody. The GMI change caused by the presence of the specific antibody was measured with a prototype biosensor designed with a measuring cell containing an amorphous CoFeBSi ribbon. The GMI was measured in a range of current frequencies from 0.1 to 10 MHz and at intensities of Irms = 5 mA. Commercial Bangs Laboratories beads were supplied as a suspension in phosphate-buffered saline. A maximum difference of 5% in the GMI ratio measured with and without magnetic beads was obtained at a frequency of 1 MHz and Irms = 5 mA. As some potential applications for the GMI biosensor and further directions, a magnetoimpedance biosensor for detecting the presence of magnetic nanoparticles after introducing a protein on the surface of the sensor has been developed and tested for a model system by using human P21 protein (antibody and antigen) and nonspecific magnetic nanoparticles.

  12. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    EPA Science Inventory

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  13. Fiber optic biosensor using aptamer as receptors

    NASA Astrophysics Data System (ADS)

    Yu, Shuqin; Cai, Xiaokun; Tan, Xianglin; Zhu, Yexiang; Lu, Bin

    2001-09-01

    Reagentless biosensor that can directly transducer molecular recognition to optical signal should potentiate the development of sensor array fora wide variety of analytes. Nucleic acid aptamer can bind ligand tightly and specifically with conformational change of aptamer, and can be used as a receptor in biosensor. We have therefore developed a fiber-optic biosensor by aptamer connected with molecular beacon. Molecular beacons consist of an oligonucleotide sequence containing complementary sequence sections at either end. These two sequence containing segments base pair with each other to form a hairpin shaped loop structure, the fluorophore and quencher were attached at 5 foot- and 3 foot-end of molecular beacon respectively. When thrombin binding to the stem-loop of molecular beacon aptamer, the pseudoknot structure was interrupted, resulting a release of fluorescence from quenching and a increase in fluorescence emission. This novel biosensor system in this project has a large potential and is specific and sensitivity. A similar strategy could be used to study other analytes such as protein and small molecules.

  14. Fiber optic-based regenerable biosensor

    DOEpatents

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  15. Methods for using redox liposome biosensors

    DOEpatents

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  16. Boar taint detection using parasitoid biosensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the potential for a non-stinging wasp to be used as a biosensor in the pig industry, we trained wasps to 3 individual chemicals associated with boar taint. Training consisted of presenting the odors to hungry wasps while they were feeding on sugar. This associates the chemical with a fo...

  17. Clinical Assessment Applications of Ambulatory Biosensors

    ERIC Educational Resources Information Center

    Haynes, Stephen N.; Yoshioka, Dawn T.

    2007-01-01

    Ambulatory biosensor assessment includes a diverse set of rapidly developing and increasingly technologically sophisticated strategies to acquire minimally disruptive measures of physiological and motor variables of persons in their natural environments. Numerous studies have measured cardiovascular variables, physical activity, and biochemicals…

  18. Microbial Biosensors for Selective Detection of Disaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven microbial strains were screened for their ability to detect disaccharides as components of Clark-type oxygen biosensors. Sensors responded to varying degrees to maltose, cellobiose, sucrose, and melibiose, but none responded strongly to lactose. Although microbial sensors are relatively nons...

  19. [Quantitative analysis of calibration dependence of biosensors].

    PubMed

    Borisov, I A; Lobanov, A V; Reshetilov, A N; Kurganov, B I

    2000-01-01

    Three-parameter Hill's equation, which is used in enzyme kinetics, was shown to applicable to calibration curves of both potentiometric (glucose, pesticides, urea, etc.) and amperometric (surfactants, biphenyl, etc.) biosensors. Possible causes of errors of analyte concentration measurements are discussed. PMID:10867941

  20. Cell-based biosensors in clinical chemistry.

    PubMed

    Kintzios, Spiridon E

    2007-10-01

    Cell-based biosensors represent the next revolution in medical diagnostics, offering a number of significant advantages, such as high speed, portability and low cost. The present review focuses on the most successful technologies used for the detection of ultra-low concentrations of bioactive analytes (such as metabolic markers and pathogens) in clinical samples. PMID:17979804

  1. Recent Advances in Biosensor Technology for Potential Applications - An Overview.

    PubMed

    Vigneshvar, S; Sudhakumari, C C; Senthilkumaran, Balasubramanian; Prakash, Hridayesh

    2016-01-01

    Imperative utilization of biosensors has acquired paramount importance in the field of drug discovery, biomedicine, food safety standards, defense, security, and environmental monitoring. This has led to the invention of precise and powerful analytical tools using biological sensing element as biosensor. Glucometers utilizing the strategy of electrochemical detection of oxygen or hydrogen peroxide using immobilized glucose oxidase electrode seeded the discovery of biosensors. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitive limit of biosensors. Use of aptamers or nucleotides, affibodies, peptide arrays, and molecule imprinted polymers provide tools to develop innovative biosensors over classical methods. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. Various biosensors ranging from nanomaterials, polymers to microbes have wider potential applications. It is quite important to integrate multifaceted approaches to design biosensors that have the potential for diverse usage. In light of this, this review provides an overview of different types of biosensors being used ranging from electrochemical, fluorescence tagged, nanomaterials, silica or quartz, and microbes for various biomedical and environmental applications with future outlook of biosensor technology. PMID:26909346

  2. Synthesis and characterization of nanoparticles for electrochemical biosensor applications

    NASA Astrophysics Data System (ADS)

    Won, Yu-Ho

    Biosensors have been developed for detection, quantification, and monitoring of specific biomolecules or chemical species for environmental, clinical, and industrial fields. Nanoparticles, which can be functionalized by various materials, have attracted research interest in the electrochemical biosensors field due to their versatile physical and chemical properties. Thus, nanoparticles and nanocomposites have been widely investigated as a matrix for the electrochemical biosensors of the detection of various molecules. In this work, nanoparticles, including Fe3O4/silica core/shell nanocomposites, CaCO3-CdSe/ZnS/silica composites, Au nanocrystals, and Cu2O & Cu2O/Au particles, were synthesized and applied for the design of electrochemical biosensors. The goal of this research is to investigate novel nanoparticle-based platforms for the design of highly sensitive and stable biosensors. Biosensors can be categorized into enzyme-based biosensors and enzyme-free biosensors depending on whether or not enzymes are present in the system. Fe3O 4/silica core/shell nanocomposites and CaCO3-CdSe/ZnS/silica composites were used as material platforms to immobilize enzymes and fabricate enzyme-based electrochemical biosensors. On the other hand, Au nanocrystals, Cu2O, and Cu2O/Au particles, which display significant catalytic and electron transfer properties, were investigated in enzyme-free biosensor configurations. In addition, the morphology-dependent biosensing properties of Au nanocrystals, Cu2O, and Cu2O/Au particles were investigated.

  3. Future of biosensors: a personal view.

    PubMed

    Scheller, Frieder W; Yarman, Aysu; Bachmann, Till; Hirsch, Thomas; Kubick, Stefan; Renneberg, Reinhard; Schumacher, Soeren; Wollenberger, Ulla; Teller, Carsten; Bier, Frank F

    2014-01-01

    Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar" personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables" such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous" biosensors will emerge. PMID:24196315

  4. Sensory Aids for the Blind.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Committee on Prosthetics Research and Development.

    The problems of providing sensory aids for the blind are presented and a report on the present status of aids discusses direct translation and recognition reading machines as well as mobility aids. Aspects of required research considered are the following: assessment of needs; vision, audition, taction, and multimodal communication; reading aids,…

  5. Making Sense of Sensory Systems

    ERIC Educational Resources Information Center

    Hendrix, Marie

    2010-01-01

    The role of caregivers requires that they continuously assess the needs and performance of children and provide the support necessary for them to achieve their potential. A thorough understanding of child development, including the role and impact of sensory development, is critical for caregivers to properly evaluate and assist these children.…

  6. A review on intelligent sensory modelling

    NASA Astrophysics Data System (ADS)

    Tham, H. J.; Tang, S. Y.; Teo, K. T. K.; Loh, S. P.

    2016-06-01

    Sensory evaluation plays an important role in the quality control of food productions. Sensory data obtained through sensory evaluation are generally subjective, vague and uncertain. Classically, factorial multivariate methods such as Principle Component Analysis (PCA), Partial Least Square (PLS) method, Multiple Regression (MLR) method and Response Surface Method (RSM) are the common tools used to analyse sensory data. These methods can model some of the sensory data but may not be robust enough to analyse nonlinear data. In these situations, intelligent modelling techniques such as Fuzzy Logic and Artificial neural network (ANNs) emerged to solve the vagueness and uncertainty of sensory data. This paper outlines literature of intelligent sensory modelling on sensory data analysis.

