Science.gov

Sample records for seo proteins results

  1. Calcium powered phloem protein of SEO gene family "Forisome" functions in wound sealing and act as biomimetic smart materials.

    PubMed

    Srivastava, Vineet Kumar; Tuteja, Narendra

    2014-01-01

    Forisomes protein belongs to SEO gene family and is unique to Fabaceae family. These proteins are located in sieve tubes of phloem and function to prevent loss of nutrient-rich photoassimilates, upon mechanical injury/wounding. Forisome protein is also known as ATP independent, mechanically active proteins. Despite the wealth of information role of forisome in plants are not yet fully understood. Recent reports suggest that forisomes protein can act as ideal model to study self assembly mechanism for development of nanotechnological devices like microfluidic system application in space exploration mission. Improvement in micro instrument is highly demanding and has been a key technology by NASA in future space exploration missions. Based on its physical parameters, forisome are found to be ideal biomimetic materials for micro fluidic system because the conformational shifts can be replicated in vitro and are fully reversible over large number of cycles. By the use of protein engineering forisome recombinant protein can be tailored. Due to its unique ability to convert chemical energy into mechanical energy forisome has received much attention. For nanotechnological application and handling biomolecules such as DNA, RNA, protein and cell as a whole microfluidic system will be the most powerful technology. The discovery of new biomimetic smart materials has been a key factor in development of space science and its requirements in such a challenging environment. The field of microfludic, particularly in terms of development of its components along with identification of new biomimetic smart materials, deserves more attention. More biophysical investigation is required to characterize it to make it more suitable under parameters of performance. PMID:25763691

  2. Calcium powered phloem protein of SEO gene family “Forisome” functions in wound sealing and act as biomimetic smart materials

    PubMed Central

    Srivastava, Vineet Kumar; Tuteja, Narendra

    2014-01-01

    Forisomes protein belongs to SEO gene family and is unique to Fabaceae family. These proteins are located in sieve tubes of phloem and function to prevent loss of nutrient-rich photoassimilates, upon mechanical injury/wounding. Forisome protein is also known as ATP independent, mechanically active proteins. Despite the wealth of information role of forisome in plants are not yet fully understood. Recent reports suggest that forisomes protein can act as ideal model to study self assembly mechanism for development of nanotechnological devices like microfluidic system application in space exploration mission. Improvement in micro instrument is highly demanding and has been a key technology by NASA in future space exploration missions. Based on its physical parameters, forisome are found to be ideal biomimetic materials for micro fluidic system because the conformational shifts can be replicated in vitro and are fully reversible over large number of cycles. By the use of protein engineering forisome recombinant protein can be tailored. Due to its unique ability to convert chemical energy into mechanical energy forisome has received much attention. For nanotechnological application and handling biomolecules such as DNA, RNA, protein and cell as a whole microfluidic system will be the most powerful technology. The discovery of new biomimetic smart materials has been a key factor in development of space science and its requirements in such a challenging environment. The field of microfludic, particularly in terms of development of its components along with identification of new biomimetic smart materials, deserves more attention. More biophysical investigation is required to characterize it to make it more suitable under parameters of performance. PMID:25763691

  3. Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems.

    PubMed

    Park, Jeong-Nam; Sohn, Min Jeong; Oh, Doo-Byoung; Kwon, Ohsuk; Rhee, Sang Ki; Hur, Cheol-Goo; Lee, Sang Yup; Gellissen, Gerd; Kang, Hyun Ah

    2007-10-01

    The genomewide gene expression profiling of the methylotrophic yeast Hansenula polymorpha exposed to cadmium (Cd) allowed us to identify novel genes responsive to Cd treatment. To select genes whose promoters can be useful for construction of a cellular Cd biosensor, we further analyzed a set of H. polymorpha genes that exhibited >6-fold induction upon treatment with 300 muM Cd for 2 h. The putative promoters, about 1,000-bp upstream fragments, of these genes were fused with the yeast-enhanced green fluorescence protein (GFP) gene. The resultant reporter cassettes were introduced into H. polymorpha to evaluate promoter strength and specificity. The promoter derived from the H. polymorpha SEO1 gene (HpSEO1) was shown to drive most strongly the expression of GFP upon Cd treatment among the tested promoters. The Cd-inducible activity was retained in the 500-bp deletion fragment of the HpSEO1 promoter but was abolished in the further truncated 250-bp fragment. The 500-bp HpSEO1 promoter directed specific expression of GFP upon exposure to Cd in a dose-dependent manner, with Cd detection ranging from 1 to 900 muM. Comparative analysis of the Saccharomyces cerevisiae SEO1 (ScSEO1) promoter revealed that the ScSEO1 promoter has a broader specificity for heavy metals and is responsive to arsenic and mercury in addition to Cd. Our data demonstrate the potential use of the HpSEO1 promoter as a bioelement in whole-cell biosensors to monitor heavy metal contamination, particularly Cd. PMID:17660305

  4. Synchronous Earth Observatory Satellite /SEOS/

    NASA Technical Reports Server (NTRS)

    Walter, L. S.

    1974-01-01

    NASA/GSFC is currently studying the applications and technical requirements for a Synchronous Earth Observations Satellite (SEOS). Such a satellite would combine the relatively high resolution and multi-spectral capability of the Earth Resources Technology Satellite (ERTS) with the on-station continuous monitoring of the Synchronous Meteorological Satellite (SMS). SEOS capability is geared to perform disaster warning of tornadoes and floods as well as to monitor transient phenomena affecting earth resources (e.g., green waves and algae blooms). The heart of the system is a Large Earth Survey Telescope (LEST) which has a designed 1.5 meter diameter. Spectral bands in the visible, near- and far-infrared have been selected to optimize SEOS utility. A microwave sounder will be used in conjunction with the LEST for meteorological applications.

  5. CEOS SEO and GISS Meeting

    NASA Technical Reports Server (NTRS)

    Killough, Brian; Stover, Shelley

    2008-01-01

    The Committee on Earth Observation Satellites (CEOS) provides a brief to the Goddard Institute for Space Studies (GISS) regarding the CEOS Systems Engineering Office (SEO) and current work on climate requirements and analysis. A "system framework" is provided for the Global Earth Observation System of Systems (GEOSS). SEO climate-related tasks are outlined including the assessment of essential climate variable (ECV) parameters, use of the "systems framework" to determine relevant informational products and science models and the performance of assessments and gap analyses of measurements and missions for each ECV. Climate requirements, including instruments and missions, measurements, knowledge and models, and decision makers, are also outlined. These requirements would establish traceability from instruments to products and services allowing for benefit evaluation of instruments and measurements. Additionally, traceable climate requirements would provide a better understanding of global climate models.

  6. System trades for the SEOS telescope

    NASA Technical Reports Server (NTRS)

    Ritter, M.

    1975-01-01

    The Synchronous Earth Observation Satellite (SEOS) is a geostationary system which provides unique possibilities for earth surveillance. Questions of SEOS applications are considered, taking into account the employment of the Large Earth Survey Telescope. Aspects of performance and costs are examined. The generation of a value function in connection with a quantitative ranking of the applications is discussed along with an analysis performed to determine those parameter values which will maximize mission performance capability at given levels of system cost.

  7. Earth resources applications of the Synchronous Earth Observatory Satellite (SEOS)

    NASA Technical Reports Server (NTRS)

    Lowe, D. S.; Cook, J. J.

    1973-01-01

    The results are presented of a four month study to define earth resource applications which are uniquely suited to data collection by a geosynchronous satellite. While such a satellite could also perform many of the functions of ERTS, or its low orbiting successors, those applications were considered in those situations where requirements for timely observation limit the capability of ERTS or EOS. Thus, the application presented could be used to justify a SEOS.

  8. RNA adducts with Na 2SeO 4 and Na 2SeO 3 - Stability and structural features

    NASA Astrophysics Data System (ADS)

    Nafisi, Shohreh; Manouchehri, Firouzeh; Montazeri, Maryam

    2011-12-01

    Selenium compounds are widely available in dietary supplements and have been extensively studied for their antioxidant and anticancer properties. Low blood Se levels were found to be associated with an increased incidence and mortality from various types of cancers. Although many in vivo and clinical trials have been conducted using these compounds, their biochemical and chemical mechanisms of efficacy are the focus of much current research. This study was designed to examine the interaction of Na 2SeO 4 and Na 2SeO 3 with RNA in aqueous solution at physiological conditions, using a constant RNA concentration (6.25 mM) and various sodium selenate and sodium selenite/polynucleotide (phosphate) ratios of 1/80, 1/40, 1/20, 1/10, 1/5, 1/2 and 1/1. Fourier transform infrared, UV-Visible spectroscopic methods were used to determine the drug binding modes, the binding constants, and the stability of Na 2SeO 4 and Na 2SeO 3-RNA complexes in aqueous solution. Spectroscopic evidence showed that Na 2SeO 4 and Na 2SeO 3 bind to the major and minor grooves of RNA ( via G, A and U bases) with some degree of the Se-phosphate (PO 2) interaction for both compounds with overall binding constants of K(Na 2SeO 4-RNA) = 8.34 × 10 3 and K(Na 2SeO 3-RNA) = 4.57 × 10 3 M -1. The order of selenium salts-biopolymer stability was Na 2SeO 4-RNA > Na 2SeO 3-RNA. RNA aggregations occurred at higher selenium concentrations. No biopolymer conformational changes were observed upon Na 2SeO 4 and Na 2SeO 3 interactions, while RNA remains in the A-family structure.

  9. Seos - EARSEL'S Project on Science Education Through Earth Observation for High Schools

    NASA Astrophysics Data System (ADS)

    Reuter, R.

    2011-09-01

    SEOS is an initiative for using remote sensing in science education curricula in high schools funded under the 6th Framework Programme of the European Commission (EC). Eleven partners from several European countries, in cooperation with the European Space Agency (ESA) and teachers from European high schools, created e-learning tutorials for science students in high schools. The tutorials cover many disciplines such as physics, biology, geography, mathematics and engineering, emphasising the interdisciplinary character of remote sensing. They are the core element of the SEOS Learning Management System, allowing teachers to create their own courses, to distribute already available or new worksheets to the students for homework and to collect the results. Forums are available for teachers, students and other users to exchange information and discuss topics relevant for their study.

  10. LiMn3(SeO3)2(HSeO3)6.

    PubMed

    Johnston, Magnus G; Harrison, William T A

    2007-04-01

    The title compound, lithium trimanganese bis[trioxoselenate(IV)] hexakis[hydrogentrioxoselenate(IV)], is built up from a vertex-sharing network of distorted Mn(III)O(6) octahedra, SeO(3) and HSeO(3) pyramids and unusual Li(OH)(6) octahedra, resulting in a dense three-dimensional structure. Mn, Li and one Se atom have site symmetries of -1, -3, and 3, respectively. An O-H...O hydrogen bond helps to establish the crystal packing. PMID:17413211

  11. On the dielectric susceptibility calculation in the incommensurate phase of K2SeO4

    NASA Astrophysics Data System (ADS)

    Aslanyan, T. A.

    2010-10-01

    It is shown that the thermodynamic potential of the domain-like incommensurate (IC) phase of the K2SeO4crystal (viewed as a model for the IC-C transition) should be supplemented with a term, taking into account the local, Lorentz electric field. The latter qualitatively changes the result of calculation of the dielectric susceptibility for this IC structure by Nattermann and Trimper, J. Phys. C: Solid State Phys. 14, 1603, (1981), and gives phase transition to the ferroelectric IC phase obtained by Aslanyan, Phys. Rev. B 70, 024102, (2004).

  12. Investigation of local symmetry in LiH3(SeO3)2 single crystals by 1H and 7Li nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2013-10-01

    The local environments of 1H and 7Li nuclei in LiH3(SeO3)2 crystals were investigated using FT NMR. The 7Li spectrum does changes from three resonance lines to one resonance line near Tm (=383 K). The variation in the splitting of the 7Li resonance lines with temperature indicates that the EFG at the Li sites produced by the (SeO3)2- groups varies with temperature. The changes in the temperature dependence of the intensity, line width, and spin-lattice relaxation time T1 near Tm for the 1H and 7Li nuclei coincide with the distortion of the structural framework surrounding each 1H and 7Li ion. Finally, the NMR results obtained here are compared to MH3(SeO3)2 (M = Na, K, and Cs) crystals previously reported.

  13. Synthesis and crystal structures of two inorganic-organic hybrid vanadium selenites with layered structures: (DABCOH 2)[(VO 2)(SeO 3)] 2·1.25H 2O and (pipeH 2)[(VO) 2(C 2O 4)(SeO 3) 2

    NASA Astrophysics Data System (ADS)

    Lian, Zhaoxun; Zhang, Jiamin; Gu, Yongqing; Wang, Tianxi; Lou, Tianjun

    2009-02-01

    The reactions of SeO 2 with V 2O 5 or VOSO 4 in the presence of different organic amine yield two novel vanadium selenites with layered structures, formulated as (DABCOH 2)[(VO 2)(SeO 3)] 2·1.25H 2O 1 (DABCO = 1,4-diazabicyclooctane) and (pipeH 2)[(VO) 2(C 2O 4)(SeO 3) 2] 2 (pipe = piperazidine). Two compounds are characterized with elemental analysis, FT-IR spectrum, TG-DTA analysis and single-crystal X-ray diffraction analysis. In compound 1, two symmetry-related VO 6 units share an edge to form a [V 2O 6] cluster. Each [V 2O 6] cluster is bridged by four SeO 3 units to generate a two-dimensional grid structure. In compound 2, VO 6 units and SeO 3 units share corners to result in a ladder motif. Adjacent chains are interlinked by the oxalate ligands, creating a 2D brick-wall structure, which is firstly observed in V/Se/O system. Diprotonated DABCO and lattice water molecules in 1 and diprotonated piperazidine molecules in 2 are located in the interlayer regions and interact with the framework oxygen atoms via hydrogen bonds, respectively.

  14. Au2(SeO3)2(SeO4): synthesis and characterization of a new noncentrosymmetric selenite-selenate.

    PubMed

    Wickleder, Mathias S; Büchner, Oliver; Wickleder, Claudia; el-Sheik, Sherif; Brunklaus, Gunther; Eckert, Hellmut

    2004-09-20

    The reaction of elemental gold and selenic acid in Teflon-lined steel autoclaves leads to orange-yellow single crystals of Au2(SeO3)2(SeO4) (orthorhombic, Z = 4, Cmc2(1) (No. 36), a = 1689.1(3) pm, b = 630.13(8) pm, c = 832.7(1) pm, V = 886.2(2) angstroms3, Rall = 0.0452). In the crystal structure, Au3+ is surrounded by four oxygen atoms of just as many monodentate SeO3(2-) ions in a square planar manner. The linkage of the polyhedra leads to double chains in the [001] direction which are connected to puckered layers by SeO4(2-) groups. The noncentrosymmetric space group could be proved by the observation of an SHG effect upon irridation at 1064 nm that shows an efficiency of about 43% compared to a KDP reference. Upon heating, Au2(SeO3)2(SeO4) decomposes at about 370 degrees C in one step yielding elemental gold. The presence of selenite and selenate groups in the compounds is also obvious from the IR and Raman spectra which show the characteristic bands of both species. Furthermore, solid-state NMR spectra reveal the different surroundings of the selenium atoms in the compound. PMID:15360234

  15. Structure and properties of a non-traditional glass containing TeO2, SeO2 and MoO3

    NASA Astrophysics Data System (ADS)

    Bachvarova-Nedelcheva, A.; Iordanova, R.; Kostov, K. L.; Yordanov, St.; Ganev, V.

    2012-09-01

    A glass containing SeO2, TeO2, MoO3 and La2O3 was obtained at high oxygen pressure (P = 36 MPa) using pure oxides as precursors. The real bulk chemical composition of the glass according to LA-ICP-MS analysis is 17SeO250TeO232MoO31La2O3 (wt.%). The glass was characterized by X-ray diffraction, scanning electron microscopy (SEM), differential thermal analysis (DTA), UV-Vis, XPS, IR and EPR spectroscopy. According to DTA the glass transition temperature (Tg) is below 300 C. By IR and X-ray photoelectron spectroscopy was determined the main building units (TeO3, TeO4, SeO3, Mo2O8) and the existing of mixed bridging bonds only, which build up the amorphous network. It was established by UV-Vis that the glass is transparent above 490 nm. As a result of a lengthy heat treatment, crystallization took place and crystals rich in SeO2 and TeO2 were found incorporated into the amorphous part containing all components.

  16. Thallium(III) selenite, Tl2(SeO3)3.

    PubMed

    Harrison, William T A

    2005-07-01

    The structure of Tl2(SeO3)3 [dithallium(III) triselenium(IV) nonaoxide] is monoclinic (P21/n symmetry), with all atoms in general positions. It is built up from TlO6 octahedra, distorted TlO7 pentagonal bipyramids and (SeO3)2- pyramids sharing vertices and edges to form corrugated (001) layers. The Se lone pairs of electrons are accommodated in the interlayer regions. PMID:15997051

  17. A physical approach to protein structure prediction: CASP4 results

    SciTech Connect

    Crivelli, Silvia; Eskow, Elizabeth; Bader, Brett; Lamberti, Vincent; Byrd, Richard; Schnabel, Robert; Head-Gordon, Teresa

    2001-02-27

    We describe our global optimization method called Stochastic Perturbation with Soft Constraints (SPSC), which uses information from known proteins to predict secondary structure, but not in the tertiary structure predictions or in generating the terms of the physics-based energy function. Our approach is also characterized by the use of an all atom energy function that includes a novel hydrophobic solvation function derived from experiments that shows promising ability for energy discrimination against misfolded structures. We present the results obtained using our SPSC method and energy function for blind prediction in the 4th Critical Assessment of Techniques for Protein Structure Prediction (CASP4) competition, and show that our approach is more effective on targets for which less information from known proteins is available. In fact our SPSC method produced the best prediction for one of the most difficult targets of the competition, a new fold protein of 240 amino acids.

  18. Effects of sodium and potassium ions on a novel SeO2-B2O3-SiO2-P2O5-CaO bioactive system

    NASA Astrophysics Data System (ADS)

    Trandafir, D. L.; Ponta, O.; Ciceo-Lucacel, R.; Simon, V.

    2015-01-01

    The study is focused on Na2O and/or K2O influence on a new sol-gel derived SeO2-B2O3-SiO2-P2O5-CaO bioactive system. The structural changes induced by Na2O and/or K2O addition were correlated with the samples behavior in simulated biological media. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the structure and the type of the chemical bonds. The morphology of the samples was characterized through scanning electron microscopy (SEM). XRD results pointed out a prevalent vitreous structure with an incipient hydroxyapatite (HA) crystalline phase. FTIR results revealed a complex network consisting of silicate, phosphate and borate units, as well as the development of both A- and B-type of carbonate-substituted HA. The bioactivity of the samples was tested in vitro following the evolution of the apatite layers self-assembled on the samples surface in simulated body fluid. Their biocompatibility was investigated after samples surface functionalization with protein. The results indicate that sodium and potassium addition improves the biocompatibility by enhancement of protein adherence on samples surface and without to prevent the samples bioactivity.

  19. Insertion of Mutant Proteolipid Protein Results in Missorting of Myelin Proteins

    PubMed Central

    Vaurs-Barriere, Catherine; Wong, Kondi; Weibel, Thais D.; Abu-Asab, Mones; Weiss, Michael D.; Kaneski, Christine R.; Mixon, Tong-Hui; Bonavita, Simona; Creveaux, Isabelle; Heiss, John D.; Tsokos, Maria; Goldin, Ehud; Quarles, Richard H.; Boespflug-Tanguy, Odile; Schiffmann, Raphael

    2014-01-01

    Two brothers with a leukodystrophy, progressive spastic diplegia, and peripheral neuropathy were found to have proteinaceous aggregates in the peripheral nerve myelin sheath. The patients mother had only subclinical peripheral neuropathy, but the maternal grandmother had adult-onset leukodystrophy. Sequencing of the proteolipid protein (PLP) gene showed a point mutation IVS4 + 1 G?A within the donor splice site of intron 4. We identified one transcript with a deletion of exon 4 (?ex4, 169bp) encoding for PLP and DM20 proteins and lacking two transmembrane domains, and a second transcript with exon 4 + 10bp encoding three transmembrane domains. Immunohistochemistry showed abnormal aggregation in the myelin sheath of MBP and P0. Myelin-associated glycoprotein was present in the SchmidtLanterman clefts but significantly reduced in the periaxonal region. Using immunogold electron microscopy, we demonstrated the presence of mutated PLP/DM20 and the absence of the intact protein in the patient peripheral myelin sheath. We conclude that insertion of mutant PLP/DM20 with resulting aberrant distribution of other myelin proteins in peripheral nerve may constitute an important mechanism of dysmyelination in disorders associated with PLP mutations. PMID:14681886

  20. Emulating exhalative chemistry: synthesis and structural characterization of ilinskite, Na[Cu5O2](SeO3)2Cl3, and its K-analogue

    NASA Astrophysics Data System (ADS)

    Kovrugin, Vadim M.; Siidra, Oleg I.; Colmont, Marie; Mentré, Olivier; Krivovichev, Sergey V.

    2015-08-01

    The K- and Na-synthetic analogues of the fumarolic mineral ilinskite have been synthesized by the chemical vapor transport (CVT) reactions method. The A[Cu5O2](SeO3)2Cl3 ( A + = K+, Na+) compounds crystallize in the orthorhombic space group Pnma: a = 18.1691(6) Å, b = 6.4483(2) Å, c = 10.5684(4) Å, V = 1238.19(7) Å3, R 1 = 0.018 for 1957 unique reflections with F > 4σ F for K[Cu5O2](SeO3)2Cl3 ( KI), and a = 17.7489(18) Å, b = 6.4412(6) Å, c = 10.4880(12) Å, V = 1199.0(2) Å3, R 1 = 0.049 for 1300 unique reflections with F > 4σ F for Na[Cu5O2](SeO3)2Cl3 ( NaI). The crystal structures of KI and NaI are based upon the [O2Cu5]6+ sheets consisting of corner-sharing (OCu4)6+ tetrahedra. The Na-for-K substitution results in the significant expansion of the interlayer space and changes in local coordination of some of the Cu2+ cations. The A + cation coordination changes from fivefold (for Na+) to ninefold (for K+). The CVT reactions method provides a unique opportunity to model physicochemical conditions existing in fumarolic environments and may be used not only to model exhalative processes, but also to predict possible mineral phases that may form in fumaroles. In particular, the K analogue of ilinskite is not known in nature, whereas it may well form from volcanic gases in a K-rich local geochemical environment.

  1. SeO II addition on PVA-based photopolymer for improving photostorage stabilities and diffraction efficiencies

    NASA Astrophysics Data System (ADS)

    Kim, Daeheum; Nam, Seungwoong; Yeo, Seungbyung; Lim, Jiyun

    2006-08-01

    Polyvinyl alcohol/Acrylamide(PVA/AA)based photopolymer systems modified with SeO II crystals were prepared and photostorage characteristics mainly including diffraction efficiencies were examined and compared with pure PVA/AA films using green laser light (532nm). The photosensitive films were composed of polymeric film-forming binder (PVA), monomer (acrylamide, AA), photoinitiator (triethanol amine, TEA), photosensitizer (Eosin YR), and SeO II crystals. The best optical recording characteristics were observed at the composition of: polymer binder (PVA) : AA : TEA : SeO II : Eosin Y = 1.0 : 0.3 : 0.225 : 0.1 : 0.0015. Diffraction efficiencies as high as 85% with energetic sensitivity of 0.5 mW/cm2 have been obtained in the photopolymer film, and the photopolymer film with SeO II showed higher diffraction efficiencies and lower initial sensitivity than the photopolymer film without SeO II. The morphology of SeO II was expected to be nano crystals since they didn't scatter optical lights and didn't show any peaks in X-ray diffraction spectra.

  2. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway.

    PubMed

    Antunes, Ana T; Goos, Yvonne J; Pereboom, Tamara C; Hermkens, Dorien; Wlodarski, Marcin W; Da Costa, Lydie; MacInnes, Alyson W

    2015-07-01

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. PMID:26132763

  3. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway

    PubMed Central

    Hermkens, Dorien; Wlodarski, Marcin W.; Da Costa, Lydie; MacInnes, Alyson W.

    2015-01-01

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. PMID:26132763

  4. Atomic solvation parameters in the analysis of protein-protein docking results.

    PubMed Central

    Cummings, M. D.; Hart, T. N.; Read, R. J.

    1995-01-01

    Several sets of amino acid surface areas and transfer free energies were used to derive a total of nine sets of atomic solvation parameters (ASPs). We tested the accuracy of each of these sets of parameters in predicting the experimentally determined transfer free energies of the amino acid derivatives from which the parameters were derived. In all cases, the calculated and experimental values correlated well. We then chose three parameter sets and examined the effect of adding an energetic correction for desolvation based on these three parameter sets to the simple potential function used in our multiple start Monte Carlo docking method. A variety of protein-protein interactions and docking results were examined. In the docking simulations studied, the desolvation correction was only applied during the final energy calculation of each simulation. For most of the docking results we analyzed, the use of an octanol-water-based ASP set marginally improved the energetic ranking of the low-energy dockings, whereas the other ASP sets we tested disturbed the ranking of the low-energy dockings in many of the same systems. We also examined the correlation between the experimental free energies of association and our calculated interaction energies for a series of proteinase-inhibitor complexes. Again, the octanol-water-based ASP set was compatible with our standard potential function, whereas ASP sets derived from other solvent systems were not. PMID:8535245

  5. Hydrothermal syntheses, structures, and properties of the new uranyl selenites Ag(2)(UO(2))(SeO(3))(2), M[(UO(2))(HSeO(3))(SeO(3))] (M = K, Rb, Cs, Tl), and Pb(UO(2))(SeO(3))(2).

    PubMed

    Almond, Philip M; Albrecht-Schmitt, Thomas E

    2002-03-11

    The transition metal, alkali metal, and main group uranyl selenites, Ag(2)(UO(2))(SeO(3))(2) (1), K[(UO(2))(HSeO(3))(SeO(3))] (2), Rb[(UO(2))(HSeO(3))(SeO(3))] (3), Cs[(UO(2))(HSeO(3))(SeO(3))] (4), Tl[(UO(2))(HSeO(3))(SeO(3))] (5), and Pb(UO(2))(SeO(3))(2) (6), have been prepared from the hydrothermal reactions of AgNO(3), KCl, RbCl, CsCl, TlCl, or Pb(NO(3))(2) with UO(3) and SeO(2) at 180 degrees C for 3 d. The structures of 1-5 contain similar [(UO(2))(SeO(3))(2)](2-) sheets constructed from pentagonal bipyramidal UO(7) units that are joined by bridging SeO(3)(2-) anions. In 1, the selenite oxo ligands that are not utilized within the layers coordinate the Ag(+) cations to create a three-dimensional network structure. In 2-5, half of the selenite ligands are monoprotonated to yield a layer composition of [(UO(2))(HSeO(3))(SeO(3))](1-), and coordination of the K(+), Rb(+), Cs(+), and Tl(+) cations occurs through long ionic contacts. The structure of 6 contains a uranyl selenite layered substructure that differs substantially from those in 1-5 because the selenite anions adopt both bridging and chelating binding modes to the uranyl centers. Furthermore, the Pb(2+) cations form strong covalent bonds with these anions creating a three-dimensional framework. These cations occur as distorted square pyramidal PbO(5) units with stereochemically active lone pairs of electrons. These polyhedra align along the c-axis to create a polar structure. Second-harmonic generation (SHG) measurements revealed a response of 5x alpha-quartz for 6. The diffuse reflectance spectrum of 6 shows optical transitions at 330 and 440 nm. The trailing off of the 440 nm transition to longer wavelengths is responsible for the orange coloration of 6. PMID:11874353

  6. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis.

    PubMed

    Méheust, Raphaël; Zelzion, Ehud; Bhattacharya, Debashish; Lopez, Philippe; Bapteste, Eric

    2016-03-29

    The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the "recycling" of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance. PMID:26976593

  7. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis

    PubMed Central

    Méheust, Raphaël; Zelzion, Ehud; Bhattacharya, Debashish; Lopez, Philippe; Bapteste, Eric

    2016-01-01

    The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the “recycling” of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance. PMID:26976593

  8. A new phase in the MnII-SeIV-MoVI-O system, Mn(MoO3)(SeO3)(H2O): Hydrothermal synthesis, crystal structure and properties

    NASA Astrophysics Data System (ADS)

    Zhen, Yanzhong; Wang, Danjun; Liu, Bin; Fu, Feng; Xue, Ganglin

    2013-11-01

    A new phase in the MnII-SeIV-MoVI-O system, Mn(MoO3)(SeO3)(H2O) (1), has been hydrothermally synthesized with a high yield (82%), and characterized by IR, TG-DSC, magnetism measurement and single crystal X-ray diffraction. The structure of Mn(MoO3)(SeO3)(H2O) features a complicated 3D network composed of the 1D molybdenum(VI) oxide chains and the 1D manganese(II) selenite chains interconnected via Se-O-Mo and Mn-O-Mo bridges. It is stable up to approximately 340 °C, and losses water molecule at 340 °C, then release SeO2 at about 420 °C. The result of magnetic property measurements has indicated that there exist antiferromagnetic interactions between Mn(II) centers. Photocatalysis experimental result illustrates that the compound exhibits good photocatalytic performance for degradation of RhB under visible light irradiation.

  9. Annotation of Proteins of Unknown Function: Initial Enzyme Results

    PubMed Central

    McKay, Talia; Hart, Kaitlin; Horn, Alison; Kessler, Haeja; Dodge, Greg; Bardhi, Keti; Bardhi, Kostandina; Mills, Jeffrey L.; Bernstein, Herbert J.; Craig, Paul A.

    2015-01-01

    Working with a combination of ProMOL (a plugin for PyMOL that searches a library of enzymatic motifs for local structural homologs), BLAST and Pfam (servers that identify global sequence homologs), and Dali (a server that identifies global structural homologs), we have begun the process of assigning functional annotations to the approximately 3,500 structures in the Protein Data Bank that are currently classified as having “unknown function”. Using a limited template library of 388 motifs, over 500 promising in silico matches have been identified by ProMOL, among which 65 exceptionally good matches have been identified. The characteristics of the exceptionally good matches are discussed. PMID:25630330

  10. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men

    PubMed Central

    Mitchell, Cameron J.; McGregor, Robin A.; D’Souza, Randall F.; Thorstensen, Eric B.; Markworth, James F.; Fanning, Aaron C.; Poppitt, Sally D.; Cameron-Smith, David

    2015-01-01

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring 13C6 phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h−1 in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p < 0.001) to 0.057% ± 0.018% and 0.052% ± 0.024% h−1 in the milk and whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein. PMID:26506377

  11. Formation of a selenium-substituted rhodanese by reaction with selenite and glutathione: possible role of a protein perselenide in a selenium delivery system.

    PubMed

    Ogasawara, Y; Lacourciere, G; Stadtman, T C

    2001-08-14

    Selenophosphate is the active selenium-donor compound required by bacteria and mammals for the specific synthesis of Secys-tRNA, the precursor of selenocysteine in selenoenzymes. Although free selenide can be used in vitro for the synthesis of selenophosphate, the actual physiological selenium substrate has not been identified. Rhodanese (EC ) normally occurs as a persulfide of a critical cysteine residue and is believed to function as a sulfur-delivery protein. Also, it has been demonstrated that a selenium-substituted rhodanese (E-Se form) can exist in vitro. In this study, we have prepared and characterized an E-Se rhodanese. Persulfide-free bovine-liver rhodanese (E form) did not react with SeO(3)(2-) directly, but in the presence of reduced glutathione (GSH) and SeO(3)(2-) E-Se rhodanese was generated. These results indicate that the intermediates produced from the reaction of GSH with SeO(3)(2-) are required for the formation of a selenium-substituted rhodanese. E-Se rhodanese was stable in the presence of excess GSH at neutral pH at 37 degrees C. E-Se rhodanese could effectively replace the high concentrations of selenide normally used in the selenophosphate synthetase in vitro assay in which the selenium-dependent hydrolysis of ATP is measured. These results show that a selenium-bound rhodanese could be used as the selenium donor in the in vitro selenophosphate synthetase assay. PMID:11493708

  12. Protein crystal growth results from shuttle flight 51-F

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.

    1985-01-01

    The protein crystal growth (PCG) experiments run on 51-F were analyzed. It was found that: (1) sample stability is increased over that observed during the experiments on flight 51-D; (2) the dialysis experiments produced lysozyme crystals that were significantly larger than those obtained in our identical ground-based studies; (3) temperature fluctuations apparently caused problems during the crystallization experiments on 51-F; (4) it is indicated that teflon tape stabilizes droplets on the syringe tips; (5) samples survived during the reentry and landing in glass tips that were not stoppered with plungers; (6) from the ground-based studies, it was expected that equilibration should be complete within 2 to 4 days for all of these vapor-diffusion experiments, thus it appears that the vapor diffusion rates are somewhat slower under microgravity conditions; (7) drop tethering was highly successful, all four of the tethered drops were stable, even though they contained MPD solutions; (8) the PCG experiments on 51-F were done to assess the hardware and experimental procedures that are developed for future flights, when temperature control will be available. Lysozyme crystals obtained by microdialysis are considerably larger than those obtained on the ground, using the identical apparatus and procedures.

  13. TiO2-SEO Block Copolymer Nanocomposites as Solid-State Electrolytes for Lithium Metal Batteries

    NASA Astrophysics Data System (ADS)

    Gurevitch, Inna; Buonsanti, Raffaella; Teran, Alexander; Cabana, Jordi; Balsara, Nitash

    2013-03-01

    Replacing the liquid electrolyte in lithium batteries by a solid has been a long-standing goal of the battery industry due to the promise of better safety and the potential to produce batteries with higher energy densities. Recently, symmetric polystyrene-block-poly(ethylene oxide) (SEO) copolymers/LiX salt mixtures with high ionic conductivity and high shear modulus were developed as solid electrolytes. For an enhancement in mechanical properties and its effect on the dendrite growth from lithium metal electrodes, we study the effect of adding TiO2 nanoparticles to the SEO/LiX mixtures. We find that TiO2/SEO/LiX nanocomposite electrolytes have stable performance against the lithium metal electrodes. There appears to be a correlation between the stability of the electrolytes, morphology, and mechanical properties.

  14. Silencing of Soybean Seed Storage Proteins Results in a Rebalanced Protein Composition Preserving Seed Protein Content without Major Collateral Changes in the Metabolome and Transcriptome[W][OA

    PubMed Central

    Schmidt, Monica A.; Barbazuk, W. Brad; Sandford, Michael; May, Greg; Song, Zhihong; Zhou, Wenxu; Nikolau, Basil J.; Herman, Eliot M.

    2011-01-01

    The ontogeny of seed structure and the accumulation of seed storage substances is the result of a determinant genetic program. Using RNA interference, the synthesis of soybean (Glycine max) glycinin and conglycinin storage proteins has been suppressed. The storage protein knockdown (SP−) seeds are overtly identical to the wild type, maturing to similar size and weight, and in developmental ontogeny. The SP− seeds rebalance the proteome, maintaining wild-type levels of protein and storage triglycerides. The SP− soybeans were evaluated with systems biology techniques of proteomics, metabolomics, and transcriptomics using both microarray and next-generation sequencing transcript sequencing (RNA-Seq). Proteomic analysis shows that rebalancing of protein content largely results from the selective increase in the accumulation of only a few proteins. The rebalancing of protein composition occurs with small alterations to the seed’s transcriptome and metabolome. The selectivity of the rebalancing was further tested by introgressing into the SP− line a green fluorescent protein (GFP) glycinin allele mimic and quantifying the resulting accumulation of GFP. The GFP accumulation was similar to the parental GFP-expressing line, showing that the GFP glycinin gene mimic does not participate in proteome rebalancing. The results show that soybeans make large adjustments to the proteome during seed filling and compensate for the shortage of major proteins with the increased selective accumulation of other proteins that maintains a normal protein content. PMID:21398260

  15. Success in Mathematics within a Challenged Minority: The Case of Students of Ethiopian Origin in Israel (SEO)

    ERIC Educational Resources Information Center

    Mulat, Tiruwork; Arcavi, Abraham

    2009-01-01

    Many studies have reported on the economical, social, and educational difficulties encountered by Ethiopian Jews since their immigration to Israel. Furthermore, the overall academic underachievement and poor representation of students of Ethiopian origin (SEO) in the advanced mathematics and science classes were highlighted and described. Yet,…

  16. Success in Mathematics within a Challenged Minority: The Case of Students of Ethiopian Origin in Israel (SEO)

    ERIC Educational Resources Information Center

    Mulat, Tiruwork; Arcavi, Abraham

    2009-01-01

    Many studies have reported on the economical, social, and educational difficulties encountered by Ethiopian Jews since their immigration to Israel. Furthermore, the overall academic underachievement and poor representation of students of Ethiopian origin (SEO) in the advanced mathematics and science classes were highlighted and described. Yet,

  17. Theoretical study of potential energy curves, spectroscopic constants, and radiative lifetimes of low-lying states in an SeO molecule

    NASA Astrophysics Data System (ADS)

    Li, Rui; Lian, Ke-Yan; Li, Qi-Nan; Miao, Feng-Juan; Yan, Bing; Jin, Ming-Xing

    2012-12-01

    The low-lying potential energy curves of the SeO molecule are computed by means of an ab initio multireference configuration interaction technique, taking into account relativistic (scalar plus spin—orbit coupling) effects. The spectroscopic constants of Ω states for X3Σ-, a1Δ, b1Σ+, A3Π, A'3Δ, and A″ 3Σ+ states are obtained, and they are in good accordance with available experimental values. The Franck—Condon factors and transition dipole moments to the ground state are computed, and the natural radiative lifetimes of low-lying Ω states are theoretically obtained. Comparisons of the natural lifetimes of Ω states with previous experimental results and those of isovalent TeO molecule are made.

  18. Investigating the importance of Delaunay-based definition of atomic interactions in scoring of protein-protein docking results.

    PubMed

    Jafari, Rahim; Sadeghi, Mehdi; Mirzaie, Mehdi

    2016-05-01

    The approaches taken to represent and describe structural features of the macromolecules are of major importance when developing computational methods for studying and predicting their structures and interactions. This study attempts to explore the significance of Delaunay tessellation for the definition of atomic interactions by evaluating its impact on the performance of scoring protein-protein docking prediction. Two sets of knowledge-based scoring potentials are extracted from a training dataset of native protein-protein complexes. The potential of the first set is derived using atomic interactions extracted from Delaunay tessellated structures. The potential of the second set is calculated conventionally, that is, using atom pairs whose interactions were determined by their separation distances. The scoring potentials were tested against two different docking decoy sets and their performances were compared. The results show that, if properly optimized, the Delaunay-based scoring potentials can achieve higher success rate than the usual scoring potentials. These results and the results of a previous study on the use of Delaunay-based potentials in protein fold recognition, all point to the fact that Delaunay tessellation of protein structure can provide a more realistic definition of atomic interaction, and therefore, if appropriately utilized, may be able to improve the accuracy of pair potentials. PMID:27060891

  19. Tuning of protein-surfactant interaction to modify the resultant structure

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-09-01

    Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different surfactants under varying solution conditions. We show that the interaction of anionic BSA protein (p H 7 ) with surfactant and the resultant structure are strongly modified by the charge head group of the surfactant, ionic strength of the solution, and mixed surfactants. The protein-surfactant interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic surfactant. This interaction of protein with ionic surfactants is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic surfactant with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic surfactants with anionic proteins. Interestingly, the interaction of BSA protein with ionic surfactants is significantly suppressed in the presence of nonionic surfactant. These results with mixed surfactants thus can be used to fold back the unfolded protein as well as to prevent surfactant-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-surfactant complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes.

  20. Tuning of protein-surfactant interaction to modify the resultant structure.

    PubMed

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2015-09-01

    Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different surfactants under varying solution conditions. We show that the interaction of anionic BSA protein (pH7) with surfactant and the resultant structure are strongly modified by the charge head group of the surfactant, ionic strength of the solution, and mixed surfactants. The protein-surfactant interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic surfactant. This interaction of protein with ionic surfactants is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic surfactant with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic surfactants with anionic proteins. Interestingly, the interaction of BSA protein with ionic surfactants is significantly suppressed in the presence of nonionic surfactant. These results with mixed surfactants thus can be used to fold back the unfolded protein as well as to prevent surfactant-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-surfactant complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes. PMID:26465504

  1. A single amino acid substitution results in a retinoblastoma protein defective in phosphorylation and oncoprotein binding

    SciTech Connect

    Kaye, F.J.; Gerster, J.L. Uniformed Services Univ. of Health Sciences, Bethesda, MD ); Kratzke, R.A. ); Horowitz, J.M. )

    1990-09-01

    The authors have previously identified a small-cell lung cancer cell line (NCI-H209) that expresses an aberrant, underphosphorylated form of the retinoblastoma protein RB1. Molecular analysis of RB1 mRNA from this cell line revealed a single point mutation within exon 21 that resulted in a nonconservative amino acid substitution (cysteine to phenylalanine) at codon 706. Stable expression of this mutant RB1 cDNA in a human cell line lacking endogenous RB1 demonstrated that this amino acid change was sufficient to inhibit phosphorylation. In addition, this cysteine-to-phenylalanine substitution also resulted in loss of RB1 binding to the simian virus 40 large tumor and adenovirus E1A transforming proteins. These results confirm the importance of exon 21 coding sequences and suggest that the cysteine residue at codon 706 may play a role in achieving a specific protein conformation essential for protein-protein interactions.

  2. Amino acid enrichment and compositional changes among mammalian milk proteins and the resulting nutritional consequences.

    PubMed

    Khaldi, Nora; Holton, Thérèse A; Shields, Denis C

    2014-03-01

    Milk is a hallmark of mammalian evolution: a unique food that has evolved with mammals. Despite the importance of this food, it is not known if variation in AA composition between different species is important to milk proteins or how it might affect the nutritional value of milk. As milk is the only food source for newborn mammals, it has long been speculated that milk proteins should be enriched in essential AA. However, no systematic analysis supports this assumption. Although many factors influence the overall nutritional value of milk, including total protein concentration, we focused here on the AA composition of milk proteins and investigated the possibility that selection drives compositional changes. We identified 9 major milk proteins present in 13 mammalian species and compared them with a large group of nonmilk proteins. Our results indicate heterogeneity in the AA composition of milk proteins, showing significant enrichment and depletion of certain AA in milk-specific proteins. Although high levels of particular AA appear to be consistently maintained, orthologous milk proteins display significant differences in AA composition across species, most notably among the caseins. Interspecies variation of milk composition is thought to be indicative of nutritional optimization to the requirements of the species. In accordance with this, our observations indicate that milk proteins may have adapted to the species-specific nutritional needs of the neonate. PMID:24472131

  3. Recent results and new hardware developments for protein crystal growth in microactivity

    NASA Technical Reports Server (NTRS)

    Delucas, L. J.; Long, M. M.; Moore, K. M.; Smith, C.; Carson, M.; Narayana, S. V. L.; Carter, D.; Clark, A. D., Jr.; Nanni, R. G.; Ding, J.

    1993-01-01

    Protein crystal growth experiments have been performed on 16 space shuttle missions since April, 1985. The initial experiments utilized vapor diffusion crystallization techniques similar to those used in laboratories for earth-based experiments. More recent experiments have utilized temperature induced crystallization as an alternative method for growing high quality protein crystals in microgravity. Results from both vapor diffusion and temperature induced crystallization experiments indicate that proteins grown in microgravity may be larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth.

  4. 31 CFR 30.3 - Q-3: How are the SEOs and most highly compensated employees identified for purposes of compliance...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Finance: Treasury Office of the Secretary of the Treasury TARP STANDARDS FOR COMPENSATION AND CORPORATE GOVERNANCE § 30.3 Q-3: How are the SEOs and most highly compensated employees identified for purposes...

  5. 31 CFR 30.3 - Q-3: How are the SEOs and most highly compensated employees identified for purposes of compliance...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Finance: Treasury Office of the Secretary of the Treasury TARP STANDARDS FOR COMPENSATION AND CORPORATE GOVERNANCE § 30.3 Q-3: How are the SEOs and most highly compensated employees identified for purposes...

  6. 31 CFR 30.3 - Q-3: How are the SEOs and most highly compensated employees identified for purposes of compliance...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Finance: Treasury Office of the Secretary of the Treasury TARP STANDARDS FOR COMPENSATION AND CORPORATE GOVERNANCE § 30.3 Q-3: How are the SEOs and most highly compensated employees identified for purposes...

  7. 31 CFR 30.3 - Q-3: How are the SEOs and most highly compensated employees identified for purposes of compliance...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Finance: Treasury Office of the Secretary of the Treasury TARP STANDARDS FOR COMPENSATION AND CORPORATE GOVERNANCE § 30.3 Q-3: How are the SEOs and most highly compensated employees identified for purposes...

  8. 31 CFR 30.3 - Q-3: How are the SEOs and most highly compensated employees identified for purposes of compliance...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Finance: Treasury Office of the Secretary of the Treasury TARP STANDARDS FOR COMPENSATION AND CORPORATE GOVERNANCE § 30.3 Q-3: How are the SEOs and most highly compensated employees identified for purposes...

  9. Polar Fixation of Plasmids during Recombinant Protein Production in Bacillus megaterium Results in Population Heterogeneity

    PubMed Central

    Münch, Karin M.; Müller, Johannes; Wienecke, Sarah; Bergmann, Simone; Heyber, Steffi; Biedendieck, Rebekka; Jahn, Dieter

    2015-01-01

    During the past 2 decades, Bacillus megaterium has been systematically developed for the gram-per-liter scale production of recombinant proteins. The plasmid-based expression systems employed use a xylose-controlled promoter. Protein production analyses at the single-cell level using green fluorescent protein as a model product revealed cell culture heterogeneity characterized by a significant proportion of less productive bacteria. Due to the enormous size of B. megaterium, such bistable behavior seen in subpopulations was readily analyzed by time lapse microscopy and flow cytometry. Cell culture heterogeneity was not caused simply by plasmid loss: instead, an asymmetric distribution of plasmids during cell division was detected during the exponential-growth phase. Multicopy plasmids are generally randomly distributed between daughter cells. However, in vivo and in vitro experiments demonstrated that under conditions of strong protein production, plasmids are retained at one of the cell poles. Furthermore, it was found that cells with accumulated plasmids and high protein production ceased cell division. As a consequence, the overall protein production of the culture was achieved mainly by the subpopulation with a sufficient plasmid copy number. Based on our experimental data, we propose a model whereby the distribution of multicopy plasmids is controlled by polar fixation under protein production conditions. Thereby, cell lines with fluctuating plasmid abundance arise, which results in population heterogeneity. Our results provide initial insights into the mechanism of cellular heterogeneity during plasmid-based recombinant protein production in a Bacillus species. PMID:26116677

  10. Bi6(SeO3)3O5Br2: A new bismuth oxo-selenite bromide

    NASA Astrophysics Data System (ADS)

    Berdonosov, Peter S.; Olenev, Andrei V.; Kirsanova, Maria A.; Lebed, Julia B.; Dolgikh, Valery A.

    2012-12-01

    A new bismuth oxo-selenite bromide Bi6(SeO3)3O5Br2 was synthesized and structurally characterized. The crystal structure belongs to the triclinic system (space group P1¯, Z=2, a=7.1253(7) Å, b=10.972(1) Å, c=12.117(1) Å, α=67.765(7)°, β=82.188(8)°, γ=78.445(7)°) and is unrelated to those of other known oxo-selenite halides. It can be considered as an open framework composed of BiOx or BiOyBrz polyhedrons forming channels running along [1 0 0] direction which contain the selenium atoms in pyramidal shape oxygen coordination (SeO3E). The spectroscopic properties and thermal stability were studied. The new compound is stable up to 400 °C.

  11. Sub-MIC Tylosin Inhibits Streptococcus suis Biofilm Formation and Results in Differential Protein Expression

    PubMed Central

    Wang, Shuai; Yang, Yanbei; Zhao, Yulin; Zhao, Honghai; Bai, Jingwen; Chen, Jianqing; Zhou, Yonghui; Wang, Chang; Li, Yanhua

    2016-01-01

    Streptococcus suis (S.suis) is an important zoonotic pathogen that causes severe diseases in humans and pigs. Biofilms of S. suis can induce persistent infections that are difficult to treat. In this study, the effect of tylosin on biofilm formation of S. suis was investigated. 1/2 minimal inhibitory concentration (MIC) and 1/4 MIC of tylosin were shown to inhibit S. suis biofilm formation in vitro. By using the iTRAQ strategy, we compared the protein expression profiles of S. suis grown with sub-MIC tylosin treatment and with no treatment. A total of 1501 proteins were identified by iTRAQ. Ninety-six differentially expressed proteins were identified (Ratio > ±1.5, p < 0.05). Several metabolism proteins (such as phosphoglycerate kinase) and surface proteins (such as ABC transporter proteins) were found to be involved in biofilm formation. Our results indicated that S. suis metabolic regulation, cell surface proteins, and virulence proteins appear to be of importance in biofilm growth with sub-MIC tylosin treatment. Thus, our data revealed the rough regulation of biofilm formation that may provide a foundation for future research into mechanisms and targets. PMID:27065957

  12. Sub-MIC Tylosin Inhibits Streptococcus suis Biofilm Formation and Results in Differential Protein Expression.

    PubMed

    Wang, Shuai; Yang, Yanbei; Zhao, Yulin; Zhao, Honghai; Bai, Jingwen; Chen, Jianqing; Zhou, Yonghui; Wang, Chang; Li, Yanhua

    2016-01-01

    Streptococcus suis (S.suis) is an important zoonotic pathogen that causes severe diseases in humans and pigs. Biofilms of S. suis can induce persistent infections that are difficult to treat. In this study, the effect of tylosin on biofilm formation of S. suis was investigated. 1/2 minimal inhibitory concentration (MIC) and 1/4 MIC of tylosin were shown to inhibit S. suis biofilm formation in vitro. By using the iTRAQ strategy, we compared the protein expression profiles of S. suis grown with sub-MIC tylosin treatment and with no treatment. A total of 1501 proteins were identified by iTRAQ. Ninety-six differentially expressed proteins were identified (Ratio > ±1.5, p < 0.05). Several metabolism proteins (such as phosphoglycerate kinase) and surface proteins (such as ABC transporter proteins) were found to be involved in biofilm formation. Our results indicated that S. suis metabolic regulation, cell surface proteins, and virulence proteins appear to be of importance in biofilm growth with sub-MIC tylosin treatment. Thus, our data revealed the rough regulation of biofilm formation that may provide a foundation for future research into mechanisms and targets. PMID:27065957

  13. Infrared evidence for multiple structural transitions in single crystal Cu3(SeO3)2 Cl

    NASA Astrophysics Data System (ADS)

    Miller, Kevin H.; Berger, Helmuth; Tanner, David B.

    2013-03-01

    Infrared reflection and transmission over a broad temperature range (10-300 K) have been measured on the anisotropic single-crystal Cu3(SeO3)2 Cl. Two distinct space groups have previously been reported for Cu3(SeO3)2 Cl at 300 K (monoclinic C2/m and triclinic P1bar). Comparing the number of observed infrared active phonons with group theoretical predictions points towards the existence of the triclinic structure at 300 K; however, an impurity-rich monoclinic structure cannot be ruled out. New phonon modes are observed upon cooling below 90 K, and again upon cooling below 40 K. The latter temperature range corresponds to the onset of long range magnetic order in the material. The structural and magnetic properties of Cu3(SeO3)2 Cl will be discussed in terms of our infrared spectra, group theoretical predictions, and comparisons to related compounds. Supported by the US DOE through contract DE-FG02-02ER45984 at UF.

  14. Sodium selenite penta­hydrate, Na2SeO3·5H2O

    PubMed Central

    Mereiter, Kurt

    2013-01-01

    In the crystal structure of Na2SeO3·5H2O [disodium selen­ate(IV) penta­hydrate], two Se, two selenite O atoms and one water O atom are located on a mirror plane, and one water O atom is located on a twofold rotation axis. The coordination of one Na+ cation is distorted trigonal bipyramidal, formed by three equatorial H2O ligands and two axial selenite O atoms. The other Na+ cation has an octa­hedral coordination by six water mol­ecules. The two independent SeO3 groups form almost undistorted trigonal pyramids, with Se—O bond lengths in the range 1.6856 (7)–1.7202 (10) Å and O—Se—O angles in the range 101.98 (3)–103.11 (5)°, and both are μ2-O:O-bonded to a pair of Na+ cations. Hydrogen bonds involving all water molecules and selenite O atoms consolidate the crystal packing. Although anhydrous Na2SeO3 and Na2TeO3 are isotypic, the title compound is surprisingly not isotypic with Na2TeO3·5H2O. In the tellurite hydrate, all Na+ cations have an octa­hedral coordination and the TeO3 groups are bonded to Na+ only via one of their three O atoms. PMID:24454013

  15. Enhanced sensitivity to conformation in various proteins. Vibrational circular dichroism results

    SciTech Connect

    Pancoska, P.; Yasui, S.C.; Keiderling, T.A. )

    1989-07-11

    Vibrational circular dichroism (VCD) spectra of several globular proteins dissolved in D2O are presented and compared to conventional UV-CD results. It can be seen that, for the alpha, beta, and alpha + beta categories of Levitt and Chothia, VCD evidences much larger band shape variations, including sign alteration, than does UV-CD. A direct parallel is seen between the VCD of the alpha-helix found in model polypeptides and the amide I' VCD of myoglobin. Since all structural aspects of the protein contribute to the VCD on a roughly equal footing, a similar correlation of the chymotrypsin amide I' VCD with that of beta-sheet models is not as clear. In addition, the VCD of random-coil-type proteins is found to be clearly related to VCD results from random-coil polypeptides. Finally, simulations are presented to postulate the expected VCD for protein structures having conformations that lie between the limiting cases discussed here.

  16. Bioactive protein-based nanofibers interact with intestinal biological components resulting in transepithelial permeation of a therapeutic protein.

    PubMed

    Stephansen, Karen; García-Díaz, María; Jessen, Flemming; Chronakis, Ioannis S; Nielsen, Hanne Mørck

    2015-11-10

    Proteins originating from natural sources may constitute a novel type of material for use in drug delivery. However, thorough understanding of the behavior and effects of such a material when processed into a matrix together with a drug is crucial prior to further development into a drug product. In the present study the potential of using bioactive electrospun fish sarcoplasmic proteins (FSP) as a carrier matrix for small therapeutic proteins was demonstrated in relation to the interactions with biological components of the intestinal tract. The inherent structural and chemical properties of FSP as a biomaterial facilitated interactions with cells and enzymes found in the gastrointestinal tract and displayed excellent biocompatibility. More specifically, insulin was efficiently encapsulated into FSP fibers maintaining its conformation, and subsequent controlled release was obtained in simulated intestinal fluid. The encapsulation of insulin into FSP fibers provided protection against chymotrypsin degradation, and resulted in an increase in insulin transport to around 12% without compromising the cellular viability. This increased transport was driven by interactions upon contact between the nanofibers and the Caco-2 cell monolayer leading to the opening of the tight junction proteins. Overall, electrospun FSP may constitute a novel material for oral delivery of biopharmaceuticals. PMID:26320547

  17. Body Characteristics, Dietary Protein and Body Weight Regulation. Reconciling Conflicting Results from Intervention and Observational Studies?

    PubMed Central

    Ankarfeldt, Mikkel Z.; Ängquist, Lars; Stocks, Tanja; Jakobsen, Marianne U.; Overvad, Kim; Halkjær, Jytte; Saris, Wim H. M.; Astrup, Arne; Sørensen, Thorkild I. A.

    2014-01-01

    Background/Objectives Physiological evidence indicates that high-protein diets reduce caloric intake and increase thermogenic response, which may prevent weight gain and regain after weight loss. Clinical trials have shown such effects, whereas observational cohort studies suggest an association between greater protein intake and weight gain. In both types of studies the results are based on average weight changes, and show considerable diversity in both directions. This study investigates whether the discrepancy in the evidence could be due to recruitment of overweight and obese individuals into clinical trials. Subjects/Methods Data were available from the European Diet, Obesity and Genes (DiOGenes) post-weight-loss weight-maintenance trial and the Danish Diet, Cancer and Health (DCH) cohort. Participants of the DCH cohort were matched with participants from the DiOGenes trial on gender, diet, and body characteristics. Different subsets of the DCH-participants, comparable with the trial participants, were analyzed for weight maintenance according to the randomization status (high or low protein) of the matched trial participants. Results Trial participants were generally heavier, had larger waist circumference and larger fat mass than the participants in the entire DCH cohort. A better weight maintenance in the high-protein group compared to the low protein group was observed in the subgroups of the DCH cohort matching body characteristics of the trial participants. Conclusion This modified observational study, minimized the differences between the RCT and observational data with regard to dietary intake, participant characteristics and statistical analysis. Compared with low protein diet the high protein diet was associated with better weight maintenance when individuals with greater body mass index and waist circumference were analyzed. Selecting subsets of large-scale observational cohort studies with similar characteristics as participants in clinical trials may reconcile the otherwise conflicting results. PMID:24992329

  18. Microhydration of the selenite dianion: a theoretical study of structures, hydration energies, and electronic stabilities of SeO(3)(2-)(H(2)O)(n) (n = 0-6, 9) clusters.

    PubMed

    Wicke, Henryk; Meleshyn, Artur

    2010-09-01

    In extension of the ongoing investigations of oxyanion-water clusters, we studied energetically low-lying configurations of hydrated selenite dianion (and in select cases, SeO(3)(-)) clusters using density functional theory (B3LYP, M05-2X, PBE0) and second-order Møller-Plesset perturbation theory (MP2). Water molecules doubly hydrogen bond to the selenite oxygens for n Se-O bond length of 1.69-1.71 A and selenite tetrahedron height of 0.64-0.73 A are in accordance with recent experimental results for selenite in aqueous solution or adsorbed on calcite. Structural perturbations due to the hydration are accompanied by a considerable charge transfer (up to 0.55|e|) from the selenite substructure to the water molecules. Furthermore, the calculated electron binding energies evidence that selenite-water clusters are electronically stable only for n >or= 4 (according to M05-2X) or n >or= 5 (according to B3LYP and PBE0). The hitherto unknown hydration free energy of selenite was calculated using a cluster/continuum approach to fall into the range from -224.6 to -245.5 kcal/mol depending on the applied continuum solvation model. PMID:20690659

  19. Arenavirus budding resulting from viral-protein-associated cell membrane curvature

    PubMed Central

    Schley, David; Whittaker, Robert J.; Neuman, Benjamin W.

    2013-01-01

    Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations. PMID:23864502

  20. Structural analysis of a set of proteins resulting from a bacterial genomics project.

    PubMed

    Badger, J; Sauder, J M; Adams, J M; Antonysamy, S; Bain, K; Bergseid, M G; Buchanan, S G; Buchanan, M D; Batiyenko, Y; Christopher, J A; Emtage, S; Eroshkina, A; Feil, I; Furlong, E B; Gajiwala, K S; Gao, X; He, D; Hendle, J; Huber, A; Hoda, K; Kearins, P; Kissinger, C; Laubert, B; Lewis, H A; Lin, J; Loomis, K; Lorimer, D; Louie, G; Maletic, M; Marsh, C D; Miller, I; Molinari, J; Muller-Dieckmann, H J; Newman, J M; Noland, B W; Pagarigan, B; Park, F; Peat, T S; Post, K W; Radojicic, S; Ramos, A; Romero, R; Rutter, M E; Sanderson, W E; Schwinn, K D; Tresser, J; Winhoven, J; Wright, T A; Wu, L; Xu, J; Harris, T J R

    2005-09-01

    The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB. PMID:16021622

  1. A benchmark server using high resolution protein structure data, and benchmark results for membrane helix predictions

    PubMed Central

    2013-01-01

    Background Helical membrane proteins are vital for the interaction of cells with their environment. Predicting the location of membrane helices in protein amino acid sequences provides substantial understanding of their structure and function and identifies membrane proteins in sequenced genomes. Currently there is no comprehensive benchmark tool for evaluating prediction methods, and there is no publication comparing all available prediction tools. Current benchmark literature is outdated, as recently determined membrane protein structures are not included. Current literature is also limited to global assessments, as specialised benchmarks for predicting specific classes of membrane proteins were not previously carried out. Description We present a benchmark server at http://sydney.edu.au/pharmacy/sbio/software/TMH_benchmark.shtml that uses recent high resolution protein structural data to provide a comprehensive assessment of the accuracy of existing membrane helix prediction methods. The server further allows a user to compare uploaded predictions generated by novel methods, permitting the comparison of these novel methods against all existing methods compared by the server. Benchmark metrics include sensitivity and specificity of predictions for membrane helix location and orientation, and many others. The server allows for customised evaluations such as assessing prediction method performances for specific helical membrane protein subtypes. We report results for custom benchmarks which illustrate how the server may be used for specialised benchmarks. Which prediction method is the best performing method depends on which measure is being benchmarked. The OCTOPUS membrane helix prediction method is consistently one of the highest performing methods across all measures in the benchmarks that we performed. Conclusions The benchmark server allows general and specialised assessment of existing and novel membrane helix prediction methods. Users can employ this benchmark server to determine the most suitable method for the type of prediction the user needs to perform, be it general whole-genome annotation or the prediction of specific types of helical membrane protein. Creators of novel prediction methods can use this benchmark server to evaluate the performance of their new methods. The benchmark server will be a valuable tool for researchers seeking to extract more sophisticated information from the large and growing protein sequence databases. PMID:23530628

  2. Switching kinetics of the ferroelectric transition in K2SeO4 studied by stroboscopic γ-ray diffraction

    NASA Astrophysics Data System (ADS)

    Leist, J.; Gibhardt, H.; Eckold, G.

    2013-11-01

    The kinetics of the ferroelectric lock-in transition in potassium selenate (K2SeO4) was studied on a millisecond timescale using high-resolution γ-ray diffraction. A large change of the line width and wavevector of the first order satellite is observed during the switching process. This is attributed to a loss of long-range order under the influence of the electric field. In addition, the incommensurate phase is stabilized by the pulsed field and the transition to the pure commensurate phase is shifted to lower temperatures. Strains that may build up during the rapid switching process are supposed to be the reason for this behaviour.

  3. Pokeweed antiviral protein alters splicing of HIV-1 RNAs, resulting in reduced virus production

    PubMed Central

    Zhabokritsky, Alice; Mansouri, Sheila; Hudak, Katalin A.

    2014-01-01

    Processing of HIV-1 transcripts results in three populations in the cytoplasm of infected cells: full-length RNA, singly spliced, and multiply spliced RNAs. Rev, regulator of virion expression, is an essential regulatory protein of HIV-1 required for transporting unspliced and singly spliced viral transcripts from the nucleus to the cytoplasm. Export allows these RNAs to be translated and the full-length RNA to be packaged into virus particles. In our study, we investigate the activity of pokeweed antiviral protein (PAP), a glycosidase isolated from the pokeweed plant Phytolacca americana, on the processing of viral RNAs. We show that coexpression of PAP with a proviral clone alters the splicing ratio of HIV-1 RNAs. Specifically, PAP causes the accumulation of multiply spliced 2-kb RNAs at the expense of full-length 9-kb and singly spliced 4-kb RNAs. The change in splicing ratio is due to a decrease in activity of Rev. We show that PAP depurinates the rev open reading frame and that this damage to the viral RNA inhibits its translation. By decreasing Rev expression, PAP indirectly reduces the availability of full-length 9-kb RNA for packaging and translation of the encoded structural proteins required for synthesis of viral particles. The decline we observe in virus protein expression is not due to cellular toxicity as PAP did not diminish translation rate. Our results describing the reduced activity of a regulatory protein of HIV-1, with resulting change in virus mRNA ratios, provides new insight into the antiviral mechanism of PAP. PMID:24951553

  4. Protein crystal growth results from the United States Microgravity Laboratory-1 mission

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Moore, K. M.; Vanderwoerd, M.; Bray, T. L.; Smith, C.; Carson, M.; Narayana, S. V. L.; Rosenblum, W. M.; Carter, D.; Clark, A. D, Jr.

    1994-01-01

    Protein crystal growth experiments have been performed by this laboratory on 18 Space Shuttle missions since April, 1985. In addition, a number of microgravity experiments also have been performed and reported by other investigators. These Space Shuttle missions have been used to grow crystals of a variety of proteins using vapor diffusion, liquid diffusion, and temperature-induced crystallization techniques. The United States Microgravity Laboratory - 1 mission (USML-1, June 25 - July 9, 1992) was a Spacelab mission dedicated to experiments involved in materials processing. New protein crystal growth hardware was developed to allow in orbit examination of initial crystal growth results, the knowledge from which was used on subsequent days to prepare new crystal growth experiments. In addition, new seeding hardware and techniques were tested as well as techniques that would prepare crystals for analysis by x-ray diffraction, a capability projected for the planned Space Station. Hardware that was specifically developed for the USML-1 mission will be discussed along with the experimental results from this mission.

  5. Molecular alterations resulting from frameshift mutations in peripheral myelin protein 22: implications for neuropathy severity.

    PubMed

    Johnson, J S; Roux, K J; Fletcher, B S; Fortun, J; Notterpek, L

    2005-12-15

    Alterations in peripheral myelin protein 22 (PMP22) expression are associated with a heterogeneous group of hereditary demyelinating peripheral neuropathies. Two mutations at glycine 94, a single guanine insertion or deletion in PMP22, result in different reading frameshifts and, consequently, an extended G94fsX222 or a truncated G94fsX110 protein, respectively. Both of these autosomal dominant mutations alter the second half of PMP22 and yet are linked to clinical phenotypes with distinct severities. The G94fsX222 is associated with hereditary neuropathy with liability to pressure palsies, whereas G94fsX110 causes severe neuropathy diagnosed as Dejerine-Sottas disease or Charcot-Marie-Tooth disease type IA. To investigate the subcellular changes associated with the G94 frameshift mutations, we expressed epitope-tagged forms in primary rat Schwann cells. Biochemical and immunolabeling studies indicate that, unlike the wild-type protein, which is targeted for the plasma membrane, frameshift PMP22s are retained in the cell, prior to reaching the medial Golgi compartment. Similar to Wt-PMP22, both frameshift mutants are targeted for proteasomal degradation and accumulate in detergent-insoluble, ubiquitin-containing aggregates upon inhibition of this pathway. The extended frameshift PMP22 shows the ability to form spontaneous aggregates in the absence of proteasome inhibition. On the other hand, Schwann cells expressing the truncated protein proliferate at a significantly higher rate than Schwann cells expressing the wild-type or the extended PMP22. In summary, these results suggest that a greater potential for PMP22 aggregation is associated with a less severe phenotype, whereas dysregulation of Schwann cell proliferation is linked to severe neuropathy. PMID:16273544

  6. Divergent Evolution of CHD3 Proteins Resulted in MOM1 Refining Epigenetic Control in Vascular Plants

    PubMed Central

    Čaikovski, Marian; Yokthongwattana, Chotika; Habu, Yoshiki; Nishimura, Taisuke; Mathieu, Olivier; Paszkowski, Jerzy

    2008-01-01

    Arabidopsis MOM1 is required for the heritable maintenance of transcriptional gene silencing (TGS). Unlike many other silencing factors, depletion of MOM1 evokes transcription at selected loci without major changes in DNA methylation or histone modification. These loci retain unusual, bivalent chromatin properties, intermediate to both euchromatin and heterochromatin. The structure of MOM1 previously suggested an integral nuclear membrane protein with chromatin-remodeling and actin-binding activities. Unexpected results presented here challenge these presumed MOM1 activities and demonstrate that less than 13% of MOM1 sequence is necessary and sufficient for TGS maintenance. This active sequence encompasses a novel Conserved MOM1 Motif 2 (CMM2). The high conservation suggests that CMM2 has been the subject of strong evolutionary pressure. The replacement of Arabidopsis CMM2 by a poplar motif reveals its functional conservation. Interspecies comparison suggests that MOM1 proteins emerged at the origin of vascular plants through neo-functionalization of the ubiquitous eukaryotic CHD3 chromatin remodeling factors. Interestingly, despite the divergent evolution of CHD3 and MOM1, we observed functional cooperation in epigenetic control involving unrelated protein motifs and thus probably diverse mechanisms. PMID:18725928

  7. Glucocerebrosidase Deficiency in Drosophila Results in α-Synuclein-Independent Protein Aggregation and Neurodegeneration

    PubMed Central

    Thomas, Ruth E.; Yu, Selina; Germanos, Alexandre A.; Whitley, Brittany N.; Sardi, Sergio Pablo; Montine, Thomas J.; Pallanck, Leo J.

    2016-01-01

    Mutations in the glucosidase, beta, acid (GBA1) gene cause Gaucher’s disease, and are the most common genetic risk factor for Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) excluding variants of low penetrance. Because α-synuclein-containing neuronal aggregates are a defining feature of PD and DLB, it is widely believed that mutations in GBA1 act by enhancing α-synuclein toxicity. To explore this hypothesis, we deleted the Drosophila GBA1 homolog, dGBA1b, and compared the phenotypes of dGBA1b mutants in the presence and absence of α-synuclein expression. Homozygous dGBA1b mutants exhibit shortened lifespan, locomotor and memory deficits, neurodegeneration, and dramatically increased accumulation of ubiquitinated protein aggregates that are normally degraded through an autophagic mechanism. Ectopic expression of human α-synuclein in dGBA1b mutants resulted in a mild enhancement of dopaminergic neuron loss and increased α-synuclein aggregation relative to controls. However, α-synuclein expression did not substantially enhance other dGBA1b mutant phenotypes. Our findings indicate that dGBA1b plays an important role in the metabolism of protein aggregates, but that the deleterious consequences of mutations in dGBA1b are largely independent of α-synuclein. Future work with dGBA1b mutants should reveal the mechanism by which mutations in dGBA1b lead to accumulation of protein aggregates, and the potential influence of this protein aggregation on neuronal integrity. PMID:27019408

  8. Glucocerebrosidase Deficiency in Drosophila Results in α-Synuclein-Independent Protein Aggregation and Neurodegeneration.

    PubMed

    Davis, Marie Y; Trinh, Kien; Thomas, Ruth E; Yu, Selina; Germanos, Alexandre A; Whitley, Brittany N; Sardi, Sergio Pablo; Montine, Thomas J; Pallanck, Leo J

    2016-03-01

    Mutations in the glucosidase, beta, acid (GBA1) gene cause Gaucher's disease, and are the most common genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB) excluding variants of low penetrance. Because α-synuclein-containing neuronal aggregates are a defining feature of PD and DLB, it is widely believed that mutations in GBA1 act by enhancing α-synuclein toxicity. To explore this hypothesis, we deleted the Drosophila GBA1 homolog, dGBA1b, and compared the phenotypes of dGBA1b mutants in the presence and absence of α-synuclein expression. Homozygous dGBA1b mutants exhibit shortened lifespan, locomotor and memory deficits, neurodegeneration, and dramatically increased accumulation of ubiquitinated protein aggregates that are normally degraded through an autophagic mechanism. Ectopic expression of human α-synuclein in dGBA1b mutants resulted in a mild enhancement of dopaminergic neuron loss and increased α-synuclein aggregation relative to controls. However, α-synuclein expression did not substantially enhance other dGBA1b mutant phenotypes. Our findings indicate that dGBA1b plays an important role in the metabolism of protein aggregates, but that the deleterious consequences of mutations in dGBA1b are largely independent of α-synuclein. Future work with dGBA1b mutants should reveal the mechanism by which mutations in dGBA1b lead to accumulation of protein aggregates, and the potential influence of this protein aggregation on neuronal integrity. PMID:27019408

  9. Correlating labeling chemistry and in-vitro test results with the biological behavior of radiolabeled proteins

    SciTech Connect

    Srivastava, S.C.; Meinken, G.E.

