Science.gov

Sample records for sequence backbone composition

  1. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    SciTech Connect

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.; Machius, Mischa; Szyperski, Thomas; Kuhlman, Brian

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helix bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).

  2. Evidence of frequent integration of non-T-DNA vector backbone sequences in transgenic strawberry plant.

    PubMed

    Abdal-Aziz, Samia Abdallah; Pliego-Alfaro, Fernando; Quesada, Miguel A; Mercado, Jos A

    2006-06-01

    We have studied the occurrence of the integration of non-T-DNA sequences in transgenic strawberry plants obtained through Agrobacterium inoculation. DNA from these plants was subjected to PCR amplification of the sequence of the gene trfA, which is located outside the T-DNA. The percentage of trfA-positive plants varied from 40% to 90%, with a mean of 65.7%. Backbone sequences were confirmed by Southern blot analysis. PMID:16935253

  3. AbDesign: An algorithm for combinatorial backbone design guided by natural conformations and sequences.

    PubMed

    Lapidoth, Gideon D; Baran, Dror; Pszolla, Gabriele M; Norn, Christoffer; Alon, Assaf; Tyka, Michael D; Fleishman, Sarel J

    2015-08-01

    Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function--essential to exert control over all polypeptide degrees of freedom--remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in five cases interface sequence identity is above 30%, and in four of those the backbone conformation at the core of the antibody binding surface is within 1 Å root-mean square deviation from the natural antibodies. Designs recapitulate polar interaction networks observed in natural complexes, and amino acid sidechain rigidity at the designed binding surface, which is likely important for affinity and specificity, is high compared to previous design studies. In designed anti-lysozyme antibodies, complementarity-determining regions (CDRs) at the periphery of the interface, such as L1 and H2, show greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, potentially enhancing affinity and specificity. PMID:25670500

  4. Predicting the Tolerated Sequences for Proteins and Protein Interfaces Using RosettaBackrub Flexible Backbone Design

    PubMed Central

    Smith, Colin A.; Kortemme, Tanja

    2011-01-01

    Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s) are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface), interactions between and within parts of the structure (e.g. domains) can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others. PMID:21789164

  5. Comparative experimental investigation on the actuation mechanisms of ionic polymer–metal composites with different backbones and water contents

    SciTech Connect

    Zhu, Zicai; Chang, Longfei; Wang, Yanjie; Chen, Hualing; Asaka, Kinji; Zhao, Hongxia; Li, Dichen

    2014-03-28

    Water-based ionic polymer–metal composites (IPMCs) exhibit complex deformation properties, especially when the water content changes. To explore the general actuation mechanisms, both Nafion and Flemion membranes are used as the polymer backbones. IPMC deformation includes three stages: fast anode deformation, relaxation deformation, and slow anode deformation, which is mainly dependent on the water content and the backbone. When the water content decreases from 21 to 14 wt. %, Nafion–IPMC exhibits a large negative relaxation deformation, zero deformation, a positive relaxation deformation, and a positive steady deformation without relaxation in sequence. Despite the slow anode deformation, Flemion–IPMC also shows a slight relaxation deformation, which disappears when the water content is less than 13 wt. %. The different water states are investigated at different water contents using nuclear magnetic resonance spectroscopy. The free water, which decreases rapidly at the beginning through evaporation, is proven to be critical for relaxation deformation. For the backbone, indirect evidence from the steady current response is correlated with the slow anode deformation of Flemion-IPMC. The latter is explained by the secondary dissociation of the weak acid group –COOH. Finally, we thoroughly explain not only the three deformations by swelling but also their evolvement with decreasing water content. A fitting model is also presented based on a multi-diffusion equation to reveal the deformation processes more clearly, the results from which are in good agreement with the experimental results.

  6. Modeling backbone flexibility to achieve sequence diversity: The design of novel alpha-helical ligands for Bcl-xL

    PubMed Central

    Fu, Xiaoran; Apgar, James R.; Keating, Amy E.

    2007-01-01

    Computational protein design can be used to select sequences that are compatible with a fixed-backbone template. This strategy has been used in numerous instances to engineer novel proteins. However, the fixed-backbone assumption severely restricts the sequence space that is accessible via design. For challenging problems, such as the design of functional proteins, this may not be acceptable. In this paper, we present a method for introducing backbone flexibility into protein design calculations and apply it to the design of diverse helical BH3 ligands that bind to the anti-apoptotic protein Bcl-xL, a member of the Bcl-2 protein family. We demonstrate how normal mode analysis can be used to sample different BH3 backbones, and show that this leads to a larger and more diverse set of low-energy solutions than can be achieved using a native high-resolution Bcl-xL complex crystal structure as a template. We tested several of the designed solutions experimentally and found that this approach worked well when normal mode calculations were used to deform a native BH3 helix structure, but less well when they were used to deform an idealized helix. A subsequent round of design and testing identified a likely source of the problem as inadequate sampling of the helix pitch. In all, we tested seventeen designed BH3 peptide sequences, including several point mutants. Of these, eight bound well to Bcl-xL and four others showed weak but detectable binding. The successful designs showed a diversity of sequences that would have been difficult or impossible to achieve using only a fixed backbone. Thus, introducing backbone flexibility via normal mode analysis effectively broadened the set of sequences identified by computational design, and provided insight into positions important for binding Bcl-xL. PMID:17597151

  7. TANGLE: Two-Level Support Vector Regression Approach for Protein Backbone Torsion Angle Prediction from Primary Sequences

    PubMed Central

    Song, Jiangning; Tan, Hao; Wang, Mingjun; Webb, Geoffrey I.; Akutsu, Tatsuya

    2012-01-01

    Protein backbone torsion angles (Phi) and (Psi) involve two rotation angles rotating around the C?-N bond (Phi) and the C?-C bond (Psi). Due to the planarity of the linked rigid peptide bonds, these two angles can essentially determine the backbone geometry of proteins. Accordingly, the accurate prediction of protein backbone torsion angle from sequence information can assist the prediction of protein structures. In this study, we develop a new approach called TANGLE (Torsion ANGLE predictor) to predict the protein backbone torsion angles from amino acid sequences. TANGLE uses a two-level support vector regression approach to perform real-value torsion angle prediction using a variety of features derived from amino acid sequences, including the evolutionary profiles in the form of position-specific scoring matrices, predicted secondary structure, solvent accessibility and natively disordered region as well as other global sequence features. When evaluated based on a large benchmark dataset of 1,526 non-homologous proteins, the mean absolute errors (MAEs) of the Phi and Psi angle prediction are 27.8 and 44.6, respectively, which are 1% and 3% respectively lower than that using one of the state-of-the-art prediction tools ANGLOR. Moreover, the prediction of TANGLE is significantly better than a random predictor that was built on the amino acid-specific basis, with the p-value<1.46e-147 and 7.97e-150, respectively by the Wilcoxon signed rank test. As a complementary approach to the current torsion angle prediction algorithms, TANGLE should prove useful in predicting protein structural properties and assisting protein fold recognition by applying the predicted torsion angles as useful restraints. TANGLE is freely accessible at http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/TANGLE/. PMID:22319565

  8. Utilizing next-generation sequencing to resolve the backbone of the Core Goodeniaceae and inform future taxonomic and floral form studies.

    PubMed

    Gardner, Andrew G; Sessa, Emily B; Michener, Pryce; Johnson, Eden; Shepherd, Kelly A; Howarth, Dianella G; Jabaily, Rachel S

    2016-01-01

    Though considerable progress has been made in inferring phylogenetic relationships of many plant lineages, deep unresolved nodes remain a common problem that can impact downstream efforts, including taxonomic decision-making and character reconstruction. The Core Goodeniaceae is a group affected by this issue: data from the plastid regions trnL-trnF and matK have been insufficient to generate adequate support at key nodes along the backbone of the phylogeny. We performed genome skimming for 24 taxa representing major clades within Core Goodeniaceae. The plastome coding regions (CDS) and nuclear ribosomal repeats (NRR) were assembled and complemented with additional accessions sequenced for nuclear G3PDH and plastid trnL-trnF and matk. The CDS, NRR, and G3PDH alignments were analyzed independently and topology tests were used to detect the alignments' ability to reject alternative topologies. The CDS, NRR, and G3PDH alignments independently supported a Brunonia (Scaevola s.l. (Coopernookia (Goodenia s.l.))) backbone topology, but within Goodenia s.l., the strongly-supported plastome topology (Goodenia A (Goodenia B (Velleia+Goodenia C))) contrasts with the poorly supported nuclear topology ((Goodenia A+Goodenia B) (Velleia+Goodenia C)). A fully resolved and maximally supported topology for Core Goodeniaceae was recovered from the plastome CDS, and there is excellent support for most of the major clades and relationships among them in all alignments. The composition of these seven major clades renders many of the current taxonomic divisions non-monophyletic, prompting us to suggest that Goodenia may be split into several segregate genera. PMID:26463342

  9. Transformed composite sequences for improved qubit addressing

    NASA Astrophysics Data System (ADS)

    Merrill, J. True; Doret, S. Charles; Vittorini, Grahame; Addison, J. P.; Brown, Kenneth R.

    2014-10-01

    Selective laser addressing of a single atom or atomic ion qubit can be improved using narrow-band composite pulse sequences. We describe a Lie-algebraic technique to generalize known narrow-band sequences and introduce sequences related by dilation and rotation of sequence generators. Our method improves known narrow-band sequences by decreasing both the pulse time and the residual error. Finally, we experimentally demonstrate these composite sequences using 40Ca+ ions trapped in a surface-electrode ion trap.

  10. Loss of Internal Backbone Carbonyls: Additional Evidence for Sequence-Scrambling in Collision-Induced Dissociation of y-Type Ions

    NASA Astrophysics Data System (ADS)

    Harper, Brett; Miladi, Mahsan; Solouki, Touradj

    2014-10-01

    It is shown that y-type ions, after losing C-terminal H2O or NH3, can lose an internal backbone carbonyl (CO) from different peptide positions and yield structurally different product fragment ions upon collision-induced dissociation (CID). Such CO losses from internal peptide backbones of y-fragment ions are not unique to a single peptide and were observed in four of five model peptides studied herein. Experimental details on examples of CO losses from y-type fragment ions for an isotopically labeled AAAAH AA-NH2 heptapeptide and des-acetylated-α-melanocyte-stimulating hormone (dα-MSH) (SYSMEHFRWGKPV-NH2) are reported. Results from isotope labeling, tandem mass spectrometry (MSn), and ion mobility-mass spectrometry (IM-MS) confirm that CO losses from different amino acids of m/ z-isolated y-type ions yield structurally different ions. It is shown that losses of internal backbone carbonyls (as CID products of m/ z-isolated y-type ions) are among intermediate steps towards formation of rearranged or permutated product fragment ions. Possible mechanisms for generation of the observed sequence-scrambled a-"like" ions, as intermediates in sequence-scrambling pathways of y-type ions, are proposed and discussed.

  11. Sequence-specific backbone 1H, 13C, and 15N resonance assignments of human ribonuclease 4

    PubMed Central

    Gagn, Donald; Doucet, Nicolas

    2016-01-01

    Human ribonuclease 4 (RNase 4) is the most evolutionarily conserved member of the 8 canonical human pancreatic-like RNases, showing more than 90% identity with bovine and porcine homologues. The enzyme displays ribonucleolytic activity with a strong preference for uracil-containing RNA substrates, a feature only shared with human Eosinophil Derived-Neurotoxin (EDN, or RNase 2) and Eosinophil Cationic Protein (ECP, or RNase 3). It is also the shortest member of the human family, with a significantly truncated C-terminal tail. Its unique active-site pocket and high degree of conservation among vertebrates suggest that the enzyme plays a crucial biological function. Here, we report on the 1H, 13C and 15N backbone resonance assignments of RNase 4, providing means to characterize its molecular function at the atomic level by NMR. PMID:25030111

  12. 1H, 13C and 15N backbone and side chain resonance assignments of a Myxococcus xanthus anti-repressor with no known sequence homologues.

    PubMed

    Len, Esther; Gonzlez, Carlos; Elas-Arnanz, Montserrat; Padmanabhan, S; Jimnez, M Angeles

    2009-06-01

    The CarS antirepressor activates a photo-inducible promoter in Myxococcus xanthus by physically interacting with the CarA repressor and eliminating the latter's binding to operator DNA. Interestingly, interactions with both CarS and operator are crucially dependent on the DNA recognition helix of the CarA winged-helix DNA-binding domain. The CarA-CarS and the CarA-operator interfaces therefore overlap, and CarS may have structural features that mimic operator DNA. CarS has no known sequence homologues and its Gly and Pro contents are unusually high. Here, we report (1)H, (13)C and (15)N backbone and side chain assignments of CarS1, an 86-residue truncated yet fully functional variant of CarS. Secondary structural elements inferred from these data differ from those predicted from sequence. PMID:19636942

  13. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  14. The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics.

    PubMed

    Gilmour, Matthew W; Thomson, Nicholas R; Sanders, Mandy; Parkhill, Julian; Taylor, Diane E

    2004-11-01

    Horizontal transfer of resistance determinants amongst bacteria can be achieved by conjugative plasmid DNA elements. We have determined the complete 274,762 bp sequence of the incompatibility group H (IncH) plasmid R478, originally isolated from the Gram negative opportunistic pathogen Serratia marcescens. This self-transferable extrachromosomal genetic element contains 295 predicted genes, of which 144 are highly similar to coding sequences of IncH plasmids R27 and pHCM1. The regions of similarity among these three IncH plasmids principally encode core plasmid determinants (i.e., replication, partitioning and stability, and conjugative transfer) and we conducted a comparative analysis to define the minimal IncHI plasmid backbone determinants. No resistance determinants are included in the backbone and most of the sequences unique to R478 were contained in a large contiguous region between the two transfer regions. These findings indicate that plasmid evolution occurs through gene acquisition/loss predominantly in regions outside of the core determinants. Furthermore, a modular evolution for R478 was signified by the presence of gene neighbors or operons that were highly related to sequences from a wide range of chromosomal, transposon, and plasmid elements. The conjugative transfer regions are most similar to sequences encoded on SXT, Rts1, pCAR1, R391, and pRS241d. The dual partitioning modules encoded on R478 resemble numerous sequences; including pMT1, pCTX-M3, pCP301, P1, P7, and pB171. R478 also codes for resistance to tetracycline (Tn10), chloramphenicol (cat), kanamycin (aphA), mercury (similar to Tn21), silver (similar to pMG101), copper (similar to pRJ1004), arsenic (similar to pYV), and tellurite (two separate regions similar to IncHI2 ter determinants and IncP kla determinants). Other R478-encoded sequences are related to Tn7, IS26, tus, mucAB, and hok, where the latter is surrounded by insLKJ, and could potentially be involved in post-segregation killing. The similarity to a diverse set of bacterial sequences highlights the ability of horizontally transferable DNA elements to acquire and disseminate genetic traits through the bacterial gene pool. PMID:15518875

  15. Arbitrarily accurate narrowband composite pulse sequences

    SciTech Connect

    Vitanov, Nikolay V.

    2011-12-15

    Narrowband composite pulse sequences containing an arbitrary number N of identical pulses are presented. The composite phases are given by a very simple analytic formula and the transition probability is merely sin{sup 2N}(A/2), where A is the pulse area. These narrowband sequences can be made accurate to any order with respect to variations in A for sufficiently many constituent pulses, i.e., excitation can be suppressed below any desired value for any pulse area but {pi}.

  16. Comparison of design strategies for ?-helix backbone modification in a protein tertiary fold.

    PubMed

    Tavenor, Nathan A; Reinert, Zachary E; Lengyel, George A; Griffith, Brian D; Horne, W Seth

    2016-02-25

    We report here the comparison of five classes of unnatural amino acid building blocks for their ability to be accommodated into an ?-helix in a protein tertiary fold context. High-resolution structural characterization and analysis of folding thermodynamics yield new insights into the relationship between backbone composition and folding energetics in ?-helix mimetics and suggest refined design rules for engineering the backbones of natural sequences. PMID:26853882

  17. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus sidechain groups to chain expansion via chemical denaturation

    PubMed Central

    Holehouse, Alex S.; Garai, Kanchan; Lyle, Nicholas; Vitalis, Andreas; Pappu, Rohit V.

    2015-01-01

    In aqueous solutions with high concentrations of chemical denaturants such as urea and guanidinium chloride (GdmCl) proteins expand to populate heterogeneous conformational ensembles. These denaturing environments are thought to be good solvents for generic protein sequences because properties of conformational distributions align with those of canonical random coils. Previous studies showed that water is a poor solvent for polypeptide backbones and therefore backbones form collapsed globular structures in aqueous solvents. Here, we ask if polypeptide backbones can intrinsically undergo the requisite chain expansion in aqueous solutions with high concentrations of urea and GdmCl. We answer this question using a combination of molecular dynamics simulations and fluorescence correlation spectroscopy. We find that the degree of backbone expansion is minimal in aqueous solutions with high concentrations denaturants. Instead, polypeptide backbones sample conformations that are denaturant-specific mixtures of coils and globules, with a persistent preference for globules. Therefore, typical denaturing environments cannot be classified as good solvents for polypeptide backbones. How then do generic protein sequences expand in denaturing environments? To answer this question, we investigated the effects of sidechains using simulations of two archetypal sequences with amino acid compositions that are mixtures of charged, hydrophobic, and polar groups. We find that sidechains lower the effective concentration of backbone amides in water leading to an intrinsic expansion of polypeptide backbones in the absence of denaturants. Additional dilution of the effective concentration of backbone amides is achieved through preferential interactions with denaturants. These effects lead to conformational statistics in denaturing environments that are congruent with those of canonical random coils. Our results highlight the role of sidechain-mediated interactions as determinants of the conformational properties of unfolded states in water and in influencing chain expansion upon denaturation. PMID:25664638

  18. Nucleotide sequence composition and method for detection of neisseria gonorrhoeae

    SciTech Connect

    Lo, A.; Yang, H.L.

    1990-02-13

    This patent describes a composition of matter that is specific for {ital Neisseria gonorrhoeae}. It comprises: at least one nucleotide sequence for which the ratio of the amount of the sequence which hybridizes to chromosomal DNA of {ital Neisseria gonorrhoeae} to the amount of the sequence which hybridizes to chromosomal DNA of {ital Neisseria meningitidis} is greater than about five. The ratio being obtained by a method described.

  19. Two modes of protein sequence evolution and their compositional dependencies

    NASA Astrophysics Data System (ADS)

    Mannige, Ranjan V.