  7. Sensory exploitation and sexual conflict

    PubMed Central

    Arnqvist, Göran

    2006-01-01

    Much of the literature on male–female coevolution concerns the processes by which male traits and female preferences for these can coevolve and be maintained by selection. There has been less explicit focus on the origin of male traits and female preferences. Here, I argue that it is important to distinguish origin from subsequent coevolution and that insights into the origin can help us appreciate the relative roles of various coevolutionary processes for the evolution of diversity in sexual dimorphism. I delineate four distinct scenarios for the origin of male traits and female preferences that build on past contributions, two of which are based on pre-existing variation in quality indicators among males and two on exploitation of pre-existing sensory biases among females. Recent empirical research, and theoretical models, suggest that origin by sensory exploitation has been widespread. I argue that this points to a key, but perhaps transient, role for sexually antagonistic coevolution (SAC) in the subsequent evolutionary elaboration of sexual traits, because (i) sensory exploitation is often likely to be initially costly for individuals of the exploited sex and (ii) the subsequent evolution of resistance to sensory exploitation should often be associated with costs due to selective constraints. A review of a few case studies is used to illustrate these points. Empirical data directly relevant to the costs of being sensory exploited and the costs of evolving resistance is largely lacking, and I stress that such data would help determining the general importance of sexual conflict and SAC for the evolution of sexual dimorphism. PMID:16612895

  8. Modelling Amperometric Biosensors Based on Chemically Modified Electrodes

    PubMed Central

    Baronas, Romas; Kulys, Juozas

    2008-01-01

    The response of an amperometric biosensor based on a chemically modified electrode was modelled numerically. A mathematical model of the biosensor is based on a system of non-linear reaction-diffusion equations. The modelling biosensor comprises two compartments: an enzyme layer and an outer diffusion layer. In order to define the main governing parameters the corresponding dimensionless mathematical model was derived. The digital simulation was carried out using the finite difference technique. The adequacy of the model was evaluated using analytical solutions known for very specific cases of the model parameters. By changing model parameters the output results were numerically analyzed at transition and steady state conditions. The influence of the substrate and mediator concentrations as well as of the thicknesses of the enzyme and diffusion layers on the biosensor response was investigated. Calculations showed complex kinetics of the biosensor response, especially when the biosensor acts under a mixed limitation of the diffusion and the enzyme interaction with the substrate.

  9. A general strategy to construct small molecule biosensors in eukaryotes

    DOE PAGESBeta

    Feng, Justin; Jester, Benjamin W.; Tinberg, Christine E.; Mandell, Daniel J.; Antunes, Mauricio S.; Chari, Raj; Morey, Kevin J.; Rios, Xavier; Medford, June I.; Church, George M.; et al

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activatesmore » transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.« less

  10. Response to Vestibular Sensory Events in Autism

    ERIC Educational Resources Information Center

    Kern, Janet K.; Garver, Carolyn R.; Grannemann, Bruce D.; Trivedi, Madhukar H.; Carmody, Thomas; Andrews, Alonzo A.; Mehta, Jyutika A.

    2007-01-01

    The purpose of this study was to examine the response to vestibular sensory events in persons with autism. The data for this study was collected as part of a cross-sectional study that examined sensory processing (using the Sensory Profile) in 103 persons with autism, 3-43 years of age, compared to age- and gender-matched community controls. The…

  11. USE OF SENSORY EVOKED POTENTIALS IN TOXICOLOGY

    EPA Science Inventory

    The rationale for studying sensory systems as an integral part of neurotoxicological examinations is presented. The role of evoked potentials in assessing brain dysfunction in general and sensory systems in particular is also presented. Four types of sensory evoked potentials (br...

  12. Multi-Sensory Intervention Observational Research

    ERIC Educational Resources Information Center

    Thompson, Carla J.

    2011-01-01

    An observational research study based on sensory integration theory was conducted to examine the observed impact of student selected multi-sensory experiences within a multi-sensory intervention center relative to the sustained focus levels of students with special needs. A stratified random sample of 50 students with severe developmental…

  13. Non-Invasive Optical Biosensor for Probing Cell Signaling

    PubMed Central

    Fang, Ye

    2007-01-01

    Cell signaling mediated through a cellular target is encoded by spatial and temporal dynamics of downstream signaling networks. The coupling of temporal dynamics with spatial gradients of signaling activities guides cellular responses upon stimulation. Monitoring the integration of cell signaling in real time, if realized, would provide a new dimension for understanding cell biology and physiology. Optical biosensors including resonant waveguide grating (RWG) biosensor manifest a physiologically relevant and integrated cellular response related to dynamic redistribution of cellular matters, thus providing a non-invasive means for cell signaling study. This paper reviews recent progresses in biosensor instrumentation, and theoretical considerations and potential applications of optical biosensors for whole cell sensing.

  14. Microbial Biosensors: Engineered Microorganisms as the Sensing Machinery

    PubMed Central

    Park, Miso; Tsai, Shen-Long; Chen, Wilfred

    2013-01-01

    Whole-cell biosensors are a good alternative to enzyme-based biosensors since they offer the benefits of low cost and improved stability. In recent years, live cells have been employed as biosensors for a wide range of targets. In this review, we will focus on the use of microorganisms that are genetically modified with the desirable outputs in order to improve the biosensor performance. Different methodologies based on genetic/protein engineering and synthetic biology to construct microorganisms with the required signal outputs, sensitivity, and selectivity will be discussed. PMID:23648649

  15. Label-Free Impedance Biosensors: Opportunities and Challenges

    PubMed Central

    Daniels, Jonathan S.; Pourmand, Nader

    2007-01-01

    Impedance biosensors are a class of electrical biosensors that show promise for point-of-care and other applications due to low cost, ease of miniaturization, and label-free operation. Unlabeled DNA and protein targets can be detected by monitoring changes in surface impedance when a target molecule binds to an immobilized probe. The affinity capture step leads to challenges shared by all label-free affinity biosensors; these challenges are discussed along with others unique to impedance readout. Various possible mechanisms for impedance change upon target binding are discussed. We critically summarize accomplishments of past label-free impedance biosensors and identify areas for future research. PMID:18176631

  16. Replaceable Microfluidic Cartridges for a PCR Biosensor

    NASA Technical Reports Server (NTRS)

    Francis, Kevin; Sullivan, Ron

    2005-01-01

    The figure depicts a replaceable microfluidic cartridge that is a component of a miniature biosensor that detects target deoxyribonucleic acid (DNA) sequences. The biosensor utilizes (1) polymerase chain reactions (PCRs) to multiply the amount of DNA to be detected, (2) fluorogenic polynucleotide probe chemicals for labeling the target DNA sequences, and (3) a high-sensitivity epifluorescence-detection optoelectronic subsystem. Microfluidics is a relatively new field of device development in which one applies techniques for fabricating microelectromechanical systems (MEMS) to miniature systems for containing and/or moving fluids. Typically, microfluidic devices are microfabricated, variously, from silicon or polymers. The development of microfluidic devices for applications that involve PCR and fluorescence-based detection of PCR products poses special challenges

  17. Bioconjugation and stabilisation of biomolecules in biosensors.

    PubMed

    Liébana, Susana; Drago, Guido A

    2016-06-30

    Suitable bioconjugation strategies and stabilisation of biomolecules on electrodes is essential for the development of novel and commercially viable biosensors. In the present review, the functional groups that comprise the selectable targets for practical bioconjugation methods are discussed. We focus on describing the most common immobilisation techniques used in biosensor construction, which are classified into irreversible and reversible methods. Concerning the stability of proteins, the two main types of stability may be defined as (i) storage or shelf stability, and (ii) operational stability. Both types of stability are explained, as well as the introduction of an electrophoretic technique for predicting protein-polymer interactions. In addition, solution and dry stabilisation as well as stabilisation using the covalent immobilisation of proteins are discussed including possible factors that influence stability. Finally, the integration of nanomaterials, such as magnetic particles, with protein immobilisation is discussed in relation to protein stability studies. PMID:27365036

  18. Modelling Carbon Nanotubes-Based Mediatorless Biosensor

    PubMed Central

    Baronas, Romas; Kulys, Juozas; Petrauskas, Karolis; Razumiene, Julija

    2012-01-01

    This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments): a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate. PMID:23012537

  19. Modelling carbon nanotubes-based mediatorless biosensor.

    PubMed

    Baronas, Romas; Kulys, Juozas; Petrauskas, Karolis; Razumiene, Julija

    2012-01-01

    This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments): a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate. PMID:23012537

  20. Recent advances in biosensor based endotoxin detection.

    PubMed

    Das, A P; Kumar, P S; Swain, S

    2014-01-15

    Endotoxins also referred to as pyrogens are chemically lipopolysaccharides habitually found in food, environment and clinical products of bacterial origin and are unavoidable ubiquitous microbiological contaminants. Pernicious issues of its contamination result in high mortality and severe morbidities. Standard traditional techniques are slow and cumbersome, highlighting the pressing need for evoking agile endotoxin detection system. The early and prompt detection of endotoxin assumes prime importance in health care, pharmacological and biomedical sectors. The unparalleled recognition abilities of LAL biosensors perched with remarkable sensitivity, high stability and reproducibility have bestowed it with persistent reliability and their possible fabrication for commercial applicability. This review paper entails an overview of various trends in current techniques available and other possible alternatives in biosensor based endotoxin detection together with its classification, epidemiological aspects, thrust areas demanding endotoxin control, commercially available detection sensors and a revolutionary unprecedented approach narrating the influence of omics for endotoxin detection. PMID:23934306

  1. Biosensors and other medical and environmental probes

    SciTech Connect

    Jacobson, K.B.

    1996-12-31

    The author presents a overview of work at Oak Ridge National Laboratory directed toward the development of biosensors which can be used to monitor for an array of medical and environmental effects. The article describes the variety of problems which have been addressed by development of such sensors, and the range of staff who have been actively involved in this effort. The first such sensor developed at ORNL was an optical fiber whose end was treated with an antibody which would react with the carcinogen benzo(a)pyrene (BaP). Section titles from the article provide an idea of the breadth of applications addressed: medical telesensors; microcantilevers; detecting cancer and health abnormalities; bioreporters; miniaturized devices; biosensors and DNA analysis; lipids in bacteria and human fingerprints; and anthropometry.