    1985-01-01

    Monoclonal antibodies possess enormous potential for delivery of therapeutic amounts of radionuclides to target antigens in vivo, in particular for tumor imaging and therapy. Translation of this concept into practice has encountered numerous problems. Specifically whereas general protein radiolabeling methods are applicable to antibodies, immunological properties of the antibodies are often compromised resulting in reduced in-vivo specificity for the target antigens. The bifunctional chelating agent approach shows the most promise, however, development of other agents will be necessary for widespread usefulness of this technique. The effects of labeling chemistry on the in-vivo behavior of several monoclonal antibodies are described. 30 refs., 4 figs., 10 tabs.

  10. Preparation and characterization of SeO2/TiO2 composite photocatalyst with excellent performance for sunset yellow azo dye degradation under natural sunlight illumination

    NASA Astrophysics Data System (ADS)

    Rajamanickam, D.; Dhatshanamurthi, P.; Shanthi, M.

    2015-03-01

    To improve the solar light induced photocatalytic application performances of TiO2, in this study, the SeO2 modified TiO2 composite photocatalysts with various ratios of SeO2 to TiO2 were prepared by sol-gel method. The catalyst was characterized by X-ray diffraction (XRD), high resolution scanning electron microscope (HR-SEM), energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area measurement methods. The photocatalytic activity of SeO2/TiO2 was investigated for the degradation of sunset yellow (SY) in aqueous solution using solar light. The SeO2/TiO2 is found to be more efficient than prepared TiO2 and TiO2-P25 at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration and initial pH on photo mineralization of SY have been analyzed. The degradation was strongly enhanced in the presence of electron acceptors such as oxone, KIO4 and KBrO3. The kinetics of SY photodegradation was found to follow the pseudo-first order rate law and could be described in terms of Langmuir-Hinshelwood model. The mineralization of SY has been confirmed by COD measurements. The catalyst is found to be reusable.

  11. Preparation and characterization of SeO2/TiO2 composite photocatalyst with excellent performance for sunset yellow azo dye degradation under natural sunlight illumination.

    PubMed

    Rajamanickam, D; Dhatshanamurthi, P; Shanthi, M

    2015-03-01

    To improve the solar light induced photocatalytic application performances of TiO2, in this study, the SeO2 modified TiO2 composite photocatalysts with various ratios of SeO2 to TiO2 were prepared by sol-gel method. The catalyst was characterized by X-ray diffraction (XRD), high resolution scanning electron microscope (HR-SEM), energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area measurement methods. The photocatalytic activity of SeO2/TiO2 was investigated for the degradation of sunset yellow (SY) in aqueous solution using solar light. The SeO2/TiO2 is found to be more efficient than prepared TiO2 and TiO2-P25 at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration and initial pH on photo mineralization of SY have been analyzed. The degradation was strongly enhanced in the presence of electron acceptors such as oxone, KIO4 and KBrO3. The kinetics of SY photodegradation was found to follow the pseudo-first order rate law and could be described in terms of Langmuir-Hinshelwood model. The mineralization of SY has been confirmed by COD measurements. The catalyst is found to be reusable. PMID:25528508

  12. Cooking Chicken Breast Reduces Dialyzable Iron Resulting from Digestion of Muscle Proteins

    PubMed Central

    Gokhale, Aditya S.; Mahoney, Raymond R.

    2014-01-01

    The purpose of this research was to study the effect of cooking chicken breast on the production of dialyzable iron (an in vitro indicator of bioavailable iron) from added ferric iron. Chicken breast muscle was cooked by boiling, baking, sauting, or deep-frying. Cooked samples were mixed with ferric iron and either extracted with acid or digested with pepsin and pancreatin. Total and ferrous dialyzable iron was measured after extraction or digestion and compared to raw chicken samples. For uncooked samples, dialyzable iron was significantly enhanced after both extraction and digestion. All cooking methods led to markedly reduced levels of dialyzable iron both by extraction and digestion. In most cooked, digested samples dialyzable iron was no greater than the iron-only (no sample) control. Cooked samples showed lower levels of histidine and sulfhydryls but protein digestibility was not reduced, except for the sauted sample. The results showed that, after cooking, little if any dialyzable iron results from digestion of muscle proteins. Our research indicates that, in cooked chicken, residual acid-extractable components are the most important source of dialyzable iron. PMID:26904627

  13. Characterization of Factors Affecting Nanoparticle Tracking Analysis Results With Synthetic and Protein Nanoparticles.

    PubMed

    Krueger, Aaron B; Carnell, Pauline; Carpenter, John F

    2016-04-01

    In many manufacturing and research areas, the ability to accurately monitor and characterize nanoparticles is becoming increasingly important. Nanoparticle tracking analysis is rapidly becoming a standard method for this characterization, yet several key factors in data acquisition and analysis may affect results. Nanoparticle tracking analysis is prone to user input and bias on account of a high number of parameters available, contains a limited analysis volume, and individual sample characteristics such as polydispersity or complex protein solutions may affect analysis results. This study systematically addressed these key issues. The integrated syringe pump was used to increase the sample volume analyzed. It was observed that measurements recorded under flow caused a reduction in total particle counts for both polystyrene and protein particles compared to those collected under static conditions. In addition, data for polydisperse samples tended to lose peak resolution at higher flow rates, masking distinct particle populations. Furthermore, in a bimodal particle population, a bias was seen toward the larger species within the sample. The impacts of filtration on an agitated intravenous immunoglobulin sample and operating parameters including "MINexps" and "blur" were investigated to optimize the method. Taken together, this study provides recommendations on instrument settings and sample preparations to properly characterize complex samples. PMID:27019960

  14. Ordering of the O(2)…D… O(2) bonds near the phase transition in KD3(SeO3)2 single crystals by D nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Jeong, Se-Young

    2013-01-01

    Deuterium resonance investigations of KD3(SeO3)2 single crystals have been performed near the phase transition temperature T C . There are two types of deuterium bonds in these crystals with different behaviors at this phase transition. Our experimental results show that there are significant changes in the D spinlattice relaxation time T 1 at T C ; the abrupt decrease in T 1 near T C can be explained by the critical slowing down of an overdamped soft pseudospin-type deuteron mode. Further, the ordering of the O(2)…D… O(2) bonds is affected by the phase transition, whereas the ordering of the O(1)-D… O(3) bonds is unaffected. The D NMR measurements also show that the D(2) deuteron disordering above T C is dynamic and not static.

  15. Distinct stress conditions result in aggregation of proteins with similar properties

    PubMed Central

    Weids, Alan J.; Ibstedt, Sebastian; Tamás, Markus J.; Grant, Chris M.

    2016-01-01

    Protein aggregation is the abnormal association of proteins into larger aggregate structures which tend to be insoluble. This occurs during normal physiological conditions and in response to age or stress-induced protein misfolding and denaturation. In this present study we have defined the range of proteins that aggregate in yeast cells during normal growth and after exposure to stress conditions including an oxidative stress (hydrogen peroxide), a heavy metal stress (arsenite) and an amino acid analogue (azetidine-2-carboxylic acid). Our data indicate that these three stress conditions, which work by distinct mechanisms, promote the aggregation of similar types of proteins probably by lowering the threshold of protein aggregation. The proteins that aggregate during physiological conditions and stress share several features; however, stress conditions shift the criteria for protein aggregation propensity. This suggests that the proteins in aggregates are intrinsically aggregation-prone, rather than being proteins which are affected in a stress-specific manner. We additionally identified significant overlaps between stress aggregating yeast proteins and proteins that aggregate during ageing in yeast and C. elegans. We suggest that similar mechanisms may apply in disease- and non-disease settings and that the factors and components that control protein aggregation may be evolutionary conserved. PMID:27086931

  16. Distinct stress conditions result in aggregation of proteins with similar properties.

    PubMed

    Weids, Alan J; Ibstedt, Sebastian; Tamás, Markus J; Grant, Chris M

    2016-01-01

    Protein aggregation is the abnormal association of proteins into larger aggregate structures which tend to be insoluble. This occurs during normal physiological conditions and in response to age or stress-induced protein misfolding and denaturation. In this present study we have defined the range of proteins that aggregate in yeast cells during normal growth and after exposure to stress conditions including an oxidative stress (hydrogen peroxide), a heavy metal stress (arsenite) and an amino acid analogue (azetidine-2-carboxylic acid). Our data indicate that these three stress conditions, which work by distinct mechanisms, promote the aggregation of similar types of proteins probably by lowering the threshold of protein aggregation. The proteins that aggregate during physiological conditions and stress share several features; however, stress conditions shift the criteria for protein aggregation propensity. This suggests that the proteins in aggregates are intrinsically aggregation-prone, rather than being proteins which are affected in a stress-specific manner. We additionally identified significant overlaps between stress aggregating yeast proteins and proteins that aggregate during ageing in yeast and C. elegans. We suggest that similar mechanisms may apply in disease- and non-disease settings and that the factors and components that control protein aggregation may be evolutionary conserved. PMID:27086931

  17. Compromised Mitochondrial Fatty Acid Synthesis in Transgenic Mice Results in Defective Protein Lipoylation and Energy Disequilibrium

    PubMed Central

    Smith, Stuart; Witkowski, Andrzej; Moghul, Ayesha; Yoshinaga, Yuko; Nefedov, Michael; de Jong, Pieter; Feng, Dejiang; Fong, Loren; Tu, Yiping; Hu, Yan; Young, Stephen G.; Pham, Thomas; Cheung, Carling; Katzman, Shana M.; Brand, Martin D.; Quinlan, Casey L.; Fens, Marcel; Kuypers, Frans; Misquitta, Stephanie; Griffey, Stephen M.; Tran, Son; Gharib, Afshin; Knudsen, Jens; Hannibal-Bach, Hans Kristian; Wang, Grace; Larkin, Sandra; Thweatt, Jennifer; Pasta, Saloni

    2012-01-01

    A mouse model with compromised mitochondrial fatty acid synthesis has been engineered in order to assess the role of this pathway in mitochondrial function and overall health. Reduction in the expression of mitochondrial malonyl CoA-acyl carrier protein transacylase, a key enzyme in the pathway encoded by the nuclear Mcat gene, was achieved to varying extents in all examined tissues employing tamoxifen-inducible Cre-lox technology. Although affected mice consumed more food than control animals, they failed to gain weight, were less physically active, suffered from loss of white adipose tissue, reduced muscle strength, kyphosis, alopecia, hypothermia and shortened lifespan. The Mcat-deficient phenotype is attributed primarily to reduced synthesis, in several tissues, of the octanoyl precursors required for the posttranslational lipoylation of pyruvate and α-ketoglutarate dehydrogenase complexes, resulting in diminished capacity of the citric acid cycle and disruption of energy metabolism. The presence of an alternative lipoylation pathway that utilizes exogenous free lipoate appears restricted to liver and alone is insufficient for preservation of normal energy metabolism. Thus, de novo synthesis of precursors for the protein lipoylation pathway plays a vital role in maintenance of mitochondrial function and overall vigor. PMID:23077570

  18. Deficiency of Melanoma Differentiation–associated Protein 5 Results in Exacerbated Chronic Postviral Lung Inflammation

    PubMed Central

    Kim, Won-keun; Jain, Deepika; Sánchez, Melissa D.; Koziol-White, Cynthia J.; Matthews, Krystal; Ge, Moyar Q.; Haczku, Angela; Panettieri, Reynold A.; Frieman, Matthew B.

    2014-01-01

    Rationale: Respiratory viral infections can result in the establishment of chronic lung diseases. Understanding the early innate immune mechanisms that participate in the development of chronic postviral lung disease may reveal new targets for therapeutic intervention. The intracellular viral sensor protein melanoma differentiation–associated protein 5 (MDA5) sustains the acute immune response to Sendai virus, a mouse pathogen that causes chronic lung inflammation, but its role in the development of postviral chronic lung disease is unknown. Objectives: To establish the role of MDA5 in the development of chronic lung disease. Methods: MDA5-deficient or control mice were infected with Sendai virus. The acute inflammatory response was evaluated by profiling chemokine and cytokine expression and by characterizing the composition of the cellular infiltrate. The impact of MDA5 on chronic lung pathology and function was evaluated through histological studies, degree of oxygen saturation, and responsiveness to carbachol. Measurements and Main Results: MDA5 deficiency resulted in normal virus replication and in a distinct profile of chemokines and cytokines that associated with acute lung neutropenia and enhanced accumulation of alternatively activated macrophages. Diminished expression of neutrophil-recruiting chemokines was also observed in cells infected with influenza virus, suggesting a key role of MDA5 in driving the early accumulation of neutrophils at the infection site. The biased acute inflammatory response of MDA5-deficient mice led to an enhanced chronic lung inflammation, epithelial cell hyperplasia, airway hyperreactivity, and diminished blood oxygen saturation. Conclusions: MDA5 modulates the development of chronic lung inflammation by regulating the early inflammatory response in the lung. PMID:24417465

  19. Crystallisation of alpha-crustacyanin, the lobster carapace astaxanthin-protein: results from EURECA

    NASA Astrophysics Data System (ADS)

    Zagalsky, P. F.; Wright, C. E.; Parsons, M.

    1995-08-01

    Crystallisation of alpha-crustacyanin, the lobster carapace astaxanthin-protein was attempted under microgravity conditions in EURECA satellite using liquid-liquid diffusion with polyethyleneglycol (PEG) as precipitant; in a second reaction chamber phenol and dioxan were used as additives to prevent composite crystal growth. Crystals of alpha-crustacyanin grown under microgravity from PEG were larger than those grown terrestrially in the same apparatus under otherwise identical conditions. On retrieval, the crystals from PEG were shown to be composite and gave a powder diffraction pattern. The second reaction chamber showed leakage on retrieval and had also been subjected to rapid temperature variation during flight. Crystal fragments were nevertheless recovered but showed a powder diffraction pattern. It is concluded, certainly for liquid-liquid diffusion using PEG alone, that, for crustacyanin, although microgravity conditions resulted in an increase in dimensions of crystals, a measurable improvement in molecular ordering was not achieved.

  20. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    SciTech Connect

    Yadav, Indresh Aswal, V. K.; Kohlbrecher, J.

    2014-04-24

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0–5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4.

  1. P185-M Protein Identification and Validation of Results in Workflows that Integrate over Various Instruments, Datasets, Search Engines

    PubMed Central

    Hufnagel, P.; Glandorf, J.; Krting, G.; Jabs, W.; Schweiger-Hufnagel, U.; Hahner, S.; Lubeck, M.; Suckau, D.

    2007-01-01

    Analysis of complex proteomes often results in long protein lists, but falls short in measuring the validity of identification and quantification results on a greater number of proteins. Biological and technical replicates are mandatory, as is the combination of the MS data from various workflows (gels, 1D-LC, 2D-LC), instruments (TOF/TOF, trap, qTOF or FTMS), and search engines. We describe a database-driven study that combines two workflows, two mass spectrometers, and four search engines with protein identification following a decoy database strategy. The sample was a tryptically digested lysate (10,000 cells) of a human colorectal cancer cell line. Data from two LC-MALDI-TOF/TOF runs and a 2D-LC-ESI-trap run using capillary and nano-LC columns were submitted to the proteomics software platform ProteinScape. The combined MALDI data and the ESI data were searched using Mascot (Matrix Science), Phenyx (GeneBio), ProteinSolver (Bruker and Protagen), and Sequest (Thermo) against a decoy database generated from IPI-human in order to obtain one protein list across all workflows and search engines at a defined maximum false-positive rate of 5%. ProteinScape combined the data to one LC-MALDI and one LC-ESI dataset. The initial separate searches from the two combined datasets generated eight independent peptide lists. These were compiled into an integrated protein list using the ProteinExtractor algorithm. An initial evaluation of the generated data led to the identification of approximately 1200 proteins. Result integration on a peptide level allowed discrimination of protein isoforms that would not have been possible with a mere combination of protein lists.

  2. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype.

    PubMed

    Samsa, William E; Vasanji, Amit; Midura, Ronald J; Kondratov, Roman V

    2016-03-01

    The circadian clock is an endogenous time keeping system that controls the physiology and behavior of many organisms. The transcription factor Brain and Muscle ARNT-like Protein 1 (BMAL1) is a component of the circadian clock and necessary for clock function. Bmal1(-/-) mice display accelerated aging and many accompanying age associated pathologies. Here, we report that mice deficient for BMAL1 have a low bone mass phenotype that is absent at birth and progressively worsens over their lifespan. Accelerated aging of these mice is associated with the formation of bony bridges occurring across the metaphysis to the epiphysis, resulting in shorter long bones. Using micro-computed tomography we show that Bmal1(-/-) mice have reductions in cortical and trabecular bone volume and other micro-structural parameters and a lower bone mineral density. Histology shows a deficiency of BMAL1 results in a reduced number of active osteoblasts and osteocytes in vivo. Isolation of bone marrow derived mesenchymal stem cells from Bmal1(-/-) mice demonstrate a reduced ability to differentiate into osteoblasts in vitro, which likely explains the observed reductions in osteoblasts and osteocytes, and may contribute to the observed osteopenia. Our data support the role of the circadian clock in the regulation of bone homeostasis and shows that BMAL1 deficiency results in a low bone mass phenotype. PMID:26789548

  3. BMP2 exposure results in decreased PTEN protein degradation and increased PTEN levels.

    PubMed

    Waite, Kristin A; Eng, Charis

    2003-03-15

    The tumour suppressor gene PTEN encodes a dual-specificity phosphatase that recognizes protein and phosphatidylinositiol substrates and modulates cellular functions such as migration and proliferation. Germline mutations of PTEN have been shown to cause Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome and Proteus syndrome. Recently, germline mutations in BMPR1A, the gene encoding the type 1A receptor of bone morphogenetic proteins (BMP) have been found in rare families with Cowden syndrome, suggesting that there may be a link between BMP signaling and PTEN. We thus sought to determine whether BMP2 stimulation alters PTEN protein levels in the breast cancer line, MCF-7. We found that exposure to BMP2 increased PTEN protein levels in a time- and dose-dependent manner. The increase in PTEN protein was rapid and was not due to an increase in new protein synthesis, as cycloheximide treatment did not inhibit BMP2-induced PTEN accumulation, suggesting that BMP2 stimulation inhibited PTEN protein degradation. Indeed, we found that BMP2 treatment of MCF-7 cells decreased the association of PTEN with two proteins in the degradative pathway, UbCH7 and UbC9. These data indicate that BMP2 exposure can regulate PTEN protein levels by decreasing PTEN's association with the degradative pathway. This opens up a new mode of regulating PTEN activity to be investigated further and may explain why BMPR1A can act as a minor susceptibility gene for PTEN mutation negative Cowden syndrome. PMID:12620973

  4. An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria.

    PubMed

    Wang, Wangfei; Jeffery, Constance J

    2016-04-26

    Proteins expressed on the bacterial cell surface play important roles in infection and virulence and can be targets for vaccine development or used as biomarkers. Surprisingly, an increasing number of surface proteins are being found to be identical to intracellular enzymes and chaperones, and a few dozen intracellular/surface moonlighting proteins have been found that have different functions inside the cell and on the cell surface. The results of twenty-two published bacterial surface proteomics studies were analyzed using bioinformatics tools to consider how many additional intracellular proteins are also found on the cell surface. More than 1000 out of the 3619 proteins observed on the cell surface lack the transmembrane alpha-helices or transmembrane beta-barrels found in integral membrane proteins and also lack the signal peptides found in proteins secreted through the Sec pathway. Many of the proteins found on the cell surface are intracellular chaperones or enzymes involved in central metabolic pathways, including some that have previously been shown to have a moonlighting function on the cell surface in at least one species, such as Hsp60/GroEL, DnaK, glyceraldehyde 3-phosphate dehydrogenase, enolase, and fructose 1,6-bisphosphate aldolase. The results of the proteomics studies suggest they could also be moonlighting on the surface of many other species. Hundreds of other intracellular proteins are also found on the cell surface, although a second function on the surface has not yet been demonstrated, for example, glutamine synthetase, gamma-glutamyl phosphate reductase, and cysteine desulfurase. The presence of intracellular proteins on the cell surface is more common than previously expected and suggests that many additional proteins might be candidates for being intracellular/surface moonlighting proteins. PMID:26938107

  5. Antibiotic-induced ribosomal assembly defects result from changes in the synthesis of ribosomal proteins.

    PubMed

    Siibak, Triinu; Peil, Lauri; Dnhfer, Alexandra; Tats, Age; Remm, Maido; Wilson, Daniel N; Tenson, Tanel; Remme, Jaanus

    2011-04-01

    Inhibitors of protein synthesis cause defects in the assembly of ribosomal subunits. In response to treatment with the antibiotics erythromycin or chloramphenicol, precursors of both large and small ribosomal subunits accumulate. We have used a pulse-labelling approach to demonstrate that the accumulating subribosomal particles maturate into functional 70S ribosomes. The protein content of the precursor particles is heterogeneous and does not correspond with known assembly intermediates. Mass spectrometry indicates that production of ribosomal proteins in the presence of the antibiotics correlates with the amounts of the individual ribosomal proteins within the precursor particles. Thus, treatment of cells with chloramphenicol or erythromycin leads to an unbalanced synthesis of ribosomal proteins, providing the explanation for formation of assembly-defective particles. The operons for ribosomal proteins show a characteristic pattern of antibiotic inhibition where synthesis of the first proteins is inhibited weakly but gradually increases for the subsequent proteins in the operon. This phenomenon most likely reflects translational coupling and allows us to identify other putative coupled non-ribosomal operons in the Escherichia coli chromosome. PMID:21320180

  6. Misconceptions about protein requirements for wound healing: results of a prospective study.

    PubMed

    Pompeo, Matthew

    2007-08-01

    The successful treatment of protein malnutrition is critical for patient healing but traditional estimates of the amount of calories and protein needed for wound patients have been empiric. In particular, only the presence of a wound, not its severity or extent, is currently included as a stratifying "stress factor." To 1) ascertain reasons for feeding failure, 2) evaluate a hypothesis that patients with wounds require more protein than is generally recommended in the literature, and 3) affirm that wound burden effects protein requirements, a 1-year, descriptive, prospective study was conducted involving 150 tube-fed patients with (n = 93) and without (n = 57) wounds admitted to a long-term, acute care facility. On admission, 11% of wound and 21% of non-wound patients had normal pre-albumin levels. Using an aggressive protein provision regimen, pre-albumin levels improved in 42% of wound patients (mean 36.9 days) and in 46% of non-wound patients (mean 29.7 days). The most common cause of feeding failure was inadequate provision or assimilation of protein. Signs and symptoms of overfeeding were not observed. The average maximum amount of protein provided to patients whose pre-albumin improved was significantly higher in the wound (1.85 g/Kg/day) than in the non-wound (1.47 g/Kg/day) group (P = .0002). Among wound patients whose pre-albumin improved, a trend between higher wound burden (defined by total Pressure Ulcer Scale for Healing score) and maximum amounts of protein provided was seen. In addition to the need for more research in this area, study findings suggest that commonly estimated protein requirements for wound patients are too low and that better tools and procedures for protein assessment and maintenance need to be implemented. PMID:17726210

  7. Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber.

    PubMed

    Chakraborty, Subhra; Chakraborty, Niranjan; Agrawal, Lalit; Ghosh, Sudip; Narula, Kanika; Shekhar, Shubhendu; Naik, Prakash S; Pande, P C; Chakrborti, Swarup Kumar; Datta, Asis

    2010-10-12

    Protein deficiency is the most crucial factor that affects physical growth and development and that increases morbidity and mortality especially in developing countries. Efforts have been made to improve protein quality and quantity in crop plants but with limited success. Here, we report the development of transgenic potatoes with enhanced nutritive value by tuber-specific expression of a seed protein, AmA1 (Amaranth Albumin 1), in seven genotypic backgrounds suitable for cultivation in different agro-climatic regions. Analyses of the transgenic tubers revealed up to 60% increase in total protein content. In addition, the concentrations of several essential amino acids were increased significantly in transgenic tubers, which are otherwise limited in potato. Moreover, the transgenics also exhibited enhanced photosynthetic activity with a concomitant increase in total biomass. These results are striking because this genetic manipulation also resulted in a moderate increase in tuber yield. The comparative protein profiling suggests that the proteome rebalancing might cause increased protein content in transgenic tubers. Furthermore, the data on field performance and safety evaluation indicate that the transgenic potatoes are suitable for commercial cultivation. In vitro and in vivo studies on experimental animals demonstrate that the transgenic tubers are also safe for human consumption. Altogether, these results emphasize that the expression of AmA1 is a potential strategy for the nutritional improvement of food crops. PMID:20855595

  8. Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber

    PubMed Central

    Chakraborty, Subhra; Chakraborty, Niranjan; Agrawal, Lalit; Ghosh, Sudip; Narula, Kanika; Shekhar, Shubhendu; Naik, Prakash S.; Pande, P. C.; Chakrborti, Swarup Kumar; Datta, Asis

    2010-01-01

    Protein deficiency is the most crucial factor that affects physical growth and development and that increases morbidity and mortality especially in developing countries. Efforts have been made to improve protein quality and quantity in crop plants but with limited success. Here, we report the development of transgenic potatoes with enhanced nutritive value by tuber-specific expression of a seed protein, AmA1 (Amaranth Albumin 1), in seven genotypic backgrounds suitable for cultivation in different agro-climatic regions. Analyses of the transgenic tubers revealed up to 60% increase in total protein content. In addition, the concentrations of several essential amino acids were increased significantly in transgenic tubers, which are otherwise limited in potato. Moreover, the transgenics also exhibited enhanced photosynthetic activity with a concomitant increase in total biomass. These results are striking because this genetic manipulation also resulted in a moderate increase in tuber yield. The comparative protein profiling suggests that the proteome rebalancing might cause increased protein content in transgenic tubers. Furthermore, the data on field performance and safety evaluation indicate that the transgenic potatoes are suitable for commercial cultivation. In vitro and in vivo studies on experimental animals demonstrate that the transgenic tubers are also safe for human consumption. Altogether, these results emphasize that the expression of AmA1 is a potential strategy for the nutritional improvement of food crops. PMID:20855595

  9. Committee on Earth Observation Satellites (CEOS) Systems Engineering Office (SEO). Ocean Surface Topography (OST) Workshop, Ruedesheim an Rhein, Germany. [CEOS SEO Status Report

    NASA Technical Reports Server (NTRS)

    Killough, Brian D., Jr.

    2008-01-01

    The CEOS Systems Engineering Office will present a 2007 status report of the CEOS constellation process, present a new systems engineering framework, and analysis results from the GEO Societal Benefit Area (SBA) assessment and the OST constellation requirements assessment.

  10. Vascular endothelial dysfunction resulting from l-arginine deficiency in a patient with lysinuric protein intolerance

    PubMed Central

    Kamada, Yoshihiro; Nagaretani, Hiroyuki; Tamura, Shinji; Ohama, Tohru; Maruyama, Takao; Hiraoka, Hisatoyo; Yamashita, Shizuya; Yamada, Akira; Kiso, Shinichi; Inui, Yoshiaki; Ito, Nobuyuki; Kayanoki, Yoshiro; Kawata, Sumio; Matsuzawa, Yuji

    2001-01-01

    Although L-arginine is the only substrate for nitric oxide (NO) production, no studies have yet been reported on the effect of an L-arginine deficiency on vascular function in humans. Lysinuric protein intolerance (LPI) is a rare autosomal recessive defect of dibasic amino acid transport caused by mutations in the SLC7A7 gene, resulting in an L-arginine deficiency. Vascular endothelial function was examined in an LPI patient who was shown to be a compound heterozygote for two mutations in the gene (5.3-kbp Alu-mediated deletion, IVS3+1G→Α). The lumen diameter of the brachial artery was measured in this patient and in healthy controls at rest, during reactive hyperemia (endothelium-dependent vasodilation [EDV]), and after sublingual nitroglycerin administration (endothelium-independent vasodilation [EIV]) using ultrasonography. Both EDV and NOx concentrations were markedly reduced in the patient compared with those for the controls. They became normal after an L-arginine infusion. EIV was not significantly different between the patient and controls. Positron emission tomography of the heart and a treadmill test revealed ischemic changes in the patient, which were improved by the L-arginine infusion. Thus, in the LPI patient, L-arginine deficiency caused vascular endothelial dysfunction via a decrease in NO production. PMID:11544277

  11. Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs

    PubMed Central

    Yang, Dongshan; Wang, Chuan-En; Zhao, Bentian; Li, Wei; Ouyang, Zhen; Liu, Zhaoming; Yang, Huaqiang; Fan, Pei; O'Neill, Ashley; Gu, Weiwang; Yi, Hong; Li, Shihua; Lai, Liangxue; Li, Xiao-Jiang

    2010-01-01

    Neurodegeneration is a hallmark of many neurological diseases, including Alzheimer's, Parkinson's and the polyglutamine diseases, which are all caused by misfolded proteins that accumulate in neuronal cells of the brain. Although apoptosis is believed to contribute to neurodegeneration in these cases, genetic mouse models of these diseases often fail to replicate apoptosis and overt neurodegeneration in the brain. Using nuclear transfer, we generated transgenic Huntington's disease (HD) pigs that express N-terminal (208 amino acids) mutant huntingtin with an expanded polyglutamine tract (105Q). Postnatal death, dyskinesia and chorea-like movement were observed in some transgenic pigs that express mutant huntingtin. Importantly, the transgenic HD pigs, unlike mice expressing the same transgene, displayed typical apoptotic neurons with DNA fragmentation in their brains. Also, expression of mutant huntingtin resulted in more neurons with activated caspase-3 in transgenic pig brains than that in transgenic mouse brains. Our findings suggest that species differences determine neuropathology and underscore the importance of large mammalian animals for modeling neurological disorders. PMID:20660116

  12. The Structural Biology Center 19ID undulator beamline: facility specifications and protein crystallographic results

    PubMed Central

    Rosenbaum, Gerd; Alkire, Randy W.; Evans, Gwyndaf; Rotella, Frank J.; Lazarski, Krzystof; Zhang, Rong-Guang; Ginell, Stephan L.; Duke, Norma; Naday, Istvan; Lazarz, Jack; Molitsky, Michael J.; Keefe, Lisa; Gonczy, John; Rock, Larry; Sanishvili, Ruslan; Walsh, Martin A.; Westbrook, Edwin; Joachimiak, Andrzej

    2008-01-01

    The 19ID undulator beamline of the Structure Biology Center has been designed and built to take full advantage of the high flux, brilliance and quality of X-ray beams delivered by the Advanced Photon Source. The beamline optics are capable of delivering monochromatic X-rays with photon energies from 3.5 to 20 keV (3.5–0.6 Å wavelength) with fluxes up to 8–18 × 1012 photons s−1 (depending on photon energy) onto cryogenically cooled crystal samples. The size of the beam (full width at half-maximum) at the sample position can be varied from 2.2 mm × 1.0 mm (horizontal × vertical, unfocused) to 0.083 mm × 0.020 mm in its fully focused configuration. Specimen-to-detector distances of between 100 mm and 1500 mm can be used. The high flexibility, inherent in the design of the optics, coupled with a κ-geometry goniometer and beamline control software allows optimal strategies to be adopted in protein crystallographic experiments, thus maximizing the chances of their success. A large-area mosaic 3 × 3 CCD detector allows high-quality diffraction data to be measured rapidly to the crystal diffraction limits. The beamline layout and the X-ray optical and endstation components are described in detail, and the results of representative crystallographic experiments are presented. PMID:16371706

  13. Local structure of Rb2Li4(SeO4)32H2O by the modeling of X-ray diffuse scattering from average-structure to microdomain model

    NASA Astrophysics Data System (ADS)

    Komornicka, Dorota; Wo?cyrz, Marek; Pietraszko, Adam

    2012-08-01

    Local structure of dirubidium tetralithium tris(selenate(VI)) dihydrate Rb2Li4(SeO4)3 2H2O has been determined basing on the modeling of X-ray diffuse scattering. The origin of observed structured diffuse streaks is SeO4 tetrahedra switching between two alternative positions in two quasi-planar layers existing in each unit cell and formation of domains with specific SeO4 tetrahedra configuration locally fulfilling condition for C-centering in the 2a2bc superstructure cell. The local structure solution is characterized by a uniform distribution of rather large domains (ca. thousand of unit cells) in two layers, but also monodomains can be taken into account. Inside a single domain SeO4 tetrahedra are ordered along ab-diagonal forming two-string ribbons. Inside the ribbons SeO4 and LiO4 tetrahedra share the oxygen corners, whereas ribbons are bound to each other by a net of hydrogen bonds and fastened by corner sharing SeO4 tetrahedra of the neighboring layers.

  14. Electrophoretic analysis of sheep plasma protein labeled with Na2 75SeO3 in vivo

    SciTech Connect

    Davidson, W.B.; McMurray, C.H.

    1987-05-01

    Following an intravenous injection of /sup 75/Se, sodium selenite plasma samples were analyzed by two-dimensional electrophoresis. /sup 75/Se was detected by indirect autoradiography. From 0.5 to 53 hr postinjection of /sup 75/Se, 21 /sup 75/Se peptides were detected. Both the isoelectric points and molecular weights of these peptides are reported. The molecular weights of the peptides ranged from 20,000 to 70,000 daltons.

  15. Structural and conductivity studies of CsK(SO4)0.32(SeO4)0.68Te(OH)6

    NASA Astrophysics Data System (ADS)

    Djemel, M.; Abdelhedi, M.; Zouari, N.; Dammak, M.; Kolsi, A. W.

    2012-12-01

    The compound CsK(SO4)0.32(SeO4)0.68Te(OH)6 crystallizes in the monoclinic P21/n space group. It was analyzed, at room temperature, using X-ray diffractometer data. The main feature of these atomic arrangements is the coexistence of three and different anions (SO42-, SeO42- and TeO66-groups) in the unit cell, connected by hydrogen bonds which make the building of the crystal. The thermal analysis of the title compound shows three distinct endothermal peaks at 435, 460 and 475 K. Complex impedance measurements are performed on this material as a function of both temperature and frequency. The electric conduction has been studied. The temperature dependence on the conductivity indicates that the sample became an ionic conductor at high temperature.

  16. Vibrational spectroscopic study of the uranyl selenite mineral derriksite Cu4UO2(SeO3)2(OH)6ṡH2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Čejka, Jiří; Scholz, Ricardo; López, Andrés; Theiss, Frederick L.; Xi, Yunfei

    2014-01-01

    Raman spectrum of the mineral derriksite Cu4UO2(SeO3)2(OH)6ṡH2O was studied and complemented by the infrared spectrum of this mineral. Both spectra were interpreted and partly compared with the spectra of demesmaekerite, marthozite, larisaite, haynesite and piretite. Observed Raman and infrared bands were attributed to the (UO2)2+, (SeO3)2-, (OH)- and H2O vibrations. The presence of symmetrically distinct hydrogen bonded molecule of water of crystallization and hydrogen bonded symmetrically distinct hydroxyl ions was inferred from the spectra in the derriksite unit cell. Approximate U-O bond lengths in uranyl and O-H⋯O hydrogen bond lengths were calculated from the Raman and infrared spectra of derriksite.

  17. Results.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Describes the Collegiate Results Instrument (CRI), which measures a range of collegiate outcomes for alumni 6 years after graduation. The CRI was designed to target alumni from institutions across market segments and assess their values, abilities, work skills, occupations, and pursuit of lifelong learning. (EV)

  18. Reduced functionality of PSE-like chicken breast meat batter resulting from alterations in protein conformation.

    PubMed

    Li, K; Zhao, Y Y; Kang, Z L; Wang, P; Han, M Y; Xu, X L; Zhou, G H

    2015-01-01

    The objectives of this study were to evaluate protein thermal stability, water-protein interaction, microstructure, and protein conformation between PSE-like and normal chicken breast meat batters. Sixty pale, soft, and exudative (PSE)-like (L*>53, pH24 h<5.7) and 60 normal (46protein and 2% salt, and they were analyzed for the protein changes and the microstructure using differential scanning calorimetry, low-field (LF)-NMR, SEM, and Raman spectroscopy. PSE-like meat batter had lower gel strength, water-holding capacity, and salt-soluble protein extraction (P<0.05). Heated PSE-like meat batter formed an aggregated gel matrix, while normal meat batter produced a compact gel network with fine, cross-linked strands by many protein filaments. LF-NMR revealed an increase in the water mobility in heated PSE-like meat batter with an increasing amount of loosely bound water (P<0.05). No significant changes were observed in the electrophoretic patterns of salt-soluble protein extracts by SDS-PAGE. However, differential scanning calorimetry showed that PSE-like meat had greater myosin and sarcoplasmic proteins/collagen denaturation (P<0.05). In PSE-like meat, actin denaturation was particular evident after salt addition (P<0.05) using differential scanning calorimetry. Moreover, Raman spectroscopy indicated that PSE-like meat batter had less unfolded α-helix and β-sheet structure formation, reduced exposure of hydrophobic and tyrosine residues (P<0.05), and changes in the microenvironment of aliphatic residues and tryptophan, which affected salt-soluble protein extraction, gel properties, and water-holding capacity. In conclusion, the inferior functional properties of PSE-like meat were attributed to not only myosin denaturation, but also actin denaturation after salt addition and different protein structural states. PMID:25577798

  19. Chimeric spider silk proteins mediated by intein result in artificial hybrid silks.

    PubMed

    Lin, Senzhu; Chen, Gefei; Liu, Xiangqin; Meng, Qing

    2016-07-01

    Hybrid silks hold a great potential as specific biomaterials due to its controlled mechanical properties. To produce fibers with tunable properties, here we firstly made chimeric proteins in vitro, called W2C4CT and W2C8CT, with ligation of MaSp repetitive modules (C) with AcSp modules (W) by intein trans splicing technology from smaller precursors without final yield reduction. Intein mediated chimeric proteins form fibers at a low concentration of 0.4 mg/mL in 50 mM K3 PO4 pH 7.5 just drawn by hand. Hybrid fibers show smoother surface, and also have stronger chemical resistance as compared with fibers from W2CT (W fibers) and mixture of W2CT/C8CT (MHF8 fibers). Fibers from chimeric protein W2C4CT (HFH4) have improved mechanical properties than W fibers; however, with more C modules W2C8CT fibers (HFH8) properties decreased, indicates the length proportion of various modules is very important and should be optimized for fibers with specific properties. Generally, hybrid silks generated via chimeric proteins, which can be simplified by intein trans splicing, has greater potential to produce fibers with tunable properties. Our research shows that intein mediated directional protein ligation is a novel way to make large chimeric spider silk proteins and hybrid silks. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 385-392, 2016. PMID:26948769

  20. Transiting Exoplanet Survey Satellite (TESS) Community Observer Program including the Science Enhancement Option Box (SEO Box) - 12 TB On-board Flash Memory for Serendipitous Science

    NASA Astrophysics Data System (ADS)

    Schingler, Robert; Villasenor, J. N.; Ricker, G. R.; Latham, D. W.; Vanderspek, R. K.; Ennico, K. A.; Lewis, B. S.; Bakos, G.; Brown, T. M.; Burgasser, A. J.; Charbonneau, D.; Clampin, M.; Deming, L. D.; Doty, J. P.; Dunham, E. W.; Elliot, J. L.; Holman, M. J.; Ida, S.; Jenkins, J. M.; Jernigan, J. G.; Kawai, N.; Laughlin, G. P.; Lissauer, J. J.; Martel, F.; Sasselov, D. D.; Seager, S.; Torres, G.; Udry, S.; Winn, J. N.; Worden, S. P.

    2010-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will perform an all-sky survey in a low-inclination, low-Earth orbit. TESS's 144 GB of raw data collected each orbit will be stacked, cleaned, cut, compressed and downloaded. The Community Observer Program is a Science Enhancement Option (SEO) that takes advantage of the low-radiation environment, technology advances in flash memory, and the vast amount of astronomical data collected by TESS. The Community Observer Program requires the addition of a 12 TB "SEO Box” inside the TESS Bus. The hardware can be built using low-cost Commercial Off-The-Shelf (COTS) components and fits within TESS's margins while accommodating GSFC gold rules. The SEO Box collects and stores a duplicate of the TESS camera data at a "raw” stage ( 4.3 GB/orbit, after stacking and cleaning) and makes them available for on-board processing. The sheer amount of onboard storage provided by the SEO Box allows the stacking and storing of several months of data, allowing the investigator to probe deeper in time prior to a given event. Additionally, with computation power and data in standard formats, investigators can utilize data-mining techniques to investigate serendipitous phenomenon, including pulsating stars, eclipsing binaries, supernovae or other transient phenomena. The Community Observer Program enables ad-hoc teams of citizen scientists to propose, test, refine and rank algorithms for on-board analysis to support serendipitous science. Combining "best practices” of online collaboration, with careful moderation and community management, enables this `crowd sourced’ participatory exploration with a minimal risk and impact on the core TESS Team. This system provides a powerful and independent tool opening a wide range of opportunity for science enhancement and secondary science. Support for this work has been provided by NASA, the Kavli Foundation, Google, and the Smithsonian Institution.

  1. Pooled Results From 5 Validation Studies of Dietary Self-Report Instruments Using Recovery Biomarkers for Energy and Protein Intake

    PubMed Central

    Freedman, Laurence S.; Commins, John M.; Moler, James E.; Arab, Lenore; Baer, David J.; Kipnis, Victor; Midthune, Douglas; Moshfegh, Alanna J.; Neuhouser, Marian L.; Prentice, Ross L.; Schatzkin, Arthur; Spiegelman, Donna; Subar, Amy F.; Tinker, Lesley F.; Willett, Walter

    2014-01-01

    We pooled data from 5 large validation studies of dietary self-report instruments that used recovery biomarkers as references to clarify the measurement properties of food frequency questionnaires (FFQs) and 24-hour recalls. The studies were conducted in widely differing US adult populations from 1999 to 2009. We report on total energy, protein, and protein density intakes. Results were similar across sexes, but there was heterogeneity across studies. Using a FFQ, the average correlation coefficients for reported versus true intakes for energy, protein, and protein density were 0.21, 0.29, and 0.41, respectively. Using a single 24-hour recall, the coefficients were 0.26, 0.40, and 0.36, respectively, for the same nutrients and rose to 0.31, 0.49, and 0.46 when three 24-hour recalls were averaged. The average rate of under-reporting of energy intake was 28% with a FFQ and 15% with a single 24-hour recall, but the percentages were lower for protein. Personal characteristics related to under-reporting were body mass index, educational level, and age. Calibration equations for true intake that included personal characteristics provided improved prediction. This project establishes that FFQs have stronger correlations with truth for protein density than for absolute protein intake, that the use of multiple 24-hour recalls substantially increases the correlations when compared with a single 24-hour recall, and that body mass index strongly predicts under-reporting of energy and protein intakes. PMID:24918187

  2. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of product layer on mass transfer.

    PubMed

    Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Chen, Changhe; Xu, Xuchang

    2006-07-01

    Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of sulfur and trace selenium dioxide (SeO2) by calcium oxide (CaO) adsorption in the medium temperature range, especially the mass transfer effect of sulfate product layer on trace elements. Through experiments on CaO adsorbing different concentrations of SO2 gases, conclusions can be drawn that although the product layer introduces extra mass transfer resistance into the sorbent-gas reaction process, the extent of CaO adsorption ability loss due to this factor decreases with decreasing SO2 concentration. When the gas concentration is at trace level, the loss of CaO adsorption ability can be neglected. Subsequent experiments on CaO adsorbing trace SeO2 gas suggest that the sulfate product layer, whether it is thick or thin, has no obvious effect on the CaO ability to adsorb trace SeO2 gas. PMID:16856751

  3. Targeted modification of storage protein content resulting in improved amino acid composition of barley grain.

    PubMed

    Sikdar, Md S I; Bowra, S; Schmidt, D; Dionisio, G; Holm, P B; Vincze, E

    2016-02-01

    C-hordein in barley and ω-gliadins in wheat are members of the prolamins protein families. Prolamins are the major component of cereal storage proteins and composed of non-essential amino acids (AA) such as proline and glutamine therefore have low nutritional value. Using double stranded RNAi silencing technology directed towards C-hordein we obtained transgenic barley lines with up to 94.7 % reduction in the levels of C-hordein protein relative to the parental line. The composition of the prolamin fraction of the barley parental line cv. Golden Promise was resolved using SDS-PAGE electrophoresis, the protein band were excised and the proteins identified by quadrupole-time-of-flight mass spectrometry. Subsequent SDS-PAGE separation and analysis of the prolamin fraction of the transgenic lines revealed a reduction in the amounts of C-hordeins and increases in the content of other hordein family members. Analysis of the AA composition of the transgenic lines showed that the level of essential amino acids increased with a concomitant reduction in proline and glutamine. Both the barley C-hordein and wheat ω-gliadin genes proved successful for RNAi-gene mediated suppression of barley C-hordein level. All transgenic lines that exhibited a reduction for C-hordein showed off-target effects: the lines exhibited increased level of B/γ-hordein while D-hordein level was reduced. Furthermore, the multicopy insertions correlated negatively with silencing. PMID:26507269

  4. Flexibility of alpha-helices: results of a statistical analysis of database protein structures.

    PubMed

    Emberly, Eldon G; Mukhopadhyay, Ranjan; Wingreen, Ned S; Tang, Chao

    2003-03-14

    Alpha-helices stand out as common and relatively invariant secondary structural elements of proteins. However, alpha-helices are not rigid bodies and their deformations can be significant in protein function (e.g. coiled coils). To quantify the flexibility of alpha-helices we have performed a structural principal-component analysis of helices of different lengths from a representative set of protein folds in the Protein Data Bank. We find three dominant modes of flexibility: two degenerate bend modes and one twist mode. The data are consistent with independent Gaussian distributions for each mode. The mode eigenvalues, which measure flexibility, follow simple scaling forms as a function of helix length. The dominant bend and twist modes and their harmonics are reproduced by a simple spring model, which incorporates hydrogen-bonding and excluded volume. As an application, we examine the amount of bend and twist in helices making up all coiled-coil proteins in SCOP. Incorporation of alpha-helix flexibility into structure refinement and design is discussed. PMID:12614621

  5. Arabidopsis P-protein filament formation requires both AtSEOR1 and AtSEOR2.

    PubMed

    Anstead, James A; Froelich, Daniel R; Knoblauch, Michael; Thompson, Gary A

    2012-06-01

    The structure-function relationship of proteinaceous filaments in sieve elements has long been a source of investigation in order to understand their role in the biology of the phloem. Two phloem filament proteins AtSEOR1 (At3g01680.1) and AtSEOR2 (At3g01670.1) in Arabidopsis have been identified that are required for filament formation. Immunolocalization experiments using a phloem filament-specific monoclonal antibody in the respective T-DNA insertion mutants provided an initial indication that both proteins are necessary to form phloem filaments. To investigate the relationship between these two proteins further, green fluorescent protein (GFP)-AtSEO fusion proteins were expressed in Columbia wild-type and T-DNA insertion mutants. Analysis of these mutants by confocal microscopy confirmed that phloem filaments could only be detected in the presence of both proteins, indicating that despite significant sequence homology the proteins are not functionally redundant. Individual phloem filament protein subunits of AtSEOR1 and AtSEOR2 were capable of forming homodimers, but not heterodimers in a yeast two-hybrid system. The absence of phloem filaments in phloem sieve elements did not result in gross alterations of plant phenotype or affect basal resistance to green peach aphid (Myzus persicae). PMID:22470058

  6. Presynaptic Deletion of GIT Proteins Results in Increased Synaptic Strength at a Mammalian Central Synapse.

    PubMed

    Montesinos, Mónica S; Dong, Wei; Goff, Kevin; Das, Brati; Guerrero-Given, Debbie; Schmalzigaug, Robert; Premont, Richard T; Satterfield, Rachel; Kamasawa, Naomi; Young, Samuel M

    2015-12-01

    A cytomatrix of proteins at the presynaptic active zone (CAZ) controls the strength and speed of neurotransmitter release at synapses in response to action potentials. However, the functional role of many CAZ proteins and their respective isoforms remains unresolved. Here, we demonstrate that presynaptic deletion of the two G protein-coupled receptor kinase-interacting proteins (GITs), GIT1 and GIT2, at the mouse calyx of Held leads to a large increase in AP-evoked release with no change in the readily releasable pool size. Selective presynaptic GIT1 ablation identified a GIT1-specific role in regulating release probability that was largely responsible for increased synaptic strength. Increased synaptic strength was not due to changes in voltage-gated calcium channel currents or activation kinetics. Quantitative electron microscopy revealed unaltered ultrastructural parameters. Thus, our data uncover distinct roles for GIT1 and GIT2 in regulating neurotransmitter release strength, with GIT1 as a specific regulator of presynaptic release probability. PMID:26637799

  7. H295R expression of melanocortin 2 receptor accessory protein results in ACTH responsiveness.

    PubMed

    Nanba, Kazutaka; Chen, Andrew X; Turcu, Adina F; Rainey, William E

    2016-02-01

    The H295R adrenocortical cell line is widely used for molecular analysis of adrenal functions but is known to have only modest ACTH responsiveness. The lack of ACTH response was linked to a low expression of its receptor, melanocortin 2 receptor (MC2R). We hypothesized that increasing the MC2R accessory protein (MRAP), which is required to traffic MC2R from the endoplasmic reticulum to the cell surface, would increase ACTH responsiveness. Lentiviral particles containing human MRAP-open reading frame were generated and transduced in H295R cells. Using antibiotic resistance, 18 clones were isolated for characterization. The most ACTH-responsive steroidogenic clone, H295RA, was used for further experiments. Successful induction of MRAP and increased expression of MC2R in H295RA cells was confirmed by quantitative real-time RT-PCR and protein analysis. Treatment with ACTH significantly increased aldosterone, cortisol, and dehydroepiandrosterone production in H295RA cells. ACTH also significantly increased transcript levels for all of the steroidogenic enzymes required to produce aldosterone, cortisol, and dehydroepiandrosterone, as well as MC2R mRNA. Using liquid chromatography/tandem mass spectrometry, we further revealed that the main unconjugated steroids produced in H295RA cells were 11-deoxycortisol, cortisol, and androstenedione. Treatment of H295RA cells with ACTH also acutely increased cAMP production and cellular protein levels for total and phosphorylated steroidogenic acute regulatory protein. In summary, through genetic manipulation, we have developed an ACTH-responsive human adrenocortical cell line. The cell line will provide a powerful in vitro tool for molecular analysis of physiologic and pathologic conditions involving the hypothalamic-pituitary-adrenal axis. PMID:26576642

  8. Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein-protein interactions.

    PubMed

    Liu, Fushan; Ahmed, Zaheer; Lee, Elizabeth A; Donner, Elizabeth; Liu, Qiang; Ahmed, Regina; Morell, Matthew K; Emes, Michael J; Tetlow, Ian J

    2012-02-01

    Amylose extender (ae(-)) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae(-) maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein-protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae(-) mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272-Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16-20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-(32)P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the granules is a result of physical association with other enzymes of starch synthesis. In addition, an Mn(2+)-based affinity ligand, specific for phosphoproteins, was used to show that the granule-bound forms of SBEIIb in the wild-type and ae1.2 were phosphorylated, as was the granule-bound form of SBEI found in ae1.2 starch. The data strongly support the hypothesis that the complement of heteromeric complexes of proteins involved in amylopectin synthesis contributes to the fine structure and architecture of the starch granule. PMID:22121198

  9. Mutations in the DI-DII Linker of Human Parainfluenza Virus Type 3 Fusion Protein Result in Diminished Fusion Activity

    PubMed Central

    Xie, Wenyan; Wen, Hongling; Chu, Fulu; Yan, Shaofeng; Lin, Bin; Xie, Wenli; Liu, Ying; Ren, Guijie; Zhao, Li; Song, Yanyan; Sun, Chengxi; Wang, Zhiyu

    2015-01-01

    Human parainfluenza virus type 3 (HPIV3) can cause severe respiratory tract diseases in infants and young children, but no licensed vaccines or antiviral agents are currently available for treatment. Fusing the viral and target cell membranes is a prerequisite for its entry into host cells and is directly mediated by the fusion (F) protein. Although several domains of F are known to have important effects on regulating the membrane fusion activity, the roles of the DI-DII linker (residues 369–374) of the HPIV3 F protein in the fusogenicity still remains ill-defined. To facilitate our understanding of the role of this domain might play in F-induced cell-cell fusion, nine single mutations were engineered into this domain by site-directed mutagenesis. A vaccinia virus-T7 RNA polymerase transient expression system was employed to express the wild-type or mutated F proteins. These mutants were analyzed for membrane fusion activity, cell surface expression, and interaction between F and HN protein. Each of the mutated F proteins in this domain has a cell surface expression level similar to that of wild-type F. All of them resulted in a significant reduction in fusogenic activity in all steps of membrane fusion. Furthermore, all these fusion-deficient mutants reduced the amount of the HN-F complexes at the cell surface. Together, the results of our work suggest that this region has an important effect on the fusogenic activity of F. PMID:26305905

  10. Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences

    PubMed Central

    Wu, Bin; Miskolci, Veronika; Sato, Hanae; Tutucci, Evelina; Kenworthy, Charles A.; Donnelly, Sara K.; Yoon, Young J.; Cox, Dianne

    2015-01-01

    Repetitive nucleotide or amino acid sequences are often engineered into probes and biosensors to achieve functional readouts and robust signal amplification. However, these repeated sequences are notoriously prone to aberrant deletion and degradation, impacting the ability to correctly detect and interpret biological functions. Here, we introduce a facile and generalizable approach to solve this often unappreciated problem by modifying the nucleotide sequences of the target mRNA to make them nonrepetitive but still functional (synonymous). We first demonstrated the procedure by designing a cassette of synonymous MS2 RNA motifs and tandem coat proteins for RNA imaging and showed a dramatic improvement in signal and reproducibility in single-RNA detection in live cells. The same approach was extended to enhancing the stability of engineered fluorescent biosensors containing a fluorescent resonance energy transfer (FRET) pair of fluorescent proteins on which a great majority of systems thus far in the field are based. Using the synonymous modification to FRET biosensors, we achieved correct expression of full-length sensors, eliminating the aberrant truncation products that often were assumed to be due to nonspecific proteolytic cleavages. Importantly, the biological interpretations of the sensor are significantly different when a correct, full-length biosensor is expressed. Thus, we show here a useful and generally applicable method to maintain the integrity of expressed genes, critical for the correct interpretation of probe readouts. PMID:25877922

  11. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver

    PubMed Central

    Kong, Xiang Yi; Kase, Eili Tranheim; Herskedal, Anette; Schjalm, Camilla; Damme, Markus; Nesset, Cecilie Kasi; Thoresen, G. Hege; Rustan, Arild C.; Eskild, Winnie

    2015-01-01

    Ablation of glycosylated lysosomal membrane protein (GLMP, formerly known as NCU-G1) has been shown to cause chronic liver injury which progresses into liver fibrosis in mice. Both lysosomal dysfunction and chronic liver injury can cause metabolic dysregulation. Glmpgt/gt mice (formerly known as Ncu-g1gt/gtmice) were studied between 3 weeks and 9 months of age. Body weight gain and feed efficiency of Glmpgt/gt mice were comparable to wild type siblings, only at the age of 9 months the Glmpgt/gt siblings had significantly reduced body weight. Reduced size of epididymal fat pads was accompanied by hepatosplenomegaly in Glmpgt/gt mice. Blood analysis revealed reduced levels of blood glucose, circulating triacylglycerol and non-esterified fatty acids in Glmpgt/gt mice. Increased flux of glucose, increased de novo lipogenesis and lipid accumulation were detected in Glmpgt/gt primary hepatocytes, as well as elevated triacylglycerol levels in Glmpgt/gt liver homogenates, compared to hepatocytes and liver from wild type mice. Gene expression analysis showed an increased expression of genes involved in fatty acid uptake and lipogenesis in Glmpgt/gt liver compared to wild type. Our findings are in agreement with the metabolic alterations observed in other mouse models lacking lysosomal proteins, and with alterations characteristic for advanced chronic liver injury. PMID:26047317

  12. Overexpression of Drosophila juvenile hormone esterase binding protein results in anti-JH effects and reduced pheromone abundance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The titer of juvenile hormone (JH), which has wide ranging physiological effects in insects, is regulated in part by JH esterase (JHE). We show that overexpression in Drosophila melanogaster of the JHE binding protein, DmP29 results in a series of apparent anti-JH effects. We hypothesize that DmP29 ...

  13. Hydrothermal synthesis, structures and optical properties of A2Zn3(SeO3)4·XH2O (A=Li, Na, K; X=2 or 0)

    NASA Astrophysics Data System (ADS)

    Liu, Yunsheng; Mei, Dajiang; Xu, Jingli; Wu, Yuandong

    2015-12-01

    New alkali metal zinc selenites, A2Zn3(SeO3)4·XH2O (A=Li, Na, K; X=2 or 0) were prepared through hydrothermal reactions. Li2Zn3(SeO3)4·2H2O (1) crystallizes in the monoclinic space group P21/c with lattice parameters a=8.123(4), b=9.139(4), c=7.938(3) Å, β=112.838(9)°. Na2Zn3(SeO3)4·2H2O (2) crystallizes in the monoclinic space group C2/c with lattice parameters a=15.7940(18), b=6.5744(8), c=14.6787(17) Å, β=107.396(3)°. K2Zn3(SeO3)4 (3) crystallizes in the monoclinic space group C2/c with lattice parameters a=11.3584(12), b=8.6091(9), c=13.6816(14) Å, β=93.456(2)°. The anionic structures are composed of [Zn3O12]18- sheets, chains, and "isolated" units in compound 1, 2, 3, respectively, and trigonal pyramids SeO32-. The compounds were characterized by the solid state UV-vis-NIR diffuse reflectance spectroscopy, infrared spectra and thermogravimetric analysis.

  14. Biochemical and Biophysical Characterization of the Selenium-binding and Reducing Site in Arabidopsis thaliana Homologue to Mammals Selenium-binding Protein 1*

    PubMed Central

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-01-01

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO32−) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys21 and Cys22 as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO32− to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. PMID:25274629

  15. Multidisciplinary treatment of obesity with a protein-sparing modified fast: results in 668 outpatients.

    PubMed Central

    Palgi, A; Read, J L; Greenberg, I; Hoefer, M A; Bistrian, B R; Blackburn, G L

    1985-01-01

    Six hundred sixty-eight obese outpatients, 71 per cent (+/- 34) in excess of ideal weight, were enrolled in a multidisciplinary weight control program. The major components of the program included nutrition, education, behavior modification, and exercise. Rapid weight loss was accomplished using a very low calorie (less than 800 kcal) ketogenic diet. Patients adhered to the protein sparing modified fast (PSMF) for 17 +/- 12 weeks and averaged 9 +/- 17 weeks in a refeeding/maintenance program. Mean weight loss was 47 +/- 29 lb (21 +/- 13 kg) at the point of minimum weight and 41 +/- 29 lb (19 +/- 13 kg) at the end of the maintenance period. Systolic and diastolic blood pressure and serum triglycerides fell significantly in men and women. Success in weight loss was greatest in the heaviest patients, those who adhered the longest to the PSMF, and those who stayed the longest in the maintenance program. PMID:4037162

  16. Synthesis, crystal structure and characterization of Na3H(SO4)1.78(SeO4)0.22

    NASA Astrophysics Data System (ADS)

    Ben Hassen, C.; Boujelbene, M.; Mhiri, T.

    2013-05-01

    Synthesis, crystal structure, Raman, IR and TG/DTA characterization are given for Trisodium hydrogen bisulfate selenite Na3H(SO4)1.78(SeO4)0.22. This compound crystallizes in the monoclinic system with space group P21/c and cell parameters: a = 8.6787 (4) Å, b = 9.6631 (6) Å, c = 9.2070 (5) Å, ß = 108.825 (4)°, Z = 4 and V = 730.83 (7) Å3. The refinement of 2492 observed reflections (I > 2σ(I)) leads to R1 = 0.045 and wR2 = 0.125. The structure is characterized by S/SeO4 tetrahedra which are linked into isolated pairs by hydrogen bonds which form dimers of composition [H(SO)2]. The existence of O-H and (S/Se)-O bonds in the structure at room temperature has been confirmed by IR and Raman spectroscopy in the frequency ranges 50-1300 and 500-4000 cm-1, respectively. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements have been carried out on Na3H(SO4)1.78(SeO4)0.22 crystal in the temperature range between 50 and 600 °C. Water evolution and major thermal decomposition take place with onset temperatures of approximately 282 °C and 395 °C, respectively. A Raman study of the decomposition of Na3H(SO4)1.78(SeO4)0.22 as a function of temperature supports a reaction sequence and possible intermediates during the process.

  17. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  18. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  19. An extensively hydrolysed rice protein-based formula in the management of infants with cow's milk protein allergy: preliminary results after 1 month

    PubMed Central

    Vandenplas, Yvan; De Greef, Elisabeth; Hauser, Bruno

    2014-01-01

    Background Guidelines recommend extensively hydrolysed cow's milk protein formulas (eHF) in the treatment of infants diagnosed with cow's milk protein allergy (CMPA). Extensively hydrolysed rice protein infant formulas (eRHFs) have recently become available, and could offer a valid alternative. Methods A prospective trial was performed to evaluate the clinical tolerance of a new eRHF in infants with a confirmed CMPA. Patients were followed for 1 month. Clinical tolerance of the eRHF was evaluated with a symptom-based score (SBS) and growth (weight and length) was monitored. Results Thirty-nine infants (mean age 3.4 months, range 0.5–6 months) diagnosed with CMPA were enrolled. All infants tolerated the eRHF and experienced a normal growth. Conclusions In accordance with current guidelines, this eRHF is tolerated by more than 90% of children with proven CMPA with a 95% CI, and is an adequate alternative to cow's milk-based eHF. Trial registration number ClinicalTrials.gov NCT01998074. PMID:24914098

  20. Fusion of barnase to antiferritin antibody F11 VH domain results in a partially folded functionally active protein.

    PubMed

    Shubenok, D V; Tsybovsky, Y I; Stremovskiy, O A; Deyev, S M; Martsev, S P

    2009-06-01

    A chimeric protein, VH-barnase, was obtained by fusing the VH domain of anti-human ferritin monoclonal antibody F11 to barnase, a bacterial RNase from Bacillus amyloliquefaciens. After refolding from inclusion bodies, the fusion protein formed insoluble aggregates. Off-pathway aggregation was significantly reduced by adding either purified GroEL/GroES chaperones or arginine, with 10-12-fold increase in the yield of the soluble protein. The final protein conformation was identical by calorimetric criteria and CD and fluorescence spectroscopy to that obtained without additives, thus suggesting that VH-barnase structure does not depend on folding conditions. Folding of VH-barnase resulted in a single calorimetrically revealed folding unit, the so-called "calorimetric domain", with conformation consistent with a molten globule that possessed well-defined secondary structure and compact tertiary conformation with partial exposure of hydrophobic patches and low thermodynamic stability. The unique feature of VH-barnase is that, despite the partially unfolded conformation and coupling into a single "calorimetric domain", this immunofusion retained both the antigen-binding and RNase activities that belong to the two heterologous domains. PMID:19645673

  1. Na2Cu7(SeO3)4O2Cl4: a selenite chloride compound with Cu7 units showing spin-frustration and a magnetization plateau.

    PubMed

    Tang, Yingying; Guo, Wenbin; Zhang, Suyun; Xiang, Hongping; Cui, Meiyan; He, Zhangzhen

    2016-05-17

    A selenite chloride, Na2Cu7(SeO3)4O2Cl4 (), was prepared via a conventional hydrothermal method. Na2Cu7(SeO3)4O2Cl4 crystallizes in the triclinic space group P1[combining macron] and features an isolated reverse triangular dipyramid Cu7, which is assembled with two corner-shared Cu4 tetrahedral units. Magnetic measurements suggest that shows the spin-frustration effect with antiferromagnetic ordering at ∼5 K, while an unusual magnetization plateau is observed at an applied field of >4 T. PMID:27159358

  2. Protein

    MedlinePlus

    ... Alike Protein is built from building blocks called amino acids. Our bodies make amino acids in two different ways: Either from scratch, or by modifying others. A few amino acids (known as the essential amino acids) must come ...

  3. Dihydrotestosterone treatment rescues the decline in protein synthesis as a result of sarcopenia in isolated mouse skeletal muscle fibres

    PubMed Central

    Wendowski, Oskar; Redshaw, Zoe

    2016-01-01

    Abstract Background Sarcopenia, the progressive decline in skeletal muscle mass and function with age, is a debilitating condition. It leads to inactivity, falls, and loss of independence. Despite this, its cause(s) and the underlying mechanism(s) are still poorly understood. Methods In this study, small skeletal muscle fibre bundles isolated from the extensor digitorum longus (a fast‐twitch muscle) and the soleus (a slow‐twitch muscle) of adult mice of different ages (range 100–900 days old) were used to investigate the effects of ageing and dihydrotestosterone (DHT) treatment on protein synthesis as well as the expression and function of two amino acid transporters; the sodium‐coupled neutral amino acid transporter (SNAT) 2, and the sodium‐independent L‐type amino‐acid transporter (LAT) 2. Results At all ages investigated, protein synthesis was always higher in the slow‐twitch than in the fast‐twitch muscle fibres and decreased with age in both fibre types. However, the decline was greater in the fast‐twitch than in the slow‐twitch fibres and was accompanied by a reduction in the expression of SNAT2 and LAT2 at the protein level. Again, the decrease in the expression of the amino acid transporters was greater in the fast‐twitch than in the slow‐twitch fibres. In contrast, ageing had no effect on SNAT2 and LAT2 expressions at the mRNA level. Treating the muscle fibre bundles with physiological concentrations (~2 nM) of DHT for 1 h completely reversed the effects of ageing on protein synthesis and the expression of SNAT2 and LAT2 protein in both fibre types. Conclusion From the observations that ageing is accompanied by a reduction in protein synthesis and transporter expression and that these effects are reversed by DHT treatment, we conclude that sarcopenia arises from an age‐dependent reduction in protein synthesis caused, in part, by the lack of or by the low bioavailability of the male sex steroid, DHT.

  4. EXPRESSION OF AN INSECT (DENDROIDES CANADENSIS) ANTIFREEZE PROTEIN IN ARABIDOPSIS THALIANA RESULTS IN A DECREASE IN PLANT FREEZING TEMPERATURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic Arabidopsis thaliana plants which express genes encoding insect, Dendroides canadensis, antifreeze proteins (AFP) were produced by Agrobacterium-mediated transformation. The antifreeze protein genes, both with and without the signal peptide sequence (for protein secretion), were expresse...

  5. In vivo introduction of unpreferred synonymous codons into the Drosophila Adh gene results in reduced levels of ADH protein.

    PubMed Central

    Carlini, David B; Stephan, Wolfgang

    2003-01-01

    The evolution of codon bias, the unequal usage of synonymous codons, is thought to be due to natural selection for the use of preferred codons that match the most abundant species of isoaccepting tRNA, resulting in increased translational efficiency and accuracy. We examined this hypothesis by introducing 1, 6, and 10 unpreferred codons into the Drosophila alcohol dehydrogenase gene (Adh). We observed a significant decrease in ADH protein production with number of unpreferred codons, confirming the importance of natural selection as a mechanism leading to codon bias. We then used this empirical relationship to estimate the selection coefficient (s) against unpreferred synonymous mutations and found the value (s >or= 10(-5)) to be approximately one order of magnitude greater than previous estimates from population genetics theory. The observed differences in protein production appear to be too large to be consistent with current estimates of the strength of selection on synonymous sites in D. melanogaster. PMID:12586711

  6. Do endocrine disrupting chemicals threaten Mediterranean swordfish? Preliminary results of vitellogenin and Zona radiata proteins in Xiphias gladius.

    PubMed

    Fossi, M C; Casini, S; Ancora, S; Moscatelli, A; Ausili, A; Notarbartolo-di-Sciara, G

    2001-12-01

    Endocrine Disrupting Chemicals (EDCs) have the potential to alter hormone pathways that regulate reproductive processes in wildlife and fishes. In this research the hypothesis that Mediterranean top predator species (such as large pelagic fish) are potentially at risk due to EDCs is investigated. These marine organisms tend to accumulate high concentrations of EDCs such as polyhalogenated aromatic hydrocarbons (PHAHs). The potential effects of EDCs on a fish species of commercial interest, the top predator Xiphias gladius (swordfish), were investigated using vitellogenin (Vtg) and Zona radiata proteins (Zrp) as diagnostic and prognostic biomarkers. Dramatic induction of typically female proteins (Vtg and Zrp) was detected by ELISA and Western Blot in adult males of the species. These results are the first warning of the potential risk for reproductive function of Mediterranean top predators, and suggest the need for continuous monitoring of this fragile marine environment. PMID:11763150

  7. Single Amino Acid Deletion in Kindlin-1 Results in Partial Protein Degradation Which Can Be Rescued by Chaperone Treatment.

    PubMed

    Maier, Kristin; He, Yinghong; Esser, Philipp R; Thriene, Kerstin; Sarca, Daniela; Kohlhase, Jürgen; Dengjel, Jörn; Martin, Ludovic; Has, Cristina

    2016-05-01

    Kindler syndrome, a distinct type of epidermolysis bullosa, is a rare disorder caused by mutations in FERMT1, encoding kindlin-1. Most FERMT1 mutations lead to premature termination codons and absence of kindlin-1. Here we investigated the molecular and cellular consequences of a naturally occurring FERMT1 mutation, c.299_301del resulting in a single amino acid deletion, p.R100del. The mutation led to a 50% reduction of FERMT1 mRNA and 90% reduction of kindlin-1 protein in keratinocytes derived from the patient, as compared with control cells. The misfolded p.R100del kindlin-1 mutant was lysosomally degraded and launched a homeostatic unfolded protein response. Sodium-phenylbutyrate significantly increased kindlin-1 mRNA and protein levels and the area of mutant cells, acting as a chemical chaperone and probably also as a histone deacetylase inhibitor. In a recombinant system, low levels of wild-type or p.R100del mutant kindlin-1 were sufficient to improve the cellular phenotype in respect of spreading and proliferation as compared with kindlin-1 negative keratinocytes. The study of this hypomorphic mutation provides evidence that low amounts of kindlin-1 are sufficient to improve the epidermal architecture and Kindler syndrome cellular phenotype and proposes a personalized chaperone therapy for the patient. PMID:26827766

  8. Disrupted Proteolipid Protein Trafficking Results in Oligodendrocyte Apoptosis in an Animal Model of Pelizaeus-Merzbacher Disease

    PubMed Central

    Gow, Alexander; Southwood, Cherie M.; Lazzarini, Robert A.

    1998-01-01

    Abstract. Pelizaeus-Merzbacher disease (PMD) is a dysmyelinating disease resulting from mutations, deletions, or duplications of the proteolipid protein (PLP) gene. Distinguishing features of PMD include pleiotropy and a range of disease severities among patients. Previously, we demonstrated that, when expressed in transfected fibroblasts, many naturally occurring mutant PLP alleles encode proteins that accumulate in the endoplasmic reticulum and are not transported to the cell surface. In the present communication, we show that oligodendrocytes in an animal model of PMD, the msd mouse, accumulate Plp gene products in the perinuclear region and are unable to transport them to the cell surface. Another important aspect of disease in msd mice is oligodendrocyte cell death, which is increased by two- to threefold. We demonstrate in msd mice that this death occurs by apoptosis and show that at the time oligodendrocytes die, they have differentiated, extended processes that frequently contact axons and are expressing myelin structural proteins. Finally, we define a hypothesis that accounts for pathogenesis in most PMD patients and animal models of this disease and, moreover, can be used to develop potential therapeutic strategies for ameliorating the disease phenotype. PMID:9472043

  9. Enrichment of Functional Redox Reactive Proteins and Identification by Mass Spectrometry Results in Several Terminal Fe(III)-reducing Candidate Proteins in Shewanella oneidensis MR-1.

    SciTech Connect

    Elias, Dwayne A.; Yang, Feng; Mottaz, Heather M.; Beliaev, Alex S.; Lipton, Mary S.