    2013-06-01

    Protein sequence evolution has resulted in a vast repertoire of molecular functionality crucial to life. Despite the central importance of sequence evolution to biology, our fundamental understanding of how sequence composition affects evolution is incomplete. This report describes the utilization of lattice model simulations of directed evolution, which indicate that, on average, peptide and protein evolvability is strongly dependent on initial sequence composition. The report also discusses two distinct regimes of sequence evolution by point mutation: (a) the classical mode where sequences crawl over free energy barriers towards acquiring a target fold, and (b) the quantum mode where sequences appear to tunnel through large energy barriers generally insurmountable by means of a crawl. Finally, the simulations indicate that oily and charged peptides are the most efficient substrates for evolution at the classical and quantum regimes, respectively, and that their respective response to temperature is commensurate with analogies made to barrier crossing in classical and quantum systems. On the whole, these results show that sequence composition can tune both the evolvability and the optimal mode of evolution of peptides and proteins.

  20. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2006-07-04

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  1. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2002-01-01

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  2. Identification of base and backbone contacts used for DNA sequence recognition and high-affinity binding by LAC9, a transcription activator containing a C6 zinc finger

    SciTech Connect

    Halvorsen, Yuan-Di C.; Nandabalan, K.; Dickson, R.C. )

    1991-04-01

    The LAC9 protein of Kluyveromyces lactis is a transcriptional regulator of genes in the lactose-galactose regulon. To regulate transcription, LAC9 must bind to 17-bp upstream activator sequences (UASs) located in front of each target gene. LAC9 is homologous to the GAL4 protein of Saccharomyces cerevisiae, and the two proteins must bind DNA in a very similar manner. In this paper the authors show that high-affinity, sequence-specific binding by LAC9 dimers is mediated primarily by 3 bp at each end of the UAS. In addition, at least one half of the UAS must have a GC or CG base pair at position 1 for high-affinity binding; LAC9k binds preferentially to the half containing the GC base pair. Hydroxyl radical footprinting shows that a LAC9 dimer binds an unusually broad region on one face of the DNA helix. Because of the data, they suggest that LAC9 contacts positions 6, 7, and 8, both plus and minus, of the UAS, which are separated by more than one turn of the DNA helix, and twists part way around the DNA, thus protecting the broad region of the minor groove between the major-groove contacts.

  3. Optimized control of multistate quantum systems by composite pulse sequences

    SciTech Connect

    Genov, G. T.; Vitanov, N. V.; Torosov, B. T.

    2011-12-15

    We introduce a technique for derivation of high-fidelity composite pulse sequences for two types of multistate quantum systems: systems with the SU(2) and Morris-Shore dynamic symmetries. For the former type, we use the Majorana decomposition to reduce the dynamics to an effective two-state system, which allows us to find the propagator analytically and use the pool of available composite pulses for two-state systems. For the latter type of multistate systems, we use the Morris-Shore decomposition, which reduces the multistate dynamics to a set of two-state systems. We present examples which demonstrate that the multistate composite sequences open a variety of possibilities for coherent control of quantum systems with multiple states.

  4. Predicting bacterial essential genes using only sequence composition information.

    PubMed

    Ning, L W; Lin, H; Ding, H; Huang, J; Rao, N; Guo, F B

    2014-01-01

    Essential genes are those genes that are needed by organisms at any time and under any conditions. It is very important for us to identify essential genes from bacterial genomes because of their vital role in synthetic biology and biomedical practices. In this paper, we developed a support vector machine (SVM)-based method to predict essential genes of bacterial genomes using only compositional features. These features are all derived from the primary sequences, i.e., nucleotide sequences and protein sequences. After training on the multiple samplings of the labeled (essential or not essential) features using a library for SVM, we obtained an average area under the ROC curve (AUC) of about 0.82 in a 5-fold cross-validation for Escherichia coli and about 0.74 for Mycoplasma pulmonis. We further evaluated the performance of the method proposed using the dataset consisting of 16 bacterial genomes, and an average AUC of 0.76 was achieved. Based on this training dataset, a model for essential gene prediction was established. Another two independent genomes, Shewanella oneidensis RW1 and Salmonella enterica serovar Typhimurium SL1344 were used to evalutate the model. Results showed that the AUC sores were 0.77 and 0.81, respectively. For the convenience of the vast majority of experimental scientists, a web server has been constructed, which is freely available at http://cefg.uestc.edu.cn:9999/egp. PMID:25036505

  5. Constructing optimal backbone segments for joining fixed DNA base pairs.

    PubMed Central

    Mazur, J; Jernigan, R L; Sarai, A

    1996-01-01

    A method is presented to link a sequence of space-fixed base pairs by the sugar-phosphate segments of single nucleotides and to evaluate the effects in the backbone caused by this positioning of the bases. The entire computational unit comprises several nucleotides that are energy-minimized, subject to constraints imposed by the sugar-phosphate backbone segments being anchored to space-fixed base pairs. The minimization schemes are based on two stages, a conjugate gradient method followed by a Newton-Raphson algorithm. Because our purpose is to examine the response, or relaxation, of an artificially stressed backbone, it is essential to be able to obtain, as closely as possible, a lowest minimum energy conformation of the backbone segment in conformational space. For this purpose, an algorithm is developed that leads to the generation of an assembly of many local energy minima. From these sets of local minima, one conformation corresponding to the one with the lowest minimum is then selected and designated to represent the backbone segment at its minimum. The effective electrostatic potential of mean force is expressed in terms of adjustable parameters that incorporate solvent screening action in the Coulombic interactions between charged backbone atoms; these parameters are adjusted to obtain the best fit of the nearest-neighbor phosphorous atoms in an x-ray structure. PMID:8874023

  6. Automated protein backbone assignment using the projection-decomposition approach.

    PubMed

    Fredriksson, Jonas; Bermel, Wolfgang; Staykova, Doroteya K; Billeter, Martin

    2012-09-01

    Spectral projection experiments by NMR in conjunction with decomposition analysis have been previously introduced for the backbone assignment of proteins; various pulse sequences as well as the behaviour with low signal-to-noise or chemical shift degeneracy have been illustrated. As a guide for routine applications of this combined tool, we provide here a systematic analysis on different types of proteins using welldefined run-time parameters. As a second result of this study, the backbone assignment module SHABBA was extensively rewritten and improved. Calculations on ubiquitin yielded again fully correct and nearly complete backbone and CH? assignments. For the 128 residue long azurin, missing assignments mostly affect H? and H?. Among the remaining backbone (plus C?) nuclei 97.5 % could be assigned with 1.0 % differences to a reference. Finally, the new SHABBA algorithm was applied to projections recorded for a yeast histone protein domain at room temperature, where the protein is subject to partial unfolding: this leads to unobservable resonances (about a dozen missing signals in a normal 15N-HSQC) and extensive degeneracy among the resonances. From the clearly observable residues, 97.5 % of the backbone and CH?resonances could be assigned, of which only 0.8 % showed differences to published shifts. An additional study on the protein MMP20, which exhibits spectral difficulties to an even larger extent, explores the limitations of the approach. PMID:22806129

  7. The backbone of a city

    NASA Astrophysics Data System (ADS)

    Scellato, S.; Cardillo, A.; Latora, V.; Porta, S.

    2006-03-01

    Recent studies have revealed the importance of centrality measures to analyze various spatial factors affecting human life in cities. Here we show how it is possible to extract the backbone of a city by deriving spanning trees based on edge betweenness and edge information. By using as sample cases the cities of Bologna and San Francisco, we show how the obtained trees are radically different from those based on edge lengths, and allow an extended comprehension of the skeleton of most important routes that so much affects pedestrian/vehicular flows, retail commerce vitality, land-use separation, urban crime and collective dynamical behaviours.

  8. Plant development inhibitory genes in binary vector backbone improve quality event efficiency in soybean transformation.

    PubMed

    Ye, Xudong; Williams, Edward J; Shen, Junjiang; Esser, James A; Nichols, Amy M; Petersen, Michael W; Gilbertson, Larry A

    2008-10-01

    Conventional Agrobacterium-mediated plant transformation often produces a significant frequency of transgenic events containing vector backbone sequence, which is generally undesirable for biotechnology applications. We tested methods to reduce the frequency of transgenic plants containing vector backbone by incorporating genes into the backbone that inhibit the development of transgenic plants. Four backbone frequency reduction genes, bacterial levansucrase (sacB), maize cytokinin oxidase (CKX), Phaseolus GA 2-oxidase (GA 2-ox), and bacterial phytoene synthase (crtB), each expressed by the enhanced CaMV 35S promoter, were placed individually in a binary vector backbone near the left border (LB) of binary vectors. In transformed soybean plants, the lowest frequency of backbone presence was observed when the constitutively expressed CKX gene was used, followed by crtB. Higher backbone frequencies were found among the plants transformed with the GA 2-oxidase and sacB vectors. In some events, transfer of short backbone fragments appeared to be caused by LB readthrough and termination within the backbone reduction gene. To determine the effect of the backbone genes on transformation frequency, the crtB and CKX vectors were then compared to a control vector in soybean transformation experiments. The results revealed that there was no significant transformation frequency difference between the crtB and control vectors, but the CKX vector showed a significant transformation frequency decrease. Molecular analysis revealed that the frequency of transgenic plants containing one or two copies of the transgene and free of backbone was significantly increased by both the CKX and crtB backbone reduction vectors, indicating that there may be a correlation between transgene copy number and backbone frequency. PMID:18253857

  9. Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone.

    PubMed

    Gui, Meng; Song, Juyi; Zhang, Lu; Wang, Shun; Wu, Ruiyun; Ma, Changwei; Li, Pinglan

    2015-06-01

    Chondroitin sulfates (CSs) were extracted from sturgeon skull and backbone, and their chemical composition, anticoagulant, anti-platelet and thrombolysis activities were evaluated. The average molecular weights of CS from sturgeon skull and backbone were 38.5kDa and 49.2kDa, respectively. Disaccharide analysis indicated that the sturgeon backbone CS was primarily composed of disaccharide monosulfated in position four of the GalNAc (37.8%) and disaccharide monosulfated in position six of the GalNAc (59.6%) while sturgeon skull CS was primarily composed of nonsulfated disaccharide (74.2%). Sturgeon backbone CS showed stronger antithrombotic effect than sturgeon skull CS. Sturgeon backbone CS could significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT), inhibited ADP-induced platelet aggregation and dissolved platelet plasma clots in vitro. The results suggested that sturgeon backbone CS can be explored as a functional food with antithrombotic function. PMID:25843879

  10. Nucleosome positioning based on the sequence word composition.

    PubMed

    Yi, Xian-Fu; He, Zhi-Song; Chou, Kuo-Chen; Kong, Xiang-Yin

    2012-01-01

    The DNA of all eukaryotic organisms is packaged into nucleosomes (a basic repeating unit of chromatin). A nucleosome consists of histone octamer wrapped by core DNA and linker histone H1 associated with linker DNA. It has profound effects on all DNA-dependent processes by affecting sequence accessibility. Understanding the factors that influence nucleosome positioning has great help to the study of genomic control mechanism. Among many determinants, the inherent DNA sequence has been suggested to have a dominant role in nucleosome positioning in vivo. Here, we used the method of minimum redundancy maximum relevance (mRMR) feature selection and the nearest neighbor algorithm (NNA) combined with the incremental feature selection (IFS) method to identify the most important sequence features that either favor or inhibit nucleosome positioning. We analyzed the words of 53,021 nucleosome DNA sequences and 50,299 linker DNA sequences of Saccharomyces cerevisiae. 32 important features were abstracted from 5,460 features, and the overall prediction accuracy through jackknife cross-validation test was 76.5%. Our results support that sequence-dependent DNA flexibility plays an important role in positioning nucleosome core particles and that genome sequence facilitates the rapid nucleosome reassembly instead of nucleosome depletion. Besides, our results suggest that there exist some additional features playing a considerable role in discriminating nucleosome forming and inhibiting sequences. These results confirmed that the underlying DNA sequence plays a major role in nucleosome positioning. PMID:21919856

  11. Adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design.

    PubMed

    Drew, Kevin; Renfrew, P Douglas; Craven, Timothy W; Butterfoss, Glenn L; Chou, Fang-Chieh; Lyskov, Sergey; Bullock, Brooke N; Watkins, Andrew; Labonte, Jason W; Pacella, Michael; Kilambi, Krishna Praneeth; Leaver-Fay, Andrew; Kuhlman, Brian; Gray, Jeffrey J; Bradley, Philip; Kirshenbaum, Kent; Arora, Paramjit S; Das, Rhiju; Bonneau, Richard

    2013-01-01

    Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones), oligooxopiperazines, oligo-peptoids, [Formula: see text]-peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org). This work helps address the peptidomimetic community's need for an automated and expandable modeling tool for noncanonical backbones. PMID:23869206

  12. High-Fidelity Adiabatic Passage by Composite Sequences of Chirped Pulses

    SciTech Connect

    Torosov, Boyan T.; Guerin, Stephane; Vitanov, Nikolay V.

    2011-06-10

    We present a method for optimization of the technique of adiabatic passage between two quantum states by composite sequences of frequency-chirped pulses with specific relative phases: composite adiabatic passage (CAP). By choosing the composite phases appropriately the nonadiabatic losses can be canceled to any desired order with sufficiently long sequences, regardless of the nonadiabatic coupling. The values of the composite phases are universal for they do not depend on the pulse shapes and the chirp. The accuracy of the CAP technique and its robustness against parameter variations make CAP suitable for high-fidelity quantum information processing.

  13. Diverse nucleotide compositions and sequence fluctuation in Rubisco protein genes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Dehipawala, S.; Cheung, E.; Bienaime, R.; Ye, J.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2011-10-01

    The Rubisco protein-enzyme is arguably the most abundance protein on Earth. The biology dogma of transcription and translation necessitates the study of the Rubisco genes and Rubisco-like genes in various species. Stronger correlation of fractal dimension of the atomic number fluctuation along a DNA sequence with Shannon entropy has been observed in the studied Rubisco-like gene sequences, suggesting a more diverse evolutionary pressure and constraints in the Rubisco sequences. The strategy of using metal for structural stabilization appears to be an ancient mechanism, with data from the porphobilinogen deaminase gene in Capsaspora owczarzaki and Monosiga brevicollis. Using the chi-square distance probability, our analysis supports the conjecture that the more ancient Rubisco-like sequence in Microcystis aeruginosa would have experienced very different evolutionary pressure and bio-chemical constraint as compared to Bordetella bronchiseptica, the two microbes occupying either end of the correlation graph. Our exploratory study would indicate that high fractal dimension Rubisco sequence would support high carbon dioxide rate via the Michaelis- Menten coefficient; with implication for the control of the whooping cough pathogen Bordetella bronchiseptica, a microbe containing a high fractal dimension Rubisco-like sequence (2.07). Using the internal comparison of chi-square distance probability for 16S rRNA (~ E-22) versus radiation repair Rec-A gene (~ E-05) in high GC content Deinococcus radiodurans, our analysis supports the conjecture that high GC content microbes containing Rubisco-like sequence are likely to include an extra-terrestrial origin, relative to Deinococcus radiodurans. Similar photosynthesis process that could utilize host star radiation would not compete with radiation resistant process from the biology dogma perspective in environments such as Mars and exoplanets.

  14. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  15. Changing the topology of protein backbone: the effect of backbone cyclization on the structure and dynamics of a SH3 domain

    PubMed Central

    Schumann, Frank H.; Varadan, Ranjani; Tayakuniyil, Praveen P.; Grossman, Jennifer H.; Camarero, Julio A.; Fushman, David

    2015-01-01

    Understanding of the effects of the backbone cyclization on the structure and dynamics of a protein is essential for using protein topology engineering to alter protein stability and function. Here we have determined, for the first time, the structure and dynamics of the linear and various circular constructs of the N-SH3 domain from protein c-Crk. These constructs differ in the length and amino acid composition of the cyclization region. The backbone cyclization was carried out using intein-mediated intramolecular chemical ligation between the juxtaposed N- and the C-termini. The structure and backbone dynamics studies were performed using solution NMR. Our data suggest that the backbone cyclization has little effect on the overall three-dimensional structure of the SH3 domain: besides the termini, only minor structural changes were found in the proximity of the cyclization region. In contrast to the structure, backbone dynamics are significantly affected by the cyclization. On the subnanosecond time scale, the backbone of all circular constructs on average appears more rigid than that of the linear SH3 domain; this effect is observed over the entire backbone and is not limited to the cyclization site. The backbone mobility of the circular constructs becomes less restricted with increasing length of the circularization loop. In addition, significant conformational exchange motions (on the sub-millisecond time scale) were found in the N-Src loop and in the adjacent β-strands in all circular constructs studied in this work. These effects of backbone cyclization on protein dynamics have potential implications for the stability of the protein fold and for ligand binding. PMID:25905098

  16. Changing the topology of protein backbone: the effect of backbone cyclization on the structure and dynamics of a SH3 domain

    NASA Astrophysics Data System (ADS)

    Schumann, Frank; Varadan, Ranjani; Tayakuniyil, Praveen; Grossman, Jennifer; Camarero, Julio; Fushman, David

    2015-04-01

    Understanding of the effects of the backbone cyclization on the structure and dynamics of a protein is essential for using protein topology engineering to alter protein stability and function. Here we have determined, for the first time, the structure and dynamics of the linear and various circular constructs of the N-SH3 domain from protein c-Crk. These constructs differ in the length and amino acid composition of the cyclization region. The backbone cyclization was carried out using intein-mediated intramolecular chemical ligation between the juxtaposed N- and the C-termini. The structure and backbone dynamics studies were performed using solution NMR. Our data suggest that the backbone cyclization has little effect on the overall three-dimensional structure of the SH3 domain: besides the termini, only minor structural changes were found in the proximity of the cyclization region. In contrast to the structure, backbone dynamics are significantly affected by the cyclization. On the subnanosecond time scale, the backbone of all circular constructs on average appears more rigid than that of the linear SH3 domain; this effect is observed over the entire backbone and is not limited to the cyclization site. The backbone mobility of the circular constructs becomes less restricted with increasing length of the circularization loop. In addition, significant conformational exchange motions (on the sub-millisecond time scale) were found in the N-Src loop and in the adjacent ?-strands in all circular constructs studied in this work. These effects of backbone cyclization on protein dynamics have potential implications for the stability of the protein fold and for ligand binding.