  2. Biosensors for waterborne viruses: Detection and removal.

    PubMed

    Altintas, Zeynep; Gittens, Micah; Pocock, Jack; Tothill, Ibtisam E

    2015-08-01

    Detection of waterborne viruses is important to eliminate and control their harmful effect as pathogens. Hence, the use of rapid and sensitive detection technologies is critically important as they can aid in investigating outbreaks and help in developing prevention strategies. To date range of viruses can contaminate drinking water sources, causing illnesses such as diarrhoea, pneumonia and gastroenteritis which can result in death. Due to their small size (nm) their complete removal from water can be difficult with current water treatment processes while being resistant to disinfectants. Available techniques for virus detection include filtration technologies, enzyme-linked immunosorbent assays and polymerase chain reaction. Although each technique has limitations, the use of biosensor technology with smart affinity materials and nanomaterials can show great potential in sensing viruses in water samples. This review reports on the latest technologies used for waterborne virus removal and detection with focus on rapid detection using biosensors. PMID:26005094

  3. Recent advances in graphene-based biosensors.

    PubMed

    Kuila, Tapas; Bose, Saswata; Khanra, Partha; Mishra, Ananta Kumar; Kim, Nam Hoon; Lee, Joong Hee

    2011-08-15

    A detailed overview towards the advancement of graphene based biosensors has been reviewed. The large surface area and excellent electrical conductivity of graphene allow it to act as an "electron wire" between the redox centers of an enzyme or protein and an electrode's surface. Rapid electron transfer facilitates accurate and selective detection of biomolecules. This review discusses the application of graphene for the detection of glucose, Cyt-c, NADH, Hb, cholesterol, AA, UA, DA, and H(2)O(2). GO and RGO have been used for the fabrication of heavy metal ion sensors, gas sensors, and DNA sensors. Graphene based FETs have also been discussed in details. In all these cases, the biosensors performed well with low working potentials, high sensitivities, low detection limits, and long-term stabilities. PMID:21683572

  4. Microbial fuel cells for biosensor applications.

    PubMed

    Yang, Huijia; Zhou, Minghua; Liu, Mengmeng; Yang, Weilu; Gu, Tingyue

    2015-12-01

    Microbial fuel cells (MFCs) face major hurdles for real-world applications as power generators with the exception of powering small sensor devices. Despite tremendous improvements made in the last two decades, MFCs are still too expensive to build and operate and their power output is still too small. In view of this, in recently years, intensive researches have been carried out to expand the applications into other areas such as acid and alkali production, bioremediation of aquatic sediments, desalination and biosensors. Unlike power applications, MFC sensors have the immediate prospect to be practical. This review covers the latest developments in various proposed biosensor applications using MFCs including monitoring microbial activity, testing biochemical oxygen demand, detection of toxicants and detection of microbial biofilms that cause biocorrosion. PMID:26272393

  5. Surface modified amorphous ribbon based magnetoimpedance biosensor.

    PubMed

    Kurlyandskaya, Galina V; Fal Miyar, Vanessa

    2007-04-15

    Magnetoimpedance (MI) changes due to surface modification of the sensitive element caused by human urine, were studied with the aim of creating a robust biosensor working on a principle of electrochemical magnetoimpedance spectroscopy. A biosensor prototype with an as-quenched amorphous ribbon sensitive element was designed and calibrated for a frequency range of 0.5-10 MHz at a current intensity of 60 mA. Measurements as a function of the exposure time were made both in a regime where chemical surface modification and MI measurements were separated as well as in a regime where they were done simultaneously. The MI variation was explained by the change of the surface magnetic anisotropy. It was shown that the magnetoimpedance effect can be successfully employed as a new option to probe the electric features of the Fe(5)Co(70)Si(15)B(10) amorphous ribbon magnetic electrode surface modified by human urine. PMID:16914305

  6. Bioconjugation and stabilisation of biomolecules in biosensors

    PubMed Central

    Drago, Guido A.

    2016-01-01

    Suitable bioconjugation strategies and stabilisation of biomolecules on electrodes is essential for the development of novel and commercially viable biosensors. In the present review, the functional groups that comprise the selectable targets for practical bioconjugation methods are discussed. We focus on describing the most common immobilisation techniques used in biosensor construction, which are classified into irreversible and reversible methods. Concerning the stability of proteins, the two main types of stability may be defined as (i) storage or shelf stability, and (ii) operational stability. Both types of stability are explained, as well as the introduction of an electrophoretic technique for predicting protein–polymer interactions. In addition, solution and dry stabilisation as well as stabilisation using the covalent immobilisation of proteins are discussed including possible factors that influence stability. Finally, the integration of nanomaterials, such as magnetic particles, with protein immobilisation is discussed in relation to protein stability studies. PMID:27365036

  7. Amperometric biosensors based on carbon composite transducers

    NASA Astrophysics Data System (ADS)

    Lu, Fang

    1998-12-01

    Much current work in analytical chemistry is devoted to design of biosensors. One particular area in this field is the development of enzyme-based amperometric biosensors for the quantitative determination of a series of substrates in clinical, environmental, industrial and agricultural significance. This dissertation focuses on the design of improved amperometric biosensors based on carbon composite transducers. The use of metallized carbons as transducer materials results in remarkably selective amperometric biosensors. Such enzyme-based transducers eliminate major electroactive interferences, and hence circumvent the need for mediators or membrane barriers. The remarkable selectivity of metal-dispersed carbons is attributed to their strong, preferential, electrocatalytic capacity towards the reductive detection of biologically-generated hydrogen peroxide. Such electrocatalytic activity allows metal-dispersed biosensors to be operated at the optimal potential region between +0.1 and -0.2 V, where the unwanted reactions are neglected resulting in the lowest noise level. Several new materials (e.g., ruthenium on carbon, rhodium on carbon, etc.) and constructions (e.g., carbon fiber, electrochemical co-deposition transducer, etc.) were applied in the development of novel enzyme-based transducers in order to improve the selectivity and applicability of amperometric biosensors. The susceptibility of first-generation oxidase amperometric biosensing to oxygen fluctuations can be improved by using oxygen-rich fluorocarbons as the pasting binders in carbon paste enzyme transducers. Such binders provide an internal supply of oxygen resulting in efficient detection in oxygen-deficit conditions. In particular, the use of poly-chlorotrifluorethylene (Kel-F) oil as carbon paste binder results in a well-defined response and an identical signal up to 40 mM glucose in both the presence and absence of oxygen. Comparing with mediated or wired enzyme-based transducers, such internal

  8. A portable array biosensor for food safety

    NASA Astrophysics Data System (ADS)

    Golden, Joel P.; Ngundi, Miriam M.; Shriver-Lake, Lisa C.; Taitt, Chris R.; Ligler, Frances S.

    2004-11-01

    An array biosensor developed for simultaneous analysis of multiple samples has been utilized to develop assays for toxins and pathogens in a variety of foods. The biochemical component of the multi-analyte biosensor consists of a patterned array of biological recognition elements immobilized on the surface of a planar waveguide. A fluorescence assay is performed on the patterned surface, yielding an array of fluorescent spots, the locations of which are used to identify what analyte is present. Signal transduction is accomplished by means of a diode laser for fluorescence excitation, optical filters and a CCD camera for image capture. A laptop computer controls the miniaturized fluidics system and image capture. Results for four mycotoxin competition assays in buffer and food samples are presented.

  9. The Sensory Neurons of Touch

    PubMed Central

    Abraira, Victoria E.; Ginty, David D.

    2013-01-01

    The somatosensory system decodes a wide range of tactile stimuli and thus endows us with a remarkable capacity for object recognition, texture discrimination, sensory-motor feedback and social exchange. The first step leading to perception of innocuous touch is activation of cutaneous sensory neurons called low-threshold mechanoreceptors (LTMRs). Here, we review the properties and functions of LTMRs, emphasizing the unique tuning properties of LTMR subtypes and the organizational logic of their peripheral and central axonal projections. We discuss the spinal cord neurophysiological representation of complex mechanical forces acting upon the skin and current views of how tactile information is processed and conveyed from the spinal cord to the brain. An integrative model in which ensembles of impulses arising from physiologically distinct LTMRs are integrated and processed in somatotopically aligned mechanosensory columns of the spinal cord dorsal horn underlies the nervous system’s enormous capacity for perceiving the richness of the tactile world. PMID:23972592

  10. Long Wavelength Fluorescence Ratiometric Zinc Biosensor

    PubMed Central

    Zeng, Hui Hui; Matveeva, Evgenia; Stoddard, Andrea K.; Fierke, Carol A.; Thompson, Richard B.

    2013-01-01

    A protein-based emission ratiometric fluorescence biosensor is described that exhibits sensitivity to free zinc ion solutions down to picomolar concentrations. Ratiometric measurements are widely used to assure accurate quantitation, and emission ratios are preferred for laser scanning microscopes such as confocal fluorescence microscopes. The relatively long emission wavelengths used are well suited to studies in tissues and other matrices which exhibit significant fluorescence background, and the apo-carbonic anhydrase moiety recognizes zinc ion with high and controllable specificity. PMID:23345045

  11. Biosensors Related LLT: Physiopathology, Background and Rationale

    NASA Astrophysics Data System (ADS)

    Palmieri, Beniamino; Capone, Stefania

    2011-08-01

    The Authors describe a new biosensor-related approach to LLT delivery, tailored to homogeneously integrate the external energy to the maximum patient compliance and receptivity; this project is based on the work hypothesis, by a pilot clinical trial and experimental animals (liver crush injury in the rat) confirmed that the diodes number, frequency, intensity, and pulses when synchronized with the vital parameters induce maximal physiological response in terms of regeneration and recovery.

  12. Dual-mode acoustic wave biosensors microarrays

    NASA Astrophysics Data System (ADS)

    Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng

    2003-04-01

    We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.