    2007-02-01

    Identification of the proteins directly involved in microbial metal-reduction is important to understanding the biochemistry involved in heavy metal reduction/immobilization and the ultimate cleanup of DOE contaminated sites. Although previous strategies for the identification of these proteins have traditionally required laborious protein purification/characterization of metal-reducing capability, activity is often lost before the final purification step, thus creating a significant knowledge gap. In the current study, subcellular fractions of S. oneidensis MR-1 were enriched for Fe(III)-NTA reducing proteins in a single step using several orthogonal column matrices. The protein content of eluted fractions that demonstrated activity were determined by ultra high pressure liquid chromatography coupled with tandem mass spectrometry (LCMS/ MS). A comparison of the proteins identified from active fractions in all separations produced 30 proteins that may act as the terminal electron-accepting protein for Fe(III)-reduction. These include MtrA, MtrB, MtrC and OmcA as well as a number of other proteins not previously associated with Fe(III)-reduction. This is the first report of such an approach where the laborious procedures for protein purification are not required for identification of metal-reducing proteins. Such work provides the basis for a similar approach with other cultured organisms as well as analysis of sediment and groundwater samples from biostimulation efforts at contaminated sites.

  10. X-ray diffraction, Raman study and electrical properties of the new mixed compound Rb1.7K0.3(SO4)0.88(SeO4)0.12Te(OH)6

    NASA Astrophysics Data System (ADS)

    Djemel, M.; Abdelhedi, M.; Ktari, L.; Dammak, M.

    2013-09-01

    At room temperature, the new compound Rb1.7K0.3(SO4)0.88(SeO4)0.12Te(OH)6 crystallizes in the monoclinic system with space group C2. The unit cell parameters are: a = 11.4168 (4), b = 6.6321 (4), c = 13.6078 (6), β = 106.975 (3), V = 985.46 (8), Z = 4 and ρcal = 3.25 g cm-1. The title compound undergoes a superionic phase transition at T = 479 K. This transition was confirmed by an abrupt increase of conductivity. Differential scanning calorimetry of Rb1.7K0.3(SO4)0.88(SeO4)0.12Te(OH)6 material showed three anomalies at 411, 461, and 479 K, respectively. Raman and IR spectra of Rb1.7K0.3(SO4)0.88(SeO4)0.12Te(OH)6, recorded at room temperature in the frequency 50-4000 cm-1 show that the SO42-, SeO42- and TeO66- groups coexist in the crystal independently.

  11. Sr3Bi2(SeO3)6·H2O: A novel anionic layer consisting of second-order Jahn-Teller (SOJT) distortive cations

    NASA Astrophysics Data System (ADS)

    Ahn, Hyun Sun; Lee, Eun Pyo; Chang, Hong-Young; Lee, Dong Woo; Ok, Kang Min

    2015-01-01

    A new layered bismuth selenite hydrate material, Sr3Bi2(SeO3)6·H2O has been synthesized through a hydrothermal reaction using SrCO3, Bi2O3, SeO2, and water as reagents. The crystal structure of the reported material has been determined by single crystal X-ray diffraction analysis. The anionic layered framework of Sr3Bi2(SeO3)6·H2O consists of polyhedra of second-order Jahn-Teller (SOJT) distortive cations, Bi3+ and Se4+. Attributable to the variable and asymmetric coordination geometry of the constituent cations, a rich structural chemistry including uni-dimensional bands and linkers is observed in the layer. The material is thermally stable up to about 390 °C and starts decomposing due to the sublimation of SeO2 above the temperature. The UV-vis diffuse reflectance spectrum suggests a band gap of 3.3 eV. Elemental analysis, infrared spectrum, local dipole moment calculations, and electronic structure calculations are also reported.

  12. Disruption of the Basal Body Protein POC1B Results in Autosomal-Recessive Cone-Rod Dystrophy

    PubMed Central

    Roosing, Susanne; Lamers, Ideke J.C.; de Vrieze, Erik; van den Born, L. Ingeborgh; Lambertus, Stanley; Arts, Heleen H.; Boldt, Karsten; de Baere, Elfride; Klaver, Caroline C.W.; Coppieters, Frauke; Koolen, David A.; Lugtenberg, Dorien; Neveling, Kornelia; van Reeuwijk, Jeroen; Ueffing, Marius; van Beersum, Sylvia E.C.; Zonneveld-Vrieling, Marijke N.; Peters, Theo A.; Hoyng, Carel B.; Kremer, Hannie; Hetterschijt, Lisette; Letteboer, Stef J.F.; van Wijk, Erwin; Roepman, Ronald; den Hollander, Anneke I.; Cremers, Frans P.M.

    2014-01-01

    Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors. PMID:25018096

  13. Targeted overexpression of a golli–myelin basic protein isoform to oligodendrocytes results in aberrant oligodendrocyte maturation and myelination

    PubMed Central

    Jacobs, Erin C; Reyes, Samuel D; Campagnoni, Celia W; Irene Givogri, M; Kampf, Kathy; Handley, Vance; Spreuer, Vilma; Fisher, Robin; Macklin, Wendy; Campagnoni, Anthony T

    2009-01-01

    Recently, several in vitro studies have shown that the golli–myelin basic proteins regulate Ca2+ homoeostasis in OPCs (oligodendrocyte precursor cells) and immature OLs (oligodendrocytes), and that a number of the functions of these cells are affected by cellular levels of the golli proteins. To determine the influence of golli in vivo on OL development and myelination, a transgenic mouse was generated in which the golli isoform J37 was overexpressed specifically within OLs and OPCs. The mouse, called JOE (J37-overexpressing), is severely hypomyelinated between birth and postnatal day 50. During this time, it exhibits severe intention tremors that gradually abate at later ages. After postnatal day 50, ultrastructural studies and Northern and Western blot analyses indicate that myelin accumulates in the brain, but never reaches normal levels. Several factors appear to underlie the extensive hypomyelination. In vitro and in vivo experiments indicate that golli overexpression causes a significant delay in OL maturation, with accumulation of significantly greater numbers of pre-myelinating OLs that fail to myelinate axons during the normal myelinating period. Immunohistochemical studies with cell death and myelin markers indicate that JOE OLs undergo a heightened and extended period of cell death and are unable to effectively myelinate until 2 months after birth. The results indicate that increased levels of golli in OPC/OLs delays myelination, causing significant cell death of OLs particularly in white matter tracts. The results provide in vivo evidence for a significant role of the golli proteins in the regulation of maturation of OLs and normal myelination. PMID:19715557

  14. Disruption of the basal body protein POC1B results in autosomal-recessive cone-rod dystrophy.

    PubMed

    Roosing, Susanne; Lamers, Ideke J C; de Vrieze, Erik; van den Born, L Ingeborgh; Lambertus, Stanley; Arts, Heleen H; Peters, Theo A; Hoyng, Carel B; Kremer, Hannie; Hetterschijt, Lisette; Letteboer, Stef J F; van Wijk, Erwin; Roepman, Ronald; den Hollander, Anneke I; Cremers, Frans P M

    2014-08-01

    Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors. PMID:25018096

  15. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8.

    PubMed

    Toosi, Siavash; Orlow, Seth J; Manga, Prashiela

    2012-11-01

    Vitiligo is characterized by depigmented skin patches caused by loss of epidermal melanocytes. Oxidative stress may have a role in vitiligo onset, while autoimmunity contributes to disease progression. In this study, we sought to identify mechanisms that link disease triggers and spreading of lesions. A hallmark of melanocytes at the periphery of vitiligo lesions is dilation of the endoplasmic reticulum (ER). We hypothesized that oxidative stress results in redox disruptions that extend to the ER, causing accumulation of misfolded peptides, which activates the unfolded protein response (UPR). We used 4-tertiary butyl phenol and monobenzyl ether of hydroquinone, known triggers of vitiligo. We show that expression of key UPR components, including the transcription factor X-box-binding protein 1 (XBP1), is increased following exposure of melanocytes to phenols. XBP1 activation increases production of immune mediators IL6 and IL8. Co-treatment with XBP1 inhibitors reduced IL6 and IL8 production induced by phenols, while overexpression of XBP1 alone increased their expression. Thus, melanocytes themselves produce cytokines associated with activation of an immune response following exposure to chemical triggers of vitiligo. These results expand our understanding of the mechanisms underlying melanocyte loss in vitiligo and pathways linking environmental stressors and autoimmunity. PMID:22696056

  16. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8.

    TOXLINE Toxicology Bibliographic Information

    Toosi S; Orlow SJ; Manga P

    2012-11-01

    Vitiligo is characterized by depigmented skin patches caused by loss of epidermal melanocytes. Oxidative stress may have a role in vitiligo onset, while autoimmunity contributes to disease progression. In this study, we sought to identify mechanisms that link disease triggers and spreading of lesions. A hallmark of melanocytes at the periphery of vitiligo lesions is dilation of the endoplasmic reticulum (ER). We hypothesized that oxidative stress results in redox disruptions that extend to the ER, causing accumulation of misfolded peptides, which activates the unfolded protein response (UPR). We used 4-tertiary butyl phenol and monobenzyl ether of hydroquinone, known triggers of vitiligo. We show that expression of key UPR components, including the transcription factor X-box-binding protein 1 (XBP1), is increased following exposure of melanocytes to phenols. XBP1 activation increases production of immune mediators IL6 and IL8. Co-treatment with XBP1 inhibitors reduced IL6 and IL8 production induced by phenols, while overexpression of XBP1 alone increased their expression. Thus, melanocytes themselves produce cytokines associated with activation of an immune response following exposure to chemical triggers of vitiligo. These results expand our understanding of the mechanisms underlying melanocyte loss in vitiligo and pathways linking environmental stressors and autoimmunity.

  17. Vitiligo inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8

    PubMed Central

    Toosi, Siavash; Orlow, Seth J.; Manga, Prashiela

    2012-01-01

    Vitiligo is characterized by depigmented skin patches due to loss of epidermal melanocytes. Oxidative stress may play a role in vitiligo onset, while autoimmunity contributes to disease progression. In this study we sought to identify mechanisms that link disease triggers and spreading of lesions. A hallmark of melanocytes at the periphery of vitiligo lesions is dilation of the endoplasmic reticulum (ER). We hypothesized that oxidative stress results in redox disruptions that extend to the ER, causing accumulation of misfolded peptides, which activates the unfolded protein response (UPR). We used 4-tertiary butyl phenol (4-TBP) and monobenzyl ether of hydroquinone (MBEH), known triggers of vitiligo. We show that expression of key UPR components, including the transcription factor X-box binding protein 1 (XBP1), are increased following exposure of melanocytes to phenols. XBP1 activation increases production of immune mediators interleukin-6 (IL6) and IL8. Co-treatment with XBP1 inhibitors reduced IL6 and IL8 production induced by phenols, while over-expression of XBP1 alone increased their expression. Thus, melanocytes themselves produce cytokines associated with activation of an immune response following exposure to chemical triggers of vitiligo. These results expand our understanding of the mechanisms underlying melanocyte loss in vitiligo and pathways linking environmental stressors and autoimmunity. PMID:22696056

  18. The [URE3] yeast prion results from protein aggregates that differ from amyloid filaments formed in vitro.

    PubMed

    Ripaud, Leslie; Maillet, Laurent; Immel-Torterotot, Françoise; Durand, Fabien; Cullin, Christophe

    2004-12-01

    The [URE3] yeast prion is a self-propagating inactive form of the Ure2 protein. Ure2p is composed of two domains, residues 1-93, the prion-forming domain, and the remaining C-terminal part of the protein, which forms the functional domain involved in nitrogen catabolite repression. In vitro, Ure2p forms amyloid filaments that have been proposed to be the aggregated prion form found in vivo. Here we showed that the biochemical characteristics of these two species differ. Protease digestions of Ure2p filaments and soluble Ure2p are comparable when analyzed by Coomassie staining as by Western blot. However, this finding does not explain the pattern specifically observed in [URE3] strains. Antibodies raised against the C-terminal part of Ure2p revealed the existence of proteolysis sites efficiently cleaved when [URE3], but not wild-type crude extracts, were submitted to limited proteolysis. The same antibodies lead to an equivalent digestion pattern when recombinant Ure2p (either soluble or amyloid) was analyzed in the same way. These results strongly suggest that aggregated Ure2p in [URE3] yeast cells is different from the amyloid filaments generated in vitro. PMID:15456789

  19. Molecular structure, vibrational spectra, MEP, HOMO-LUMO and NBO analysis of Hf(SeO3)(SeO4)(H2O)4

    NASA Astrophysics Data System (ADS)

    Yankova, Rumyana; Genieva, Svetlana; Halachev, Nenko; Dimitrova, Ginka

    2016-02-01

    Hf(SeO3)(SeO4)(H2O)4 was obtained with the hydrothermal synthesis. The geometry optimization of this molecule was done by Density Functional Theory (DFT/B3LYP) method with 6-31G(d) basis set and LANL2DZ for Hf. The experimental infrared spectrum was compared with calculated and complete vibrational assignment was provided. The bond orders and the electronic properties of the molecule were calculated. The natural bond orbital analysis (NBO) was performed in order to study the intramolecular bonding interactions among bonds and delocalization of unpaired electrons. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with frontier orbital gap were presented. The electrostatic potential was calculated in order to investigate the reaction properties of the molecule. The thermodynamic properties of the studied compound at different temperatures were calculated.

  20. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of SO2 on selenium capture and kinetics study.

    PubMed

    Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Wang, Shujuan; Xu, Xuchang

    2006-12-15

    Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of SO2 and trace selenium dioxide (SeO2) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the effect of SO2 presence on selenium capture. Experiments performed on a thermogravimetric analyzer (TGA) can reach the following conclusions. When the CaO conversion is relatively low and the reaction rate is controlled by chemical kinetics, the SO2 presence does not affect the selenium capture. When the CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO2 presence and the product layer diffusion resistance jointly reduce the selenium capture. On the basis of the kinetics study, a method to estimate the trace selenium removal efficiency using kinetic parameters and the sulfur removal efficiency is developed. PMID:17256549

  1. Life-cycle and genetic characterization of Astiotrema odhneri Bhalerao, 1936 sensu Cho & Seo 1977 from the Primorsky Region (Russian Far East).

    PubMed

    Besprozvannykh, V V; Atopkin, D M; Ermolenko, A V; Kharitonova, A V; Khamatova, A Yu

    2015-12-01

    Adult Astiotrema odhneri Bhalerao, 1936 sensu Cho & Seo 1977 were found in the intestine of a freshwater turtle, Pelodiscus sinensis (Wiegmann), from the Komissarovka River Basin, Primorsky Region, Russia. It was established that the first intermediate host of this parasite is a snail, Anisus centrifugops, and that the second intermediate hosts include the snails, Helicorbis sujfunensis and A. centrifugops, tadpoles of the frog Rana dybowskii, and the fish Perccottus glenii. The development of A. odhneri includes the formation of sporocyst and xiphidiocercariae, which is typical for species belonging to Plagiorchioidea. Phylogenetic analysis based on 28S rRNA gene sequences showed that A. odhneri, together with Astiotrema monticellii, form a monophyletic clade that was closer to Opisthorchioidea than to any other taxon represented in the tree. However, phylogenetic analysis without outgroup taxon indicated a high degree of differentiation of Astiotrema from both Plagiorchioidea and Opisthorchioidea. PMID:26232633

  2. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice

    PubMed Central

    Han, Xiaohua; Wang, Yihua; Liu, Xi; Jiang, Ling; Ren, Yulong; Liu, Feng; Peng, Cheng; Li, Jingjing; Jin, Ximing; Wu, Fuqing; Wang, Jiulin; Guo, Xiuping; Zhang, Xin; Cheng, Zhijun; Wan, Jianmin

    2012-01-01

    The rice somaclonal mutant T3612 produces small grains with a floury endosperm, caused by the loose packing of starch granules. The positional cloning of the mutation revealed a deletion in a gene encoding a protein disulphide isomerase-like enzyme (PDIL1-1). In the wild type, PDIL1-1 was expressed throughout the plant, but most intensely in the developing grain. In T3612, its expression was abolished, resulting in a decrease in the activity of plastidial phosphorylase and pullulanase, and an increase in that of soluble starch synthase I and ADP-glucose pyrophosphorylase. The amylopectin in the T3612 endosperm showed an increase in chains with a degree of polymerization 813 compared with the wild type. The expression in the mutant's endosperm of certain endoplasmic reticulum stress-responsive genes was noticeably elevated. PDIL1-1 appears to play an important role in starch synthesis. Its absence is associated with endoplasmic reticulum stress in the endosperm, which is likely to underlie the formation of the floury endosperm in the T3612 mutant. PMID:21984651

  3. Knockdown of fast skeletal myosin-binding protein C in zebrafish results in a severe skeletal myopathy.

    PubMed

    Li, Mei; Andersson-Lendahl, Monika; Sejersen, Thomas; Arner, Anders

    2016-04-01

    Myosin-binding protein C (MyBPC) in the muscle sarcomere interacts with several contractile and structural proteins. Mutations in the cardiac isoform (MyBPC-3) in humans, or animal knockout, are associated with cardiomyopathy. Function of the fast skeletal isoform (MyBPC-2) in living muscles is less understood. This question was addressed using zebrafish models, combining gene expression data with functional analysis of contractility and small-angle x-ray diffraction measurements of filament structure. Fast skeletal MyBPC-2B, the major isoform, was knocked down by >50% using morpholino antisense nucleotides. These morphants exhibited a skeletal myopathy with elevated apoptosis and up-regulation of factors associated with muscle protein degradation. Morphant muscles had shorter sarcomeres with a broader length distribution, shorter actin filaments, and a wider interfilament spacing compared with controls, suggesting that fast skeletal MyBPC has a role in sarcomere assembly. Active force was reduced more than expected from the decrease in muscle size, suggesting that MyBPC-2 is required for optimal force generation at the cross-bridge level. The maximal shortening velocity was significantly increased in the MyBPC-2 morphants, but when related to the sarcomere length, the difference was smaller, reflecting that the decrease in MyBPC-2B content and the resulting myopathy were accompanied by only a minor influence on filament shortening kinetics. In the controls, equatorial patterns from small-angle x-ray scattering revealed that comparatively few cross-bridges are attached (as evaluated by the intensity ratio of the 11 and 10 equatorial reflections) during active contraction. X-ray scattering data from relaxed and contracting morphants were not significantly different from those in controls. However, the increase in the 11:10 intensity ratio in rigor was lower compared with that in controls, possibly reflecting effects of MyBPC on the cross-bridge interactions. In conclusion, lack of MyBPC-2 results in a severe skeletal myopathy with structural changes and muscle weakness. PMID:27022191

  4. The Antagonistic Effect of Selenium on Lead-Induced Inflammatory Factors and Heat Shock Proteins mRNA Expression in Chicken Livers.

    PubMed

    Wang, Hao; Li, Shu; Teng, Xiaohua

    2016-06-01

    The aim of this study was to investigate the effect of lead (Pb) poisoning on nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, the messenger RNA (mRNA) levels of inflammatory factors (nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E synthases (PTGEs), and iNOS), heat shock proteins (HSPs) (HSP27, HSP40, HSP60, HSP70, and HSP90), and the antagonistic effect of selenium (Se) on Pb in chicken livers. One hundred eighty 7-day-old male chickens were randomly divided into four groups and were fed commercial diet and drinking water, Na2SeO3-added commercial diet and drinking water, commercial diet and (CH3OO)2Pb-added drinking water, and Na2SeO3-added commercial diet and (CH3OO)2Pb-added drinking water, respectively, for 30, 60, and 90 days. Then, NO content, iNOS activity, and the mRNA levels of NF-κB, TNF-α, COX-2, PTGEs, iNOS, HSP27, HSP40, HSP60, HSP70, and HSP90 were examined in chicken livers. The results showed that Pb poisoning induced NO content, iNOS activity, and mRNA expression of inflammation factors and HSPs in chicken livers. In addition, Se alleviated Pb-induced increase of inflammation factor and HSP expression in chicken livers. PMID:26470710

  5. Perinatal Protein Malnutrition Affects Mitochondrial Function in Adult and Results in a Resistance to High Fat Diet-Induced Obesity

    PubMed Central

    Jousse, Cline; Muranishi, Yuki; Parry, Laurent; Montaurier, Christophe; Even, Patrick; Launay, Jean-Marie; Carraro, Valrie; Maurin, Anne-Catherine; Averous, Julien; Chaveroux, Cdric; Bruhat, Alain; Mallet, Jacques; Morio, Batrice; Fafournoux, Pierre

    2014-01-01

    Epidemiological findings indicate that transient environmental influences during perinatal life, especially nutrition, may have deleterious heritable health effects lasting for the entire life. Indeed, the fetal organism develops specific adaptations that permanently change its physiology/metabolism and that persist even in the absence of the stimulus that initiated them. This process is termed nutritional programming. We previously demonstrated that mothers fed a Low-Protein-Diet (LPD) during gestation and lactation give birth to F1-LPD animals presenting metabolic consequences that are different from those observed when the nutritional stress is applied during gestation only. Compared to control mice, adult F1-LPD animals have a lower body weight and exhibit a higher food intake suggesting that maternal protein under-nutrition during gestation and lactation affects the energy metabolism of F1-LPD offspring. In this study, we investigated the origin of this apparent energy wasting process in F1-LPD and demonstrated that minimal energy expenditure is increased, due to both an increased mitochondrial function in skeletal muscle and an increased mitochondrial density in White Adipose Tissue. Importantly, F1-LPD mice are protected against high-fat-diet-induced obesity. Clearly, different paradigms of exposure to malnutrition may be associated with differences in energy expenditure, food intake, weight and different susceptibilities to various symptoms associated with metabolic syndrome. Taken together these results demonstrate that intra-uterine environment is a major contributor to the future of individuals and disturbance at a critical period of development may compromise their health. Consequently, understanding the molecular mechanisms may give access to useful knowledge regarding the onset of metabolic diseases. PMID:25118945

  6. RECENT RESULTS WITH A PLANT-BASED TROUT FEED AND REVIEW OF WORK ON NOVEL PROTEIN SOURCES FOR TROUT.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to evaluate the effect of protein source and nutrient density on fish growth, feed efficiency, digestibility and plasma amino acid concentrations. A four by two factorial treatment arrangement with four protein sources (fishmeal/barley, plant concentrates, plant meals, animal ...

  7. Deletion of GSTA4-4 results in increased mitochondrial post-translational modification of proteins by reactive aldehydes following chronic ethanol consumption in mice

    PubMed Central

    Shearn, Colin T.; Fritz, Kristofer S.; Shearn, Alisabeth H.; Saba, Laura M.; Mercer, Kelly E.; Engi, Bridgette; Galligan, James J.; Zimniak, Piotr; Orlicky, David J.; Ronis, Martin J.; Petersen, Dennis R.

    2015-01-01

    Chronic alcohol consumption induces hepatic oxidative stress resulting in production of highly reactive electrophilic α/β-unsaturated aldehydes that have the potential to modify proteins. A primary mechanism of reactive aldehyde detoxification by hepatocytes is through GSTA4-driven enzymatic conjugation with GSH. Given reports that oxidative stress initiates GSTA4 translocation to the mitochondria, we hypothesized that increased hepatocellular damage in ethanol (EtOH)-fed GSTA4−/− mice is due to enhanced mitochondrial protein modification by reactive aldehydes. Chronic ingestion of EtOH increased hepatic protein carbonylation in GSTA4−/− mice as evidenced by increased 4-HNE and MDA immunostaining in the hepatic periportal region. Using mass spectrometric analysis of biotin hydrazide conjugated carbonylated proteins, a total of 829 proteins were identified in microsomal, cytosolic and mitochondrial fractions. Of these, 417 were novel to EtOH models. Focusing on mitochondrial fractions, 1.61-fold more carbonylated proteins were identified in EtOH-fed GSTA4−/− mice compared to their respective WT mice ingesting EtOH. Bioinformatic KEGG pathway analysis of carbonylated proteins from the mitochondrial fractions revealed an increased propensity for modification of proteins regulating oxidative phosphorylation, glucose, fatty acid, glutathione and amino acid metabolic processes in GSTA4−/− mice. Additional analysis revealed sites of reactive aldehyde protein modification on 26 novel peptides/proteins isolated from either SV/GSTA4−/− PF or EtOH fed mice. Among the peptides/proteins identified, ACSL, ACOX2, MTP, and THIKB contribute to regulation of fatty acid metabolism and ARG1, ARLY, and OAT, which regulate nitrogen and ammonia metabolism having direct relevance to ethanol-induced liver injury. These data define a role for GSTA4-4 in buffering hepatic oxidative stress associated with chronic alcohol consumption and that this GST isoform plays an important role in protecting against carbonylation of mitochondrial proteins. PMID:26654979

  8. Deletion of GSTA4-4 results in increased mitochondrial post-translational modification of proteins by reactive aldehydes following chronic ethanol consumption in mice.

    PubMed

    Shearn, Colin T; Fritz, Kristofer S; Shearn, Alisabeth H; Saba, Laura M; Mercer, Kelly E; Engi, Bridgette; Galligan, James J; Zimniak, Piotr; Orlicky, David J; Ronis, Martin J; Petersen, Dennis R

    2016-04-01

    Chronic alcohol consumption induces hepatic oxidative stress resulting in production of highly reactive electrophilic α/β-unsaturated aldehydes that have the potential to modify proteins. A primary mechanism of reactive aldehyde detoxification by hepatocytes is through GSTA4-driven enzymatic conjugation with GSH. Given reports that oxidative stress initiates GSTA4 translocation to the mitochondria, we hypothesized that increased hepatocellular damage in ethanol (EtOH)-fed GSTA4(-/-) mice is due to enhanced mitochondrial protein modification by reactive aldehydes. Chronic ingestion of EtOH increased hepatic protein carbonylation in GSTA4(-/-) mice as evidenced by increased 4-HNE and MDA immunostaining in the hepatic periportal region. Using mass spectrometric analysis of biotin hydrazide conjugated carbonylated proteins, a total of 829 proteins were identified in microsomal, cytosolic and mitochondrial fractions. Of these, 417 were novel to EtOH models. Focusing on mitochondrial fractions, 1.61-fold more carbonylated proteins were identified in EtOH-fed GSTA4(-)(/-) mice compared to their respective WT mice ingesting EtOH. Bioinformatic KEGG pathway analysis of carbonylated proteins from the mitochondrial fractions revealed an increased propensity for modification of proteins regulating oxidative phosphorylation, glucose, fatty acid, glutathione and amino acid metabolic processes in GSTA4(-/-) mice. Additional analysis revealed sites of reactive aldehyde protein modification on 26 novel peptides/proteins isolated from either SV/GSTA4(-/-) PF or EtOH fed mice. Among the peptides/proteins identified, ACSL, ACOX2, MTP, and THIKB contribute to regulation of fatty acid metabolism and ARG1, ARLY, and OAT, which regulate nitrogen and ammonia metabolism having direct relevance to ethanol-induced liver injury. These data define a role for GSTA4-4 in buffering hepatic oxidative stress associated with chronic alcohol consumption and that this GST isoform plays an important role in protecting against carbonylation of mitochondrial proteins. PMID:26654979

  9. Characterization of GPI14/YJR013w mutation that induces the cell wall integrity signalling pathway and results in increased protein production in Saccharomyces cerevisiae.

    PubMed

    Davydenko, Svetlana G; Feng, Dejiang; Jäntti, Jussi; Keränen, Sirkka

    2005-09-01

    We report here identification and characterization of a mutation in the GPI14 gene, the yeast homologue of the mammalian PIG-M that functions in the synthesis of the GPI moiety anchoring proteins to the plasma membrane. We show that the first putative transmembrane domain of Gpi14p is not essential for its function. Downregulation of GPI14 expression/reduced protein function due to an amino terminal deletion resulted in increased transcription and production of an endogenous and a heterologous secreted protein expressed from HSP150 and ADH1 promoter, respectively. In these cells, unfolded protein response was induced but was not responsible for the enhanced production of these proteins. A cell wall defect in the gpi14 mutant cells was suggested by cell aggregation phenotype, increased sensitivity to Calcofluor white, an increased release of Gas1p and total protein into the culture medium. In the gpi14 mutant cells, transcription of RLM1, a transcription factor participating in the cell wall integrity signalling pathway, was increased, and deletion of RLM1 resulted in a synthetic lethal phenotype with the gpi14 mutation. These results suggest that partial inactivation of Gpi14p causes defects in the cell wall structure and suggest that compromised GPI anchor synthesis results in enhanced protein production via the cell wall integrity signalling pathway. PMID:16134120

  10. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage.

    PubMed

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon

    2016-03-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. PMID:26735168

  11. A Gene Trap Knockout of the Tiam-1 Protein Results in Malformation of the Early Embryonic Brain

    PubMed Central

    Yoo, Sooyeon; Kim, Yujin; Lee, Haeryung; Park, Sungjeong; Park, Soochul

    2012-01-01

    Tiam-1 has been implicated in the development of the central nervous system. However, the in vivo function of Tiam-1 has not been fully determined in the developing mouse brain. In this study, we generated Tiam-1 knockout mice using a Tiam-1 gene-trapped embryonic stem cell line. Insertion of a gene trap vector into a genomic site downstream of exon 5 resulted in a mutant allele encoding a truncated protein fused with the β-geo LacZ gene. Primary mouse embryonic fibroblasts lacking Tiam-1 revealed a significant decrease in Rac activity and cell proliferation. In addition, whole-mount embryonic LacZ expression analysis demonstrated that Tiam-1 is specifically expressed in regions of the developing brain, such as the caudal telencephalon and rostral diencephalon. More importantly, mouse embryos deficient in Tiam-1 gene expression displayed a severe defect in embryonic brain development, including neural tube closure defects or a dramatic decrease in brain size. These findings suggest that embryonic Tiam-1 expression plays a critical role during early brain development in mice. PMID:22661025

  12. Multiple genomic defects result in an alternative RNA splice creating a human gamma H chain disease protein.

    PubMed

    Guglielmi, P; Bakhshi, A; Cogne, M; Seligmann, M; Korsmeyer, S J

    1988-09-01

    Heavy chain diseases (HCD) are human lymphoproliferative disorders in which a clonal B cell population produces Ig molecules made of truncated H chains without associated L chain. We characterized the rearranged H chain gene and its mRNA from the leukemic cells of a patient (RIV) with gamma-HCD. The abnormal RIV serum Ig consisted of shortened, dimeric gamma 1-chains which had an amino terminus within the hinge region. RIV lymphoblasts possessed a foreshortened (1200 bp) gamma 1-mRNA which had sequences for only the leader, hinge, second, and third constant region domains (CH2 + CH3), but lacked variable (VH) and CH1 information. Sequence of the productive gamma 1 allele revealed it had undergone VH-JH and H chain class switch recombinations. However, normal RNA splice sites had been eliminated by a DNA insertion/deletion (VH acceptor site), mutations (JH donor site), or a large deletion (CH1 region). Inserted sequences were of non-Ig and apparently non-genomic origin. These DNA alterations resulted in aberrant mRNA processing in which the leader region was spliced directly to the hinge region, accounting for the HCD protein. PMID:3137265

  13. Attenuation of bone morphogenetic protein signaling during amphibian limb development results in the generation of stage-specific defects

    PubMed Central

    Jones, Tamsin E M; Day, Robert C; Beck, Caroline W

    2013-01-01

    The vertebrate limb is one of the most intensively studied organs in the field of developmental biology. Limb development in tetrapod vertebrates is highly conserved and dependent on the interaction of several important molecular pathways. The bone morphogenetic protein (BMP) signaling cascade is one of these pathways and has been shown to be crucial for several aspects of limb development. Here, we have used a Xenopus laevis transgenic line, in which expression of the inhibitor Noggin is under the control of the heat-shock promoter hsp70 to examine the effects of attenuation of BMP signaling at different stages of limb development. Remarkably different phenotypes were produced at different stages, illustrating the varied roles of BMP in development of the limb. Very early limb buds appeared to be refractory to the effects of BMP attenuation, developing normally in most cases. Ectopic limbs were produced by overexpression of Noggin corresponding to a brief window of limb development at about stage 49/50, as recently described by Christen et al. (2012). Attenuation of BMP signaling in stage 51 or 52 tadpoles lead to a reduction in the number of digits formed, resulting in hypodactyly or ectrodactyly, as well as occasional defects in the more proximal tibia-fibula. Finally, inhibition at stage 54 (paddle stage) led to the formation of dramatically shortened digits resulting from loss of distal phalanges. Transcriptome analysis has revealed the possibility that more Noggin-sensitive members of the BMP family could be involved in limb development than previously suspected. Our analysis demonstrates the usefulness of heat-shock-driven gene expression as an effective method for inhibiting a developmental pathway at different times during limb development. PMID:23981117

  14. N-Acetylcysteine treatment of dystrophic mdx mice results in protein thiol modifications and inhibition of exercise induced myofibre necrosis.

    PubMed

    Terrill, Jessica R; Radley-Crabb, Hannah G; Grounds, Miranda D; Arthur, Peter G

    2012-05-01

    Oxidative stress is implicated as a factor that increases necrosis of skeletal muscles in Duchenne Muscular Dystrophy (DMD) and the dystrophic mdx mouse. Consequently, drugs that minimize oxidative stress are potential treatments for muscular dystrophy. This study examined the in vivo benefits to mdx mice of an antioxidant treatment with the cysteine precursor N-acetylcysteine (NAC), administered in drinking water. NAC was completely effective in preventing treadmill exercise-induced myofibre necrosis (assessed histologically) and the increased blood creatine kinase levels (a measure of sarcolemma leakiness) following exercise were significantly lower in the NAC treated mice. While NAC had no effect on malondialdehyde level or protein carbonylation (two indicators of irreversible oxidative damage), treatment with NAC for one week significantly decreased the oxidation of glutathione and protein thiols, and enhanced muscle protein thiol content. These data provide in vivo evidence for protective benefits of NAC treatment on dystropathology, potentially via protein thiol modifications. PMID:22206641

  15. Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic, anti-tumor effects

    PubMed Central

    Yoo, Ji Young; Hurwitz, Brian S; Bolyard, Chelsea; Yu, Jun-Ge; Zhang, Jianying; Selvendiran, Karuppaiyah; Rath, Kellie S; He, Shun; Bailey, Zachary; Eaves, David; Cripe, Timothy P; Parris, Deborah S.; Caligiuri, Michael A.; Yu, Jianhua; Old, Matthew; Kaur, Balveen

    2014-01-01

    Background Bortezomib is an FDA-approved proteasome inhibitor, and oncolytic HSV-1 (oHSV) is a promising therapeutic approach for cancer. We tested the impact of combining bortezomib with oHSV for anti-tumor efficacy. Methods The synergistic interaction between oHSV and bortezomib was calculated using Chou-Talalay analysis. Viral replication was evaluated using plaque assay and immune fluorescence. Western-blot assays were used to evaluate induction of ER stress and unfolded protein response (UPR). Inhibitors targeting Hsp90 were utilized to investigate the mechanism of cell killing. Anti-tumor efficacy in vivo was evaluated using subcutaneous and intracranial tumor xenografts of glioma and head and neck cancer. Survival was analyzed by Kaplan-Meier curves and two-sided log rank test. Results Combination treatment with bortezomib and oHSV, 34.5ENVE, displayed strong synergistic interaction in ovarian cancer, head & neck cancer, glioma, and malignant peripheral nerve sheath tumor (MPNST) cells. Bortezomib treatment induced ER stress, evident by strong induction of Grp78, CHOP, PERK and IRE1? (western blot analysis) and the UPR (induction of hsp40, 70 and 90). Bortezomib treatment of cells at both sublethal and lethal doses increased viral replication (p value <0.001), but inhibition of Hsp90 ablated this response, reducing viral replication and synergistic cell killing. The combination of bortezomib and 34.5ENVE significantly enhanced anti-tumor efficacy in multiple different tumor models in vivo. Conclusions The dramatic synergy of bortezomib and 34.5ENVE is mediated by bortezomib- induced UPR and warrants future clinical testing in patients. PMID:24815720

  16. Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+.

    PubMed Central

    Werry, Tim D; Wilkinson, Graeme F; Willars, Gary B

    2003-01-01

    Alteration in [Ca(2+)](i) (the intracellular concentration of Ca(2+)) is a key regulator of many cellular processes. To allow precise regulation of [Ca(2+)](i) and a diversity of signalling by this ion, cells possess many mechanisms by which they are able to control [Ca(2+)](i) both globally and at the subcellular level. Among these are many members of the superfamily of GPCRs (G-protein-coupled receptors), which are characterized by the presence of seven transmembrane domains. Typically, those receptors able to activate PLC (phospholipase C) enzymes cause release of Ca(2+) from intracellular stores and influence Ca(2+) entry across the plasma membrane. It has been well documented that Ca(2+) signalling by one type of GPCR can be influenced by stimulation of a different type of GPCR. Indeed, many studies have demonstrated heterologous desensitization between two different PLC-coupled GPCRs. This is not surprising, given our current understanding of negative-feedback regulation and the likely shared components of the signalling pathway. However, there are also many documented examples of interactions between GPCRs, often coupling preferentially to different signalling pathways, which result in a potentiation of Ca(2+) signalling. Such interactions have important implications for both the control of cell function and the interpretation of in vitro cell-based assays. However, there is currently no single mechanism that adequately accounts for all examples of this type of cross-talk. Indeed, many studies either have not addressed this issue or have been unable to determine the mechanism(s) involved. This review seeks to explore a range of possible mechanisms to convey their potential diversity and to provide a basis for further experimental investigation. PMID:12790797

  17. Alterations in c-Myc phenotypes resulting from dynamin-related protein 1 (Drp1)-mediated mitochondrial fission

    PubMed Central

    Sarin, M; Wang, Y; Zhang, F; Rothermund, K; Zhang, Y; Lu, J; Sims-Lucas, S; Beer-Stolz, D; Van Houten, B E; Vockley, J; Goetzman, E S; Anthony Graves, J; Prochownik, E V

    2013-01-01

    The c-Myc (Myc) oncoprotein regulates numerous phenotypes pertaining to cell mass, survival and metabolism. Glycolysis, oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis are positively controlled by Myc, with myc−/− rat fibroblasts displaying atrophic mitochondria, structural and functional defects in electron transport chain (ETC) components, compromised OXPHOS and ATP depletion. However, while Myc influences mitochondrial structure and function, it is not clear to what extent the reverse is true. To test this, we induced a state of mitochondrial hyper-fission in rat fibroblasts by de-regulating Drp1, a dynamin-like GTPase that participates in the terminal fission process. The mitochondria from these cells showed reduced mass and interconnectivity, a paucity of cristae, a marked reduction in OXPHOS and structural and functional defects in ETC Complexes I and V. High rates of abortive mitochondrial fusion were observed, likely reflecting ongoing, but ultimately futile, attempts to normalize mitochondrial mass. Cellular consequences included reduction of cell volume, ATP depletion and activation of AMP-dependent protein kinase. In response to Myc deregulation, apoptosis was significantly impaired both in the absence and presence of serum, although this could be reversed by increasing ATP levels by pharmacologic means. The current work demonstrates that enforced mitochondrial fission closely recapitulates a state of Myc deficiency and that mitochondrial integrity and function can affect Myc-regulated cellular behaviors. The low intracellular ATP levels that are frequently seen in some tumors as a result of inadequate vascular perfusion could favor tumor survival by countering the pro-apoptotic tendencies of Myc overexpression. PMID:23764851

  18. Bombyx mori midgut membrane protein P252, which binds to Bacillus thuringiensis Cry1A, is a chlorophyllide-binding protein, and the resulting complex has antimicrobial activity.

    PubMed

    Pandian, Ganesh N; Ishikawa, Toshiki; Togashi, Makoto; Shitomi, Yasuyuki; Haginoya, Kohsuke; Yamamoto, Shuhei; Nishiumi, Tadayuki; Hori, Hidetaka

    2008-03-01

    The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 microM is shown to bind with about 50 microM Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37 degrees C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a beta-structure (39.8% +/- 2.2%, based on 5 samples) with negligible contribution of alpha-helix structure. When bound to Chlide, the beta-structure content in the complex is reduced to 21.6% +/- 3.1% (n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli, Serratia marcescens, B. thuringiensis, and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 microM, and 21.6 microM, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity. PMID:18192432

  19. Proteome changes in the insoluble protein fraction of bovine Longissimus dorsi muscle as a result of low-voltage electrical stimulation.

    PubMed

    Bjarnadóttir, Stefanía Guðrún; Hollung, Kristin; Høy, Martin; Veiseth-Kent, Eva

    2011-10-01

    Changes induced by low-voltage electrical stimulation (ES; 0-95 V for 8 s; 95 V for 32 s) in the insoluble protein fraction of bovine longissimus dorsi (LD) muscle at 1 and 24h post-ES were investigated by proteomics. Protein abundance patterns from ten Norwegian Red (NRF) young bulls were compared, and significant changes due to ES were found by rotation test and partial least square (PLS) regression analyses. Five protein spots showed lower abundance in ES samples at both sampling times, and in addition, 10 proteins at 1 h post-ES and 13 proteins at 24 h post-ES changed significantly in abundance due to ES. Reduced abundance of full-length structural proteins in ES samples indicates an accelerated proteolysis due to ES. Moreover, increased abundance of small heat shock proteins indicates earlier initiation of stress responses due to ES. These findings provide a better understanding of the biochemical processes taking place as a result of ES during post mortem storage of meat. PMID:21555190

  20. Cationization of immunoglobulin G results in enhanced organ uptake of the protein after intravenous administration in rats and primate

    SciTech Connect

    Triguero, D.; Buciak, J.L.; Pardridge, W.M. )

    1991-07-01

    Cationization of proteins in general enhances the cellular uptake of these macromolecules, and cationized antibodies are known to retain antigen binding properties. Therefore, cationized antibodies may be therapeutic and allow for intracellular immunization. The present studies test the hypothesis that the tissue uptake of cationized immunoglobulin G (IgG) after intravenous administration may be greatly increased relative to the uptake of native proteins. The pharmacokinetics of cationized immunoglobulin G clearance from blood, and the volume of distribution of the cationized or native protein (albumin, IgG) for 10 organs was measured both in anesthetized rats and in an anesthetized adult Macaca irus cynomologous monkey. Initial studies on brain showed that serum factors inhibited uptake of 125I-cationized IgG, but not 3H-cationized IgG. The blood-brain barrier permeability surface area product for 3H-cationized IgG was 0.57 {plus minus} 0.04 microliters min-1 g-1. The ratio of the volume of distribution of the 3-H-cationized IgG compared to 3H-labeled native albumin ranged from 0.9 (testis) to 15.7 (spleen) in the rat at 3 hr after injection, and a similarly enhanced organ uptake was observed in the primate. In conclusion, these studies demonstrate that cationization of immunoglobulin greatly increases organ uptake of the plasma protein compared to native immunoglobulins, and suggest that cationization of monoclonal antibodies may represent a potential new strategy for enhancing the intracellular delivery of these proteins.

  1. Frustration and Dzyaloshinsky-Moriya anisotropy in the kagome francisites Cu3Bi (SeO3)2 O2X (X = Br , Cl )

    NASA Astrophysics Data System (ADS)

    Rousochatzakis, Ioannis; Richter, Johannes; Zinke, Ronald; Tsirlin, Alexander A.

    2015-01-01

    We investigate the antiferromagnetic canting instability of the spin-1/2 kagome ferromagnet, as realized in the layered cuprates Cu3Bi (SeO3)2 O2X (X = Br , Cl ). While the local canting can be explained in terms of competing exchange interactions, the direction of the ferrimagnetic order parameter fluctuates strongly even at short distances on account of frustration which gives rise to an infinite ground state degeneracy at the classical level. In analogy with the kagome antiferromagnet, the accidental degeneracy is fully lifted only by nonlinear 1 /S corrections, rendering the selected uniform canted phase very fragile even for spins-1/2, as shown explicitly by coupled-cluster calculations. To account for the observed ordering, we show that the minimal description of these systems must include the microscopic Dzyaloshinsky-Moriya interactions, which we obtain from density-functional band-structure calculations. The model explains all qualitative properties of the kagome francisites, including the detailed nature of the ground state and the anisotropic response under a magnetic field. The predicted magnon excitation spectrum and quantitative features of the magnetization process call for further experimental investigations of these compounds.

  2. Proton Dynamics in the Anti-ferroelectric CsH3(SeO3)2 by using 1H NMR Measurements

    NASA Astrophysics Data System (ADS)

    Lee, Moohee; Ndiaye, B.; Kang, K.; Kim, H.; Sim, J.; Lim, Ae Ran

    2014-03-01

    1H NMR techniques have been employed on the anti-ferroelectric CsH3(SeO3)2 to measure spectrum, shift, T1 and T2 from 300 K down to 80 K at 4.85 T. The 1H NMR spectrum at 300 K shows a composite structure; one dominant broad peak and two small narrow peaks. From the temperature dependences of both intensity and T1 for each peak, we identify that the narrow peaks come from rapidly moving protons whereas the broad peaks originate from rigid protons. The spectra below 200 K show several peaks associated with six nonequivalent proton sites and also the T1 decays show a non-exponential curve coming from many proton sites. T1 is very long even at 300 K and becomes even longer at low temperature. By analyzing T1 decays with T1S and T1L, we confirm that 1/T1(T) show an activated behavior; the short component originates from proton dynamics with activation energy of ~ 140 K and the long component is associated with that of ~ 100 K. Further analysis suggests that some protons show an abrupt change in both shift and T1L across Tc and may be responsible for the phase transition.

  3. Parageorgbokiite, β-Cu5O2(SeO3)2Cl2, a new mineral species from volcanic exhalations, Kamchatka Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Vergasova, L. P.; Krivovichev, S. V.; Filatov, S. K.; Britvin, S. N.; Burns, P. C.; Anan'ev, V. V.

    2007-12-01

    Parageorgbokiite, β-Cu5O2(SeO3)2Cl2, has been found at the second cinder cone of the Great Fissure Tolbachik Eruption, Kamchatka Peninsula, Russia. Ralstonite, tolbachite, melanothallite, chalcocyanite, euchlorine, Fe oxides, tenorite, native gold, sophiite, Na, Ca, and Mg sulfates, cotunnite, and some copper oxoselenites are associated minerals. The estimated temperature of the mineral formation is 400-625°C. The color is green, with a vitreous luster; the streak is light green. The mineral is brittle, with the Mohs hardness ranging from 3 to 4. Cleavage is not observed. The calculated density is 4.70 g/cm3. Parageorgbokiite is biaxial (+); α = 2.05(1), β = 2.05(1), and γ = 2.08(1); 2 V (meas.) is ˜03, and 2 V (calc.) = 0(5)°. The optical orientation is X = a; other details remain unclear. The mineral is pleochroic, from grass green on X and Y to yellowish green on Z. The empirical formula calculated on the basis of O + Cl = 10 is Cu4.91Pb0.02O1.86(ScO3)2Cl2.14. The simplified formula is Cu5O2(ScO3)2Cl2. Parageorgbokiite pertains to a new structural type of inorganic compounds. Its name points out its dimorphism with georgbokiite, which was named in honor of G.B. Bokii, the prominent Russian crystal chemist (1909-2000).

  4. Suppression of protein l-isoaspartyl (d-aspartyl) methyltransferase results in hyperactivation of EGF-stimulated MEK-ERK signaling in cultured mammalian cells.

    PubMed

    Kosugi, Sakurako; Furuchi, Takemitsu; Katane, Masumi; Sekine, Masae; Shirasawa, Takuji; Homma, Hiroshi

    2008-06-20

    l-Aspartyl (l-Asp) and l-asparaginyl residues in proteins isomerize or racemize to d,l-isoaspartyl (d,l-isoAsp) or d-aspartyl (d-Asp) residues during protein aging. These atypical aspartyl residues can interfere with the biological function of the protein and lead to cellular dysfunction. Protein l-isoaspartyl (d-aspartyl) methyltransferase (PIMT) is a repair enzyme that facilitates conversion of l-isoAsp and d-Asp to l-Asp. PIMT deficient mice exhibit accumulation of l-isoAsp in several tissues and die, on average, 12 days after birth from progressive epileptic seizures with grand mal and myoclonus features. However, little is known about the molecular mechanisms by which accumulation of the aberrant residues leads to cellular abnormalities. In this study, we established PIMT-knockdown cells using a short interfering RNA expression system and characterized the resultant molecular abnormalities in intracellular signaling pathways. PIMT-knockdown cells showed significant accumulation of proteins with isomerized residues, compared to control cells. In the PIMT-knockdown cells, Raf-1, MEK, and ERK, members of the MAPK cascade, were hyperphosphorylated after EGF stimulation compared to control cells. These results suggest that PIMT repair of abnormal proteins is necessary to maintain normal MAPK signaling. PMID:18381200

  5. NCYM, a Cis-Antisense Gene of MYCN, Encodes a De Novo Evolved Protein That Inhibits GSK3β Resulting in the Stabilization of MYCN in Human Neuroblastomas

    PubMed Central

    Suenaga, Yusuke; Islam, S. M. Rafiqul; Alagu, Jennifer; Kaneko, Yoshiki; Kato, Mamoru; Tanaka, Yukichi; Kawana, Hidetada; Hossain, Shamim; Matsumoto, Daisuke; Yamamoto, Mami; Shoji, Wataru; Itami, Makiko; Shibata, Tatsuhiro; Nakamura, Yohko; Ohira, Miki; Haraguchi, Seiki; Takatori, Atsushi; Nakagawara, Akira

    2014-01-01

    The rearrangement of pre-existing genes has long been thought of as the major mode of new gene generation. Recently, de novo gene birth from non-genic DNA was found to be an alternative mechanism to generate novel protein-coding genes. However, its functional role in human disease remains largely unknown. Here we show that NCYM, a cis-antisense gene of the MYCN oncogene, initially thought to be a large non-coding RNA, encodes a de novo evolved protein regulating the pathogenesis of human cancers, particularly neuroblastoma. The NCYM gene is evolutionally conserved only in the taxonomic group containing humans and chimpanzees. In primary human neuroblastomas, NCYM is 100% co-amplified and co-expressed with MYCN, and NCYM mRNA expression is associated with poor clinical outcome. MYCN directly transactivates both NCYM and MYCN mRNA, whereas NCYM stabilizes MYCN protein by inhibiting the activity of GSK3β, a kinase that promotes MYCN degradation. In contrast to MYCN transgenic mice, neuroblastomas in MYCN/NCYM double transgenic mice were frequently accompanied by distant metastases, behavior reminiscent of human neuroblastomas with MYCN amplification. The NCYM protein also interacts with GSK3β, thereby stabilizing the MYCN protein in the tumors of the MYCN/NCYM double transgenic mice. Thus, these results suggest that GSK3β inhibition by NCYM stabilizes the MYCN protein both in vitro and in vivo. Furthermore, the survival of MYCN transgenic mice bearing neuroblastoma was improved by treatment with NVP-BEZ235, a dual PI3K/mTOR inhibitor shown to destabilize MYCN via GSK3β activation. In contrast, tumors caused in MYCN/NCYM double transgenic mice showed chemo-resistance to the drug. Collectively, our results show that NCYM is the first de novo evolved protein known to act as an oncopromoting factor in human cancer, and suggest that de novo evolved proteins may functionally characterize human disease. PMID:24391509

  6. B Lymphocyte-Specific Loss of Ric-8A Results in a Gα Protein Deficit and Severe Humoral Immunodeficiency.

    PubMed

    Boularan, Cedric; Hwang, Il-Young; Kamenyeva, Olena; Park, Chung; Harrison, Kathleen; Huang, Zhen; Kehrl, John H

    2015-09-01

    Resistance to inhibitors of cholinesterase 8A (Ric-8A) is a highly evolutionarily conserved cytosolic protein initially identified in Caenorhabditis elegans, where it was assigned a regulatory role in asymmetric cell divisions. It functions as a guanine nucleotide exchange factor for Gαi, Gαq, and Gα12/13 and as a molecular chaperone required for the initial association of nascent Gα subunits with cellular membranes in embryonic stem cell lines. To test its role in hematopoiesis and B lymphocytes specifically, we generated ric8 (fl/fl) vav1-cre and ric8 (fl/fl) mb1-cre mice. The major hematopoietic cell lineages developed in the ric8 (fl/fl) vav1-cre mice, notwithstanding severe reduction in Gαi2/3, Gαq, and Gα13 proteins. B lymphocyte-specific loss of Ric-8A did not compromise bone marrow B lymphopoiesis, but splenic marginal zone B cell development failed, and B cells underpopulated lymphoid organs. The ric8 (fl/fl) mb1-cre B cells exhibited poor responses to chemokines, abnormal trafficking, improper in situ positioning, and loss of polarity components during B cell differentiation. The ric8 (fl/fl) mb1-cre mice had a severely disrupted lymphoid architecture and poor primary and secondary Ab responses. In B lymphocytes, Ric-8A is essential for normal Gα protein levels and is required for B cell differentiation, trafficking, and Ab responses. PMID:26232433

  7. RNAi-mediated silencing of the Arabidopsis thaliana ULCS1 gene, encoding a WDR protein, results in cell wall modification impairment and plant infertility.

    PubMed

    Beris, Despoina; Kapolas, Georgios; Livanos, Pantelis; Roussis, Andreas; Milioni, Dimitra; Haralampidis, Kosmas

    2016-04-01

    Ubiquitin mediated protein degradation constitutes one of the most complex post translational gene regulation mechanisms in eukaryotes. This fine-tuned proteolytic machinery is based on a vast number of E3 ubiquitin ligase complexes that mark target proteins with ubiquitin. The specificity is accomplished by a number of adaptor proteins that contain functional binding domains, including the WD40 repeat motif (WDRs). To date, only few of these proteins have been identified in plants. An RNAi mediated silencing approach was used here to functionally characterize the Arabidopsis thaliana ULCS1 gene, which encodes for a small molecular weight WDR protein. AtULCS1 interacts with the E3Cullin Ring Ligase subunit DDB1a, regulating most likely the degradation of specific proteins involved in the manifestation of diverse developmental events. Silencing of AtULCS1 results in sterile plants with pleiotropic phenotypes. Detailed analysis revealed that infertility is the outcome of anther indehiscence, which in turn is due to the impairment of the plants to accomplish secondary wall modifications. Furthermore, IREGULAR XYLEM gene expression and lignification is diminished in anther endothecium and the stem vascular tissue of the silenced plants. These data underline the importance of AtULCS1 in plant development and reproduction. PMID:26940493

  8. A novel mutation, cog, which results in production of a new porin protein (OmpG) of Escherichia coli K-12.

    PubMed Central

    Misra, R; Benson, S A

    1989-01-01

    A mutant of Escherichia coli K-12 which produces a new outer membrane protein, OmpG, was isolated and genetically and biochemically characterized. The presence of OmpG allows growth on maltodextrins in the absence of the LamB maltoporin. The data obtained from in vivo growth and uptake experiments suggested that the presence of the OmpG protein results in an increase in outer membrane permeability for small hydrophilic compounds. In light of these findings, we suggest that OmpG is a porinlike protein. The mutation which results in the expression of OmpG has been termed cog (for control of OmpG) and mapped to 29 min on the E. coli chromosome. Diploid analysis shows that the mutant cog-192 allele is recessive for both the Dex+ and OmpG+ phenotypes. We propose that the cog mutation destroys a negative regulatory function and therefore derepresses ompG expression. Images PMID:2473977

  9. Cyclophilin A Binds to the Viral RNA and Replication Proteins, Resulting in Inhibition of Tombusviral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay

    2013-01-01

    Replication of plus-stranded RNA viruses is greatly affected by numerous host-encoded proteins that act as restriction factors. Cyclophilins, which are a large family of cellular prolyl isomerases, have been found to inhibit Tomato bushy stunt tombusvirus (TBSV) replication in a Saccharomyces cerevisiae model based on genome-wide screens and global proteomics approaches. In this report, we further characterize single-domain cyclophilins, including the mammalian cyclophilin A and plant Roc1 and Roc2, which are orthologs of the yeast Cpr1p cyclophilin, a known inhibitor of TBSV replication in yeast. We found that recombinant CypA, Roc1, and Roc2 strongly inhibited TBSV replication in a cell-free replication assay. Additional in vitro studies revealed that CypA, Roc1, and Roc2 cyclophilins bound to the viral replication proteins, and CypA and Roc1 also bound to the viral RNA. These interactions led to inhibition of viral RNA recruitment, the assembly of the viral replicase complex, and viral RNA synthesis. A catalytically inactive mutant of CypA was also able to inhibit TBSV replication in vitro due to binding to the replication proteins and the viral RNA. Overexpression of CypA and its mutant in yeast or plant leaves led to inhibition of tombusvirus replication, confirming that CypA is a restriction factor for TBSV. Overall, the current work has revealed a regulatory role for the cytosolic single-domain Cpr1-like cyclophilins in RNA virus replication. PMID:24089553

  10. Moderate alcohol induces stress proteins HSF1 and hsp70 and inhibits proinflammatory cytokines resulting in endotoxin tolerance.

    PubMed

    Muralidharan, Sujatha; Ambade, Aditya; Fulham, Melissa A; Deshpande, Janhavee; Catalano, Donna; Mandrekar, Pranoti

    2014-08-15

    Binge or moderate alcohol exposure impairs host defense and increases susceptibility to infection because of compromised innate immune responses. However, there is a lack of consensus on the molecular mechanism by which alcohol mediates this immunosuppression. In this study, we show that cellular stress proteins HSF1 and hsp70 play a mechanistic role in alcohol-mediated inhibition of the TLR4/MyD88 pathway. Alcohol exposure induced transcription factor HSF1 mRNA expression and DNA binding activity in primary human monocytes and murine macrophages. Furthermore, HSF1 target gene hsp70 mRNA and protein are upregulated by alcohol in monocytes. In vitro pre-exposure to moderate alcohol reduced subsequent LPS-induced NF-?B promoter activity and downstream TNF-?, IL-6 and IL-1? production in monocytes and macrophages, exhibiting endotoxin tolerance. Mechanistic analysis demonstrates that alcohol-induced HSF1 binds to the TNF-? promoter in macrophages at early time points, exerting transrepression and decreased TNF-? expression. Furthermore, association of hsp70 with NF-?B subunit p50 in alcohol-treated macrophages correlates with reduced NF-?B activation at later time points. Hsp70 overexpression in macrophages was sufficient to block LPS-induced NF-?B promoter activity, suggesting alcohol-mediated immunosuppression by hsp70. The direct crosstalk of hsp70 and HSF1 was further confirmed by the loss of alcohol-mediated endotoxin tolerance in hsp70- and HSF1-silenced macrophages. Our data suggest that alcohol-mediated activation of HSF1 and induction of hsp70 inhibit TLR4-MyD88 signaling and are required for alcohol-induced endotoxin tolerance. Using stress proteins as direct drug targets would be clinically relevant in alcohol abuse treatment and may serve to provide a better understanding of alcohol-mediated immunosuppression. PMID:25024384

  11. Conformational changes of hapten-protein conjugates resulting in improved broad-specificity and sensitivity of an ELISA for organophosphorus pesticides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The type of hapten linkage to the carrier protein can play an important role in determining the nature of the resulting antibody response. Generic haptens using three types of linkers were synthesized (a monocarboxylic acid, an unsaturated hydrocarbon, and a carboxamido spacer). These haptens were...

  12. Ablation of the 14-3-3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex.

    PubMed

    Wachi, Tomoka; Cornell, Brett; Marshall, Courtney; Zhukarev, Vladimir; Baas, Peter W; Toyo-Oka, Kazuhito

    2016-06-01

    14-3-3 proteins are ubiquitously-expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14-3-3epsilon and 14-3-3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14-3-3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14-3-3gamma-deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14-3-3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time-lapse live imaging of brain slices revealed that the ablation of the 14-3-3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14-3-3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14-3-3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14-3-3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 600-614, 2016. PMID:26297819

  13. Inclusion of many-body effects in the additive CHARMM protein CMAP potential results in enhanced cooperativity of α-helix and β-hairpin formation.

    PubMed

    Best, Robert B; Mittal, Jeetain; Feig, Michael; MacKerell, Alexander D

    2012-09-01

    Folding simulations on peptides and proteins using empirical force fields have demonstrated the sensitivity of the results to details of the backbone potential. A recently revised version of the additive CHARMM protein force field, which includes optimization of the backbone CMAP potential to achieve good balance between different types of secondary structure, correcting the α-helical bias present in the former CHARMM22/CMAP energy function, is shown to result in improved cooperativity for the helix-coil transition. This is due to retention of the empirical corrections introduced in the original CMAP to reproduce folded protein structures-corrections that capture many-body effects missing from an energy surface fitted to gas phase calculations on dipeptides. The experimental temperature dependence of helix formation in (AAQAA)(3) and parameters for helix nucleation and elongation are in much better agreement with experiment than those obtained with other recent force fields. In contrast, CMAP parameters derived by fitting to a vacuum quantum mechanical surface for the alanine dipeptide do not reproduce the enhanced cooperativity, showing that the empirical backbone corrections, and not some other feature of the force field, are responsible. We also find that the cooperativity of β-hairpin formation is much improved relative to other force fields we have studied. Comparison with (ϕ,ψ) distributions from the Protein Data Bank further justifies the inclusion of many-body effects in the CMAP. These results suggest that the revised energy function will be suitable for both simulations of unfolded or intrinsically disordered proteins and for investigating protein-folding mechanisms. PMID:23009854

  14. N-terminal truncations in the FhlA protein result in formate- and MoeA-independent expression of the hyc (formate hydrogenlyase) operon of Escherichia coli.

    PubMed

    Self, W T; Hasona, A; Shanmugam, K T

    2001-11-01

    The formate hydrogenlyase complex of Escherichia coli catalyses the cleavage of formate to CO2 and H2 and consists of a molybdoenzyme formate dehydrogenase-H, hydrogenase 3 and intermediate electron carriers. The structural genes of this enzyme complex are activated by the FhlA protein in the presence of both formate and molybdate; ModE-Mo serves as a secondary activator. Mutational analysis of the FhlA protein established that the unique N-terminal region of this protein was responsible for formate- and molybdenum-dependent transcriptional control of the hyc operon. Analysis of the N-terminal sequence of the FhlA protein revealed a unique motif (amino acids 7-37), which is also found in ATPases associated with several members of the ABC-type transporter family. A deletion derivative of FhlA lacking these amino acids (FhlA9-2) failed to activate the hyc operon in vivo, although the FhlA9-2 did bind to hyc promoter DNA in vitro. The ATPase activity of the FhlA9-2-DNA-formate complex was at least three times higher than that of the native protein-DNA-formate complex, and this degree of activity was achieved at a lower formate level. Extending the deletion to amino acid 117 (FhlA167) not only reversed the FhlA(-) phenotype of FhlA9-2, but also led to both molybdenum- and formate-independence. Deleting the entire N-terminal domain (between amino acids 5 and 374 of the 692 amino acid protein) also led to an effector-independent transcriptional activator (FhlA165), which had a twofold higher level of hyc operon expression than the native protein. Both FhlA165 and FhlA167 still required ModE-Mo as a secondary activator for an optimal level of hyc-lac expression. The FhlA165 protein also had a twofold higher affinity to hyc promoter DNA than the native FhlA protein, while the FhlA167 protein had a significantly lower affinity for hyc promoter DNA in vitro. Although the ATPase activity of the native protein was increased by formate, the ATPase activity of neither FhlA165 or FhlA167 responded to formate. Removal of the first 117 amino acids of the FhlA protein appears to result in a constitutive, effector-independent activation of transcription of the genes encoding the components of the formate hydrogenlyase complex. The sequence similarity to ABC-ATPases, combined with the properties of the FhlA deletion proteins, led to the proposal that the N-terminal region of the native FhlA protein interacts with formate transport proteins, both as a formate transport facilitator and as a cytoplasmic acceptor. PMID:11700359

  15. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells.

    PubMed

    Kong, Xiang Y; Nesset, Cecilie Kasi; Damme, Markus; Løberg, Else-Marit; Lübke, Torben; Mæhlen, Jan; Andersson, Kristin B; Lorenzo, Petra I; Roos, Norbert; Thoresen, G Hege; Rustan, Arild C; Kase, Eili T; Eskild, Winnie

    2014-03-01

    Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1(gt/gt) mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1(gt/gt) liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1(gt/gt) Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1(gt/gt) mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage. PMID:24487409

  16. Conjugation of an anti transferrin receptor IgG3-avidin fusion protein with biotinylated saporin results in significant enhancement of its cytotoxicity against malignant hematopoietic cells.

    PubMed

    Daniels, Tracy R; Ng, Patrick P; Delgado, Tracie; Lynch, Maureen R; Schiller, Gary; Helguera, Gustavo; Penichet, Manuel L

    2007-11-01

    We have previously developed an antibody fusion protein composed of a mouse/human chimeric IgG3 specific for the human transferrin receptor genetically fused to avidin (anti-hTfR IgG3-Av) as a universal delivery system for cancer therapy. This fusion protein efficiently delivers biotinylated FITC into cancer cells via TfR-mediated endocytosis. In addition, anti-hTfR IgG3-Av alone exhibits intrinsic cytotoxic activity and interferes with hTfR recycling, leading to the rapid degradation of the TfR and lethal iron deprivation in certain malignant B-cell lines. We now report on the cytotoxic effects of a conjugate composed of anti-hTfR IgG3-Av and biotinylated saporin 6 (b-SO6), a toxin derived from the plant Saponaria officinalis that inhibits protein synthesis. Conjugation of anti-hTfR IgG3-Av with b-SO6 enhances the cytotoxic effect of the fusion protein in sensitive cells and also overcomes the resistance of malignant cells that show low sensitivity to the fusion protein alone. Our results show for the first time that loading anti-hTfR IgG3-Av with a biotinylated toxin enhances the cytotoxicity of the fusion protein alone. These results suggest that anti-hTfR IgG3-Av has great potential as a therapeutic agent for a wide range of applications due to its intrinsic cytotoxic activity plus its ability to deliver biotinylated molecules into cancer cells. PMID:18025284

  17. Cross Talk between β-Adrenergic and Bradykinin B2 Receptors Results in Cooperative Regulation of Cyclic AMP Accumulation and Mitogen-Activated Protein Kinase Activity

    PubMed Central

    Hanke, Sabine; Nürnberg, Bernd; Groll, Detlef H.; Liebmann, Claus

    2001-01-01

    Costimulation of G protein-coupled receptors (GPCRs) may result in cross talk interactions between their downstream signaling pathways. Stimulation of GPCRs may also lead to cross talk regulation of receptor tyrosine kinase signaling and thereby to activation of mitogen-activated protein kinase (MAPK). In COS-7 cells, we investigated the interactions between two particular mitogenic receptor pathways, the endogenously expressed β-adrenergic receptor (β-AR) and the transiently transfected human bradykinin (BK) B2 receptor (B2R). When β-AR and B2R are costimulated, we found two different cross talk mechanisms. First, the predominantly Gq protein-coupled B2R is enabled to activate a Gi protein and, subsequently, type II adenylate cyclase. This results in augmentation of β-AR-mediated cyclic AMP (cAMP) accumulation by BK, which alone is unable to increase the cAMP level. Second, independently of BK-induced superactivation of the cAMP system, costimulation of β-AR leads to protein kinase A-mediated blockade of phospholipase C activation by BK. Thereby, the pathway from B2R to MAPK, which essentially involves protein kinase C activation, is selectively switched off. The MAPK activation in response to isoproterenol was not affected due to costimulation. Furthermore, in the presence of isoproterenol, BK lost its ability to stimulate DNA synthesis in COS-7 cells. Thus, our findings might establish a novel paradigm: cooperation between simultaneously activated mitogenic pathways may prevent multiple stimulation of MAPK activity and increased cell growth. PMID:11713280

  18. Study of recombinant antibody fragments and PAI-1 complexes combining protein-protein docking and results from site-directed mutagenesis.

    PubMed

    Novoa de Armas, Hector; Dewilde, Maarten; Verbeke, Koen; De Maeyer, Marc; Declerck, Paul J

    2007-09-01

    Elevated plasma levels of plasminogen activator inhibitor-1 (PAI-1) have been correlated with cardiovascular diseases such as myocardial infarction and venous thrombosis. PAI-1 has also been shown to play an important role in tumor development, diabetes, and obesitas. Monoclonal antibodies MA-8H9D4 and MA-56A7C10, and their single-chain variable fragments (scFv), exhibit PAI-1-neutralizing properties. In this study, a rigid-body docking approach is used to predict the binding geometry of two distinct conformations of PAI-1 (active and latent) in complex with these antibody fragments. Resulting models were initially refined by using the dead-end elimination algorithm. Different filtering criteria based on the mutagenesis studies and structural considerations were applied to select the final models. These were refined by using the slow-cooling torsion-angle dynamic annealing protocol. The docked structures reveal the respective epitopes and paratopes and their potential interactions. This study provides crucial information that is necessary for the rational development of low-molecular weight PAI-1 inhibitors. PMID:17850750

  19. Nd 5O 4Cl[AsO 3] 2 and Gd 5O 4Br 3[SeO 3] 2: Two lanthanoid oxide halides with complex "lone-pair" oxoanions

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Hee; Wontcheu, Joseph; Schleid, Thomas

    2009-02-01

    Both compounds, neodymium oxide chloride oxoarsenate(III) Nd 5O 4Cl[AsO 3] 2 and gadolinium oxide bromide oxoselenate(IV) Gd 5O 4Br 3[SeO 3] 2, were prepared by solid-state reactions from mixtures of the corresponding binary oxides and halides, and their crystal structures have been determined by X-ray diffraction of single crystals. They crystallize monoclinically ( a = 1241.62(9) pm, b = 565.78(4) pm, c = 902.03(7) pm, ? = 116.454(3) for Nd 5O 4Cl[AsO 3] 2 and a = 1243.70(9) pm, b = 549.91(4) pm, c = 1005.28(8) pm, ? = 91.869(3) for Gd 5O 4Br 3[SeO 3] 2) in space group C2/ m with two formula units per unit cell. The non-isotypic crystal structures contain three crystallographically different M 3+ cations (M = Nd and Gd). The coordination sphere of (M1) 3+ consists of eight oxygen atoms (CN = 8) exclusively, whereas (M2) 3+ carries six oxygen atoms and one X - anion (X = Cl and Br, CN = 7) in each case. For (M3) 3+, however, CN = 8 is realized by six oxygen atoms and two Cl - anions in Nd 5O 4Cl[AsO 3] 2, but five oxygen atoms and three Br - anions in Gd 5O 4Br 3[SeO 3] 2. The isolated pyramidal [AsO 3] 3-/[SeO 3] 2- anions ( d(As 3+-O 2-) = 175-179; d(Se 4+-O 2-) = 165-174 pm) originate from three oxygen atoms (O2 and two O3), which surround the As 3+/Se 4+ cations together with the stereochemically active non-bonding electron pair ( lone pair) ? 1-tetrahedrally (?(O-As-O) = 95-102; ?(O-Se-O) = 95-96). Both crystal structures are built up of corrugated two-dimensional lanthanoid-oxygen layers {[}?2 consisting of edge- and corner-shared [OM 4] 10+ tetrahedra ( d(O 2--Nd 3+) = 228-242; d(O 2--Gd 3+) = 226-235 pm). The single Cl - anion in the neodymium and the two crystallographically independent Br - anions in the gadolinium compound reside in between these sheets, where the lone-pair electrons at the As 3+/Se 4+ cations point into the center of channels, which are formed by lanthanoid-oxygen layers and halide chains.

  20. The copper-transporting capacity of ATP7A mutants associated with Menkes disease is ameliorated by COMMD1 as a result of improved protein expression.