  17. External Tank - The Structure Backbone

    NASA Technical Reports Server (NTRS)

    Welzyn, Kenneth; Pilet, Jeffrey C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle

    2011-01-01

    The External Tank forms the structural backbone of the Space Shuttle in the launch configuration. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. Choice of lightweight materials both for structure and thermal conditioning was necessary. The tank is large, and unique manufacturing facilities, tooling, handling, and transportation operations were required. Weld processes and tooling evolved with the design as it matured through several block changes, to reduce weight. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the 40 year program. The final configuration and tank weight enabled international space station assembly in a high inclination orbit allowing international cooperation with the Russian Federal Space Agency. Numerous process controls were implemented to assure product quality, and innovative proof testing was accomplished prior to delivery. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to simulate combined environments. Processing improvements included development and use of low spray guns for foam application, additional human factors considerations for production, use of high fidelity mockups during hardware processing with video review, improved tank access, extensive use of non destructive evaluation, and producibility enhancements. Design improvements included redesigned bipod fittings, a bellows heater, a feedline camera active during ascent flight, removal of the protuberance airload ramps, redesigned ice frost ramps, and titanium brackets replaced aluminum brackets on the liquid oxygen feedline. Post flight assessment improved due to significant addition of imagery assets, greatly improving situational awareness. The debris risk was reduced by two orders of magnitude. During this time a major natural disaster was overcome when Katrina damaged the manufacturing facility. Numerous lessons from these efforts are documented within the paper.

  18. Detecting composition and monomer sequence distribution in random copolymers with interaction chromatography

    NASA Astrophysics Data System (ADS)

    Han, Junwon; Ryu, Chang Y.; Semler, James J.; Genzer, Jan

    2006-03-01

    We demonstrate that interaction chromatography (IC) is capable of discriminating among both the chemical composition and monomer sequence distribution in random copolymers. By fine-tuning the separation conditions in the IC (solvent type and stationary phase type), we were able to delineate the effect of both their chemical composition and the monomer sequence distribution of partially brominated polystyrenes on chromatographic retention. The degree of bromination and the 4-BrS sequencing was controlled by varying the bromine concentration in the reaction vessel, bromination reaction time, and solvent temperature. Our experiments suggest that 1) the blockiness of 4-BrS adsorption segments can further enhance the surface affinity of the copolymer chains at a fixed copolymer chemical composition, and 2) the adsorption-based molecular recognition of copolymer chains occurs by cooperative and synergistic adsorption of segments on surfaces along with neighboring adsorptive segments.

  19. Conformational Entropy of the RNA Phosphate Backbone and Its Contribution to the Folding Free Energy

    PubMed Central

    Mak, Chi H.; Matossian, Tyler; Chung, Wen-Yeuan

    2014-01-01

    While major contributors to the free energy of RNA tertiary structures such as basepairing, base-stacking, and charge and counterion interactions have been studied extensively, little is known about the intrinsic free energy of the backbone. To assess the magnitude of the entropic strains along the phosphate backbone and their impact on the folding free energy, we have formulated a mathematical treatment for computing the volume of the main-chain torsion-angle conformation space between every pair of nucleobases along any sequence to compute the corresponding backbone entropy. To validate this method, we have compared the computed conformational entropies against a statistical free energy analysis of structures in the crystallographic database from several-thousand backbone conformations between nearest-neighbor nucleobases as well as against extensive computer simulations. Using this calculation, we analyzed the backbone entropy of several ribozymes and riboswitches and found that their entropic strains are highly localized along their sequences. The total entropic penalty due to steric congestions in the backbone for the native fold can be as high as 2.4 cal/K/mol per nucleotide for these medium and large RNAs, producing a contribution to the overall free energy of up to 0.72 kcal/mol per nucleotide. For these RNAs, we found that low-entropy high-strain residues are predominantly located at loops with tight turns and at tertiary interaction platforms with unusual structural motifs. PMID:24703311

  20. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences.

    PubMed

    Chen, Wei; Lin, Hao; Chou, Kuo-Chen

    2015-10-01

    With the avalanche of DNA/RNA sequences generated in the post-genomic age, it is urgent to develop automated methods for analyzing the relationship between the sequences and their functions. Towards this goal, a series of sequence-based methods have been proposed and applied to analyze various character-unknown DNA/RNA sequences in order for in-depth understanding their action mechanisms and processes. Compared with the classical sequence-based methods, the pseudo nucleotide composition or PseKNC approach developed very recently has the following advantages: (1) it can convert length-different DNA/RNA sequences into dimension-fixed digital vectors that can be directly handled by all the existing machine-learning algorithms or operation engines; (2) it can contain the desired features and properties according to the selection or definition of users; (3) it can cover considerable sequence pattern information, both local and global. This minireview is focused on the concept of pseudo nucleotide composition, its development and applications. PMID:26099739

  1. Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices.

    PubMed

    Munteanu, Cristian Robert; González-Díaz, Humberto; Magalhães, Alexandre L

    2008-09-21

    The huge amount of new proteins that need a fast enzymatic activity characterization creates demands of protein QSAR theoretical models. The protein parameters that can be used for an enzyme/non-enzyme classification includes the simpler indices such as composition, sequence and connectivity, also called topological indices (TIs) and the computationally expensive 3D descriptors. A comparison of the 3D versus lower dimension indices has not been reported with respect to the power of discrimination of proteins according to enzyme action. A set of 966 proteins (enzymes and non-enzymes) whose structural characteristics are provided by PDB/DSSP files was analyzed with Python/Biopython scripts, STATISTICA and Weka. The list of indices includes, but it is not restricted to pure composition indices (residue fractions), DSSP secondary structure protein composition and 3D indices (surface and access). We also used mixed indices such as composition-sequence indices (Chou's pseudo-amino acid compositions or coupling numbers), 3D-composition (surface fractions) and DSSP secondary structure amino acid composition/propensities (obtained with our Prot-2S Web tool). In addition, we extend and test for the first time several classic TIs for the Randic's protein sequence Star graphs using our Sequence to Star Graph (S2SG) Python application. All the indices were processed with general discriminant analysis models (GDA), neural networks (NN) and machine learning (ML) methods and the results are presented versus complexity, average of Shannon's information entropy (Sh) and data/method type. This study compares for the first time all these classes of indices to assess the ratios between model accuracy and indices/model complexity in enzyme/non-enzyme discrimination. The use of different methods and complexity of data shows that one cannot establish a direct relation between the complexity and the accuracy of the model. PMID:18606172

  2. Protein location prediction using atomic composition and global features of the amino acid sequence

    SciTech Connect

    Cherian, Betsy Sheena; Nair, Achuthsankar S.

    2010-01-22

    Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectively used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.

  3. Isolation of the protein backbone of an arabinogalactan-protein from the styles of Nicotiana alata and characterization of a corresponding cDNA.

    PubMed Central

    Du, H; Simpson, R J; Moritz, R L; Clarke, A E; Bacic, A

    1994-01-01

    Arabinogalactan-proteins (AGPs) from the styles of Nicotiana alata were isolated by ion exchange and gel filtration chromatography. After deglycosylation by anhydrous hydrogen fluoride, the protein backbones were fractionated by reversed-phase HPLC. One of the protein backbones, containing mainly hydroxyproline, alanine, and serine residues (53% of total residues), was digested with proteases, and the peptides were isolated and sequenced. This sequence information allowed the cloning of a 712-bp cDNA, AGPNa1. AGPNa1 encodes a 132-amino acid protein with three domains: an N-terminal secretion signal sequence, which is cleaved from the mature protein; a central sequence, which contains most of the hydroxyproline/proline residues; and a C-terminal hydrophobic region. AGPNa1 is expressed in many tissues of N. alata and related species. The arrangement of domains and amino acid composition of the AGP encoded by AGPNa1 are similar to that of an AGP from pear cell suspension culture filtrate, although the only sequence identity is at the N termini of the mature proteins. PMID:7827496

  4. Influence of processing sequence on the tribological properties of VGCF-X/PA6/SEBS composites

    NASA Astrophysics Data System (ADS)

    Osada, Yu; Nishitani, Yosuke; Kitano, Takeshi

    2016-03-01

    In order to develop the new tribomaterials for mechanical sliding parts with sufficient balance of mechanical and tribological properties, we investigated the influence of processing sequence on the tribological properties of the ternary nanocomposites: the polymer blends of polyamide 6 (PA6) and styrene-ethylene/butylene-styrene copolymer (SEBS) filled with vapor grown carbon fiber (VGCF-X), which is one of carbon nanofiber (CNF) and has 15nm diameter and 3μm length. Five different processing sequences: (1) VGCF-X, PA6 and SEBS were mixed simultaneously (Process A), (2) Re-mixing (Second compounding) of the materials prepared by Process A (Process AR),(3) SEBS was blended with PA6 (PA6/SEBS blends) and then these blends were mixed with VGCF-X (Process B), (4) VGCF-X was mixed with PA6 (VGCF-X/PA6 composites) and then these composites were blended with SEBS (Process C), and (5) VGCF-X were mixed with SEBS (VGCF-X/SEBS composites) and then these composites were blended with PA6 (Process D) were attempted for preparing of the ternary nanocomposites (VGCF-X/PA6/SEBS composites). These ternary polymer nanocomposites were extruded by a twin screw extruder and injection-molded. Their tribological properties were evaluated by using a ring-on-plate type sliding wear tester under dry condition. The tribological properties such as the frictional coefficient and the specific wear rate were influenced by the processing sequence. These results may be attributed to the change of internal structure formation, which is a dispersibility of SEBS particle and VGCF-X in ternary nanocomposites (VGCF-X/PA6/SEBS) by different processing sequences. In particular, the processing sequences of AR, B and D, which are those of re-mixing of VGCF-X, have a good dispersibility of VGCF-X for the improvement of tribological properties.

  5. Changing protein backbone topology: Structural and dynamic consequences of the backbone cyclization in SH3 domain

    NASA Astrophysics Data System (ADS)

    Schumann, Frank; Varadan, Ranjani; Pudiavettil, Praveen; Camarero, Julio; Fushman, David

    2002-03-01

    Changing the topology of the normal linear backbone architecture of the polypeptide chain could provide a powerful tool for understanding and manipulating protein structure and function. In particular, backbone circularization (i.e. formation of a peptide bond between the N- and C- termini) is of considerable interest for understanding of the mechanisms underlying protein folding and stability. Here we describe the effect of the backbone circularization on the structure and backbone dynamics of the N-terminal SH3 domain from the murine c-Crk adapter protein. Several circular constructs of various lengths were obtained using intein-based chemical ligation (Camarero et al. J. Mol. Biol. 308, 1045 (2001)). We applied NMR to determine and compare the solution structure and backbone dynamics of the linear and circular forms of the protein. Our data indicate that the circularization does not significantly alter the structure of the protein core. The analysis of the backbone mobility in the sub-nanosecond time range suggests a slight rigidification of the entire backbone upon cyclization. Significant contributions from conformational exchange motions are observed in the region between beta-strands 2 and 3 in the circular constructs, probably caused by the circularization-induced strain in the protein structure.

  6. Optimum stacking sequence design of composite sandwich panel using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Bir, Amarpreet Singh

    Composite sandwich structures recently gained preference for various structural components over conventional metals and simple composite laminates in the aerospace industries. For most widely used composite sandwich structures, the optimization problems only requires the determination of the best stacking sequence and the number of laminae with different fiber orientations. Genetic algorithm optimization technique based on Darwin's theory of survival of the fittest and evolution is most suitable for solving such optimization problems. The present research work focuses on the stacking sequence optimization of composite sandwich panels with laminated face-sheets for both critical buckling load maximization and thickness minimization problems, subjected to bi-axial compressive loading. In the previous studies, only balanced and even-numbered simple composite laminate panels have been investigated ignoring the effects of bending-twisting coupling terms. The current work broadens the application of genetic algorithms to more complex composite sandwich panels with balanced, unbalanced, even and odd-numbered face-sheet laminates including the effects of bending-twisting coupling terms.

  7. Early Folding Events, Local Interactions, and Conservation of Protein Backbone Rigidity.

    PubMed

    Pancsa, Rita; Raimondi, Daniele; Cilia, Elisa; Vranken, Wim F

    2016-02-01

    Protein folding is in its early stages largely determined by the protein sequence and complex local interactions between amino acids, resulting in lower energy conformations that provide the context for further folding into the native state. We compiled a comprehensive data set of early folding residues based on pulsed labeling hydrogen deuterium exchange experiments. These early folding residues have corresponding higher backbone rigidity as predicted by DynaMine from sequence, an effect also present when accounting for the secondary structures in the folded protein. We then show that the amino acids involved in early folding events are not more conserved than others, but rather, early folding fragments and the secondary structure elements they are part of show a clear trend toward conserving a rigid backbone. We therefore propose that backbone rigidity is a fundamental physical feature conserved by proteins that can provide important insights into their folding mechanisms and stability. PMID:26840723

  8. Pyrrolidinyl PNA with ?/?-Dipeptide Backbone: From Development to Applications.

    PubMed

    Vilaivan, Tirayut

    2015-06-16

    The specific pairing between two complementary nucleobases (AT, CG) according to the Watson-Crick rules is by no means unique to natural nucleic acids. During the past few decades a number of nucleic acid analogues or mimics have been developed, and peptide nucleic acid (PNA) is one of the most intriguing examples. In addition to forming hybrids with natural DNA/RNA as well as itself with high affinity and specificity, the uncharged peptide-like backbone of PNA confers several unique properties not observed in other classes of nucleic acid analogues. PNA is therefore suited to applications currently performed by conventional oligonucleotides/analogues and others potentially beyond this. In addition, PNA is also interesting in its own right as a new class of oligonucleotide mimics. Unlimited opportunities exist to modify the PNA structure, stimulating the search for new systems with improved properties or additional functionality not present in the original PNA, driving future research and applications of these in nanotechnology and beyond. Although many structural variations of PNA exist, significant improvements to date have been limited to a few constrained derivatives of the privileged N-2-aminoethylglycine PNA scaffold. In this Account, we summarize our contributions in this field: the development of a new family of conformationally constrained pyrrolidinyl PNA having a nonchimeric ?/?-dipeptide backbone derived from nucleobase-modified proline and cyclic ?-amino acids. The conformational constraints dictated by the pyrrolidine ring and the ?-amino acid are essential requirements determining the binding efficiency, as the structure and stereochemistry of the PNA backbone significantly affect its ability to interact with DNA, RNA, and in self-pairing. The modular nature of the dipeptide backbone simplifies the synthesis and allows for rapid structural optimization. Pyrrolidinyl PNA having a (2'R,4'R)-proline/(1S,2S)-2-aminocyclopentanecarboxylic backbone (acpcPNA) binds to DNA with outstanding affinity and sequence specificity. It also binds to RNA in a highly sequence-specific fashion, albeit with lower affinity than to DNA. Additional characteristics include exclusive antiparallel/parallel selectivity and a low tendency for self-hybridization. Modification of the nucleobase or backbone allowing site-specific incorporation of labels and other functions to acpcPNA via click and other conjugation chemistries is possible, generating functional PNAs that are suitable for various applications. DNA sensing and biological applications of acpcPNA have been demonstrated, but these are still in their infancy and the full potential of pyrrolidinyl PNA is yet to be realized. With properties competitive with, and in some aspects superior to, the best PNA technology available to date, pyrrolidinyl PNA offers great promise as a platform system for future elaboration for the fabrication of new functional materials, nanodevices, and next-generation analytical tools. PMID:26022340

  9. Determination of load sequence effects on the degradation and failure of composite materials. [Graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Yang, J. N.; Jones, D. L.

    1981-01-01

    A theoretical model was established to predict the fatigue behavior of composite materials, with emphasis placed on predictions of the degradation of residual strength and residual stiffness during fatigue cycling. The model parameters were evaluated from three test series including static strength fatigue life and residual strength tests. The tests were applied to two graphite/epoxy laminates. Load sequence effects were emphasized for both laminates and the predicted results agreed quite well with subsequent verification tests. Dynamic as well as static stiffness reduction data were collected by use of a PDP11-03 computer, which performed quite satisfactorily and permitted the recording of a substantial amount of dynamic stiffness reduction data.

  10. Community and gene composition of a human dental plaque microbiota obtained by metagenomic sequencing.

    PubMed

    Xie, G; Chain, P S G; Lo, C-C; Liu, K-L; Gans, J; Merritt, J; Qi, F

    2010-12-01

    Human dental plaque is a complex microbial community containing an estimated 700 to 19,000 species/phylotypes. Despite numerous studies analysing species richness in healthy and diseased human subjects, the true genomic composition of the human dental plaque microbiota remains unknown. Here we report a metagenomic analysis of a healthy human plaque sample using a combination of second-generation sequencing platforms. A total of 860 million base pairs of non-human sequences were generated. Various analysis tools revealed the presence of 12 well-characterized phyla, members of the TM-7 and BRC1 clade, and sequences that could not be classified. Both pathogens and opportunistic pathogens were identified, supporting the ecological plaque hypothesis for oral diseases. Mapping the metagenomic reads to sequenced reference genomes demonstrated that 4% of the reads could be assigned to the sequenced species. Preliminary annotation identified genes belonging to all known functional categories. Interestingly, although 73% of the total assembled contig sequences were predicted to code for proteins, only 51% of them could be assigned a functional role. Furthermore, ~2.8% of the total predicted genes coded for proteins involved in resistance to antibiotics and toxic compounds, suggesting that the oral cavity is an important reservoir for antimicrobial resistance. PMID:21040513

  11. Composite Sequences for Triple-dot Qubits that Compensate for Miscalibration and Hyperfine Gradients

    NASA Astrophysics Data System (ADS)

    Ladd, Thaddeus

    2014-03-01

    Exchange-only qubits defined in triple quantum dots form a promising means for all-electrical semiconductor quantum control, but they suffer from both charge noise and random magnetic field gradients. Low-frequency noise sources can be compensated using composite sequences, but the development of such sequences is constrained by the fact that exchange energies are always positive and the control axes are non-orthogonal. Here, we present the results of both analytical approaches and computational searches for composite pulse sequences, which compensate for simultaneous low-frequency miscalibration (due to fixed random electric fields) and hyperfine effects (due to nuclear magnetic fields) in a single triple-dot qubit. We also present compensation sequences for multi-qubit gates. These results can substantially improve the working fidelity of quantum operations in semiconductor quantum dot devices. Sponsored by United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the United States Department of Defense or the U.S. Government.

  12. Telephone wire is backbone of security system

    SciTech Connect

    Brede, K.; Rackson, L.T.

    1995-09-01

    Video provides a variety of low-cost, high-quality solutions in today`s security environment. Cost-conscious managers of power generation stations, casinos, prison facilities, military bases and office buildings are considering using regular telephone wire (unshielded twisted pair-UTP) within their existing systems as the backbone of a video to the PC, personal and video-conferencing and training are other areas where phone wire in a building can save money and provide an alternative to coax or fiber for video. More and more, businesses and government agencies are meeting their needs efficiently by using telephone wires for more than just telephones.