  13. Integrated-optical directional coupler biosensor

    NASA Astrophysics Data System (ADS)

    Luff, B. J.; Harris, R. D.; Wilkinson, J. S.; Wilson, R.; Schiffrin, D. J.

    1996-04-01

    We present measurements of biomolecular binding reactions, using a new type of integrated-optical biosensor based on a planar directional coupler structure. The device is fabricated by Ag+ - Na+ ion exchange in glass, and definition of the sensing region is achieved by use of transparent fluoropolymer isolation layers formed by thermal evaporation. The suitability of the sensor for application to the detection of environmental pollutants is considered.

  14. Biosensor discovery of thyroxine transport disrupting chemicals

    SciTech Connect

    Marchesini, Gerardo R. Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J.

    2008-10-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds.

  15. Sensory Augmentation for the Blind

    PubMed Central

    Kärcher, Silke M.; Fenzlaff, Sandra; Hartmann, Daniela; Nagel, Saskia K.; König, Peter

    2012-01-01

    Common navigational aids used by blind travelers during large-scale navigation divert attention away from important cues of the immediate environment (i.e., approaching vehicles). Sensory augmentation devices, relying on principles similar to those at work in sensory substitution, can potentially bypass the bottleneck of attention through sub-cognitive implementation of a set of rules coupling motor actions with sensory stimulation. We provide a late blind subject with a vibrotactile belt that continually signals the direction of magnetic north. The subject completed a set of behavioral tests before and after an extended training period. The tests were complemented by questionnaires and interviews. This newly supplied information improved performance on different time scales. In a pointing task we demonstrate an instant improvement of performance based on the signal provided by the device. Furthermore, the signal was helpful in relevant daily tasks, often complicated for the blind, such as keeping a direction over longer distances or taking shortcuts in familiar environments. A homing task with an additional attentional load demonstrated a significant improvement after training. The subject found the directional information highly expedient for the adjustment of his inner maps of familiar environments and describes an increase in his feeling of security when exploring unfamiliar environments with the belt. The results give evidence for a firm integration of the newly supplied signals into the behavior of this late blind subject with better navigational performance and more courageous behavior in unfamiliar environments. Most importantly, the complementary information provided by the belt lead to a positive emotional impact with enhanced feeling of security. The present experimental approach demonstrates the positive potential of sensory augmentation devices for the help of handicapped people. PMID:22403535

  16. Sensory impacts of food-packaging interactions.

    PubMed

    Duncan, Susan E; Webster, Janet B

    2009-01-01

    Sensory changes in food products result from intentional or unintentional interactions with packaging materials and from failure of materials to protect product integrity or quality. Resolving sensory issues related to plastic food packaging involves knowledge provided by sensory scientists, materials scientists, packaging manufacturers, food processors, and consumers. Effective communication among scientists and engineers from different disciplines and industries can help scientists understand package-product interactions. Very limited published literature describes sensory perceptions associated with food-package interactions. This article discusses sensory impacts, with emphasis on oxidation reactions, associated with the interaction of food and materials, including taints, scalping, changes in food quality as a function of packaging, and examples of material innovations for smart packaging that can improve sensory quality of foods and beverages. Sensory evaluation is an important tool for improved package selection and development of new materials. PMID:19389606

  17. Cultured neuronal networks as environmental biosensors.

    PubMed

    O'Shaughnessy, Thomas J; Gray, Samuel A; Pancrazio, Joseph J

    2004-01-01

    Contamination of water by toxins, either intentionally or unintentionally, is a growing concern for both military and civilian agencies and thus there is a need for systems capable of monitoring a wide range of natural and industrial toxicants. The EILATox-Oregon Workshop held in September 2002 provided an opportunity to test the capabilities of a prototype neuronal network-based biosensor with unknown contaminants in water samples. The biosensor is a portable device capable of recording the action potential activity from a network of mammalian neurons grown on glass microelectrode arrays. Changes in the action potential fi ring rate across the network are monitored to determine exposure to toxicants. A series of three neuronal networks derived from mice was used to test seven unknown samples. Two of these unknowns later were revealed to be blanks, to which the neuronal networks did not respond. Of the five remaining unknowns, a significant change in network activity was detected for four of the compounds at concentrations below a lethal level for humans: mercuric chloride, sodium arsenite, phosdrin and chlordimeform. These compounds--two heavy metals, an organophosphate and an insecticide--demonstrate the breadth of detection possible with neuronal networks. The results generated at the workshop show the promise of the neuronal network biosensor as an environmental detector but there is still considerable effort needed to produce a device suitable for routine environmental threat monitoring. PMID:15478174

  18. Raman Spectroscopy Cell-based Biosensors

    PubMed Central

    Notingher, Ioan

    2007-01-01

    One of the main challenges faced by biodetection systems is the ability to detect and identify a large range of toxins at low concentrations and in short times. Cell-based biosensors rely on detecting changes in cell behaviour, metabolism, or induction of cell death following exposure of live cells to toxic agents. Raman spectroscopy is a powerful technique for studying cellular biochemistry. Different toxic chemicals have different effects on living cells and induce different time-dependent biochemical changes related to cell death mechanisms. Cellular changes start with membrane receptor signalling leading to cytoplasmic shrinkage and nuclear fragmentation. The potential advantage of Raman spectroscopy cell-based systems is that they are not engineered to respond specifically to a single toxic agent but are free to react to many biologically active compounds. Raman spectroscopy biosensors can also provide additional information from the time-dependent changes of cellular biochemistry. Since no cell labelling or staining is required, the specific time dependent biochemical changes in the living cells can be used for the identification and quantification of the toxic agents. Thus, detection of biochemical changes of cells by Raman spectroscopy could overcome the limitations of other biosensor techniques, with respect to detection and discrimination of a large range of toxic agents. Further developments of this technique may also include integration of cellular microarrays for high throughput in vitro toxicological testing of pharmaceuticals and in situ monitoring of the growth of engineered tissues.

  19. Hybrid nano plasmonics for integrated biosensor

    NASA Astrophysics Data System (ADS)

    Lin, Chii-Wann; Lee, Jun-Haw; Chiu, Nan-Fu; Lee, Szu-Yuan; Liu, Kou-Chen; Tsai, Feng-Yu; Yen, Chia-Yu; Lee, Chun-Nan

    2009-11-01

    SPR biosensor with OLED and nano-grating for HBV LAMP product detection is reported. Directional emissions by grating-coupler match the resonant condition of SP modes. Concentration changes result in color shift at specific angle. Real time detection of virus load down to 5 copies/25 ul can be achieved in 30 minutes. Surface plasmon Resonant (SPR) biosensor has been used for quantitative measurement of molecular interactions for its advantages of high sensitivity, label-free and real-time detection. In this paper, we report recent efforts on further enhancement of SPR biosensors by the heterogeneous integration of organic electroluminescence light source and nano-grating structure for the feasibility study on the fast and high sensitivity detection of HBV isothermal amplification products, Mg2P2O7. We demonstrated the surface plasmon coupled through hybrid nano-grating structure has highly directional emissions corresponding to the resonant condition of surface plasmon modes on the Au/air interface and controllable plasmonics band-gap by pitch modulation. SPGCE resulted in color change from yellowish green to orange at a certain viewing angle, when contacting glucose with concentration increasing from 10 to 40%.

  20. Design of nanostructured-based glucose biosensors

    NASA Astrophysics Data System (ADS)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  1. Scalable Production of Molybdenum Disulfide Based Biosensors.

    PubMed

    Naylor, Carl H; Kybert, Nicholas J; Schneier, Camilla; Xi, Jin; Romero, Gabriela; Saven, Jeffery G; Liu, Renyu; Johnson, A T Charlie

    2016-06-28

    We demonstrate arrays of opioid biosensors based on chemical vapor deposition grown molybdenum disulfide (MoS2) field effect transistors (FETs) coupled to a computationally redesigned, water-soluble variant of the μ-opioid receptor (MOR). By transferring dense films of monolayer MoS2 crystals onto prefabricated electrode arrays, we obtain high-quality FETs with clean surfaces that allow for reproducible protein attachment. The fabrication yield of MoS2 FETs and biosensors exceeds 95%, with an average mobility of 2.0 cm(2) V(-1) s(-1) (36 cm(2) V(-1) s(-1)) at room temperature under ambient (in vacuo). An atomic length nickel-mediated linker chemistry enables target binding events that occur very close to the MoS2 surface to maximize sensitivity. The biosensor response calibration curve for a synthetic opioid peptide known to bind to the wild-type MOR indicates binding affinity that matches values determined using traditional techniques and a limit of detection ∼3 nM (1.5 ng/mL). The combination of scalable array fabrication and rapid, precise binding readout enabled by the MoS2 transistor offers the prospect of a solid-state drug testing platform for rapid readout of the interactions between novel drugs and their intended protein targets. PMID:27227361

  2. Sensitive-cell-based fish chromatophore biosensor

    NASA Astrophysics Data System (ADS)

    Plant, Thomas K.; Chaplen, Frank W.; Jovanovic, Goran; Kolodziej, Wojtek; Trempy, Janine E.; Willard, Corwin; Liburdy, James A.; Pence, Deborah V.; Paul, Brian K.