    PubMed

    Vonk, Willianne I M; de Bie, Prim; Wichers, Catharina G K; van den Berghe, Peter V E; van der Plaats, Rozemarijn; Berger, Ruud; Wijmenga, Cisca; Klomp, Leo W J; van de Sluis, Bart

    2012-01-01

    Menkes disease (MD) is an X-linked recessive disorder characterized by copper deficiency resulting in a diminished function of copper-dependent enzymes. Most MD patients die in early childhood, although mild forms of MD have also been described. A diversity of mutations in the gene encoding of the Golgi-resident copper-transporting P(1B)-type ATPase ATP7A underlies MD. To elucidate the molecular consequences of the ATP7A mutations, various mutations in ATP7A associated with distinct phenotypes of MD (L873R, C1000R, N1304S, and A1362D) were analyzed in detail. All mutants studied displayed changes in protein expression and intracellular localization parallel to a dramatic decline in their copper-transporting capacity compared to ATP7A the wild-type. We restored these observed defects in ATP7A mutant proteins by culturing the cells at 30°C, which improves the quality of protein folding, similar to that which as has recently has been demonstrated for misfolded ATP7B, a copper transporter homologous to ATP7A. Further, the effect of the canine copper toxicosis protein COMMD1 on ATP7A function was examined as COMMD1 has been shown to regulate the proteolysis of ATP7B proteins. Interestingly, in addition to adjusted growth temperature, binding of COMMD1 partially restored the expression, subcellular localization, and copper-exporting activities of the ATP7A mutants. However, no effect of pharmacological chaperones was observed. Together, the presented data might provide a new direction for developing therapies to improve the residual exporting activity of unstable ATP7A mutant proteins, and suggests a potential role for COMMD1 in this process. PMID:21667063

  1. Cytokine and Protein Markers of Leprosy Reactions in Skin and Nerves: Baseline Results for the North Indian INFIR Cohort

    PubMed Central

    Lockwood, Diana N. J.; Suneetha, Lavanya; Sagili, Karuna Devi; Chaduvula, Meher Vani; Mohammed, Ismail; van Brakel, Wim; Smith, W. C.; Nicholls, Peter; Suneetha, Sujai

    2011-01-01

    Background Previous studies investigating the role of cytokines in the pathogenesis of leprosy have either been on only small numbers of patients or have not combined clinical and histological data. The INFIR Cohort study is a prospective study of 303 new multibacillary leprosy patients to identify risk factors for reaction and nerve damage. This study characterised the cellular infiltrate in skin and nerve biopsies using light microscopic and immunohistochemical techniques to identify any association of cytokine markers, nerve and cell markers with leprosy reactions. Methodology/Principal Findings TNF-α, TGF-β and iNOS protein in skin and nerve biopsies were detected using monoclonal antibody detection immunohistochemistry techniques in 299 skin biopsies and 68 nerve biopsies taken from patients at recruitment. The tissues were stained with hematoxylin and eosin, modified Fite Faraco, CD68 macrophage cell marker and S100. Conclusions/Significance Histological analysis of the biopsies showed that 43% had borderline tuberculoid (BT) leprosy, 27% borderline lepromatous leprosy, 9% lepromatous leprosy, 13% indeterminate leprosy types and 7% had no inflammation. Forty-six percent had histological evidence of a Type 1 Reaction (T1R) and 10% of Erythema Nodosum Leprosum. TNF-α was detected in 78% of skin biopsies (181/232), iNOS in 78% and TGF-β in 94%. All three molecules were detected at higher levels in patients with BT leprosy. TNF-α was localised within macrophages and epithelioid cells in the granuloma, in the epidermis and in dermal nerves in a few cases. TNF-α, iNOS and TGF-β were all significantly associated with T1R (p<0.001). Sixty-eight nerve biopsies were analysed. CD68, TNF-α and iNOS staining were detectable in 88%, 38% and 28% of the biopsies respectively. The three cytokines TNF-α, iNOS and TGF-β detected by immunohistochemistry showed a significant association with the presence of skin reaction. This study is the first to demonstrate an association of iNOS and TGF-β with T1R. PMID:22180790

  2. Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein–protein interactions

    PubMed Central

    Liu, Fushan; Ahmed, Zaheer; Lee, Elizabeth A.; Donner, Elizabeth; Liu, Qiang; Ahmed, Regina; Morell, Matthew K.; Emes, Michael J.; Tetlow, Ian J.

    2012-01-01

    amylose extender (ae−) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae− maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein–protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae− mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272–Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16–20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-32P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the granules is a result of physical association with other enzymes of starch synthesis. In addition, an Mn2+-based affinity ligand, specific for phosphoproteins, was used to show that the granule-bound forms of SBEIIb in the wild-type and ae1.2 were phosphorylated, as was the granule-bound form of SBEI found in ae1.2 starch. The data strongly support the hypothesis that the complement of heteromeric complexes of proteins involved in amylopectin synthesis contributes to the fine structure and architecture of the starch granule. PMID:22121198

  3. Accumulation of PrLeg, a Perilla legumin protein in potato tuber results in enhanced level of sulphur-containing amino acids.

    PubMed

    Goo, Young-Min; Kim, Tae-Won; Lee, Min-Kyung; Lee, Shin-Woo

    2013-09-01

    Potato is the fourth staple food in the world, following rice, wheat, and maize, whereas tubers contain high quality of starch, relatively high amounts of vitamin C and many other important substances. It also contains relatively good quality of protein (about 3 to 6% of the dried weight) and patatin, and 11S globulin is a major storage protein with high level of lysine. However, tuber protein contains relatively low amounts of sulphur-containing amino acids, which may result in low nutritional value. Recently, we cloned a gene encoding PrLeg polypeptide, a seed storage protein from Perilla, which contains relatively higher levels of sulphur-containing amino acids. We transformed PrLeg cDNA into a potato plant to over-express under the direction of the tuber-specific promoter, patatin. Most of the transgenic lines identified through PCR and RT-PCR analyses were able to accumulate high amount of prLeg transcript in their tuber tissue, while very little or no transcript that were detected in their leaf tissues. The level of methionine content was elevated up to three-fold compared to non-transgenic parental line, without any significant changes in other amino acids, suggesting that further research is required to get a deeper insight into their nutritional value. PMID:24161240

  4. Coinfection with recombinant vaccinia viruses expressing poliovirus P1 and P3 proteins results in polyprotein processing and formation of empty capsid structures.

    PubMed Central

    Ansardi, D C; Porter, D C; Morrow, C D

    1991-01-01

    The assembly process of poliovirus occurs via an ordered proteolytic processing of the capsid precursor protein, P1, by the virus-encoded proteinase 3CD. To further delineate this process, we have isolated a recombinant vaccinia virus which expresses, upon infection, the poliovirus P1 capsid precursor polyprotein with an authentic carboxy terminus. Coinfection of HeLa cells with the P1-expressing vaccinia virus and with a second recombinant vaccinia virus which expresses the poliovirus proteinase 3CD resulted in the correct processing of P1 to yield the three individual capsid proteins VP0, VP3, and VP1. When extracts from coinfected cells were fractionated on sucrose density gradients, the VP0, VP3, and VP1 capsid proteins were immunoprecipitated with type 1 poliovirus antisera from fractions corresponding to a sedimentation consistent for poliovirus 75S procapsids. Examination of these fractions by electron microscopy revealed structures which lacked electron-dense cores and which corresponded in size and shape to those expected for poliovirus empty capsids. We conclude that the expression of the two poliovirus proteins P1 and 3CD in coinfected cells is sufficient for the correct processing of the capsid precursor to VP0, VP3, and VP1 as well as for the assembly of poliovirus empty capsid-like structures. Images PMID:1848318

  5. Accumulation of radium in ferruginous protein bodies formed in lung tissue: association of resulting radiation hotspots with malignant mesothelioma and other malignancies

    PubMed Central

    Nakamura, Eizo; Makishima, Akio; Hagino, Kyoko; Okabe, Kazunori

    2009-01-01

    While exposure to fibers and particles has been proposed to be associated with several different lung malignancies including mesothelioma, the mechanism for the carcinogenesis is not fully understood. Along with mineralogical observation, we have analyzed forty-four major and trace elements in extracted asbestos bodies (fibers and proteins attached to them) with coexisting fiber-free ferruginous protein bodies from extirpative lungs of individuals with malignant mesothelioma. These observations together with patients’ characteristics suggest that inhaled iron-rich asbestos fibers and dust particles, and excess iron deposited by continuous cigarette smoking would induce ferruginous protein body formation resulting in ferritin aggregates in lung tissue. Chemical analysis of ferruginous protein bodies extracted from lung tissues reveals anomalously high concentrations of radioactive radium, reaching millions of times higher concentration than that of seawater. Continuous and prolonged internal exposure to hotspot ionizing radiation from radium and its daughter nuclides could cause strong and frequent DNA damage in lung tissue, initiate different types of tumour cells, including malignant mesothelioma cells, and may cause cancers. PMID:19644223

  6. Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells.

    PubMed

    Talib, Jihan; Davies, Michael J

    2016-06-01

    Smokers have an elevated risk of cardiovascular disease, but the origin(s) of this increased risk are incompletely defined. Evidence supports an accumulation of the oxidant-generating enzyme myeloperoxidase (MPO) in the inflamed artery wall, and smokers have high levels of SCN(-), a preferred MPO substrate, with this resulting in HOSCN formation. We hypothesised that HOSCN, a thiol-specific oxidant may target the iron-sulphur cluster of aconitase (both isolated, and within primary human coronary artery endothelial cells; HCAEC) resulting in enzyme dysfunction, release of iron, and conversion of the cytosolic isoform to iron response protein-1, which regulates intracellular iron levels. We show that exposure of isolated aconitase to increasing concentrations of HOSCN releases iron from the aconitase [Fe-S]4 cluster, and decreases enzyme activity. This is associated with protein thiol loss and modification of specific Cys residues in, and around, the [Fe-S]4 cluster. Exposure of HCAEC to HOSCN resulted in increased intracellular levels of chelatable iron, loss of aconitase activity and increased iron response protein-1 (IRP-1) activity. These data indicate HOSCN, an oxidant associated with oxidative stress in smokers, can induce aconitase dysfunction in human endothelial cells via Cys oxidation, damage to the [Fe-S]4 cluster, iron release and generation of IRP-1 activity, which modulates ferritin protein levels and results in dysregulation of iron metabolism. These data may rationalise, in part, the presence of increased levels of iron in human atherosclerotic lesions and contribute to increased oxidative damage and endothelial cell dysfunction in smokers. Similar reactions may occur at other sites of inflammation. PMID:26837749

  7. Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants

    PubMed Central

    2010-01-01

    Background The phloem of dicotyledonous plants contains specialized P-proteins (phloem proteins) that accumulate during sieve element differentiation and remain parietally associated with the cisternae of the endoplasmic reticulum in mature sieve elements. Wounding causes P-protein filaments to accumulate at the sieve plates and block the translocation of photosynthate. Specialized, spindle-shaped P-proteins known as forisomes that undergo reversible calcium-dependent conformational changes have evolved exclusively in the Fabaceae. Recently, the molecular characterization of three genes encoding forisome components in the model legume Medicago truncatula (MtSEO1, MtSEO2 and MtSEO3; SEO = sieve element occlusion) was reported, but little is known about the molecular characteristics of P-proteins in non-Fabaceae. Results We performed a comprehensive genome-wide comparative analysis by screening the M. truncatula, Glycine max, Arabidopsis thaliana, Vitis vinifera and Solanum phureja genomes, and a Malus domestica EST library for homologs of MtSEO1, MtSEO2 and MtSEO3 and identified numerous novel SEO genes in Fabaceae and even non-Fabaceae plants, which do not possess forisomes. Even in Fabaceae some SEO genes appear to not encode forisome components. All SEO genes have a similar exon-intron structure and are expressed predominantly in the phloem. Phylogenetic analysis revealed the presence of several subgroups with Fabaceae-specific subgroups containing all of the known as well as newly identified forisome component proteins. We constructed Hidden Markov Models that identified three conserved protein domains, which characterize SEO proteins when present in combination. In addition, one common and three subgroup specific protein motifs were found in the amino acid sequences of SEO proteins. SEO genes are organized in genomic clusters and the conserved synteny allowed us to identify several M. truncatula vs G. max orthologs as well as paralogs within the G. max genome. Conclusions The unexpected occurrence of forisome-like genes in non-Fabaceae plants may indicate that these proteins encode species-specific P-proteins, which is backed up by the phloem-specific expression profiles. The conservation of gene structure, the presence of specific motifs and domains and the genomic synteny argue for a common phylogenetic origin of forisomes and other P-proteins. PMID:20932300

  8. Feeding soy protein isolate prevents impairment of bone acquisition by western diets as a result of insulin signaling in bone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive consumption of high fat/high cholesterol “Western” diets during postnatal life results in increased energy intake, development of obesity and systemic insulin resistance. However, how this diet impairs bone development and remodeling is not well understood, and no effective dietary interve...

  9. Methotrexate treatment of FraX fibroblasts results in FMR1 transcription but not in detectable FMR1 protein levels

    PubMed Central

    2013-01-01

    Background Fragile X syndrome is caused by the loss of FMRP expression due to methylation of the FMR1 promoter. Treatment of fragile X syndrome patients’ lymphoblastoid cells with 5-azadeoxycytidine results in demethylation of the promoter and reactivation of the gene. The aim of the study was to analyze if methotrexate, an agent which also reduces DNA methylation but with less toxicity than 5-azadeoxycytidine, has therapeutic potential in fragile X syndrome. Methods Fibroblasts of fragile X syndrome patients were treated with methotrexate in concentrations ranging from 1 to 4 μg/ml for up to 14 days. FMR1 and FMRP expression were analyzed by quantitative PCR and western blotting. Results FMR1 mRNA was detected and levels correlated positively with methotrexate concentrations and time of treatment, but western blotting did not show detectable FMRP levels. Conclusions We show that it is possible to reactivate FMR1 transcription in fibroblasts of fragile X syndrome patients by treatment with methotrexate. However, we were not able to show FMRP expression, possibly due to the reduced translation efficacy caused by the triplet repeat extension. Unless FMR1 reactivation is more effective in vivo our results indicate that methotrexate has no role in the treatment of fragile X syndrome. PMID:24020679

  10. The crystal structure of ilinskite, NaCu5O2(SeO3)2Cl3, and review of mixed-ligand CuOmCln coordination geometries in minerals and inorganic compounds

    NASA Astrophysics Data System (ADS)

    Krivovichev, Sergey V.; Filatov, Stanislav K.; Vergasova, Lidiya P.

    2013-04-01

    The crystal structure of ilinskite, NaCu5O2(SeO3)2Cl3, a rare copper selenite chloride from volcanic fumaroles of the Great fissure Tolbachik eruption (Kamchatka peninsula, Russia), has been solved by direct methods and refined to R 1 = 0.044 on the basis of 2720 unique observed reflections. The mineral is orthorhombic, Pnma, a = 17.769(7), b = 6.448(3), c = 10.522(4) Å, V = 1205.6(8) Å3, Z = 4. The The CuOmCln coordination polyhedra share edges to form tetramers that have 'additional' O1 and O2 atoms as centers. The O1Cu4 and O2Cu4 tetrahedra share common Cu atoms to form [O2Cu5]6+ sheets. The SeO3 groups and Cl atoms are adjacent to the [O2Cu5]6+ sheets to form complex layers parallel to (100). The Na+ cations are located in between the layers. A review of mixed-ligand CuOmCln coordination polyhedra in minerals and inorganic compounds is given. There are in total 26 stereochemically different mixed-ligand Cu-O-Cl coordinations.

  11. Expression of the hypersensitive response-assisting protein in Arabidopsis results in harpin-dependent hypersensitive cell death in response to Erwinia carotovora.

    PubMed

    Pandey, Ajay-Kumar; Ger, Mang-Jye; Huang, Hsiang-En; Yip, Mei-Kuen; Zeng, Jiqing; Feng, Teng-Yung

    2005-11-01

    Active defense mechanisms of plants against pathogens often include a rapid plant cell death known as the hypersensitive cell death (HCD). Hypersensitive response-assisting protein (HRAP) isolated from sweet pepper intensifies the harpin(Pss)-mediated HCD. Here we demonstrate that constitutive expression of the hrap gene in Arabidopsis results in an enhanced disease resistance towards soft rot pathogen, E. carotovora subsp. carotovora. This resistance was due to the induction of HCD since different HCD markers viz. Athsr3, Athsr4, ion leakage, H(2)O(2) and protein kinase were induced. One of the elicitor harpin proteins, HrpN, from Erwinia carotovora subsp. carotovora was able to induce a stronger HCD in hrap-Arabidopsis than non-transgenic controls. To elucidate the role of HrpN, we used E. carotovora subsp. carotovora defective in HrpN production. The hrpN(-) mutant did not induce disease resistance or HCD markers in hrap-Arabidopsis. These results imply that the disease resistance of hrap-Arabidopsis against a virulent pathogen is harpin dependent. PMID:16270229

  12. Coupling Peptide Antigens to Virus-Like Particles or to Protein Carriers Influences the Th1/Th2 Polarity of the Resulting Immune Response.

    PubMed

    Pomwised, Rattanaruji; Intamaso, Uraiwan; Teintze, Martin; Young, Mark; Pincus, Seth H

    2016-01-01

    We have conjugated the S9 peptide, a mimic of the group B streptococcal type III capsular polysaccharide, to different carriers in an effort to elicit an optimal immune response. As carriers, we utilized the soluble protein keyhole limpet hemocyanin and virus-like particles (VLPs) from two plant viruses, Cowpea Chlorotic Mottle Virus and Cowpea Mosaic Virus. We have found that coupling the peptide to the soluble protein elicits a Th2 immune response, as evidenced by the production of the peptide-specific IgG1 antibody and IL-4/IL-10 production in response to antigen stimulation, whereas the peptide conjugated to VLPs elicited a Th1 response (IgG2a, IFN-γ). Because the VLPs used as carriers package RNA during the assembly process, we hypothesize that this effect may result from the presence of nucleic acid in the immunogen, which affects the Th1/Th2 polarity of the response. PMID:27164150

  13. Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation

    SciTech Connect

    Corral, J.; Forster, A.; Thompson, S.; Rabbitts, T.H. ); Lampert, F. ); Kaneko, Y. ); Slater, R.; Kroes, W.G. ); Van Der Schoot, C.E. ); Ludwig, W.D. ); Karpas, A. ); Pocock, C.; Cotter, F. )

    1993-09-15

    The MLL gene, on human chromosome 11q23, undergoes chromosomal translocation in acute leukemias, resulting in gene fusion with AF4 (chromosome 4) and ENL (chromosome 19). The authors report here translocation of MLL with nine different chromosomes and two paracentric chromosome 11 deletions in early B cell, B- or T-cell lineage, or nonlymphocytic acute leukemias. The mRNA translocation junction from 22t(4;11) patients, including six adult leukemias, and nine t(11;19) tumors reveals a remarkable conservation of breakpoints within MLL, AF4, or ENL genes, irrespective of tumor phenotype. Typically, the breakpoints are upstream of the zinc-finger region of MLL, and deletion of this region can accompany translocation, supporting the der(11) chromosome as the important component in leukemogenesis. Partial sequence of a fusion between MLL and the AFX1 gene from chromosome X shows the latter to be rich in Ser/Pro codons, like the ENL mRNA. These data suggest that the heterogeneous 11q23 abnormalities might cause attachment of Ser/Pro-rich segments to the NH[sub 2] terminus of MLL, lacking the zinc-finger region, and that translocation occurs in early hematopoietic cells, before commitment to distinct lineages. 36 refs., 2 figs.

  14. Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer.

    PubMed

    Pertega-Gomes, Nelma; Vizcaino, Jose R; Felisbino, Sergio; Warren, Anne Y; Shaw, Greg; Kay, Jonathan; Whitaker, Hayley; Lynch, Andy G; Fryer, Lee; Neal, David E; Massie, Charles E

    2015-08-28

    Monocarboxylate Transporter 2 (MCT2) is a major pyruvate transporter encoded by the SLC16A7 gene. Recent studies pointed to a consistent overexpression of MCT2 in prostate cancer (PCa) suggesting MCT2 as a putative biomarker and molecular target. Despite the importance of this observation the mechanisms involved in MCT2 regulation are unknown. Through an integrative analysis we have discovered that selective demethylation of an internal SLC16A7/MCT2 promoter is a recurrent event in independent PCa cohorts. This demethylation is associated with expression of isoforms differing only in 5'-UTR translational control motifs, providing one contributing mechanism for MCT2 protein overexpression in PCa. Genes co-expressed with SLC16A7/MCT2 also clustered in oncogenic-related pathways and effectors of these signalling pathways were found to bind at the SLC16A7/MCT2 gene locus. Finally, MCT2 knock-down attenuated the growth of PCa cells. The present study unveils an unexpected epigenetic regulation of SLC16A7/MCT2 isoforms and identifies a link between SLC16A7/MCT2, Androgen Receptor (AR), ETS-related gene (ERG) and other oncogenic pathways in PCa. These results underscore the importance of combining data from epigenetic, transcriptomic and protein level changes to allow more comprehensive insights into the mechanisms underlying protein expression, that in our case provide additional weight to MCT2 as a candidate biomarker and molecular target in PCa. PMID:26035357

  15. ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented.

    PubMed

    Saraswathi, Saras; Sundaram, Suresh; Sundararajan, Narasimhan; Zimmermann, Michael; Nilsen-Hamilton, Marit

    2011-01-01

    A combination of Integer-Coded Genetic Algorithm (ICGA) and Particle Swarm Optimization (PSO), coupled with the neural-network-based Extreme Learning Machine (ELM), is used for gene selection and cancer classification. ICGA is used with PSO-ELM to select an optimal set of genes, which is then used to build a classifier to develop an algorithm (ICGA_PSO_ELM) that can handle sparse data and sample imbalance. We evaluate the performance of ICGA-PSO-ELM and compare our results with existing methods in the literature. An investigation into the functions of the selected genes, using a systems biology approach, revealed that many of the identified genes are involved in cell signaling and proliferation. An analysis of these gene sets shows a larger representation of genes that encode secreted proteins than found in randomly selected gene sets. Secreted proteins constitute a major means by which cells interact with their surroundings. Mounting biological evidence has identified the tumor microenvironment as a critical factor that determines tumor survival and growth. Thus, the genes identified by this study that encode secreted proteins might provide important insights to the nature of the critical biological features in the microenvironment of each tumor type that allow these cells to thrive and proliferate. PMID:21233525

  16. First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles.

    PubMed

    Gabl, R; Feucht, H-D; Zeininger, H; Eckstein, G; Schreiter, M; Primig, R; Pitzer, D; Wersing, W

    2004-01-15

    A novel integrated bio-sensor technology based on thin-film bulk acoustic wave resonators on silicon is presented and the feasibility of detecting DNA and protein molecules proofed. The detection principle of these sensors is label-free and relies on a resonance frequency shift caused by mass loading of an acoustic resonator, a principle very well known from quartz crystal micro balances. Integrated ZnO bulk acoustic wave resonators with resonance frequencies around 2 GHz have been fabricated, employing an acoustic mirror for isolation from the silicon substrate. DNA oligos have been thiol-coupled to the gold electrode by on-wafer dispensing. In a further step, samples have either been hybridised or alternatively a protein has been coupled to the receptor. The measurement results show the new bio-sensor being capable of both, detecting proteins as well as the DNA hybridisation without using a label. Due to the substantially higher oscillation frequency, these sensors already show much higher sensitivity and resolution comparable to quartz crystal micro balances. The potential for these sensors and sensors arrays as well as technological challenges will be discussed in detail. PMID:14683645

  17. Differences in folate-protein interactions result in differing inhibition of native rat liver and recombinant glycine N-methyltransferase by 5-methyltetrahydrofolate

    SciTech Connect

    Luka, Zigmund; Pakhomova, Svetlana; Loukachevitch, Lioudmila V; Newcomer, Marcia E; Wagner, Conrad

    2012-06-27

    Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. In mammalian liver it reduces S-adenosylmethionine levels by using it to methylate glycine, producing N-methylglycine (sarcosine) and S-adenosylhomocysteine. GNMT is inhibited by binding two molecules of 5-methyltetrahydrofolate (mono- or polyglutamate forms) per tetramer of the active enzyme. Inhibition is sensitive to the status of the N-terminal valine of GNMT and to polyglutamation of the folate inhibitor. It is inhibited by pentaglutamate form more efficiently compared to monoglutamate form. The native rat liver GNMT contains an acetylated N-terminal valine and is inhibited much more efficiently compared to the recombinant protein expressed in E. coli where the N-terminus is not acetylated. In this work we used a protein crystallography approach to evaluate the structural basis for these differences. We show that in the folate-GNMT complexes with the native enzyme, two folate molecules establish three and four hydrogen bonds with the protein. In the folate-recombinant GNMT complex only one hydrogen bond is established. This difference results in more effective inhibition by folate of the native liver GNMT activity compared to the recombinant enzyme.

  18. Deletion mutagenesis within the dimerization initiation site of human immunodeficiency virus type 1 results in delayed processing of the p2 peptide from precursor proteins.

    PubMed

    Liang, C; Rong, L; Cherry, E; Kleiman, L; Laughrea, M; Wainberg, M A

    1999-07-01

    Previous work has shown that deletions of genomic segments at nucleotide (nt) positions +238 to +253, i.e., construct BH10-LD3, or nt positions +261 to +274, i.e., construct BH10-LD4, within the human immunodeficiency virus type 1 (HIV-1) dimerization initiation site (DIS) destroyed DIS secondary structure and dramatically reduced viral replication capacity. Surprisingly, two point mutations located within the viral peptide 2 (p2) and nucleocapsid (NC) protein termed MP2 and MNC, respectively, were able to compensate for this defect. Since the MP2 mutation involves an amino acid substitution near the cleavage site between p2 and NC, we investigated the effects of the above-mentioned deletions on the processing of Gag proteins. Immunoprecipitation assays performed with monoclonal antibodies against viral capsid (CA) (p24) protein showed that p2 was cleaved from CA with less efficiency in viruses that contained the LD3 and LD4 deletions than in wild-type viruses. The presence of the two compensatory mutations, MP2 and MNC, increased the efficiency of the cleavage of p2 from CA, but neither mutation alone had this effect or was sufficient to compensate for the observed impairment in infectiousness. A virus that contained both of the above-mentioned deletions within the DIS was also impaired in regard to processing and infectiousness, and it could likewise be compensated by the MP2 and MNC point mutations. These results suggest that the DIS region of HIV-1 RNA plays an important role in the processing of Gag proteins. PMID:10364374

  19. Serological diagnosis of hantavirus infections by an enzyme-linked immunosorbent assay based on detection of immunoglobulin G and M responses to recombinant nucleocapsid proteins of five viral serotypes.

    PubMed Central

    Elgh, F; Lundkvist, A; Alexeyev, O A; Stenlund, H; Avsic-Zupanc, T; Hjelle, B; Lee, H W; Smith, K J; Vainionpää, R; Wiger, D; Wadell, G; Juto, P

    1997-01-01

    Worldwide, hantaviruses cause more than 100,000 human infections annually. Rapid and accurate methods are important both in monitoring acute infections and for epidemiological studies. We and others have shown that the amino termini of hantavirus nucleocapsid proteins (Ns) are sensitive tools for the detection of specific antibodies in hantavirus disease. Accordingly, we expressed truncated Ns (amino acids 1 to 117) in Escherichia coli from the five hantaviruses known to be pathogenic to man; Hantaan (HTN), Seoul (SEO), Dobrava (DOB), Sin Nombre (SN), and Puumala (PUU) viruses. In order to obtain pure antigens for use in an enzyme-linked immunosorbent assay (ELISA), the recombinant proteins were purified by polyhistidine-metal chelate affinity chromatography. Polyclonal animal antisera and a panel of serum specimens from hantavirus-infected individuals from Scandinavia, Slovenia, Russia, Korea, China, and the United States were used to evaluate the usefulness of the method. With both human and animal sera, it was possible to designate the antibody response into two groups: those with HTN, SEO, and DOB virus reactivity on the one hand and those with SN and PUU virus reactivity on the other. In sera from Scandinavia, European Russia, and the United States, the antibody response was directed mainly to the PUU and SN virus group. The sera from Asia reacted almost exclusively with the HTN, SEO, and DOB types of viruses. This was true for both the immunoglobulin M (IgM) and IgG antibody responses, indicating that this type of discrimination can be done during the acute phase of hantavirus infections. Both the HTN, SEO, and DOB virus and the PUU and SN virus types of antibody response patterns were found in patients from the Balkan region (Solvenia). PMID:9114393

  20. In vivo particle polymorphism results from deletion of a N-terminal peptide molecular switch in brome mosaic virus capsid protein.

    PubMed

    Calhoun, Shauni L; Speir, Jeffrey A; Rao, A L N

    2007-08-01

    The interaction between brome mosaic virus (BMV) coat protein (CP) and viral RNA is a carefully orchestrated process resulting in the formation of homogeneous population of infectious virions with T=3 symmetry. Expression in vivo of either wild type or mutant BMV CP through homologous replication never results in the assembly of aberrant particles. In this study, we report that deletion of amino acid residues 41-47 from the N-proximal region of BMV CP resulted in the assembly of polymorphic virions in vivo. Purified virions from symptomatic leaves remain non-infectious and Northern blot analysis of virion RNA displayed packaging defects. Biochemical characterization of variant CP by circular dichroism and MALDI-TOF, respectively, revealed that the engineered deletion affected the protein structure and capsid dynamics. Most significantly, CP subunits dissociated from polymorphic virions are incompetent for in vitro reassembly. Based on these observations, we propose a chaperon-mediated mechanism for the assembly of variant CP in vivo and also hypothesize that (41)KAIKAIA(47) N-proximal peptide functions as a molecular switch in regulating T=3 virion symmetry. PMID:17449079

  1. Aberrant splicing of androgenic receptor mRNA results in synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity

    SciTech Connect

    Ris-Stalpers, C.; Kuiper, G.G.J.M.; Faber, P.W.; van Rooij, H.C.J.; Degenhart, H.J.; Trapman, J.; Brinkmann, A.O. ); Schweikert, H.U. ); Zegers, N.D. ); Hodgins, M.B. )

    1990-10-01

    Androgen insensitivity is a disorder in which the correct androgen response in an androgen target cell is impaired. The clinical symtpoms of this X chromosome-linked syndrome are presumed to be caused by mutations in the androgen receptor gene. The authors report a G {r arrow} T mutation in the splice donor site of intron 4 of the androgen receptor gene of a 46, XY subject lacking detectable androgen binding to the receptor and with the complete form of androgen insensitivity. This point mutation completely abolishes normal RNA splicing at the exon 4/intron 4 boundary and results in the activation of a cryptic splice donor site in exon 4, which leads to the deletion of 123 nucleotides from the mRNA. Translation of the mutant mRNA results in an androgen receptor protein {approx}5 kDa smaller than the wild type. This mutated androgen receptor protein was unable to bind androgens and unable to activate transcription of an androgen-regulated reporter gene construct. This mutation in the human androgen receptor gene demonstrates the importance of an intact steroid-binding domain for proper androgen receptor functioning in vivo.

  2. Knockdown of the Arabidopsis thaliana chloroplast protein disulfide isomerase 6 results in reduced levels of photoinhibition and increased D1 synthesis in high light.

    PubMed

    Wittenberg, Gal; Levitan, Alexander; Klein, Tamir; Dangoor, Inbal; Keren, Nir; Danon, Avihai

    2014-06-01

    A chloroplast protein disulfide isomerase (PDI) was previously proposed to regulate translation of the unicellular green alga Chlamydomonas reinhardtii chloroplast psbA mRNA, encoding the D1 protein, in response to light. Here we show that AtPDI6, one of 13 Arabidopsis thaliana PDI genes, also plays a role in the chloroplast. We found that AtPDI6 is targeted and localized to the chloroplast. Interestingly, AtPDI6 knockdown plants displayed higher resistance to photoinhibition than wild-type plants when exposed to a tenfold increase in light intensity. The AtPDI6 knockdown plants also displayed a higher rate of D1 synthesis under a similar light intensity. The increased resistance to photoinhibition may not be rationalized by changes in antenna or non-photochemical quenching. Thus, the increased D1 synthesis rate, which may result in a larger proportion of active D1 under light stress, may led to the decrease in photoinhibition. These results suggest that, although the D1 synthesis rates observed in wild-type plants under high light intensities are elevated, repair can potentially occur faster. The findings implicate AtPDI6 as an attenuator of D1 synthesis, modulating photoinhibition in a light-regulated manner. PMID:24684167

  3. Combination of a novel photosensitizer DTPP with 650 nm laser results in efficient apoptosis, arresting cell cycle and cytoskeleton protein changes in lung cancer A549 cells.

    PubMed

    Wang, H; Zhang, H M; Yin, H J; Wei, M Q; Sha, H; Liu, T J; Li, Y X

    2015-01-01

    Photodynamic therapy (PDT) using photosensitized reaction to produce cytotoxicity was used for cancer therapy in recent years. To study the effectiveness of PDT mediated by a novel photosensitizer (PS), DTPP 5-(4'-(2″-dicarboxymethylamino)acetamidophenyl)-10, 15, 20-triphenylporphyrin, on lung cancer A549 cell lines in vitro, DTPP was employed in different concentrations (2, 4, 6, 8, 10, 12, 15, 20, 25, and 30 μg/ml) and combined with 650 nm laser of different power densities (0.6, 1.2, 2.4, 4.8, 7.2, and 9.6 J/cm(2)) that resulted in obvious inhibition of cell proliferation and apoptosis. Results showed that cell survival rates have a dependent relationship with time and PS concentrations and no significant cytotoxicity was induced by DTPP itself. Apoptosis and cell cycle S arrest were observed; cytoskeleton morphologic observation revealed collapse, sparkling, and shrunken shapes. Apoptosis-related protein caspase-3 overexpression was detected while caspase-9, bcl-2, and cytoskeleton protein beta-catenin were in low levels of expression than the control. Cleavage of beta-catenin by caspase-3 or other proteases from the lysosome might be the main reason for the cytoskeleton collapse as beta-tubulin and actin were at a stable level 12 h after PDT. This paper gives a better understanding of the effectiveness of DTPP-mediated PDT in lung cancer A549 cells both with regard to dosimetry and apoptosis changes. PMID:24964751

  4. Addiction to MTH1 protein results in intense expression in human breast cancer tissue as measured by liquid chromatography-isotope-dilution tandem mass spectrometry.

    PubMed

    Coskun, Erdem; Jaruga, Pawel; Jemth, Ann-Sofie; Loseva, Olga; Scanlan, Leona D; Tona, Alessandro; Lowenthal, Mark S; Helleday, Thomas; Dizdaroglu, Miral

    2015-09-01

    MTH1 protein sanitizes the nucleotide pool so that oxidized 2'-deoxynucleoside triphosphates (dNTPs) cannot be used in DNA replication. Cancer cells require MTH1 to avoid incorporation of oxidized dNTPs into DNA that results in mutations and cell death. Inhibition of MTH1 eradicates cancer, validating MTH1 as an anticancer target. By overexpressing MTH1, cancer cells may mediate cancer growth and resist therapy. To date, there is unreliable evidence suggesting that MTH1 is increased in cancer cells, and available methods to measure MTH1 levels are indirect and semi-quantitative. Accurate measurement of MTH1 in disease-free tissues and malignant tumors of patients may be essential for determining if the protein is truly upregulated in cancers, and for the development and use of MTH1 inhibitors in cancer therapy. Here, we present a novel approach involving liquid chromatography-isotope-dilution tandem mass spectrometry to positively identify and accurately quantify MTH1 in human tissues. We produced full length (15)N-labeled MTH1 and used it as an internal standard for the measurements. Following trypsin digestion, seven tryptic peptides of both MTH1 and (15)N-MTH1 were identified by their full scan and product ion spectra. These peptides provided a statistically significant protein score that would unequivocally identify MTH1. Next, we identified and quantified MTH1 in human disease-free breast tissues and malignant breast tumors, and in four human cultured cell lines, three of which were cancer cells. Extreme expression of MTH1 in malignant breast tumors was observed, suggesting that cancer cells are addicted to MTH1 for their survival. The approach described is expected to be applicable to the measurement of MTH1 levels in malignant tumors vs. surrounding disease-free tissues in cancer patients. This attribute may help develop novel treatment strategies and MTH1 inhibitors as potential drugs, and guide therapies. PMID:26202347

  5. Rapamycin and chloroquine: the in vitro and in vivo effects of autophagy-modifying drugs show promising results in valosin containing protein multisystem proteinopathy.

    PubMed

    Nalbandian, Angèle; Llewellyn, Katrina J; Nguyen, Christopher; Yazdi, Puya G; Kimonis, Virginia E

    2015-01-01

    Mutations in the valosin containing protein (VCP) gene cause hereditary Inclusion body myopathy (hIBM) associated with Paget disease of bone (PDB), frontotemporal dementia (FTD), more recently termed multisystem proteinopathy (MSP). Affected individuals exhibit scapular winging and die from progressive muscle weakness, and cardiac and respiratory failure, typically in their 40s to 50s. Histologically, patients show the presence of rimmed vacuoles and TAR DNA-binding protein 43 (TDP-43)-positive large ubiquitinated inclusion bodies in the muscles. We have generated a VCPR155H/+ mouse model which recapitulates the disease phenotype and impaired autophagy typically observed in patients with VCP disease. Autophagy-modifying agents, such as rapamycin and chloroquine, at pharmacological doses have previously shown to alter the autophagic flux. Herein, we report results of administration of rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, and chloroquine, a lysosomal inhibitor which reverses autophagy by accumulating in lysosomes, responsible for blocking autophagy in 20-month old VCPR155H/+ mice. Rapamycin-treated mice demonstrated significant improvement in muscle performance, quadriceps histological analysis, and rescue of ubiquitin, and TDP-43 pathology and defective autophagy as indicated by decreased protein expression levels of LC3-I/II, p62/SQSTM1, optineurin and inhibiting the mTORC1 substrates. Conversely, chloroquine-treated VCPR155H/+ mice revealed progressive muscle weakness, cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-I/II, p62/SQSTM1, and optineurin expression levels. Our in vitro patient myoblasts studies treated with rapamycin demonstrated an overall improvement in the autophagy markers. Targeting the mTOR pathway ameliorates an increasing list of disorders, and these findings suggest that VCP disease and related neurodegenerative multisystem proteinopathies can now be included as disorders that can potentially be ameliorated by rapalogs. PMID:25884947

  6. Characterization of the non-sexual flocculation of fission yeast cells that results from the deletion of ribosomal protein L32.

    PubMed

    Liu, Zhonghua; Li, Rongpeng; Dong, Qing; Bian, Lezhi; Li, Xuesong; Yuan, Sheng

    2015-05-01

    We recently reported that deleting either of the two paralogous rpl32 genes resulted in non-sexual flocculation in fission yeast. This study represents the first report that these non-sexually flocculating fission yeast cells exhibit a thicker cell wall, an increased wall protein content with smeared glycosylated wall proteins, and increased cell wall polysaccharide content and adhesin-binding sugar residues (i.e. glucose, mannose and galactose). These changes reflect the wall features of flocculating cells that mediate recognition and connections between cells. Furthermore, this study demonstrates that this non-sexual flocculation is an adhesin-mediated process: (a) the transcription levels of several members of the Mam3/Map4 family of adhesins (i.e. PFL3, PFL7 and PFL6) and a Flo11-like adhesin protein are upregulated in rpl32-1Δ and rpl32-2Δ cells; (b) this non-sexual flocculation of rpl32-1Δ and rpl32-2Δ cells was eliminated by heating or enzyme digestion; (c) this non-sexual flocculation of rpl32-1Δ and rpl32-2Δ cells was enhanced by Ca(2+) and some other divalent metal ions, which stabilize the active conformation of adhesins; and (d) this non-sexual flocculation of rpl32-1Δ and rpl32-2Δ cells was competitively inhibited by glucose, galactose or mannose rather than only by galactose, as reported previously. Although different adhesin genes are selectively expressed under particular physiological or environmental conditions, the functions of these adhesins are the same and are interchangeable. PMID:25704380

  7. A spontaneous deletion within the desmoglein 3 extracellular domain of mice results in hypomorphic protein expression, immunodeficiency, and a wasting disease phenotype.

    PubMed

    Kountikov, Evgueni I; Poe, Jonathan C; Maclver, Nancie J; Rathmell, Jeffrey C; Tedder, Thomas F

    2015-03-01

    Desmoglein 3 is a transmembrane component of desmosome complexes that mediate epidermal cell-to-cell adhesion and tissue integrity. Antibody blockade of desmoglein 3 function in pemphigus vulgaris patients leads to skin blistering (acantholysis) and oral mucosa lesions. Desmoglein 3 deficiency in mice leads to a phenotype characterized by cyclic alopecia in addition to the dramatic skin and mucocutaneous acantholysis observed in pemphigus patients. In this study, mice that developed an overt squeaky (sqk) phenotype were identified with obstructed airways, cyclic hair loss, and severe immunodeficiency subsequent to the development of oral lesions and malnutrition. Single-nucleotide polymorphism-based quantitative trait loci mapping revealed a genetic deletion that resulted in expression of a hypomorphic desmoglein 3 protein with a truncation of an extracellular cadherin domain. Because hypomorphic expression of a truncated desmoglein 3 protein led to a spectrum of severe pathology not observed in mice deficient in desmoglein 3, similar human genetic alterations may also disrupt desmosome function and induce a disease course distinct from pathogenesis of pemphigus vulgaris. PMID:25542773

  8. Isoflurane anesthesia results in reversible ultrastructure and occludin tight junction protein expression changes in hippocampal blood-brain barrier in aged rats.

    PubMed

    Cao, Yiyun; Ni, Cheng; Li, Zhengqian; Li, Lunxu; Liu, Yajie; Wang, Chunyi; Zhong, Yanfeng; Cui, Dehua; Guo, Xiangyang

    2015-02-01

    The underlying mechanism of isoflurane-induced cognitive dysfunction in older individuals is unknown. In this study, the effects of isoflurane exposure on the hippocampal blood-brain barrier (BBB) in aged rats were investigated because it was previously shown that BBB disruption involves in cognitive dysfunction. Twenty-month-old rats randomly received 1.5% isoflurane or vehicle gas as control. Hippocampal BBB ultrastructure was analyzed by transmission electron microscopy and expression of tight junction proteins was measured by western blot analysis. BBB permeability was detected with sodium fluorescein extravasation and further confirmed by immunoglobulin G immunohistochemistry. Spatial learning and memory were assessed by the Morris water maze test. Isoflurane anesthesia resulted in reversible time-dependent BBB ultrastructure morphological damage and significant decreases in expression of the tight junction proteins occludin, which contributed to sodium fluorescein and IgG leakage. Rats with isoflurane exposure also showed significant cognitive deficits in the Morris water maze test. This in vivo data indicate that occludin down-regulation may be one of the mediators of isoflurane-induced hippocampus BBB disruption, and may contribute to hippocampus-dependent cognitive impairment after isoflurane exposure in aged rats. PMID:25524410

  9. A Spontaneous Deletion within the Desmoglein 3 Extracellular Domain of Mice Results in Hypomorphic Protein Expression, Immunodeficiency, and a Wasting Disease Phenotype

    PubMed Central

    Kountikov, Evgueni I.; Poe, Jonathan C.; Maclver, Nancie J.; Rathmell, Jeffrey C.; Tedder, Thomas F.

    2016-01-01

    Desmoglein 3 is a transmembrane component of desmosome complexes that mediate epidermal cell-to-cell adhesion and tissue integrity. Antibody blockade of desmoglein 3 function in pemphigus vulgaris patients leads to skin blistering (acantholysis) and oral mucosa lesions. Desmoglein 3 deficiency in mice leads to a phenotype characterized by cyclic alopecia in addition to the dramatic skin and mucocutaneous acantholysis observed in pemphigus patients. In this study, mice that developed an overt squeaky (sqk) phenotype were identified with obstructed airways, cyclic hair loss, and severe immunodeficiency subsequent to the development of oral lesions and malnutrition. Single-nucleotide polymorphism–based quantitative trait loci mapping revealed a genetic deletion that resulted in expression of a hypomorphic desmoglein 3 protein with a truncation of an extracellular cadherin domain. Because hypomorphic expression of a truncated desmoglein 3 protein led to a spectrum of severe pathology not observed in mice deficient in desmoglein 3, similar human genetic alterations may also disrupt desmosome function and induce a disease course distinct from pathogenesis of pemphigus vulgaris. PMID:25542773

  10. A zebrafish model of dyskeratosis congenita reveals hematopoietic stem cell formation failure resulting from ribosomal protein-mediated p53 stabilization.

    PubMed

    Pereboom, Tamara C; van Weele, Linda J; Bondt, Albert; MacInnes, Alyson W

    2011-11-17

    Dyskeratosis congenita (DC) is a bone marrow failure disorder characterized by shortened telomeres, defective stem cell maintenance, and highly heterogeneous phenotypes affecting predominantly tissues that require high rates of turnover. Here we present a mutant zebrafish line with decreased expression of nop10, one of the known H/ACA RNP complex genes with mutations linked to DC. We demonstrate that this nop10 loss results in 18S rRNA processing defects and collapse of the small ribosomal subunit, coupled to stabilization of the p53 tumor suppressor protein through small ribosomal proteins binding to Mdm2. These mutants also display a hematopoietic stem cell deficiency that is reversible on loss of p53 function. However, we detect no changes in telomere length in nop10 mutants. Our data support a model of DC whereupon in early development mutations involved in the H/ACA complex contribute to bone marrow failure through p53 deregulation and loss of initial stem cell numbers while their role in telomere maintenance does not contribute to DC until later in life. PMID:21921046

  11. Secondary structure and shape of plasma sex steroid-binding protein--comparison with domain G of laminin results in a structural model of plasma sex steroid-binding protein.

    PubMed

    Beck, K; Gruber, T M; Ridgway, C C; Hughes, W; Sui, L; Pétra, P H

    1997-07-01

    We have analyzed the secondary structure, shape and dimensions of plasma sex steroid-binding protein (SBP) by CD, size-exclusion chromatography and electron microscopy. CD spectra show extrema at 186 nm and 216 nm characteristic for beta-sheet structures. Analysis with different algorithms indicates 15% alpha-helix, 43% beta-sheet and 10-16% beta-turn structures. An irreversible structural change is observed upon heating above 60 degrees C, which correlates with the loss of steroid-binding activity. As the SBP sequence shows similarity with domains of several multidomain proteins, including laminins, we evaluated the structure of domain G of laminin-1. The CD spectrum shows extrema at 200 nm and 216 nm. Deconvolution results in 13% alpha-helix, 32% beta-sheet and 15% beta-turn structures. Steroid-binding assays indicate that laminin and fragments thereof have no activity. Size-exclusion chromatography reveals that SBP has an extended shape and can be modeled as a cylinder with a length and diameter of 23 nm and 3 nm, respectively. This shape and the dimensions are in agreement with the appearance on electron micrographs. We propose a model for the structure of SBP in which two monomers assemble head to head with the steroid-binding site located in the center of the rod-like particle. PMID:9249045

  12. Heat shock protein 70 and nitric oxide concentrations in non-tumorous and neoplastic canine mammary tissues: preliminary results - Short communication.

    PubMed

    Szczubiał, Marek; Urban-Chmiel, Renata; Łopuszyński, Wojciech

    2015-06-01

    The concentrations of heat shock protein 70 (Hsp70) and nitric oxide ions (NO), measured as nitrite, were determined in canine mammary tumours and nontumorous mammary gland tissues. The concentrations of Hsp70 and NO were significantly higher in both benign and malignant tumours than in non-tumorous mammary tissues. Hsp70 concentration decreased with the increase in the grade of histological malignancy. A strong positive correlation was found between the concentrations of Hsp70 and NO in the benign tumours as well as in grade I and grade II malignant tumours. The results indicate that the process of neoplastic transformation in the canine mammary gland is related to a significant increase in Hsp70 and NO concentration in tumour tissues, and an interdependence between Hsp70 and nitrite ion production can be observed. PMID:26051259

  13. RNA Interference of Odorant-Binding Protein 2 (OBP2) of the Cotton Aphid, Aphis gossypii (Glover), Resulted in Altered Electrophysiological Responses.

    PubMed

    Rebijith, K B; Asokan, R; Hande, H Ranjitha; Kumar, N K Krishna; Krishna, V; Vinutha, J; Bakthavatsalam, N

    2016-01-01

    Aphis gossypii (Glover) (Hemiptera: Aphididae) is a highly invasive pest that feeds primarily on phloem resulting in severe economic loss to growers. A. gossypii has cosmopolitan distribution with broad host range, polyphenism, parthenogenetic mode of reproduction, vectoring abilities, and host alteration which has profound influence on its management. Odorant-binding proteins (OBPs) in insects are involved in olfaction, playing a key role in orienting the insect for feeding or oviposition. Recent studies revealed that OBP2 is found in both sensilla trichodea and sensilla basiconica and is preferentially binds to plant volatiles, thus playing crucial roles in host-seeking, detection of oviposition attractants, etc., However, information about the role of OBP2 in A. gossypii (AgOBP2) is still unavailable. In this study, we cloned and characterized OBP2, ortholog from A. gossypii, and the full-length AgOBP2 complementary DNA (cDNA) consisted of 859 bp with an open reading frame of 732 bp. Phylogenetic analysis resulted in grouping of AgOBP2 protein with members of the tribe Aphidini. Further, diet-mediated delivery of double-stranded RNA for AgOBP2 induced silencing, which was evaluated at 48 and 96 h. The reverse transcriptase real-time quantitative polymerase chain reaction (RTq-PCR) results revealed that the level of AgOBP2 messenger RNA (mRNA) was significantly reduced (55-77 %) in dsAgOBP2 treatment after 96 h as compared to the untreated control. The same was reiterated by the electrophysiological responses in the aphids which was reduced (>50 % at 0.25 μg/μl concentration) as compared to the untreated control. Thus, our results showed the potential of gene silencing, possibly to interfere with the odorant perception of A. gossypii for RNAi-mediated pest management. The results from our study provided the first evidence that AgOBP2 play crucial roles in host-seeking, detection of oviposition attractants, etc.; as a result, we suggests that OBP2 could potentially serve as a practicable target for RNAi-mediated gene silencing in hemipteran insect pest control. PMID:26432291

  14. Immune sensitization to methylene diphenyl diisocyanate (MDI) resulting from skin exposure: albumin as a carrier protein connecting skin exposure to subsequent respiratory responses

    PubMed Central

    2011-01-01

    Background Methylene diphenyl diisocyanate (MDI), a reactive chemical used for commercial polyurethane production, is a well-recognized cause of occupational asthma. The major focus of disease prevention efforts to date has been respiratory tract exposure; however, skin exposure may also be an important route for inducing immune sensitization, which may promote subsequent airway inflammatory responses. We developed a murine model to investigate pathogenic mechanisms by which MDI skin exposure might promote subsequent immune responses, including respiratory tract inflammation. Methods Mice exposed via the skin to varying doses (0.1-10% w/v) of MDI diluted in acetone/olive oil were subsequently evaluated for MDI immune sensitization. Serum levels of MDI-specific IgG and IgE were measured by enzyme-linked immunosorbant assay (ELISA), while respiratory tract inflammation, induced by intranasal delivery of MDI-mouse albumin conjugates, was evaluated based on bronchoalveolar lavage (BAL). Autologous serum IgG from "skin only" exposed mice was used to detect and guide the purification/identification of skin proteins antigenically modified by MDI exposure in vivo. Results Skin exposure to MDI resulted in specific antibody production and promoted subsequent respiratory tract inflammation in animals challenged intranasally with MDI-mouse albumin conjugates. The degree of (secondary) respiratory tract inflammation and eosinophilia depended upon the (primary) skin exposure dose, and was maximal in mice exposed to 1% MDI, but paradoxically limited in mice receiving 10-fold higher doses (e.g. 10% MDI). The major antigenically-modified protein at the local MDI skin exposure site was identified as albumin, and demonstrated biophysical changes consistent with MDI conjugation. Conclusions MDI skin exposure can induce MDI-specific immune sensitivity and promote subsequent respiratory tract inflammatory responses and thus, may play an important role in MDI asthma pathogenesis. MDI conjugation and antigenic modification of albumin at local (skin/respiratory tract) exposure sites may represent the common antigenic link connecting skin exposure to subsequent respiratory tract inflammation. PMID:21414210

  15. Deletion of Hemojuvelin, an Iron-Regulatory Protein, in Mice Results in Abnormal Angiogenesis and Vasculogenesis in Retina Along With Reactive Gliosis

    PubMed Central

    Tawfik, Amany; Gnana-Prakasam, Jaya P.; Smith, Sylvia B.; Ganapathy, Vadivel

    2014-01-01

    Purpose. Loss-of-function mutations in hemojuvelin (HJV) cause juvenile hemochromatosis, an iron-overload disease. Deletion of Hjv in mice results in excessive iron accumulation and morphologic changes in the retina. Here, we studied the retinal vasculature in Hjv−/− mice. Methods. Age-matched wild-type and Hjv−/− mice were used for fluorescein angiography and preparation of retinal cryosections, flat-mounts, and trypsin-digested blood vessels. Retinal angiogenesis was monitored by immunofluorescent detection of isolectin-B4, endoglin, and VEGF. Retinal vasculogenesis was monitored by immunofluorescent detection of collagen IV. Reactive gliosis was assessed based on the expression of glial fibrillary acidic protein and vimentin and CD11b/c as markers for Müller cells and microglia. Results. Between 18 and 24 months of age, retinas of Hjv−/− mice displayed marked disruptions in angiogenesis and vasculogenesis. Blood vessels in Hjv−/− mice were tortuous and dilated, with a decrease in the tight-junction protein occludin. There was also evidence of neovascularization in Hjv−/− mice with blood vessels appearing in the vitreous, which were leaky. There was reactive gliosis in these mice involving both Müller cells and microglia. Such changes were not detected at 2 weeks of age. Even at the age of 4 months, retinas of Hjv−/− mice were almost normal with changes just beginning to appear. Thus, the vascular changes in Hjv−/− mouse retinas represent an age-dependent phenomenon. Conclusions. Deletion of Hjv in mice leads to abnormal retinal angiogenesis/vasculogenesis, with proliferation of new, leaky blood vessels in the vitreous. These changes are accompanied with reactive gliosis involving Müller cells and microglia. PMID:24812553

  16. 31 CFR 30.4 - Q-4: What actions are necessary for a TARP recipient to comply with the standards established...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... risk officers the SEO compensation plans to ensure that the SEO compensation plans do not encourage... fiscal year, provide a narrative description of how the SEO compensation plans do not encourage the SEOs... these SEO compensation plans do not encourage behavior focused on short-term results rather than...

  17. 31 CFR 30.4 - Q-4: What actions are necessary for a TARP recipient to comply with the standards established...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... risk officers the SEO compensation plans to ensure that the SEO compensation plans do not encourage... fiscal year, provide a narrative description of how the SEO compensation plans do not encourage the SEOs... these SEO compensation plans do not encourage behavior focused on short-term results rather than...

  18. 31 CFR 30.4 - Q-4: What actions are necessary for a TARP recipient to comply with the standards established...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... risk officers the SEO compensation plans to ensure that the SEO compensation plans do not encourage... fiscal year, provide a narrative description of how the SEO compensation plans do not encourage the SEOs... these SEO compensation plans do not encourage behavior focused on short-term results rather than...

  19. 31 CFR 30.4 - Q-4: What actions are necessary for a TARP recipient to comply with the standards established...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... risk officers the SEO compensation plans to ensure that the SEO compensation plans do not encourage... fiscal year, provide a narrative description of how the SEO compensation plans do not encourage the SEOs... these SEO compensation plans do not encourage behavior focused on short-term results rather than...

  20. Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database

    SciTech Connect

    Omenn, Gilbert; States, David J.; Adamski, Marcin; Blackwell, Thomas W.; Menon, Rajasree; Hermjakob, Henning; Apweiler, Rolf; Haab, Brian B.; Simpson, Richard; Eddes, James; Kapp, Eugene; Moritz, Rod; Chan, Daniel W.; Rai, Alex J.; Admon, Arie; Aebersold, Ruedi; Eng, Jimmy K.; Hancock, William S.; Hefta, Stanley A.; Meyer, Helmut; Paik, Young-Ki; Yoo, Jong-Shin; Ping, Peipei; Pounds, Joel G.; Adkins, Joshua N.; Qian, Xiaohong; Wang, Rong; Wasinger, Valerie; Wu, Chi Yue; Zhao, Xiaohang; Zeng, Rong; Archakov, Alexander; Tsugita, Akira; Beer, Ilan; Pandey, Akhilesh; Pisano, Michael; Andrews, Philip; Tammen, Harald; Speicher, David W.; Hanash, Samir M.

    2005-08-13

    HUPO initiated the Plasma Proteome Project (PPP) in 2002. Its pilot phase has (1) evaluated advantages and limitations of many depletion, fractionation, and MS technology platforms; (2) compared PPP reference specimens of human serum and EDTA, heparin, and citrate-anticoagulated plasma; and (3) created a publicly-available knowledge base (www.bioinformatics. med.umich.edu/hupo/ppp; www.ebi.ac.uk/pride). Thirty-five participating laboratories in 13 countries submitted datasets. Working groups addressed (a) specimen stability and protein concentrations; (b) protein identifications from 18 MS/MS datasets; (c) independent analyses from raw MS-MS spectra; (d) search engine performance, subproteome analyses, and biological insights; (e) antibody arrays; and (f) direct MS/SELDI analyses. MS-MS datasets had 15 710 different International Protein Index (IPI) protein IDs; our integration algorithm applied to multiple matches of peptide sequences yielded 9504 IPI proteins identified with one or more peptides and 3020 proteins identified with two or more peptides (the Core Dataset). These proteins have been characterized with Gene Ontology, InterPro, Novartis Atlas, OMIM, and immunoassay based concentration determinations. The database permits examination of many other subsets, such as 1274 proteins identified with three or more peptides. Reverse protein to DNA matching identified proteins for 118 previously unidentified ORFs. We recommend use of plasma instead of serum, with EDTA (or citrate) for anticoagulation. To improve resolution, sensitivity and reproducibility of peptide identifications and protein matches, we recommend combinations of depletion, fractionation, and MS/MS technologies, with explicit criteria for evaluation of spectra, use of search algorithms, and integration of homologous protein matches. This Special Issue of PROTEOMICS presents papers integral to the collaborative analysis plus many reports of supplementary work on various aspects of the PPP workplan. These PPP results on complexity, dynamic range, incomplete sampling, false-positive matches, and integration of diverse datasets for plasma and serum proteins lay a foundation for development and validation of circulating protein biomarkers in health and disease.

  1. Reactive oxygen species derived from xanthine oxidase interrupt dimerization of breast cancer resistance protein, resulting in suppression of uric acid excretion to the intestinal lumen.

    PubMed

    Ogura, Jiro; Kuwayama, Kaori; Sasaki, Shunichi; Kaneko, Chihiro; Koizumi, Takahiro; Yabe, Keisuke; Tsujimoto, Takashi; Takeno, Reiko; Takaya, Atsushi; Kobayashi, Masaki; Yamaguchi, Hiroaki; Iseki, Ken

    2015-09-01

    The prevalence of hyperuricemia/gout increases with aging. However, the effect of aging on function for excretion of uric acid to out of the body has not been clarified. We found that ileal uric acid clearance in middle-aged rats (11-12 months) was decreased compared with that in young rats (2 months). In middle-aged rats, xanthine oxidase (XO) activity in the ileum was significantly higher than that in young rats. Inosine-induced reactive oxygen species (ROS), which are derived from XO, also decreased ileal uric acid clearance. ROS derived from XO decreased the active homodimer level of breast cancer resistance protein (BCRP), which is a uric acid efflux transporter, in the ileum. Pre-administration of allopurinol recovered the BCRP homodimer level, resulting in the recovering ileal uric acid clearance. Moreover, we investigated the effects of ROS derived from XO on BCRP homodimer level directly in Caco-2 cells using hypoxanthine. Treatment with hypoxanthine decreased BCRP homodimer level. Treatment with hypoxanthine induced mitochondrial dysfunction, suggesting that the decreasing BCRP homodimer level might be caused by mitochondrial dysfunction. In conclusion, ROS derived from XO decrease BCRP homodimer level, resulting in suppression of function for uric acid excretion to the ileal lumen. ROS derived from XO may cause the suppression of function of the ileum for the excretion of uric acid with aging. The results of our study provide a new insight into the causes of increasing hyperuricemia/gout prevalence with aging. PMID:26119820

  2. Fusarochromanone-induced reactive oxygen species results in activation of JNK cascade and cell death by inhibiting protein phosphatases 2A and 5

    PubMed Central

    Gu, Ying; Barzegar, Mansoureh; Chen, Xin; Wu, Yang; Shang, Chaowei; Mahdavian, Elahe; Salvatore, Brian A.; Jiang, Shanxiang; Huang, Shile

    2015-01-01

    Recent studies have shown that fusarochromanone (FC101), a mycotoxin, is cytotoxic in a variety of cell lines. However, the molecular mechanism underlying its cytotoxicity remains elusive. Here we found that FC101 induced cell death in COS7 and HEK293 cells in part by activating JNK pathway. This is evidenced by the findings that inhibition of JNK with SP600125 or expression of dominant negative c-Jun partially prevented FC101-induced cell death. Furthermore, we observed that FC101-activated JNK pathway was attributed to induction of reactive oxygen species (ROS). Pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger and antioxidant, suppressed FC101-induced activation of JNK and cell death. Moreover, we noticed that FC101 inhibited the serine/threonine protein phosphatases 2A (PP2A) and 5 (PP5) in the cells, which was abrogated by NAC. Overexpression of PP2A or PP5 partially prevented FC101-induced activation of JNK and cell death. The results indicate that FC101-induced ROS inhibits PP2A and PP5, leading to activation of JNK pathway and consequently resulting in cell death. PMID:26517353

  3. Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-anti-trypsin deficiency.

    PubMed

    Pastore, Nunzia; Blomenkamp, Keith; Annunziata, Fabio; Piccolo, Pasquale; Mithbaokar, Pratibha; Maria Sepe, Rosa; Vetrini, Francesco; Palmer, Donna; Ng, Philip; Polishchuk, Elena; Iacobacci, Simona; Polishchuk, Roman; Teckman, Jeffrey; Ballabio, Andrea; Brunetti-Pierri, Nicola

    2013-03-01

    Alpha-1-anti-trypsin deficiency is the most common genetic cause of liver disease in children and liver transplantation is currently the only available treatment. Enhancement of liver autophagy increases degradation of mutant, hepatotoxic alpha-1-anti-trypsin (ATZ). We investigated the therapeutic potential of liver-directed gene transfer of transcription factor EB (TFEB), a master gene that regulates lysosomal function and autophagy, in PiZ transgenic mice, recapitulating the human hepatic disease. Hepatocyte TFEB gene transfer resulted in dramatic reduction of hepatic ATZ, liver apoptosis and fibrosis, which are key features of alpha-1-anti-trypsin deficiency. Correction of the liver phenotype resulted from increased ATZ polymer degradation mediated by enhancement of autophagy flux and reduced ATZ monomer by decreased hepatic NFκB activation and IL-6 that drives ATZ gene expression. In conclusion, TFEB gene transfer is a novel strategy for treatment of liver disease of alpha-1-anti-trypsin deficiency. This study may pave the way towards applications of TFEB gene transfer for treatment of a wide spectrum of human disorders due to intracellular accumulation of toxic proteins. PMID:23381957

  4. Rats fed soy protein isolate (SPI) have impaired hepatic CYP1A1 induction by polycyclic aromatic hydrocarbons as a result of interference with aryl hydrocarbon receptor signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of soy diet has been found to reduce cancer incidence in animals and is associated with reduced cancer risk in humans. Previously, we have demonstrated that female Sprague-Dawley rats fed purified AIN-93G diets with soy protein isolate (SPI) as the sole protein source had reduced CYP1A1 ...

  5. Absence of myotonic dystrophy protein kinase (DMPK) mRNA as a result of a triplet repeat expansion in myotonic dystrophy

    SciTech Connect

    Carango, P.; Noble, J.E.; Funanage, V.L.; Marks, H.G. )

    1993-11-01

    Myotonic dystrophy is an autosomally dominant inherited disease in which system-wide abnormalities are caused by a triplet repeat expansion within the 3[prime] untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. To determine the effect an expanded repeat region has on DMPK expression, the authors have separated the chromosome 19 homologues from a 36-year-old woman with myotonic dystrophy into different cell lines by way of somatic cell hybridization. Hybrid DM9101 contains the normal DMPK allele (13 repeats), whereas hybrid DM1115 harbors the mutant allele ([approximately]133 repeats). Reverse transcription/polymerase chain reaction (RT/PCR) amplification of coding sequences from the DMPK gene has shown both reduced levels of primary DMPK transcripts and impaired processing of these transcripts in hybrid cell line DM1115. These findings suggest that the presence of a large number of repeats in the 3[prime] untranslated region of the DMPK gene reduces both the synthesis and the processing of DMPK mRNA, resulting in undetectable levels of processed DMPK mRNA from the mutant allele. 41 refs., 6 figs., 1 tab.

  6. Immunohistochemical results of HER2/neu protein expression assessed by rabbit monoclonal antibodies SP3 and 4B5 in colorectal carcinomas

    PubMed Central

    Song, Zhangjuan; Deng, Yan; Zhuang, Kangmin; Li, Aimin; Liu, Side

    2014-01-01

    HER2/neu is an efficient target for cancer therapy. However, reports about its overexpression rate in colorectal carcinomas showed wide variability. This study aims to investigate HER2/neu expression in colorectal carcinomas using these two rabbit monoclonal HER2/neu antibodies, and to clarify the relationship between protein overexpression and gene amplification of HER2/neu and their clinicopathologic importance. Tissue microarray was performed from sections of 106 cases colorectal carcinomas. Their clinical data, including gender, age, stage, recurrence, lymph node metastasis, and follow-ups were collected. Immunohistochemistry for rabbit monoclonal antibody SP3 and 4B5 were performed, Fluorescent in situ hybridization was applied to detect the amplification of HER2/neu gene. The HER2/neu overexpression of (2+ and 3+) in our results were seen in 7.5% (8/106) for 4B5 and 3.8% (4/106) for SP3 respectively, the HER2/neu amplification was in 2.8% (3/106). All cases of overexpression for SP3 were included by those for 4B5. Both antibodies stained 3 cases of HER2/neu 3+, and FISH confirmed HER2/neu amplification did occurred in these cases. In our study, 4B5 was more sensitive to detect HER2/neu of colorectal carcinoma than SP3. 2.8% patients with colorectal patients might benefit from anti-HER2/neu therapy. PMID:25120833

  7. Suppression of telomere-binding protein TPP1 resulted in telomere dysfunction and enhanced radiation sensitivity in telomerase-negative osteosarcoma cell line

    SciTech Connect

    Qiang, Weiguang; Wu, Qinqin; Zhou, Fuxiang; Xie, Conghua; Wu, Changping; Zhou, Yunfeng

    2014-03-07

    Highlights: • Down-regulation of TPP1 shortened telomere length in telomerase-negative cells. • Down-regulation of TPP1 induced cell apoptosis in telomerase-negative cells. • Down-regulation of TPP1 increased radiosensitivity in telomerase-negative cells. - Abstract: Mammalian telomeres are protected by the shelterin complex that contains the six core proteins POT1, TPP1, TIN2, TRF1, TRF2 and RAP1. TPP1, formerly known as TINT1, PTOP, and PIP1, is a key factor that regulates telomerase recruitment and activity. In addition to this, TPP1 is required to mediate the shelterin assembly and stabilize telomere. Previous work has found that TPP1 expression was elevated in radioresistant cells and that overexpression of TPP1 led to radioresistance and telomere lengthening in telomerase-positive cells. However, the exact effects and mechanism of TPP1 on radiosensitivity are yet to be precisely defined in the ALT cells. Here we report on the phenotypes of the conditional deletion of TPP1 from the human osteosarcoma U2OS cells using ALT pathway to extend the telomeres.TPP1 deletion resulted in telomere shortening, increased apoptosis and radiation sensitivity enhancement. Together, our findings show that TPP1 plays a vital role in telomere maintenance and protection and establish an intimate relationship between TPP1, telomere and cellular response to ionizing radiation, but likely has the specific mechanism yet to be defined.

  8. Sequential Extraction Results in Improved Proteome Profiling of Medicinal Plant Pinellia ternata Tubers, Which Contain Large Amounts of High-Abundance Proteins

    PubMed Central

    An, SuFang; Gong, FangPing; Wang, Wei

    2012-01-01

    Pinellia ternata tuber is one of the well-known Chinese traditional medicines. In order to understand the pharmacological properties of tuber proteins, it is necessary to perform proteome analysis of P. ternata tubers. However, a few high-abundance proteins (HAPs), mainly mannose-binding lectin (agglutinin), exist in aggregates of various sizes in the tubers and seriously interfere with proteome profiling by two-dimensional electrophoresis (2-DE). Therefore, selective depletion of these HAPs is a prerequisite for enhanced proteome analysis of P. ternata tubers. Based on differential protein solubility, we developed a novel protocol involving two sequential extractions for depletion of some HAPs and prefractionation of tuber proteins prior to 2-DE. The first extraction using 10% acetic acid selectively extracted acid-soluble HAPs and the second extraction using the SDS-containing buffer extracted remaining acid-insoluble proteins. After application of the protocol, 2-DE profiles of P. ternata tuber proteins were greatly improved and more protein spots were detected, especially low-abundance proteins. Moreover, the subunit composition of P. ternata lectin was analyzed by electrophoresis. Native lectin consists of two hydrogen-bonded subunits (11 kDa and 25 kDa) and the 11 kDa subunit was a glycoprotein. Subsequently, major HAPs in the tubers were analyzed by mass spectrometry, with nine protein spots being identified as lectin isoforms. The methodology was easy to perform and required no specialized apparatus. It would be useful for proteome analysis of other tuber plants of Araceae. PMID:23185632

  9. Copper deficiency in the young bovine results in dramatic decreases in brain copper concentration but does not alter brain prion protein biology.

    PubMed

    Legleiter, L R; Spears, J W; Liu, H C

    2008-11-01

    An Mn for Cu substitution on cellular prion proteins (PrP(c)) in the brain that results in biochemical changes to PrP(c) has been implicated in the pathogenesis of transmissible spongiform encephalopathies. Recent research in the mature bovine does not support this theory. The present study tested this hypothesis by using progeny from gestating cows receiving Cu-deficient diets or Cu-deficient diets coupled with high dietary Mn. Copper-adequate cows (n = 39) were assigned randomly to 1 of 3 treatments: 1) control (adequate in Cu and Mn), 2) Cu deficient (-Cu), or 3) Cu deficient plus high dietary Mn (-Cu+Mn). Cows assigned to treatments -Cu and -Cu+Mn received no supplemental Cu and were supplemented with Mo to further induce Cu deficiency. The -Cu+Mn treatment also received 500 mg of supplemental Mn/kg of dietary DM. Calves were weaned at 180 d and maintained on the same treatments as their respective dams for 260 d. Copper-deficient calves (-Cu and -Cu+Mn) had decreased (P = 0.001) brain (obex) Cu and tended to have increased (P = 0.09) obex Mn relative to control calves. Obex Mn:Cu ratios were substantially increased (P < 0.001) in calves receiving -Cu and -Cu+Mn treatments compared with control calves and were greater (P < 0.001) in -Cu+Mn calves than in -Cu calves. Obex prion protein characteristics, including proteinase K degradability, superoxide dismutase (SOD)-like activity, and glycoform distributions, were largely unaffected. Obex tissue antioxidant capacity was not compromised by perturbations in brain metals, but Cu-deficient calves tended to have decreased (P = 0.06) Cu:Zn SOD activity and increased (P = 0.06) Mn SOD activity. Although obex Cu was decreased because of Cu deficiency and Mn increased because of exposure to high dietary Mn, the obex metal imbalance had minimal effects on PrP(c) functional characteristics in the calves. PMID:18599661

  10. Slow Proton Transfer Coupled to Unfolding Explains the Puzzling Results of Single-Molecule Experiments on BBL, a Paradigmatic Downhill Folding Protein

    PubMed Central

    Cerminara, Michele; Campos, Luis A.; Ramanathan, Ravishankar; Muñoz, Victor

    2013-01-01

    A battery of thermodynamic, kinetic, and structural approaches has indicated that the small α-helical protein BBL folds-unfolds via the one-state downhill scenario. Yet, single-molecule fluorescence spectroscopy offers a more conflicting view. Single-molecule experiments at pH 6 show a unique half-unfolded conformational ensemble at mid denaturation, whereas other experiments performed at higher pH show a bimodal distribution, as expected for two-state folding. Here we use thermodynamic and laser T-jump kinetic experiments combined with theoretical modeling to investigate the pH dependence of BBL stability, folding kinetics and mechanism within the pH 6–11 range. We find that BBL unfolding is tightly coupled to the protonation of one of its residues with an apparent pKa of ∼7. Therefore, in chemical denaturation experiments around neutral pH BBL unfolds gradually, and also converts in binary fashion to the protonated species. Moreover, under the single-molecule experimental conditions (denaturant midpoint and 279 K), we observe that proton transfer is much slower than the ∼15 microseconds folding-unfolding kinetics of BBL. The relaxation kinetics is distinctly biphasic, and the overall relaxation time (i.e. 0.2–0.5 ms) becomes controlled by the proton transfer step. We then show that a simple theoretical model of protein folding coupled to proton transfer explains quantitatively all these results as well as the two sets of single-molecule experiments, including their more puzzling features. Interestingly, this analysis suggests that BBL unfolds following a one-state downhill folding mechanism at all conditions. Accordingly, the source of the bimodal distributions observed during denaturation at pH 7–8 is the splitting of the unique conformational ensemble of BBL onto two slowly inter-converting protonation species. Both, the unprotonated and protonated species unfold gradually (one-state downhill), but they exhibit different degree of unfolding at any given condition because the native structure is less stable for the protonated form. PMID:24205082

  11. Reduction in C-reactive protein indicates successful targeting of the IL-1/IL-6 axis resulting in improved survival in early stage multiple myeloma.