  13. Simple Sequence Repeats in Escherichia coli: Abundance, Distribution, Composition, and Polymorphism

    PubMed Central

    Gur-Arie, Riva; Cohen, Cyril J.; Eitan, Yuval; Shelef, Leora; Hallerman, Eric M.; Kashi, Yechezkel

    2000-01-01

    Computer-based genome-wide screening of the DNA sequence of Escherichia coli strain K12 revealed tens of thousands of tandem simple sequence repeat (SSR) tracts, with motifs ranging from 1 to 6 nucleotides. SSRs were well distributed throughout the genome. Mononucleotide SSRs were over-represented in noncoding regions and under-represented in open reading frames (ORFs). Nucleotide composition of mono- and dinucleotide SSRs, both in ORFs and in noncoding regions, differed from that of the genomic region in which they occurred, with 93% of all mononucleotide SSRs proving to be of A or T. Computer-based analysis of the fine position of every SSR locus in the noncoding portion of the genome relative to downstream ORFs showed SSRs located in areas that could affect gene regulation. DNA sequences at 14 arbitrarily chosen SSR tracts were compared among E. coli strains. Polymorphisms of SSR copy number were observed at four of seven mononucleotide SSR tracts screened, with all polymorphisms occurring in noncoding regions. SSR polymorphism could prove important as a genome-wide source of variation, both for practical applications (including rapid detection, strain identification, and detection of loci affecting key phenotypes) and for evolutionary adaptation of microbes.[The sequence data described in this paper have been submitted to the GenBank data library under accession numbers AF209020209030 and AF209508209518.] PMID:10645951

  14. Bias explorer: measurements of compositional bias in EMBL and GenBank sequence files.

    PubMed

    Fuglsang, Anders

    2004-11-01

    A Windows application for compositional analysis of sequenced genomes (EMBL or GenBank flat files) is available as freeware. The application allows the user to quantify word bias using Markov chain analysis and it allows the user to generate sliding window data for GC-skew, AT-skew, purine excess, keto excess and discrete word counts. The mathematical routines reside in a dynamic link library (DLL), which can be used independently by other applications. The software is available for download at http://www.dfuni.dk/~anfu/Bioinformatics/Main.htm. PMID:15702383

  15. Postglacial climate-change record in biomarker lipid compositions of the Hani peat sequence, Northeastern China

    NASA Astrophysics Data System (ADS)

    Zhou, Weijian; Zheng, Yanhong; Meyers, Philip A.; Jull, A. J. Timothy; Xie, Shucheng

    2010-05-01

    The peat sequence at Hani in northeastern China accumulated over the past 16 cal kyr in a percolation mire in which rain water and ground water seeped through the peat system. The molecular compositions of n-alkanes, n-alkanols, and n-alkanoic acids extracted from the Hani peat sequence reveal different responses to the progressive evolution of climate and changes in the nature of the peat-forming vegetation. Long chain length components that originate from the waxy coatings of subaerial vascular plants dominate the n-alkane distributions throughout the Hani peat sequence. The paleoclimate integrity of these biomarker molecules appears to be well preserved. Most of the n-alkanol distributions are similarly dominated by long chain components that indicate their origins from subaerial plants. In contrast, n-alkanoic acid distributions are dominated by secondary components that record the importance of post-depositional microbial activity in this peat sequence, which evidently can be extensive in a percolation mire. Elevated n-alkane Paq values and C 23/C 29 ratios, which are both molecular proxies for water-loving plants, record an especially moist local climate in the Blling-Allerd (14.5 to 12.9 ka), Younger Dryas (12.9 to 11.5 ka), and Pre-Boreal (11.5 to 10.5 ka) portions of the Hani peat sequence. Depressed Paq values and C 23/C 29 ratios and larger n-alkane average chain length values indicate that the Holocene Climatic Optimum (10.5 to 6 ka) was a period of warmer climate with lower effective precipitation, which contrasts with evidence of wetter climates in most of East Asia.

  16. Unimolecular antiparallel G-quadruplex folding topology of 2'-5'-isoTBA sequences remains unaltered by loop composition.

    PubMed

    Aher, Manisha N; Erande, Namrata D; Fernandes, Moneesha; Kumar, Vaijayanti A

    2015-12-28

    A 2'-5'-linked isoTBA 15 mer sequence with (232) loop composition formed stable antiparallel quadruplex structures similar to the SELEX derived 15 mer TBA sequence with (232) loop composition. A parallel versus antiparallel topology of 3'-5'-G-quadruplexes is largely dictated by the loop length, and it is known that the truncated loops favour parallel quadruplexes. In contrast to TBA, systematic reduction of the loop length in isoTBA from (232) to (222), (131) or even (111) did not alter the antiparallel topology of the resulting 14 mer, 13 mer and 11 mer G-rich modified isoTBA-like sequences. PMID:26478215

  17. Chou's pseudo amino acid composition improves sequence-based antifreeze protein prediction.

    PubMed

    Mondal, Sukanta; Pai, Priyadarshini P

    2014-09-01

    Antifreeze proteins (AFP) in living organisms play a key role in their tolerance to extremely cold temperatures and have a wide range of biotechnological applications. But on account of diversity, their identification has been challenging to biologists. Earlier work explored in this area has yet to cover introduction of sequence order information which is known to represent important properties of various proteins and protein systems for prediction purposes. In this study, the effect of Chou's pseudo amino acid composition that presents sequence order of proteins was systematically explored using support vector machines for AFP prediction. Our findings suggest that introduction of sequence order information helps identify AFPs with an accuracy of 84.75% on independent test dataset, outperforming approaches such as AFP-Pred and iAFP. The relative performance calculated using Youden's Index (Sensitivity+Specificity-1) was found to be 0.71 for our predictor (AFP-PseAAC), 0.48 for AFP-Pred and 0.05 for iAFP. We hope this novel prediction approach will aid in AFP based research for biotechnological applications. PMID:24732262

  18. [PSI+] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain.

    PubMed

    Toombs, James A; Liss, Nathan M; Cobble, Kacy R; Ben-Musa, Zobaida; Ross, Eric D

    2011-01-01

    [PSI(+)], the prion form of the yeast Sup35 protein, results from the structural conversion of Sup35 from a soluble form into an infectious amyloid form. The infectivity of prions is thought to result from chaperone-dependent fiber cleavage that breaks large prion fibers into smaller, inheritable propagons. Like the mammalian prion protein PrP, Sup35 contains an oligopeptide repeat domain. Deletion analysis indicates that the oligopeptide repeat domain is critical for [PSI(+)] propagation, while a distinct region of the prion domain is responsible for prion nucleation. The PrP oligopeptide repeat domain can substitute for the Sup35 oligopeptide repeat domain in supporting [PSI(+)] propagation, suggesting a common role for repeats in supporting prion maintenance. However, randomizing the order of the amino acids in the Sup35 prion domain does not block prion formation or propagation, suggesting that amino acid composition is the primary determinant of Sup35's prion propensity. Thus, it is unclear what role the oligopeptide repeats play in [PSI(+)] propagation: the repeats could simply act as a non-specific spacer separating the prion nucleation domain from the rest of the protein; the repeats could contain specific compositional elements that promote prion propagation; or the repeats, while not essential for prion propagation, might explain some unique features of [PSI(+)]. Here, we test these three hypotheses and show that the ability of the Sup35 and PrP repeats to support [PSI(+)] propagation stems from their amino acid composition, not their primary sequences. Furthermore, we demonstrate that compositional requirements for the repeat domain are distinct from those of the nucleation domain, indicating that prion nucleation and propagation are driven by distinct compositional features. PMID:21760933

  19. Targeted Sequencing Reveals Large-Scale Sequence Polymorphism in Maize Candidate Genes for Biomass Production and Composition

    PubMed Central

    Ulpinnis, Chris; Scholz, Uwe; Altmann, Thomas

    2015-01-01

    A major goal of maize genomic research is to identify sequence polymorphisms responsible for phenotypic variation in traits of economic importance. Large-scale detection of sequence variation is critical for linking genes, or genomic regions, to phenotypes. However, due to its size and complexity, it remains expensive to generate whole genome sequences of sufficient coverage for divergent maize lines, even with access to next generation sequencing (NGS) technology. Because methods involving reduction of genome complexity, such as genotyping-by-sequencing (GBS), assess only a limited fraction of sequence variation, targeted sequencing of selected genomic loci offers an attractive alternative. We therefore designed a sequence capture assay to target 29 Mb genomic regions and surveyed a total of 4,648 genes possibly affecting biomass production in 21 diverse inbred maize lines (7 flints, 14 dents). Captured and enriched genomic DNA was sequenced using the 454 NGS platform to 19.6-fold average depth coverage, and a broad evaluation of read alignment and variant calling methods was performed to select optimal procedures for variant discovery. Sequence alignment with the B73 reference and de novo assembly identified 383,145 putative single nucleotide polymorphisms (SNPs), of which 42,685 were non-synonymous alterations and 7,139 caused frameshifts. Presence/absence variation (PAV) of genes was also detected. We found that substantial sequence variation exists among genomic regions targeted in this study, which was particularly evident within coding regions. This diversification has the potential to broaden functional diversity and generate phenotypic variation that may lead to new adaptations and the modification of important agronomic traits. Further, annotated SNPs identified here will serve as useful genetic tools and as candidates in searches for phenotype-altering DNA variation. In summary, we demonstrated that sequencing of captured DNA is a powerful approach for variant discovery in maize genes. PMID:26151830

  20. Targeted Sequencing Reveals Large-Scale Sequence Polymorphism in Maize Candidate Genes for Biomass Production and Composition.

    PubMed

    Muraya, Moses M; Schmutzer, Thomas; Ulpinnis, Chris; Scholz, Uwe; Altmann, Thomas

    2015-01-01

    A major goal of maize genomic research is to identify sequence polymorphisms responsible for phenotypic variation in traits of economic importance. Large-scale detection of sequence variation is critical for linking genes, or genomic regions, to phenotypes. However, due to its size and complexity, it remains expensive to generate whole genome sequences of sufficient coverage for divergent maize lines, even with access to next generation sequencing (NGS) technology. Because methods involving reduction of genome complexity, such as genotyping-by-sequencing (GBS), assess only a limited fraction of sequence variation, targeted sequencing of selected genomic loci offers an attractive alternative. We therefore designed a sequence capture assay to target 29 Mb genomic regions and surveyed a total of 4,648 genes possibly affecting biomass production in 21 diverse inbred maize lines (7 flints, 14 dents). Captured and enriched genomic DNA was sequenced using the 454 NGS platform to 19.6-fold average depth coverage, and a broad evaluation of read alignment and variant calling methods was performed to select optimal procedures for variant discovery. Sequence alignment with the B73 reference and de novo assembly identified 383,145 putative single nucleotide polymorphisms (SNPs), of which 42,685 were non-synonymous alterations and 7,139 caused frameshifts. Presence/absence variation (PAV) of genes was also detected. We found that substantial sequence variation exists among genomic regions targeted in this study, which was particularly evident within coding regions. This diversification has the potential to broaden functional diversity and generate phenotypic variation that may lead to new adaptations and the modification of important agronomic traits. Further, annotated SNPs identified here will serve as useful genetic tools and as candidates in searches for phenotype-altering DNA variation. In summary, we demonstrated that sequencing of captured DNA is a powerful approach for variant discovery in maize genes. PMID:26151830

  1. A backbone-based theory of protein folding

    PubMed Central

    Rose, George D.; Fleming, Patrick J.; Banavar, Jayanth R.; Maritan, Amos

    2006-01-01

    Under physiological conditions, a protein undergoes a spontaneous disorder ? order transition called folding. The protein polymer is highly flexible when unfolded but adopts its unique native, three-dimensional structure when folded. Current experimental knowledge comes primarily from thermodynamic measurements in solution or the structures of individual molecules, elucidated by either x-ray crystallography or NMR spectroscopy. From the former, we know the enthalpy, entropy, and free energy differences between the folded and unfolded forms of hundreds of proteins under a variety of solvent/cosolvent conditions. From the latter, we know the structures of ?35,000 proteins, which are built on scaffolds of hydrogen-bonded structural elements, ?-helix and ?-sheet. Anfinsen showed that the amino acid sequence alone is sufficient to determine a protein's structure, but the molecular mechanism responsible for self-assembly remains an open question, probably the most fundamental open question in biochemistry. This perspective is a hybrid: partly review, partly proposal. First, we summarize key ideas regarding protein folding developed over the past half-century and culminating in the current mindset. In this view, the energetics of side-chain interactions dominate the folding process, driving the chain to self-organize under folding conditions. Next, having taken stock, we propose an alternative model that inverts the prevailing side-chain/backbone paradigm. Here, the energetics of backbone hydrogen bonds dominate the folding process, with preorganization in the unfolded state. Then, under folding conditions, the resultant fold is selected from a limited repertoire of structural possibilities, each corresponding to a distinct hydrogen-bonded arrangement of ?-helices and/or strands of ?-sheet. PMID:17075053

  2. Dead-End Elimination with Perturbations (DEEPer): A provable protein design algorithm with continuous sidechain and backbone flexibility

    PubMed Central

    Hallen, Mark A.; Keedy, Daniel A.; Donald, Bruce R.

    2012-01-01

    Computational protein and drug design generally require accurate modeling of protein conformations. This modeling typically starts with an experimentally-determined protein structure and considers possible conformational changes due to mutations or new ligands. The DEE/A* algorithm provably finds the GMEC (global minimum-energy conformation) of a protein assuming the backbone does not move and the sidechains take on conformations from a set of discrete, experimentally-observed conformations called rotamers. DEE/A* can efficiently find the overall GMEC for exponentially many mutant sequences. Previous improvements to DEE/A* include modeling ensembles of sidechain conformations and either continuous sidechain or backbone flexibility. We present a new algorithm, DEEPer (Dead-End Elimination with Perturbations), that combines these advantages and can also handle much more extensive backbone flexibility and backbone ensembles. DEEPer provably finds the GMEC or, if desired by the user, all conformations and sequences within a specified energy window of the GMEC. It includes the new abilities to handle arbitrarily large backbone perturbations and to generate ensembles of backbone conformations. It also incorporates the shear, an experimentally-observed local backbone motion never before used in design. Additionally, we derive a new method to accelerate DEE/A*-based calculations, indirect pruning, that is particularly useful for DEEPer. In 67 benchmark tests on 64 proteins, DEEPer consistently identified lower-energy conformations than previous methods did, indicating more accurate modeling. Additional tests demonstrated its ability to incorporate larger, experimentally-observed backbone conformational changes and to model realistic conformational ensembles. These capabilities provide significant advantages for modeling protein mutations and protein-ligand interactions. PMID:22821798

  3. Exploring the Gastrointestinal "Nemabiome": Deep Amplicon Sequencing to Quantify the Species Composition of Parasitic Nematode Communities.

    PubMed

    Avramenko, Russell W; Redman, Elizabeth M; Lewis, Roy; Yazwinski, Thomas A; Wasmuth, James D; Gilleard, John S

    2015-01-01

    Parasitic helminth infections have a considerable impact on global human health as well as animal welfare and production. Although co-infection with multiple parasite species within a host is common, there is a dearth of tools with which to study the composition of these complex parasite communities. Helminth species vary in their pathogenicity, epidemiology and drug sensitivity and the interactions that occur between co-infecting species and their hosts are poorly understood. We describe the first application of deep amplicon sequencing to study parasitic nematode communities as well as introduce the concept of the gastro-intestinal "nemabiome". The approach is analogous to 16S rDNA deep sequencing used to explore microbial communities, but utilizes the nematode ITS-2 rDNA locus instead. Gastro-intestinal parasites of cattle were used to develop the concept, as this host has many well-defined gastro-intestinal nematode species that commonly occur as complex co-infections. Further, the availability of pure mono-parasite populations from experimentally infected cattle allowed us to prepare mock parasite communities to determine, and correct for, species representation biases in the sequence data. We demonstrate that, once these biases have been corrected, accurate relative quantitation of gastro-intestinal parasitic nematode communities in cattle fecal samples can be achieved. We have validated the accuracy of the method applied to field-samples by comparing the results of detailed morphological examination of L3 larvae populations with those of the sequencing assay. The results illustrate the insights that can be gained into the species composition of parasite communities, using grazing cattle in the mid-west USA as an example. However, both the technical approach and the concept of the 'nemabiome' have a wide range of potential applications in human and veterinary medicine. These include investigations of host-parasite and parasite-parasite interactions during co-infection, parasite epidemiology, parasite ecology and the response of parasite populations to both drug treatments and control programs. PMID:26630572

  4. Enumeration search method for optimisation of stacking sequence of laminated composite plates subjected to buckling

    NASA Astrophysics Data System (ADS)

    Sedyono, Joko; Hadavinia, Homayoun; Venetsanos, Demetrios; Marchant, Denis R.

    2015-04-01

    Enumeration search method (ESM) checks all possible combinations of design variables in a bottom-up approach until it finds the global optimum solution for the design conditions. In this paper an optimum design of a multilayered laminated plate made of unidirectional fibre reinforced polymer (FRP) composite subject to uniaxial compression is sought.ESMtogether with classical laminated plate theory (CLPT) has been used to find the lightest laminate for maximizing the buckling load capable of providing structural stability for a set target uniaxial compression load. The choice of the design variables is limited to 4 possible fibres orientation angles (0,90,-45,+45) and the sequence of the laminate, making the problem an integer programming. Experimental and finite element analyses were used to verify the optimum solution. It has been shown that the exhaustive enumeration search method is a powerful tool for finding the global optimum design.

  5. Use of Composite Protein Database including Search Result Sequences for Mass Spectrometric Analysis of Cell Secretome

    PubMed Central

    Shin, Jihye; Kim, Gamin; Kabir, Mohammad Humayun; Park, Seong Jun; Lee, Seoung Taek; Lee, Cheolju

    2015-01-01

    Mass spectrometric (MS) data of human cell secretomes are usually run through the conventional human database for identification. However, the search may result in false identifications due to contamination of the secretome with fetal bovine serum (FBS) proteins. To overcome this challenge, here we provide a composite protein database including human as well as 199 FBS protein sequences for MS data search of human cell secretomes. Searching against the human-FBS database returned more reliable results with fewer false-positive and false-negative identifications compared to using either a human only database or a human-bovine database. Furthermore, the improved results validated our strategy without complex experiments like SILAC. We expect our strategy to improve the accuracy of human secreted protein identification and to also add value for general use. PMID:25822838

  6. Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals.