    2004-07-01

    A sensitive biosensor (cytosensor) has been developed based on color changes in the toxin-sensitive colored living cells of fish. These chromatophores are highly sensitive to the presence of many known and unknown toxins produced by microbial pathogens and undergo visible color changes in a dose-dependent manner. The chromatophores are immobilized and maintained in a viable state while potential pathogens multiply and fish cell-microbe interactions are monitored. Low power LED lighting is used to illuminate the chromatophores which are magnified using standard optical lenses and imaged onto a CCD array. Reaction to toxins is detected by observing changes is the total area of color in the cells. These fish chromatophores are quite sensitive to cholera toxin, Staphococcus alpha toxin, and Bordatella pertussis toxin. Numerous other toxic chemical and biological agents besides bacterial toxins also cause readily detectable color effects in chromatophores. The ability of the chromatophore cell-based biosensor to distinguish between different bacterial pathogens was examined. Toxin producing strains of Salmonella enteritis, Vibrio parahaemolyticus, and Bacillus cereus induced movement of pigmented organelles in the chromatophore cells and this movement was measured by changes in the optical density over time. Each bacterial pathogen elicited this measurable response in a distinctive and signature fashion. These results suggest a chromatophore cell-based biosensor assay may be applicable for the detection and identification of virulence activities associated with certain air-, food-, and water-borne bacterial pathogens.

  3. Biosensor for underwater chemical sensing (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Kusterbeck, Anne W.; Deschamps, Jeffrey R.; Charles, Paul T.

    2005-05-01

    Emerging biosensor approaches may prove useful in reducing false positives and improving detection probabilities for unexploded ordnance (UXO) and underwater explosives. NRL researchers previously developed a biosensor that was field-tested and validated for use in environmental remediation to detect explosives in groundwater. The sensor relies on the selective recognition by antibodies of target analytes, including the common explosives TNT and RDX. Laboratory work has demonstrated that sensors based on these displacement immunoassay formats can detect explosives at the part-per-trillion level in seawater. More recently, participating in an Office of Naval Research program on Chemical Sensing in the Marine Environment (CSME), tests were conducted in controlled underwater experiments at San Clemente, CA and Duck, NC. Simulated UXO targets, autonomous underwater vehicles (AUV) and multiple sensor approaches were used to demonstrate the feasibility of underwater chemical sensing. Efforts are now underway to integrate the biosensor into an underwater platform as part of a broader sensor system. We will describe results of these studies and outline possible operational scenarios for applications in harbor security.

  4. Biosensor UUV payload for underwater detection

    NASA Astrophysics Data System (ADS)

    Kusterbeck, Anne W.; Charles, Paul T.; Melde, Brian J.; Trammell, Scott A.; Adams, André A.; Deschamps, Jeffrey R.

    2010-04-01

    Increased emphasis on maritime domain awareness and port security has led to the development of unmanned underwater vehicles (UUVs) capable of extended missions. These systems rely most frequently on well-developed side scan sonar and acoustic methods to locate potential targets. The Naval Research Laboratory (NRL) is developing biosensors for underwater explosives detection that complement acoustic sensors and can be used as UUV payloads to monitor areas for port and harbor security or in detection of underwater unexploded ordnance (UXO) and biochemical threats. The prototype sensor has recently been demonstrated to detect explosives in seawater at trace levels when run in a continuous sampling mode. To overcome ongoing issues with sample preparation and facilitate rapid detection at trace levels in a marine environment, we have been developing new mesoporous materials for in-line preconcentration of explosives and other small molecules, engineering microfluidic components to improve the signal, and testing alternative signal transduction methods. Additional work is being done to optimize the optical components and sensor response time. Highlights of these current studies and our ongoing efforts to integrate the biosensor with existing detection technologies to reduce false positives are described. In addition, we present the results of field tests that demonstrate the prototype biosensor performance as a UUV payload.

  5. Integrating and amplifying signal from riboswitch biosensors.

    PubMed

    Goodson, Michael S; Harbaugh, Svetlana V; Chushak, Yaroslav G; Kelley-Loughnane, Nancy

    2015-01-01

    Biosensors offer a built-in energy supply and inherent sensing machinery that when exploited correctly may surpass traditional sensors. However, biosensor systems have been hindered by a narrow range of ligand detection capabilities, a relatively low signal output, and their inability to integrate multiple signals. Integration of signals could increase the specificity of the sensor and enable detection of a combination of ligands that may indicate environmental or developmental processes when detected together. Amplifying biosensor signal output will increase detector sensitivity and detection range. Riboswitches offer the potential to widen the diversity of ligands that may be detected, and advances in synthetic biology are illuminating myriad possibilities in signal processing using an orthogonal parts-based engineering approach. In this chapter, we describe the design, building, and testing of a riboswitch-based Boolean logic AND gate in bacteria, where an output requires the activation of two riboswitches, and the biological circuitry required to amplify the output of the AND gate using natural extracellular bacterial communication signals to "wire" cells together. PMID:25605381

  6. Development of Metallic Sensory Alloys

    NASA Technical Reports Server (NTRS)

    Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.

    2010-01-01

    Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.

  7. Morphology, innervation, and peripheral sensory cells of the siphon of aplysia californica.

    PubMed

    Carrigan, Ian D; Croll, Roger P; Wyeth, Russell C

    2015-11-01

    The siphon of Aplysia californica has several functions, including involvement in respiration, excretion, and defensive inking. It also provides sensory input for defensive withdrawals that have been studied extensively to examine mechanisms that underlie learning. To better understand the neuronal bases of these functions, we used immunohistochemistry to catalogue peripheral cell types and innervation of the siphon in stage 12 juveniles (chosen to allow observation of tissues in whole-mounts). We found that the siphon nerve splits into three major branches, leading ultimately to a two-part FMRFamide-immunoreactive plexus and an apparently separate tyrosine hydroxylase-immunoreactive plexus. Putative sensory neurons included four distinct types of tubulin-immunoreactive bipolar cells (one likely also tyrosine hydroxylase immunoreactive) that bore ciliated dendrites penetrating the epithelium. A fifth bipolar neuron type (tubulin- and FMRFamide-immunoreactive) occurred deeper in the tissue, associated with part of the FMRFamide-immunoreactive plexus. Our observations emphasize the structural complexity of the peripheral nervous system of the siphon, and the importance of direct tests of the various components to better understand the functioning of the entire organ, including its role in defensive withdrawal responses. PMID:25921857

  8. Homemade Bienzymatic-Amperometric Biosensor for Beverages Analysis

    ERIC Educational Resources Information Center

    Blanco-Lopez, M. C.; Lobo-Castanon, M. J.; Miranda-Ordieres, A. J.

    2007-01-01

    The construction of an amperometric biosensor for glucose analysis is described demonstrating that the analysis is easy to perform and the biosensor gives good analytical performance. This experiment helped the students to acquire problem-solving and teamwork skills, allowing them to reach a high level of independent and critical thought.

  9. In vitro evaluation of fluorescence glucose biosensor response.

    PubMed

    Aloraefy, Mamdouh; Pfefer, T Joshua; Ramella-Roman, Jessica C; Sapsford, Kim E

    2014-01-01

    Rapid, accurate, and minimally-invasive glucose biosensors based on Förster Resonance Energy Transfer (FRET) for glucose measurement have the potential to enhance diabetes control. However, a standard set of in vitro approaches for evaluating optical glucose biosensor response under controlled conditions would facilitate technological innovation and clinical translation. Towards this end, we have identified key characteristics and response test methods, fabricated FRET-based glucose biosensors, and characterized biosensor performance using these test methods. The biosensors were based on competitive binding between dextran and glucose to concanavalin A and incorporated long-wavelength fluorescence dye pairs. Testing characteristics included spectral response, linearity, sensitivity, limit of detection, kinetic response, reversibility, stability, precision, and accuracy. The biosensor demonstrated a fluorescence change of 45% in the presence of 400 mg/dL glucose, a mean absolute relative difference of less than 11%, a limit of detection of 25 mg/dL, a response time of 15 min, and a decay in fluorescence intensity of 72% over 30 days. The battery of tests presented here for objective, quantitative in vitro evaluation of FRET glucose biosensors performance have the potential to form the basis of future consensus standards. By implementing these test methods for a long-visible-wavelength biosensor, we were able to demonstrate strengths and weaknesses with a new level of thoroughness and rigor. PMID:25006996

  10. A versatile biosensor device for continuous biomedical monitoring.

    PubMed

    Rhemrev-Boom, M M; Korf, J; Venema, K; Urban, G; Vadgama, P

    2001-12-01

    Although biosensors are by means suitable for continuous biomedical monitoring, due to fouling and blood clotting, in vivo performance is far from optimal. For this reason, ultrafiltration, microdialysis or open tubular flow is frequently used as interface. To secure quantitative recoveries of the analyte of interest, sampling at submicrolitre level will be necessary which in turn necessitates the development of small and versatile biosensor devices. Here, a miniaturised biosensor device, which directly can be connected to various interfaces will be presented. The biosensor device consists of a pulsefree pump and a biosensor with an internal volume of 10-20 nl. In this article, the production as well as the construction of the flow-through cell of the biosensor will be discussed. The advantages and disadvantages of several production processes will be demonstrated and a detailed protocol for the production of such a nanoliter flow-through cell will be presented. With respect to the bio-selector, several permselective membranes have been tested on their performance characteristics. Results obtained with these biosensors will be presented and discussed. Finally, a protocol based upon in situ electropolymerisation for the immobilisation of the biological component was defined and several biosensors based upon this principle have been produced and tested for the monitoring of glucose respectively lactate. To demonstrate, data obtained during a variety of in vivo studies at different clinical relevant applications will be presented. PMID:11679262

  11. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  12. Multiple Pathogen Detection Using Biosensors: Advancements and Challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advancements in biosensor research have considerably impacted clinical diagnostics for human health. Efforts in capitalizing on the sensitivity of biosensors for food pathogen detection are evident in the food safety/security research community. For practical application with foods that normally h...

  13. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer.