    PubMed

    Lust, John A; Lacy, Martha Q; Zeldenrust, Steven R; Witzig, Thomas E; Moon-Tasson, Laurie L; Dinarello, Charles A; Donovan, Kathleen A

    2016-06-01

    We report the long-term follow-up results of a phase II trial of IL-1 receptor antagonist and low-dose dexamethasone for early stage multiple myeloma (MM). Patients were eligible if they had smoldering multiple myeloma (SMM) or indolent multiple myeloma (IMM) without the need for immediate therapy. Forty seven patients were enrolled and subsequently treated with IL-1Ra; in 25/47 low-dose dexamethasone (20 mg weekly) was added. The primary endpoint was progression-free survival (PFS). In the clinical trial, three patients achieved a minor response (MR) to IL-1Ra alone; five patients a partial response (PR) and four patients an MR after addition of dexamethasone. Seven patients showed a decrease in the plasma cell labeling index (PCLI) which paralleled a decrease in the high sensitivity C-reactive protein (hs-CRP). The median PFS for the 47 patients was 1116 days (37.2 months). The median PFS for patients without (n = 22) and with (n = 25) a decrease in their baseline hs-CRP was 326 days (11 months) vs. 3139 days (104 months) respectively (P <0.0001). The median overall survival (OS) for the 47 patients was 3482 days (9.5 years). The median OS for patients without and with a decrease in their baseline hs-CRP was 2885 days (7.9 years) vs. median not reached, respectively (P = 0.001). In SMM/IMM patients at risk for progression to active myeloma, reduction in the hs-CRP indicates successful targeting of the IL-1/IL-6 axis resulting in improved PFS and OS. (Clinical Trials.gov Identifier: NCT00635154) Am. J. Hematol. 91:571-574, 2016. © 2016 Wiley Periodicals, Inc. PMID:26945843

  12. Genetic variation in the vitamin D receptor (VDR) and the vitamin D binding protein (GC) and risk of colorectal cancer: Results from the Colon Cancer Family Registry

    PubMed Central

    Poynter, Jenny N.; Jacobs, Elizabeth T.; Figueiredo, Jane C.; Lee, Won H.; Conti, David V.; Campbell, Peter T.; Levine, A. Joan; Limburg, Paul; Le Marchand, Loic; Cotterchio, Michelle; Newcomb, Polly A.; Potter, John D.; Jenkins, Mark A.; Hopper, John L.; Duggan, David J.; Baron, John A.; Haile, Robert W.

    2009-01-01

    Epidemiologic evidence supports a role for vitamin D in colorectal cancer (CRC) risk. Variants in vitamin D-related genes might modify the association between vitamin D levels and CRC risk. In this analysis, we performed a comprehensive evaluation of common variants in the vitamin D receptor (VDR) and the vitamin D binding protein (GC, group-specific component) genes using a population-based case-unaffected sibling control design that included 1,750 sibships recruited into the Colon Cancer Family Registry (Colon CFR). We also evaluated whether any associations differed by calcium supplement use, family history of CRC, or tumor characteristics. Heterogeneity by calcium and vitamin D intake was evaluated for a subset of 585 cases and 837 sibling controls who completed a detailed food frequency questionnaire (FFQ). Age- and sex-adjusted associations were estimated using conditional logistic regression. Overall, we did not find evidence for an association between any SNP in VDR or GC and risk of CRC (range of unadjusted p-values 0.010.98 for VDR and 0.070.95 for GC). None of these associations was significant after adjustment for multiple comparisons. We also found no evidence that calcium or vitamin D intake (food and supplement) from the FFQ modified the association estimates between VDR and GC SNPs and CRC. We did observe associations between SNPs in GC and microsatellite unstable CRC, although these results should be confirmed in additional studies. Overall, our results do not provide evidence for a role of common genetic variants in VDR or GC in susceptibility to CRC. PMID:20086113

  13. Deletion of collapsin response mediator protein 4 results in abnormal layer thickness and elongation of mitral cell apical dendrites in the neonatal olfactory bulb.

    PubMed

    Tsutiya, Atsuhiro; Watanabe, Hikaru; Nakano, Yui; Nishihara, Masugi; Goshima, Yoshio; Ohtani-Kaneko, Ritsuko

    2016-05-01

    Collapsin response mediator protein 4 (CRMP4), a member of the CRMP family, is involved in the pathogenesis of neurodevelopmental disorders such as schizophrenia and autism. Here, we first compared layer thickness of the olfactory bulb between wild-type (WT) and CRMP4-knockout (KO) mice. The mitral cell layer (MCL) was significantly thinner, whereas the external plexiform layer (EPL) was significantly thicker in CRMP4-KO mice at postnatal day 0 (PD0) compared with WTs. However, differences in layer thickness disappeared by PD14. No apoptotic cells were found in the MCL, and the number of mitral cells (MCs) identified with a specific marker (i.e. Tbx21 antibody) did not change in CRMP4-KO neonates. However, DiI-tracing showed that the length of mitral cell apical dendrites was greater in CRMP4-KO neonates than in WTs. In addition, expression of CRMP4 mRNA in WT mice was most abundant in the MCL at PD0 and decreased afterward. These results suggest that CRMP4 contributes to dendritic elongation. Our in vitro studies showed that deletion or knockdown of CRMP4 resulted in enhanced growth of MAP2-positive neurites, whereas overexpression of CRMP4 reduced their growth, suggesting a new role for CRMP4 as a suppressor of dendritic elongation. Overall, our data suggest that disruption of CRMP4 produces a temporary alteration in EPL thickness, which is constituted mainly of mitral cell apical dendrites, through the enhanced growth of these dendrites. PMID:26739921

  14. Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon

    PubMed Central

    Dukan, Sam; Nyström, Thomas

    1998-01-01

    Aging, or senescence, is the progressive deterioration of every bodily function over time. A fundamental question that applies to all life forms, including growth-arrested bacteria, is why growing older by necessity causes organisms to grow more fragile. In this work, we demonstrate that the levels of oxidized proteins is correlated to the age of a stationary-phase Escherichia coli culture; both disulfide bridge formation of a cytoplasmic leader-less alkaline phosphatase and protein carbonyl levels increase during stasis. The stasis-induced increase in protein oxidation is enhanced in cells lacking the global regulators OxyR and ςs. Some proteins were found to be specifically susceptible to stasis-induced oxidation; notably several TCA cycle enzymes, glutamine synthetase, glutamate synthase, pyruvate kinase, DnaK, and H-NS. Evidence that oxidation of target proteins during stasis serves as the signal for stationary-phase, developmental, induction of the heat shock regulon is presented by demonstrating that this induction is mitigated by overproducing the superoxide dismutase SodA. In addition, cells lacking cytoplasmic superoxide dismutase activity exhibit superinduction of heat shock proteins. The possibility that oxidative sensitivity of TCA cycle enzymes serves as a feedback mechanism down-regulating toxic respiration is discussed. PMID:9808629

  15. Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon.

    PubMed

    Dukan, S; Nyström, T

    1998-11-01

    Aging, or senescence, is the progressive deterioration of every bodily function over time. A fundamental question that applies to all life forms, including growth-arrested bacteria, is why growing older by necessity causes organisms to grow more fragile. In this work, we demonstrate that the levels of oxidized proteins is correlated to the age of a stationary-phase Escherichia coli culture; both disulfide bridge formation of a cytoplasmic leader-less alkaline phosphatase and protein carbonyl levels increase during stasis. The stasis-induced increase in protein oxidation is enhanced in cells lacking the global regulators OxyR and sigmas. Some proteins were found to be specifically susceptible to stasis-induced oxidation; notably several TCA cycle enzymes, glutamine synthetase, glutamate synthase, pyruvate kinase, DnaK, and H-NS. Evidence that oxidation of target proteins during stasis serves as the signal for stationary-phase, developmental, induction of the heat shock regulon is presented by demonstrating that this induction is mitigated by overproducing the superoxide dismutase SodA. In addition, cells lacking cytoplasmic superoxide dismutase activity exhibit superinduction of heat shock proteins. The possibility that oxidative sensitivity of TCA cycle enzymes serves as a feedback mechanism down-regulating toxic respiration is discussed. PMID:9808629

  16. The added value of C-reactive protein to clinical signs and symptoms in patients with obstructive airway disease: results of a diagnostic study in primary care

    PubMed Central

    Schneider, Antonius; Dinant, Geert-Jan; Maag, Inko; Gantner, Lutz; Meyer, Joachim Franz; Szecsenyi, Joachim

    2006-01-01

    Background To evaluate the diagnostic accuracy of clinical signs and symptoms, C-reactive protein (CRP) and spirometric parameters and determine their interrelation in patients suspected to have an obstructive airway disease (OAD) in primary care. Methods In a cross sectional diagnostic study, 60 adult patients coming to the general practitioner (GP) for the first-time with complaints suspicious for obstructive airway disease (OAD) underwent spirometry. Peak expiratory flow (PEF)-variability within two weeks was determined in patients with inconspicuous spirometry. Structured medical histories were documented and CRP was measured. The reference standard was the Tiffeneau ratio (FEV1/VC) in spirometry and the PEF-variability. OAD was diagnosed when FEV1/VC ? 70% or PEF-variability > 20%. Results 37 (62%) patients had OAD. The best cut-off value for CRP was found at 2 mg/l with a diagnostic odds ratio (OR) of 4.4 (95% CI 1.413.8). Self-reported wheezing was significantly related with OAD (OR 3.4; CI 1.110.3), whereas coughing was inversely related (OR 0.2; CI 0.10.7). The diagnostic OR of CRP increased when combined with dyspnea (OR 8.5; 95% CI 1.742.3) or smoking history (OR 8.4; 95% CI 1.548.9). CRP (p = 0.004), FEV1 (p = 0.001) and FIV1 (p = 0.023) were related with the severity of dyspnea. CRP increased with the number of cigarettes, expressed in pack years (p = 0.001). Conclusion The diagnostic accuracy of clinical signs and symptoms was low. The diagnostic accuracy of CRP improved in combination with dyspnea and smoking history. Due to their coherence with the severity of dyspnea and number of cigarettes respectively, CRP and spirometry might allow risk stratification of patients with OAD in primary care. Further studies need to be done to confirm these findings. PMID:16670014

  17. Delivery Mode, Duration of Labor, and Cord Blood Adiponectin, Leptin, and C-Reactive Protein: Results of the Population-Based Ulm Birth Cohort Studies

    PubMed Central

    Logan, Chad A.; Thiel, Larissa; Bornemann, Rebecca; Koenig, Wolfgang; Reister, Frank; Brenner, Hermann; Rothenbacher, Dietrich; Genuneit, Jon

    2016-01-01

    Background Numerous studies have reported associations between delivery mode and health outcomes in infancy and later life. Previous smaller studies indicated a relationship between delivery mode and newborn inflammation potentially constituting a mediating factor. We aimed to determine the influence of delivery mode and duration of labor on cord blood concentrations of adiponectin, leptin, and high-sensitivity C-reactive protein (hs-CRP). Methods In the Ulm SPATZ Health Study, 934 singleton newborns and their mothers were recruited during their hospital stay in the University Medical Center Ulm, Southern Germany, from 04/2012-05/2013. Inflammatory biomarkers were measured by ELISAs (n = 836). Delivery mode was analyzed categorically (elective cesarean (reference), active labor delivery: emergency cesarean, assisted vaginal, and spontaneous vaginal); duration of labor continuously. Following log-transformation, linear regression was used to estimate geometric means ratios (GMR) adjusted for potential confounders for the effects of delivery mode and duration of labor on each biomarker separately. Independent replication was sought in the similarly conducted Ulm Birth Cohort Study recruited from 11/2000-11/2001. Results Individually, active labor delivery modes as well as increasing duration of labor were associated with higher leptin and hs-CRP concentrations. After mutual adjustment, the associations with delivery modes were attenuated but those for duration of labor remained statistically significant (GMR (95%CI) 1.10 (1.00; 1.21) and 1.15 (1.04; 1.27) for leptin and hs-CRP per hour of labor, respectively). No significant adjusted associations were observed between delivery modes and adiponectin concentrations. These findings were replicated in an independent birth cohort study. Conclusions Cord blood leptin and hs-CRP concentrations were associated with duration of labor rather than delivery mode. Further research is warranted to investigate these associations with additional cytokines involved in inflammatory response to delineate the inflammatory profile. Subsequently, research on determinants of these associations and their role in development of chronic disease is needed. PMID:26900695

  18. Long-acting recombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial.

    PubMed

    Santagostino, Elena; Martinowitz, Uri; Lissitchkov, Toshko; Pan-Petesch, Brigitte; Hanabusa, Hideji; Oldenburg, Johannes; Boggio, Lisa; Negrier, Claude; Pabinger, Ingrid; von Depka Prondzinski, Mario; Altisent, Carmen; Castaman, Giancarlo; Yamamoto, Koji; Álvarez-Roman, Maria-Teresa; Voigt, Christine; Blackman, Nicole; Jacobs, Iris

    2016-04-01

    A global phase 3 study evaluated the pharmacokinetics, efficacy, and safety of recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in 63 previously treated male patients (12-61 years) with severe hemophilia B (factor IX [FIX] activity ≤2%). The study included 2 groups: group 1 patients received routine prophylaxis once every 7 days for 26 weeks, followed by either 7-, 10-, or 14-day prophylaxis regimen for a mean of 50, 38, or 51 weeks, respectively; group 2 patients received on-demand treatment of bleeding episodes for 26 weeks and then switched to a 7-day prophylaxis regimen for a mean of 45 weeks. The mean terminal half-life of rIX-FP was 102 hours, 4.3-fold longer than previous FIX treatment. Patients maintained a mean trough of 20 and 12 IU/dL FIX activity on prophylaxis with rIX-FP 40 IU/kg weekly and 75 IU/kg every 2 weeks, respectively. There was 100% reduction in median annualized spontaneous bleeding rate (AsBR) and 100% resolution of target joints when subjects switched from on-demand to prophylaxis treatment with rIX-FP (P< .0001). The median AsBR was 0.00 for all prophylaxis regimens. Overall, 98.6% of bleeding episodes were treated successfully, including 93.6% that were treated with a single injection. No patient developed an inhibitor, and no safety concerns were identified. These results indicate rIX-FP is safe and effective for preventing and treating bleeding episodes in patients with hemophilia B at dosing regimens of 40 IU/kg weekly and 75 IU/kg every 2 weeks. This trial was registered atwww.clinicaltrials.govas #NCT0101496274. PMID:26755710

  19. Long-acting recombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial

    PubMed Central

    Martinowitz, Uri; Lissitchkov, Toshko; Pan-Petesch, Brigitte; Hanabusa, Hideji; Oldenburg, Johannes; Boggio, Lisa; Negrier, Claude; Pabinger, Ingrid; von Depka Prondzinski, Mario; Altisent, Carmen; Castaman, Giancarlo; Yamamoto, Koji; Álvarez-Roman, Maria-Teresa; Voigt, Christine; Blackman, Nicole; Jacobs, Iris

    2016-01-01

    A global phase 3 study evaluated the pharmacokinetics, efficacy, and safety of recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in 63 previously treated male patients (12-61 years) with severe hemophilia B (factor IX [FIX] activity ≤2%). The study included 2 groups: group 1 patients received routine prophylaxis once every 7 days for 26 weeks, followed by either 7-, 10-, or 14-day prophylaxis regimen for a mean of 50, 38, or 51 weeks, respectively; group 2 patients received on-demand treatment of bleeding episodes for 26 weeks and then switched to a 7-day prophylaxis regimen for a mean of 45 weeks. The mean terminal half-life of rIX-FP was 102 hours, 4.3-fold longer than previous FIX treatment. Patients maintained a mean trough of 20 and 12 IU/dL FIX activity on prophylaxis with rIX-FP 40 IU/kg weekly and 75 IU/kg every 2 weeks, respectively. There was 100% reduction in median annualized spontaneous bleeding rate (AsBR) and 100% resolution of target joints when subjects switched from on-demand to prophylaxis treatment with rIX-FP (P < .0001). The median AsBR was 0.00 for all prophylaxis regimens. Overall, 98.6% of bleeding episodes were treated successfully, including 93.6% that were treated with a single injection. No patient developed an inhibitor, and no safety concerns were identified. These results indicate rIX-FP is safe and effective for preventing and treating bleeding episodes in patients with hemophilia B at dosing regimens of 40 IU/kg weekly and 75 IU/kg every 2 weeks. This trial was registered at www.clinicaltrials.gov as #NCT0101496274. PMID:26755710

  20. A rhizobium selenitireducens protein showing selenite reductase activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobarriers remove, via precipitation, the metalloid selenite (SeO3–2) from groundwater; a process that involves the biological reduction of soluble SeO3–2 to insoluble elemental red selenium (Se0). The enzymes associated with this reduction process are poorly understood. In Rhizobium selenitiredu...

  1. Microsomal triglyceride transfer protein -164 T > C gene polymorphism and risk of cardiovascular disease: results from the EPIC-Potsdam case-cohort study

    PubMed Central

    2013-01-01

    Background The microsomal triglyceride transfer protein (MTTP) is encoded by the MTTP gene that is regulated by cholesterol in humans. Previous studies investigating the effect of MTTP on ischemic heart disease have produced inconsistent results. Therefore, we have tested the hypothesis that the rare allele of the -164T > C polymorphism in MTTP alters the risk of cardiovascular disease (CVD), depending on the cholesterol levels. Methods The -164T > C polymorphism was genotyped in a case-cohort study (193 incident myocardial infarction (MI) and 131 incident ischemic stroke (IS) cases and 1 978 non-cases) nested within the European Prospective Investigation into Cancer and Nutrition (EPIC)–Potsdam study, comprising 27 548 middle-aged subjects. The Heinz Nixdorf Recall study (30 CVD cases and 1 188 controls) was used to replicate our findings. Results Genotype frequencies were not different between CVD and CVD free subjects (P = 0.79). We observed an interaction between the -164T > C polymorphism and total cholesterol levels in relation to future CVD. Corresponding stratified analyses showed a significant increased risk of CVD (HRadditve = 1.38, 95% CI: 1.07 to 1.78) for individuals with cholesterol levels <200 mg/dL in the EPIC-Potsdam study. HRadditive was 1.06, 95% CI: 0.33 to 3.40 for individuals in the Heinz Nixdorf Recall study. A borderline significant decrease in CVD risk was observed in subjects with cholesterol levels ≥200 mg/dL (HRadditve = 0.77, 95% CI: 0.58 to 1.03) in the EPIC-Potsdam study. A similar trend was observed in the independent cohort (HRadditve = 0.60, 95% CI: 0.29 to 1.25). Conclusions Our study suggests an interaction between MTTP -164T > C functional polymorphism with total cholesterol levels. Thereby risk allele carriers with low cholesterol levels may be predisposed to an increased risk of developing CVD, which seems to be abolished among risk allele carriers with high cholesterol levels. PMID:23356586

  2. Interactive intoxicating and ameliorating effects of tannic acid, aluminum (Al3+), copper (Cu2+), and selenate (SeO42-) in wheat roots. A descriptive and mathematical assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tannic acids and tannins are polyphenolic compounds produced by plants and are important components of soil and water organic matter. Tannic acids and tannins form complexes with proteins, metals, and soil particulate matter and perform several physiological and ecological functions. The tannic ac...

  3. Feeding soy protein isolate (SPI) does not result in an estrogenic gene expression profile in the mammary of ovariectomized (OVX) female rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concerns of increased breast cancer risk in women consuming soy exist because of the perceived estrogenicity of soy isoflavones. Female Sprague-Dawley rats (N equals 20/group) were fed AIN-93G diets with casein or SPI as the protein from PND30. On PND50 rats were OVX and 10/group infused s.c. with 5...

  4. A single amino acid substitution in the hemagglutinin-neuraminidase protein of Newcastle disease virus results in increased fusion and decreased neuraminidase activities without changes in virus pathotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease virus (NDV) attachment to the host cell is mediated by the hemagglutinin-neuraminidase (HN), a multifunctional protein that has receptor recognition, neuraminidase and fusion promotion activities. The process that correlates receptor binding and fusion triggering is poorly understo...

  5. ORF3 protein of hepatitis E virus interacts with the Bbeta chain of fibrinogen resulting in decreased fibrinogen secretion from HuH-7 cells.

    PubMed

    Ratra, Ruchi; Kar-Roy, Anindita; Lal, Sunil K

    2009-06-01

    The ORF3 protein of hepatitis E virus (HEV), the precise cellular functions of which remain obscure, was used in a yeast two-hybrid screen to identify its cellular binding partners. One of the identified interacting partners was fibrinogen Bbeta protein. The ORF3-fibrinogen Bbeta interaction was verified by co-immunoprecipitation and fluorescence resonance energy transfer in mammalian cells. Fibrinogen is a hepatic acute-phase protein and serves as a central molecule that maintains host homeostasis and haemostasis during an acute-phase response. Metabolic labelling of ORF3-transfected HuH-7 cells showed that secreted as well as intracellular levels of fibrinogen were decreased in these cells compared with vector-transfected controls. Northern hybridization and RT-PCR analyses revealed that the mRNA levels of all three chains of fibrinogen, Aalpha, Bbeta and gamma, were transcriptionally downregulated in ORF3-transfected cells. The constitutive expression of fibrinogen genes can be significantly upregulated by interleukin (IL)-6, an important mediator of liver-specific gene expression during an acute-phase response. Transcription of fibrinogen genes after IL-6 stimulation was less in ORF3-expressing cells compared with controls. This report adds one more biological function to, and advances our understanding of, the cellular role of the ORF3 protein of HEV. The possible implications of these findings in the virus life cycle are discussed. PMID:19264644

  6. Non-aqueous encapsulation of excipient-stabilized spray-freeze dried BSA into poly(lactide-co-glycolide) microspheres results in release of native protein.

    PubMed

    Carrasquillo, K G; Stanley, A M; Aponte-Carro, J C; De Jsus, P; Costantino, H R; Bosques, C J; Griebenow, K

    2001-10-19

    Encapsulation of the model protein bovine serum albumin (BSA) into poly(D,L lactide-co-glycolide) (PLG) microspheres was performed by a non-aqueous oil-in-oil (o/o) methodology. Powder formulations of BSA obtained by spray-freeze drying were first suspended in methylene chloride containing PLG followed by coacervation by adding silicon oil and microsphere hardening in heptane. The secondary structure of BSA was determined at relevant steps of the encapsulation procedure by employing Fourier-transform infrared (FTIR) spectroscopy. This fast and non-invasive method demonstrated the potential to rapidly screen pharmaceutically relevant protein delivery systems for their suitability. Structural perturbations in BSA were reduced during the spray-freeze drying step by employing the excipient trehalose. The protein was then encapsulated into PLG microspheres under various conditions without inducing significant structural perturbations. BSA released from these microspheres had a similar monomer content as unencapsulated BSA and also the same secondary structure. Upon blending of a poloxamer (Pluronic F-68) with the polymer phase, in vitro release was characterized by a small initial release and a prolonged and continuous sustained phase. In conclusion, the developed o/o methodology coupled with FTIR spectroscopic monitoring of protein structure is a powerful approach for the development of sustained release microspheres. PMID:11578736

  7. Muscle Uncoupling Protein 3 Expression Is Unchanged by Chronic Ephedrine/Caffeine Treatment: Results of a Double Blind, Randomised Clinical Trial in Morbidly Obese Females

    PubMed Central

    Bracale, Renata; Petroni, Maria Letizia; Davinelli, Sergio; Bracale, Umberto; Scapagnini, Giovanni; Carruba, Michele O.; Nisoli, Enzo

    2014-01-01

    Ephedrine/caffeine combination (EC) has been shown to induce a small-to-moderate weight loss in obese patients. Several mechanisms have been proposed, among which an increased thermogenic capacity of skeletal muscle consequent to the EC-induced up-regulation of uncoupling protein 3 (UCP3) gene expression. We did a parallel group double-blind, placebo-controlled, 4-week trial to investigate this hypothesis. Thirteen morbidly obese women (25–52 years of age, body-mass index 48.0±4.0 kg/m2, range 41.1–57.6) were randomly assigned to EC (200/20 mg, n = 6) or to placebo (n = 7) administered three times a day orally, before undergoing bariatric surgery. All individuals had an energy-deficit diet equal to about 70% of resting metabolic rate (RMR) diet (mean 5769±1105 kJ/day). The RMR analysed by intention to treat and the UCP3 (long and short isoform) mRNA levels in rectus abdominis were the primary outcomes. Body weight, plasma levels of adrenaline, noradrenaline, triglycerides, free fatty acids, glycerol, TSH, fT4, and fT3 were assessed, as well as fasting glucose, insulin and HOMA index, at baseline and at the end of treatments. Body weight loss was evident in both groups when compared to baseline values (overall −5.2±3.2%, p<0.0001) without significant differences between the treated groups. EC treatment increased the RMR (+9.2±6.8%, p = 0.020), differently from placebo which was linked to a reduction of RMR (−7.6±6.5%, p = 0.029). No significant differences were seen in other metabolic parameters. Notably, no changes of either UCP3 short or UCP3 long isoform mRNA levels were evident between EC and placebo group. Our study provides evidence that 4-week EC administration resulted in a pronounced thermogenic effect not related to muscle UCP3 gene expression and weight loss in morbidly obese females under controlled conditions. Trial Registration ClinicalTrials.gov NCT02048215 PMID:24905629

  8. Solid-state synthesis, structure and properties of a novel open-framework cadmium selenite bromide: [Cd10(SeO3)8Br4]·HBr·H2O

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Tong; Wang, Ming-Sheng; Wang, Guan-E.; Chen, Hui-Fen; Guo, Guo-Cong

    2013-08-01

    A novel open-framework cadmium selenite bromide, [Cd10(SeO3)8Br4]·HBr·H2O (1), has been obtained by a solid-state reaction at 450 °C, and the structure has been determined by single-crystal X-ray diffraction analysis. Compound 1 crystallizes in Pbcm of the orthorhombic system: a=10.882(3), b=16.275(5), c=18.728(6) Å, V=3317(2) Å3, R1/wR2=0.0411/0.0659. Compound 1 is characteristic of a novel 3-D open-framework structure, composing ∞2[CdSeO3] layers and the pillars of edge-shared CdO3Br2 square pyramids. The lattice water molecules and the HBr molecules locate in the voids of the framework. Optical absorption spectrum of 1 reveals the presence of an optical gap of 1.65 eV. Solid-state photoluminescent study indicates that compound 1 exhibits strong violet emission. TG-DSC measurement shows that compound 1 is thermally stable up to 200 °C.

  9. A Novel Form of DAP5 Protein Accumulates in Apoptotic Cells as a Result of Caspase Cleavage and Internal Ribosome Entry Site-Mediated Translation

    PubMed Central

    Henis-Korenblit, Sivan; Strumpf, Naomi Levy; Goldstaub, Dan; Kimchi, Adi

    2000-01-01

    Death-associated protein 5 (DAP5) (also named p97 and NAT1) is a member of the translation initiation factor 4G (eIF4G) family that lacks the eIF4E binding site. It was previously implicated in apoptosis, based on the finding that a dominant negative fragment of the protein protected against cell death. Here we address its function and two distinct levels of regulation during apoptosis that affect the protein both at translational and posttranslational levels. DAP5 protein was found to be cleaved at a single caspase cleavage site at position 790, in response to activated Fas or p53, yielding a C-terminal truncated protein of 86 kDa that is capable of generating complexes with eIF4A and eIF3. Interestingly, while the overall translation rate in apoptotic cells was reduced by 60 to 70%, in accordance with the simultaneous degradation of the two major mediators of cap-dependent translation, eIF4GI and eIF4GII, the translation rate of DAP5 protein was selectively maintained. An internal ribosome entry site (IRES) element capable of directing the translation of a reporter gene when subcloned into a bicistronic vector was identified in the 5? untranslated region of DAP5 mRNA. While cap-dependent translation from this transfected vector was reduced during Fas-induced apoptosis, the translation via the DAP5 IRES was selectively maintained. Addition of recombinant DAP5/p97 or DAP5/p86 to cell-free systems enhanced preferentially the translation through the DAP5 IRES, whereas neutralization of the endogenous DAP5 in reticulocyte lysates by adding a dominant negative DAP5 fragment interfered with this translation. The DAP5/p86 apoptotic form was more potent than DAP5/p97 in these functional assays. Altogether, the data suggest that DAP5 is a caspase-activated translation factor which mediates cap-independent translation at least from its own IRES, thus generating a positive feedback loop responsible for the continuous translation of DAP5 during apoptosis. PMID:10611228

  10. A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation.

    PubMed

    Henis-Korenblit, S; Strumpf, N L; Goldstaub, D; Kimchi, A

    2000-01-01

    Death-associated protein 5 (DAP5) (also named p97 and NAT1) is a member of the translation initiation factor 4G (eIF4G) family that lacks the eIF4E binding site. It was previously implicated in apoptosis, based on the finding that a dominant negative fragment of the protein protected against cell death. Here we address its function and two distinct levels of regulation during apoptosis that affect the protein both at translational and posttranslational levels. DAP5 protein was found to be cleaved at a single caspase cleavage site at position 790, in response to activated Fas or p53, yielding a C-terminal truncated protein of 86 kDa that is capable of generating complexes with eIF4A and eIF3. Interestingly, while the overall translation rate in apoptotic cells was reduced by 60 to 70%, in accordance with the simultaneous degradation of the two major mediators of cap-dependent translation, eIF4GI and eIF4GII, the translation rate of DAP5 protein was selectively maintained. An internal ribosome entry site (IRES) element capable of directing the translation of a reporter gene when subcloned into a bicistronic vector was identified in the 5' untranslated region of DAP5 mRNA. While cap-dependent translation from this transfected vector was reduced during Fas-induced apoptosis, the translation via the DAP5 IRES was selectively maintained. Addition of recombinant DAP5/p97 or DAP5/p86 to cell-free systems enhanced preferentially the translation through the DAP5 IRES, whereas neutralization of the endogenous DAP5 in reticulocyte lysates by adding a dominant negative DAP5 fragment interfered with this translation. The DAP5/p86 apoptotic form was more potent than DAP5/p97 in these functional assays. Altogether, the data suggest that DAP5 is a caspase-activated translation factor which mediates cap-independent translation at least from its own IRES, thus generating a positive feedback loop responsible for the continuous translation of DAP5 during apoptosis. PMID:10611228

  11. Substitution of conserved methionines by leucines in chloroplast small heat shock protein results in loss of redox-response but retained chaperone-like activity

    PubMed Central

    Gustavsson, Niklas; Kokke, Bas P.A.; Anzelius, Björn; Boelens, Wilbert C.; Sundby, Cecilia

    2001-01-01

    During evolution of land plants, a specific motif occurred in the N-terminal domain of the chloroplast-localized small heat shock protein, Hsp21: a sequence with highly conserved methionines, which is predicted to form an amphipathic α-helix with the methionines situated along one side. The functional role of these conserved methionines is not understood. We have found previously that treatment, which causes methionine sulfoxidation in Hsp21, also leads to structural changes and loss of chaperone-like activity. Here, mutants of Arabidopsis thaliana Hsp21 protein were created by site-directed mutagenesis, whereby conserved methionines were substituted by oxidation-resistant leucines. Mutants lacking the only cysteine in Hsp21 were also created. Protein analyses by nondenaturing electrophoresis, size exclusion chromatography, and circular dichroism proved that sulfoxidation of the four highly conserved methionines (M49, M52, M55, and M59) is responsible for the oxidation-induced conformational changes in the Hsp21 oligomer. In contrast, the chaperone-like activity was not ultimately dependent on the methionines, because it was retained after methionine-to-leucine substitution. The functional role of the conserved methionines in Hsp21 may be to offer a possibility for redox control of chaperone-like activity and oligomeric structure dynamics. PMID:11514669

  12. In vitro evidence that myocardial ischemia resulting from 5-fluorouracil chemotherapy is due to protein kinase C-mediated vasoconstriction of vascular smooth muscle.

    PubMed

    Mosseri, M; Fingert, H J; Varticovski, L; Chokshi, S; Isner, J M

    1993-07-01

    5-Fluorouracil (5-FU) is a commonly employed chemotherapeutic agent. Among the various toxicities associated with 5-FU, cardiovascular toxicity, consisting principally of acute myocardial ischemia and/or myocardial infarction, has been reported in up to 8.5% of patients treated with this drug. While 5-FU-induced coronary vasospasm has been considered as a potential basis for such clinical toxicity, this hypothesis remains unsubstantiated by laboratory investigation. Accordingly, the present study was designed to investigate the hypothesis that 5-FU induces reversible vasoconstriction of vascular smooth muscle and to study the cellular mechanisms of such vasomotor alterations. To investigate the effects of 5-FU on the vasoreactivity of vascular smooth muscle, 479 exposures were performed in 105 rings of aorta freshly isolated from 23 New Zealand white rabbits. Vasoconstriction was documented in 20 of 86 (23%) rings exposed to 5-FU at 7 x 10(-5) M, 45 of 83 (54%) rings exposed to 5-FU at 7 x 10(-4) M, and 41 of 49 (84%) rings exposed to 5-FU at 7 x 10(-3) M. In each case, 5-FU-induced vasoconstriction was endothelium independent. Pretreatment of rings with 10(-9) M staurosporine, a protein kinase C (PK-C) inhibitor, reduced 5-FU-induced vasoconstriction from 25.0 +/- 6.5 to 2.5 +/- 1.7 mg; staurosporine at a concentration of 10(-8) M abolished 5-FU-induced vasoconstriction. Pretreatment of rings with 10(-7) M phorbol-12,13-dibutyrate, an activator of PK-C, increased the magnitude of 5-FU-induced vasoconstriction 23-fold, from 49.7 +/- 11.1 mg before to 1163.6 +/- 276.4 mg after phorbol-12,13-dibutyrate (P = 0.0002). Neomycin, an inhibitor of phosphoinositide turnover, did not alter the magnitude of 5-FU-induced vasoconstriction. Membrane receptor blockers, including the alpha-adrenergic receptor blocker phentolamine, the beta-adrenergic receptor blocker propranolol, the H1 receptor inhibitor diphenhydramine, the H2 receptor inhibitor cimetidine, the Ca2+ channel blockers verapamil and diltiazem, and the cyclooxygenase inhibitor indomethacin all failed to alter the magnitude of 5-FU-induced vasoconstriction. Furthermore, the 5-FU-related compounds uracil and floxuridine did not produce vasoconstriction. Finally, 5-FU-induced vasoconstriction was abolished by nitroglycerin. These results indicate that (a) 5-FU causes direct, endothelium-independent vasoconstriction of vascular smooth muscle in vitro, (b) this vasomotor response involves activation of PK-C, and (c) this response is independent of vasoactive cell membrane receptors, phosphoinositide turnover, or activation of the cyclooxygenase pathway.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8391384

  13. Research Results

    NASA Astrophysics Data System (ADS)

    2011-12-01

    Research on Global Carbon Emission and Sequestration NSFC Funded Project Made Significant Progress in Quantum Dynamics Functional Human Blood Protein Obtained from Rice How Giant Pandas Thrive on a Bamboo Diet New Evidence of Interpersonal Violence from 129,000 Years Ago Found in China Aptamer-Mediated Efficient Capture and Release of T Lymphocytes on Nanostructured Surfaces BGI Study Results on Resequencing 50 Accessions of Rice Cast New Light on Molecular Breeding BGI Reports Study Results on Frequent Mutation of Genes Encoding UMPP Components in Kidney Cancer Research on Habitat Shift Promoting Species Diversification

  14. Deletion of the D domain of the human parainfluenza virus type 3 (HPIV3) PD protein results in decreased viral RNA synthesis and beta interferon (IFN-β) expression.

    PubMed

    Roth, Jason P; Li, Joseph K-K; Morrey, John D; Barnard, Dale L; Vollmer, Almut H

    2013-08-01

    The human parainfluenza virus type 3 (HPIV3) phosphoprotein (P) gene is unusual as it contains an editing site where nontemplated ribonucleotide residues can be inserted. This RNA editing can lead to the expression of the viral P, PD, putative W, and theoretical V protein from a single gene. Although the HPIV3 PD protein has been detected, its function and those of the W and V proteins are poorly understood. Therefore, we first used reverse genetics techniques to construct and rescue a recombinant (r)HPIV3 clone with a polyhistidine sequence at the 5' end of the P gene for tagged protein detection. Western blot analysis demonstrated the presence of the P, PD, and W proteins, but no V protein was detected. Then, we functionally studied the D domain of the PD protein by constructing two rHPIV3 knockout clones that are deficient in the expression of the D domain. Results from growth kinetic studies with infected MA-104 and A596 cells showed that viral replication of the two knockout viruses (rHPIV3-ΔES and rHPIV3-ΔD) was comparable to that of the parental virus in both cell lines. However, viral mRNA transcription and genomic replication was significantly reduced. Furthermore, cytokine/chemokine profiles of A549 cells infected with either knockout virus were unchanged or showed lower levels compared to those from cells infected with the parental virus. These data suggest that the D domain of the PD protein may play a luxury role in HPIV3 RNA synthesis and may also be involved in disrupting the expression of beta interferon. PMID:23686695

  15. Genotypic Variation under Fe Deficiency Results in Rapid Changes in Protein Expressions and Genes Involved in Fe Metabolism and Antioxidant Mechanisms in Tomato Seedlings (Solanum lycopersicum L.)

    PubMed Central

    Muneer, Sowbiya; Jeong, Byoung Ryong

    2015-01-01

    To investigate Fe deficiency tolerance in tomato cultivars, quantification of proteins and genes involved in Fe metabolism and antioxidant mechanisms were performed in “Roggusanmaru” and “Super Doterang”. Fe deficiency (Moderate, low and –Fe) significantly decreased the biomass, total, and apoplastic Fe concentration of “Roggusanmaru”, while a slight variation was observed in “Super Doterang” cultivar. The quantity of important photosynthetic pigments such as total chlorophyll and carotenoid contents significantly decreased in “Roggusanmaru” than “Super Doterang” cultivar. The total protein profile in leaves and roots determines that “Super Doterang” exhibited an optimal tolerance to Fe deficiency compared to “Roggusanmaru” cultivar. A reduction in expression of PSI (photosystem I), PSII (photosystem II) super-complexes and related thylakoid protein contents were detected in “Roggusanmaru” than “Super Doterang” cultivar. Moreover, the relative gene expression of SlPSI and SlPSII were well maintained in “Super Doterang” than “Roggusanmaru” cultivar. The relative expression of genes involved in Fe-transport (SlIRT1 and SlIRT2) and Fe(III) chelates reductase oxidase (SlFRO1) were relatively reduced in “Roggusanmaru”, while increased in “Super Doterang” cultivar under Fe deficient conditions. The H+-ATPase relative gene expression (SlAHA1) in roots were maintained in “Super Doterang” compared to “Roggusanmaru”. Furthermore, the gene expressions involved in antioxidant defense mechanisms (SlSOD, SlAPX and SlCAT) in leaves and roots showed that these genes were highly increased in “Super Doterang”, whereas decreased in “Roggusanmaru” cultivar under Fe deficiency. The present study suggested that “Super Doterang” is better tomato cultivar than “Roggusanmaru” for calcareous soils. PMID:26602920

  16. Fetal exposure to a maternal low-protein diet during mid-gestation results in muscle-specific effects on fibre type composition in young rats.

    TOXLINE Toxicology Bibliographic Information

    Mallinson JE; Sculley DV; Craigon J; Plant R; Langley-Evans SC; Brameld JM

    2007-08-01

    This study assessed the impact of reduced dietary protein during specific periods of fetal life upon muscle fibre development in young rats. Pregnant rats were fed a control or low-protein (LP) diet at early (days 0-7 gestation, LPEarly), mid (days 8-14, LPMid), late (days 15-22, LPLate) or throughout gestation (days 0-22, LPAll). The muscle fibre number and composition in soleus and gastrocnemius muscles of the offspring were studied at 4 weeks of age. In the soleus muscle, both the total number and density of fast fibres were reduced in LPMid females (P = 0.004 for both, Diet x Sex x Fibre type interactions), while both the total number and density of glycolytic (non-oxidative) fibres were reduced in LPEarly, LPMid and LPLate (but not LPAll) offspring compared with controls (P < 0.001 for both, Diet x Fibre type interaction). In the gastrocnemius muscle, only the density of oxidative fibres was reduced in LPMid compared with control offspring (P = 0.019, Diet x Fibre type interaction), with the density of slow fibres being increased in LPAll males compared with control (P = 0.024, Diet x Sex x Fibre type interaction). There were little or no effects of maternal diet on fibre type diameters in the two muscles. In conclusion, a maternal low-protein diet mainly during mid-pregnancy reduced muscle fibre number and density in 4-week-old rats, but there were muscle-specific differences in the fibre types affected.

  17. Fetal exposure to a maternal low-protein diet during mid-gestation results in muscle-specific effects on fibre type composition in young rats

    PubMed Central

    Mallinson, Joanne E.; Sculley, Dean V.; Craigon, Jim; Plant, Richard; Langley-Evans, Simon C.; Brameld, John M.

    2007-01-01

    This study assessed the impact of reduced dietary protein during specific periods of fetal life upon muscle fibre development in young rats. Pregnant rats were fed a control or low-protein (LP) diet at early (days 0-7 gestation, LPEarly), mid (days 8-14, LPMid), late (days 15-22, LPLate) or throughout gestation (days 0-22, LPAll). The muscle fibre number and composition in soleus and gastrocnemius muscles of the offspring were studied at 4 weeks of age. In the soleus muscle, both the total number and density of fast fibres were reduced in LPMid females (P=0·004 for both, Diet × Sex × Fibre type interactions), while both the total number and density of glycolytic (non-oxidative) fibres were reduced in LPEarly, LPMid and LPLate (but not LPAll) offspring compared with controls (P<0·001 for both, Diet × Fibre type interaction). In the gastrocnemius muscle, only the density of oxidative fibres was reduced in LPMid compared with control offspring (P=0·019, Diet × Fibre type interaction), with the density of slow fibres being increased in LPAll males compared with control (P=0·024, Diet × Sex × Fibre type interaction). There were little or no effects of maternal diet on fibre type diameters in the two muscles. In conclusion, a maternal low-protein diet mainly during mid-pregnancy reduced muscle fibre number and density in 4-week-old rats, but there were muscle-specific differences in the fibre types affected. PMID:17391556

  18. Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain.

    PubMed

    Johansson, Niclas; Eriksson, Per; Viberg, Henrik

    2009-04-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) belong to the family of perfluorinated compounds. They are used in industrial and consumer applications, e.g., clothing fabrics, carpets, and food packaging. PFOS and PFOA are present in the environment and are found in dust and human milk, which implies that newborns and toddlers can be directly exposed to these agents during brain development. Recently, we reported that PFOS and PFOA can cause neurobehavioral defects and changes in the cholinergic system, in the adult animal, when given directly to neonatal mice, and thereby showing similarities with other investigated persistent organic pollutants, such as dichloro-diphenyl-trichloroethan, polychlorinated biphenyls, and polybrominated diphenyl ethers (PBDEs). In recent studies, we have also seen that highly brominated PBDEs can affect the levels of proteins that are important for neuronal growth and synaptogenesis in the neonatal mouse brain. The present study shows that a single oral dose of either 21 micromol PFOS or PFOA/kg body weight (11.3 or 8.70 mg), given directly to the neonatal mice on postnatal day 10, significantly increased the levels of CaMKII, GAP-43, and synaptophysin in the hippocampus of the neonatal mouse. Both compounds significantly increased the levels of synaptophysin and tau in cerebral cortex, and PFOA also increased the levels of tau in hippocampus. These proteins are important for normal brain development, and altered levels of these proteins during a critical period of the brain growth spurts could be one of the mechanisms behind earlier reported behavioral defects. PMID:19211617

  19. Rats fed soy protein isolate (SPI) have impaired hepatic CYP1A1 induction by polycyclic aromatic hydrocarbons as a result of interference with aryl hydrocarbon receptor signaling

    SciTech Connect

    Singhal, Rohit; Badger, Thomas M.; Ronis, Martin J.

    2008-03-01

    Consumption of soy diets has been found to reduce cancer incidence in animals and is associated with reduced cancer risk in humans. Previously, we have demonstrated that female Sprague-Dawley rats fed purified AIN-93G diets with soy protein isolate (SPI) as the sole protein source had reduced CYP1A1 induction and basal aryl hydrocarbon receptor (AhR) levels relative to those fed the same diet containing casein (CAS). In the present study, the molecular mechanisms underlying reduced AhR expression have been studied. The SPI-effect on AhR was not observed after feeding diets containing the purified soy isoflavones genistein or daidzein. Rat hepatoma FGC-4 cells were treated with the serum obtained from rats fed CAS- or SPI-containing diets. Reduced AhR levels (P < 0.05) were observed after 24 h exposure to SPI-serum without any changes in the overall expression of chaperone proteins-HSP90 and XAP2. SPI-serum-stimulated AhR degradation was inhibited by treating the cells with the proteasome inhibitor, MG132, and was observed to be preceded by ubiquitination of the receptor. A reduced association of XAP2 with the immunoprecipitated AhR complex was observed. SPI-serum-mediated AhR degradation was preceded by nuclear translocation of the receptor. However, the translocated receptor was found to be unable to heterodimerize with ARNT or to bind to XRE elements on the CYP1A1 enhancer. These data suggest that feeding SPI-containing diets antagonizes AhR signaling by a novel mechanism which differs from those established for known AhR antagonists.

  20. Genotypic Variation under Fe Deficiency Results in Rapid Changes in Protein Expressions and Genes Involved in Fe Metabolism and Antioxidant Mechanisms in Tomato Seedlings (Solanum lycopersicum L.).

    PubMed

    Muneer, Sowbiya; Jeong, Byoung Ryong

    2015-01-01

    To investigate Fe deficiency tolerance in tomato cultivars, quantification of proteins and genes involved in Fe metabolism and antioxidant mechanisms were performed in "Roggusanmaru" and "Super Doterang". Fe deficiency (Moderate, low and -Fe) significantly decreased the biomass, total, and apoplastic Fe concentration of "Roggusanmaru", while a slight variation was observed in "Super Doterang" cultivar. The quantity of important photosynthetic pigments such as total chlorophyll and carotenoid contents significantly decreased in "Roggusanmaru" than "Super Doterang" cultivar. The total protein profile in leaves and roots determines that "Super Doterang" exhibited an optimal tolerance to Fe deficiency compared to "Roggusanmaru" cultivar. A reduction in expression of PSI (photosystem I), PSII (photosystem II) super-complexes and related thylakoid protein contents were detected in "Roggusanmaru" than "Super Doterang" cultivar. Moreover, the relative gene expression of SlPSI and SlPSII were well maintained in "Super Doterang" than "Roggusanmaru" cultivar. The relative expression of genes involved in Fe-transport (SlIRT1 and SlIRT2) and Fe(III) chelates reductase oxidase (SlFRO1) were relatively reduced in "Roggusanmaru", while increased in "Super Doterang" cultivar under Fe deficient conditions. The H⁺-ATPase relative gene expression (SlAHA1) in roots were maintained in "Super Doterang" compared to "Roggusanmaru". Furthermore, the gene expressions involved in antioxidant defense mechanisms (SlSOD, SlAPX and SlCAT) in leaves and roots showed that these genes were highly increased in "Super Doterang", whereas decreased in "Roggusanmaru" cultivar under Fe deficiency. The present study suggested that "Super Doterang" is better tomato cultivar than "Roggusanmaru" for calcareous soils. PMID:26602920

  1. Selection for low or high primary dormancy in Lolium rigidum Gaud seeds results in constitutive differences in stress protein expression and peroxidase activity

    PubMed Central

    Goggin, Danica E.; Powles, Stephen B.; Steadman, Kathryn J.

    2011-01-01

    Seed dormancy in wild Lolium rigidum Gaud (annual ryegrass) populations is highly variable and not well characterized at the biochemical level. To identify some of the determinants of dormancy level in these seeds, the proteomes of subpopulations selected for low and high levels of primary dormancy were compared by two-dimensional polyacrylamide gel electrophoresis of extracts from mature, dry seeds. High-dormancy seeds showed higher expression of small heat shock proteins, enolase, and glyoxalase I than the low-dormancy seeds. The functional relevance of these differences in protein expression was confirmed by the fact that high-dormancy seeds were more tolerant to high temperatures imposed at imbibition and had consistently higher glyoxalase I activity over 0–42 d dark stratification. Higher expression of a putative glutathione peroxidase in low-dormancy seeds was not accompanied by higher activity, but these seeds had a slightly more oxidized glutathione pool and higher total peroxidase activity. Overall, these biochemical and physiological differences suggest that L. rigidum seeds selected for low dormancy are more prepared for rapid germination via peroxidase-mediated cell wall weakening, whilst seeds selected for high dormancy are constitutively prepared to survive environmental stresses, even in the absence of stress during seed development. PMID:20974739

  2. Recombination within the upstream gene of duplicated myelin basic protein genes of myelin deficient shimld mouse results in the production of antisense RNA.

    PubMed Central

    Okano, H; Ikenaka, K; Mikoshiba, K

    1988-01-01

    The myelin deficient shimld mouse is an autosomal recessive mutant, characterized by hypomyelination in the central nervous system. The expression of the myelin basic protein (MBP) gene is inhibited transcriptionally. The MBP gene is duplicated tandemly in mld, and exons 3 to 7 of the upstream copy is inverted. In the present studies, we determined the approximate position of the 5' boundary and the nucleotide sequence surrounding the 3' boundary of the inversion and found a number of sequences homologous to the switching regions of mouse immunoglobulin heavy chain gene and J regions of human T cell receptor genes. Antisense RNA complementary to exons 3 and 7, which correspond to the inverted segment, was detected by RNase protection studies. This abnormal transcript was also shown to elongate through the inverted segment to reach the transcription initiation site of the downstream gene. Images PMID:2463159

  3. Consumption of a healthy dietary pattern results in significant reductions in C-reactive protein levels in adults: a meta-analysis.

    PubMed

    Neale, E P; Batterham, M J; Tapsell, L C

    2016-05-01

    Consumption of healthy dietary patterns has been associated with reduced risk of cardiovascular disease and metabolic syndrome. Dietary intervention targets disease prevention, so studies increasingly use biomarkers of underlying inflammation and metabolic syndrome progression to examine the diet-health relationship. The extent to which these biomarkers contribute to the body of evidence on healthy dietary patterns is unknown. The aim of this meta-analysis was to determine the effect of healthy dietary patterns on biomarkers associated with adiposity, insulin resistance, and inflammation in adults. A systematic search of Scopus, PubMed, Web of Science, and Cochrane Central Register of Controlled Trials (all years to April 2015) was conducted. Inclusion criteria were randomized controlled trials; effects of dietary patterns assessed on C-reactive protein (CRP), total adiponectin, high-molecular-weight adiponectin, tumor necrosis factor-α, adiponectin:leptin, resistin, or retinol binding protein 4. Random effects meta-analyses were conducted to assess the weighted mean differences in change or final mean values for each outcome. Seventeen studies were included in the review. These reflected research on dietary patterns associated with the Mediterranean diet, Nordic diet, Tibetan diet, and the Dietary Approaches to Stop Hypertension diet. Consumption of a healthy dietary pattern was associated with significant reductions in CRP (weighted mean difference, -0.75 [-1.16, -0.35]; P = .0003). Non-significant changes were found for all other biomarkers. This analysis found evidence for favorable effects of healthy dietary patterns on CRP, with limited evidence for other biomarkers. Future research should include additional randomized controlled trials incorporating a greater range of dietary patterns and biomarkers. PMID:27101757

  4. Disruption of the Y-box binding protein-1 results in suppression of the epidermal growth factor receptor and HER-2.

    PubMed

    Wu, Joyce; Lee, Cathy; Yokom, Daniel; Jiang, Helen; Cheang, Maggie C U; Yorida, Erika; Turbin, Dmitry; Berquin, Isabelle M; Mertens, Peter R; Iftner, Thomas; Gilks, C Blake; Dunn, Sandra E

    2006-05-01

    The overexpression of the epidermal growth factor receptor (EGFR) and HER-2 underpin the growth of aggressive breast cancer; still, it is unclear what governs the regulation of these receptors. Our laboratories recently determined that the Y-box binding protein-1 (YB-1), an oncogenic transcription/translation factor, induced breast tumor cell growth in monolayer and in soft agar. Importantly, mutating YB-1 at Ser(102), which resides in the DNA-binding domain, prevented growth induction. We reasoned that the underlying cause for growth attenuation by YB-1(Ser(102)) is through the regulation of EGFR and/or HER-2. The initial link between YB-1 and these receptors was sought by screening primary tumor tissue microarrays. We determined that YB-1 (n = 389 cases) was positively associated with EGFR (P < 0.001, r = 0.213), HER-2 (P = 0.008, r = 0.157), and Ki67 (P < 0.0002, r = 0.219). It was inversely linked to the estrogen receptor (P < 0.001, r = -0.291). Overexpression of YB-1 in a breast cancer cell line increased HER-2 and EGFR. Alternatively, mutation of YB-1 at Ser(102) > Ala(102) prevented the induction of these receptors and rendered the cells less responsive to EGF. The mutant YB-1 protein was also unable to optimally bind to the EGFR and HER-2 promoters based on chromatin immunoprecipitation. Furthermore, knocking down YB-1 with small interfering RNA suppressed the expression of EGFR and HER-2. This was coupled with a decrease in tumor cell growth. In conclusion, YB-1(Ser(102)) is a point of molecular vulnerability for maintaining the expression of EGFR and HER-2. Targeting YB-1 or more specifically YB-1(Ser(102)) are novel approaches to inhibiting the expression of these receptors to ultimately suppress tumor cell growth. PMID:16651443

  5. Thermodynamic model for the solubility of BaSeO4(cr) in the aqueous Ba2+-SeO42--Na+-H+-OH--H2O system: Extending to high selenate concentrations

    SciTech Connect

    Rai, Dhanpat; Felmy, Andrew R.; Moore, Dean A.; Kitamura, Akira; Yoshikawa, Hideki; Doi, Reisuke; Yoshida, Yasushi

    2014-09-15

    The solubility of Ba(SeO4, SO4) precipitates was determined as a function of the BaSeO4 mole fractions, ranging from 0.0015 to 0.3830, and time with an equilibration period extending to as long as 302 days. Equilibrium/steady state conditions in this system are reached in ≤ 65 days. Pitzer’s ion interaction model was used to calculate solid and aqueous phase activity coefficients. Thermodynamic analyses showed that the data do not satisfy Gibbs-Duhem equation, thereby demonstrating that a single-solid solution phase does not control both the selenate and sulfate concentrations. Our extensive data with log10 [Ba]) ranging from -3.6 to -5.9 mol.kg-1, log10 [SeO4]) ranging from -3.6 to -5.2 mol.kg-1, and log10 [SO4] ranging from -4.0 to -5.3 mol.kg-1 can be explained with the formation of an ideal BaSeO4 solid solution phase that controls the selenium concentrations and a slightly disordered/less-crystalline BaSO4(s) (log10 K0sp = -9.5 instead of -10.05 for barite) that controls the sulfate concentrations. In these experiments the BaSO4 component of the solid solution phase never reaches thermodynamic equilibrium with the aqueous phase. Thermodynamic interpretations of the data show that both the ideal BaSeO4 solid solution phase and less-crystalline BaSO4(s) phase are in equilibrium with each other in the entire range of BaSeO4 mole fractions investigated in this study.

  6. A single Ala139-to-Glu substitution in the Renibacterium salmoninarum virulence-associated protein p57 results in antigenic variation and is associated with enhanced p57 binding to chinook salmon leukocytes.

    PubMed

    Wiens, Gregory D; Pascho, Ron; Winton, James R

    2002-08-01

    The gram-positive bacterium Renibacterium salmoninarum produces relatively large amounts of a 57-kDa protein (p57) implicated in the pathogenesis of salmonid bacterial kidney disease. Antigenic variation in p57 was identified by using monoclonal antibody 4C11, which exhibited severely decreased binding to R. salmoninarum strain 684 p57 and bound robustly to the p57 proteins of seven other R. salmoninarum strains. This difference in binding was not due to alterations in p57 synthesis, secretion, or bacterial cell association. The molecular basis of the 4C11 epitope loss was determined by amplifying and sequencing the two identical genes encoding p57, msa1 and msa2. The 5' and coding sequences of the 684 msa1 and msa2 genes were identical to those of the ATCC 33209 msa1 and msa2 genes except for a single C-to-A nucleotide mutation. This mutation was identified in both the msa1 and msa2 genes of strain 684 and resulted in an Ala(139)-to-Glu substitution in the amino-terminal region of p57. We examined whether this mutation in p57 altered salmonid leukocyte and rabbit erythrocyte binding activities. R. salmoninarum strain 684 extracellular protein exhibited a twofold increase in agglutinating activity for chinook salmon leukocytes and rabbit erythrocytes compared to the activity of the ATCC 33209 extracellular protein. A specific and quantitative p57 binding assay confirmed the increased binding activity of 684 p57. Monoclonal antibody 4C11 blocked the agglutinating activity of the ATCC 33209 extracellular protein but not the agglutinating activity of the 684 extracellular protein. These results indicate that the Ala139-to-Glu substitution altered immune recognition and was associated with enhanced biological activity of R. salmoninarum 684 p57. PMID:12147498

  7. A Single Ala139-to-Glu Substitution in the Renibacterium salmoninarum Virulence-Associated Protein p57 Results in Antigenic Variation and Is Associated with Enhanced p57 Binding to Chinook Salmon Leukocytes

    PubMed Central

    Wiens, Gregory D.; Pascho, Ron; Winton, James R.

    2002-01-01

    The gram-positive bacterium Renibacterium salmoninarum produces relatively large amounts of a 57-kDa protein (p57) implicated in the pathogenesis of salmonid bacterial kidney disease. Antigenic variation in p57 was identified by using monoclonal antibody 4C11, which exhibited severely decreased binding to R. salmoninarum strain 684 p57 and bound robustly to the p57 proteins of seven other R. salmoninarum strains. This difference in binding was not due to alterations in p57 synthesis, secretion, or bacterial cell association. The molecular basis of the 4C11 epitope loss was determined by amplifying and sequencing the two identical genes encoding p57, msa1 and msa2. The 5′ and coding sequences of the 684 msa1 and msa2 genes were identical to those of the ATCC 33209 msa1 and msa2 genes except for a single C-to-A nucleotide mutation. This mutation was identified in both the msa1 and msa2 genes of strain 684 and resulted in an Ala139-to-Glu substitution in the amino-terminal region of p57. We examined whether this mutation in p57 altered salmonid leukocyte and rabbit erythrocyte binding activities. R. salmoninarum strain 684 extracellular protein exhibited a twofold increase in agglutinating activity for chinook salmon leukocytes and rabbit erythrocytes compared to the activity of the ATCC 33209 extracellular protein. A specific and quantitative p57 binding assay confirmed the increased binding activity of 684 p57. Monoclonal antibody 4C11 blocked the agglutinating activity of the ATCC 33209 extracellular protein but not the agglutinating activity of the 684 extracellular protein. These results indicate that the Ala139-to-Glu substitution altered immune recognition and was associated with enhanced biological activity of R. salmoninarum 684 p57. PMID:12147498

  8. High temperature redox reactions with uranium: Synthesis and characterization of Cs(UO2)Cl(SeO3), Rb2(UO2)3O2(SeO3)2, and RbNa5U2(SO4)7

    NASA Astrophysics Data System (ADS)

    Babo, Jean-Marie; Albrecht-Schmitt, Thomas E.

    2013-10-01

    Cs(UO2)Cl(SeO3) (1), Rb2(UO2)3O2(SeO3)3 (2), and RbNa5U2(SO4)7 (3) single crystals were synthesized using CsCl, RbCl, and a CuCl/NaCl eutectic mixture as fluxes, respectively. Their lattice parameters and space groups are as follows: P21/n (a=6.548(1) Å, b=11.052(2) Å, c=10.666(2) Å and β=93.897(3)°), P1bar (a=7.051(2) Å, b=7.198(2) Å, c=8.314(2) Å, α=107.897(3)°, β=102.687(3)° and γ=100.564(3)°) and C2/c (a=17.862(4) Å, b=6.931(1) Å, c=20.133(4) Å and β=109.737(6)°. The small anionic building units found in these compounds are SeO32- and SO42- tetrahedra, oxide, and chloride. The crystal structure of the first compound is composed of [(UO2)2Cl2(SeO3)2]2- chains separated by Cs+ cations. The structure of (2) is constructed from [(UO2)3O11]16- chains further connected through selenite units into layers stacked perpendicularly to the [0 1 0] direction, with Rb+ cations intercalating between them. The structure of compound (3) is made of uranyl sulfate layers formed by edge and vertex connections between dimeric [U2O16] and [SO4] polyhedra. These layers contain unusual sulfate-metal connectivity as well as large voids.

  9. Prognostic role of serum concentrations of high-sensitivity C-reactive protein in patients with metastatic colorectal cancer: results from the ITACa trial.

    PubMed

    Casadei Gardini, Andrea; Carloni, Silvia; Scarpi, Emanuela; Maltoni, Paolo; Dorizzi, Romolo M; Passardi, Alessandro; Frassineti, Giovanni Luca; Cortesi, Pietro; Giannini, Maria Benedetta; Marisi, Giorgia; Amadori, Dino; Lucchesi, Alessandro

    2016-03-01

    Serum levels of C-reactive protein are (CRP) higher in patients with neoplastic conditions and numerous studies have been performed to clarify the etiologic and prognostic role of the high-sensitivity CRP (hs-CRP) in cancer. Our study was conducted on patients enrolled in the prospective randomized "Italian Trial in Advanced Colorectal Cancer (ITACa)" to assess hs-CRP levels and their impact on overall survival (OS) and progression-free survival (PFS). Serum samples from 132 ITACa patients were collected at baseline and 2 months after starting first-line chemotherapy. The supernatant was immediately transferred to cryovials and stored at -80°C. After thawing, hs-CRP was measured with the Cobas c501 analyzer. High levels of hs-CRP (≥ 13.1 mg/L) were associated with poorer median PFS (p < 0.0001) and OS (p < 0.0001) than low hs-CRP levels (< 13.1 mg/L). hs-CRP values in 107 patients were evaluated again after 2 months of therapy, revealing that patients with low hs-CRP levels in both baseline and second serum samples had the best median PFS and OS. Our study confirms the prognostic value of hs-CRP in patients with metastatic colorectal carcinoma. PMID:26848624

  10. Placental amino acid transport may be regulated by maternal vitamin D and vitamin D-binding protein: results from the Southampton Women's Survey.

    PubMed

    Cleal, J K; Day, P E; Simner, C L; Barton, S J; Mahon, P A; Inskip, H M; Godfrey, K M; Hanson, M A; Cooper, C; Lewis, R M; Harvey, N C

    2015-06-28

    Both maternal 25-hydroxyvitamin D (25(OH)D) concentrations during pregnancy and placental amino acid transporter gene expression have been associated with development of the offspring in terms of body composition and bone structure. Several amino acid transporter genes have vitamin D response elements in their promoters suggesting the possible linkage of these two mechanisms. We aimed to establish whether maternal 25(OH)D and vitamin D-binding protein (VDBP) levels relate to expression of placental amino acid transporters. RNA was extracted from 102 placental samples collected in the Southampton Women's Survey, and gene expression was analysed using quantitative real-time PCR. Gene expression data were normalised to the geometric mean of three housekeeping genes, and related to maternal factors and childhood body composition. Maternal serum 25(OH)D and VDBP levels were measured by radioimmunoassay. Maternal 25(OH)D and VDBP levels were positively associated with placental expression of specific genes involved in amino acid transport. Maternal 25(OH)D and VDBP concentrations were correlated with the expression of specific placental amino acid transporters, and thus may be involved in the regulation of amino acid transfer to the fetus. The positive correlation of VDBP levels and placental transporter expression suggests that delivery of vitamin D to the placenta may be important. This exploratory study identifies placental amino acid transporters which may be altered in response to modifiable maternal factors and provides a basis for further studies. PMID:25940599

  11. Targeted disruption of the M(r) 46,000 mannose 6-phosphate receptor gene in mice results in misrouting of lysosomal proteins.

    PubMed Central

    Köster, A; Saftig, P; Matzner, U; von Figura, K; Peters, C; Pohlmann, R

    1993-01-01

    Lysosomal enzymes containing mannose 6-phosphate recognition markers are sorted to lysosomes by mannose 6-phosphate receptors (MPRs). The physiological importance of this targeting mechanism is illustrated by I-cell disease, a fatal lysosomal storage disorder caused by the absence of mannose 6-phosphate residues in lysosomal enzymes. Most mammalian cells express two MPRs. Although the binding specificities, subcellular distribution and expression pattern of the two receptors can be differentiated, their coexpression is not understood. The larger of the two receptors with an M(r) of approximately 300,000 (MPR300), which also binds IGFII, appears to have a dominant role in lysosomal enzyme targeting, while the function of the smaller receptor with an M(r) of 46,000 (MPR46) is less clear. To investigate the in vivo function of the MPR46, we generated MPR46-deficient mice using gene targeting in embryonic stem cells. Reduced intracellular retention of newly synthesized lysosomal proteins in cells from MPR46 -/- mice demonstrated an essential sorting function of MPR46. The phenotype of MPR46 -/- mice was normal, indicating mechanisms that compensate the MPR46 deficiency in vivo. Images PMID:8262064

  12. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation.

    PubMed

    Yang, Haining; Rivera, Zeyana; Jube, Sandro; Nasu, Masaki; Bertino, Pietro; Goparaju, Chandra; Franzoso, Guido; Lotze, Michael T; Krausz, Thomas; Pass, Harvey I; Bianchi, Marco E; Carbone, Michele

    2010-07-13

    Asbestos carcinogenesis has been linked to the release of cytokines and mutagenic reactive oxygen species (ROS) from inflammatory cells. Asbestos is cytotoxic to human mesothelial cells (HM), which appears counterintuitive for a carcinogen. We show that asbestos-induced HM cell death is a regulated form of necrosis that links to carcinogenesis. Asbestos-exposed HM activate poly(ADP-ribose) polymerase, secrete H(2)O(2), deplete ATP, and translocate high-mobility group box 1 protein (HMGB1) from the nucleus to the cytoplasm, and into the extracellular space. The release of HMGB1 induces macrophages to secrete TNF-alpha, which protects HM from asbestos-induced cell death and triggers a chronic inflammatory response; both favor HM transformation. In both mice and hamsters injected with asbestos, HMGB1 was specifically detected in the nuclei, cytoplasm, and extracellular space of mesothelial and inflammatory cells around asbestos deposits. TNF-alpha was coexpressed in the same areas. HMGB1 levels in asbestos-exposed individuals were significantly higher than in nonexposed controls (P < 0.0001). Our findings identify the release of HMGB1 as a critical initial step in the pathogenesis of asbestos-related disease, and provide mechanistic links between asbestos-induced cell death, chronic inflammation, and carcinogenesis. Chemopreventive approaches aimed at inhibiting the chronic inflammatory response, and especially blocking HMGB1, may decrease the risk of malignant mesothelioma among asbestos-exposed cohorts. PMID:20616036

  13. Loss of mitogen-activated protein kinase kinase kinase 4 (MEKK4) results in enhanced apoptosis and defective neural tube development

    PubMed Central

    Chi, Hongbo; Sarkisian, Matthew R.; Rakic, Pasko; Flavell, Richard A.

    2005-01-01

    Neural tube defects (NTDs) are prevalent human birth defects. Mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase (JNK), are implicated in facilitating neural tube closure, yet upstream regulators remain to be identified. Here, we show that MAP kinase kinase kinase 4 (MEKK4) is strongly expressed in the developing neuroepithelium. Mice deficient in MEKK4 develop highly penetrant NTDs that cannot be rescued by supplementation with folic acid or inositol. Unlike most mouse models of NTDs, MEKK4 mutant embryos display genetically co-segregated exencephaly and spina bifida, recapitulating the phenotypes observed in human patients. To identify downstream targets of MEKK4 during neural tube development, we examined the activity of MAP kinase kinase 4 (MKK4), a signaling intermediate between MAP kinase kinase kinase and JNK/p38. We found a significant reduction in MKK4 activity in MEKK4-deficient neuroepithelium at sites of neural tube closure. MAPK pathways are key regulators of cell apoptosis and proliferation. Analyses of the neuroepithelium in MEKK4-deficient embryos showed massively elevated apoptosis before and during neural tube closure, suggesting an antiapoptotic role for MEKK4 during development. In contrast, proliferation of MEKK4-deficient neuroepithelial cells appeared to be largely unaffected. MEKK4 therefore plays a critical role in regulating MKK4 activity and apoptotic cell death during neural tube development. Disruption of this signaling pathway may be clinically relevant to folate-resistant human NTDs. PMID:15731347

  14. A single amino acid change resulting in loss of fluorescence of eGFP in a viral fusion protein confers fitness and growth advantage to the recombinant vesicular stomatitis virus

    SciTech Connect

    Dinh, Phat X.; Panda, Debasis; Das, Phani B.; Das, Subash C.; Das, Anshuman; The Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0900 ; Pattnaik, Asit K.

    2012-10-25

    Using a recombinant vesicular stomatitis virus encoding eGFP fused in-frame with an essential viral replication protein, the phosphoprotein P, we show that during passage in culture, the virus mutates the nucleotide C289 within eGFP of the fusion protein PeGFP to A or T, resulting in R97S/C amino acid substitution and loss of fluorescence. The resultant non-fluorescent virus exhibits increased fitness and growth advantage over its fluorescent counterpart. The growth advantage of the non-fluorescent virus appears to be due to increased transcription and replication activities of the PeGFP protein carrying the R97S/C substitution. Further, our results show that the R97S/C mutation occurs prior to accumulation of mutations that can result in loss of expression of the gene inserted at the G-L gene junction. These results suggest that fitness gain is more important for the recombinant virus than elimination of expression of the heterologous gene.