    PubMed

    Sun, Qingyu; Nelson, Hosea; Ly, Tony; Stoltz, Brian M; Julian, Ryan R

    2009-02-01

    A crown ether based, photolabile radical precursor which forms noncovalent complexes with peptides has been prepared. The peptide/precursor complexes can be electrosprayed, isolated in an ion trap, and then subjected to laser photolysis and collision induced dissociation to generate hydrogen deficient peptide radicals. It is demonstrated that these peptide radicals behave very differently from the hydrogen rich peptide radicals generated by electron capture methods. In fact, it is shown that side chain chemistry dictates both the occurrence and relative abundance of backbone fragments that are observed. Fragmentation at aromatic residues occurs preferentially over most other amino acids. The origin of this selectivity relates to the mechanism by which backbone dissociation is initiated. The first step is abstraction of a beta-hydrogen from the side chain, followed by beta-elimination to yield primarily a-type fragment ions. Calculations reveal that those side chains which can easily lose a beta-hydrogen correlate well with experimentally favored sites for backbone fragmentation. In addition, radical mediated side chain losses from the parent peptide are frequently observed. Eleven amino acids exhibit unique mass losses from side chains which positively identify that particular amino acid as part of the parent peptide. Therefore, side chain losses allow one to unambiguously narrow the possible sequences for a parent peptide, which when combined with predictable backbone fragmentation should lead to greatly increased confidence in peptide identification. PMID:19113886

  7. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis.

    PubMed

    Paradiso, Veronica; Costabile, Chiara; Grisi, Fabia

    2016-01-01

    The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C?-symmetric and C?-symmetric NHCs is provided. PMID:26805793

  8. High Speed Fibre Optic Backbone LAN

    NASA Astrophysics Data System (ADS)

    Tanimoto, Masaaki; Hara, Shingo; Kajita, Yuji; Kashu, Fumitoshi; Ikeuchi, Masaru; Hagihara, Satoshi; Tsuzuki, Shinji

    1987-09-01

    Our firm has developed the SUMINET-4100 series, a fibre optic local area network (LAN), to serve the communications system trunk line needs for facilities, such as steel refineries, automobile plants and university campuses, that require large transmission capacity, and for the backbone networks used in intelligent building systems. The SUMINET-4100 series is already in service in various fields of application. Of the networks available in this series, the SUMINET-4150 has a trunk line speed of 128 Mbps and the multiplexer used for time division multiplexing (TDM) was enabled by designing an ECL-TTL gate array (3000 gates) based custom LSI. The synchronous, full-duplex V.24 and V.3.5 interfaces (SUMINET-2100) are provided for use with general purpose lines. And the IBM token ring network, the SUMINET-3200, designed for heterogeneous PCs and the Ethernet can all be connected to sub loops. Further, the IBM 3270 TCA and 5080 CADAM can be connected in the local mode. Interfaces are also provided for the NTT high-speed digital service, the digital PBX systems, and the Video CODEC system. The built-in loop monitor (LM) and network supervisory processor (NSP) provide management of loop utilization and send loop status signals to the host CPU's network configuration and control facility (NCCF). These built-in functions allow both the computer system and LAN to be managed from a single source at the host. This paper outlines features of the SUMINET-4150 and provides an example of its installation.

  9. Extracting the information backbone in online system.

    PubMed

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such "less can be more" feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  10. Extracting the Information Backbone in Online System

    PubMed Central

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such less can be more feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  11. NET amyloidogenic backbone in human activated neutrophils.

    PubMed

    Pulze, L; Bassani, B; Gini, E; D'Antona, P; Grimaldi, A; Luini, A; Marino, F; Noonan, D M; Tettamanti, G; Valvassori, R; de Eguileor, M

    2016-03-01

    Activated human neutrophils produce a fibrillar DNA network [neutrophil extracellular traps (NETs)] for entrapping and killing bacteria, fungi, protozoa and viruses. Our results suggest that the neutrophil extracellular traps show a resistant amyloidogenic backbone utilized for addressing reputed proteins and DNA against the non-self. The formation of amyloid fibrils in neutrophils is regulated by the imbalance of reactive oxygen species (ROS) in the cytoplasm. The intensity and source of the ROS signal is determinant for promoting stress-associated responses such as amyloidogenesis and closely related events: autophagy, exosome release, activation of the adrenocorticotrophin hormone/α-melanocyte-stimulating hormone (ACTH/α-MSH) loop and synthesis of specific cytokines. These interconnected responses in human activated neutrophils, that have been evaluated from a morphofunctional and quantitative viewpoint, represent primitive, but potent, innate defence mechanisms. In invertebrates, circulating phagocytic immune cells, when activated, show responses similar to those described previously for activated human neutrophils. Invertebrate cells within endoplasmic reticulum cisternae produce a fibrillar material which is then assembled into an amyloidogenic scaffold utilized to convey melanin close to the invader. These findings, in consideration to the critical role played by NET in the development of several pathologies, could explain the structural resistance of these scaffolds and could provide the basis for developing new diagnostic and therapeutic approaches in immunomediated diseases in which the innate branch of the immune system has a pivotal role. PMID:26462606

  12. Manipulating the backbone structure of semiconducting polymers

    NASA Astrophysics Data System (ADS)

    Luscombe, Christine

    2015-03-01

    Pi-Conjugated polymers are being used in the fabrication of a wide variety of organic electronic devices such as organic field-effect transistors (OFETs), organic photovoltaic (OPV) devices, and organic light-emitting diodes (OLEDs). The advances made in organic electronics have been driven by the syntheses of pi-conjugated polymers with increasingly complex structures but have heavily relied on an Edisonian approach. Despite these advances, there are many contradictory reports in the literature about our understanding of the performance of π-conjugated polymers in many applications. Our group has been studying and developing techniques to grow semiconducting polymers using a living polymerization method. This has allowed us to synthesize polymer architectures that we haven't been able to access till now including polythiophene brushes, star-shaped P3HT, as well as hyperbranched P3HT. It also allows us to accurately control the molecular weights of P3HT and produce materials with a narrow molecular weight distribution. In this presentation, our work towards creating brush polymers will be presented where a series of fully conjugated graft copolymers containing poly(3-hexylthiophene) (P3HT) side chains and a p-type carbazole-diketopyrrolopyrrole donor-acceptor backbone were synthesized via a graft through Suzuki polymerization.

  13. HASH: a program to accurately predict protein H? shifts from neighboring backbone shifts.

    PubMed

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    2013-01-01

    Chemical shifts provide not only peak identities for analyzing nuclear magnetic resonance (NMR) data, but also an important source of conformational information for studying protein structures. Current structural studies requiring H(?) chemical shifts suffer from the following limitations. (1) For large proteins, the H(?) chemical shifts can be difficult to assign using conventional NMR triple-resonance experiments, mainly due to the fast transverse relaxation rate of C(?) that restricts the signal sensitivity. (2) Previous chemical shift prediction approaches either require homologous models with high sequence similarity or rely heavily on accurate backbone and side-chain structural coordinates. When neither sequence homologues nor structural coordinates are available, we must resort to other information to predict H(?) chemical shifts. Predicting accurate H(?) chemical shifts using other obtainable information, such as the chemical shifts of nearby backbone atoms (i.e., adjacent atoms in the sequence), can remedy the above dilemmas, and hence advance NMR-based structural studies of proteins. By specifically exploiting the dependencies on chemical shifts of nearby backbone atoms, we propose a novel machine learning algorithm, called HASH, to predict H(?) chemical shifts. HASH combines a new fragment-based chemical shift search approach with a non-parametric regression model, called the generalized additive model, to effectively solve the prediction problem. We demonstrate that the chemical shifts of nearby backbone atoms provide a reliable source of information for predicting accurate H(?) chemical shifts. Our testing results on different possible combinations of input data indicate that HASH has a wide rage of potential NMR applications in structural and biological studies of proteins. PMID:23242797

  14. RNA-Redesign: a web server for fixed-backbone 3D design of RNA

    PubMed Central

    Yesselman, Joseph D.; Das, Rhiju

    2015-01-01

    RNA is rising in importance as a design medium for interrogating fundamental biology and for developing therapeutic and bioengineering applications. While there are several online servers for design of RNA secondary structure, there are no tools available for the rational design of 3D RNA structure. Here we present RNA-Redesign (http://rnaredesign.stanford.edu), an online 3D design tool for RNA. This resource utilizes fixed-backbone design to optimize the sequence identity and nucleobase conformations of an RNA to match a desired backbone, analogous to fundamental tools that underlie rational protein engineering. The resulting sequences suggest thermostabilizing mutations that can be experimentally verified. Further, sequence preferences that differ between natural and computationally designed sequences can suggest whether natural sequences possess functional constraints besides folding stability, such as cofactor binding or conformational switching. Finally, for biochemical studies, the designed sequences can suggest experimental tests of 3D models, including concomitant mutation of base triples. In addition to the designs generated, detailed graphical analysis is presented through an integrated and user-friendly environment. PMID:25964298

  15. RNA-Redesign: a web server for fixed-backbone 3D design of RNA.

    PubMed

    Yesselman, Joseph D; Das, Rhiju

    2015-07-01

    RNA is rising in importance as a design medium for interrogating fundamental biology and for developing therapeutic and bioengineering applications. While there are several online servers for design of RNA secondary structure, there are no tools available for the rational design of 3D RNA structure. Here we present RNA-Redesign (http://rnaredesign.stanford.edu), an online 3D design tool for RNA. This resource utilizes fixed-backbone design to optimize the sequence identity and nucleobase conformations of an RNA to match a desired backbone, analogous to fundamental tools that underlie rational protein engineering. The resulting sequences suggest thermostabilizing mutations that can be experimentally verified. Further, sequence preferences that differ between natural and computationally designed sequences can suggest whether natural sequences possess functional constraints besides folding stability, such as cofactor binding or conformational switching. Finally, for biochemical studies, the designed sequences can suggest experimental tests of 3D models, including concomitant mutation of base triples. In addition to the designs generated, detailed graphical analysis is presented through an integrated and user-friendly environment. PMID:25964298

  16. Backbones of evolutionary history test biodiversity theory for microbes

    PubMed Central

    O’Dwyer, James P.; Kembel, Steven W.; Sharpton, Thomas J.

    2015-01-01

    Identifying the ecological and evolutionary mechanisms that determine biological diversity is a central question in ecology. In microbial ecology, phylogenetic diversity is an increasingly common and relevant means of quantifying community diversity, particularly given the challenges in defining unambiguous species units from environmental sequence data. We explore patterns of phylogenetic diversity across multiple bacterial communities drawn from different habitats and compare these data to evolutionary trees generated using theoretical models of biodiversity. We have two central findings. First, although on finer scales the empirical trees are highly idiosyncratic, on coarse scales the backbone of these trees is simple and robust, consistent across habitats, and displays bursts of diversification dotted throughout. Second, we find that these data demonstrate a clear departure from the predictions of standard neutral theories of biodiversity and that an alternative family of generalized models provides a qualitatively better description. Together, these results lay the groundwork for a theoretical framework to connect ecological mechanisms to observed phylogenetic patterns in microbial communities. PMID:26106159

  17. Backbones of evolutionary history test biodiversity theory for microbes.

    PubMed

    O'Dwyer, James P; Kembel, Steven W; Sharpton, Thomas J

    2015-07-01

    Identifying the ecological and evolutionary mechanisms that determine biological diversity is a central question in ecology. In microbial ecology, phylogenetic diversity is an increasingly common and relevant means of quantifying community diversity, particularly given the challenges in defining unambiguous species units from environmental sequence data. We explore patterns of phylogenetic diversity across multiple bacterial communities drawn from different habitats and compare these data to evolutionary trees generated using theoretical models of biodiversity. We have two central findings. First, although on finer scales the empirical trees are highly idiosyncratic, on coarse scales the backbone of these trees is simple and robust, consistent across habitats, and displays bursts of diversification dotted throughout. Second, we find that these data demonstrate a clear departure from the predictions of standard neutral theories of biodiversity and that an alternative family of generalized models provides a qualitatively better description. Together, these results lay the groundwork for a theoretical framework to connect ecological mechanisms to observed phylogenetic patterns in microbial communities. PMID:26106159

  18. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-10

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  19. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  20. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    NASA Astrophysics Data System (ADS)

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  1. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely. {copyright} {ital 1998 American Institute of Physics.}

  2. Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions.

    PubMed

    Schneeberger, Richard G; Zhang, Ke; Tatarinova, Tatiana; Troukhan, Max; Kwok, Shing F; Drais, Josh; Klinger, Kevin; Orejudos, Francis; Macy, Kimberly; Bhakta, Amit; Burns, James; Subramanian, Gopal; Donson, Jonathan; Flavell, Richard; Feldmann, Kenneth A

    2005-10-01

    Mobile insertion elements such as transposons and T-DNA generate useful genetic variation and are important tools for functional genomics studies in plants and animals. The spectrum of mutations obtained in different systems can be highly influenced by target site preferences inherent in the mechanism of DNA integration. We investigated the target site preferences of Agrobacterium T-DNA insertions in the chromosomes of the model plant Arabidopsis thaliana. The relative frequencies of insertions in genic and intergenic regions of the genome were calculated and DNA composition features associated with the insertion site flanking sequences were identified. Insertion frequencies across the genome indicate that T-strand integration is suppressed near centromeres and rDNA loci, progressively increases towards telomeres, and is highly correlated with gene density. At the gene level, T-DNA integration events show a statistically significant preference for insertion in the 5' and 3' flanking regions of protein coding sequences as well as the promoter region of RNA polymerase I transcribed rRNA gene repeats. The increased insertion frequencies in 5' upstream regions compared to coding sequences are positively correlated with gene expression activity and DNA sequence composition. Analysis of the relationship between DNA sequence composition and gene activity further demonstrates that DNA sequences with high CG-skew ratios are consistently correlated with T-DNA insertion site preference and high gene expression. The results demonstrate genomic and gene-specific preferences for T-strand integration and suggest that DNA sequences with a pronounced transition in CG- and AT-skew ratios are preferred targets for T-DNA integration. PMID:15744539

  3. Site-specific oligodeoxynucleotide backbone modification for the covalent incorporation of reporter groups

    SciTech Connect

    Fidanza, J.A.

    1992-01-01

    A protocol has been developed to enable the site-specific incorporation of reporter groups to the oligodeoxynucleotide backbone. The introduction of a reactive center within the oligonucleotide sequence was accomplished using relatively standard procedures and was compatible with automated DNA synthesis techniques. The site-specific introduction of a phosphorothioate diester was achieved by substitution of a nonbridging oxygen in an internucleotidic phosphodiester by sulfur. Phosphorothioate diester-containing oligodeoxynucleotides were amenable to alkylation with reporter groups containing haloacetamides, aziridine sulfonamides, or [gamma]-bromo-[alpha], [beta]-unsaturated carbonyls. Labeling reactions proceeded most efficiently after incubation for 24 h at 50[degrees]C in the pH range of 5-8. A thiol tether has been incorporated into the oligodeoxynucleotide backbone by oxidizing a specifically placed internucleotidic hydrogen-phosphonate in the presence of cystamine. The thiol is deprotected by treatment with dithiothreitol. The tethered sulfhydryl reacts with a large variety of functional groups, and may be used to extend reporter groups at a distance from the backbone. The phosphoramidate linkage is stable over a very large range of pH. The alkylation of oligodeoxynucleotides occurred solely at the phosphorothioate diester or at the tethered sulfhydryl. Duplex structures containing either a labeled phosphorothioate or thiol tether had thermal stabilities generally similar to those of the unlabeled sequence. Labeling of an internucleotidic phosphorothioate diester or a tethered thiol provides a rapid and simple method for the site-specific covalent attachment of fluorophores, spin labels, drug derivatives or prosthetic groups to the oligonucleotide backbone. The introduction of more than one reactive center may be accomplished without necessarily increasing the complexity of the overall procedure.

  4. A Novel Composite 90 Pulse Sequence Which Provides Distortionless NMR Spectra and Suppresses without Destroying the Water Magnetization

    NASA Astrophysics Data System (ADS)

    Sodano, P.; Landon, C.; Ptak, M.

    1998-07-01

    A novel 90 composite pulse sequence which allows one to record 1D and 2D NMR spectra without disturbing the water magnetization is described. A home-written program was used to optimize the pulse angles for which the pulse sequence response fitted best the desired excitation profile, producing a neat and distortionless spectrum with a broad null excitation at the carrier frequency. The resulting pulse sequence was first evaluated using the simulation program "PENCIL" and then tested on two protein samples. A 3.5 phase shift of the last pulse was required to cancel correctly the water signal. The pulse scheme was appended to a NOESY pulse sequence. Inspection of the water cross section revealed interactions between water and some protons of drosomycine, a small insect antifungal protein.

  5. A backbone lever-arm effect enhances polymer mechanochemistry.

    PubMed

    Klukovich, Hope M; Kouznetsova, Tatiana B; Kean, Zachary S; Lenhardt, Jeremy M; Craig, Stephen L

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity. PMID:23344431

  6. A backbone lever-arm effect enhances polymer mechanochemistry

    NASA Astrophysics Data System (ADS)

    Klukovich, Hope M.; Kouznetsova, Tatiana B.; Kean, Zachary S.; Lenhardt, Jeremy M.; Craig, Stephen L.

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity.

  7. Identification and characterization of Streptococcus agalactiae isolates using 16S rRNA sequencing and cellular fatty acid composition analysis.