    PubMed

    Jarczewska, Marta; Ziółkowski, Robert; Górski, Łukasz; Malinowska, Elżbieta

    2014-04-01

    The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+). PMID:24334186

  14. Biosensor method and system based on feature vector extraction

    DOEpatents

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Qi, Hairong; Wang, Xiaoling

    2013-07-02

    A system for biosensor-based detection of toxins includes providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  15. Biosensor method and system based on feature vector extraction

    DOEpatents

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Qi, Hairong; Wang, Xiaoling

    2012-04-17

    A method of biosensor-based detection of toxins comprises the steps of providing at least one time-dependent control signal generated by a biosensor in a gas or liquid medium, and obtaining a time-dependent biosensor signal from the biosensor in the gas or liquid medium to be monitored or analyzed for the presence of one or more toxins selected from chemical, biological or radiological agents. The time-dependent biosensor signal is processed to obtain a plurality of feature vectors using at least one of amplitude statistics and a time-frequency analysis. At least one parameter relating to toxicity of the gas or liquid medium is then determined from the feature vectors based on reference to the control signal.

  16. Current Trends in Nanomaterial-Based Amperometric Biosensors

    PubMed Central

    Hayat, Akhtar; Catanante, Gaëlle; Marty, Jean Louis

    2014-01-01

    The last decade has witnessed an intensive research effort in the field of electrochemical sensors, with a particular focus on the design of amperometric biosensors for diverse analytical applications. In this context, nanomaterial integration in the construction of amperometric biosensors may constitute one of the most exciting approaches. The attractive properties of nanomaterials have paved the way for the design of a wide variety of biosensors based on various electrochemical detection methods to enhance the analytical characteristics. However, most of these nanostructured materials are not explored in the design of amperometric biosensors. This review aims to provide insight into the diverse properties of nanomaterials that can be possibly explored in the construction of amperometric biosensors. PMID:25494347

  17. Large Scale Bacterial Colony Screening of Diversified FRET Biosensors

    PubMed Central

    Litzlbauer, Julia; Schifferer, Martina; Ng, David; Fabritius, Arne; Thestrup, Thomas; Griesbeck, Oliver

    2015-01-01

    Biosensors based on Förster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors. PMID:26061878

  18. Resonance phenomenon of the ATP motor as an ultrasensitive biosensor.

    PubMed

    Wang, Peirong; Zhang, Xiaoguang; Zhang, Xu; Wang, Xia; Li, Xueren; Yue, Jiachang

    2012-09-28

    We designed a rotary biosensor as a damping effector, with the rotation of the F(0)F(1)-ATPase driven by Adenosine Triphosphate (ATP) synthesis being indicated by the fluorescence intensity and a damping effect force being induced by the binding of an RNA molecule to its probe on the rotary biosensor. We found that the damping effect could contribute to the resonance phenomenon and energy transfer process of our rotary biosensor in the liquid phase. This result indicates that the ability of the rotary motor to operate in the vibration harmonic mode depends on the environmental conditions and mechanism in that a few molecules of the rotary biosensor could induce all of the sensor molecules to fluoresce together. These findings contribute to the theory study of the ATPase motor and future development of biosensors for ultrasensitive detection. PMID:22960174

  19. Emerging Synergy between Nanotechnology and Implantable Biosensors: A Review

    PubMed Central

    Vaddiraju, Santhisagar; Tomazos, Ioannis; Burgess, Diane J; Jain, Faquir C; Papadimitrakopoulos, Fotios

    2010-01-01

    The development of implantable biosensors for continuous monitoring of metabolites is an area of sustained scientific and technological interest. On the other hand, nanotechnology, a discipline which deals with the properties of materials at the nanoscale, is developing as a potent tool to enhance the performance of these biosensors. This article reviews the current state of implantable biosensors, highlighting the synergy between nanotechnology and sensor performance. Emphasis is placed on the electrochemical method of detection in light of its widespread usage and substantial nanotechnology-based improvements in various aspects of electrochemical biosensor performance. Finally, issues regarding toxicity and biocompatibility of nanomaterials, along with future prospects for the application of nanotechnology in implantable biosensors, are discussed. PMID:20042326

  20. Sensory Motor Coordination in Robonaut

    NASA Technical Reports Server (NTRS)

    Peters, Richard Alan, II

    2003-01-01

    As a participant of the year 2000 NASA Summer Faculty Fellowship Program, I worked with the engineers of the Dexterous Robotics Laboratory at NASA Johnson Space Center on the Robonaut project. The Robonaut is an articulated torso with two dexterous arms, left and right five-fingered hands, and a head with cameras mounted on an articulated neck. This advanced space robot, now driven only teleoperatively using VR gloves, sensors and helmets, is to be upgraded to a thinking system that can find, interact with and assist humans autonomously, allowing the Crew to work with Robonaut as a (junior) member of their team. Thus, the work performed this summer was toward the goal of enabling Robonaut to operate autonomously as an intelligent assistant to astronauts. Our underlying hypothesis is that a robot can develop intelligence if it learns a set of basic behaviors (i.e., reflexes - actions tightly coupled to sensing) and through experience learns how to sequence these to solve problems or to accomplish higher-level tasks. We describe our approach to the automatic acquisition of basic behaviors as learning sensory-motor coordination (SMC). Although research in the ontogenesis of animals development from the time of conception) supports the approach of learning SMC as the foundation for intelligent, autonomous behavior, we do not know whether it will prove viable for the development of autonomy in robots. The first step in testing the hypothesis is to determine if SMC can be learned by the robot. To do this, we have taken advantage of Robonaut's teleoperated control system. When a person teleoperates Robonaut, the person's own SMC causes the robot to act purposefully. If the sensory signals that the robot detects during teleoperation are recorded over several repetitions of the same task, it should be possible through signal analysis to identify the sensory-motor couplings that accompany purposeful motion. In this report, reasons for suspecting SMC as the basis for

  1. Hereditary sensory neuropathy type I

    PubMed Central

    Auer-Grumbach, Michaela

    2008-01-01

    Hereditary sensory neuropathy type I (HSN I) is a slowly progressive neurological disorder characterised by prominent predominantly distal sensory loss, autonomic disturbances, autosomal dominant inheritance, and juvenile or adulthood disease onset. The exact prevalence is unknown, but is estimated as very low. Disease onset varies between the 2nd and 5th decade of life. The main clinical feature of HSN I is the reduction of sensation sense mainly distributed to the distal parts of the upper and lower limbs. Variable distal muscle weakness and wasting, and chronic skin ulcers are characteristic. Autonomic features (usually sweating disturbances) are invariably observed. Serious and common complications are spontaneous fractures, osteomyelitis and necrosis, as well as neuropathic arthropathy which may even necessitate amputations. Some patients suffer from severe pain attacks. Hypacusis or deafness, or cough and gastrooesophageal reflux have been observed in rare cases. HSN I is a genetically heterogenous condition with three loci and mutations in two genes (SPTLC1 and RAB7) identified so far. Diagnosis is based on the clinical observation and is supported by a family history. Nerve conduction studies confirm a sensory and motor neuropathy predominantly affecting the lower limbs. Radiological studies, including magnetic resonance imaging, are useful when bone infections or necrosis are suspected. Definitive diagnosis is based on the detection of mutations by direct sequencing of the SPTLC1 and RAB7 genes. Correct clinical assessment and genetic confirmation of the diagnosis are important for appropriate genetic counselling and prognosis. Differential diagnosis includes the other hereditary sensory and autonomic neuropathies (HSAN), especially HSAN II, as well as diabetic foot syndrome, alcoholic neuropathy, neuropathies caused by other neurotoxins/drugs, immune mediated neuropathy, amyloidosis, spinal cord diseases, tabes dorsalis, lepra neuropathy, or decaying skin

  2. Cognitive mechanisms associated with auditory sensory gating.

    PubMed

    Jones, L A; Hills, P J; Dick, K M; Jones, S P; Bright, P

    2016-02-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  3. Cognitive mechanisms associated with auditory sensory gating

    PubMed Central

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  4. High-density fiber optic biosensor arrays

    NASA Astrophysics Data System (ADS)

    Epstein, Jason R.; Walt, David R.

    2002-02-01

    Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast

  5. Biosensors for functional food safety and analysis.

    PubMed

    Lavecchia, Teresa; Tibuzzi, Arianna; Giardi, Maria Teresa

    2010-01-01

    The importance of safety and functionality analysis of foodstuffs and raw materials is supported by national legislations and European Union (EU) directives concerning not only the amount of residues of pollutants and pathogens but also the activity and content of food additives and the health claims stated on their labels. In addition, consumers' awareness of the impact of functional foods' on their well-being and their desire for daily healthcare without the intake pharmaceuticals has immensely in recent years. Within this picture, the availability of fast, reliable, low cost control systems to measure the content and the quality of food additives and nutrients with health claims becomes mandatory, to be used by producers, consumers and the governmental bodies in charge of the legal supervision of such matters. This review aims at describing the most important methods and tools used for food analysis, starting with the classical methods (e.g., gas-chromatography GC, high performance liquid chromatography HPLC) and moving to the use of biosensors-novel biological material-based equipments. Four types of bio-sensors, among others, the novel photosynthetic proteins-based devices which are more promising and common in food analysis applications, are reviewed. A particular highlight on biosensors for the emerging market of functional foods is given and the most widely applied functional components are reviewed with a comprehensive analysis of papers published in the last three years; this report discusses recent trends for sensitive, fast, repeatable and cheap measurements, focused on the detection of vitamins, folate (folic acid), zinc (Zn), iron (Fe), calcium (Ca), fatty acids (in particular Omega 3), phytosterols and phytochemicals. A final market overview emphasizes some practical aspects ofbiosensor applications. PMID:21520718