  15. Vaccination with a Fusion Protein That Introduces HIV-1 Gag Antigen into a Multitrimer CD40L Construct Results in Enhanced CD8+ T Cell Responses and Protection from Viral Challenge by Vaccinia-Gag

    PubMed Central

    Gupta, Sachin; Termini, James M.; Raffa, Francesca N.; Williams, Cindi-Ann; Kornbluth, Richard S.

    2014-01-01

    CD40 ligand (CD40L, CD154) is a membrane protein that is important for the activation of dendritic cells (DCs) and DC-induced CD8+ T cell responses. To be active, CD40L must cluster CD40 receptors on responding cells. To produce a soluble form of CD40L that clusters CD40 receptors necessitates the use of a multitrimer construct. With this in mind, a tripartite fusion protein was made from surfactant protein D (SPD), HIV-1 Gag as a test antigen, and CD40L, where SPD serves as a scaffold for the multitrimer protein complex. This SPD-Gag-CD40L protein activated CD40-bearing cells and bone marrow-derived DCs in vitro. Compared to a plasmid for Gag antigen alone (pGag), DNA vaccination of mice with pSPD-Gag-CD40L induced an increased number of Gag-specific CD8+ T cells with increased avidity for major histocompatibility complex class I-restricted Gag peptide and improved vaccine-induced protection from challenge by vaccinia-Gag virus. The importance of the multitrimeric nature of the complex was shown using a plasmid lacking the N terminus of SPD that produced a single trimer fusion protein. This plasmid, pTrimer-Gag-CD40L, was only weakly active on CD40-bearing cells and did not elicit strong CD8+ T cell responses or improve protection from vaccinia-Gag challenge. An adenovirus 5 (Ad5) vaccine incorporating SPD-Gag-CD40L was much stronger than Ad5 expressing Gag alone (Ad5-Gag) and induced complete protection (i.e., sterilizing immunity) from vaccinia-Gag challenge. Overall, these results show the potential of a new vaccine design in which antigen is introduced into a construct that expresses a multitrimer soluble form of CD40L, leading to strongly protective CD8+ T cell responses. PMID:24227853

  16. Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides.

    PubMed

    Benboudjema, Louisa; Mulvey, Matthew; Gao, Yuehua; Pimplikar, Sanjay W; Mohr, Ian

    2003-09-01

    The herpes simplex virus type 1 (HSV-1) Us11 gene encodes a multifunctional double-stranded RNA (dsRNA)-binding protein that is expressed late in infection and packaged into the tegument layer of the virus particle. As a tegument component, Us11 associates with nascent capsids after its synthesis late in the infectious cycle and is delivered into newly infected cells at times prior to the expression of viral genes. Us11 is also an abundant late protein that regulates translation through its association with host components and contains overlapping nucleolar retention and nuclear export signals, allowing its accumulation in both nucleoli and the cytosol. Thus, at various times during the viral life cycle and in different intracellular compartments, Us11 has the potential to execute discrete tasks. The analysis of these functions, however, is complicated by the fact that Us11 is not essential for viral replication in cultured cells. To discover new host targets for the Us11 protein, we searched for cellular proteins that interact with Us11 and have identified PAT1 as a Us11-binding protein according to multiple, independent experimental criteria. PAT1 binds microtubules, participates in amyloid precursor protein trafficking, and has homology to the kinesin light chain (KLC) in its carboxyl terminus. The carboxyl-terminal dsRNA-binding domain of Us11, which also contains the nucleolar retention and nuclear export signals, binds PAT1, whereas 149 residues derived from the KLC homology region of PAT1 are important for binding to Us11. Both PAT1 and Us11 colocalize within a perinuclear area in transiently transfected and HSV-1-infected cells. The 149 amino acids derived from the KLC homology region are required for colocalization of the two polypeptides. Furthermore, although PAT1 normally accumulates in the nuclear compartment, Us11 expression results in the exclusion of PAT1 from the nucleus and its accumulation in the perinuclear space. Similarly, Us11 does not accumulate in the nucleoli of infected cells that overexpress PAT1. These results establish that Us11 and PAT1 can associate, resulting in an altered subcellular distribution of both polypeptides. The association between PAT1, a cellular trafficking protein with homology to KLC, and Us11, along with a recent report demonstrating an interaction between Us11 and the ubiquitous kinesin heavy chain (R. J. Diefenbach et al., J. Virol. 76:3282-3291, 2002), suggests that these associations may be important for the intracellular movement of viral components. PMID:12915535

  17. Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures.

    PubMed

    Miroshnichenko, Sergey; Tripp, Joanna; Nieden, Uta zur; Neumann, Dieter; Conrad, Udo; Manteuffel, Renate

    2005-01-01

    The conformational dynamism and aggregate state of small heat shock proteins (sHSPs) may be crucial for their functions in thermoprotection of plant cells from the detrimental effects of heat stress. Ectopic expression of single chain fragment variable (scFv) antibodies against cytosolic sHSPs was used as new tool to generate sHSP loss-of-function mutants by antibody-mediated prevention of the sHSP assembly in vivo. Anti-sHSP scFv antibodies transiently expressed in heat-stressed tobacco protoplasts were not only able to recognize the endogenous sHSPs but also prevented their assembly into heat stress granula (HSGs). Constitutive expression of the same scFv antibodies in transgenic plants did not alter their phenotype at normal growth temperatures, but their leaves turned yellow and died after prolonged stress at sublethal temperatures. Structural analysis revealed a regular cytosolic distribution of stress-induced sHSPs in mesophyll cells of stress-treated transgenic plants, whereas extensive formation of HSGs was observed in control cells. After prolonged stress at sublethal temperatures, mesophyll cells of transgenic plants suffered destruction of all cellular membranes and finally underwent cell death. In contrast, mesophyll cells of the stressed controls showed HSG disintegration accompanied by appearance of polysomes, dictyosomes and rough endoplasmic reticulum indicating normalization of cell functions. Apparently, the ability of sHSPs to assemble into HSGs as well as the HSG disintegration is a prerequisite for survival of plant cells under continuous stress conditions at sublethal temperatures. PMID:15634203

  18. A bivalent Neisseria meningitidis recombinant lipidated factor H binding protein vaccine in young adults: results of a randomised, controlled, dose-escalation phase 1 trial.

    PubMed

    Richmond, P C; Nissen, M D; Marshall, H S; Lambert, S B; Roberton, D; Gruber, W C; Jones, T R; Arora, A

    2012-09-21

    Neisseria meningitidis is a leading cause of meningitis and septicaemia, but a broadly-protective vaccine against endemic serogroup B disease is not licensed and available. The conserved, outer-membrane lipoprotein factor H binding protein (fHBP, also known as LP2086) is expressed as one of two subfamily variants in virtually all meningococci. This study investigated the safety, tolerability, and immunogenicity of a recombinant-expressed bivalent fHBP (r-fHBP) vaccine in healthy adults. Participants (N=103) aged 18-25 years were recruited into three ascending dose level cohorts of 20, 60, and 200μg of a bivalent r-fHBP vaccine formulation and randomised to receive vaccine or placebo at 0, 1, and 6 months. The vaccine was well tolerated. Geometric mean titres (GMTs) for r-fHBP subfamily-specific IgG antibodies increased 19-168-fold from pre-vaccination to post-dose 2 in a dose level-dependent manner. In addition, robust serum bactericidal assay using human complement (hSBA) responses for strains expressing both homologous and heterologous fHBP variants were observed. After three vaccinations, 16-52% of the placebo group and 47-90%, 75-100%, and 88-100%, of the 20, 60, and 200μg dose levels, respectively, had seroprotective (≥ 1:4) hSBA titres against six serogroup B strains. The bivalent r-fHBP vaccine was well tolerated and induced robust bactericidal activity against six diverse serogroup B strains in young adults at the 60 and 200μg dose levels. PMID:22871351

  19. A 10-minute point-of-care assay for detection of blood protein adducts resulting from low level exposure to organophosphate nerve agents.

    PubMed

    VanDine, Robert; Babu, Uma Mahesh; Condon, Peter; Mendez, Arlene; Sambursky, Robert

    2013-03-25

    The OrganoTox test is a rapid, point-of-care assay capable of detecting clinically relevant organophosphate (OP) poisoning after low-level exposure to sarin, soman, tabun, or VX chemical nerve agents. The test utilizes either a finger stick peripheral blood sample or plasma specimen. While high-level nerve agent exposure can quickly lead to death, low-level exposure produces vague, nondescript signs and symptoms that are not easily clinically differentiated from other conditions. In initial testing, the OrganoTox test was used to detect the presence of blood protein-nerve agent adducts in exposed blood samples. In order to mimic the in vivo exposure as closely as possible, nerve agents stored in organic solvents were spiked in minute quantities into whole blood samples. For performance testing, 40 plasma samples were spiked with sarin, soman, tabun, or VX and 10 normal plasma samples were used as the negative control. The 40 nerve agent-spiked plasma samples included 10 replicates of each agent. At the clinically relevant low-level exposure of 10 ng/ml, the OrganoTox test demonstrated 100% sensitivity for soman, tabun, and VX and 80% sensitivity for sarin. The OrganoTox test demonstrated greater than 97% specificity with 150 blood samples obtained from healthy adults. No cross-reactivity or interference from pesticide precursor compounds was found. A rapid test for nerve agent exposure will help identify affected patients earlier in the clinical course and trigger more appropriate medical management in a more timely manner. PMID:23200942

  20. Lack of CD47 impairs bone cell differentiation and results in an osteopenic phenotype in vivo due to impaired signal regulatory protein ? (SIRP?) signaling.

    PubMed

    Koskinen, Cecilia; Persson, Emelie; Baldock, Paul; Stenberg, sa; Bostrm, Ingrid; Matozaki, Takashi; Oldenborg, Per-Arne; Lundberg, Pernilla

    2013-10-11

    Here, we investigated whether the cell surface glycoprotein CD47 was required for normal formation of osteoblasts and osteoclasts and to maintain normal bone formation activity in vitro and in vivo. In parathyroid hormone or 1?,25(OH)2-vitamin D3 (D3)-stimulated bone marrow cultures (BMC) from CD47(-/-) mice, we found a strongly reduced formation of multinuclear tartrate-resistant acid phosphatase (TRAP)(+) osteoclasts, associated with reduced expression of osteoclastogenic genes (nfatc1, Oscar, Trap/Acp, ctr, catK, and dc-stamp). The production of M-CSF and RANKL (receptor activator of nuclear factor ?? ligand) was reduced in CD47(-/-) BMC, as compared with CD47(+/+) BMC. The stromal cell phenotype in CD47(-/-) BMC involved a blunted expression of the osteoblast-associated genes osterix, Alp/Akp1, and ?-1-collagen, and reduced mineral deposition, as compared with that in CD47(+/+) BMC. CD47 is a ligand for SIRP? (signal regulatory protein ?), which showed strongly reduced tyrosine phosphorylation in CD47(-/-) bone marrow stromal cells. In addition, stromal cells lacking the signaling SIRP? cytoplasmic domain also had a defect in osteogenic differentiation, and both CD47(-/-) and non-signaling SIRP? mutant stromal cells showed a markedly reduced ability to support osteoclastogenesis in wild-type bone marrow macrophages, demonstrating that CD47-induced SIRP? signaling is critical for stromal cell support of osteoclast formation. In vivo, femoral bones of 18- or 28-week-old CD47(-/-) mice showed significantly reduced osteoclast and osteoblast numbers and exhibited an osteopenic bone phenotype. In conclusion, lack of CD47 strongly impairs SIRP?-dependent osteoblast differentiation, deteriorate bone formation, and cause reduced formation of osteoclasts. PMID:23990469

  1. Knock-out of SO1377 gene, which encodes the member of a conserved hypothetical bacterial protein family COG2268, results in alteration of iron metabolism, increased spontaneous mutation and hydrogen peroxide sensitivity in Shewanella oneidensis MR-1

    PubMed Central

    Gao, Weimin; Liu, Yongqing; Giometti, Carol S; Tollaksen, Sandra L; Khare, Tripti; Wu, Liyou; Klingeman, Dawn M; Fields, Matthew W; Zhou, Jizhong

    2006-01-01

    Background Shewanella oneidensis MR-1 is a facultative, gram-negative bacterium capable of coupling the oxidation of organic carbon to a wide range of electron acceptors such as oxygen, nitrate and metals, and has potential for bioremediation of heavy metal contaminated sites. The complete 5-Mb genome of S. oneidensis MR-1 was sequenced and standard sequence-comparison methods revealed approximately 42% of the MR-1 genome encodes proteins of unknown function. Defining the functions of hypothetical proteins is a great challenge and may need a systems approach. In this study, by using integrated approaches including whole genomic microarray and proteomics, we examined knockout effects of the gene encoding SO1377 (gi24372955), a member of the conserved, hypothetical, bacterial protein family COG2268 (Clusters of Orthologous Group) in bacterium Shewanella oneidensis MR-1, under various physiological conditions. Results Compared with the wild-type strain, growth assays showed that the deletion mutant had a decreased growth rate when cultured aerobically, but not affected under anaerobic conditions. Whole-genome expression (RNA and protein) profiles revealed numerous gene and protein expression changes relative to the wild-type control, including some involved in iron metabolism, oxidative damage protection and respiratory electron transfer, e. g. complex IV of the respiration chain. Although total intracellular iron levels remained unchanged, whole-cell electron paramagnetic resonance (EPR) demonstrated that the level of free iron in mutant cells was 3 times less than that of the wild-type strain. Siderophore excretion in the mutant also decreased in iron-depleted medium. The mutant was more sensitive to hydrogen peroxide and gave rise to 100 times more colonies resistant to gentamicin or kanamycin. Conclusion Our results showed that the knock-out of SO1377 gene had pleiotropic effects and suggested that SO1377 may play a role in iron homeostasis and oxidative damage protection in S. oneidensis MR-1. PMID:16600046

  2. Metrological sharp shooting for plasma proteins and peptides: The need for reference materials for accurate measurements in clinical proteomics and in vitro diagnostics to generate reliable results.

    PubMed

    Vitzthum, Frank; Siest, Gérard; Bunk, David M; Preckel, Tobias; Wenz, Christian; Hoerth, Patric; Schulz-Knappe, Peter; Tammen, Harald; Adamkiewicz, Juergen; Merlini, Giampaolo; Anderson, N Leigh

    2007-09-01

    Reliable study results are necessary for the assessment of discoveries, including those from proteomics. Reliable study results are also crucial to increase the likelihood of making a successful choice of biomarker candidates for verification and subsequent validation studies, a current bottleneck for the transition to in vitro diagnostic (IVD). In this respect, a major need for improvement in proteomics appears to be accuracy of measurements, including both trueness and precision of measurement. Standardization and total quality management systems (TQMS) help to provide accurate measurements and reliable results. Reference materials are an essential part of standardization and TQMS in IVD and are crucial to provide metrological correct measurements and for the overall quality assurance process. In this article we give an overview on how reference materials are defined, prepared and what role they play in standardization and TQMS to support the generation of reliable results. We discuss how proteomics can support the establishment of reference materials and biomarker tests for IVD applications, how current reference materials used in IVD may be beneficially applied in proteomics, and we provide considerations on the establishment of reference materials specific for proteomics. For clarity, we solely focus on reference materials related to serum and plasma. PMID:21136754

  3. Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America.

    PubMed

    Madsen, H O; Satz, M L; Hogh, B; Svejgaard, A; Garred, P

    1998-09-15

    Previous studies have shown that three point mutations in exon 1 and a particular promoter haplotype of the mannan-binding lectin (MBL) gene lead to a dramatic decrease in the serum concentration of MBL. In this study, MBL genotypes and serum concentrations were determined in unrelated individuals in a population from Mozambique (n = 154) and in two native Indian tribes from Argentina (i.e., the Chiriguanos (n = 43) and the Mapuches (n = 25)). In both populations, the MBL concentrations were low compared with those found in Eskimo, Asian, and European populations. In Africans, the low serum concentrations were due to a high allele frequency (0.24) of the codon 57 (C) variant, which resulted in a high frequency of individuals with MBL deficiency (0.06), and were also due to the effect of a relatively high frequency (0.13) of low-producing promoter haplotypes. The low concentrations in the South American populations were primarily due to an extremely high allele frequency of the codon 54 (B) variant in both the Chiriguanos (0.42) and the Mapuches (0.46), resulting in high frequencies of individuals with MBL deficiency (0.14 and 0.16, respectively). In the search for additional genetic variants, we found five new promoter mutations that might help to elucidate the evolution of the MBL gene. Taken together, the results of this study show that different molecular mechanisms are the basis for low MBL levels on the two continents. PMID:9743385

  4. A Marine Protein-based Dietary Supplement for Subclinical Hair Thinning/Loss: Results of a Multisite, Double-blind, Placebo-controlled Clinical Trial

    PubMed Central

    Rizer, Ronald L; Stephens, Thomas J; Herndon, James H; Sperber, Brian R; Murphy, James; Ablon, Glynis R

    2015-01-01

    Introduction: Since skin and hair quality are potent vitality signals, and hair growth deficiency can cause significant psychological morbidity. In addition to clearly-defined hair loss disorders, milder forms of hair thinning or hair loss appear to be increasingly common, with a suggestion that sub-optimal diets and stressful lifestyles may be involved. Methods: Here we assess the value of a dietary marine-extract based dietary supplement in premenopausal women with subclinical hair thinning or hair loss conditions. This multi-site, randomized double-blind, placebo-controlled clinical trial was conducted with impact on hair shedding rate and hair fiber diameter (assessed by phototrichogram) as primary end points upon consumption of the oral supplement compared to a placebo. A total of 96 eligible female subjects were enrolled aged 21–55 years of age from Asian, Caucasian, and Hispanic ethnic backgrounds. Results: This study showed that hair shedding was significantly reduced in the first 3–6 months of daily consumption of the oral supplement. Moreover, phototrichogram image analysis revealed a statistically significant increase in the mean vellus-like hair diameter after 6 months of supplement consumption, when compared to the mean vellus-like hair diameters measured at baseline. Discussion: These results support the view that a nutritional supplement approach may be useful for women in this age group to deal with subclinical hair thinning or hair loss conditions, and those components of this marine extract-based oral supplement may be a useful adjunct. PMID:26903744

  5. A single amino acid change in AngR, a protein encoded by pJM1-like virulence plasmids, results in hyperproduction of anguibactin.

    PubMed Central

    Tolmasky, M E; Actis, L A; Crosa, J H

    1993-01-01

    The siderophore anguibactin is produced in vivo in a diffusible form and is an important factor in the virulence of Vibrio anguillarum. The natural isolate V. anguillarum 531A is a hyperproducer of anguibactin when compared with the prototype strain V. anguillarum 775. The angR gene was found to be responsible for this difference in levels of anguibactin produced. Nucleotide sequence analysis showed that the angR531A differed in a single nucleotide from the angR775 present in the prototype plasmid pJM1. This nucleotide substitution resulted in a change in amino acid 267 from His in strain 775 to Asn in strain 531A. This amino acid is located in a region between one of the two helix-turn-helix domains and the neighboring leucine zipper. Mutations to replace His with either Leu or Gln, generated by site-directed mutagenesis, in amino acid 267 resulted in strains for which the MIC of the iron chelator ethylenediamine di(o-hydroxyphenyl) acetic acid were lower than for the proptotype 775 but higher than for iron uptake-deficient strains. In addition to its transcriptional activating function, AngR also complemented a mutation in the Escherichia coli entE gene, which encodes the enterobactin biosynthetic enzyme 2,3-dihydroxybenzoate-AMP ligase. Therefore, AngR may also function in V. anguillarum as an EntE-like enzyme for the biosynthesis of anguibactin. Images PMID:8335354

  6. A single Alal 39-to-Glu substitution in the Renibacterium salmoninarum virulence-associated protein p57 results in antigenic variation and is associated with enhanced p57 binding to Chinook salmon leukocytes

    USGS Publications Warehouse

    Wiens, Gregory D.; Pascho, Ron; Winton, James R.

    2002-01-01

    The gram-positive bacterium Renibacterium salmoninarum produces relatively large amounts of a 57-kDa protein (p57) implicated in the pathogenesis of salmonid bacterial kidney disease. Antigenic variation in p57 was identified by using monoclonal antibody 4C11, which exhibited severely decreased binding to R. salmoninarum strain 684 p57 and bound robustly to the p57 proteins of seven other R. salmoninarum strains. This difference in binding was not due to alterations in p57 synthesis, secretion, or bacterial cell association. The molecular basis of the 4C11 epitope loss was determined by amplifying and sequencing the two identical genes encoding p57, msa1 and msa2. The 5′ and coding sequences of the 684 msa1 and msa2 genes were identical to those of the ATCC 33209 msa1and msa2 genes except for a single C-to-A nucleotide mutation. This mutation was identified in both the msa1 and msa2 genes of strain 684 and resulted in an Ala139-to-Glu substitution in the amino-terminal region of p57. We examined whether this mutation in p57 altered salmonid leukocyte and rabbit erythrocyte binding activities. R. salmoninarum strain 684 extracellular protein exhibited a twofold increase in agglutinating activity for chinook salmon leukocytes and rabbit erythrocytes compared to the activity of the ATCC 33209 extracellular protein. A specific and quantitative p57 binding assay confirmed the increased binding activity of 684 p57. Monoclonal antibody 4C11 blocked the agglutinating activity of the ATCC 33209 extracellular protein but not the agglutinating activity of the 684 extracellular protein. These results indicate that the Ala139-to-Glu substitution altered immune recognition and was associated with enhanced biological activity of R. salmoninarum 684 p57.

  7. Rhizobium selenitireducens proteins involved in the reduction of selenite to elemental selenium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial based bioremediation barriers can remove the metalloid selenite (SeO3–2) from flowing groundwater. The organisms associated with the process include microorganisms from within the bacterial and archaeal domains that can reduce soluble SeO3–2 to the insoluble and reddish-colored elemental ...

  8. Toxicity of selenium (Na sub 2 SeO sub 3 ) and mercury (HgCl sub 2 ) on the planarian Dugesia gonocephala

    SciTech Connect

    Congiu, A.M.; Casu, S.; Ugazio, G. )

    1989-10-01

    The toxicity of selenium (Na{sub 2}SeO{sub 3}) and mercury (HgCl{sub 2}) was determined by using a freshwater planarian which is particularly sensitive to pollution, and belongs to a fissiparous breed of Dugesia gonocephala. The mortality and fissiparity frequency of the subjects were studied. They were exposed to intense treatments (48 hours) or for medium to long periods of time (21 days) to either the single compounds or a combination of both, and were fed or fasting. The lethal effect of sodium selenite is correlated to the food intake, whereas the toxicity of mercurous chloride is probably the result of a fixative effect which does not depend on feeding. The 21-day treatment with the first compound has a non-negligible lethal effect which is probably due to an accumulation phenomenon. At doses where an antioxidant effect prevails, fissiparity is stimulated. On the other hand, the second compound reduces reproduction frequency to half the base values. Compared to the Paracentrotus lividus, the Dugesia gonocephala offers various advantages concerning toxicological experiments; besides being easier to handle in the laboratory, it is available all year round and is not subject to seasonal cycles. It is also more susceptible to the toxic effect of mercury, which is a common and highly toxic pollutant, than the sea urchin.

  9. Structure−Activity Relationships in Peptide Modulators of β-Amyloid Protein Aggregation: Variation in α,α-Disubstitution Results in Altered Aggregate Size and Morphology

    PubMed Central

    2010-01-01

    Neuronal cytotoxicity observed in Alzheimer’s disease (AD) is linked to the aggregation of β-amyloid peptide (Aβ) into toxic forms. Increasing evidence points to oligomeric materials as the neurotoxic species, not Aβ fibrils; disruption or inhibition of Aβ self-assembly into oligomeric or fibrillar forms remains a viable therapeutic strategy to reduce Aβ neurotoxicity. We describe the synthesis and characterization of amyloid aggregation mitigating peptides (AAMPs) whose structure is based on the Aβ “hydrophobic core” Aβ17−20, with α,α-disubstituted amino acids (ααAAs) added into this core as potential disrupting agents of fibril self-assembly. The number, positional distribution, and side-chain functionality of ααAAs incorporated into the AAMP sequence were found to influence the resultant aggregate morphology as indicated by ex situ experiments using atomic force microscopy (AFM) and transmission electron microscopy (TEM). For instance, AAMP-5, incorporating a sterically hindered ααAA with a diisobutyl side chain in the core sequence, disrupted Aβ1−40 fibril formation. However, AAMP-6, with a less sterically hindered ααAA with a dipropyl side chain, altered fibril morphology, producing shorter and larger sized fibrils (compared with those of Aβ1−40). Remarkably, ααAA-AAMPs caused disassembly of existing Aβ fibrils to produce either spherical aggregates or protofibrillar structures, suggesting the existence of equilibrium between fibrils and prefibrillar structures. PMID:22778850

  10. Reduced β-lactoglobulin IgE binding upon in vitro digestion as a result of the interaction of the protein with casein glycomacropeptide.

    PubMed

    Martinez, María J; Martos, Gustavo; Molina, Elena; Pilosof, Ana M R

    2016-02-01

    The aim of this work was to evaluate the effect of the presence of casein glycomacropeptide (CMP) on the in vitro digestibility and potential allergenicity of β-lactoglobulin (β-lg)-CMP mixtures. The digestion products were analyzed by RP-HPLC and RP-HPLC-ESI-MS/MS. The potential allergenicity of the digestion products was studied by human IgE binding by inhibition ELISA with serum samples from children with clinical allergic symptoms to β-lg. No differences were observed by HPLC in the mixtures hydrolysates due to CMP-β-lg interactions. RP-HPLC-ESI-MS/MS results showed different peptides occurring in the mixtures hydrolysates. Additionally, it was observed a significant reduction of β-lg IgE binding in the presence of CMP. The disappearance of epitopes in the digested mixtures could explain the lower IgE binding observed in these systems compared to β-lg. It can be concluded that the presence of CMP in products containing β-lg may modify the digestion products that may reduce the potential allergenicity of β-lg. PMID:26304433

  11. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression.

    PubMed

    Chuang, E; Alegre, M L; Duckett, C S; Noel, P J; Vander Heiden, M G; Thompson, C B

    1997-07-01

    CTLA-4 is a lymphocyte cell surface receptor expressed by activated T cells that functions to down-regulate T cell responses induced by TCR and CD28 stimulation. Since CTLA-4 competes with CD28 for binding to the common ligands B7-1 and B7-2, the level of CTLA-4 surface expression is likely to play an important role in its ability to inhibit CD28-dependent T cell activation. The factors that regulate these levels are poorly understood. Recent studies have revealed that following T cell activation, the majority of CTLA-4 is localized intracellularly rather than on the cell surface, and surface CTLA-4 is rapidly reinternalized. In this study, we investigate the molecular mechanism underlying the rapid clearance of CTLA-4 from the cell surface. The data demonstrate that cell surface CTLA-4 is endocytosed into clathrin-coated vesicles even in the absence of ligand. The targeting of CTLA-4 to clathrin-coated vesicles is mediated by the clathrin-associated adaptor complex AP-2. The cytoplasmic domain of CTLA-4 was found to specifically bind to AP50, the medium chain subunit of AP-2 in both yeast two-hybrid and coimmunoprecipitation assays. The interaction requires the peptide sequence 199-GVYVKM-204 in the cytoplasmic tail of CTLA-4. Mutation of the CTLA-4 amino acid residue Y201 abrogates the interaction with AP50, resulting in the accumulation of CTLA-4 at the cell surface. Together these data suggest that the interaction of CTLA-4 with AP50 plays an important role in regulating the cell surface expression of CTLA-4. PMID:9200449

  12. A Prototype Recombinant-Protein Based Chlamydia pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical Disease in Free-Ranging Koalas (Phascolarctos cinereus).

    PubMed

    Waugh, Courtney; Khan, Shahneaz Ali; Carver, Scott; Hanger, Jonathan; Loader, Joanne; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Diseases associated with Chlamydia pecorum infection are a major cause of decline in koala populations in Australia. While koalas in care can generally be treated, a vaccine is considered the only option to effectively reduce the threat of infection and disease at the population level. In the current study, we vaccinated 30 free-ranging koalas with a prototype Chlamydia pecorum vaccine consisting of a recombinant chlamydial MOMP adjuvanted with an immune stimulating complex. An additional cohort of 30 animals did not receive any vaccine and acted as comparison controls. Animals accepted into this study were either uninfected (Chlamydia PCR negative) at time of initial vaccination, or infected (C. pecorum positive) at either urogenital (UGT) and/or ocular sites (Oc), but with no clinical signs of chlamydial disease. All koalas were vaccinated / sampled and then re-released into their natural habitat before re-capturing and re-sampling at 6 and 12 months. All vaccinated koalas produced a strong immune response to the vaccine, as indicated by high titres of specific plasma antibodies. The incidence of new infections in vaccinated koalas over the 12-month period post-vaccination was slightly less than koalas in the control group, however, this was not statistically significant. Importantly though, the vaccine was able to significantly reduce the infectious load in animals that were Chlamydia positive at the time of vaccination. This effect was evident at both the Oc and UGT sites and was stronger at 6 months than at 12 months post-vaccination. Finally, the vaccine was also able to reduce the number of animals that progressed to disease during the 12-month period. While the sample sizes were small (statistically speaking), results were nonetheless striking. This study highlights the potential for successful development of a Chlamydia vaccine for koalas in a wild setting. PMID:26756624

  13. A Prototype Recombinant-Protein Based Chlamydia pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical Disease in Free-Ranging Koalas (Phascolarctos cinereus)

    PubMed Central

    Waugh, Courtney; Khan, Shahneaz Ali; Carver, Scott; Hanger, Jonathan; Loader, Joanne; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Diseases associated with Chlamydia pecorum infection are a major cause of decline in koala populations in Australia. While koalas in care can generally be treated, a vaccine is considered the only option to effectively reduce the threat of infection and disease at the population level. In the current study, we vaccinated 30 free-ranging koalas with a prototype Chlamydia pecorum vaccine consisting of a recombinant chlamydial MOMP adjuvanted with an immune stimulating complex. An additional cohort of 30 animals did not receive any vaccine and acted as comparison controls. Animals accepted into this study were either uninfected (Chlamydia PCR negative) at time of initial vaccination, or infected (C. pecorum positive) at either urogenital (UGT) and/or ocular sites (Oc), but with no clinical signs of chlamydial disease. All koalas were vaccinated / sampled and then re-released into their natural habitat before re-capturing and re-sampling at 6 and 12 months. All vaccinated koalas produced a strong immune response to the vaccine, as indicated by high titres of specific plasma antibodies. The incidence of new infections in vaccinated koalas over the 12-month period post-vaccination was slightly less than koalas in the control group, however, this was not statistically significant. Importantly though, the vaccine was able to significantly reduce the infectious load in animals that were Chlamydia positive at the time of vaccination. This effect was evident at both the Oc and UGT sites and was stronger at 6 months than at 12 months post-vaccination. Finally, the vaccine was also able to reduce the number of animals that progressed to disease during the 12-month period. While the sample sizes were small (statistically speaking), results were nonetheless striking. This study highlights the potential for successful development of a Chlamydia vaccine for koalas in a wild setting. PMID:26756624

  14. Binding of selenium-75 to blood and liver cytosolic proteins in the preruminant calf

    SciTech Connect

    Jenkins, K.J.; Hidiroglou, M.

    1988-02-01

    Labeled selenite (75Se) administered to calves in milk replacer, containing .2 or 5 ppm Se, was rapidly absorbed with peak blood 75Se at 6 h. Gel filtration and dialysis treatment of plasma and erythrocyte hemolysates showed that initially 75Se was transported in blood as 75SeO3= or loosely bound to plasma and erythrocyte proteins. At high Se intake, albumin became a transport protein for some of the plasma 75Se, and proportionately more blood radioactivity was carried in the erythrocytes. At 72 h after dosing, most plasma 75Se was tightly bound to protein in glutathione peroxidase fraction with low peroxidase activity, possibly Se transport protein. At 72 h, distribution of 75Se in erythrocyte was 35 to 40% in glutathione peroxidase, 50% in hemoglobin, and 5% in a selenite plus selenopolypeptide fraction. Erythrocyte peroxidase activity was mostly in the glutathione peroxidase fraction (57%) and hemoglobin (38%). Molecular weight estimate for erythrocyte glutathione peroxidase was 84,200 daltons; about 90% of blood peroxidase activity was in erythrocytes. High Se intake had no marked effect on distribution of 75Se among liver cytosolic proteins. About 35% of 75Se was in glutathione peroxidase fraction, having most of the peroxidase activity, 25% in void volume, 11 to 18% in a selenite plus selenopolypeptide fraction, and small amounts in selenoproteins of about 12,000 and 50,000 daltons.

  15. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  16. Bacteriophage protein-protein interactions.

    PubMed

    Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian; Uetz, Peter

    2012-01-01

    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812

  17. N-methyl-D-aspartate receptor activation results in regulation of extracellular signal-regulated kinases by protein kinases and phosphatases in glutamate-induced neuronal apototic-like death.

    PubMed

    Jiang, Q; Gu, Z; Zhang, G; Jing, G

    2000-12-29

    Extracellular signal-regulated kinases (ERK1/ERK2) have been shown transiently activated and involved in excitotoxicity. We searched for upstream molecules responsible for the regulation of glutamate-induced ERK1/ERK2 activation and ERK1/ERK2-mediated apototic-like death in cultured rat cortical neurons. ERK1/ERK2 activation (monitored by anti-active ERK1/ERK2 antibody) was almost completely prevented by blockage of NMDA receptor (NMDA-R) or elimination of extracellular Ca(2+), but not any other glutamate receptor or L-type voltage-gated Ca(2+) channel. It was prevented largely by inhibition of protein kinase C (PKC), protein-tyrosine kinases (PTK), respectively, but mildly by that of CaM kinase II. Combined inhibition of CaM kinase II (but not PTK) and PKC had an additive effect. Reversion of ERK1/ERK2 activation was largely prevented by inhibition of protein phosphatase (PP) 1 or protein tyrosine phosphatase (PTP). Combined inhibition of PP 1 and PTP had no additive effect. Glutamate-induced apoptotic-like death (determined by DAPI staining) was largely prevented by inhibition of NMDA-R, PKC, CaM kinase II, PTK and MEK1/MEK2 (ERK1/ERK2 kinase), respectively. Combined inhibition of CaM kinase II (but not PKC or PTK) and MEK1/MEK2 had an additive effect. Glutamate-induced apoptotic-like death was promoted by inhibition of PP1 and PTP, respectively. The above results suggested that in glutamate-induced cortical neurotoxicity ERK1/ERK2 activation be mainly mediated by NMDA-R. Subsequently, a pathway dependent on both PKC and PTK was mainly involved, which was also mainly responsible for ERK1/ERK2-mediated apoptotic-like death, and a CaM kinase II-dependent pathway was relatively mildly involved. Reversion of ERK1/ERK2 activation was mainly mediated by a pathway dependent on both PP1 and PTP, which might be involved in the restrain of glutamate-induced neurotoxicity. PMID:11134617

  18. Calcium-energized motor protein forisome controls damage in phloem: potential applications as biomimetic "smart" material.

    PubMed

    Srivastava, Vineet Kumar; Tuteja, Renu; Tuteja, Narendra

    2015-06-01

    Forisomes are ATP independent, mechanically active proteins from the Fabaceae family (also called Leguminosae). These proteins are located in sieve tubes of phloem and function to prevent loss of nutrient-rich photoassimilates, upon mechanical injury/wounding. Forisomes are SEO (sieve element occlusion) gene family proteins that have recently been shown to be involved in wound sealing mechanism. Recent findings suggest that forisomes could act as an ideal model to study self assembly mechanism for the development of nanotechnological devices like microinstruments, the microfluidic system frequently used in space exploration missions. Technology enabling improvement in micro instruments has been identified as a key technology by NASA in future space exploration missions. Forisomes are designated as biomimetic smart materials which are calcium-energized motor proteins. Since forisomes are biomolecules from plant systems it can be doctored through genetic engineering. In contrast, "smart" materials which are not derived from plants are difficult to modify in their properties. Current levels of understanding about forisomes conformational shifts with respect to calcium ions and pH changes requires supplement of future advances with relation to its 3D structure to understand self assembly processes. In plant systems it forms blood clots in the form of occlusions to prevent nutrient fluid leakage and thus proves to be a unique damage control system of phloem tissue. PMID:24020505

  19. Diets containing soy or rice protein isolate increase insulin sensitivity and improve lipid homeostasis in weanling rats fed high fat, high cholesterol Western diets as a result of activation of PPAR and LXR-mediated pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current study examined the effects of feeding soy protein isolate (SPI) and rice protein isolate (RPI) on insulin sensitivity and fat breakdown in weanling rats consuming high fat/high cholesterol diets. Male Sprague-Dawley rats were placed on semi-purified diets containing the milk protein case...

  20. Deletion of mitochondrial associated ubiquitin fold modifier protein Ufm1 in Leishmania donovani results in loss of β-oxidation of fatty acids and blocks cell division in the amastigote stage.

    PubMed

    Gannavaram, Sreenivas; Connelly, Patricia S; Daniels, Mathew P; Duncan, Robert; Salotra, Poonam; Nakhasi, Hira L

    2012-10-01

    Recently, we described the existence of the ubiquitin fold modifier 1 (Ufm1) and its conjugation pathway in Leishmania donovani. We demonstrated the conjugation of Ufm1 to proteins such as mitochondrial trifunctional protein (MTP) that catalyses β-oxidation of fatty acids in L. donovani. To elucidate the biological roles of the Ufm1-mediated modifications, we made an L. donovani Ufm1 null mutant (Ufm1(-/-)). Loss of Ufm1 and consequently absence of Ufm1 conjugation with MTP resulted in diminished acetyl-CoA, the end-product of the β-oxidation in the Ufm1(-/-) amastigote stage. The Ufm1(-/-) mutants showed reduced survival in the amastigote stage in vitro and ex vivo in human macrophages. This survival was restored by re-expression of wild-type Ufm1 with concomitant induction of acetyl-CoA but not by re-expressing the non-conjugatable Ufm1, indicating the essential nature of Ufm1 conjugation and β-oxidation. Both cell cycle analysis and ultrastructural studies of Ufm1(-/-) parasites confirmed the role of Ufm1 in amastigote growth. The defect in vitro growth of amastigotes in human macrophages was further substantiated by reduced survival. Therefore, these studies suggest the importance of Ufm1 in Leishmania pathogenesis with larger impact on other organisms and further provide an opportunity to test Ufm1(-/-) parasites as drug and vaccine targets. PMID:22897198

  1. Deletion of mitochondrial associated ubiquitin fold modifier protein Ufm1 in Leishmania donovani results in loss of β-oxidation of fatty acids and blocks cell division in the amastigote stage

    PubMed Central

    Gannavaram, Sreenivas; Connelly, Patricia S; Daniels, Mathew P; Duncan, Robert; Salotra, Poonam; Nakhasi, Hira L

    2014-01-01

    Summary Recently, we described the existence of the ubiquitin fold modifier1 (Ufm1) and its conjugation pathway in Leishmania donovani. We demonstrated the conjugation of Ufm1 to proteins such as mitochondrial trifunctional protein (MTP) that catalyzes β-oxidation of fatty acids in L. donovani. To elucidate the biological roles of the Ufm1-mediated modifications, we made an L. donovani Ufm1 null mutant (Ufm1−/−). Loss of Ufm1 and consequently absence of Ufm1 conjugation with MTP resulted in diminished acetyl-CoA, the end product of the β-oxidation in the Ufm1−/− amastigote stage. The Ufm1−/− mutants showed reduced survival in the amastigote stage in vitro and ex vivo in human macrophages. This survival was restored by re-expression of wild type Ufm1 with concomitant induction of acetyl-CoA but not by re-expressing the non-conjugatable Ufm1, indicating the essential nature of Ufm1 conjugation and β-oxidation. Both cell cycle analysis and ultrastructural studies of Ufm1−/− parasites confirmed the role of Ufm1 in amastigote growth. The defect in vitro growth of amstigotes in human macrophages was further substantiated by reduced survival. Therefore, these studies suggest the importance of Ufm1 in Leishmania pathogenesis with larger impact on other organisms and further provide an opportunity to test Ufm1−/− parasites as drug and vaccine targets. PMID:22897198

  2. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  3. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2007-09-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  4. Effect of protein, unsaturated fat, and carbohydrate intakes on plasma apolipoprotein B and VLDL and LDL containing apolipoprotein C-III: results from the OmniHeart Trial2

    PubMed Central

    Furtado, Jeremy D; Campos, Hannia; Appel, Lawrence J; Miller, Edgar R; Laranjo, Nancy; Carey, Vincent J; Sacks, Frank M

    2008-01-01

    Background Plasma apolipoprotein B (apo B) and VLDL and LDL with apolipoprotein C-III (apo C-III) are independent risk factors for cardiovascular disease (CVD). Dietary intake affects lipoprotein concentration and composition related to those apolipoproteins. Objective We studied differences in apo B lipoproteins with and without apo C-III after 3 healthy diets based on the Dietary Approaches to Stop Hypertension Trial diet. Design Healthy participants (n = 162) were fed each of 3 healthy diets for 6 wk in a crossover design. Diets differed by emphasis of either carbohydrate (Carb), unsaturated fat (Unsat), or protein (Prot). Blood was collected at baseline and after diets for analysis. Results Compared with the Carb diet, the Prot diet reduced plasma apo B and triglycerides in VLDL with apo C-III (16%, P = 0.07; 11%, P = 0.05, respectively) and apo B in LDL with apo C-III (16%, P = 0.04). Compared with the Unsat diet, the Prot diet reduced triglycerides in VLDL with apo C-III (16%, P = 0.02). Compared with baseline (subjects' usual diet was higher in saturated fat), the Prot diet reduced apo B in LDL with apo C-III (11%, P = 0.05), and all 3 diets reduced plasma total apo B (6−10%, P < 0.05) and apo B in the major type of LDL, LDL without apo C-III (8 −10%, P < 0.01). All 3 diets reduced the ratio of apo C-III to apo E in VLDL. Conclusions Substituting protein for carbohydrate in the context of a healthy dietary pattern reduced atherogenic apo C-III–containing LDL and its precursor, apo C-III–containing VLDL, resulting in the most favorable profile of apo B lipoproteins. In addition, compared with a typical high-saturated fat diet, healthy diets that emphasize carbohydrate, protein, or unsaturated fat reduce plasma total and LDL apo B and produce a lower more metabolically favorable ratio of apo C-III to apo E. PMID:18541549

  5. Surface Mediated Protein Disaggregation

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Kumar, Sanat K.

    2014-03-01

    Preventing protein aggregation is of both biological and industrial importance. Biologically these aggregates are known to cause amyloid type diseases like Alzheimer's and Parkinson's disease. Protein aggregation leads to reduced activity of the enzymes in industrial applications. Inter-protein interactions between the hydrophobic residues of the protein are known to be the major driving force for protein aggregation. In the current paper we show how surface chemistry and curvature can be tuned to mitigate these inter-protein interactions. Our results calculated in the framework of the Hydrophobic-Polar (HP) lattice model show that, inter-protein interactions can be drastically reduced by increasing the surface hydrophobicity to a critical value corresponding to the adsorption transition of the protein. At this value of surface hydrophobicity, proteins lose inter-protein contacts to gain surface contacts and thus the surface helps in reducing the inter-protein interactions. Further, we show that the adsorption of the proteins inside hydrophobic pores of optimal sizes are most efficient both in reducing inter-protein contacts and simultaneously retaining most of the native-contacts due to strong protein-surface interactions coupled with stabilization due to the confinement. Department of Energy (Grant No DE-FG02-11ER46811).

  6. Total protein

    MedlinePlus

    The total protein test measures the total amount of two classes of proteins found in the fluid portion of your blood. These are albumin and globulin. Proteins are important parts of all cells and tissues. ...

  7. API2-MALT1 fusion protein induces transcriptional activation of the API2 gene through NF-{kappa}B binding elements: Evidence for a positive feed-back loop pathway resulting in unremitting NF-{kappa}B activation

    SciTech Connect

    Hosokawa, Yoshitaka . E-mail: yhosokaw@aichi-cc.jp; Suzuki, Hiroko; Nakagawa, Masao; Lee, Tae H.; Seto, Masao

    2005-08-19

    t(11;18)(q21;q21) is a characteristic as well as the most frequent chromosomal translocation in mucosa-associated lymphoid tissue (MALT) type lymphoma, and this translocation results in a fusion transcript, API2-MALT1. Although API2-MALT1 has been shown to enforce activation of NF-{kappa}B signaling, the transcriptional target genes of this fusion protein remains to be identified. Our analyses of the API2-MALT transfectants suggested that one of the target genes may be the apoptotic inhibitor API2 gene. Luciferase reporter assays with deletion and mutational constructs of the API2 promoter and electrophoretic mobility shift assays established that API2-MALT1 induces transcriptional activation of the API2 gene through two NF-{kappa}B binding elements. Moreover, supershift experiments indicated that these elements are recognized by the NF-{kappa}B p50/p65 heterodimer. Taken together, our results strongly indicated that API2-MALT1 possesses a novel mechanism of self-activation by up-regulating its own expression in t(11;18)(q21;q21)-carrying MALT lymphomas, highlighting a positive feedback-loop pathway resulting in unremitting NF-{kappa}B activation.

  8. Mutation of the f-protein cleavage site of avian paramyxovirus type 7 results in furin cleavage, fusion promotion, and increased replication in vitro but not increased replication, tissue tropism, or virulence in chickens.

    PubMed

    Xiao, Sa; Khattar, Sunil K; Subbiah, Madhuri; Collins, Peter L; Samal, Siba K

    2012-04-01

    We constructed a reverse genetics system for avian paramyxovirus serotype 7 (APMV-7) to investigate the role of the fusion F glycoprotein in tissue tropism and virulence. The AMPV-7 F protein has a single basic residue arginine (R) at position -1 in the F cleavage site sequence and also is unusual in having alanine at position +2 (LPSSR↓FA) (underlining indicates the basic amino acids at the F protein cleavage site, and the arrow indicates the site of cleavage.). APMV-7 does not form syncytia or plaques in cell culture, but its replication in vitro does not depend on, and is not increased by, added protease. Two mutants were successfully recovered in which the cleavage site was modified to mimic sites that are found in virulent Newcastle disease virus isolates and to contain 4 or 5 basic residues as well as isoleucine in the +2 position: (RRQKR↓FI) or (RRKKR↓FI), named Fcs-4B or Fcs-5B, respectively. In cell culture, one of the mutants, Fcs-5B, formed protease-independent syncytia and grew to 10-fold-higher titers compared to the parent and Fcs-4B viruses. This indicated the importance of the single additional basic residue (K) at position -3. Syncytium formation and virus yield of the Fcs-5B virus was impaired by the furin inhibitor decanoyl-RVKR-CMK, whereas parental APMV-7 was not affected. APMV-7 is avirulent in chickens and is limited in tropism to the upper respiratory tract of 1-day-old and 2-week-old chickens, and these characteristics were unchanged for the two mutant viruses. Thus, the acquisition of furin cleavability by APMV-7 resulted in syncytium formation and increased virus yield in vitro but did not alter virus yield, tropism, or virulence in chickens. PMID:22258248

  9. Mutation of the F-Protein Cleavage Site of Avian Paramyxovirus Type 7 Results in Furin Cleavage, Fusion Promotion, and Increased Replication In Vitro but Not Increased Replication, Tissue Tropism, or Virulence in Chickens

    PubMed Central

    Xiao, Sa; Khattar, Sunil K.; Subbiah, Madhuri; Collins, Peter L.

    2012-01-01

    We constructed a reverse genetics system for avian paramyxovirus serotype 7 (APMV-7) to investigate the role of the fusion F glycoprotein in tissue tropism and virulence. The AMPV-7 F protein has a single basic residue arginine (R) at position −1 in the F cleavage site sequence and also is unusual in having alanine at position +2 (LPSSR↓FA) (underlining indicates the basic amino acids at the F protein cleavage site, and the arrow indicates the site of cleavage.). APMV-7 does not form syncytia or plaques in cell culture, but its replication in vitro does not depend on, and is not increased by, added protease. Two mutants were successfully recovered in which the cleavage site was modified to mimic sites that are found in virulent Newcastle disease virus isolates and to contain 4 or 5 basic residues as well as isoleucine in the +2 position: (RRQKR↓FI) or (RRKKR↓FI), named Fcs-4B or Fcs-5B, respectively. In cell culture, one of the mutants, Fcs-5B, formed protease-independent syncytia and grew to 10-fold-higher titers compared to the parent and Fcs-4B viruses. This indicated the importance of the single additional basic residue (K) at position −3. Syncytium formation and virus yield of the Fcs-5B virus was impaired by the furin inhibitor decanoyl-RVKR-CMK, whereas parental APMV-7 was not affected. APMV-7 is avirulent in chickens and is limited in tropism to the upper respiratory tract of 1-day-old and 2-week-old chickens, and these characteristics were unchanged for the two mutant viruses. Thus, the acquisition of furin cleavability by APMV-7 resulted in syncytium formation and increased virus yield in vitro but did not alter virus yield, tropism, or virulence in chickens. PMID:22258248

  10. [Protein-losing enteropathy].

    PubMed

    Amiot, A

    2015-07-01

    Protein-losing enteropathy is a rare syndrome of gastrointestinal protein loss. The primary causes can be classified into lymphatic leakage due to increased interstitial pressure and increased leakage of protein-rich fluids due to erosive or non-erosive gastrointestinal disorders. The diagnosis of protein-losing enteropathy should be considered in patients with chronic diarrhea and peripheral oedema. The diagnosis of protein-losing enteropathy is most commonly based on the determination of fecal alpha-1 antitrypsin clearance. Most protein-losing enteropathy cases are the result of either lymphatic obstruction or a variety of gastrointestinal disorders and cardiac diseases, while primary intestinal lymphangiectasia (Waldmann's disease) is less common. Treatment of protein-losing enteropathy targets the underlying disease but also includes dietary modification, such as high-protein and low-fat diet along with medium-chain triglyceride supplementation. PMID:25618488

  11. Vaccination with a Live Attenuated Cytomegalovirus Devoid of a Protein Kinase R Inhibitory Gene Results in Reduced Maternal Viremia and Improved Pregnancy Outcome in a Guinea Pig Congenital Infection Model

    PubMed Central

    Bierle, Craig J.; Swanson, Elizabeth C.; McVoy, Michael A.; Wang, Jian Ben; Al-Mahdi, Zainab; Geballe, Adam P.

    2015-01-01

    ABSTRACT Development of a vaccine to prevent congenital cytomegalovirus infection is a major public health priority. Live vaccines attenuated through mutations targeting viral mechanisms responsible for evasion of host defense may be both safe and efficacious. Safety and vaccine efficacy were evaluated using a guinea pig cytomegalovirus (GPCMV) model. Recombinant GPCMV with a targeted deletion of gp145 (designated Δ145), a viral protein kinase R (PKR) inhibitor, was generated. Attenuation was evaluated following inoculation of 107 PFU of Δ145 or parental virus into guinea pigs immunosuppressed with cyclophosphamide. Efficacy was evaluated by immunizing GPCMV-naive guinea pigs twice with either 105 or 106 PFU of Δ145, establishing pregnancy, and challenging the guinea pigs with salivary gland-adapted GPCMV. The immune response, maternal viral load, pup mortality, and congenital infection rates in the vaccine and control groups were compared. Δ145 was substantially attenuated for replication in immunocompromised guinea pigs. Vaccination with Δ145 induced enzyme-linked immunosorbent assay (ELISA) and neutralizing antibody levels comparable to those achieved in natural infection. In the higher- and lower-dose vaccine groups, pup mortality was reduced to 1/24 (4%) and 4/29 (14%) pups, respectively, whereas it was 26/31 (81%) in unvaccinated control pups (P < 0.0001 for both groups versus the control group). Congenital infection occurred in 20/31 (65%) control pups but only 8/24 (33%) pups in the group vaccinated with 106 PFU (P < 0.05). Significant reductions in the magnitude of maternal DNAemia and pup viral load were noted in the vaccine groups compared to those in the controls. Deletion of a GPCMV genome-encoded PKR inhibitor results in a highly attenuated virus that is immunogenic and protective as a vaccine against transplacental infection. IMPORTANCE Previous attempts to develop successful immunization against cytomegalovirus have largely centered on subunit vaccination against virion proteins but have yielded disappointing results. The advent of bacterial artificial chromosome technologies has enabled engineering of recombinant cytomegaloviruses (CMVs) from which virus genome-encoded immune modulation genes have been deleted, toward the goal of developing a safe and potentially more efficacious live attenuated vaccine. Here we report the findings of studies of such a vaccine against congenital CMV infection based on a virus with a targeted deletion in gp145, a virus genome-encoded inhibitor of protein kinase R, using the guinea pig model of vertical CMV transmission. The deletion virus was attenuated for dissemination in immunocompromised guinea pigs but elicited ELISA and neutralizing responses. The vaccine conferred protection against maternal DNAemia and congenital transmission and resulted in reduced viral loads in newborn guinea pigs. These results provide support for future studies of attenuated CMV vaccines. PMID:26178990

  12. Protein Foods

    MedlinePlus

    ... seafood Chicken and other poultry Cheese and eggs Plant-Based Proteins Plant-based protein foods provide quality protein, healthy fats, ... has about 2-5 ounces of meat. Most plant-based protein foods, like beans and soy products, ...

  13. Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen Plasmodium falciparum FVO merozoite surface protein-1 (MSP142) administered intramuscularly with adjuvant system AS01

    PubMed Central

    2013-01-01

    Background The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. Methods Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 μg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 μg dose with a rabies vaccine comparator. Results In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites. Conclusions Given that the primary effector mechanism for blood stage vaccine targets is humoral, the antibody responses demonstrated to this vaccine candidate, both quantitative (total antibody titres) and qualitative (functional antibodies inhibiting parasite growth) warrant further consideration of its application in endemic settings. Trial registrations Clinical Trials NCT00666380 PMID:23342996

  14. Lactose binding to human galectin-7 (p53-induced gene 1) induces long-range effects through the protein resulting in increased dimer stability and evidence for positive cooperativity

    PubMed Central

    Ermakova, Elena; Miller, Michelle C; Nesmelova, Irina V; López-Merino, Lara; Berbís, Manuel Alvaro; Nesmelov, Yuri; Tkachev, Yaroslav V; Lagartera, Laura; Daragan, Vladimir A; André, Sabine; Cañada, F Javier; Jiménez-Barbero, Jesús; Solís, Dolores; Gabius, Hans-Joachim; Mayo, Kevin H

    2013-01-01

    The product of p53-induced gene 1 is a member of the galectin family, i.e., galectin-7 (Gal-7). To move beyond structural data by X-ray diffraction, we initiated the study of the lectin by nuclear magnetic resonance (NMR) and circular dichroism spectroscopies, and molecular dynamics (MD) simulations. In concert, our results indicate that lactose binding to human Gal-7 induces long-range effects (minor conformational shifts and changes in structural dynamics) throughout the protein that result in stabilization of the dimer state, with evidence for positive cooperativity. Monte Carlo fits of 15N-Gal-7 HSQC titrations with lactose using a two-site model yield K1 = 0.9 ± 0.6 × 103 M−1 and K2 = 3.4 ± 0.8 × 103 M−1. Ligand binding-induced stabilization of the Gal-7 dimer was supported by several lines of evidence: MD-based calculations of interaction energies between ligand-loaded and ligand-free states, gel filtration data and hetero-FRET spectroscopy that indicate a highly reduced tendency for dimer dissociation in the presence of lactose, CD-based thermal denaturation showing that the transition temperature of the lectin is significantly increased in the presence of lactose, and saturation transfer difference (STD) NMR using a molecular probe of the monomer state whose presence is diminished in the presence of lactose. MD simulations with the half-loaded ligand-bound state also provided insight into how allosteric signaling may occur. Overall, our results reveal long-range effects on Gal-7 structure and dynamics, which factor into entropic contributions to ligand binding and allow further comparisons with other members of the galectin family. PMID:23376190

  15. Protein and older adults.

    PubMed

    Chernoff, Ronni

    2004-12-01

    Body composition changes as people get older. One of the noteworthy alterations is the reduction in total body protein. A decrease in skeletal muscle is the most noticeable manifestation of this change but there is also a reduction in other physiologic proteins such as organ tissue, blood components, and immune bodies as well as declines in total body potassium and water. This contributes to impaired wound healing, loss of skin elasticity, and an inability to fight infection. The recommended dietary allowance (RDA) for adults for protein is 0.8 grams of protein per kilogram of body weight. Protein tissue accounts for 30% of whole-body protein turnover but that rate declines to 20% or less by age 70. The result of this phenomenon is that older adults require more protein/kilogram body weight than do younger adults. Recently, it has become clear that the requirement for exogenous protein is at least 1.0 gram/kilogram body weight. Adequate dietary intake of protein may be more difficult for older adults to obtain. Dietary animal protein is the primary source of high biological value protein, iron, vitamin B(12), folic acid, biotin and other essential nutrients. In fact, egg protein is the standard against which all other proteins are compared. Compared to other high-quality protein sources like meat, poultry and seafood, eggs are the least expensive. The importance of dietary protein cannot be underestimated in the diets of older adults; inadequate protein intake contributes to a decrease in reserve capacity, increased skin fragility, decreased immune function, poorer healing, and longer recuperation from illness. PMID:15640517

  16. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  17. Solitary Inhibition of the Breast Cancer Resistance Protein Efflux Transporter Results in a Clinically Significant Drug-Drug Interaction with Rosuvastatin by Causing up to a 2-Fold Increase in Statin Exposure.

    PubMed

    Elsby, Robert; Martin, Paul; Surry, Dominic; Sharma, Pradeep; Fenner, Katherine

    2016-03-01

    The intestinal efflux transporter breast cancer resistance protein (BCRP) restricts the absorption of rosuvastatin. Of the transporters important to rosuvastatin disposition, fostamatinib inhibited BCRP (IC50 = 50 nM) and organic anion-transporting polypeptide 1B1 (OATP1B1; IC50 > 10 μM), but not organic anion transporter 3, in vitro, predicting a drug-drug interaction (DDI) in vivo through inhibition of BCRP only. Consequently, a clinical interaction study between fostamatinib and rosuvastatin was performed (and reported elsewhere). This confirmed the critical role BCRP plays in statin absorption, as inhibition by fostamatinib resulted in a significant 1.96-fold and 1.88-fold increase in rosuvastatin area under the plasma concentration-time curve (AUC) and Cmax, respectively. An in vitro BCRP inhibition assay, using polarized Caco-2 cells and rosuvastatin as probe substrate, was subsequently validated with literature inhibitors and used to determine BCRP inhibitory potencies (IC50) of the perpetrator drugs eltrombopag, darunavir, lopinavir, clopidogrel, ezetimibe, fenofibrate, and fluconazole. OATP1B1 inhibition was also determined using human embryonic kidney 293-OATP1B1 cells versus estradiol 17β-glucuronide. Calculated parameters of maximum enterocyte concentration [Igut max], maximum unbound hepatic inlet concentration, transporter fraction excreted value, and determined IC50 value were incorporated into mechanistic static equations to compute theoretical increases in rosuvastatin AUC due to inhibition of BCRP and/or OATP1B1. Calculated theoretical increases in exposure correctly predicted the clinically observed changes in rosuvastatin exposure and suggested intestinal BCRP inhibition (not OATP1B1) to be the mechanism underlying the DDIs with these drugs. In conclusion, solitary inhibition of the intestinal BCRP transporter can result in clinically significant DDIs with rosuvastatin, causing up to a maximum 2-fold increase in exposure, which may warrant statin dose adjustment in clinical practice. PMID:26700956

  18. Beyond proteins.

    PubMed

    Robson, B

    1999-08-01

    Increased understanding of the biological principles of protein structure and folding, combined with advances in protein-synthetic chemistry, should not only allow us to borrow from biology but also to depart from it and so produce protein-like, but non-protein, molecules and molecular devices. However, radical departures from protein-like forms into more-robust and truly novel 'smart' polymers and materials first require a solution to the protein-folding problem using only fundamental physicochemical principles. Any such practical solution may not come from raw computing power alone but rather from a deeper understanding of topological principles. PMID:10407402

  19. [Influence of gravity discharge on the content of isatin-binding proteins in mice: results of ground-based and space research under the program Bion-M №1].

    PubMed

    Ivanov, A S; Medvedev, A E; Buneeva, O A; Gnedenko, O V; Ershov, P V; Mezencev, Y V; Yablokov, E O; Kaluzhsky, L A; Florinskaya, A V; Moskaleva, N E; Zgoda, V G

    2015-01-01

    Isatin-binding activity of mice liver proteins has been investigated in the samples from the control and flight groups by using the methods of biosensor and proteomic analysis. It was found the higher isatin-binding activity in mice of flight group. The content of a number of individual isatin-binding proteins in the samples of the flight groups differ slightly from the ground control. However, in samples from animals which have weekly post-flight adaptation, the level of certain proteins was significantly increased. The latter allows us to assume that the main events in the proteome of mice (at least in subproteome of isatin-binding proteins), occurs in early post-flight period. PMID:26539872

  20. Genetic and Molecular Analysis of the X Chromosomal Region 14b17-14c4 in Drosophila Melanogaster: Loss of Function in Nona, a Nuclear Protein Common to Many Cell Types, Results in Specific Physiological and Behavioral Defects

    PubMed Central

    Stanewsky, R.; Rendahl, K. G.; Dill, M.; Saumweber, H.

    1993-01-01

    We have performed a genetic analysis of the 14C region of the X chromosome of Drosophila melanogaster to isolate loss of function alleles of no-on-transient A (nonA; 14C1-2; 1-52.3). NONA is a nuclear protein common to many cell types, which is present in many puffs on polytene chromosomes. Sequence data suggest that the protein contains a pair of RNA binding motifs (RRM) found in many single-strand nucleic acid binding proteins. Hypomorphic alleles of this gene, which lead to aberrant visual and courtship song behavior, still contain normally distributed nonA RNA and NONA protein in embryos, and in all available alleles NONA protein is present in puffs of third instar larval polytene chromosomes. We find that complete loss of this general nuclear protein is semilethal in hemizygous males and homozygous cell lethal in the female germline. Surviving males show more extreme defects in nervous system function than have been described for the hypomorphic alleles. Five other essential genes that reside within this region have been partially characterized. PMID:8244005

  1. Forces Stabilizing Proteins

    PubMed Central

    Pace, C. Nick; Scholtz, J. Martin; Grimsley, Gerald R.

    2014-01-01

    The goal of this article is to summarize what has been learned about the major forces stabilizing proteins since the late 1980s when site-directed mutagenesis became possible. The following conclusions are derived from experimental studies of hydrophobic and hydrogen bonding variants. 1. Based on studies of 138 hydrophobic interaction variants in 11 proteins, burying a –CH2– group on folding contributes 1.1 ± 0.5 kcal/mol to protein stability. 2. The burial of nonpolar side chains contributes to protein stability in two ways: first, a term that depends on the removal of the side chains from water and, more importantly, the enhanced London dispersion forces that result from the tight packing in the protein interior. 3. Based on studies of 151 hydrogen bonding variants in 15 proteins, forming a hydrogen bond on folding contributes 1.1 ± 0.8 kcal/mol to protein stability. 4. The contribution of hydrogen bonds to protein stability is strongly context dependent. 5. Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. 6. Polar group burial can make a favorable contribution to protein stability even if the polar group is not hydrogen bonded. 7. Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability. PMID:24846139

  2. Challenges of protein extraction from recalcitrant plant tissues for proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins play an important role in several biological processes. Proteomics encompasses basically four principal applications, namely protein mining, protein expression profiling, protein-network mapping and mapping of protein modifications. The results in these applications depend mostly on the c...

  3. (Protein engineering)

    SciTech Connect

    Mural, R.J.

    1987-04-21

    The traveler attended an international meeting, Protein Engineering 87','' held at the University of Oxford. Speakers of international standing addressed 425 conferees on topics ranging from the theoretical aspects of protein structure to the therapeutic uses of engineered'' proteins. The traveler presented work of the Protein Engineering Program of the Biology Division at a poster session at this Conference. There were a number of opportunities to interact with colleagues and exchange information concerning this new and rapidly growing field.

  4. Circulating concentrations of insulin-like growth factor-I, insulin-like growth factor binding protein-3, genetic polymorphisms and mammographic density in premenopausal Mexican women: results from the ESMaestras cohort

    PubMed Central

    Rinaldi, S.; Biessy, C.; Hernandez, M; Lesueur, F.; dos-Santos-Silva, I.; Rice, M. S.; Lajous, M.; Lopez-Ridaura, R.; Torres-Mejía, G.; Romieu, I.

    2015-01-01

    The insulin-like growth factor (IGF) axis plays an essential role in the development of the mammary gland. High circulating levels of IGF-I and of its major binding protein IGFBP3 have been related with increased mammographic density in Caucasian premenopausal women. Some common single nucleotide polymorphisms (SNPs) in genes of the IGF pathway have also been suggested to play a role in mammographic density. We conducted a cross-sectional study nested within the large Mexican ESMaestras cohort, to investigate the relation between circulating levels of IGF-I, IGFBP-3, the IGF-I/IGFBP-3 ratio, five common SNPs in the IGF-1, IGFBP-3 and IGF-1R genes, and mammographic density in 593 premenopausal Mexican women. Mean age at mammogram was 43.1 (standard deviation–SD=3.7) years, and average body mass index (BMI) at recruitment was 28.5 kg/m2. Mean percent mammographic density was 36.5% (SD: 17.1), with mean dense tissue area of 48.3 (SD: 33.3) cm2. Mean IGF-I and IGFBP-3 concentrations were 15.33 (SD: 5.52) nmol/l and 114.96 (SD: 21.34) nmol/l, respectively. No significant associations were seen between percent density and biomarker concentrations but women with higher IGF-I and IGF-I/IGFBP-3 concentrations had lower absolute dense (ptrend =0.03 and 0.09, respectively) and non-dense tissue areas (ptrend <0.001 for both parameters). However, these associations were null after adjustment by BMI. SNPs in specific genes were associated with circulating levels of growth factors, but not with mammographic density features. These results do not support the hypothesis of a strong association between circulating levels of growth hormones and mammographic density in Mexican premenopausal women. PMID:24037648

  5. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and

  6. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  7. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  8. Coexpression of the maize delta-zein and beta-zein genes results in stable accumulation of delta-zein in endoplasmic reticulum-derived protein bodies formed by beta-zein.

    PubMed

    Bagga, S; Adams, H P; Rodriguez, F D; Kemp, J D; Sengupta-Gopalan, C

    1997-09-01

    Zeins, the major seed storage proteins of maize, are of four distinct types: alpha, beta, delta, and gamma. They are synthesized on the rough endoplasmic reticulum (ER) in a sequential manner and deposited in ER-derived protein bodies. We investigated the potential for producing sulfur-rich beta-zein and delta-zein proteins in leaf and seed tissues by expressing the corresponding genes in a constitutive manner in transgenic tobacco. The delta-zein and beta-zein, when synthesized individually, were stable in the vegetative tissues and were deposited in unique, zein-specific ER-derived protein bodies. Coexpression of delta-zein and beta-zein genes, however, showed that delta-zein was colocalized in beta-zein-containing protein bodies and that the level of delta-zein was fivefold higher in delta-/beta-zein plants than in delta-zein plants. We conclude that delta-zein interacts with beta-zein and that the interaction has a stabilizing effect on delta-zein. PMID:9338969

  9. Coexpression of the maize delta-zein and beta-zein genes results in stable accumulation of delta-zein in endoplasmic reticulum-derived protein bodies formed by beta-zein.

    TOXLINE Toxicology Bibliographic Information

    Bagga S; Adams HP; Rodriguez FD; Kemp JD; Sengupta-Gopalan C

    1997-09-01

    Zeins, the major seed storage proteins of maize, are of four distinct types: alpha, beta, delta, and gamma. They are synthesized on the rough endoplasmic reticulum (ER) in a sequential manner and deposited in ER-derived protein bodies. We investigated the potential for producing sulfur-rich beta-zein and delta-zein proteins in leaf and seed tissues by expressing the corresponding genes in a constitutive manner in transgenic tobacco. The delta-zein and beta-zein, when synthesized individually, were stable in the vegetative tissues and were deposited in unique, zein-specific ER-derived protein bodies. Coexpression of delta-zein and beta-zein genes, however, showed that delta-zein was colocalized in beta-zein-containing protein bodies and that the level of delta-zein was fivefold higher in delta-/beta-zein plants than in delta-zein plants. We conclude that delta-zein interacts with beta-zein and that the interaction has a stabilizing effect on delta-zein.

  10. Anisotropic Contributions to Protein-Protein Interactions.

    PubMed

    Quang, Leigh J; Sandler, Stanley I; Lenhoff, Abraham M

    2014-02-11

    The anisotropy of shape and functionality of proteins complicates the prediction of protein-protein interactions. We examine the distribution of electrostatic and nonelectrostatic contributions to these interactions for two globular proteins, lysozyme and chymosin B, which differ in molecular weight by about a factor of 2. The interaction trends for these proteins are computed in terms of contributions to the osmotic second virial coefficient that are evaluated using atomistic models of the proteins. Our emphasis is on identifying the orientational configurations that contribute most strongly to the overall interactions due to high-complementarity interactions, and on calculating the effect of ionic strength on such interactions. The results emphasize the quantitative importance of several features of protein interactions, notably that despite differences in their frequency of occurrence, configurations differing appreciably in interaction energy can contribute meaningfully to overall interactions. However, relatively small effects due to charge anisotropy or specific hydration can affect the overall interaction significantly only if they contribute to strongly attractive configurations. The results emphasize the necessity of accounting for detailed anisotropy to capture actual experimental trends, and the sensitivity of even very detailed atomistic models to subtle solution contributions. PMID:26580057

  11. Protein folds and protein folding

    PubMed Central

    Schaeffer, R. Dustin; Daggett, Valerie

    2011-01-01

    The classification of protein folds is necessarily based on the structural elements that distinguish domains. Classification of protein domains consists of two problems: the partition of structures into domains and the classification of domains into sets of similar structures (or folds). Although similar topologies may arise by convergent evolution, the similarity of their respective folding pathways is unknown. The discovery and the characterization of the majority of protein folds will be followed by a similar enumeration of available protein folding pathways. Consequently, understanding the intricacies of structural domains is necessary to understanding their collective folding pathways. We review the current state of the art in the field of protein domain classification and discuss methods for the systematic and comprehensive study of protein folding across protein fold space via atomistic molecular dynamics simulation. Finally, we discuss our large-scale Dynameomics project, which includes simulations of representatives of all autonomous protein folds. PMID:21051320

  12. Protein oxidation and peroxidation.

    PubMed

    Davies, Michael J

    2016-04-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  13. Protein oxidation and peroxidation

    PubMed Central

    Davies, Michael J.

    2016-01-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  14. Polymorphisms in the Low-Density Lipoprotein Receptor-Related Protein 5 (LRP5) Gene Are Associated with Peak Bone Mass in Non-sedentary Men: Results from the Odense Androgen Study

    PubMed Central

    Beckers, S.; Peeters, A.; Piters, E.; Balemans, W.; Nielsen, T. L.; Wraae, K.; Bathum, L.; Brasen, C.; Hagen, C.; Andersen, M.; Van Hul, W.; Abrahamsen, B.