    PubMed

    Qasem, J A; Al-Zenki, S; Al-Marzouk, A

    2010-01-01

    This study was undertaken to apply 16S rRNA sequence and Cellular Fatty Acid (CFA) composition analysis techniques for the identification and characterization of seven individual bacteria isolates obtained from seven infected fish samples. All samples were cultured on brain heart infusion agar. All the seven isolates were Gram positive and were identified as Streptococcus sp. The 16S rRNA sequencing method yielded about 1500 bps for each strain where upon the sequence was compared to nucleotide data in Gene Bank using BLASTN 2.2.1 sequence alignment from NCBI for the nucleotide comparison. The 16S rRNA gene sequence for all the seven samples had no sequence variation between the isolates and gave a 100% similarity to plus, plus strand with Streptococcus agalactiae strain A909 Accession number NC_007432.1 and S. agalactiae strain H36B (Accession number AAJS01000007). Also the 16S rRNA sequence showed a high (92-93%) similarity between S. agalactiae and S. equi, S. suis and S. uberis. All strains appeared to be nearly identical to each other after CFA analysis using Library Generation System (LGS) software (MIDI) and were consistent to that of S. agalactiae ATCC 12386, the CFA analysis not only confirmed the results of 16S rRNA sequence but also indicated a possibility of single source of infection. Despite their accuracy to identify the poorly described, rarely isolated, or phenotypically aberrant strains, 16S rRNA gene sequence analysis and CFA analysis lacks widespread use beyond the large and reference laboratories because of technical and cost considerations. PMID:20415147

  8. Radical-driven peptide backbone dissociation tandem mass spectrometry.

    PubMed

    Oh, Han Bin; Moon, Bongjin

    2015-01-01

    In recent years, a number of novel tandem mass spectrometry approaches utilizing radical-driven peptide gas-phase fragmentation chemistry have been developed. These approaches show a peptide fragmentation pattern quite different from that of collision-induced dissociation (CID). The peptide fragmentation features of these approaches share some in common with electron capture dissociation (ECD) or electron transfer dissociation (ETD) without the use of sophisticated equipment such as a Fourier-transform mass spectrometer. For example, Siu and coworkers showed that CID of transition metal (ligand)-peptide ternary complexes led to the formation of peptide radical ions through dissociative electron transfer (Chu et al., 2000. J Phys Chem B 104:3393-3397). The subsequent collisional activation of the generated radical ions resulted in a number of characteristic product ions, including a, c, x, z-type fragments and notable side-chain losses. Another example is the free radical initiated peptide sequencing (FRIPS) approach, in which Porter et al. and Beauchamp et al. independently introduced a free radical initiator to the primary amine group of the lysine side chain or N-terminus of peptides (Masterson et al., 2004. J Am Chem Soc 126:720-721; Hodyss et al., 2005 J Am Chem Soc 127: 12436-12437). Photodetachment of gaseous multiply charged peptide anions (Joly et al., 2008. J Am Chem Soc 130:13832-13833) and UV photodissociation of photolabile radical precursors including a C-I bond (Ly & Julian, 2008. J Am Chem Soc 130:351-358; Ly & Julian, 2009. J Am Soc Mass Spectrom 20:1148-1158) also provide another route to generate radical ions. In this review, we provide a brief summary of recent results obtained through the radical-driven peptide backbone dissociation tandem mass spectrometry approach. PMID:24863492

  9. Role of Backbone Dipole Interactions in the Formation of Secondary and Supersecondary Structures of Proteins

    PubMed Central

    2015-01-01

    We present a generic solvated coarse-grained protein model that can be used to characterize the driving forces behind protein folding. Each amino acid is coarse-grained with two beads, a backbone, and a side chain. Although the backbone beads are modeled as polar entities, side chains are hydrophobic, polar, or charged, thus allowing the exploration of how sequence patterning determines a protein fold. The change in orientation of the atoms of the coarse-grained unit is captured by the addition of two oppositely charged dummy particles inside the backbone coarse-grained bead. These two dummy charges represent a dipole that can fluctuate, thus introducing structural polarization into the coarse-grained model. Realistic ?/? content is achieved de novo without any biases in the force field toward a particular secondary structure. The dipoles created by the dummy particles interact with each other and drive the protein models to fold into unique structures depending on the amino acid patterning and presence of capping residues. We have also characterized the role of dipoledipole and dipolecharge interactions in shaping the secondary and supersecondary structure of proteins. Formation of helix bundles and ?-strands are also discussed. PMID:24932137

  10. Backbone structure of a small helical integral membrane protein: A unique structural characterization

    PubMed Central

    Page, Richard C; Lee, Sangwon; Moore, Jacob D; Opella, Stanley J; Cross, Timothy A

    2009-01-01

    The structural characterization of small integral membrane proteins pose a significant challenge for structural biology because of the multitude of molecular interactions between the protein and its heterogeneous environment. Here, the three-dimensional backbone structure of Rv1761c from Mycobacterium tuberculosis has been characterized using solution NMR spectroscopy and dodecylphosphocholine (DPC) micelles as a membrane mimetic environment. This 127 residue single transmembrane helix protein has a significant (10 kDa) C-terminal extramembranous domain. Five hundred and ninety distance, backbone dihedral, and orientational restraints were employed resulting in a 1.16 rmsd backbone structure with a transmembrane domain defined at 0.40 . The structure determination approach utilized residual dipolar coupling orientation data from partially aligned samples, long-range paramagnetic relaxation enhancement derived distances, and dihedral restraints from chemical shift indices to determine the global fold. This structural model of Rv1761c displays some influences by the membrane mimetic illustrating that the structure of these membrane proteins is dictated by a combination of the amino acid sequence and the protein's environment. These results demonstrate both the efficacy of the structural approach and the necessity to consider the biophysical properties of membrane mimetics when interpreting structural data of integral membrane proteins and, in particular, small integral membrane proteins. PMID:19177358

  11. HIV-1 Phenotypic Reverse Transcriptase Inhibitor Drug Resistance Test Interpretation Is Not Dependent on the Subtype of the Virus Backbone

    PubMed Central

    Bronze, Michelle; Steegen, Kim; Wallis, Carole L.; De Wolf, Hans; Papathanasopoulos, Maria A.; Van Houtte, Margriet; Stevens, Wendy S.; de Wit, Tobias Rinke; Stuyver, Lieven J.

    2012-01-01

    To date, the majority of HIV-1 phenotypic resistance testing has been performed with subtype B virus backbones (e.g. HXB2). However, the relevance of using this backbone to determine resistance in non-subtype B HIV-1 viruses still needs to be assessed. From 114 HIV-1 subtype C clinical samples (36 ARV-nave, 78 ARV-exposed), pol amplicons were produced and analyzed for phenotypic resistance using both a subtype B- and C-backbone in which the pol fragment was deleted. Phenotypic resistance was assessed in resulting recombinant virus stocks (RVS) for a series of antiretroviral drugs (ARV's) and expressed as fold change (FC), yielding 1660 FC comparisons. These Antivirogram derived FC values were categorized as having resistant or sensitive susceptibility based on biological cut-off values (BCOs). The concordance between resistance calls obtained for the same clinical sample but derived from two different backbones (i.e. B and C) accounted for 86.1% (1429/1660) of the FC comparisons. However, when taking the assay variability into account, 95.8% (1590/1660) of the phenotypic data could be considered as being concordant with respect to their resistance call. No difference in the capacity to detect resistance associated with M184V, K103N and V106M mutations was noted between the two backbones. The following was concluded: (i) A high level of concordance was shown between the two backbone phenotypic resistance profiles; (ii) Assay variability is largely responsible for discordant results (i.e. for FC values close to BCO); (iii) Confidence intervals should be given around the BCO's, when assessing resistance in HIV-1 subtype C; (iv) No systematic resistance under- or overcalling of subtype C amplicons in the B-backbone was observed; (v) Virus backbone subtype sequence variability outside the pol region does not contribute to phenotypic FC values. In conclusion the HXB2 virus backbone remains an acceptable vector for phenotyping HIV-1 subtype C pol amplicons. PMID:22496845

  12. Resonant magnetoelectric response of composite cantilevers: Theory of short vs. open circuit operation and layer sequence effects

    NASA Astrophysics Data System (ADS)

    Krantz, Matthias C.; Gugat, Jascha L.; Gerken, Martina

    2015-11-01

    The magnetoelectric effect in layered composite cantilevers consisting of strain coupled layers of magnetostrictive (MS), piezoelectric (PE), and substrate materials is investigated for magnetic field excitation at bending resonance. Analytic theories are derived for the transverse magnetoelectric (ME) response in short and open circuit operation for three different layer sequences and results presented and discussed for the FeCoBSi-AlN-Si and the FeCoBSi-PZT-Si composite systems. Response optimized PE-MS layer thickness ratios are found to greatly change with operation mode shifting from near equal MS and PE layer thicknesses in the open circuit mode to near vanishing PE layer thicknesses in short circuit operation for all layer sequences. In addition the substrate layer thickness is found to differently affect the open and short circuit ME response producing shifts and reversal between ME response maxima depending on layer sequence. The observed rich ME response behavior for different layer thicknesses, sequences, operating modes, and PE materials can be explained by common neutral plane effects and different elastic compliance effects in short and open circuit operation.

  13. A mapping of an ensemble of mitochondrial sequences for various organisms into 3D space based on the word composition.

    PubMed

    Aita, Takuyo; Nishigaki, Koichi

    2012-11-01

    To visualize a bird's-eye view of an ensemble of mitochondrial genome sequences for various species, we recently developed a novel method of mapping a biological sequence ensemble into Three-Dimensional (3D) vector space. First, we represented a biological sequence of a species s by a word-composition vector x(s), where its length [absolute value]x(s)[absolute value] represents the sequence length, and its unit vector x(s)/[absolute value]x(s)[absolute value] represents the relative composition of the K-tuple words through the sequence and the size of the dimension, N=4(K), is the number of all possible words with the length of K. Second, we mapped the vector x(s) to the 3D position vector y(s), based on the two following simple principles: (1) [absolute value]y(s)[absolute value]=[absolute value]x(s)[absolute value] and (2) the angle between y(s) and y(t) maximally correlates with the angle between x(s) and x(t). The mitochondrial genome sequences for 311 species, including 177 Animalia, 85 Fungi and 49 Green plants, were mapped into 3D space by using K=7. The mapping was successful because the angles between vectors before and after the mapping highly correlated with each other (correlation coefficients were 0.92-0.97). Interestingly, the Animalia kingdom is distributed along a single arc belt (just like the Milky Way on a Celestial Globe), and the Fungi and Green plant kingdoms are distributed in a similar arc belt. These two arc belts intersect at their respective middle regions and form a cross structure just like a jet aircraft fuselage and its wings. This new mapping method will allow researchers to intuitively interpret the visual information presented in the maps in a highly effective manner. PMID:22776549

  14. Backbone-driven collapse in unfolded protein chains.

    PubMed

    Teufel, Daniel P; Johnson, Christopher M; Lum, Jenifer K; Neuweiler, Hannes

    2011-06-01

    Collapse of unfolded protein chains is an early event in folding. It affects structural properties of intrinsically disordered proteins, which take a considerable fraction of the human proteome. Collapse is generally believed to be driven by hydrophobic forces imposed by the presence of nonpolar amino acid side chains. Contributions from backbone hydrogen bonds to protein folding and stability, however, are controversial. To date, the experimental dissection of side-chain and backbone contributions has not yet been achieved because both types of interactions are integral parts of protein structure. Here, we realized this goal by applying mutagenesis and chemical modification on a set of disordered peptides and proteins. We measured the protein dimensions and kinetics of intra-chain diffusion of modified polypeptides at the level of individual molecules using fluorescence correlation spectroscopy, thereby avoiding artifacts commonly caused by aggregation of unfolded protein material in bulk. We found no contributions from side chains to collapse but, instead, identified backbone interactions as a source sufficient to form globules of native-like dimensions. The presence of backbone hydrogen bonds decreased polypeptide water solubility dramatically and accelerated the nanosecond kinetics of loop closure, in agreement with recent predictions from computer simulation. The presence of side chains, instead, slowed loop closure and modulated the dimensions of intrinsically disordered domains. It appeared that the transient formation of backbone interactions facilitates the diffusive search for productive conformations at the early stage of folding and within intrinsically disordered proteins. PMID:21497607

  15. A consistent phylogenetic backbone for the fungi.

    PubMed

    Ebersberger, Ingo; de Matos Simoes, Ricardo; Kupczok, Anne; Gube, Matthias; Kothe, Erika; Voigt, Kerstin; von Haeseler, Arndt

    2012-05-01

    The kingdom of fungi provides model organisms for biotechnology, cell biology, genetics, and life sciences in general. Only when their phylogenetic relationships are stably resolved, can individual results from fungal research be integrated into a holistic picture of biology. However, and despite recent progress, many deep relationships within the fungi remain unclear. Here, we present the first phylogenomic study of an entire eukaryotic kingdom that uses a consistency criterion to strengthen phylogenetic conclusions. We reason that branches (splits) recovered with independent data and different tree reconstruction methods are likely to reflect true evolutionary relationships. Two complementary phylogenomic data sets based on 99 fungal genomes and 109 fungal expressed sequence tag (EST) sets analyzed with four different tree reconstruction methods shed light from different angles on the fungal tree of life. Eleven additional data sets address specifically the phylogenetic position of Blastocladiomycota, Ustilaginomycotina, and Dothideomycetes, respectively. The combined evidence from the resulting trees supports the deep-level stability of the fungal groups toward a comprehensive natural system of the fungi. In addition, our analysis reveals methodologically interesting aspects. Enrichment for EST encoded data-a common practice in phylogenomic analyses-introduces a strong bias toward slowly evolving and functionally correlated genes. Consequently, the generalization of phylogenomic data sets as collections of randomly selected genes cannot be taken for granted. A thorough characterization of the data to assess possible influences on the tree reconstruction should therefore become a standard in phylogenomic analyses. PMID:22114356

  16. A Consistent Phylogenetic Backbone for the Fungi

    PubMed Central

    Ebersberger, Ingo; de Matos Simoes, Ricardo; Kupczok, Anne; Gube, Matthias; Kothe, Erika; Voigt, Kerstin; von Haeseler, Arndt

    2012-01-01

    The kingdom of fungi provides model organisms for biotechnology, cell biology, genetics, and life sciences in general. Only when their phylogenetic relationships are stably resolved, can individual results from fungal research be integrated into a holistic picture of biology. However, and despite recent progress, many deep relationships within the fungi remain unclear. Here, we present the first phylogenomic study of an entire eukaryotic kingdom that uses a consistency criterion to strengthen phylogenetic conclusions. We reason that branches (splits) recovered with independent data and different tree reconstruction methods are likely to reflect true evolutionary relationships. Two complementary phylogenomic data sets based on 99 fungal genomes and 109 fungal expressed sequence tag (EST) sets analyzed with four different tree reconstruction methods shed light from different angles on the fungal tree of life. Eleven additional data sets address specifically the phylogenetic position of Blastocladiomycota, Ustilaginomycotina, and Dothideomycetes, respectively. The combined evidence from the resulting trees supports the deep-level stability of the fungal groups toward a comprehensive natural system of the fungi. In addition, our analysis reveals methodologically interesting aspects. Enrichment for EST encoded dataa common practice in phylogenomic analysesintroduces a strong bias toward slowly evolving and functionally correlated genes. Consequently, the generalization of phylogenomic data sets as collections of randomly selected genes cannot be taken for granted. A thorough characterization of the data to assess possible influences on the tree reconstruction should therefore become a standard in phylogenomic analyses. PMID:22114356

  17. LARC-IA: A flexible backbone polyimide

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; Stclair, Terry L.

    1990-01-01

    A new linear, aromatic, thermoplastic polyimide, prepared from oxydiphthalic anhydride (ODPA) and 3,4'-oxydianiline (ODA) in diglyme and identified as LARC-IA, was synthesized and evaluated. The monomers are relatively inexpensive and physiologically safe. Molecular weight was controlled by use of a monofunctional anhydride, phthalic anhydride (PA), in order to promote controlled flow and wetting properties. The polymer is considered a safe alternative to commercially available LARC-TPI which is prepared with an expensive diamine of uncertain carcinogenicity. The evaluation was based primarily on the polymer's adhesive properties as determined by thermal and water boil exposure of lap shear specimens. Strengths were determined at room temperature, 177, 204 and 232 C before and after exposure to determine the adhesive system's durability to adverse environments over a period of time. Other properties (FWT, G(1c), film and composite properties) were examined which were determined to be typical of a high temperature polyimide. Results of the study show a favorable comparison to LARC-TPI, a commercially available polyimide.

  18. Next generation sequencing shows high variation of the intestinal microbial species composition in Atlantic cod caught at a single location

    PubMed Central

    2013-01-01

    Background The observation that specific members of the microbial intestinal community can be shared among vertebrate hosts has promoted the concept of a core microbiota whose composition is determined by host-specific selection. Most studies investigating this concept in individual hosts have focused on mammals, yet the diversity of fish lineages provides unique comparative opportunities from an evolutionary, immunological and environmental perspective. Here we describe microbial intestinal communities of eleven individual Atlantic cod (Gadus morhua) caught at a single location based on an extensively 454 sequenced 16S rRNA library of the V3 region. Results We obtained a total of 280447 sequences and identify 573 Operational Taxonomic Units (OTUs) at 97% sequence similarity level, ranging from 40 to 228 OTUs per individual. We find that ten OTUs are shared, though the number of reads of these OTUs is highly variable. This variation is further illustrated by community diversity estimates that fluctuate several orders of magnitude among specimens. The shared OTUs belong to the orders of Vibrionales, which quantitatively dominate the Atlantic cod intestinal microbiota, followed by variable numbers of Bacteroidales, Erysipelotrichales, Clostridiales, Alteromonadales and Deferribacterales. Conclusions The microbial intestinal community composition varies significantly in individual Atlantic cod specimens caught at a single location. This high variation among specimens suggests that a complex combination of factors influence the species distribution of these intestinal communities. PMID:24206635

  19. Static magnetoelectric and magnetoelastic response of composite cantilevers: Theory of short vs. open circuit operation and layer sequence effects

    NASA Astrophysics Data System (ADS)

    Krantz, Matthias C.; Gugat, Jascha L.; Gerken, Martina

    2015-11-01

    The static bending-mode transverse magnetoelectric effect and the magnetic field-induced bending response of composite cantilevers with thin magnetostrictive (MS), piezoelectric (PE), and substrate (Sub) layers is investigated for the PE layer subjected to open and short circuit conditions. Analytic theories are presented for strain-coupled three layer composites of PE, MS, and Sub layers in all layer sequences. We use constitutive equations with linear coupling of stress, strain, H, E, and D fields and present results for the open and short circuit magnetoelectric and bending responses for arbitrary layer thickness ratios for the FeCoBSi-AlN-Si materials system. Besides a rich sequence dependent behavior the theory predicts great and systematic differences between the open and short circuit magnetoelectric response yielding maxima at similar MS and PE layer thicknesses in the open circuit and near vanishing PE layer thicknesses in the short circuit cases. In contrast, the open vs. short circuit bending response differences are pronounced but much smaller. Layer sequence systematics and implications for static H-field sensors will be discussed.

  20. Development of a Backbone Cyclic Peptide Library as Potential Antiparasitic Therapeutics Using Microwave Irradiation.