  6. Infrared biosensors based on graphene plasmonics: modeling.

    PubMed

    Zhao, Yuan; Hu, Xiang; Chen, Guanxiong; Zhang, Xuanru; Tan, Ziqi; Chen, Junhua; Ruoff, Rodney S; Zhu, Yanwu; Lu, Yalin

    2013-10-28

    We propose a biosensor by exploiting localized plasmons in graphene and biomolecule adsorption on it. Numerical simulations demonstrate that the sensitivity of such a device can achieve a high value of up to 1697 nm/RIU (refractive index unit) when the wavelength shift at the plasmon resonance is detected. The transparent substrate supporting graphene can be chosen potentially from a wide range of materials including insulators, semiconductors, polymers, and gels. The plasmon resonance wavelength can be tuned with electrostatic doping and/or structure modulation of graphene. Furthermore, the device works in a wide angle range of incident light since the transverse magnetic (TM) polarization is independent of incident angles. PMID:24005890

  7. More About Thin-Membrane Biosensor

    NASA Technical Reports Server (NTRS)

    Case, George D.; Worley, Jennings F., III

    1994-01-01

    Report presents additional information about device described in "Thin-Membrane Sensor With Biochemical Switch" (MFS-26121). Device is modular sensor that puts out electrical signal indicative of chemical or biological agent. Signal produced as membrane-crossing ion current triggered by chemical reaction between agent and recognition protein conjugated to channel blocker. Prototype of biosensor useful in numerous laboratory, industrial, or field applications; such as to detect bacterial toxins in food, to screen for disease-producing micro-organisms, or to warn of toxins or pollutants in air.

  8. Biosensor systems for pesticide determination in water

    NASA Astrophysics Data System (ADS)

    Bilitewski, Ursula; Bier, Frank F.; Beyersdorf-Radeck, Baerbel; Rueger, Petra; Zischkale, Frank; Schmid, Rolf D.

    1993-03-01

    Different biosensor systems suitable for the determination of pesticides in water are described. They are based on immobilized biological components, which are sensitive to compounds commonly used as pesticides. The biological components in the work described here were microorganisms capable of degrading chlorinated aromatic compounds, cholinesterases which are inhibited by carbamates and organophosphates, and antibodies specific to triazines. They were immobilized on various carriers and were either integrated in automated flow-through systems or developed as disposable electrodes. In this contribution, characteristics features of the different formats are given, e.g., the dependence of the specificity and sensitivity of the system on the biological component.

  9. Aptamer-modified nanoparticles as biosensors.

    PubMed

    Lönne, Maren; Zhu, Guohong; Stahl, Frank; Walter, Johanna-Gabriela

    2014-01-01

    Aptamers are short oligonucleotides that are capable of selectively binding to their corresponding target. Therefore, they can be thought of as a nucleic acid-based alternative to antibodies and can substitute for their amino acid-based counterparts in analytical applications, including as receptors in biosensors. Here they offer several advantages because their nucleic acid nature and their binding via an induced fit mechanism enable novel sensing strategies. In this article, the utilization of aptamers as novel bio-receptors in combination with nanoparticles as transducer elements is reviewed. In addition to these analytical applications, the medical relevance of aptamer-modified nanoparticles is described. PMID:23824145

  10. Some Rat Sensory Neurons in Culture Express Characteristics of Differentiated Pain Sensory Cells

    NASA Astrophysics Data System (ADS)

    Baccaglini, Paola I.; Hogan, Patrick G.

    1983-01-01

    Sensory neurons were dissociated from trigeminal ganglia or from dorsal root ganglia of rats, grown in culture, and examined for expression of properties of pain sensory cells. Many sensory neurons in culture are excited by low concentrations of capsaicin, reportedly a selective stimulus for pain sensory neurons. Many are excited by bradykinin, sensitized by prostaglandin E2, or specifically stained by an antiserum against substance P. These experiments provide a basis for the study of pain mechanisms in cell culture.

  11. Sensory Sensitivities and Performance on Sensory Perceptual Tasks in High-Functioning Individuals with Autism

    ERIC Educational Resources Information Center

    Minshew, Nancy J.; Hobson, Jessica A.

    2008-01-01

    Most reports of sensory symptoms in autism are second hand or observational, and there is little evidence of a neurological basis. Sixty individuals with high-functioning autism and 61 matched typical participants were administered a sensory questionnaire and neuropsychological tests of elementary and higher cortical sensory perception. Thirty-two…

  12. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor

    PubMed Central

    Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Myong Kim, Dong; Hwan Kim, Dae; Choi, Sung-Jin

    2015-01-01

    This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 105 times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 105 with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density. PMID:26197105

  13. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.

    PubMed

    Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin

    2015-01-01

    This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density. PMID:26197105

  14. Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes

    PubMed Central

    Claussen, Jonathan C.; Kim, Sungwon S.; Haque, Aeraj ul; Artiles, Mayra S.; Porterfield, D. Marshall; Fisher, Timothy S.

    2010-01-01

    Background Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Method Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GOX) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Results Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GOX–CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H2O2 (7.4 μA/mM/cm2) and glucose (70 μA/mM/cm2), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t90%), respectively. The apparent Michaelis–Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GOX/nanomaterial complexes. Conclusions The GOX–CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. PMID:20307391

  15. A biosensor system using nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Prachi; Rathore, Deepshikha

    2016-05-01

    NiFe2O4 ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe2O4 was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe2O4 nanoparticle based biosensor was done in the form of a capacitor system, with NiFe2O4 as the dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe2O4. The performance of the sensor was determined based on its sensitivity, response time and recovery time.

  16. Microfabrication of biosensors for neurotransmitter analysis

    NASA Astrophysics Data System (ADS)

    Tan, Weihong; Cordek, Julia; Liu, Xiaojing; Gross, Brooks; Liesenfeld, Bernd

    1999-06-01

    We have developed ultrasensitive biosensors for the analysis of neurotransmitters such as glutamate, GABA and lactate. These sensors have micrometer to submicrometer sizes. They are based on biomolecule immobilization on optical fiber probe surfaces. The miniaturized fiber probes are fabricated by either pulling or etching conventional optical fibers. For example, surface immobilized glutamate dehydrogenase (GDH) is being used for glutamate analysis. GDH has been directly immobilized onto an optical fiber probe surface through a new optical fiber sensor fabrication technique using covalent binding mechanisms. None of the direct or indirect physical confinement methods, such as mechanical confinement, gel trapping or membrane immobilization, has been used for the sensor preparation. An optical fiber surface is initially activated by silanization, which adds amine groups (-NH2) to the surface. We then affix functional groups -CHO to the optical fiber surface by employing a bifunctional cross-linking agent, glutaraldehyde. The amino acids of GDH enzyme molecules (or other biomolecules) readily attach to these free -CHO groups on the fiber surface. The sensor is able to detect its substrate, glutamate, by monitoring the fluorescence of reduced nicotinamide adenine dinucleotide (NADH), a product of the reaction between nicotinamide adenine dinucleotide (NAD+) and glutamate. Similar procedures and principle have been used for the development of lactate and GABA sensors. Our biomolecule based biosensors have been applied to the study of single living cell neurophysiological responses.

  17. Optical modeling of liquid crystal biosensors

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Kun; Rey, Alejandro D.

    2006-11-01

    Optical simulations of a liquid crystal biosensor device are performed using an integrated optical/textural model based on the equations of nematodynamics and two optical methods: the Berreman optical matrix method [J. Opt. Soc. Am. 62, 502 (1972)] and the discretization of the Maxwell equations based on the finite difference time domain (FDTD) method. Testing the two optical methods with liquid crystal films of different degrees of orientational heterogeneities demonstrates that only the FDTD method is suitable to model this device. Basic substrate-induced texturing process due to protein adsorption gives rise to an orientation correlation function that is nearly linear with the transmitted light intensity, providing a basis to calibrate the device. The sensitivity of transmitted light to film thickness, protein surface coverage, and wavelength is established. A crossover incident light wavelength close to λco≈500nm is found, such that when λ >λco thinner films are more sensitive to the amount of protein surface coverage, while for λ <λco the reverse holds. In addition it is found that for all wavelengths the sensitivity increases with the amount of protein coverage. The integrated device model based on FDTD optical simulations in conjunction with the Landau-de Gennes nematodynamics model provides a rational basis for further progress in liquid crystal biosensor devices.

  18. Development of a functionalized Xenon biosensor

    SciTech Connect

    Spence, Megan M.; Ruiz, E. Janette; Rubin, Seth M.; Lowery, Thomas J.; Winssinger, Nicolas; Schultz, Peter G.; Wemmer, David E.; Pines, Alexander

    2004-03-25

    NMR-based biosensors that utilize laser-polarized xenon offer potential advantages beyond current sensing technologies. These advantages include the capacity to simultaneously detect multiple analytes, the applicability to in vivo spectroscopy and imaging, and the possibility of remote amplified detection. Here we present a detailed NMR characterization of the binding of a biotin-derivatized caged-xenon sensor to avidin. Binding of functionalized xenon to avidin leads to a change in the chemical shift of the encapsulated xenon in addition to a broadening of the resonance, both of which serve as NMR markers of ligand-target interaction. A control experiment in which the biotin-binding site of avidin was blocked with native biotin showed no such spectral changes, confirming that only specific binding, rather than nonspecific contact, between avidin and functionalized xenon leads to the effects on the xenon NMR spectrum. The exchange rate of xenon (between solution and cage) and the xenon spin-lattice relaxation rate were not changed significantly upon binding. We describe two methods for enhancing the signal from functionalized xenon by exploiting the laser-polarized xenon magnetization reservoir. We also show that the xenon chemical shifts are distinct for xenon encapsulated in different diastereomeric cage molecules. This demonstrates the potential for tuning the encapsulated xenon chemical shift, which is a key requirement for being able to multiplex the biosensor.