    2007-01-01

    Purpose To investigate the impact of the Ala1330Val (rs3736228, exon 18) and Val667Met (rs4988321, exon 9) polymorphisms of the low-density lipoprotein receptor-related protein 5 (LRP5) gene on peak bone mass in young men. Methods The Odense Androgen Study (OAS) is a population-based study comprising 783 Caucasian men aged 20-30 years. Genotyping was performed using real-time polymerase chain reaction (PCR) or fluorescence polarization. Bone mineral density (BMD) measurements were performed using dual-energy X-ray absorptiometry. Results The CC, CT, and TT genotypes in Ala1330Val were found in 75.6%, 21.8%, and 2.6% of the participants, respectively. Similarly, the GG, GA, and AA genotypes of Val667Met were found in 89.7%, 9.8%, and 0.5%, respectively. For the Ala1330Val polymorphism, no significant differences between the genotypes were found regarding BMD in the overall study population. However, when analysis was restricted to non-sedentary men (n = 589), a significant association between the number of T-alleles and BMD in the spine and whole body were found. Each copy of the T-allele changed the Z-score of the spine by (median and 95% confidence interval) −0.21 [95% CI: −0.40; −0.03] (p < 0.02). Analysis suggested an association between the AA genotype in the Val667Met polymorphism and increased body height and decreased BMD of the femoral neck; however, no significant gene-dose effect of the A-allele could be demonstrated in the whole population. When the analysis was restricted to non-sedentary subjects, however, each number of A-alleles was associated with a change in Z-score of −0.26 [95% CI: −0.51; −0.01] (p = 0.04). No further significant results emerged with haplotype analysis. Conclusion The Ala1330Val and Val667Met polymorphisms in the LRP5 gene are significantly associated with peak bone mass in physically active men. PMID:18058054

  15. Impact of Protein Supplementation and Care and Support on Body Composition and CD4 Count among HIV-Infected Women Living in Rural India: Results from a Randomized Pilot Clinical Trial

    PubMed Central

    Nyamathi, Adeline; Sinha, Sanjeev; Ganguly, Kalyan K; Ramakrishna, Padma; Suresh, P.; Carpenter, Catherine L

    2013-01-01

    Body composition in HIV-infected individuals is subject to many influences. We conducted a pilot six-month randomized trial of 68 WLA (women living with AIDS) from rural India. High protein intervention combined with education and supportive care delivered by HIV-trained village women (Asha [Activated Social Health Activist] Life [AL]) was compared to standard protein with usual care delivered by village community assistants (Usual Care [UC]). Measurements included CD4 counts, ART adherence, socio-demographics, disease characteristics (questionnaires); and anthropometry (bioimpedance analyzer). Repeated measures analysis of variance modeled associations. AL significantly gained in BMI, muscle mass, fat mass, ART adherence, and CD4 counts compared to UC, with higher weight and muscle mass gains among ART adherent (≥ 66%) participants who had healthier immunity (CD4 ≥ 450). BMI of WLA improved through high protein supplementation combined with education and supportive care. Future research is needed to determine which intervention aspect was most responsible. PMID:23370835

  16. Physics of protein motility and motor proteins

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor Xianchao Meng, Min Yu and Yunxin Zhang Microtubule organization by kinesin motors and microtubule crosslinking protein MAP65 Joshua Pringle, Amutha Muthukumar, Amanda Tan, Laura Crankshaw, Leslie Conway and Jennifer L Ross Backtracking dynamics of RNA polymerase: pausing and error correction Mamata Sahoo and Stefan Klumpp First-passage problems in DNA replication: effects of template tension on stepping and exonuclease activities of a DNA polymerase motor Ajeet K Sharma and Debashish Chowdhury

  17. Protein sulfhydration.

    PubMed

    Paul, Bindu D; Snyder, Solomon H

    2015-01-01

    Hydrogen sulfide (H2S) is one of the gasotransmitters that modulates various biological processes and participates in multiple signaling pathways. H2S signals by a process termed sulfhydration. Sulfhydration has recently been recognized as a posttranslational modification similar to nitrosylation. Sulfhydration occurs at reactive cysteine residues in proteins and results in the conversion of an -SH group of cysteine to an -SSH or a persulfide group. Sulfhydration is highly prevalent in vivo, and aberrant sulfhydration patterns have been observed under several pathological conditions ranging from heart disease to neurodegenerative diseases such as Parkinson's disease. The biotin switch assay, originally developed to detect nitrosylation, has been modified to detect sulfhydration. In this chapter, we discuss the physiological roles of sulfhydration and the methodologies used to detect this modification. PMID:25747476

  18. How Proteins Bind Macrocycles

    PubMed Central

    Villar, Elizabeth A.; Beglov, Dmitri; Chennamadhavuni, Spandan; Porco, John A.; Kozakov, Dima; Vajda, Sandor; Whitty, Adrian

    2014-01-01

    The potential utility of synthetic macrocycles as drugs, particularly against low druggability targets such as protein-protein interactions, has been widely discussed. There is little information, however, to guide the design of macrocycles for good target protein-binding activity or bioavailability. To address this knowledge gap we analyze the binding modes of a representative set of macrocycle-protein complexes. The results, combined with consideration of the physicochemical properties of approved macrocyclic drugs, allow us to propose specific guidelines for the design of synthetic macrocycles libraries possessing structural and physicochemical features likely to favor strong binding to protein targets and also good bioavailability. We additionally provide evidence that large, natural product derived macrocycles can bind to targets that are not druggable by conventional, drug-like compounds, supporting the notion that natural product inspired synthetic macrocycles can expand the number of proteins that are druggable by synthetic small molecules. PMID:25038790

  19. Ultrafiltration of pegylated proteins

    NASA Astrophysics Data System (ADS)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine groups in the PEGylated proteins. Ultrafiltration experiments were performed using PEGylated alpha-lactalbumin, ovalbumin, and bovine serum albumin. In contrast to the size exclusion chromatography data, the sieving coefficient of the PEGylated proteins depended upon both the number and size of the attached PEG chains due to the elongation or deformation of the PEG associated with the filtrate flux. Sieving coefficients at low filtrate flux were in good agreement with predictions of available hydrodynamic models, with significant elongation occurring when the Deborah number for the PEG chain exceeded 0.001. The effects of electrostatic interactions on the ultrafiltration of PEGylated proteins were examined using electrically-charged membranes generated by covalent attachment of sulphonic acid groups to the base cellulosic membrane. Transmission of PEGylated proteins through charged membranes was dramatically reduced at low ionic strength due to strong electrostatic interactions, despite the presence of the neutral PEG. The experimental results were in good agreement with model calculations developed for the partitioning of charged spheres into charged cylindrical pores. The experimental and theoretical results provide the first quantitative analysis of the effects of PEGylation on transport through semipermeable ultrafiltration membranes. The results from small-scale ultrafiltration experiments were used to develop a two-stage diafiltration process to purify PEGylated alpha-lactalbumin. The first-stage used a neutral membrane to remove the unreacted protein by exploiting differences in size. The second stage used a negatively-charged membrane to remove hydrolyzed PEG, with the PEGylated product retained by strong electrostatic interactions. This process provided a purification factor greater than 1000 with respect to the unreacted protein and greater than 20-fold with respect to the PEG with an overall yield of PEGylated alpha-lactalbumin of 78%. These results provide the first demonstration of the potential of using ultrafiltration for the purification of protein-polymer conjugates.

  20. Identifying novel protein phenotype annotations by hybridizing protein-protein interactions and protein sequence similarities.

    PubMed

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-04-01

    Studies of protein phenotypes represent a central challenge of modern genetics in the post-genome era because effective and accurate investigation of protein phenotypes is one of the most critical procedures to identify functional biological processes in microscale, which involves the analysis of multifactorial traits and has greatly contributed to the development of modern biology in the post genome era. Therefore, we have developed a novel computational method that identifies novel proteins associated with certain phenotypes in yeast based on the protein-protein interaction network. Unlike some existing network-based computational methods that identify the phenotype of a query protein based on its direct neighbors in the local network, the proposed method identifies novel candidate proteins for a certain phenotype by considering all annotated proteins with this phenotype on the global network using a shortest path (SP) algorithm. The identified proteins are further filtered using both a permutation test and their interactions and sequence similarities to annotated proteins. We compared our method with another widely used method called random walk with restart (RWR). The biological functions of proteins for each phenotype identified by our SP method and the RWR method were analyzed and compared. The results confirmed a large proportion of our novel protein phenotype annotation, and the RWR method showed a higher false positive rate than the SP method. Our method is equally effective for the prediction of proteins involving in all the eleven clustered yeast phenotypes with a quite low false positive rate. Considering the universality and generalizability of our supporting materials and computing strategies, our method can further be applied to study other organisms and the new functions we predicted can provide pertinent instructions for the further experimental verifications. PMID:26728152

  1. Whey protein supplementation does not alter plasma branched-chained amino acid profiles but results in unique metabolomics patterns in obese women enrolled in an 8-week weight loss trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: It has been suggested that perturbations in branched-chain amino acid (BCAA) catabolism are associated with insulin resistance and contribute to elevated systemic BCAAs. Evidence in rodents suggests dietary protein rich in BCAAs can increase BCAA catabolism, but there is limited evidence...

  2. Smoking interacts with HLA-DRB1 shared epitope in the development of anti-citrullinated protein antibody-positive rheumatoid arthritis: results from the Malaysian Epidemiological Investigation of Rheumatoid Arthritis (MyEIRA)

    PubMed Central

    2012-01-01

    Introduction Rheumatoid arthritis (RA) is a multifactorial autoimmune disease in which genetic and environmental factors interact in the etiology. In this study, we investigated whether smoking and HLA-DRB1 shared-epitope (SE) alleles interact differently in the development of the two major subgroups of rheumatoid arthritis (RA), anti-citrullinated proteins antibody (ACPA)-positive and ACPA-negative disease, in a multiethnic population of Asian descent. Methods A case-control study comprising early diagnosed RA cases was carried out in Malaysia between 2005 and 2009. In total, 1,076 cases and 1,612 matched controls participated in the study. High-resolution HLA-DRB1 genotyping was performed for shared-epitope (SE) alleles. All participants answered a questionnaire on a broad range of issues, including smoking habits. The odds ratio (OR) of developing ACPA-positive and ACPA-negative disease was calculated for smoking and the presence of any SE alleles separately. Potential interaction between smoking history (defined as "ever" and "never" smoking) and HLA-DRB1 SE alleles also was calculated. Results In our multiethnic study, both the SE alleles and smoking were associated with an increased risk of developing ACPA-positive RA (OR SE alleles, 4.7; 95% confidence interval (CI), 3.6 to 6.2; OR smoking, 4.1; 95% CI, 1.9 to 9.2). SE-positive smokers had an odds ratio of ACPA-positive RA of 25.6 (95% CI, 10.4 to 63.4), compared with SE-negative never-smokers. The interaction between smoking and SE alleles was significant (attributable proportion due to interaction (AP) was 0.7 (95% CI, 0.5 to 1.0)). The HLA-DRB1*04:05 SE allele, which is common in Asian populations, but not among Caucasians, was associated with an increased risk of ACPA-positive RA, and this allele also showed signs of interaction with smoking (AP, 0.4; 95% CI, -0.1 to 0.9). Neither smoking nor SE alleles nor their combination was associated with an increased risk of ACPA-negative RA. Conclusions The risk of developing ACPA-positive RA is associated with a strong gene-environment interaction between smoking and HLA-DRB1 SE alleles in a Malaysian multiethnic population of Asian descent. This interaction seems to apply also between smoking and the specific HLA-DRB1*04:05 SE allele, which is common in Asian populations but not in Caucasians. PMID:22537824

  3. Protein Dynamics in an RNA Binding Protein

    NASA Astrophysics Data System (ADS)

    Hall, Kathleen

    2006-03-01

    Using ^15N NMR relaxation measurements, analyzed with the Lipari-Szabo formalism, we have found that the human U1A RNA binding protein has ps-ns motions in those loops that make contact with RNA. Specific mutations can alter the extent and pattern of motions, and those proteins inevitably lose RNA binding affinity. Proteins with enhanced mobility of loops and termini presumably lose affinity due to increased conformational sampling by those parts of the protein that interact directly with RNA. There is an entropic penalty associated with locking down those elements upon RNA binding, in addition to a loss of binding efficiency caused by the increased number of conformations adopted by the protein. However, in addition to local conformational heterogeneity, analysis of molecular dynamics trajectories by Reorientational Eigenmode Dynamics reveals that loops of the wild type protein undergo correlated motions that link distal sites across the binding surface. Mutations that disrupt correlated motions result in weaker RNA binding, implying that there is a network of interactions across the surface of the protein. (KBH was a Postdoctoral Fellow with Al Redfield from 1985-1990). This work was supported by the NIH (to KBH) and NSF (SAS).

  4. Gradual Soil Water Depletion Results in Reversible Changes of Gene Expression, Protein Profiles, Ecophysiology, and Growth Performance in Populus euphratica, a Poplar Growing in Arid Regions1[W][OA

    PubMed Central

    Bogeat-Triboulot, Marie-Béatrice; Brosché, Mikael; Renaut, Jenny; Jouve, Laurent; Le Thiec, Didier; Fayyaz, Payam; Vinocur, Basia; Witters, Erwin; Laukens, Kris; Teichmann, Thomas; Altman, Arie; Hausman, Jean-François; Polle, Andrea; Kangasjärvi, Jaakko; Dreyer, Erwin

    2007-01-01

    The responses of Populus euphratica Oliv. plants to soil water deficit were assessed by analyzing gene expression, protein profiles, and several plant performance criteria to understand the acclimation of plants to soil water deficit. Young, vegetatively propagated plants originating from an arid, saline field site were submitted to a gradually increasing water deficit for 4 weeks in a greenhouse and were allowed to recover for 10 d after full reirrigation. Time-dependent changes and intensity of the perturbations induced in shoot and root growth, xylem anatomy, gas exchange, and water status were recorded. The expression profiles of approximately 6,340 genes and of proteins and metabolites (pigments, soluble carbohydrates, and oxidative compounds) were also recorded in mature leaves and in roots (gene expression only) at four stress levels and after recovery. Drought successively induced shoot growth cessation, stomatal closure, moderate increases in oxidative stress-related compounds, loss of CO2 assimilation, and root growth reduction. These effects were almost fully reversible, indicating that acclimation was dominant over injury. The physiological responses were paralleled by fully reversible transcriptional changes, including only 1.5% of the genes on the array. Protein profiles displayed greater changes than transcript levels. Among the identified proteins for which expressed sequence tags were present on the array, no correlation was found between transcript and protein abundance. Acclimation to water deficit involves the regulation of different networks of genes in roots and shoots. Such diverse requirements for protecting and maintaining the function of different plant organs may render plant engineering or breeding toward improved drought tolerance more complex than previously anticipated. PMID:17158588

  5. How Many Protein-Protein Interactions Types Exist in Nature?

    PubMed Central

    Mitra, Pralay; Zhang, Yang

    2012-01-01

    Protein quaternary structure universe” refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the protein complexes in the protein data bank (PDB) into 3,629 families and 1,761 folds. A statistical model was introduced to obtain the quantitative relation between the numbers of quaternary families and quaternary folds in nature. The total number of possible protein-protein interactions was estimated around 4,000, which indicates that the current protein repository contains only 42% of quaternary folds in nature and a full coverage needs approximately a quarter century of experimental effort. The results have important implications to the protein complex structural modeling and the structure genomics of protein-protein interactions. PMID:22719985

  6. How many protein-protein interactions types exist in nature?

    PubMed

    Garma, Leonardo; Mukherjee, Srayanta; Mitra, Pralay; Zhang, Yang

    2012-01-01

    "Protein quaternary structure universe" refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the protein complexes in the protein data bank (PDB) into 3,629 families and 1,761 folds. A statistical model was introduced to obtain the quantitative relation between the numbers of quaternary families and quaternary folds in nature. The total number of possible protein-protein interactions was estimated around 4,000, which indicates that the current protein repository contains only 42% of quaternary folds in nature and a full coverage needs approximately a quarter century of experimental effort. The results have important implications to the protein complex structural modeling and the structure genomics of protein-protein interactions. PMID:22719985

  7. The Halophile Protein Database

    PubMed Central

    Sharma, Naveen; Farooqi, Mohammad Samir; Chaturvedi, Krishna Kumar; Lal, Shashi Bhushan; Grover, Monendra; Rai, Anil; Pandey, Pankaj

    2014-01-01

    Halophilic archaea/bacteria adapt to different salt concentration, namely extreme, moderate and low. These type of adaptations may occur as a result of modification of protein structure and other changes in different cell organelles. Thus proteins may play an important role in the adaptation of halophilic archaea/bacteria to saline conditions. The Halophile protein database (HProtDB) is a systematic attempt to document the biochemical and biophysical properties of proteins from halophilic archaea/bacteria which may be involved in adaptation of these organisms to saline conditions. In this database, various physicochemical properties such as molecular weight, theoretical pI, amino acid composition, atomic composition, estimated half-life, instability index, aliphatic index and grand average of hydropathicity (Gravy) have been listed. These physicochemical properties play an important role in identifying the protein structure, bonding pattern and function of the specific proteins. This database is comprehensive, manually curated, non-redundant catalogue of proteins. The database currently contains 59 897 proteins properties extracted from 21 different strains of halophilic archaea/bacteria. The database can be accessed through link. Database URL: http://webapp.cabgrid.res.in/protein/ PMID:25468930

  8. Cutting Edge: Codeletion of the Ras GTPase-Activating Proteins (RasGAPs) Neurofibromin 1 and p120 RasGAP in T Cells Results in the Development of T Cell Acute Lymphoblastic Leukemia.

    PubMed

    Lubeck, Beth A; Lapinski, Philip E; Oliver, Jennifer A; Ksionda, Olga; Parada, Luis F; Zhu, Yuan; Maillard, Ivan; Chiang, Mark; Roose, Jeroen; King, Philip D

    2015-07-01

    Ras GTPase-activating proteins (RasGAPs) inhibit signal transduction initiated through the Ras small GTP-binding protein. However, which members of the RasGAP family act as negative regulators of T cell responses is not completely understood. In this study, we investigated potential roles for the RasGAPs RASA1 and neurofibromin 1 (NF1) in T cells through the generation and analysis of T cell-specific RASA1 and NF1 double-deficient mice. In contrast to mice lacking either RasGAP alone in T cells, double-deficient mice developed T cell acute lymphoblastic leukemia/lymphoma, which originated at an early point in T cell development and was dependent on activating mutations in the Notch1 gene. These findings highlight RASA1 and NF1 as cotumor suppressors in the T cell lineage. PMID:26002977

  9. Protein-protein interactions: methods for detection and analysis.

    PubMed Central

    Phizicky, E M; Fields, S

    1995-01-01

    The function and activity of a protein are often modulated by other proteins with which it interacts. This review is intended as a practical guide to the analysis of such protein-protein interactions. We discuss biochemical methods such as protein affinity chromatography, affinity blotting, coimmunoprecipitation, and cross-linking; molecular biological methods such as protein probing, the two-hybrid system, and phage display: and genetic methods such as the isolation of extragenic suppressors, synthetic mutants, and unlinked noncomplementing mutants. We next describe how binding affinities can be evaluated by techniques including protein affinity chromatography, sedimentation, gel filtration, fluorescence methods, solid-phase sampling of equilibrium solutions, and surface plasmon resonance. Finally, three examples of well-characterized domains involved in multiple protein-protein interactions are examined. The emphasis of the discussion is on variations in the approaches, concerns in evaluating the results, and advantages and disadvantages of the techniques. PMID:7708014

  10. C4BPAL1, a member of the human regulator of complement activation (RCA) gene cluster that resulted from the duplication of the gene coding for the [alpha]-chain of C4b-binding protein

    SciTech Connect

    Sanchez-Corral, P.; Pardo-Manuel de Villena, F.; Rey-Campos, J.; Rodriguez de Cordoba, S. )

    1993-07-01

    The regulator of complement activation (RCA) gene cluster evolved by multiple gene duplications to produce a family of genes coding for proteins that collectively control the activation of the complement system. The authors report here the characterization of C4BPAL1, a member of the human RCA gene cluster that arose from the duplication of the C4BPA gene after the separation of rodent and primate lineages. C4BPAL1 maps 20 kb downstream of the C4BPA gene and is in the same 5[prime] to 3[prime] orientation found for all RCA genes characterized thus far. It includes nine exon-like regions homologous to exons 2-8, 11, and 12 of the C4BPA gene. Analysis of the C4BPAL1 sequence suggests that it is currently a pseudogene in humans. However, comparisons between C4BPAL1 and the human and murine C4BPA genes show sequence conservation, which strongly suggests that, for a long period of time, C4BPAL1 has been a functional gene coding for a protein with structural requirements similar to those of the [alpha]-chain of C4b-binding protein. 50 refs., 5 figs., 1 tab.

  11. DONUT results

    SciTech Connect

    Furukawa, Tomoko

    2008-02-21

    The DONUT experiment succeeded in observing tau-neutrino CC interactions for the first time in 2000. The analysis using total sample is presented in this paper, based on 3.5x10{sup 17} protons on target. The number of identified {nu}{sub {tau}} CC interactions is 9 from 581 neutrino interactions located in the emulsion. The result of the first measurement of {nu}{sub {tau}} CC cross section is consistent with the expectation from the Standard Model.

  12. Dietary Proteins

    MedlinePlus

    ... the amino acids your body needs. It is important to get enough dietary protein. You need to eat protein every day, because your body doesn't store it the way it stores fats or carbohydrates. How much you need depends on ...

  13. Kepler Results

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.; Fabrycky, D.; Moorhead, A. V.; Rowe, J. F.; Steffen, J.; Kepler Science Team

    2011-09-01

    We report on the progress of a project to confirm Kepler planet candidates in systems with multiple transiting planet candidates based on correlated transit timing variations (TTVs) among pairs of planet candidates in the same system. We provide an overview of putative TTV signals identified in the Kepler data set (Ford et al. 2011). We describe algorithms for assessing the statistical significance of correlated TTV signals and the results when applied to Kepler data. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  14. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource. PMID:26434392

  15. Protein identification and Peptide expression resolver: harmonizing protein identification with protein expression data.

    PubMed

    Kearney, Paul; Butler, Heather; Eng, Kevin; Hugo, Patrice

    2008-01-01

    Proteomic discovery platforms generate both peptide expression information and protein identification information. Peptide expression data are used to determine which peptides are differentially expressed between study cohorts, and then these peptides are targeted for protein identification. In this paper, we demonstrate that peptide expression information is also a powerful tool for enhancing confidence in protein identification results. Specifically, we evaluate the following hypothesis: tryptic peptides originating from the same protein have similar expression profiles across samples in the discovery study. Evidence supporting this hypothesis is provided. This hypothesis is integrated into a protein identification tool, PIPER (Protein Identification and Peptide Expression Resolver), that reduces erroneous protein identifications below 5%. PIPER's utility is illustrated by application to a 72-sample biomarker discovery study where it is demonstrated that false positive protein identifications can be reduced below 5%. Consequently, it is recommended that PIPER methodology be incorporated into proteomic studies where both protein expression and identification data are collected. PMID:18062667

  16. Protein Attachment on Nanodiamonds.

    PubMed

    Lin, Chung-Lun; Lin, Cheng-Huang; Chang, Huan-Cheng; Su, Meng-Chih

    2015-07-16

    A recent advance in nanotechnology is the scale-up production of small and nonaggregated diamond nanoparticles suitable for biological applications. Using detonation nanodiamonds (NDs) with an average diameter of ∼4 nm as the adsorbents, we have studied the static attachment of three proteins (myoglobin, bovine serum albumin, and insulin) onto the nanoparticles by optical spectroscopy, mass spectrometry, and dynamic light scattering, and electrophoretic zeta potential measurements. Results show that the protein surface coverage is predominantly determined by the competition between protein-protein and protein-ND interactions, giving each protein a unique and characteristic structural configuration in its own complex. Specifically, both myoglobin and bovine serum albumin show a Langmuir-type adsorption behavior, forming 1:1 complexes at saturation, whereas insulin folds into a tightly bound multimer before adsorption. The markedly different adsorption patterns appear to be independent of the protein concentration and are closely related to the affinity of the individual proteins for the NDs. The present study provides a fundamental understanding for the use of NDs as a platform for nanomedical drug delivery. PMID:25815400

  17. Protein aggregation and prionopathies.

    PubMed

    Renner, M; Melki, R

    2014-06-01

    Prion protein and prion-like proteins share a number of characteristics. From the molecular point of view, they are constitutive proteins that aggregate following conformational changes into insoluble particles. These particles escape the cellular clearance machinery and amplify by recruiting the soluble for of their constituting proteins. The resulting protein aggregates are responsible for a number of neurodegenerative diseases such as Creutzfeldt-Jacob, Alzheimer, Parkinson and Huntington diseases. In addition, there are increasing evidences supporting the inter-cellular trafficking of these aggregates, meaning that they are "transmissible" between cells. There are also evidences that brain homogenates from individuals developing Alzheimer and Parkinson diseases propagate the disease in recipient model animals in a manner similar to brain extracts of patients developing Creutzfeldt-Jacob's disease. Thus, the propagation of protein aggregates from cell to cell may be a generic phenomenon that contributes to the evolution of neurodegenerative diseases, which has important consequences on human health issues. Moreover, although the distribution of protein aggregates is characteristic for each disease, new evidences indicate the possibility of overlaps and crosstalk between the different disorders. Despite the increasing evidences that support prion or prion-like propagation of protein aggregates, there are many unanswered questions regarding the mechanisms of toxicity and this is a field of intensive research nowadays. PMID:24698014

  18. Replication Proteins and Human Disease

    PubMed Central

    Jackson, Andrew P.; Laskey, Ronald A.; Coleman, Nicholas

    2014-01-01

    In this article, we discuss the significance of DNA replication proteins in human disease. There is a broad range of mutations in genes encoding replication proteins, which result in several distinct clinical disorders that share common themes. One group of replication proteins, the MCMs, has emerged as effective biomarkers for early detection of a range of common cancers. They offer practical and theoretical advantages over other replication proteins and have been developed for widespread clinical use. PMID:23881941

  19. The 3;21 translocation in myelodysplasia results in a fusion transcript between the AML1 gene and the gene for EAP, a highly conserved protein associated with the Epstein-Barr virus small RNA EBER 1.

    PubMed Central

    Nucifora, G; Begy, C R; Erickson, P; Drabkin, H A; Rowley, J D

    1993-01-01

    In the 8;21 translocation, the AML1 gene, located at chromosome band 21q22, is translocated to chromosome 8 (q22), where it is fused to the ETO gene and transcribed as a chimeric gene. AML1 is the human homolog of the recently cloned mouse gene pebp2 alpha B, homologous to the DNA binding alpha subunit of the polyoma enhancer factor pebp2. AML1 is also involved in a translocation with chromosome 3 that is seen in patients with therapy-related acute myeloid leukemia and myelodysplastic syndrome and in chronic myelogenous leukemia in blast crisis. We have isolated a fusion cDNA clone from a t(3;21) library derived from a patient with therapy-related myelodysplastic syndrome; this clone contains sequences from AML1 and from EAP, which we have now localized to band 3q26. EAP has previously been characterized as a highly expressed small nuclear protein of 128 residues (EBER 1) associated with Epstein-Barr virus small RNA. The fusion clone contains the DNA binding 5' part of AML1 that is fused to ETO in the t(8;21) and, in addition, at least one other exon. The translocation replaces the last nine codons of AML1 with the last 96 codons of EAP. The fusion does not maintain the correct reading frame of EAP and may not lead to a functional chimeric protein. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8395054

  20. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the large molecular weight, net negative charge and hydrophilicity of synthetic small interfering RNAs makes it hard for the molecules to cross the plasma membrane and enter the cell cytoplasm. Immune responses can also diminish the effectiveness of this approach. In this issue, Shiri Weinstein and Dan Peer from Tel Aviv University provide an overview of the challenges and recent progress in the use of nanocarriers for delivering RNAi effector molecules into target tissues and cells more effectively [5]. Also in this issue, researchers in Korea report new results that demonstrate the potential of nanostructures in neural network engineering [6]. Min Jee Jang et al report directional growth of neurites along linear carbon nanotube patterns, demonstrating great progress in neural engineering and the scope for using nanotechnology to treat neural diseases. Modern medicine cannot claim to have abolished the pain and suffering that accompany disease. But a comparison between the ghastly and often ineffective iron implements of early medicine and the smart gadgets and treatments used in hospitals today speaks volumes for the extraordinary progress that has been made, and the motivation behind this research. References [1] Wallis F 2000 Signs and senses: diagnosis and prognosis in early medieval pulse and urine texts Soc. Hist. Med. 13 265-78 [2] Arntz Y, Seelig J D, Lang H P, Zhang J, Hunziker P, Ramseyer J P, Meyer E, Hegner M and Gerber Ch 2003 Label-free protein assay based on a nanomechanical cantiliever array Nanotechnology 14 86-90 [3] Gowtham S, Scheicher R H, Pandey R, Karna S P and Ahuja R 2008 First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes Nanotechnology 19 125701 [4] Wang H-N and Vo-Dinh T 2009 Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes Nanotechnology 20 065101 [5] Weinstein S and Peer D 2010 RNAi nanomedicines: challenges and opportunities within the immune system Nanotechnology 21 232001 [6] Jang M J, Namgung S, Hong S, and Nam Y 2010 Directional neurite growth using carbon nanotube patterned substrates as a biomimetic cue Nanotechnology 21 235102

  1. Electronic transport via proteins.

    PubMed

    Amdursky, Nadav; Marchak, Debora; Sepunaru, Lior; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2014-11-12

    A central vision in molecular electronics is the creation of devices with functional molecular components that may provide unique properties. Proteins are attractive candidates for this purpose, as they have specific physical (optical, electrical) and chemical (selective binding, self-assembly) functions and offer a myriad of possibilities for (bio-)chemical modification. This Progress Report focuses on proteins as potential building components for future bioelectronic devices as they are quite efficient electronic conductors, compared with saturated organic molecules. The report addresses several questions: how general is this behavior; how does protein conduction compare with that of saturated and conjugated molecules; and what mechanisms enable efficient conduction across these large molecules? To answer these questions results of nanometer-scale and macroscopic electronic transport measurements across a range of organic molecules and proteins are compiled and analyzed, from single/few molecules to large molecular ensembles, and the influence of measurement methods on the results is considered. Generalizing, it is found that proteins conduct better than saturated molecules, and somewhat poorer than conjugated molecules. Significantly, the presence of cofactors (redox-active or conjugated) in the protein enhances their conduction, but without an obvious advantage for natural electron transfer proteins. Most likely, the conduction mechanisms are hopping (at higher temperatures) and tunneling (below ca. 150-200 K). PMID:25256438

  2. Whey Protein

    MedlinePlus

    ... intolerance, for replacing or supplementing milk-based infant formulas, and for reversing weight loss and increasing glutathione ( ... allergic reactions compared to infants who receive standard formula. However, taking why protein might not be helpful ...

  3. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  4. Small Molecule Inhibitors to Disrupt Protein-protein Interactions of Heat Shock Protein 90 Chaperone Machinery

    PubMed Central

    Seo, Young Ho

    2015-01-01

    Heat shock protein 90 (Hsp90) is an adenosine triphosphate dependent molecular chaperone in eukaryotic cells that regulates the activation and maintenance of numerous regulatory and signaling proteins including epidermal growth factor receptor, human epidermal growth factor receptor 2, mesenchymal-epithelial transition factor, cyclin-dependent kinase-4, protein kinase B, hypoxia-inducible factor 1α, and matrix metalloproteinase-2. Since many of Hsp90 clients are oncogenic proteins, Hsp90 has become an attractive therapeutic target for treatment of cancer. To discover small molecule inhibitors targeting Hsp90 chaperone machinery, several strategies have been employed, which results in three classes of inhibitors such as N-terminal inhibitors, C-terminal inhibitors, and inhibitors disrupting protein-protein interactions of Hsp90 chaperone machinery. Developing small molecule inhibitors that modulate protein-protein interactions of Hsp90 is a challenging task, although it offers many alternative opportunities for therapeutic intervention. The lack of well-defined binding pocket and starting points for drug design challenges medicinal chemists to discover small molecule inhibitors disrupting protein-protein interactions of Hsp90. The present review will focus on the current studies on small molecule inhibitors disrupting protein-protein interactions of Hsp90 chaperone machinery, provide biological background on the structure, function and mechanism of Hsp90’s protein-protein interactions, and discuss the challenges and promise of its small molecule modulations. PMID:25853099

  5. Predictions of Protein-Protein Interfaces within Membrane Protein Complexes

    PubMed Central

    Asadabadi, Ebrahim Barzegari; Abdolmaleki, Parviz

    2013-01-01

    Background Prediction of interaction sites within the membrane protein complexes using the sequence data is of a great importance, because it would find applications in modification of molecules transport through membrane, signaling pathways and drug targets of many diseases. Nevertheless, it has gained little attention from the protein structural bioinformatics community. Methods In this study, a wide variety of prediction and classification tools were applied to distinguish the residues at the interfaces of membrane proteins from those not in the interfaces. Results The tuned SVM model achieved the high accuracy of 86.95% and the AUC of 0.812 which outperforms the results of the only previous similar study. Nevertheless, prediction performances obtained using most employed models cannot be used in applied fields and needs more effort to improve. Conclusion Considering the variety of the applied tools in this study, the present investigation could be a good starting point to develop more efficient tools to predict the membrane protein interaction site residues. PMID:23919118

  6. Physical inactivity is correlated with levels of quantitative C-reactive protein in serum, independent of obesity: results of the national surveillance of risk factors of non-communicable diseases in Iran.

    PubMed

    Esteghamati, Alireza; Morteza, Afsaneh; Khalilzadeh, Omid; Anvari, Mehdi; Noshad, Sina; Zandieh, Ali; Nakhjavani, Manouchehr

    2012-03-01

    Increased C-reactive protein (CRP) levels are associated with coronary heart disease, stroke, and mortality. Physical activity prevents cardiovascular disorders, which can be partly mediated through reducing inflammation, including serum CRP levels. The association of different intensities of physical activity, sedentary behaviours, and C-reactive protein (CRP) levels in serum was examined after adjustment for markers of adiposity, including waist-circumference and body mass index (BMI), in a large population-based study. Using data of the SuRFNCD-2007 study, a large national representative population-based study in Iran, the relationship between quantitative CRP concentrations in serum and physical activity was examined in a sample of 3,001 Iranian adults. The global physical activity questionnaire (GPAQ) was used for evaluating the duration and intensity of physical activity. Total physical activity (TPA) was calculated using metabolic equivalents for the intensity of physical activity. Quantitative CRP concentrations in serum were measured with high-sensitivity enzyme immunoassay. The CRP levels in serum significantly correlated with TPA (r=-0.103, p=0.021 in men and r=-0.114, p=0.017 in women), duration of vigorous-intensity activity (r=-0.122, p=0.019 in men and r=-0.109, p=0.026 in women), duration of moderate-intensity activity (r=-0.107, p=0.031 in men and r=-0.118, p=0.020 in women), and duration of sedentary behaviours (r=0.092, p=0.029 in men and r=0.101, p=0.022 in women) after multiple adjustments for age, area of residence, BMI, waist-circumference, smoking, and diabetes mellitus. Physical activity (of both moderate and vigorous intensity) is inversely associated with the quantitative CRP levels in serum, independent of diabetes and body adiposity. PMID:22524121

  7. Physical Inactivity Is Correlated with Levels of Quantitative C-reactive Protein in Serum, Independent of Obesity: Results of the National Surveillance of Risk Factors of Non-communicable Diseases in Iran

    PubMed Central

    Morteza, Afsaneh; Khalilzadeh, Omid; Anvari, Mehdi; Noshad, Sina; Zandieh, Ali; Nakhjavani, Manouchehr

    2012-01-01

    Increased C-reactive protein (CRP) levels are associated with coronary heart disease, stroke, and mortality. Physical activity prevents cardiovascular disorders, which can be partly mediated through reducing inflammation, including serum CRP levels. The association of different intensities of physical activity, sedentary behaviours, and C-reactive protein (CRP) levels in serum was examined after adjustment for markers of adiposity, including waist-circumference and body mass index (BMI), in a large population-based study. Using data of the SuRFNCD-2007 study, a large national representative population-based study in Iran, the relationship between quantitative CRP concentrations in serum and physical activity was examined in a sample of 3,001 Iranian adults. The global physical activity questionnaire (GPAQ) was used for evaluating the duration and intensity of physical activity. Total physical activity (TPA) was calculated using metabolic equivalents for the intensity of physical activity. Quantitative CRP concentrations in serum were measured with high-sensitivity enzyme immunoassay. The CRP levels in serum significantly correlated with TPA (r=-0.103, p=0.021 in men and r=-0.114, p=0.017 in women), duration of vigorous-intensity activity (r=-0.122, p=0.019 in men and r=-0.109, p=0.026 in women), duration of moderate-intensity activity (r=-0.107, p=0.031 in men and r=-0.118, p=0.020 in women), and duration of sedentary behaviours (r=0.092, p=0.029 in men and r=0.101, p=0.022 in women) after multiple adjustments for age, area of residence, BMI, waist-circumference, smoking, and diabetes mellitus. Physical activity (of both moderate and vigorous intensity) is inversely associated with the quantitative CRP levels in serum, independent of diabetes and body adiposity. PMID:22524121

  8. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions

    PubMed Central

    2014-01-01

    Background Selenite (SeO32−) oxyanion shows severe toxicity to biota. Different bacterial strains exist that are capable of reducing SeO32− to non-toxic elemental selenium (Se0), with the formation of Se nanoparticles (SeNPs). These SeNPs might be exploited for technological applications due to their physico-chemical and biological characteristics. The present paper discusses the reduction of selenite to SeNPs by a strain of Bacillus sp., SeITE01, isolated from the rhizosphere of the Se-hyperaccumulator legume Astragalus bisulcatus. Results Use of 16S rRNA and GyrB gene sequence analysis positioned SeITE01 phylogenetically close to B. mycoides. On agarized medium, this strain showed rhizoid growth whilst, in liquid cultures, it was capable of reducing 0.5 and 2.0 mM SeO32− within 12 and 24 hours, respectively. The resultant Se0 aggregated to form nanoparticles and the amount of Se0 measured was equivalent to the amount of selenium originally added as selenite to the growth medium. A delay of more than 24 hours was observed between the depletion of SeO32 and the detection of SeNPs. Nearly spherical-shaped SeNPs were mostly found in the extracellular environment whilst rarely in the cytoplasmic compartment. Size of SeNPs ranged from 50 to 400 nm in diameter, with dimensions greatly influenced by the incubation times. Different SeITE01 protein fractions were assayed for SeO32− reductase capability, revealing that enzymatic activity was mainly associated with the membrane fraction. Reduction of SeO32− was also detected in the supernatant of bacterial cultures upon NADH addition. Conclusions The selenite reducing bacterial strain SeITE01 was attributed to the species Bacillus mycoides on the basis of phenotypic and molecular traits. Under aerobic conditions, the formation of SeNPs were observed both extracellularly or intracellullarly. Possible mechanisms of Se0 precipitation and SeNPs assembly are suggested. SeO32− is proposed to be enzimatically reduced to Se0 through redox reactions by proteins released from bacterial cells. Sulfhydryl groups on peptides excreted outside the cells may also react directly with selenite. Furthermore, membrane reductases and the intracellular synthesis of low molecular weight thiols such as bacillithiols may also play a role in SeO32− reduction. Formation of SeNPs seems to be the result of an Ostwald ripening mechanism. PMID:24606965

  9. Correlation of C-reactive protein haplotypes with serum C-reactive protein level and response to anti-tumor necrosis factor therapy in UK rheumatoid arthritis patients: results from the Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate cohort

    PubMed Central

    2012-01-01

    Introduction In many European countries, restrictions exist around the prescription of anti-tumor necrosis factor (anti-TNF) treatments for rheumatoid arthritis (RA). Eligibility and response to treatment is assessed by using the disease activity score 28 (DAS28) algorithm, which incorporates one of two inflammatory markers, erythrocyte sedimentation rate (ESR) or C-reactive protein (CRP). Although DAS28-CRP provides a more reliable measure of disease activity, functional variants exist within the CRP gene that affect basal CRP production. Therefore, we aimed to determine the relation between functional genetic variants at the CRP gene locus and levels of serum CRP in RA patients, and whether these variants, alone or in combination, are correlated with DAS28-CRP and change in DAS28-CRP after anti-TNF treatment. Methods DNA samples from the Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate (BRAGGSS) were genotyped for rs1205, rs1800947, and rs3091244 by using either TaqMan or the Sequenom MassARRAY iPLEX system. Estimated haplotypes were constructed for each sample by using the expectation maximization algorithm implemented in the haplo.stats package within the R statistical program. CRP values were log transformed, and the association between single nucleotide polymorphisms (SNPs), haplotypes of SNPs and baseline CRP, baseline DAS28-CRP, and change in DAS28-CRP were evaluated by using linear regression in STATA v.10. Results Baseline CRP measurements were available for 599 samples with 442 also having data 6 months after treatment with an anti-TNF. For these 442 samples, the study had > 80% power to detect a clinically meaningful difference of 0.6 DAS28 Units for an allele frequency of 5%. Estimated haplotype frequencies corresponded with previous frequencies reported in the literature. Overall, no significant association was observed between any of the markers investigated and baseline CRP levels. Further, CRP haplotypes did not correlate with baseline CRP (P = 0.593), baseline DAS28-CRP (P = 0.540), or change in DAS28-CRP after treatment with an anti-TNF over a 6-month period (P = 0.302). Conclusions Although CRP genotype may influence baseline CRP levels, in patients with very active disease, no such association was found. This suggests that genetic variation at the CRP locus does not influence DAS28-CRP, which may continue to be used in determining eligibility for and response to anti-TNF treatment, without adjusting for CRP genotype. PMID:23039402

  10. Principles of protein-protein interactions.

    PubMed Central

    Jones, S; Thornton, J M

    1996-01-01

    This review examines protein complexes in the Brookhaven Protein Databank to gain a better understanding of the principles governing the interactions involved in protein-protein recognition. The factors that influence the formation of protein-protein complexes are explored in four different types of protein-protein complexes--homodimeric proteins, heterodimeric proteins, enzyme-inhibitor complexes, and antibody-protein complexes. The comparison between the complexes highlights differences that reflect their biological roles. Images Fig. 1 Fig. 5 Fig. 7 Fig. 8 PMID:8552589

  11. Heat shock proteins: molecular chaperones of protein biogenesis.

    PubMed Central

    Craig, E A; Gambill, B D; Nelson, R J

    1993-01-01

    Heat shock proteins (Hsps) were first identified as proteins whose synthesis was enhanced by stresses such as an increase in temperature. Recently, several of the major Hsps have been shown to be intimately involved in protein biogenesis through a direct interaction with a wide variety of proteins. As a reflection of this role, these Hsps have been referred to as molecular chaperones. Hsp70s interact with incompletely folded proteins, such as nascent chains on ribosomes and proteins in the process of translocation from the cytosol into mitochondria and the endoplasmic reticulum. Hsp60 also binds to unfolded proteins, preventing aggregation and facilitating protein folding. Although less well defined, other Hsps such as Hsp90 also play important roles in modulating the activity of a number of proteins. The function of the proteolytic system is intertwined with that of molecular chaperones. Several components of this system, encoded by heat-inducible genes, are responsible for the degradation of abnormal or misfolded proteins. The budding yeast Saccharomyces cerevisiae has proven very useful in the analysis of the role of molecular chaperones in protein maturation, translocation, and degradation. In this review, results of experiments are discussed within the context of experiments with other organisms in an attempt to describe the current state of understanding of these ubiquitous and important proteins. PMID:8336673

  12. Biochemical approaches for discovering protein-protein interactions.

    PubMed

    Miernyk, Jan A; Thelen, Jay J

    2008-02-01

    Protein-protein interactions or protein complexes are integral in nearly all cellular processes, ranging from metabolism to structure. Elucidating both individual protein associations and complex protein interaction networks, while challenging, is an essential goal of functional genomics. For example, discovering interacting partners for a 'protein of unknown function' can provide insight into actual function far beyond what is possible with sequence-based predictions, and provide a platform for future research. Synthetic genetic approaches such as two-hybrid screening often reveal a perplexing array of potential interacting partners for any given target protein. It is now known, however, that this type of anonymous screening approach can yield high levels of false-positive results, and therefore putative interactors must be confirmed by independent methods. In vitro biochemical strategies for identifying interacting proteins are varied and time-honored, some being as old as the field of protein chemistry itself. Herein we discuss five biochemical approaches for isolating and characterizing protein-protein interactions in vitro: co-immunoprecipitation, blue native gel electrophoresis, in vitro binding assays, protein cross-linking, and rate-zonal centrifugation. A perspective is provided for each method, and where appropriate specific, trial-tested methods are included. PMID:18269571

  13. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family.

    PubMed Central

    Dreyling, M H; Martinez-Climent, J A; Zheng, M; Mao, J; Rowley, J D; Bohlander, S K

    1996-01-01

    The translocation t(10;11)(p13;q14) is a recurring chromosomal abnormality that has been observed in patients with acute lymphoblastic leukemia as well as acute myeloid leukemia. We have recently reported that the monocytic cell line U937 has a t(10;11)(p13;q14) translocation. Using a combination of positional cloning and candidate gene approach, we cloned the breakpoint and were able to show that AF10 is fused to a novel gene that we named CALM (Clathrin Assembly Lymphoid Myeloid leukemia gene) located at 11q14. AF10, a putative transcription factor, had recently been cloned as one of the fusion partners of MLL. CALM has a very high homology in its N-terminal third to the murine ap-3 gene which is one of the clathrin assembly proteins. The N-terminal region of ap-3 has been shown to bind to clathrin and to have a high-affinity binding site for phosphoinositols. The identification of the CALM/AF10 fusion gene in the widely used U937 cell line will contribute to our understanding of the malignant phenotype of this line. Images Fig. 1 Fig. 3 PMID:8643484

  14. Loss of CABLES1, a cyclin-dependent kinase-interacting protein that inhibits cell cycle progression, results in germline expansion at the expense of oocyte quality in adult female mice.

    PubMed

    Lee, Ho-Joon; Sakamoto, Hideo; Luo, Hongwei; Skaznik-Wikiel, Malgorzata E; Friel, Anne M; Niikura, Teruko; Tilly, Jacqueline C; Niikura, Yuichi; Klein, Rachael; Styer, Aaron K; Zukerberg, Lawrence R; Tilly, Jonathan L; Rueda, Bo R

    2007-11-01

    Recent studies have shown that cell cycle inhibitors encoded by the Ink4a gene locus constrain the self-renewing activity of adult stem cells of the hematopoietic and nervous systems. Here we report that knockout (KO) of the Cables1 [cyclin-dependent kinase (CDK)-5 and ABL enzyme substrate 1] cell cycle-regulatory gene in mice has minimal to no effect on hematopoietic stem cell (HSC) dynamics. However, female Cables1-null mice exhibit a significant expansion of germ cell (oocyte) numbers throughout adulthood. This is accompanied by a dramatic elevation in the number of atretic immature oocytes within the ovaries and an increase in the incidence of degenerating oocytes retrieved following superovulation of CABLES1-deficient females. These outcomes are not observed in mice lacking p16INK4a alone or both p16INK4a and p19ARF. These data support recent reports that adult female mice can generate new oocytes and follicles but the enhancement of postnatal oogenesis by Cables1 KO appears offset by a reduction in oocyte quality, as reflected by increased elimination of these additional germ cells via apoptosis. This work also reveals cell lineage specificity with respect to the role that specific CDK-interacting proteins play in restraining the activity of adult germline versus somatic stem cells. PMID:17912041

  15. Protein enriched pasta: structure and digestibility of its protein network.

    PubMed

    Laleg, Karima; Barron, Cécile; Santé-Lhoutellier, Véronique; Walrand, Stéphane; Micard, Valérie

    2016-02-17

    Wheat (W) pasta was enriched in 6% gluten (G), 35% faba (F) or 5% egg (E) to increase its protein content (13% to 17%). The impact of the enrichment on the multiscale structure of the pasta and on in vitro protein digestibility was studied. Increasing the protein content (W- vs. G-pasta) strengthened pasta structure at molecular and macroscopic scales but reduced its protein digestibility by 3% by forming a higher covalently linked protein network. Greater changes in the macroscopic and molecular structure of the pasta were obtained by varying the nature of protein used for enrichment. Proteins in G- and E-pasta were highly covalently linked (28-32%) resulting in a strong pasta structure. Conversely, F-protein (98% SDS-soluble) altered the pasta structure by diluting gluten and formed a weak protein network (18% covalent link). As a result, protein digestibility in F-pasta was significantly higher (46%) than in E- (44%) and G-pasta (39%). The effect of low (55 °C, LT) vs. very high temperature (90 °C, VHT) drying on the protein network structure and digestibility was shown to cause greater molecular changes than pasta formulation. Whatever the pasta, a general strengthening of its structure, a 33% to 47% increase in covalently linked proteins and a higher β-sheet structure were observed. However, these structural differences were evened out after the pasta was cooked, resulting in identical protein digestibility in LT and VHT pasta. Even after VHT drying, F-pasta had the best amino acid profile with the highest protein digestibility, proof of its nutritional interest. PMID:26829164

  16. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    PubMed

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-01-01

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected. PMID:25704442

  17. Occupational protein contact dermatitis.

    PubMed

    Barbaud, Annick; Poreaux, Claire; Penven, Emmanuelle; Waton, Julie

    2015-12-01

    Occupational contact dermatitis is generally caused by haptens but can also be induced by proteins causing mainly immunological contact urticaria (ICU); chronic hand eczema in the context of protein contact dermatitis (PCD). In a monocentric retrospective study, from our database, only 31 (0.41%) of patients with contact dermatitis had positive skin tests with proteins: 22 had occupational PCD, 3 had non-occupational PCD, 5 occupational ICU and 1 cook had a neutrophilic fixed food eruption (NFFE) due to fish. From these results and analysis of literature, the characteristics of PCD can be summarized as follows. It is a chronic eczematous dermatitis, possibly exacerbated by work, suggestive if associated with inflammatory perionyxix and immediate erythema with pruritis, to be investigated when the patient resumes work after a period of interruption. Prick tests with the suspected protein-containing material are essential, as patch tests have negative results. In case of multisensitisation revealed by prick tests, it is advisable to analyse IgE against recombinant allergens. A history of atopy, found in 56 to 68% of the patients, has to be checked for. Most of the cases are observed among food-handlers but PCD can also be due to non-edible plants, latex, hydrolysed proteins or animal proteins. Occupational exposure to proteins can thus lead to the development of ICU. Reflecting hypersensitivity to very low concentrations of allergens, investigating ICU therefore requires caution and prick tests should be performed with a diluted form of the causative protein-containing product. Causes are food, especially fruit peel, non-edible plants, cosmetic products, latex, animals. PMID:26242922

  18. Insulin-Like Growth Factor 1 and Insulin-Like Growth Factor-Binding Protein 3 in Relation to the Risk of Type 2 Diabetes Mellitus: Results From the EPIC-Potsdam Study.

    PubMed

    Drogan, Dagmar; Schulze, Matthias B; Boeing, Heiner; Pischon, Tobias

    2016-03-15

    Higher levels of insulin-like growth factor-binding protein 3 (IGFBP-3) might raise the risk of type 2 diabetes mellitus (T2DM) via binding of insulin-like growth factor 1 (IGF-1), an insulin-like hormone that is involved in glucose homeostasis. We investigated serum concentrations of IGF-1 and IGFBP-3 and their molar ratio in relation to T2DM incidence in a nested case-cohort study within the European Prospective Investigation Into Cancer and Nutrition-Potsdam Study. We included a randomly selected subcohort of persons without T2DM at the time of blood sampling (n = 2,269) and 776 individuals with incident T2DM identified between 1994 and 2005. For the highest quartile versus lowest, the multivariable-adjusted hazard rate ratios were 0.91 (95% confidence interval (CI): 0.68, 1.23; P for trend = 0.31) for IGF-1, 1.33 (95% CI: 1.00, 1.76; P for trend = 0.04) for IGFBP-3, and 0.77 (95% CI: 0.57, 1.03; P for trend = 0.03) for IGF-1:IGFBP-3 ratio. IGFBP-3 level remained positively associated with T2DM incidence-and the ratio of IGF-1 to IGFBP-3 was inversely related with T2DM incidence-in models that included adjustment for IGF-1 concentrations (P for trend < 0.05). Therefore, our findings do not confirm an association between total IGF-1 concentrations and risk of T2DM in the general study population, although higher IGFBP-3 levels might raise T2DM risk independent of IGF-1 levels. PMID:26880678

  19. Protein dynamics. Direct observation of hierarchical protein dynamics.

    PubMed

    Lewandowski, Józef R; Halse, Meghan E; Blackledge, Martin; Emsley, Lyndon

    2015-05-01

    One of the fundamental challenges of physical biology is to understand the relationship between protein dynamics and function. At physiological temperatures, functional motions arise from the complex interplay of thermal motions of proteins and their environments. Here, we determine the hierarchy in the protein conformational energy landscape that underlies these motions, based on a series of temperature-dependent magic-angle spinning multinuclear nuclear-magnetic-resonance relaxation measurements in a hydrated nanocrystalline protein. The results support strong coupling between protein and solvent dynamics above 160 kelvin, with fast solvent motions, slow protein side-chain motions, and fast protein backbone motions being activated consecutively. Low activation energy, small-amplitude local motions dominate at low temperatures, with larger-amplitude, anisotropic, and functionally relevant motions involving entire peptide units becoming dominant at temperatures above 220 kelvin. PMID:25931561

  20. Activation of prokaryotic transcription through arbitrary protein-protein contacts.

    PubMed

    Dove, S L; Joung, J K; Hochschild, A

    1997-04-10

    Many transcriptional activators in prokaryotes are known to bind near a promoter and contact RNA polymerase, but it is not clear whether a protein-protein contact between an activator and RNA polymerase is enough to activate gene transcription. Here we show that contact between a DNA-bound protein and a heterologous protein domain fused to RNA polymerase can elicit transcriptional activation; moreover, the strength of this engineered protein-protein interaction determines the amount of gene activation. Our results indicate that an arbitrary interaction between a DNA-bound protein and RNA polymerase can activate transcription. We also find that when the DNA-bound 'activator' makes contact with two different components of the polymerase, the effect of these two interactions on transcription is synergistic. PMID:9121589

  1. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  2. Refolding of inclusion body proteins.

    PubMed

    Mayer, Marcus; Buchner, Johannes

    2004-01-01

    Genome sequencing projects have led to the identification of an enormous number of open reading frames that code for unknown proteins. Elucidation of the structure and function of these proteins makes it necessary to produce proteins fast, in high yields and at low cost. The recombinant expression of proteins in bacterial hosts often results in the formation of inclusion bodies. Here, the protein accumulates in large quantities separated from the cellular protein. However, the protein is insoluble and inactive. Thus, it is necessary to establish efficient refolding protocols. Progress has been made recently in this field concerning refolding strategies, the use of low-molecular-weight additives as folding enhancers, and the determination of optimum refolding parameters. Here we present an overview of the refolding technology and give a standard protocol for inclusion body refolding. PMID:14959834

  3. Computational Design of Membrane Proteins

    PubMed Central

    Perez-Aguilar, Jose Manuel; Saven, Jeffery G.

    2014-01-01

    Summary Membrane proteins are involved in a wide variety of cellular processes, and are typically part of the first interaction a cell has with extracellular molecules. As a result, these proteins comprise a majority of known drug targets. Membrane proteins are among the most difficult proteins to obtain and characterize, and a structure-based understanding of their properties can be difficult to elucidate. Notwithstanding, the design of membrane proteins can provide stringent tests of our understanding of these crucial biological systems, as well as introduce novel or targeted functionalities. Computational design methods have been particularly helpful in addressing these issues and this review discusses recent studies that tailor membrane proteins to display specific structures or functions, and how redesigned membrane proteins are being used to facilitate structural and functional studies. PMID:22244752

  4. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  5. Protein transduction assisted by polyethylenimine-cationized carrier proteins.

    PubMed

    Kitazoe, Midori; Murata, Hitoshi; Futami, Junichiro; Maeda, Takashi; Sakaguchi, Masakiyo; Miyazaki, Masahiro; Kosaka, Megumi; Tada, Hiroko; Seno, Masaharu; Huh, Nam-ho; Namba, Masayoshi; Nishikawa, Mitsuo; Maeda, Yoshitake; Yamada, Hidenori

    2005-06-01

    Previously, we have reported that cationized-proteins covalently modified with polyethylenimine (PEI) (direct PEI-cationization) efficiently enter cells and function in the cytosol [Futami et al. (2005) J. Biosci. Bioeng. 99, 95-103]. However, it may be more convenient if a protein could be delivered into cells just by mixing the protein with a PEI-cationized carrier protein having a specific affinity (indirect PEI-cationization). Thus, we prepared PEI-cationized avidin (PEI-avidin), streptavidin (PEI-streptavidin), and protein G (PEI-protein G), and examined whether they could deliver biotinylated proteins and antibodies into living cells. PEI-avidin (and/or PEI-streptavidin) carried biotinylated GFPs into various mammalian cells very efficiently. A GFP variant containing a nuclear localization signal was found to arrive even in the nucleus. The addition of a biotinylated RNase A derivative mixed with PEI-streptavidin to a culture medium of 3T3-SV-40 cells resulted in remarkable cell growth inhibition, suggesting that the biotinylated RNase A derivative entered cells and digested intracellular RNA molecules. Furthermore, the addition of a fluorescein-labeled anti-S100C (beta-actin binding protein) antibody mixed with PEI-protein G to human fibroblasts resulted in the appearance of a fluorescence image of actin-like filamentous structures in the cells. These results indicate that indirect PEI-cationization using non-covalent interaction is as effective as the direct PEI-cationization for the transduction of proteins into living cells and for expression of their functions in the cytosol. Thus, PEI-cationized proteins having a specific affinity for certain molecules such as PEI-streptavidin, PEI-avidin and PEI-protein G are concluded to be widely applicable protein transduction carrier molecules. PMID:16002991

  6. Active learning for human protein-protein interaction prediction

    PubMed Central

    2010-01-01

    Background Biological processes in cells are carried out by means of protein-protein interactions. Determining whether a pair of proteins interacts by wet-lab experiments is resource-intensive; only about 38,000 interactions, out of a few hundred thousand expected interactions, are known today. Active machine learning can guide the selection of pairs of proteins for future experimental characterization in order to accelerate accurate prediction of the human protein interactome. Results Random forest (RF) has previously been shown to be effective for predicting protein-protein interactions. Here, four different active learning algorithms have been devised for selection of protein pairs to be used to train the RF. With labels of as few as 500 protein-pairs selected using any of the four active learning methods described here, the classifier achieved a higher F-score (harmonic mean of Precision and Recall) than with 3000 randomly chosen protein-pairs. F-score of predicted interactions is shown to increase by about 15% with active learning in comparison to that with random selection of data. Conclusion Active learning algorithms enable learning more accurate classifiers with much lesser labelled data and prove to be useful in applications where manual annotation of data is formidable. Active learning techniques demonstrated here can also be applied to other proteomics applications such as protein structure prediction and classification. PMID:20122232

  7. Protein intrinsic disorder toolbox for comparative analysis of viral proteins

    PubMed Central

    Goh, Gerard Kian-Meng; Dunker, A Keith; Uversky, Vladimir N

    2008-01-01

    To examine the usefulness of protein disorder predictions as a tool for the comparative analysis of viral proteins, a relational database has been constructed. The database includes proteins from influenza A and HIV-related viruses. Annotations include viral protein sequence, disorder prediction, structure, and function. Location of each protein within a virion, if known, is also denoted. Our analysis reveals a clear relationship between proximity to the RNA core and the percentage of predicted disordered residues for a set of influenza A virus proteins. Neuraminidases (NA) and hemagglutinin (HA) of major influenza A pandemics tend to pair in such a way that both proteins tend to be either ordered-ordered or disordered-disordered by prediction. This may be the result of these proteins evolving from being lipid-associated. High abundance of intrinsic disorder in envelope and matrix proteins from HIV-related viruses likely represents a mechanism where HIV virions can escape immune response despite the availability of antibodies for the HIV-related proteins. This exercise provides an example showing how the combined use of intrinsic disorder predictions and relational databases provides an improved understanding of the functional and structural behaviour of viral proteins. PMID:18831795

  8. Cotton and Protein Interactions

    SciTech Connect

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.; Gaither, Kari A.; Castro, Nathan J.

    2006-06-30

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, it may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.

  9. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and initially-adsorbed protein. Interphase protein concentration CI increases as VI decreases, resulting in slow reduction in interfacial energetics. Steady-state is governed by a net partition coefficient P=(/CBCI). In the process of occupying space within the interphase, adsorbing protein molecules must displace an equivalent volume of interphase water. Interphase water is itself associated with surface-bound water through a network of transient hydrogen bonds. Displacement of interphase water thus requires an amount of energy that depends on the adsorbent surface chemistry/energy. This “adsorption-dehydration” step is the significant free-energy cost of adsorption that controls the maximum amount of protein that can be adsorbed at steady state to a unit adsorbent-surface area (the adsorbent capacity). As adsorbent hydrophilicity increases, protein adsorption monotonically decreases because the energetic cost of surface dehydration increases, ultimately leading to no protein adsorption near an adsorbent water wettability (surface energy) characterized by a water contact angle θ → 65°. Consequently, protein does not adsorb (accumulate at interphase concentrations greater than bulk solution) to more hydrophilic adsorbents exhibiting θ < 65° . For adsorbents bearing strong Lewis acid/base chemistry such as ion-exchange resins, protein/surface interactions can be highly favorable, causing protein to adsorb in multilayers in a relatively thick interphase. A straightforward, three-component free energy relationship captures salient features of protein adsorption to all surfaces predicting that the overall free energy of protein adsorption ΔGadso is a relatively small multiple of thermal energy for any surface chemistry (except perhaps for bioengineered surfaces bearing specific ligands for adsorbing protein) because a surface chemistry that interacts chemically with proteins must also interact with water through hydrogen bonding. In this way, water moderates protein adsorption to any surface by competing with adsorbing protein molecules. This Leading Opinion ends by proposing several changes to the protein-adsorption paradigm that might advance answers to the three core questions that frame the “protein-adsorption problem” that is so fundamental to biomaterials surface science. PMID:22088888

  10. Protein-protein interaction network analysis of cirrhosis liver disease

    PubMed Central

    Safaei, Akram; Rezaei Tavirani, Mostafa; Arefi Oskouei, Afsaneh; Zamanian Azodi, Mona; Mohebbi, Seyed Reza; Nikzamir, Abdol Rahim

    2016-01-01

    Aim: Evaluation of biological characteristics of 13 identified proteins of patients with cirrhotic liver disease is the main aim of this research. Background: In clinical usage, liver biopsy remains the gold standard for diagnosis of hepatic fibrosis. Evaluation and confirmation of liver fibrosis stages and severity of chronic diseases require a precise and noninvasive biomarkers. Since the early detection of cirrhosis is a clinical problem, achieving a sensitive, specific and predictive novel method based on biomarkers is an important task. Methods: Essential analysis, such as gene ontology (GO) enrichment and protein-protein interactions (PPI) was undergone EXPASy, STRING Database and DAVID Bioinformatics Resources query. Results: Based on GO analysis, most of proteins are located in the endoplasmic reticulum lumen, intracellular organelle lumen, membrane-enclosed lumen, and extracellular region. The relevant molecular functions are actin binding, metal ion binding, cation binding and ion binding. Cell adhesion, biological adhesion, cellular amino acid derivative, metabolic process and homeostatic process are the related processes. Protein-protein interaction network analysis introduced five proteins (fibroblast growth factor receptor 4, tropomyosin 4, tropomyosin 2 (beta), lectin, Lectin galactoside-binding soluble 3 binding protein and apolipoprotein A-I) as hub and bottleneck proteins. Conclusion: Our result indicates that regulation of lipid metabolism and cell survival are important biological processes involved in cirrhosis disease. More investigation of above mentioned proteins will provide a better understanding of cirrhosis disease. PMID:27099671

  11. LEA proteins prevent protein aggregation due to water stress

    PubMed Central

    Goyal, Kshamata; Walton, Laura J.; Tunnacliffe, Alan

    2005-01-01

    LEA (late embryogenesis abundant) proteins in both plants and animals are associated with tolerance to water stress resulting from desiccation and cold shock. However, although various functions of LEA proteins have been proposed, their precise role has not been defined. Recent bioinformatics studies suggest that LEA proteins might behave as molecular chaperones, and the current study was undertaken to test this hypothesis. Recombinant forms of AavLEA1, a group 3 LEA protein from the anhydrobiotic nematode Aphelenchus avenae, and Em, a group 1 LEA protein from wheat, have been subjected to functional analysis. Heat-stress experiments with citrate synthase, which is susceptible to aggregation at high temperatures, suggest that LEA proteins do not behave as classical molecular chaperones, but they do exhibit a protective, synergistic effect in the presence of the so-called chemical chaperone, trehalose. In contrast, both LEA proteins can independently protect citrate synthase from aggregation due to desiccation and freezing, in keeping with a role in water-stress tolerance; similar results were obtained with lactate dehydrogenase. This is the first evidence of anti-aggregation activity of LEA proteins due to water stress. Again, a synergistic effect of LEA and trehalose was observed, which is significant given that non-reducing disaccharides are known to accumulate during dehydration in plants and nematodes. A model is proposed whereby LEA proteins might act as a novel form of molecular chaperone, or ‘molecular shield’, to help prevent the formation of damaging protein aggregates during water stress. PMID:15631617

  12. Protein structure modeling with MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2014-01-01

    Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized at atomic resolution using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. In this chapter, we present an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of a similar protocol has resulted in models of useful accuracy for domains in more than half of all known protein sequences. PMID:24573470

  13. Protein structure modeling with MODELLER.

    PubMed

    Eswar, Narayanan; Eramian, David; Webb, Ben; Shen, Min-Yi; Sali, Andrej

    2008-01-01

    Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. This chapter presents an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of similar protocols (correction of protcols) has resulted in models of useful accuracy for domains in more than half of all known protein sequences. PMID:18542861

  14. Characterization of Protein Complexes and Subcomplexes in Protein-Protein Interaction Databases

    PubMed Central

    Zaki, Nazar; Mohamed, Elfadil A.; Mora, Antonio

    2015-01-01

    The identification and characterization of protein complexes implicated in protein-protein interaction data are crucial to the understanding of the molecular events under normal and abnormal physiological conditions. This paper provides a novel characterization of subcomplexes in protein interaction databases, stressing definition and representation issues, quantification, biological validation, network metrics, motifs, modularity, and gene ontology (GO) terms. The paper introduces the concept of “nested group” as a way to represent subcomplexes and estimates that around 15% of those nested group with the higher Jaccard index may be a result of data artifacts in protein interaction databases, while a number of them can be found in biologically important modular structures or dynamic structures. We also found that network centralities, enrichment in essential proteins, GO terms related to regulation, imperfect 5-clique motifs, and higher GO homogeneity can be used to identify proteins in nested complexes. PMID:25722891

  15. Algorithmic complexity of a protein

    NASA Astrophysics Data System (ADS)

    Dewey, T. Gregory

    1996-07-01

    The information contained in a protein's amino acid sequence dictates its three-dimensional structure. To quantitate the transfer of information that occurs in the protein folding process, the Kolmogorov information entropy or algorithmic complexity of the protein structure is investigated. The algorithmic complexity of an object provides a means of quantitating its information content. Recent results have indicated that the algorithmic complexity of microstates of certain statistical mechanical systems can be estimated from the thermodynamic entropy. In the present work, it is shown that the algorithmic complexity of a protein is given by its configurational entropy. Using this result, a quantitative estimate of the information content of a protein's structure is made and is compared to the information content of the sequence. Additionally, the mutual information between sequence and structure is determined. It is seen that virtually all the information contained in the protein structure is shared with the sequence.

  16. Predicting Protein Interactions by Brownian Dynamics Simulations

    PubMed Central

    Meng, Xuan-Yu; Xu, Yu; Zhang, Hong-Xing; Mezei, Mihaly; Cui, Meng

    2012-01-01

    We present a newly adapted Brownian-Dynamics (BD)-based protein docking method for predicting native protein complexes. The approach includes global BD conformational sampling, compact complex selection, and local energy minimization. In order to reduce the computational costs for energy evaluations, a shell-based grid force field was developed to represent the receptor protein and solvation effects. The performance of this BD protein docking approach has been evaluated on a test set of 24 crystal protein complexes. Reproduction of experimental structures in the test set indicates the adequate conformational sampling and accurate scoring of this BD protein docking approach. Furthermore, we have developed an approach to account for the flexibility of proteins, which has been successfully applied to reproduce the experimental complex structure from the structure of two unbounded proteins. These results indicate that this adapted BD protein docking approach can be useful for the prediction of protein-protein interactions. PMID:22500075

  17. Chemically defined protein-free in vitro culture of mammalian embryo does not restrict its developmental potential for differentiation of skin appendages.

    PubMed

    Bulic-Jakus, F; Strahinic-Belovari, T; Maric, S; Jezek, D; Juric-Lekic, G; Vlahovic, M; Serman, D

    2001-01-01

    In a unique serum- and protein-free chemically defined in vitro culture model of postimplantation mammalian development the epidermis differentiates regularly, although the differentiation of other tissues is impaired due to the lack of the serum. The present study in that model was done to estimate more carefully the degree of epidermal differentiation in defined media supplemented with some growth- or differentiation-stimulating substances. The main objective was to discover by grafting in vivo to the richer environment whether simple protein-free culture conditions restrict an inherent embryonic potential for differentiation of skin appendages. Embryonic parts of E9.5 gastrulating Fischer rat embryos were cultivated for 2 weeks in the protein-free Eagle's minimum essential medium supplemented with holotransferrin, apotransferrin, insulin and/or Na(2)SeO(3) and in controls cultivated in protein-free medium or in serum-supplemented medium. In all experiments there was a high incidence of differentiation of the epidermis. A high level of epidermal differentiation was confirmed for the first time at the ultrastructural level. A well-differentiated cornified layer and cells connected with desmosomes containing keratohyaline masses and cytokeratin filaments were found. A strong immunohistochemical signal for the proliferating cell nuclear antigen was always detected in the basal layer of the epidermis showing that those cells were still able to proliferate. Finally, embryos precultivated for 1 or 2 weeks in the protein-free medium and media supplemented with apotransferrin or serum were grafted under the kidney capsule for an additional 2 weeks. It was discovered that even after spending 2 weeks in the simple protein-free medium in vitro, embryos retained their developmental potential for differentiation of skin appendages (hair and sebaceous glands). PMID:11399853

  18. Protein damage, repair and proteolysis.

    PubMed

    Chondrogianni, Niki; Petropoulos, Isabelle; Grimm, Stefanie; Georgila, Konstantina; Catalgol, Betul; Friguet, Bertrand; Grune, Tilman; Gonos, Efstathios S

    2014-02-01

    Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression. PMID:23107776

  19. Dynamic identifying protein functional modules based on adaptive density modularity in protein-protein interaction networks

    PubMed Central

    2015-01-01

    Background The identification of protein functional modules would be a great aid in furthering our knowledge of the principles of cellular organization. Most existing algorithms for identifying protein functional modules have a common defect -- once a protein node is assigned to a functional module, there is no chance to move the protein to the other functional modules during the follow-up processes, which lead the erroneous partitioning occurred at previous step to accumulate till to the end. Results In this paper, we design a new algorithm ADM (Adaptive Density Modularity) to detect protein functional modules based on adaptive density modularity. In ADM algorithm, according to the comparison between external closely associated degree and internal closely associated degree, the partitioning of a protein-protein interaction network into functional modules always evolves quickly to increase the density modularity of the network. The integration of density modularity into the new algorithm not only overcomes the drawback mentioned above, but also contributes to identifying protein functional modules more effectively. Conclusions The experimental result reveals that the performance of ADM algorithm is superior to many state-of-the-art protein functional modules detection techniques in aspect of the accuracy of prediction. Moreover, the identified protein functional modules are statistically significant in terms of "Biological Process" annotated in Gene Ontology, which provides substantial support for revealing the principles of cellular organization. PMID:26330105

  20. Protein-water dynamics in antifreeze protein III activity

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  1. Protein-Protein Interaction Detection: Methods and Analysis

    PubMed Central

    Rao, V. Srinivasa; Srinivas, K.; Sujini, G. N.; Kumar, G. N. Sunand

    2014-01-01

    Protein-protein interaction plays key role in predicting the protein function of target protein and drug ability of molecules. The majority of genes and proteins realize resulting phenotype functions as a set of interactions. The in vitro and in vivo methods like affinity purification, Y2H (yeast 2 hybrid), TAP (tandem affinity purification), and so forth have their own limitations like cost, time, and so forth, and the resultant data sets are noisy and have more false positives to annotate the function of drug molecules. Thus, in silico methods which include sequence-based approaches, structure-based approaches, chromosome proximity, gene fusion, in silico 2 hybrid, phylogenetic tree, phylogenetic profile, and gene expression-based approaches were developed. Elucidation of protein interaction networks also contributes greatly to the analysis of signal transduction pathways. Recent developments have also led to the construction of networks having all the protein-protein interactions using computational methods for signaling pathways and protein complex identification in specific diseases. PMID:24693427

  2. Dipolar response of hydrated proteins.

    PubMed

    Matyushov, Dmitry V

    2012-02-28

    The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ?240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ~2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can be either higher or lower than the absorption of water. Both scenarios have been experimentally observed in the THz window of radiation. PMID:22380065

  3. EIGER characterization results

    NASA Astrophysics Data System (ADS)

    Dinapoli, Roberto; Bergamaschi, Anna; Greiffenberg, Dominic; Henrich, Beat; Horisberger, Roland; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Tinti, Gemma

    2013-12-01

    Characterization and performance measurements have been done on several EIGER detector systems, produced with chips coming from two different lots, both with a lab X-ray source and at the Swiss Light Source (SLS). Results on the detector calibration, electronic noise, threshold dispersion, minimum achievable energy threshold, maximum detectable incoming photon flux and maximum frame rate are presented. An EIGER module is constructed from a ∼4×8 cm2 monolithic silicon sensor bump-bonded to 2 ×4 readout chips and contains 0.5 Mpixel. The first EIGER 500 K systems have been produced and images taken with these detectors are shown. Modules can be tiled together to form large area detectors; both a 9 Mpixel and a 16 Mpixel systems are at present under development for the coherent small angle X-ray scattering and protein crystallography beamlines of the SLS.