    PubMed

    Qvit, Nir; Kornfeld, Opher S

    2016-01-01

    Protein-protein interactions (PPIs) are intimately involved in almost all biological processes and are linked to many human diseases. Therefore, there is a major effort to target PPIs in basic research and in the pharmaceutical industry. Protein-protein interfaces are usually large, flat, and often lack pockets, complicating the discovery of small molecules that target such sites. Alternative targeting approaches using antibodies have limitations due to poor oral bioavailability, low cell-permeability, and production inefficiency. Using peptides to target PPI interfaces has several advantages. Peptides have higher conformational flexibility, increased selectivity, and are generally inexpensive. However, peptides have their own limitations including poor stability and inefficiency crossing cell membranes. To overcome such limitations, peptide cyclization can be performed. Cyclization has been demonstrated to improve peptide selectivity, metabolic stability, and bioavailability. However, predicting the bioactive conformation of a cyclic peptide is not trivial. To overcome this challenge, one attractive approach it to screen a focused library to screen in which all backbone cyclic peptides have the same primary sequence, but differ in parameters that influence their conformation, such as ring size and position. We describe a detailed protocol for synthesizing a library of backbone cyclic peptides targeting specific parasite PPIs. Using a rational design approach, we developed peptides derived from the scaffold protein Leishmania receptor for activated C-kinase (LACK). We hypothesized that sequences in LACK that are conserved in parasites, but not in the mammalian host homolog, may represent interaction sites for proteins that are critical for the parasites' viability. The cyclic peptides were synthesized using microwave irradiation to reduce reaction times and increase efficiency. Developing a library of backbone cyclic peptides with different ring sizes facilitates a systematic screen for the most biological active conformation. This method provides a general, fast, and facile way to synthesize cyclic peptides. PMID:26863382

  1. Essential oil composition and internal transcribed spacer (ITS) sequence variability of four South-Croatian Satureja species (Lamiaceae).

    PubMed

    Bezi?, Nada; Samani?, Ivica; Dunki?, Valerija; Besendorfer, Visnja; Puizina, Jasna

    2009-01-01

    The purpose of this study was to compare the essential oil profiles of four South-Croatian Satureja species, as determined by GC/FID and GC/MS, with their DNA sequences for an internal transcribed spacer (ITS1-5.8S-ITS2) of the nuclear ribosomal DNA. A phylogenetic analysis showed that S. montana and S. cuneifolia, characterized by a similar essential oil composition, rich in the monoterpene hydrocarbon carvacrol, clustered together with high and moderate bootstrap support. On the contrary, S. subspicata and S. visianii, characterized by quite unique essential oil compositions, clustered together with the moderate bootstrap support. All four Croatian Satureja species clustered in one clade, separately from Macaronesian S. hortensis,although it had essential oil composition similar to that of S. montana and S. cuneifolia. This is the first report on the comparison between the phytochemical and DNA sequence data in Satureja species and useful contribution to the better understanding of interspecies relationships in this genus. PMID:19255551

  2. Composition and properties of porous blend membranes containing tertiary amine based amphiphilic copolymers with different sequence structures.

    PubMed

    Yao, Zhikan; Cui, Yue; Zheng, Ke; Zhu, Baoku; Zhu, Liping

    2015-01-01

    Four tertiary amine based amphiphilic copolymers with similar composition but different sequence structures in terms of diblock (Poly(dimethylamino-2-ethyl methacrylate-b-methyl methacrylate) (P(MMA-b-DMAEMA))), triblock (P(DMAEMA-b-MMA-b-DMAEMA)), four-armed diblock (P(MMA-b-DMAEMA)4) and random (P(MMA-r-DMAEMA)) were synthesized and used for fabricating functional porous membranes by blending method. The retention ratios and surface enrichment ratios of the copolymers in blend membranes were determined by hydrogen nuclear magnetic resonance ((1)H-NMR) and X-ray photoelectron spectroscopy (XPS). The composition of the formed membranes was investigated and the durability was experimentally tested. The hydrophilicity of the membranes was evaluated by water contact angle measurement. The performance of membranes under different conditions including water fluxes at different pH and various ionic strength, the adsorption capabilities for Cr(VI) and negatively charged dye sunset yellow at different pH was studied. The results show that tertiary amine based amphiphilic copolymers with block and multi-armed sequence structures enable the blend membranes with higher copolymer retention ratios, more surface tertiary amine groups contents and better composition stability as well as more sensitive to the variation of pH, ionic strength, higher equilibrium anions, and negatively charged dyes uptakes. PMID:25313475

  3. Sequence stratigraphy and composition of late quaternary shelf-margin deltas, Northern Gulf of Mexico

    SciTech Connect

    Morton, R.A.; Suter, J.R.

    1996-04-01

    High-resolution seismic profiles and foundation borings from the northwestern Gulf of Mexico record the physical attributes and depositional histories of several late Quaternary sequences that were deposited by wave-modified, river-dominated shelf-margin deltas during successive periods of lowered sea level. Each progressively younger deltaic sequence is thinner and exhibits a systematic decrease in the abundance and concentration of sand, which is attributed to a shift in the axes of trunk streams and greater structural influence through time. Our study shows that (1) contemporaneous structural deformation controlled the thickness of each sequence, the oblique directions of delta progradation, the axes of major fluvial channels, and the geometries of delta lobes at the shelf margin; (2) sedimentation was rapid in response to rapid eustatic fluctuations and structural influence; (3) boundaries of these high-frequency sequences are the correlative conformities of updip fluvial incision and coincide with downlap surfaces at the shelf margin; (4) the downlap surfaces are not true surfaces, but zones of parallel reflections that become progressively higher and younger in the direction of progradation; (5) the downlap zones are composed of marine muds that do not contain the high concentrations of shell debris expected in condensed sections; (6) possible paleosols capping the two oldest sequences are regressive surfaces of subaerial exposure that were preserved during transgressions; and (7) no incised valleys or submarine canyons breach the paleoshelf margin, even though incised drainages were present updip and sea level curves indicate several periods of rapid fall.

  4. The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach

    PubMed Central

    2010-01-01

    Background Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp Chelonus inanitus (Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences. Results About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein. An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the Chelonus lineage. Venom components specific to C. inanitus included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences. In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase, an imaginal disc growth factor-like protein and two putative mucin-like peritrophins. Conclusions The use of the combined approaches has allowed to discriminate between cellular and truly venom proteins. The venom of C. inanitus appears as a mixture of conserved venom components and of potentially lineage-specific proteins. These new molecular data enrich our knowledge on parasitoid venoms and more generally, might contribute to a better understanding of the evolution and functional diversity of venom proteins within Hymenoptera. PMID:21138570

  5. Apollo 17 petrology and experimental determination of differentiation sequences in model moon compositions

    NASA Technical Reports Server (NTRS)

    Hodges, F. N.; Kushiro, I.

    1974-01-01

    Experimental studies of model moon compositions are discussed, taking into account questions related to the differentiation of the outer layer of the moon. Phase relations for a series of proposed lunar compositions have been determined and a petrographic and electron microprobe study was conducted on four Apollo 17 samples. Two of the samples consist of high-titanium mare basalts, one includes crushed anorthosite and gabbro, and another contains blue-gray breccia.

  6. Palynological composition of a Lower Cretaceous South American tropical sequence: Climatic implications and diversity comparisons with other latitudes.

    USGS Publications Warehouse

    Mejia-Velasquez, Paula J.; Dilcher, David L.; Jaramillo, Carlos A.; Fortini, Lucas B.; Manchester, Steven R.

    2012-01-01

    Premise of the study: Reconstruction of floristic patterns during the early diversification of angiosperms is impeded by the scarce fossil record, especially in tropical latitudes. Here we collected quantitative palynological data from a stratigraphic sequence in tropical South America to provide floristic and climatic insights into such tropical environments during the Early Cretaceous. Methods: We reconstructed the floristic composition of an Aptian-Albian tropical sequence from central Colombia using quantitative palynology (rarefied species richness and abundance) and used it to infer its predominant climatic conditions. Additionally, we compared our results with available quantitative data from three other sequences encompassing 70 floristic assemblages to determine latitudinal diversity patterns. Key results: Abundance of humidity indicators was higher than that of aridity indicators (61% vs. 10%). Additionally, we found an angiosperm latitudinal diversity gradient (LDG) for the Aptian, but not for the Albian, and an inverted LDG of the overall diversity for the Albian. Angiosperm species turnover during the Albian, however, was higher in humid tropics. Conclusions: There were humid climates in northwestern South America during the Aptian-Albian interval contrary to the widespread aridity expected for the tropical belt. The Albian inverted overall LDG is produced by a faster increase in per-sample angiosperm and pteridophyte diversity in temperate latitudes. However, humid tropical sequences had higher rates of floristic turnover suggesting a higher degree of morphological variation than in temperate regions.

  7. Limits on movement integration in children: The concatenation of trained subsequences into composite sequences as a specific experience-triggered skill.

    PubMed

    Ashtamker, Lilach; Karni, Avi

    2015-09-01

    Complex movement sequences may be easier to acquire in sub-segments. Nevertheless, the neuro-behavioral constraints on assembling short multi-element movement segments, acquired piecemeal and serially, into larger, composite units of action, are not clear. Here we examined the ability of children to combine movement subsequences into longer, composite, sequences. Eleven-year-olds were trained in the performance of two, 3-elements, finger-to-thumb opposition movement sequences and were tested, overnight, in the performance of composite, 6-elements, sequences. Two experiments were compared, differing only in whether or not a brief test for integration into a composite sequence was afforded immediately post-training. This composite sequence (Full) was a direct forward integration of the two subsequences, maintaining the order in which the two subsequences were trained. In both experiments, overnight performance of movement elements within the composite sequences was better than naive performance, but slower and less accurate compared to the performance of the identical movement elements in the context of the trained subsequences. Integration was as effective in the Full sequence as when the order between subsequences was switched (Reversed). However, the early test for subsequence integration was critical in inducing clear between-session ('offline') gains, as expressed in overnight performance, in both the Full and Reversed sequences. Without this brief experience in integration, no overnight gains were expressed in any of the 6-elements sequences. Moreover, the immediate post-training test resulted in a relative advantage of the Full and Reversed sequences over a 6-element sequence in which the order of the elements was mirror-reversed within each subsequence. Thus, training on subsequences may not spontaneously lead to an advantage in the performance of composite sequences, in children. However, an early brief experience with a composite sequence can suffice to trigger the establishment and consolidation of an integration routine. This routine is specific for the order of movement within the trained subsequences, but not for the order in which the subsequences were practiced. PMID:26004677

  8. Polyarylether composition and membrane

    DOEpatents

    Hung, Joyce (Auburn, AL); Brunelle, Daniel Joseph (Burnt Hills, NY); Harmon, Marianne Elisabeth (Redondo Beach, CA); Moore, David Roger (Albany, NY); Stone, Joshua James (Worcester, NY); Zhou, Hongyi (Niskayuna, NY); Suriano, Joseph Anthony (Clifton Park, NY)

    2010-11-09

    A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.

  9. The Graphical Representation of the Digital Astronaut Physiology Backbone

    NASA Technical Reports Server (NTRS)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  10. Impact of template backbone heterogeneity on RNA polymerase II transcription

    PubMed Central

    Xu, Liang; Wang, Wei; Zhang, Lu; Chong, Jenny; Huang, Xuhui; Wang, Dong

    2015-01-01

    Variations in the sugar component (ribose or deoxyribose) and the nature of the phosphodiester linkage (3?-5? or 2?-5? orientation) have been a challenge for genetic information transfer from the very beginning of evolution. RNA polymerase II (pol II) governs the transcription of DNA into precursor mRNA in all eukaryotic cells. How pol II recognizes DNA template backbone (phosphodiester linkage and sugar) and whether it tolerates the backbone heterogeneity remain elusive. Such knowledge is not only important for elucidating the chemical basis of transcriptional fidelity but also provides new insights into molecular evolution. In this study, we systematically and quantitatively investigated pol II transcriptional behaviors through different template backbone variants. We revealed that pol II can well tolerate and bypass sugar heterogeneity sites at the template but stalls at phosphodiester linkage heterogeneity sites. The distinct impacts of these two backbone components on pol II transcription reveal the molecular basis of template recognition during pol II transcription and provide the evolutionary insight from the RNA world to the contemporary imperfect DNA world. In addition, our results also reveal the transcriptional consequences from ribose-containing genomic DNA. PMID:25662224

  11. Increasing protein production by directed vector backbone evolution

    PubMed Central

    2013-01-01

    Recombinant protein production in prokaryotic and eukaryotic organisms was a key enabling technology for the rapid development of industrial and molecular biotechnology. However, despite all progress the improvement of protein production is an ongoing challenge and of high importance for cost-effective enzyme production. With the epMEGAWHOP mutagenesis protocol for vector backbone optimization we report a novel directed evolution based approach to increase protein production levels by randomly introducing mutations in the vector backbone. In the current study we validate the epMEGAWHOP mutagenesis protocol for three different expression systems. The latter demonstrated the general applicability of the epMEGAWHOP method. Cellulase and lipase production was doubled in one round of directed evolution by random mutagenesis of pET28a(+) and pET22b(+) vector backbones. Protease production using the vector pHY300PLK was increased ~4-times with an average of ~1.25 mutations per kb vector backbone. The epMEGAWHOP does not require any rational understanding of the expression machinery and can generally be applied to enzymes, expression vectors and related hosts. epMEGAWHOP is therefore from our point of view a robust, rapid and straight forward alternative for increasing protein production in general and for biotechnological applications. PMID:23890095

  12. Determination of backbone chain direction of PDA using FFM

    NASA Astrophysics Data System (ADS)

    Jo, Sadaharu; Okamoto, Kentaro; Takenaga, Mitsuru

    2010-01-01

    The effect of backbone chains on friction force was investigated on both Langmuir-Blodgett (LB) films of 10,12-heptacosadiynoic acid and the (0 1 0) surfaces of single crystals of 2,4-hexadiene-1,6-diol using friction force microscopy (FFM). It was observed that friction force decreased when the scanning direction was parallel to the [0 0 1] direction in both samples. Moreover, friction force decreased when the scanning direction was parallel to the crystallographic [1 0 2], [1 0 1], [1 0 0] and [1 0 1] directions in only the single crystals. For the LB films, the [0 0 1] direction corresponds to the backbone chain direction of 10,12-heptacosadiynoic acid. For the single crystals, both the [0 0 1] and [1 0 1] directions correspond to the backbone chain direction, and the [1 0 2], [1 0 0] and [1 0 1] directions correspond to the low-index crystallographic direction. In both the LB films and single crystals, the friction force was minimized when the directions of scanning and the backbone chain were parallel.

  13. Cooperative UAV-Based Communications Backbone for Sensor Networks

    SciTech Connect

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs are used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.

  14. A Multi-Objective Approach for Protein Structure Prediction Based on an Energy Model and Backbone Angle Preferences

    PubMed Central

    Tsay, Jyh-Jong; Su, Shih-Chieh; Yu, Chin-Sheng

    2015-01-01

    Protein structure prediction (PSP) is concerned with the prediction of protein tertiary structure from primary structure and is a challenging calculation problem. After decades of research effort, numerous solutions have been proposed for optimisation methods based on energy models. However, further investigation and improvement is still needed to increase the accuracy and similarity of structures. This study presents a novel backbone angle preference factor, which is one of the factors inducing protein folding. The proposed multiobjective optimisation approach simultaneously considers energy models and backbone angle preferences to solve the ab initio PSP. To prove the effectiveness of the multiobjective optimisation approach based on the energy models and backbone angle preferences, 75 amino acid sequences with lengths ranging from 22 to 88 amino acids were selected from the CB513 data set to be the benchmarks. The data sets were highly dissimilar, therefore indicating that they are meaningful. The experimental results showed that the root-mean-square deviation (RMSD) of the multiobjective optimization approach based on energy model and backbone angle preferences was superior to those of typical energy models, indicating that the proposed approach can facilitate the ab initio PSP. PMID:26151847

  15. A Multi-Objective Approach for Protein Structure Prediction Based on an Energy Model and Backbone Angle Preferences.

    PubMed

    Tsay, Jyh-Jong; Su, Shih-Chieh; Yu, Chin-Sheng

    2015-01-01

    Protein structure prediction (PSP) is concerned with the prediction of protein tertiary structure from primary structure and is a challenging calculation problem. After decades of research effort, numerous solutions have been proposed for optimisation methods based on energy models. However, further investigation and improvement is still needed to increase the accuracy and similarity of structures. This study presents a novel backbone angle preference factor, which is one of the factors inducing protein folding. The proposed multiobjective optimisation approach simultaneously considers energy models and backbone angle preferences to solve the ab initio PSP. To prove the effectiveness of the multiobjective optimisation approach based on the energy models and backbone angle preferences, 75 amino acid sequences with lengths ranging from 22 to 88 amino acids were selected from the CB513 data set to be the benchmarks. The data sets were highly dissimilar, therefore indicating that they are meaningful. The experimental results showed that the root-mean-square deviation (RMSD) of the multiobjective optimization approach based on energy model and backbone angle preferences was superior to those of typical energy models, indicating that the proposed approach can facilitate the ab initio PSP. PMID:26151847

  16. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity

    PubMed Central

    Ollikainen, Noah; de Jong, Ren M.; Kortemme, Tanja

    2015-01-01

    Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of proteinligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art fixed backbone design methods perform poorly on these tests, we develop a new coupled moves design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution. PMID:26397464

  17. Elevated nutrients change bacterial community composition and connectivity: high throughput sequencing of young marine biofilms.