  19. Integrated Biosensor Systems for Ethanol Analysis

    NASA Astrophysics Data System (ADS)

    Alhadeff, Eliana M.; Salgado, Andrea M.; Cós, Oriol; Pereira, Nei; Valero, Francisco; Valdman, Belkis

    Different integrated systems with a bi-enzymatic biosensor, working with two different methods for ethanol detection—flow injection analysis (FIA) or sequential injection analysis (SIA)—were developed and applied for ethanol extracted from gasohol mixtures, as well as for samples of alcoholic beverages and fermentation medium. A detection range of 0.05-1.5 g ethanol/l, with a correlation coefficient of 0.9909, has been reached when using FIA system, working with only one microreactor packed with immobilized alcohol oxidase and injecting free horseradish peroxidase. When using both enzymes, immobilized separately in two microreactors, the detection ranges obtained varied from 0.001 to 0.066 g ethanol/l, without on-line dilution to 0.010-0.047 g ethanol/l when a 1:7,000 dilution ratio was employed, reaching correlation coefficients of 0.9897 and 0.9992, respectively. For the integrated biosensor SIA system with the stop-flow technique, the linear range was 0.005-0.04 g/l, with a correlation coefficient of 0.9922.

  20. Miniaturized thin film glutamate and glutamine biosensors.

    PubMed

    Moser, I; Jobst, G; Aschauer, E; Svasek, P; Varahram, M; Urban, G; Zanin, V A; Tjoutrina, G Y; Zharikova, A V; Berezov, T T

    1995-01-01

    Integrated thin film biosensors were developed for the simultaneous measurement of L-glutamine and L-glutamate in a mu-flow cell. Due to a novel glutaminase with an activity optimum in the neutral pH range, direct monitoring of glutamine in a mammalian cell culture medium could be performed. The glutamine bienzyme sensor was prepared by co-immobilization of glutaminase with glutamate oxidase within a photopatterned poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel membrane. The sensor response was linear in the concentration range of 50 mumol to 10 mmol glutamine/l. Additionally, a glutamate biosensor was integrated on the sensor chip for difference measurement of possible glutamate interferences. The sensor-chip could be used for at least 300 measurements without any alteration in the performance of its sensors. A new sensor-chip with an integrated flow cell provided the possibility of simultaneous measurement of four different parameters at a cell volume of 1 microliter. In order to complete the microsystem, and in order to obtain a "lab on chip", a battery operated surface mounted device (SMD) potentiostat was developed. PMID:7612205

  1. Development of a Pseudomonas aeruginosa Agmatine Biosensor.

    PubMed

    Gilbertsen, Adam; Williams, Bryan

    2014-12-01

    Agmatine, decarboxylated arginine, is an important intermediary in polyamine production for many prokaryotes, but serves higher functions in eukaryotes such as nitric oxide inhibition and roles in neurotransmission. Pseudomonas aeruginosa relies on the arginine decarboxylase and agmatine deiminase pathways to convert arginine into putrescine. One of the two known agmatine deiminase operons, aguBA, contains an agmatine sensitive TetR promoter controlled by AguR. We have discovered that this promoter element can produce a titratable induction of its gene products in response to agmatine, and utilized this discovery to make a luminescent agmatine biosensor in P. aeruginosa. The genome of the P. aeruginosa lab strain UCBPP-PA14 was altered to remove both its ability to synthesize or destroy agmatine, and insertion of the luminescent reporter construct allows it to produce light in proportion to the amount of exogenous agmatine applied from ~100 nM to 1mM. Furthermore it does not respond to related compounds including arginine or putrescine. To demonstrate potential applications the biosensor was used to detect agmatine in spent supernatants, to monitor the development of arginine decarboxylase over time, and to detect agmatine in the spinal cords of live mice. PMID:25587430

  2. Cholinesterase based amperometric biosensors for assay of anticholinergic compounds

    PubMed Central

    Pohanka, Miroslav

    2009-01-01

    Biosensors are analytical devices being approachable for multiple analytes assay. Here, biosensors with intercepted acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) are presented as tool for assay of anticholinergic compounds such as pesticides, nerve agents and some natural toxins. Principle of assay is based on evaluation of cholinesterase activity and its pertinent decrease in presence of analyte. Nerve agents, pesticides, anticholinergic drugs useable for treatment of Alzheimer′s disease as well as myasthenia gravis and aflatoxins are enlisted as compounds simply analyzable by cholinesterase biosensors. PMID:21217847

  3. Development of a multiarray biosensor for DNA diagnostics

    SciTech Connect

    Vo-Dinh, T.; Isola, N.; Alarie, J.P.; Landis, D.; Griffin, G.D.; Allison, S.

    1998-11-01

    This work involves the development and evaluation of a multiarray biosensor for DNA diagnostics. The evaluation of various system components developed for the biosensor is discussed. The DNA probes labeled with visible and near infrared (NIR) dyes are evaluated. The detection system uses a two-dimensional charge-coupled device (CCD). Examples of application of gene probes in DNA hybridization experiments and in biomedical diagnosis (detection of the p53 cancer gene) are presented to illustrate the usefulness and potential of the biosensor device.

  4. SENSORY EVOKED POTENTIALS: MEASURES OF NEUROTOXICITY

    EPA Science Inventory

    There is a need for tests of sensory function to be incorporated in laboratory and toxicity testing. t is clear that sensory dysfunction may frequently occur, but go undetected, in standard animal toxicological testing protocols. ensory evoked potential technology can be employed...

  5. Sensory neuropathy in two Border collie puppies.

    PubMed

    Vermeersch, K; Van Ham, L; Braund, K G; Bhatti, S; Tshamala, M; Chiers, K; Schrauwen, E

    2005-06-01

    A peripheral sensory neuropathy was diagnosed in two Border collie puppies. Neurological, electrophysiological and histopathological examinations suggested a purely sensory neuropathy with mainly distal involvement. Urinary incontinence was observed in one of the puppies and histological examination of the vagus nerve revealed degenerative changes. An inherited disorder was suspected. PMID:15971901

  6. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  7. Examination Accommodations for Students with Sensory Defensiveness

    ERIC Educational Resources Information Center

    Lewis, Kieran; Nolan, Clodagh

    2013-01-01

    Traditional examination accommodations include extra time, scribes, and/or separate venues for students with disabilities, which have been proven to be successful for the majority of students. For students with non-apparent disabilities such as sensory defensiveness, where sensitivity to a range of sensory information from the environment can…

  8. Multiple Output Sensory Trainer (MOST). Final Report.

    ERIC Educational Resources Information Center

    Automated Functions, Inc., Arlington, VA.

    This final report describes the design, development, and testing of the Multiple Output Sensory Trainer (MOST), a computer-based system which enables the evaluation of students with visual impairments to determine the optimal combination of sensory adaptive aids to meet their needs. The system uses multimedia devices in conjunction with customized…

  9. [Sensory neuronopathy. Its recognition and early treatment].

    PubMed

    Zuberbuhler, Paz; Young, Pablo; León Cejas, Luciana V; Finn, Bárbara C; Bruetman, Julio E; Calandra, Cristian R; Fulgenzi, Ernesto; Pérez Akly, Manuel; Rodríguez, Alejandro; Pardal, Ana; Reisin, Ricardo

    2015-01-01

    Sensory neuronopathies or ganglionopathies, or dorsal root ganglion disorders, represent a subgroup of peripheral nervous system diseases, frequently associated with dysinmune or neoplastic disorders and with toxic agents. A degeneration of both central and peripheral sensory proyections is present. Patients typically show early ataxia, loss of deep tendon reflexes and positive sensory symptoms present both in proximal and distal sites of the body. We retrospectively studied 10 cases with a final diagnosis of sensory neuronopathy. Sensory neuropathy was the presenting symptom and the course was subacute in all cases. Paresthesias in upper limbs were a predominant manifestation (100%). Other manifestations included: hypoesthesia (10/10), gait ataxia (8/10), autonomic symptoms (3/10) and perioral paresthesias (3/10). Electrophysiology showed sensory axonal neuronal pattern, with normal motor responses. Final diagnosis was acquired sensory neuronopathy in all patients, associated with Sjögren's syndrome in 2, with lupus erythematosus in 1, with rheumatoid arthritis in 1, with a cancer in 2 (paraneoplastic) and idiopathic in 4. In paraneoplastic cases, the tumor was small cell lung cancer in 1 (with positive anti-Hu antibodies), and epidermoid lung cancer in the other. Eight patients were treated with immunotherapy, high dose intravenous methylprednisolone and/or intravenous immunoglobulin; with poor response in 4 cases, neurologic improvement in 5, and without any change in 1 patient. The present work shows the typical clinical and electrophysiological pattern of subacute sensory neuronopathy, and the relevance of early treatment. PMID:26502464

  10. Measuring Sensory Reactivity in Autism Spectrum Disorder: Application and Simplification of a Clinician-Administered Sensory Observation Scale

    ERIC Educational Resources Information Center

    Tavassoli, Teresa; Bellesheim, Katherine; Siper, Paige M.; Wang, A. Ting; Halpern, Danielle; Gorenstein, Michelle; Grodberg, David; Kolevzon, Alexander; Buxbaum, Joseph D.

    2016-01-01

    Sensory reactivity is a new DSM-5 criterion for autism spectrum disorder (ASD). The current study aims to validate a clinician-administered sensory observation in ASD, the Sensory Processing Scale Assessment (SPS). The SPS and the Short Sensory Profile (SSP) parent-report were used to measure sensory reactivity in children with ASD (n = 35) and…