  4. Effects of dabigatran on the cellular and protein phase of coagulation in patients with coronary artery disease on dual antiplatelet therapy with aspirin and clopidogrel. Results from a prospective, randomised, double-blind, placebo-controlled study.

    PubMed

    Franchi, Francesco; Rollini, Fabiana; Cho, Jung Rae; King, Rhodri; Phoenix, Fladia; Bhatti, Mona; DeGroat, Christopher; Tello-Montoliu, Antonio; Zenni, Martin M; Guzman, Luis A; Bass, Theodore A; Ajjan, Ramzi A; Angiolillo, Dominick J

    2016-02-29

    There is growing interest in understanding the effects of adding an oral anticoagulant in patients on dual antiplatelet therapy (DAPT). Vitamin K antagonists (VKAs) and clopidogrel represent the most broadly utilised oral anticoagulant and P2Y12 receptor inhibitor, respectively. However, VKAs can interfere with clopidogrel metabolism via the cytochrome P450 (CYP) system which in turn may result in an increase in platelet reactivity. Dabigatran is a direct acting (anti-II) oral anticoagulant which does not interfere with CYP and has favourable safety and efficacy profiles compared with VKAs. The pharmacodynamic (PD) effects on platelet reactivity and clot kinetic of adjunctive dabigatran therapy in patients on DAPT are poorly explored. In this prospective, randomised, double-blind, placebo-controlled PD study, patients (n=30) on maintenance DAPT with aspirin and clopidogrel were randomised to either dabigatran 150 mg bid or placebo for seven days. PD testing was performed before and after treatment using four different assays exploring multiple pathways of platelet aggregation and fibrin clot kinetics: light transmittance aggregometry (LTA), multiple electrode aggregometry (MEA), kaolin-activated thromboelastography (TEG) and turbidimetric assays. There were no differences in multiple measures of platelet reactivity investigating purinergic and non-purinergic signaling pathways assessed by LTA, MEA and TEG platelet mapping. Dabigatran significantly increased parameters related to thrombin activity and thrombus generation, and delayed fibrin clot formation, without affecting clot structure or fibrinolysis. In conclusion, in patients on DAPT with aspirin and clopidogrel, adjunctive dabigatran therapy is not associated with modulation of profiles of platelet reactivity as determined by several assays assessing multiple platelet signalling pathways. However, dabigatran significantly interferes with parameters related to thrombin activity and delays fibrin clot formation. PMID:26633836

  5. Polarizable protein packing.

    PubMed

    Ng, Albert H; Snow, Christopher D

    2011-05-01

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol(-1)] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. PMID:21264879

  6. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  7. [Protein metabolism in vegans].

    PubMed

    Okuda, T; Miyoshi-Nishimura, H; Makita, T; Sugawa-Katayama, Y; Hazama, T; Simizu, T; Yamaguchi, Y

    1994-11-01

    To elucidate the mechanisms of adaptation to a low-energy and low-protein vegan diet, we carried out dietary surveys and nitrogen balance studies five times during one year on two women and a man who ate raw brown rice, raw green vegetables, three kinds of raw roots, fruit and salt daily. Individual subjects modified this vegan diet slightly. The mean daily energy intake of the subjects was 18, 14, and 32 kcal/kg, of body weight. The loss of body weight was about 10% of the initial level. The daily nitrogen balance was -32, -33, and -11 mg N/kg of body weight. In spite of the negative nitrogen balance, the results of routine clinical tests, initially normal, did not change with the vegan diet. Ten months after the start of the vegan diet, the subjects were given 15N urea orally. The incorporation of 15N into serum proteins suggested that these subjects could utilize urea nitrogen for body protein synthesis. The level of 15N in serum proteins was close to the level in other normal adult men on a low-protein diet with adequate energy for 2 weeks. PMID:7880328

  8. Comparative effects of selenite and selenate on nitrate assimilation in barley seedlings.

    PubMed

    Aslam, M; Harbit, K B; Huffaker, R C

    1990-01-01

    The effect of SeO3= and SeO4= on NO3- assimilation in 8-d-old barley (Hordeum vulgare L.) seedlings was studied over a 24-h period. Selenite at 0.1 mol m-3 in the uptake solutions severely inhibited the induction of NO3- uptake and active nitrate reductases. Selenate, at 1.0 mol m-3 in the nutrient solution, had little effect on induction of activities of these systems until after 12 h; however, when the seedlings were pretreated with 1.0 mol m-3 SeO4= for 24 h, subsequent NO3- uptake from SeO4(=) -free solutions was inhibited about 60%. Sulphate partially alleviated the inhibitory effect of SeO3= when supplied together in the ambient solutions, but had no effect in seedlings pretreated with SeO3=. By contrast, SO4= partially alleviated the inhibitory effect of SeO4= even in seedlings pretreated with SeO4=. Since uptake of NO3- by intact seedlings was also inhibited by SO3=, the percentage of the absorbed NO3- that was reduced was not affected. By contrast, SeO4=, which affected NO3- uptake much less, inhibited the percentage reduced of that absorbed. However, when supplied to detached leaves, both SeO3= and SeO4= inhibited the in vivo reduction of NO3- as well as induction of nitrate reductase and nitrite reductase activities. Selenite was more inhibitory than SeO4= ; approximately a five to 10 times higher concentration of SeO4= than SeO3= was required to achieve similar inhibition. In detached leaves, the inhibitory effect of both SeO3= and SeO4= on in vivo NO3- reduction as well as on the induction of nitrate reductase activity was partially alleviated by SO4=. The inhibitory effects of Se salts on the induction of the nitrite reductase were, however, completely alleviated by SO4=. The results show that in barley seedlings SeO3= is more toxic than SeO4=. The reduction of SeO4= to SeO3= may be a rate limiting step in causing Se toxicity. PMID:11537499

  9. Comparative effects of selenite and selenate on nitrate assimilation in barley seedlings

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Harbit, K. B.; Huffaker, R. C.

    1990-01-01

    The effect of SeO3= and SeO4= on NO3- assimilation in 8-d-old barley (Hordeum vulgare L.) seedlings was studied over a 24-h period. Selenite at 0.1 mol m-3 in the uptake solutions severely inhibited the induction of NO3- uptake and active nitrate reductases. Selenate, at 1.0 mol m-3 in the nutrient solution, had little effect on induction of activities of these systems until after 12 h; however, when the seedlings were pretreated with 1.0 mol m-3 SeO4= for 24 h, subsequent NO3- uptake from SeO4(=) -free solutions was inhibited about 60%. Sulphate partially alleviated the inhibitory effect of SeO3= when supplied together in the ambient solutions, but had no effect in seedlings pretreated with SeO3=. By contrast, SO4= partially alleviated the inhibitory effect of SeO4= even in seedlings pretreated with SeO4=. Since uptake of NO3- by intact seedlings was also inhibited by SO3=, the percentage of the absorbed NO3- that was reduced was not affected. By contrast, SeO4=, which affected NO3- uptake much less, inhibited the percentage reduced of that absorbed. However, when supplied to detached leaves, both SeO3= and SeO4= inhibited the in vivo reduction of NO3- as well as induction of nitrate reductase and nitrite reductase activities. Selenite was more inhibitory than SeO4= ; approximately a five to 10 times higher concentration of SeO4= than SeO3= was required to achieve similar inhibition. In detached leaves, the inhibitory effect of both SeO3= and SeO4= on in vivo NO3- reduction as well as on the induction of nitrate reductase activity was partially alleviated by SO4=. The inhibitory effects of Se salts on the induction of the nitrite reductase were, however, completely alleviated by SO4=. The results show that in barley seedlings SeO3= is more toxic than SeO4=. The reduction of SeO4= to SeO3= may be a rate limiting step in causing Se toxicity.

  10. PSAIA – Protein Structure and Interaction Analyzer

    PubMed Central

    Mihel, Josip; Šikić, Mile; Tomić, Sanja; Jeren, Branko; Vlahoviček, Kristian

    2008-01-01

    Background PSAIA (Protein Structure and Interaction Analyzer) was developed to compute geometric parameters for large sets of protein structures in order to predict and investigate protein-protein interaction sites. Results In addition to most relevant established algorithms, PSAIA offers a new method PIADA (Protein Interaction Atom Distance Algorithm) for the determination of residue interaction pairs. We found that PIADA produced more satisfactory results than comparable algorithms implemented in PSAIA. Particular advantages of PSAIA include its capacity to combine different methods to detect the locations and types of interactions between residues and its ability, without any further automation steps, to handle large numbers of protein structures and complexes. Generally, the integration of a variety of methods enables PSAIA to offer easier automation of analysis and greater reliability of results. PSAIA can be used either via a graphical user interface or from the command-line. Results are generated in either tabular or XML format. Conclusion In a straightforward fashion and for large sets of protein structures, PSAIA enables the calculation of protein geometric parameters and the determination of location and type for protein-protein interaction sites. XML formatted output enables easy conversion of results to various formats suitable for statistic analysis. Results from smaller data sets demonstrated the influence of geometry on protein interaction sites. Comprehensive analysis of properties of large data sets lead to new information useful in the prediction of protein-protein interaction sites. PMID:18400099

  11. Benchtop Detection of Proteins

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2007-01-01

    A process, and a benchtop-scale apparatus for implementing the process, have been developed to detect proteins associated with specific microbes in water. The process and apparatus may also be useful for detection of proteins in other, more complex liquids. There may be numerous potential applications, including monitoring lakes and streams for contamination, testing of blood and other bodily fluids in medical laboratories, and testing for microbial contamination of liquids in restaurants and industrial food-processing facilities. A sample can be prepared and analyzed by use of this process and apparatus within minutes, whereas an equivalent analysis performed by use of other processes and equipment can often take hours to days. The process begins with the conjugation of near-infrared-fluorescent dyes to antibodies that are specific to a particular protein. Initially, the research has focused on using near-infrared dyes to detect antigens or associated proteins in solution, which has proven successful vs. microbial cells, and streamlining the technique in use for surface protein detection on microbes would theoretically render similar results. However, it is noted that additional work is needed to transition protein-based techniques to microbial cell detection. Consequently, multiple such dye/antibody pairs could be prepared to enable detection of multiple selected microbial species, using a different dye for each species. When excited by near-infrared light of a suitable wavelength, each dye fluoresces at a unique longer wavelength that differs from those of the other dyes, enabling discrimination among the various species. In initial tests, the dye/antibody pairs are mixed into a solution suspected of containing the selected proteins, causing the binding of the dye/antibody pairs to such suspect proteins that may be present. The solution is then run through a microcentrifuge that includes a membrane that acts as a filter in that it retains the dye/antibody/protein complexes while allowing any remaining unbound dye/antibody pairs to flow away. The retained dye/antibody/protein complexes are transferred to a cuvette, wherein they are irradiated with light from a miniature near-infrared laser delivered via a fiber-optic cable. The resulting fluorescence from the dye(s) is measured by use of a miniature spectrometer, the output of which is digitized, then analyzed by laptop computer. The software running in the computer identifies the protein species by the wavelengths of their spectral peaks and determines the amounts of the proteins, and thus, one day, microbes of the various species from the intensities of the peaks. The abovementioned removal of the unbound dye/antibody pairs during centrifugation prevents false positive readings. The process proves successful in detecting proteins in solution and thus can now be employed for use in microbe detection.

  12. Nucleation precursors in protein crystallization

    PubMed Central

    Vekilov, Peter G.; Vorontsova, Maria A.

    2014-01-01

    Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Here, methods of detection and characterization of the precursors are reviewed: dynamic light scattering, atomic force microscopy and Brownian microscopy. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein-dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometres in size, the cluster population occupies from 10−7 to 10−3 of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e. undersaturated, solutions. The clusters exist owing to the conformation flexibility of the protein molecules, leading to exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. Investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics. PMID:24598910

  13. The Biological Value of Protein.

    PubMed

    Moore, Daniel R; Soeters, Peter B

    2015-01-01

    The biological value of a protein extends beyond its amino-acid composition and digestibility, and can be influenced by additional factors in a tissue-specific manner. In healthy individuals, the slow appearance of dietary amino acids in the portal vein and subsequently in the systemic circulation in response to bolus protein ingestion improves nitrogen retention and decreases urea production. This is promoted by slow absorption when only protein is ingested (e.g. casein). When a full meal is ingested, whey achieves slightly better nitrogen retention than soy or casein, which is very likely achieved by its high content of essential amino acids (especially leucine). Elderly people exhibit 'anabolic resistance' implying that more protein is required to reach maximal rates of muscle protein synthesis compared to young individuals. Protein utilization in inflammatory or traumatic conditions increases substantially in the splanchnic tissues containing most of the immune system, and in wounds and growing tissues. This happens especially in the elderly, which often suffer from chronic inflammatory activity due to disease, physical inactivity and/or the aging process itself. Consequently, the proportion of protein absorbed in the gut and utilized for muscle protein synthesis decreases in these situations. This compromises dietary-protein-induced stimulation of muscle protein synthesis and ultimately results in increased requirements of protein (∼1.2 g/kg body weight/day) to limit gradual muscle loss with age. To optimally preserve muscle mass, physical exercise is required. Exercise has both direct effects on muscle mass and health, and indirect effects by increasing the utilization of dietary protein (especially whey) to enhance rates of muscle protein synthesis. PMID:26545252

  14. Novel computational methods to design protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Alice Qinhua; O'Hern, Corey; Regan, Lynne

    2014-03-01

    Despite the abundance of structural data, we still cannot accurately predict the structural and energetic changes resulting from mutations at protein interfaces. The inadequacy of current computational approaches to the analysis and design of protein-protein interactions has hampered the development of novel therapeutic and diagnostic agents. In this work, we apply a simple physical model that includes only a minimal set of geometrical constraints, excluded volume, and attractive van der Waals interactions to 1) rank the binding affinity of mutants of tetratricopeptide repeat proteins with their cognate peptides, 2) rank the energetics of binding of small designed proteins to the hydrophobic stem region of the influenza hemagglutinin protein, and 3) predict the stability of T4 lysozyme and staphylococcal nuclease mutants. This work will not only lead to a fundamental understanding of protein-protein interactions, but also to the development of efficient computational methods to rationally design protein interfaces with tunable specificity and affinity, and numerous applications in biomedicine. NSF DMR-1006537, PHY-1019147, Raymond and Beverly Sackler Institute for Biological, Physical and Engineering Sciences, and Howard Hughes Medical Institute.

  15. Modular protein switches derived from antibody mimetic proteins.

    PubMed

    Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M

    2016-02-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms. PMID:26637825

  16. Exploring the repeat protein universe through computational protein design.

    PubMed

    Brunette, T J; Parmeggiani, Fabio; Huang, Po-Ssu; Bhabha, Gira; Ekiert, Damian C; Tsutakawa, Susan E; Hura, Greg L; Tainer, John A; Baker, David

    2015-12-24

    A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix-loop-helix-loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 °C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 Å. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering. PMID:26675729

  17. Water-protein interactions from high-resolution protein crystallography.

    PubMed

    Nakasako, Masayoshi

    2004-08-29

    To understand the role of water in life at molecular and atomic levels, structures and interactions at the protein-water interface have been investigated by cryogenic X-ray crystallography. The method enabled a much clearer visualization of definite hydration sites on the protein surface than at ambient temperature. Using the structural models of proteins, including several hydration water molecules, the characteristics in hydration structures were systematically analysed for the amount, the interaction geometries between water molecules and proteins, and the local and global distribution of water molecules on the surface of proteins. The tetrahedral hydrogen-bond geometry of water molecules in bulk solvent was retained at the interface and enabled the extension of a three-dimensional chain connection of a hydrogen-bond network among hydration water molecules and polar protein atoms over the entire surface of proteins. Networks of hydrogen bonds were quite flexible to accommodate and/or to regulate the conformational changes of proteins such as domain motions. The present experimental results may have profound implications in the understanding of the physico-chemical principles governing the dynamics of proteins in an aqueous environment and a discussion of why water is essential to life at a molecular level. PMID:15306376

  18. Gel protein capillary extraction apparatus. electronic protein transfer.

    PubMed

    Cooper, Jonathan W; Gao, Jun; Lee, Cheng S

    2002-03-01

    A gel protein capillary extraction apparatus is developed and demonstrated for its rapid and effective transfer of SDS-protein complexes from polyacrylamide gel to a fused-silica capillary. The small dimensions of capillary columns permit the application of high voltages for achieving rapid and effective transfer of gel proteins. Furthermore, the fused-silica capillaries are internally coated with polyacrylamide for the elimination of electroosmotic pumping and protein adsorption onto the capillary wall. The extracted proteins are present in a highly concentrated solution plug as the result of field amplification and sample stacking during the extraction process. Three model proteins, including cytochrome c (14 kDa), ovalbumin (45 kDa), and beta-galactosidase (116 kDa), are visualized using coomassie blue staining and electrophoretically extracted from the gels with protein loading as low as 50 ng. The SDS-cytochrome c complexes extracted from a 50-ng protein loading are concentrated in a 30-nL solution plug inside the capillary with an estimated concentration of 0. 1 mg/mL or 10(-5) M. The capillary format allows the straightforward integration of a miniaturized trypsin-membrane reactor for on-line proteolytic digestion and ESI-MS analysis for protein/peptide identification. PMID:11924982

  19. Protein modification in aging.

    PubMed

    Stadtman, E R; Starke-Reed, P E; Oliver, C N; Carney, J M; Floyd, R A

    1992-01-01

    During aging a number of enzymes accumulate as catalytically inactive or less active forms. The age-related changes in catalytic activity are due in part to reactions of the protein with "active" oxygen species such as ozone, singlet oxygen, or with oxygen free radicals as are produced during exposure to ionizing radiation or to metal ion catalyzed oxidation (MCO) systems. The levels of oxidized proteins in cultured human fibroblasts from individuals of various ages and in liver and brain extracts of rats of different ages increase progressively with age, and in old rats can represent 30-50% of the total cellular protein. The age-related increase in oxidized protein in rat liver and brain tissue is accompanied by a loss of glutamine synthetase (GS) and glucose-6-P dehydrogenase (G-6-PDH) activities, and to a decrease in the level of cytosolic neutral protease activity which is responsible for the degradation of oxidized (denatured) protein. Of particular significance are the results of experiments showing that similar age-related changes occur in the gerbil brain and that these changes are accompanied by a loss of short-term memory as measured by the radial arm maze technique. Chronic treatment (intraperitoneal injections) of old animals with the free radical spin-trap reagent, N-tert-butyl-alpha-phenylnitrone (PBN) resulted in normalization of the several biochemical parameters to those characteristic of the young animals; coincidentally, the short-term memory index was restored to the young animal values. These results provide the first evidence that there is likely a linkage between the age-dependent accumulation of oxidized enzymes and the loss of physiological function. PMID:1360283

  20. Are protein-protein interfaces special regions on a protein's surface?

    NASA Astrophysics Data System (ADS)

    Tonddast-Navaei, Sam; Skolnick, Jeffrey

    2015-12-01

    Protein-protein interactions (PPIs) are involved in many cellular processes. Experimentally obtained protein quaternary structures provide the location of protein-protein interfaces, the surface region of a given protein that interacts with another. These regions are termed half-interfaces (HIs). Canonical HIs cover roughly one third of a protein's surface and were found to have more hydrophobic residues than the non-interface surface region. In addition, the classical view of protein HIs was that there are a few (if not one) HIs per protein that are structurally and chemically unique. However, on average, a given protein interacts with at least a dozen others. This raises the question of whether they use the same or other HIs. By copying HIs from monomers with the same folds in solved quaternary structures, we introduce the concept of geometric HIs (HIs whose geometry has a significant match to other known interfaces) and show that on average they cover three quarters of a protein's surface. We then demonstrate that in some cases, these geometric HI could result in real physical interactions (which may or may not be biologically relevant). The composition of the new HIs is on average more charged compared to most known ones, suggesting that the current protein interface database is biased towards more hydrophobic, possibly more obligate, complexes. Finally, our results provide evidence for interface fuzziness and PPI promiscuity. Thus, the classical view of unique, well defined HIs needs to be revisited as HIs are another example of coarse-graining that is used by nature.

  1. Length, protein protein interactions, and complexity

    NASA Astrophysics Data System (ADS)

    Tan, Taison; Frenkel, Daan; Gupta, Vishal; Deem, Michael W.

    2005-05-01

    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein-protein interactions has driven the selection of longer proteins, as they are more able to distinguish among a larger number of distinct interactions due to their greater average surface area. Annotated protein sequences available from the SWISS-PROT database were analyzed for 13 eukaryotes, eight bacteria, and two archaea species. The number of subcellular locations to which each protein is associated is used as a measure of the number of interactions to which a protein participates. Two databases of yeast protein-protein interactions were used as another measure of the number of interactions to which each S. cerevisiae protein participates. Protein length is shown to correlate with both number of subcellular locations to which a protein is associated and number of interactions as measured by yeast two-hybrid experiments. Protein length is also shown to correlate with the probability that the protein is encoded by an essential gene. Interestingly, average protein length and number of subcellular locations are not significantly different between all human proteins and protein targets of known, marketed drugs. Increased protein length appears to be a significant mechanism by which the increasing complexity of protein-protein interaction networks is accommodated within the natural evolution of species. Consideration of protein length may be a valuable tool in drug design, one that predicts different strategies for inhibiting interactions in aberrant and normal pathways.

  2. Protein Solubilization: A Novel Approach

    PubMed Central

    Johnson, David H.; Wilson, W. William; DeLucas, Lawrence J.

    2014-01-01

    Formulation development presents significant challenges with respect to protein therapeutics. One component of these challenges is to attain high protein solubility (> 50 mg/ml for immunoglobulins) with minimal aggregation. Protein-protein interactions contribute to aggregation and the integral sum of these interactions can be quantified by a thermodynamic parameter known as the osmotic second virial coefficient (B-value). The method presented here utilizes high-throughput measurement of B-values to identify the influence of additives on protein-protein interactions. The experiment design uses three tiers of screens to arrive at final solution conditions that improve protein solubility. The first screen identifies individual additives that reduce protein interactions. A second set of B-values are then measured for different combinations of these additives via an incomplete factorial screen. Results from the incomplete factorial screen are used to train an artificial neural network (ANN). The “trained” ANN enables predictions of B-values for more than 4,000 formulations that include additive combinations not previously experimentally measured. Validation steps are incorporated throughout the screening process to ensure that 1) the protein’s thermal and aggregation stability characteristics are not reduced and 2) the artificial neural network predictive model is accurate. The ability of this approach to reduce aggregation and increase solubility is demonstrated using an IgG protein supplied by Minerva Biotechnologies, Inc. PMID:25270058

  3. Molecular dynamics of membrane proteins.

    SciTech Connect

    Woolf, Thomas B.; Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  4. TGF-beta signaling proteins and the Protein Ontology

    PubMed Central

    Arighi, Cecilia N; Liu, Hongfang; Natale, Darren A; Barker, Winona C; Drabkin, Harold; Blake, Judith A; Smith, Barry; Wu, Cathy H

    2009-01-01

    Background The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or post-translational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. Results PRO is manually curated on the basis of PrePRO, an automatically generated file with content derived from standard protein data sources. Manual curation ensures that the treatment of the protein classes and the internal and external relationships conform to the PRO framework. The current release of PRO is based upon experimental data from mouse and human proteins wherein equivalent protein forms are represented by single terms. In addition to the PRO ontology, the annotation of PRO terms is released as a separate PRO association file, which contains, for each given PRO term, an annotation from the experimentally characterized sub-types as well as the corresponding database identifiers and sequence coordinates. The annotations are added in the form of relationship to other ontologies. Whenever possible, equivalent forms in other species are listed to facilitate cross-species comparison. Splice and allelic variants, gene fusion products and modified protein forms are all represented as entities in the ontology. Therefore, PRO provides for the representation of protein entities and a resource for describing the associated data. This makes PRO useful both for proteomics studies where isoforms and modified forms must be differentiated, and for studies of biological pathways, where representations need to take account of the different ways in which the cascade of events may depend on specific protein modifications. Conclusion PRO provides a framework for the formal representation of protein classes and protein forms in the OBO Foundry. It is designed to enable data retrieval and integration and machine reasoning at the molecular level of proteins, thereby facilitating cross-species comparisons, pathway analysis, disease modeling and the generation of new hypotheses. PMID:19426460

  5. Analysis of phosphorylation-dependent protein-protein interactions using a bacterial two-hybrid system.

    PubMed

    Shaywitz, Adam J; Dove, Simon L; Greenberg, Michael E; Hochschild, Ann

    2002-07-23

    Phosphorylation-dependent protein-protein interactions provide the foundation for a multitude of intracellular signal transduction pathways. One of the goals of signal transduction research is to more precisely understand the nature of these phosphorylation-dependent interactions. Here, we describe a bacterial two-hybrid assay that allows for the rapid, efficient analysis of phosphorylation-dependent protein-protein interactions. In this system, the interacting protein domains are provided as fusion proteins in Escherichia coli. cells that contain a eukaryotic kinase. Specific phosphorylation of one of the fused protein domains results in a protein-protein interaction that can be detected as a change in the expression of a reporter gene. We also describe how this system can be modified to permit the use of cDNA libraries to identify either novel binding partners for a phosphorylated substrate or novel kinases that can induce a specific protein-protein interaction. PMID:12138210

  6. Prediction of Protein-Protein Interaction Sites Based on Naive Bayes Classifier

    PubMed Central

    Geng, Haijiang; Lu, Tao; Lin, Xiao; Liu, Yu; Yan, Fangrong

    2015-01-01

    Protein functions through interactions with other proteins and biomolecules and these interactions occur on the so-called interface residues of the protein sequences. Identifying interface residues makes us better understand the biological mechanism of protein interaction. Meanwhile, information about the interface residues contributes to the understanding of metabolic, signal transduction networks and indicates directions in drug designing. In recent years, researchers have focused on developing new computational methods for predicting protein interface residues. Here we creatively used a 181-dimension protein sequence feature vector as input to the Naive Bayes Classifier- (NBC-) based method to predict interaction sites in protein-protein complexes interaction. The prediction of interaction sites in protein interactions is regarded as an amino acid residue binary classification problem by applying NBC with protein sequence features. Independent test results suggested that Naive Bayes Classifier-based method with the protein sequence features as input vectors performed well. PMID:26697220

  7. Potential Interference of Protein-Protein Interactions by Graphyne.

    PubMed

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2016-03-10

    Graphyne has attracted tremendous attention recently due to its many potentially superior properties relative to those of graphene. Although extensive efforts have been devoted to explore the applicability of graphyne as an alternative nanomaterial for state-of-the-art nanotechnology (including biomedical applications), knowledge regarding its possible adverse effects to biological cells is still lacking. Here, using large-scale all-atom molecular dynamics simulations, we investigate the potential toxicity of graphyne by interfering a protein-protein interaction (ppI). We found that graphyne could indeed disrupt the ppIs by cutting through the protein-protein interface and separating the protein complex into noncontacting ones, due to graphyne's dispersive and hydrophobic interaction with the hydrophobic residues residing at the dimer interface. Our results help to elucidate the mechanism of interaction between graphyne and ppI networks within a biological cell and provide insights for its hazard reduction. PMID:26885561

  8. Protein mediated membrane adhesion

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Mahadevan, L.

    2015-05-01

    Adhesion in the context of mechanical attachment, signaling, and movement in cellular dynamics is mediated by the kinetic interactions between membrane-embedded proteins in an aqueous environment. Here, we present a minimal theoretical framework for the dynamics of membrane adhesion that accounts for the kinetics of protein binding, the elastic deformation of the membrane, and the hydrodynamics of squeeze flow in the membrane gap. We analyze the resulting equations using scaling estimates to characterize the spatiotemporal features of the adhesive patterning and corroborate them using numerical simulations. In addition to characterizing aspects of cellular dynamics, our results might also be applicable to a range of phenomena in physical chemistry and materials science where flow, deformation, and kinetics are coupled to each other in slender geometries.

  9. Photolytic Crosslinking to Probe Protein-Protein and Protein-Matrix Interactions In Lyophilized Powders

    PubMed Central

    Iyer, Lavanya K.; Moorthy, Balakrishnan S.; Topp, Elizabeth M.

    2015-01-01

    Protein structure and local environment in lyophilized formulations were probed using high-resolution solid-state photolytic crosslinking with mass spectrometric analysis (ssPC-MS). In order to characterize structure and microenvironment, protein-protein, protein-excipient and protein-water interactions in lyophilized powders were identified. Myoglobin (Mb) was derivatized in solution with the heterobifunctional probe succinimidyl 4,4’-azipentanoate (SDA) and the structural integrity of the labeled protein (Mb-SDA) confirmed using CD spectroscopy and liquid chromatography / mass spectrometry (LC-MS). Mb-SDA was then formulated with and without excipients (raffinose, guanidine hydrochloride (Gdn HCl)) and lyophilized. The freeze-dried powder was irradiated with ultraviolet light at 365 nm for 30 min to produce crosslinked adducts that were analyzed at the intact protein level and after trypsin digestion. SDA-labeling produced Mb carrying up to 5 labels, as detected by LC-MS. Following lyophilization and irradiation, crosslinked peptide-peptide, peptide-water and peptide-raffinose adducts were detected. The exposure of Mb side chains to the matrix was quantified based on the number of different peptide-peptide, peptide-water and peptide-excipient adducts detected. In the absence of excipients, peptide-peptide adducts involving the CD, DE and EF loops and helix H were common. In the raffinose formulation, peptide-peptide adducts were more distributed throughout the molecule. The Gdn HCl formulation showed more protein-protein and protein-water adducts than the other formulations, consistent with protein unfolding and increased matrix interactions. The results demonstrate that ssPC-MS can be used to distinguish excipient effects and characterize the local protein environment in lyophilized formulations with high resolution. PMID:26204425

  10. Proteins of Excitable Membranes

    PubMed Central

    Nachmansohn, David

    1969-01-01

    Excitable membranes have the special ability of changing rapidly and reversibly their permeability to ions, thereby controlling the ion movements that carry the electric currents propagating nerve impulses. Acetylcholine (ACh) is the specific signal which is released by excitation and is recognized by a specific protein, the ACh-receptor; it induces a conformational change, triggering off a sequence of reactions resulting in increased permeability. The hydrolysis of ACh by ACh-esterase restores the barrier to ions. The enzymes hydrolyzing and forming ACh and the receptor protein are present in the various types of excitable membranes. Properties of the two proteins directly associated with electrical activity, receptor and esterase, will be described in this and subsequent lectures. ACh-esterase has been shown to be located within the excitable membranes. Potent enzyme inhibitors block electrical activity demonstrating the essential role in this function. The enzyme has been recently crystallized and some protein properties will be described. The monocellular electroplax preparation offers a uniquely favorable material for analyzing the properties of the ACh-receptor and its relation to function. The essential role of the receptor in electrical activity has been demonstrated with specific receptor inhibitors. Recent data show the basically similar role of ACh in the axonal and junctional membranes; the differences of electrical events and pharmacological actions are due to variations of shape, structural organization, and environment. PMID:19873642

  11. Protein-Polymer Functionalized Nanopatterned Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Akcora, Pinar

    2015-03-01

    Understanding and controlling the protein interactions with surfaces for biosensors and biomedical implants is a fundamental problem for biocompatible nanomaterial design. Proteins attached in ordered nanopores can exhibit superior biological activities compared to smooth microstructured surfaces. We developed heterogeneous and nanopatterned surfaces decorated with polymer brushes and proteins to control protein fates through elasticity. The heterogeneity of surfaces is controlled with well-defined chemistry, pattern size and geometry, stiffness of polymers and protein types. We will present our recent nanoindentation results on nanopatterned and biofunctionalized flat surfaces and discuss the pattern size effect on protein activity, hence conformation.

  12. Non-enzymatic protein acetylation detected by NAPPA protein arrays*

    PubMed Central

    Olia, Adam S.; Barker, Kristi; McCullough, Cheryl E.; Tang, Hsin-Yao; Speicher, David W.; Qiu, Ji; LaBaer, Joshua; Marmorstein, Ronen

    2015-01-01

    Acetylation is a post-translational modification that occurs on thousands of proteins located in many cellular organelles. This process mediates many protein functions and modulates diverse biological processes. In mammalian cells, where acetyl-CoA is the primary acetyl donor, acetylation in the mitochondria is thought to occur by chemical means due to the relatively high concentration of acetyl-CoA located in this organelle. In contrast, acetylation outside of the mitochondria is thought to be mediated predominantly by acetyltransferase enzymes. Here we address the possibility that non-enzymatic chemical acetylation outside of the mitochondria may be more common than previously appreciated. We employed the Nucleic Acid Programmable Protein Array platform to perform an unbiased screen for human proteins that undergo chemical acetylation, which resulted in the identification of a multitude of proteins with diverse functions and cellular localization. Mass spectrometry analysis revealed that basic residues typically precede the acetylated lysine in the −7 to −3 position, and we show by mutagenesis that these basic residues contribute to chemical acetylation capacity. We propose that these basic residues lower the pKa of the substrate lysine for efficient chemical acetylation. Many of the identified proteins reside outside of the mitochondria, and have been previously demonstrated to be acetylated in vivo. As such, our studies demonstrate that chemical acetylation occurs more broadly throughout the eukaryotic cell than previously appreciated, and suggests that this post-translational protein modification may have more diverse roles in protein function and pathway regulation. PMID:26083674

  13. Nonenzymatic Protein Acetylation Detected by NAPPA Protein Arrays.

    PubMed

    Olia, Adam S; Barker, Kristi; McCullough, Cheryl E; Tang, Hsin-Yao; Speicher, David W; Qiu, Ji; LaBaer, Joshua; Marmorstein, Ronen

    2015-09-18

    Acetylation is a post-translational modification that occurs on thousands of proteins located in many cellular organelles. This process mediates many protein functions and modulates diverse biological processes. In mammalian cells, where acetyl-CoA is the primary acetyl donor, acetylation in the mitochondria is thought to occur by chemical means due to the relatively high concentration of acetyl-CoA located in this organelle. In contrast, acetylation outside of the mitochondria is thought to be mediated predominantly by acetyltransferase enzymes. Here, we address the possibility that nonenzymatic chemical acetylation outside of the mitochondria may be more common than previously appreciated. We employed the Nucleic Acid Programmable Protein Array platform to perform an unbiased screen for human proteins that undergo chemical acetylation, which resulted in the identification of a multitude of proteins with diverse functions and cellular localization. Mass spectrometry analysis revealed that basic residues typically precede the acetylated lysine in the -7 to -3 position, and we show by mutagenesis that these basic residues contribute to chemical acetylation capacity. We propose that these basic residues lower the pKa of the substrate lysine for efficient chemical acetylation. Many of the identified proteins reside outside of the mitochondria and have been previously demonstrated to be acetylated in vivo. As such, our studies demonstrate that chemical acetylation occurs more broadly throughout the eukaryotic cell than previously appreciated and suggests that this post-translational protein modification may have more diverse roles in protein function and pathway regulation. PMID:26083674

  14. Green fluorescent protein as a reporter of prion protein folding

    PubMed Central

    Vasiljevic, Snezana; Ren, Junyuan; Yao, YongXiu; Dalton, Kevin; Adamson, Catherine S; Jones, Ian M

    2006-01-01

    Background The amino terminal half of the cellular prion protein PrPc is implicated in both the binding of copper ions and the conformational changes that lead to disease but has no defined structure. However, as some structure is likely to exist we have investigated the use of an established protein refolding technology, fusion to green fluorescence protein (GFP), as a method to examine the refolding of the amino terminal domain of mouse prion protein. Results Fusion proteins of PrPc and GFP were expressed at high level in E.coli and could be purified to near homogeneity as insoluble inclusion bodies. Following denaturation, proteins were diluted into a refolding buffer whereupon GFP fluorescence recovered with time. Using several truncations of PrPc the rate of refolding was shown to depend on the prion sequence expressed. In a variation of the format, direct observation in E.coli, mutations introduced randomly in the PrPc protein sequence that affected folding could be selected directly by recovery of GFP fluorescence. Conclusion Use of GFP as a measure of refolding of PrPc fusion proteins in vitro and in vivo proved informative. Refolding in vitro suggested a local structure within the amino terminal domain while direct selection via fluorescence showed that as little as one amino acid change could significantly alter folding. These assay formats, not previously used to study PrP folding, may be generally useful for investigating PrPc structure and PrPc-ligand interaction. PMID:16939649

  15. Incompatibility of mixing of proteins in adsorbed binary protein films at the air-water interface.

    PubMed

    Razumovsky, L; Damodaran, S

    2001-06-01

    Competitive adsorption of proteins from several binary protein solutions to the air-water interface has been studied. With a few exceptions, the equilibrium composition of the saturated monolayer of mixed protein films at various bulk concentration ratios did not follow a Langmuir-type competitive adsorption model. The deviation from ideal behavior results from incompatibility of mixing of proteins in the film at the air-water interface. This immiscibility alters the ratio of the binding affinity of the proteins in a protein 1/protein 2/water ternary film compared to that in a protein 1/water and protein 2/water binary film. A method to determine the extent of incompatibility between two proteins in a mixed protein film has been developed. It is shown that the incompatibility index derived for 19 protein 1/water and protein 2/water systems studied show a linear relationship with the absolute difference between Flory-Huggins protein-solvent interaction parameters, that is, /chi(1s) - chi(2)/, of the constituent proteins. On the basis of the evidence, it is theorized that, because of incompatibility, proteins in a mixed protein film at interfaces may undergo two-dimensional phase separation. PMID:11410012

  16. Text Mining for Protein Docking

    PubMed Central

    Badal, Varsha D.; Kundrotas, Petras J.; Vakser, Ilya A.

    2015-01-01

    The rapidly growing amount of publicly available information from biomedical research is readily accessible on the Internet, providing a powerful resource for predictive biomolecular modeling. The accumulated data on experimentally determined structures transformed structure prediction of proteins and protein complexes. Instead of exploring the enormous search space, predictive tools can simply proceed to the solution based on similarity to the existing, previously determined structures. A similar major paradigm shift is emerging due to the rapidly expanding amount of information, other than experimentally determined structures, which still can be used as constraints in biomolecular structure prediction. Automated text mining has been widely used in recreating protein interaction networks, as well as in detecting small ligand binding sites on protein structures. Combining and expanding these two well-developed areas of research, we applied the text mining to structural modeling of protein-protein complexes (protein docking). Protein docking can be significantly improved when constraints on the docking mode are available. We developed a procedure that retrieves published abstracts on a specific protein-protein interaction and extracts information relevant to docking. The procedure was assessed on protein complexes from Dockground (http://dockground.compbio.ku.edu). The results show that correct information on binding residues can be extracted for about half of the complexes. The amount of irrelevant information was reduced by conceptual analysis of a subset of the retrieved abstracts, based on the bag-of-words (features) approach. Support Vector Machine models were trained and validated on the subset. The remaining abstracts were filtered by the best-performing models, which decreased the irrelevant information for ~ 25% complexes in the dataset. The extracted constraints were incorporated in the docking protocol and tested on the Dockground unbound benchmark set, significantly increasing the docking success rate. PMID:26650466

  17. Health Benefits of Texturized Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey proteins are an important class of food ingredients used in many functional foods to boost protein content. Using the extrusion texturization process to partially open the native globular structures of whey proteins changed their conformation to the molten globular state, resulting in a new cla...

  18. Mercury-binding proteins of Mytilus edulis

    SciTech Connect

    Roesijadi, G.; Morris, J.E.; Calabrese, A.

    1981-11-01

    Mytilus edulis possesses low molecular weight, mercury-binding proteins. The predominant protein isolated from gill tissue is enriched in cysteinyl residues (8%) and possesses an amino acid composition similar to cadmium-binding proteins of mussels and oysters. Continuous exposure of mussels to 5 ..mu..g/l mercury results in spillover of mercury from these proteins to high molecular weight proteins. Antibodies to these proteins have been isolated, and development of immunoassays is presently underway. Preliminary studies to determine whether exposure of adult mussels to mercury will result in induction of mercury-binding proteins in offspring suggest that such proteins occur in larvae although additional studies are indicated for a conclusive demonstration.

  19. Assessment of the reliability of protein-protein interactions and protein function prediction.

    PubMed

    Deng, Minghua; Sun, Fengzhu; Chen, Ting

    2003-01-01

    As more and more high-throughput protein-protein interaction data are collected, the task of estimating the reliability of different data sets becomes increasingly important. In this paper, we present our study of two groups of protein-protein interaction data, the physical interaction data and the protein complex data, and estimate the reliability of these data sets using three different measurements: (1) the distribution of gene expression correlation coefficients, (2) the reliability based on gene expression correlation coefficients, and (3) the accuracy of protein function predictions. We develop a maximum likelihood method to estimate the reliability of protein interaction data sets according to the distribution of correlation coefficients of gene expression profiles of putative interacting protein pairs. The results of the three measurements are consistent with each other. The MIPS protein complex data have the highest mean gene expression correlation coefficients (0.256) and the highest accuracy in predicting protein functions (70% sensitivity and specificity), while Ito's Yeast two-hybrid data have the lowest mean (0.041) and the lowest accuracy (15% sensitivity and specificity). Uetz's data are more reliable than Ito's data in all three measurements, and the TAP protein complex data are more reliable than the HMS-PCI data in all three measurements as well. The complex data sets generally perform better in function predictions than do the physical interaction data sets. Proteins in complexes are shown to be more highly correlated in gene expression. The results confirm that the components of a protein complex can be assigned to functions that the complex carries out within a cell. There are three interaction data sets different from the above two groups: the genetic interaction data, the in-silico data and the syn-express data. Their capability of predicting protein functions generally falls between that of the Y2H data and that of the MIPS protein complex data. The supplementary information is available at the following Web site: http://www-hto.usc.edu/-msms/AssessInteraction/. PMID:12603024

  20. Shotgun protein sequencing.

    SciTech Connect

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  1. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  2. Contribution of sarcoplasmic proteins to myofibrillar proteins gelation.

    PubMed

    Jafarpour, Ali; Gorczyca, Elisabeth M

    2012-02-01

    Surimi, a refined protein extract, is produced by solubilizing myofibrillar proteins during the comminuting and salting stages of manufacturing. The resulting paste gels on heating to produce kamaboko or a range of analog shellfish such as crab claw, filament sticks, fish mushroom, and so on. The myosin molecule is the major myofibrillar protein in gelation. It is believed that washing steps during the traditional surimi process play an important role in enhancing the gel properties of the resultant kamaboko by removing water-soluble (sarcoplasmic, Sp-P) proteins. By contrast, some researchers claim that retaining Sp-P or adding it into the surimi gel network not only does not interfere with the action of myofibrillar proteins during the sol-gel transition step but also improves the gel characteristics of the resultant kamaboko. It seems that retention of Sp-P or their addition into raw surimi does enhance the textural properties of kamaboko gel perhaps by functioning as a proteinase inhibitor, particularly against trypsin and trypsin-like proteinases but this depends on the type of applied surimi process. Among different types of Sp-P, it has been claimed that some proteins such as endogenous transglutaminase (TGase) play a more important role than other Sp-P in bond formation, by catalyzing the cross-linking of myosin heavy chain (MHC) molecules during low-temperature setting of surimi, resulting a more elastic kamaboko gel. PMID:22224956

  3. Protein compressibility, dynamics, and pressure.

    PubMed

    Kharakoz, D P

    2000-07-01

    The relationship between the elastic and dynamic properties of native globular proteins is considered on the basis of a wide set of reported experimental data. The formation of a small cavity, capable of accommodating water, in the protein interior is associated with the elastic deformation, whose contribution to the free energy considerably exceeds the heat motion energy. Mechanically, the protein molecule is a highly nonlinear system. This means that its compressibility sharply decreases upon compression. The mechanical nonlinearity results in the following consequences related to the intramolecular dynamics of proteins: 1) The sign of the electrostriction effect in the protein matrix is opposite that observed in liquids-this is an additional indication that protein behaves like a solid particle. 2) The diffusion of an ion from the solvent to the interior of a protein should depend on pressure nonmonotonically: at low pressure diffusion is suppressed, while at high pressure it is enhanced. Such behavior is expected to display itself in any dynamic process depending on ion diffusion. Qualitative and quantitative expectations ensuing from the mechanical properties are concordant with the available experimental data on hydrogen exchange in native proteins at ambient and high pressure. PMID:10866977

  4. Calcium-binding proteins in Aplysia neurons.

    PubMed

    Hermann, A; Pauls, T L; Heizmann, C W

    1991-08-01

    1. Calcium (Ca)-binding proteins of neuronal ganglia and of single, identified neurons of the marine mollusk, Aplysia californica, were investigated. Using transblot/45Ca overlays two proteins, at Mr 45,000 and Mr 23,000, with a high Ca-binding ability were found. 2. Western blot analysis revealed that the protein at Mr 45,000 could be separated by 2D-PAGE into proteins with Mr 40,000 and Mr 43,000. The protein at Mr 40,000 immunocross-reacted with antisera directed against parvalbumin and rat calbindin D-28K, indicating a novel Ca-binding protein sharing common antigenic determinants for both proteins. 3. The protein at Mr 23,000 could be separated into a group of proteins with Mr 13,000-20,000 which showed a high degree of similarity to sarcoplasmatic calcium-binding proteins (SCP). 4. We further investigated the protein pattern of single, identified neurons of different electrical activity (bursting, beating, and silent) by 2D-PAGE. Major differences were found in the range of low Mr and low pI, where Ca-binding proteins are generally located. A protein at high concentrations characteristic for silent cells migrated at a position similar to crayfish SCP. 5. The results show that various Ca-binding proteins are characteristic for neurons in the Aplysia nervous system and support the idea that they may effect the electrical behavior of nerve cells. PMID:1751962

  5. Protein Quality Control in the Nucleus

    PubMed Central

    Nielsen, Sofie V.; Poulsen, Esben G.; Rebula, Caio A.; Hartmann-Petersen, Rasmus

    2014-01-01

    In their natural environment, cells are regularly exposed to various stress conditions that may lead to protein misfolding, but also in the absence of stress, misfolded proteins occur as the result of mutations or failures during protein synthesis. Since such partially denatured proteins are prone to aggregate, cells have evolved several elaborate quality control systems to deal with these potentially toxic proteins. First, various molecular chaperones will seize the misfolded protein and either attempt to refold the protein or target it for degradation via the ubiquitin-proteasome system. The degradation of misfolded proteins is clearly compartmentalized, so unique degradation pathways exist for misfolded proteins depending on whether their subcellular localization is ER/secretory, mitochondrial, cytosolic or nuclear. Recent studies, mainly in yeast, have shown that the nucleus appears to be particularly active in protein quality control. Thus, specific ubiquitin-protein ligases located in the nucleus, target not only misfolded nuclear proteins, but also various misfolded cytosolic proteins which are transported to the nucleus prior to their degradation. In comparison, much less is known about these mechanisms in mammalian cells. Here we highlight recent advances in our understanding of nuclear protein quality control, in particular regarding substrate recognition and proteasomal degradation. PMID:25010148

  6. Measurements of Protein Crystal Face Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  7. Identification of candidate residues for interaction of protein S with C4b binding protein and activated protein C.

    PubMed Central

    Greengard, J S; Fernandez, J A; Radtke, K P; Griffin, J H

    1995-01-01

    Protein S is a plasma factor essential for prevention of thrombosis, partly due to its activity as a cofactor for the plasma anticoagulant protease-activated protein C. To expand knowledge about structure-function relationships in homologous protein S molecules, studies of protein S from different species have been performed. Protein S anti-coagulant activity in human, monkey, bovine, and porcine plasma has been inactivated by purified human C4b binding protein (C4BP) with dose-dependence, suggesting that each protein S can bind human C4BP and that only the free form of each is anti-coagulantly active. Purified porcine protein S has a 10-fold higher Kd for human C4BP than has human protein S. Protein S residues 420-434 provide an essential binding site for the negative regulator C4BP. cDNA sequences show that protein S residues 420-434 are highly conserved in all four species with the notable exception of Lys-429-Ile in porcine protein S. Differences between porcine and human protein S, e.g. Lys-429-Ile, Lys-43-Ala, Ser-197-Leu, Ser 199-Phe, Glu-463-Gly, Lys-571-Glu, Asn-602-Ile, Gln-607-Pro, may contribute to the decreased affinity of porcine protein S for human C4BP. Moreover, the species specificity of cofactor activities of various species of protein S is determined for human versus bovine-activated protein C, and these results, combined with sequence comparisons, agree with previous evidence that the thrombin-sensitive region and the first epidermal growth factor domain of protein S, i.e. residues 47-116, are responsible for recognition of activated protein C. Images Figure 1 Figure 3 PMID:7832752

  8. Human Glycolipid Transfer Protein

    PubMed Central

    Li, Xin-Min; Malakhova, Margarita L.; Lin, Xin; Pike, Helen M.; Chung, Taeowan; Molotkovsky, Julian G.; Brown, Rhoderick E.

    2008-01-01

    Glycolipid transfer protein (GLTP) is a soluble 24 kDa protein that selectively accelerates the intermembrane transfer of glycolipids in vitro. Little is known about the GLTP structure and dynamics. Here, we report the cloning of human GLTP and characterize the environment of the three tryptophans (Trps) of the protein using fluorescence spectroscopy. Excitation at 295 nm yielded an emission maximum (λmax) near 347 nm, indicating a relatively polar average environment for emitting Trps. Quenching with acrylamide at physiological ionic strength or with potassium iodide resulted in linear Stern—Volmer plots, suggesting accessibility of emitting Trps to soluble quenchers. Insights into reversible conformational changes accompanying changes in GLTP activity were provided by addition and rapid dilution of urea while monitoring changes in Trp or 1-anilinonaphthalene-8-sulfonic acid fluorescence. Incubation of GLTP with glycolipid liposomes caused a blue shift in the Trp emission maximum but diminished the fluorescence intensity. The blue-shifted emission maximum, centered near 335 nm, persisted after separation of glycolipid liposomes from GLTP, consistent with formation of a GLTP—glycolipid complex at a glycolipid-liganding site containing Trp. The results provide the first insights into human GLTP structural dynamics by fluorescence spectroscopy, including global conformational changes that accompany GLTP folding into an active conformational state as well as more subtle conformational changes that play a role in GLTP-mediated transfer of glycolipids between membranes, and establish a foundation for future studies of membrane rafts using GLTP. PMID:15287756

  9. Evolutionary optimization of protein folding.

    PubMed

    Debès, Cédric; Wang, Minglei; Caetano-Anollés, Gustavo; Gräter, Frauke

    2013-01-01

    Nature has shaped the make up of proteins since their appearance, [Formula: see text]3.8 billion years ago. However, the fundamental drivers of structural change responsible for the extraordinary diversity of proteins have yet to be elucidated. Here we explore if protein evolution affects folding speed. We estimated folding times for the present-day catalog of protein domains directly from their size-modified contact order. These values were mapped onto an evolutionary timeline of domain appearance derived from a phylogenomic analysis of protein domains in 989 fully-sequenced genomes. Our results show a clear overall increase of folding speed during evolution, with known ultra-fast downhill folders appearing rather late in the timeline. Remarkably, folding optimization depends on secondary structure. While alpha-folds showed a tendency to fold faster throughout evolution, beta-folds exhibited a trend of folding time increase during the last [Formula: see text]1.5 billion years that began during the "big bang" of domain combinations. As a consequence, these domain structures are on average slow folders today. Our results suggest that fast and efficient folding of domains shaped the universe of protein structure. This finding supports the hypothesis that optimization of the kinetic and thermodynamic accessibility of the native fold reduces protein aggregation propensities that hamper cellular functions. PMID:23341762

  10. Evolutionary Optimization of Protein Folding

    PubMed Central

    Debès, Cédric; Wang, Minglei; Caetano-Anollés, Gustavo; Gräter, Frauke

    2013-01-01

    Nature has shaped the make up of proteins since their appearance, 3.8 billion years ago. However, the fundamental drivers of structural change responsible for the extraordinary diversity of proteins have yet to be elucidated. Here we explore if protein evolution affects folding speed. We estimated folding times for the present-day catalog of protein domains directly from their size-modified contact order. These values were mapped onto an evolutionary timeline of domain appearance derived from a phylogenomic analysis of protein domains in 989 fully-sequenced genomes. Our results show a clear overall increase of folding speed during evolution, with known ultra-fast downhill folders appearing rather late in the timeline. Remarkably, folding optimization depends on secondary structure. While alpha-folds showed a tendency to fold faster throughout evolution, beta-folds exhibited a trend of folding time increase during the last 1.5 billion years that began during the “big bang” of domain combinations. As a consequence, these domain structures are on average slow folders today. Our results suggest that fast and efficient folding of domains shaped the universe of protein structure. This finding supports the hypothesis that optimization of the kinetic and thermodynamic accessibility of the native fold reduces protein aggregation propensities that hamper cellular functions. PMID:23341762

  11. Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase.

    PubMed

    Li, Sufen; Lu, Lin; Liao, Xiudong; Gao, Tianquan; Wang, Funing; Zhang, Liyang; Xi, Lin; Liu, Songbai; Luo, Xugang

    2016-04-01

    Three experiments were conducted to investigate the effects of inorganic and organic Mn sources on MnSOD mRNA, protein and enzymatic activity and the possible signal pathways. The primary broiler myocardial cells were treated with MnCl2 (I) or one of organic chelates of Mn and amino acids with weak, moderate (M) or strong (S) chelation strength for 12 and 48 h. Cells were preincubated with superoxide radical anions scavenger N-acetylcysteine (NAC) or specific inhibitors for MAPKs and protein tyrosine kinase (PTK) or protein kinase C (PKC) for 30 min before treatments of I and M. The MnSOD mRNA, protein and enzymatic activity, phosphorylated MAPKs or protein kinases activations were examined. The results showed that additions of Mn increased (P < 0.05) MnSOD mRNA levels and M was more effective than I. Additions of Mn elevated (P < 0.05) MnSOD protein levels and enzymatic activities, and no differences were found among I and M. Addition of NAC did not decrease (P > 0.05) Mn-induced MnSOD mRNA and protein levels. None of the three MAPKs was phosphorylated (P > 0.05) by Mn. Additions of Mn decreased (P < 0.05) the PTK activities and increased (P < 0.05) the membrane PKC contents. Inhibitors for PTK or PKC decreased (P < 0.05) Mn-induced MnSOD protein levels. The results suggested that Mn-induced MnSOD mRNA and protein expressions be not related with NAC, and MAPK pathways might not involve in Mn-induced MnSOD mRNA expression. PKC and PTK mediated the Mn-induced MnSOD protein expression. PMID:26857738

  12. The effects of chaperones and the influence of protein assembly on peroxisomal protein import.

    PubMed

    Crookes, W J; Olsen, L J

    1998-07-01

    Peroxisomal proteins are synthesized in the cytoplasm and post-translationally translocated into the organelle. The role of chaperones and protein folding in peroxisomal protein transport is still unclear. Translocation of proteins into mitochondria requires that precursor proteins assume an extended conformation; cytosolic chaperones are thought to help maintain this conformation. In contrast, peroxisomal protein import does not require unfolding of the targeted protein. However, the molecular chaperones Hsp70 and Hsp40 may be important for translocation. We present several lines of evidence that show that plant peroxisomal protein import is enhanced by chaperones. First, peroxisomes isolated from heat-shocked pumpkin seedling tissues exhibited increased protein import relative to control peroxisomes. Second, antibodies raised against wheat germ cytosolic Hsp70 and Escherichia coli Hsp90 inhibited import of the peroxisomal protein isocitrate lyase. To our knowledge, this is the first time that Hsp90 has been directly implicated in a protein transport event. Third, peroxisomal proteins were immunoprecipitated by wheat germ Hsp70 antibodies. We also present results that suggest that the efficiency of peroxisomal protein import is influenced by the structure of the targeted protein; monomeric isocitrate lyase was imported more efficiently than oligomeric isocitrate lyase. Taken together, these data demonstrate that the assembly state of peroxisomal proteins and the chaperones that may mediate those states are both important for efficient peroxisomal protein import. PMID:9642294

  13. Activities of the Sex-lethal protein in RNA binding and protein:protein interactions.

    PubMed Central

    Samuels, M; Deshpande, G; Schedl, P

    1998-01-01

    The Drosophila sex determination gene Sex-lethal (Sxl) controls its own expression, and the expression of downstream target genes such as transformer , by regulating pre-mRNA splicing and mRNA translation. Sxl codes an RNA-binding protein that consists of an N-terminus of approximately 100 amino acids, two 90 amino acid RRM domains, R1 and R2, and an 80 amino acid C-terminus. In the studies reported here we have examined the functional properties of the different Sxl protein domains in RNA binding and in protein:protein interactions. The two RRM domains are responsible for RNA binding. Specificity in the recognition of target RNAs requires both RRM domains, and proteins which consist of the single domains or duplicated domains have anomalous RNA recognition properties. Moreover, the length of the linker between domains can affect RNA recognition properties. Our results indicate that the two RRM domains mediate Sxl:Sxl protein interactions, and that these interactions probably occur both in cis and trans. We speculate that cis interactions between R1 and R2 play a role in RNA recognition by the Sxl protein, while trans interactions stabilize complex formation on target RNAs that contain two or more closely spaced binding sites. Finally, we show that the interaction of Sxl with the snRNP protein Snf is mediated by the R1 RRM domain. PMID:9592147

  14. Computational approaches for detecting protein complexes from protein interaction networks: a survey

    PubMed Central

    2010-01-01

    Background Most proteins form macromolecular complexes to perform their biological functions. However, experimentally determined protein complex data, especially of those involving more than two protein partners, are relatively limited in the current state-of-the-art high-throughput experimental techniques. Nevertheless, many techniques (such as yeast-two-hybrid) have enabled systematic screening of pairwise protein-protein interactions en masse. Thus computational approaches for detecting protein complexes from protein interaction data are useful complements to the limited experimental methods. They can be used together with the experimental methods for mapping the interactions of proteins to understand how different proteins are organized into higher-level substructures to perform various cellular functions. Results Given the abundance of pairwise protein interaction data from high-throughput genome-wide experimental screenings, a protein interaction network can be constructed from protein interaction data by considering individual proteins as the nodes, and the existence of a physical interaction between a pair of proteins as a link. This binary protein interaction graph can then be used for detecting protein complexes using graph clustering techniques. In this paper, we review and evaluate the state-of-the-art techniques for computational detection of protein complexes, and discuss some promising research directions in this field. Conclusions Experimental results with yeast protein interaction data show that the interaction subgraphs discovered by various computational methods matched well with actual protein complexes. In addition, the computational approaches have also improved in performance over the years. Further improvements could be achieved if the quality of the underlying protein interaction data can be considered adequately to minimize the undesirable effects from the irrelevant and noisy sources, and the various biological evidences can be better incorporated into the detection process to maximize the exploitation of the increasing wealth of biological knowledge available. PMID:20158874

  15. HMPAS: Human Membrane Protein Analysis System

    PubMed Central

    2013-01-01

    Background Membrane proteins perform essential roles in diverse cellular functions and are regarded as major pharmaceutical targets. The significance of membrane proteins has led to the developing dozens of resources related with membrane proteins. However, most of these resources are built for specific well-known membrane protein groups, making it difficult to find common and specific features of various membrane protein groups. Methods We collected human membrane proteins from the dispersed resources and predicted novel membrane protein candidates by using ortholog information and our membrane protein classifiers. The membrane proteins were classified according to the type of interaction with the membrane, subcellular localization, and molecular function. We also made new feature dataset to characterize the membrane proteins in various aspects including membrane protein topology, domain, biological process, disease, and drug. Moreover, protein structure and ICD-10-CM based integrated disease and drug information was newly included. To analyze the comprehensive information of membrane proteins, we implemented analysis tools to identify novel sequence and functional features of the classified membrane protein groups and to extract features from protein sequences. Results We constructed HMPAS with 28,509 collected known membrane proteins and 8,076 newly predicted candidates. This system provides integrated information of human membrane proteins individually and in groups organized by 45 subcellular locations and 1,401 molecular functions. As a case study, we identified associations between the membrane proteins and diseases and present that membrane proteins are promising targets for diseases related with nervous system and circulatory system. A web-based interface of this system was constructed to facilitate researchers not only to retrieve organized information of individual proteins but also to use the tools to analyze the membrane proteins. Conclusions HMPAS provides comprehensive information about human membrane proteins including specific features of certain membrane protein groups. In this system, user can acquire the information of individual proteins and specified groups focused on their conserved sequence features, involved cellular processes, and diseases. HMPAS may contribute as a valuable resource for the inference of novel cellular mechanisms and pharmaceutical targets associated with the human membrane proteins. HMPAS is freely available at http://fcode.kaist.ac.kr/hmpas. PMID:24564858

  16. The Geobiochemistry of Methanogen Proteins

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Shock, E.

    2013-12-01

    A principle of geobiochemistry is that adaptation over evolutionary time includes a thermodynamic drive to minimize costs of making biomolecules like proteins and lipids. If so, then biomolecule abundances will reflect, at least in part, their relative stabilities at the conditions imposed by external environments. We tested this hypothesis by comparing relative stabilities of 138 orthologous proteins between a representative lake-sediment methanogen (Methanoculleus marisnigri) and a representative rumen methanogen (Methanospirillum hungatei) at the compositional constraints of their respective environments. Chemical affinities of the proteins were calculated based on pH, temperature, and concentrations of dissolved hydrogen, bicarbonate, ammonia, and hydrogen sulfide, together with standard Gibbs energies of formation of proteins from the elements predicted with a group additivity algorithm for unfolded proteins [1]. Methanogens were chosen as they are chemoautotrophs and their metabolism proceeds at relatively small affinities. Also, they are found in a variety of compositionally varying habitats like rumen, sediments, hydrothermal systems and sewage. The methanogens selected belong to the same order of taxonomy and are closely related. Preliminary results show that a majority of the proteins belonging to the rumen methanogen (66%) are more stable in the rumen environment, while a majority of the proteins belonging to the lake-sediment methanogen (58%) are more stable at sediment conditions. In a separate observation, it was noted that while the complete protein ';proteasome subunit alpha' of another rumen methanogen (Methanobrevibacter smithii) was less stable in its more reducing habitat as compared to a sewage methanogen (Methanothermobacter thermoautotophicus), its first 26 amino acid residues (N terminal) were in fact more stable in its own environment. These 26 residues are reported to be unique as compared to other proteasome proteins and are suggested to be performing a structural role [2]. These findings suggest that adaptation of microbes to their geochemical environment is accompanied by minimization of the energetic costs of protein biosynthesis, which can be tested further by including methanogens in other environments like hot springs, submarine hydrothermal vents and peatlands. Comparative analyses will reveal which proteins and protein regions follow this energy-minimization strategy and which are excluded. It will then be possible to characterize proteins in terms of the extent to which their sequences are influenced by external geochemical forces. 1. Dick, J. M. (2008). Calculation of the relative metastabilities of proteins using the CHNOSZ software package. Geochem. Trans, 9(10). DOI: 10.1186/1467-4866-9-10. 2. Zwickl P., Grziwa A., Puehler G., Dahlmann B., Lottspeich F. and Baumeister W. (1992) Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31, 964-972. DOI: 10.1021/bi00119a004.

  17. Enzymatic protein depalmitoylation by acyl protein thioesterases.

    PubMed

    Lin, David T S; Conibear, Elizabeth

    2015-04-01

    Protein palmitoylation is a dynamic post-translational modification, where the 16-carbon fatty acid, palmitate, is added to cysteines of proteins to modulate protein sorting, targeting and signalling. Palmitate removal from proteins is mediated by acyl protein thioesterases (APTs). Although initially identified as lysophospholipases, increasing evidence suggests APT1 and APT2 are the major APTs that mediate the depalmitoylation of diverse cellular substrates. Here, we describe the conserved functions of APT1 and APT2 across organisms and discuss the possibility that these enzymes are members of a larger family of depalmitoylation enzymes. PMID:25849916

  18. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.

    PubMed

    Chen, Ching-Tai; Peng, Hung-Pin; Jian, Jhih-Wei; Tsai, Keng-Chang; Chang, Jeng-Yih; Yang, Ei-Wen; Chen, Jun-Bo; Ho, Shinn-Ying; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with the physicochemical complementarity features based on the non-covalent interaction data derived from protein interiors. PMID:22701576

  19. Protein-Protein Interaction Site Predictions with Three-Dimensional Probability Distributions of Interacting Atoms on Protein Surfaces

    PubMed Central

    Chen, Ching-Tai; Peng, Hung-Pin; Jian, Jhih-Wei; Tsai, Keng-Chang; Chang, Jeng-Yih; Yang, Ei-Wen; Chen, Jun-Bo; Ho, Shinn-Ying; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with the physicochemical complementarity features based on the non-covalent interaction data derived from protein interiors. PMID:22701576

  20. Localization of protein-binding sites within families of proteins.

    PubMed

    Korkin, Dmitry; Davis, Fred P; Sali, Andrej

    2005-09-01

    We address the question of whether or not the positions of protein-binding sites on homologous protein structures are conserved irrespective of the identities of their binding partners. First, for each domain family in the Structural Classification of Proteins (SCOP), protein-binding sites are extracted from our comprehensive database of structurally defined binary domain interactions (PIBASE). Second, the binding sites within each family are superposed using a structural alignment of its members. Finally, the degree of localization of binding sites within each family is quantified by comparing it with localization expected by chance. We found that 72% of the 1847 SCOP domain families in PIBASE have binding sites with localization values greater than expected by chance. Moreover, 554 (30%) of these families have localizations that are statistically significant (i.e., more than four standard deviations away from the mean expected by chance). In contrast, only 144 (8%) families have significantly low localization. The absence of a significant correlation of the binding site localization with the average sequence and structural conservations in a family suggests that localization can be helpful for describing the functional diversity of protein-protein interactions, complementing measures of sequence and structural conservation. Consideration of the binding site localization may also result in spatial restraints for the modeling of protein assembly structures. PMID:16081657

  1. The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production.

    PubMed

    McMenamin, C; Holt, P G

    1993-09-01

    The immunological basis for atopy is currently ascribed to an inherent bias in the CD4+ T cell response to nonreplicating antigens presented at mucosal surfaces, resulting in dominance of the T helper 2 (Th2) interleukin 4 (IL-4)-producing phenotype, which favors IgE production. In contrast, the "normal" response to such antigens involves a predominance of interferon gamma (IFN-gamma)-producing Th1 clones. This difference has been suggested to be the result of active selection in atopics for Th2 (and hence against Th1) clones at the time of initial antigen presentation. In the study below, we demonstrate that the natural immune response to inhaled protein antigens, particularly in animals expressing the low immunoglobulin E (IgE) responder phenotype, includes a major histocompatibility complex (MHC) class I-restricted CD8+ T cell component, the appearance of which is associated with active suppression of IgE antibody production. Thus, continued exposure of rats to aerosolized ovalbumin (OVA) antigen elicits a transient IgE response, that is terminated by the onset of a state of apparent "tolerance" to further challenge, and this tolerant state is transferable to naive animals with CD8+ T cells. Kinetic studies on in vitro T cell reactivity in these aerosol-exposed rats demonstrated biphasic CD4+ Th2 responses which terminated, together with IgE antibody production, and coincident with the appearance of MHC class I-restricted OVA-specific IFN-gamma-producing CD8+ T cells. However, the latter were not autonomous in vitro and required a source of exogenous IL-2 for initial activation, which in CD(8+)-enriched splenocyte cultures could be provided by small numbers of contaminating OVA-specific CD4+ T cells. This represents the first formal evidence for the induction of an MHC class I-restricted T cell response to natural mucosal exposure to an inert protein antigen, and is consistent with a growing literature demonstrating sensitization of MHC class I-restricted CD8+ T cells by deliberate immunization with soluble proteins. We suggest that crossregulation of MHC class II-restricted CD4+ T cells via cytokine signals generated in parallel CD8+ T cell responses represents a covert and potentially important selection pressure that can shape the nature of host responses to nonreplicating antigens presented at mucosal surfaces. PMID:8102390

  2. Effects of two types of soy protein isolates, native and preheated whey protein isolates on emulsified meat batters prepared at different protein levels.

    PubMed

    Youssef, M K; Barbut, S

    2011-01-01

    The effects of substituting 1.5% of the meat proteins with low gelling soy protein isolate (LGS), high gelling soy protein isolate (HGS), native whey protein isolate (NWP), and preheated whey protein isolate (PWP) were compared at varying levels of proteins (12, 13 and 14%), with all meat control batters prepared with canola oil. Cooking losses were lower for all the non-meat protein treatments compared to the all meat controls. When raising the protein level from 12 to 14%, cooking losses increased in all treatments except for the NWP treatments. Using LGS increased emulsification and resulted in a more stable meat batters at the 13 and 14% protein treatments. Textural profile analysis results showed that elevating protein level increased hardness and cohesiveness. The highest hardness values were obtained for the PWP treatments and the lowest for the HGS, indicating a strong non-meat protein effect on texture modification. Non-meat protein addition resulted in lighter and less red products (i.e., lower red meat content) compared to the all meat controls; color affected by non-meat protein type. Light microscopy revealed that non-meat proteins decreased the frequency of fat globules' agglomeration and protein aggregation. The whey protein preparations and HGS formed distinct "islands" within the meat batters' matrices, which appeared to interact with the meat protein matrix. PMID:20875930

  3. Intramesoporous Silica Structure Differentiating Protein Loading Density

    SciTech Connect

    Wen, Qi; Li, Xiaolin; Chen, Baowei; Yao, Pei; Lei, Chenghong; Liu, Jun

    2012-05-15

    We report that hydrothermal aging temperature had a critical effect on intramesoporous structure of mesoporous silica and thus the intramesoporous structure affected protein loading in the mesoporous silica significantly. For a neutral protein Immunoglobulin G with a Y-like molecular shape, the larger desorption pore size allowed the larger protein loading. For a charged protein glucose oxidase with an elliptical molecular shape, the larger surface area resulted in the larger protein loading. Fluorescence emission spectra from tyrosinyl and tryptophanyl residues of the proteins in mesoporous silicas indicated that the charged protein was electrostatically attached inside the meso