    PubMed

    Lawes, Jasmin C; Neilan, Brett A; Brown, Mark V; Clark, Graeme F; Johnston, Emma L

    2016-01-01

    Biofilms are integral to many marine processes but their formation and function may be affected by anthropogenic inputs that alter environmental conditions, including fertilisers that increase nutrients. Density composition and connectivity of biofilms developed in situ (under ambient and elevated nutrients) were compared using 454-pyrosequencing of the 16S gene. Elevated nutrients shifted community composition from bacteria involved in higher processes (eg Pseudoalteromonas spp. invertebrate recruitment) towards more nutrient-tolerant bacterial species (eg Terendinibacter sp.). This may enable the persistence of biofilm communities by increasing resistance to nutrient inputs. A core biofilm microbiome was identified (predominantly Alteromonadales and Oceanospirillales) and revealed shifts in abundances of core microbes that could indicate enrichment by fertilisers. Fertiliser decreased density and connectivity within biofilms indicating that associations were disrupted perhaps via changes to energetic allocations within the core microbiome. Density composition and connectivity changes suggest nutrients can affect the stability and function of these important marine communities. PMID:26751559

  18. Synthesis and biological activities of new side chain and backbone cyclic bradykinin analogues.

    PubMed

    Schumann, C; Seyfarth, L; Greiner, G; Paegelow, I; Reissmann, S

    2002-08-01

    A series of conformationally constrained cyclic analogues of the peptide hormone bradykinin (BK, Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) was synthesized to check different turned structures proposed for the bioactive conformation of BK agonists and antagonists. Cycles differing in the size and direction of the lactam bridge were performed at the C- and N-terminal sequences of the molecule. Glutamic acid and lysine were introduced into the native BK sequence at different positions for cyclization through their side chains. Backbone cyclic analogues were synthesized by incorporation of N-carboxy alkylated and N-amino alkylated amino acids into the peptide chain. Although the coupling of Fmoc-glycine to the N-alkylated phenylalanine derivatives was effected with DIC/HOAt in SPPS, the dipeptide building units with more bulky amino acids were pre-built in solution. For backbone cyclization at the C-terminus an alternative building unit with an acylated reduced peptide bond was preformed in solution. Both types of building units were handled in the SPPS in the same manner as amino acids. The agonistic and antagonistic activities of the cyclic BK analogues were determined in rat uterus (RUT) and guinea-pig ileum (GPI) assays. Additionally, the potentiation of the BK-induced effects was examined. Among the series of cyclic BK agonists only compound 3 with backbone cyclization between positions 2 and 5 shows a significant agonistic activity on RUT. To study the influence of intramolecular ring closure we used an antagonistic analogue with weak activity, [D-Phe7]-BK. Side chain as well as backbone cyclization in the N-terminus of [D-Phe7]-BK resulted in analogues with moderate antagonistic activity on RUT. Also, compound 18 in which a lactam bridge between positions 6 and 9 was achieved via an acylated reduced peptide bond has moderate antagonistic activity on RUT. These results support the hypothesis of turn structures in both parts of the molecule as a requirement for BK antagonism. Certain active and inactive agonists and antagonists are able to potentiate the bradykinin-induced contraction of guinea-pig ileum. PMID:12102726

  19. Triazole linkages and backbone branches in nucleic acids for biological and extra-biological applications

    NASA Astrophysics Data System (ADS)

    Paredes, Eduardo

    The recently increasing evidence of nucleic acids' alternative roles in biology and potential as useful nanomaterials and therapeutic agents has enabled the development of useful probes, elaborate nanostructures and therapeutic effectors based on nucleic acids. The study of alternative nucleic acid structure and function, particularly RNA, hinges on the ability to introduce site-specific modifications that either provide clues to the nucleic acid structure function relationship or alter the nucleic acid's function. Although the available chemistries allow for the conjugation of useful labels and molecules, their limitations lie in their tedious conjugation conditions or the lability of the installed probes. The development and optimization of click chemistry with RNA now provides the access to a robust and orthogonal conjugation methodology while providing stable conjugates. Our ability to introduce click reactive groups enzymatically, rather than only in the solid-phase, allows for the modification of larger, more cell relevant RNAs. Additionally, ligation of modified RNAs with larger RNA constructs through click chemistry represents an improvement over traditional ligation techniques. We determined that the triazole linkage generated through click chemistry is compatible in diverse nucleic acid based biological systems. Click chemistry has also been developed for extra-biological applications, particularly with DNA. We have expanded its use to generate useful polymer-DNA conjugates which can form controllable soft nanoparticles which take advantage of DNA's properties, i.e. DNA hybridization and computing. Additionally, we have generated protein-DNA conjugates and assembled protein-polymer hybrids mediated by DNA hybridization. The use of click chemistry in these reactions allows for the facile synthesis of these unnatural conjugates. We have also developed backbone branched DNA through click chemistry and showed that these branched DNAs are useful in generating well-defined architectures based solely on DNA. While backbone branched DNAs are useful for nanotechnological applications, backbone branches in RNA occur in nature and are involved in the distinct but related processes of splicing, debranching and RNAi. Therefore we have developed protocols for the synthesis of backbone branched nucleic acids in the solid-phase using photoprotecting groups. Using the synthesized backbone branched RNAs we have uncovered a specific substrate requirement of debranching enzyme which distinguishes it from other homologous proteins with alternative functions. Finally, through the marriage of click chemistry and backbone branches, we have produced useful progeny in the synthesis of lariat RNAs. We investigated the potential of these lariats as therapeutic agents by synthesizing siRNA sequences as lariats. We showed that these lariats are efficiently debranched by debranching enzyme and are able to induce an RNAi response in vivo. Altogether, the development of click chemistry and backbone branched nucleic acids represents a significant advantage in the ability to modify nucleic acid structure and affect its function. I envision that these methods can become generally useful to probe nucleic acid systems, useful nanomaterials and functional effectors in nucleic acid based therapies.

  20. Contribution of Peptide Backbone to Anti-Citrullinated Peptide Antibody Reactivity

    PubMed Central

    Trier, Nicole Hartwig; Dam, Catharina Essendrup; Olsen, Dorthe Tange; Hansen, Paul Robert; Houen, Gunnar

    2015-01-01

    Rheumatoid arthritis (RA) is one of the most common autoimmune diseases, affecting approximately 12% of the world population. One of the characteristic features of RA is the presence of autoantibodies. Especially the highly specific anti-citrullinated peptide antibodies (ACPAs), which have been found in up to 70% of RA patients sera, have received much attention. Several citrullinated proteins are associated with RA, suggesting that ACPAs may react with different sequence patterns, separating them from traditional antibodies, whose reactivity usually is specific towards a single target. As ACPAs have been suggested to be involved in the development of RA, knowledge about these antibodies may be crucial. In this study, we examined the influence of peptide backbone for ACPA reactivity in immunoassays. The antibodies were found to be reactive with a central Cit-Gly motif being essential for ACPA reactivity and to be cross-reactive between the selected citrullinated peptides. The remaining amino acids within the citrullinated peptides were found to be of less importance for antibody reactivity. Moreover, these findings indicated that the Cit-Gly motif in combination with peptide backbone is essential for antibody reactivity. Based on these findings it was speculated that any amino acid sequence, which brings the peptide into a properly folded structure for antibody recognition is sufficient for antibody reactivity. These findings are in accordance with the current hypothesis that structural homology rather than sequence homology are favored between citrullinated epitopes. These findings are important in relation to clarifying the etiology of RA and to determine the nature of ACPAs, e.g. why some Cit-Gly-containing sequences are not targeted by ACPAs. PMID:26657009

  1. Fragmentation Characteristics of Deprotonated N-linked Glycopeptides: Influences of Amino Acid Composition and Sequence

    NASA Astrophysics Data System (ADS)

    Nishikaze, Takashi; Kawabata, Shin-ichirou; Tanaka, Koichi

    2014-06-01

    Glycopeptide structural analysis using tandem mass spectrometry is becoming a common approach for elucidating site-specific N-glycosylation. The analysis is generally performed in positive-ion mode. Therefore, fragmentation of protonated glycopeptides has been extensively investigated; however, few studies are available on deprotonated glycopeptides, despite the usefulness of negative-ion mode analysis in detecting glycopeptide signals. Here, large sets of glycopeptides derived from well-characterized glycoproteins were investigated to understand the fragmentation behavior of deprotonated N-linked glycopeptides under low-energy collision-induced dissociation (CID) conditions. The fragment ion species were found to be significantly variable depending on their amino acid sequence and could be classified into three types: (i) glycan fragment ions, (ii) glycan-lost fragment ions and their secondary cleavage products, and (iii) fragment ions with intact glycan moiety. The CID spectra of glycopeptides having a short peptide sequence were dominated by type (i) glycan fragments (e.g., 2,4AR, 2,4AR-1, D, and E ions). These fragments define detailed structural features of the glycan moiety such as branching. For glycopeptides with medium or long peptide sequences, the major fragments were type (ii) ions (e.g., [peptide + 0,2X0-H]- and [peptide-NH3-H]-). The appearance of type (iii) ions strongly depended on the peptide sequence, and especially on the presence of Asp, Asn, and Glu. When a glycosylated Asn is located on the C-terminus, an interesting fragment having an Asn residue with intact glycan moiety, [glycan + Asn-36]-, was abundantly formed. Observed fragments are reasonably explained by a combination of existing fragmentation rules suggested for N-glycans and peptides.

  2. Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol.

    PubMed

    Milani, Christian; Lugli, Gabriele A; Turroni, Francesca; Mancabelli, Leonardo; Duranti, Sabrina; Viappiani, Alice; Mangifesta, Marta; Segata, Nicola; van Sinderen, Douwe; Ventura, Marco

    2014-11-01

    The precise appraisal of the composition of the human gut microbiota still represents a challenging task. The advent of next generation sequencing approaches has opened new ways to dissect the microbial biodiversity of this ecosystem through the use of 16S rRNA gene-based microbiota analysis approaches. However, the detailed representation of specific groups or members of the human gut microbiota, for example Bifidobacteria, may be skewed by the PCR primers employed in the amplification step of the 16S rRNA gene-based microbial profiling pipeline and by the limited resolution of the 16S rRNA gene variable regions. Here, we define the internal transcribed spacer (ITS) sequences of all currently known Bifidobacterium taxa, providing a Bifidobacterium-specific primer pair that targets a hypervariable region within the ITS suitable for precise taxonomic identification of all 48 so far recognized members of the Bifidobacterium genus. In addition, we present an optimized protocol for ITS-based profiling utilizing qiime software, allowing accurate and subspecies-specific compositional reconstruction of the bifidobacterial community in the human gut. PMID:25117972

  3. Comparative genomics of pAKD4, the prototype IncP-1?plasmid with a complete backbone

    PubMed Central

    Sen, Diya; Yano, Hirokazu; Suzuki, Haruo; Krl, Jaroslaw E.; Rogers, Linda; Brown, Celeste J.; Top, Eva M.

    2010-01-01

    Plasmids of the incompatibility group IncP-1 are important agents of horizontal gene transfer and contribute to the spread of antibiotic resistance and xenobiotic degradation within bacterial communities. Even though some prototype plasmids have been studied in much detail, the diversity of this plasmid group was still greatly underestimated until recently, as only two of the five currently known divergent sub-groups had been described. To further improve our insight into the diversity and evolutionary history of this family of broad-host-range plasmids, we compared the complete nucleotide sequence of a new IncP-1? plasmid pAKD4 to the genomes of other IncP-1 plasmids. Plasmid pAKD4 was previously isolated by exogenous plasmid isolation from an agricultural soil in Norway. Its 56,803 bp nucleotide sequence shows high similarity in gene sequence and gene order to both plasmids pEST4011 and pIJB1, the only other IncP-1? plasmids sequenced so far. While all three plasmids have a typical IncP-1 backbone comprising replication, transfer and stable inheritance/control genes, the low sequence similarity in some regions and presence/absence of some backbone genes compared to other IncP-1 plasmids cluster them in a divergent sub-group. Therefore this study validates the presence of a real IncP-1? clade with multiple plasmids. Moreover, since both pEST4011 and pIJB1 are missing a portion of their transfer genes, pAKD4 represents the first completely sequenced self-transferable plasmid with a complete IncP-1? backbone. We therefore propose it to be the prototype IncP-1? plasmid. PMID:20018208

  4. Damage of DNA backbone by nanoscale shock waves

    NASA Astrophysics Data System (ADS)

    Yakubovich, Alexander V.; Surdutovich, Eugene; Solov'yov, Andrey V.

    2012-07-01

    By means of full-atom molecular dynamics simulations we investigate the process of DNA backbone damage by nanoscale shock waves in a water environment. These shock waves are created by ions penetrating the medium with high linear energy transfer. The high rate of the ions' energy transfer to the surrounding molecules leads to the rapid increase of the temperature in the vicinity of the ion trajectory, which causes the formation of shock waves propagating through the medium. We have investigated the ions' linear energy transfer of 900, 2000 and 5000 eV/nm. In the case of a linear energy transfer of 5000 eV/nm the deposition exerts unsustainable stress onthe DNA molecule, which leads to the breakage of DNA backbone covalent bonds by thermomechanical effects.

  5. Sequence-based analysis of the microbial composition of water kefir from multiple sources.

    PubMed

    Marsh, Alan J; O'Sullivan, Orla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2013-11-01

    Water kefir is a water-sucrose-based beverage, fermented by a symbiosis of bacteria and yeast to produce a final product that is lightly carbonated, acidic and that has a low alcohol percentage. The microorganisms present in water kefir are introduced via water kefir grains, which consist of a polysaccharide matrix in which the microorganisms are embedded. We aimed to provide a comprehensive sequencing-based analysis of the bacterial population of water kefir beverages and grains, while providing an initial insight into the corresponding fungal population. To facilitate this objective, four water kefirs were sourced from the UK, Canada and the United States. Culture-independent, high-throughput, sequencing-based analyses revealed that the bacterial fraction of each water kefir and grain was dominated by Zymomonas, an ethanol-producing bacterium, which has not previously been detected at such a scale. The other genera detected were representatives of the lactic acid bacteria and acetic acid bacteria. Our analysis of the fungal component established that it was comprised of the genera Dekkera, Hanseniaspora, Saccharomyces, Zygosaccharomyces, Torulaspora and Lachancea. This information will assist in the ultimate identification of the microorganisms responsible for the potentially health-promoting attributes of these beverages. PMID:24004255

  6. Geometry motivated alternative view on local protein backbone structures.

    PubMed

    Zacharias, Jan; Knapp, Ernst Walter

    2013-11-01

    We present an alternative to the classical Ramachandran plot (R-plot) to display local protein backbone structure. Instead of the (φ, ψ)-backbone angles relating to the chemical architecture of polypeptides generic helical parameters are used. These are the rotation or twist angle ϑ and the helical rise parameter d. Plots with these parameters provide a different view on the nature of local protein backbone structures. It allows to display the local structures in polar (d, ϑ)-coordinates, which is not possible for an R-plot, where structural regimes connected by periodicity appear disconnected. But there are other advantages, like a clear discrimination of the handedness of a local structure, a larger spread of the different local structure domains--the latter can yield a better separation of different local secondary structure motives--and many more. Compared to the R-plot we are not aware of any major disadvantage to classify local polypeptide structures with the (d, ϑ)-plot, except that it requires some elementary computations. To facilitate usage of the new (d, ϑ)-plot for protein structures we provide a web application (http://agknapp.chemie.fu-berlin.de/secsass), which shows the (d, ϑ)-plot side-by-side with the R-plot. PMID:24002904

  7. Exploring the Gastrointestinal “Nemabiome”: Deep Amplicon Sequencing to Quantify the Species Composition of Parasitic Nematode Communities

    PubMed Central

    Avramenko, Russell W.; Redman, Elizabeth M.; Lewis, Roy; Yazwinski, Thomas A.; Wasmuth, James D.; Gilleard, John S.

    2015-01-01

    Parasitic helminth infections have a considerable impact on global human health as well as animal welfare and production. Although co-infection with multiple parasite species within a host is common, there is a dearth of tools with which to study the composition of these complex parasite communities. Helminth species vary in their pathogenicity, epidemiology and drug sensitivity and the interactions that occur between co-infecting species and their hosts are poorly understood. We describe the first application of deep amplicon sequencing to study parasitic nematode communities as well as introduce the concept of the gastro-intestinal “nemabiome”. The approach is analogous to 16S rDNA deep sequencing used to explore microbial communities, but utilizes the nematode ITS-2 rDNA locus instead. Gastro-intestinal parasites of cattle were used to develop the concept, as this host has many well-defined gastro-intestinal nematode species that commonly occur as complex co-infections. Further, the availability of pure mono-parasite populations from experimentally infected cattle allowed us to prepare mock parasite communities to determine, and correct for, species representation biases in the sequence data. We demonstrate that, once these biases have been corrected, accurate relative quantitation of gastro-intestinal parasitic nematode communities in cattle fecal samples can be achieved. We have validated the accuracy of the method applied to field-samples by comparing the results of detailed morphological examination of L3 larvae populations with those of the sequencing assay. The results illustrate the insights that can be gained into the species composition of parasite communities, using grazing cattle in the mid-west USA as an example. However, both the technical approach and the concept of the ‘nemabiome’ have a wide range of potential applications in human and veterinary medicine. These include investigations of host-parasite and parasite-parasite interactions during co-infection, parasite epidemiology, parasite ecology and the response of parasite populations to both drug treatments and control programs. PMID:26630572

  8. Bioinformatical parsing of folding-on-binding proteins reveals their compositional and evolutionary sequence design.

    PubMed

    Narasumani, Mohanalakshmi; Harrison, Paul M

    2015-01-01

    Intrinsic disorder occurs when (part of) a protein remains unfolded during normal functioning. Intrinsically-disordered regions can contain segments that 'fold on binding' to another molecule. Here, we perform bioinformatical parsing of human 'folding-on-binding' (FB) proteins, into four subsets: Ordered regions, FB regions, Disordered regions that surround FB regions ('Disordered-around-FB'), and Other-Disordered regions. We examined the composition and evolutionary behaviour (across vertebrate orthologs) of these subsets. From a convergence of three separate analyses, we find that for hydrophobicity, Ordered regions segregate from the other subsets, but the Ordered and FB regions group together as highly conserved, and the Disordered-around-FB and Other-Disordered regions as less conserved (with a lesser significant difference between Ordered and FB regions). FB regions are highly-conserved with net positive charge, whereas Disordered-around-FB have net negative charge and are relatively less hydrophobic than FB regions. Indeed, these Disordered-around-FB regions are excessively hydrophilic compared to other disordered regions generally. We describe how our results point towards a possible compositionally-based steering mechanism of folding-on-binding. PMID:26678310

  9. Bioinformatical parsing of folding-on-binding proteins reveals their compositional and evolutionary sequence design

    PubMed Central

    Narasumani, Mohanalakshmi; Harrison, Paul M

    2015-01-01

    Intrinsic disorder occurs when (part of) a protein remains unfolded during normal functioning. Intrinsically-disordered regions can contain segments that fold on binding to another molecule. Here, we perform bioinformatical parsing of human folding-on-binding (FB) proteins, into four subsets: Ordered regions, FB regions, Disordered regions that surround FB regions (Disordered-around-FB), and Other-Disordered regions. We examined the composition and evolutionary behaviour (across vertebrate orthologs) of these subsets. From a convergence of three separate analyses, we find that for hydrophobicity, Ordered regions segregate from the other subsets, but the Ordered and FB regions group together as highly conserved, and the Disordered-around-FB and Other-Disordered regions as less conserved (with a lesser significant difference between Ordered and FB regions). FB regions are highly-conserved with net positive charge, whereas Disordered-around-FB have net negative charge and are relatively less hydrophobic than FB regions. Indeed, these Disordered-around-FB regions are excessively hydrophilic compared to other disordered regions generally. We describe how our results point towards a possible compositionally-based steering mechanism of folding-on-binding. PMID:26678310

  10. A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins.

    PubMed

    Yao, Xuejun; Becker, Stefan; Zweckstetter, Markus

    2014-12-01

    Sequence specific resonance assignment is the prerequisite for the NMR-based analysis of the conformational ensembles and their underlying dynamics of intrinsically disordered proteins. However, rapid solvent exchange in intrinsically disordered proteins often complicates assignment strategies based on HN-detection. Here we present a six-dimensional alpha proton detection-based automated projection spectroscopy (APSY) experiment for backbone assignment of intrinsically disordered proteins. The 6D HCACONCAH APSY correlates the six different chemical shifts, H(?)(i - 1), C(?)(i - 1), C'(i - 1), N(i), C?(i) and H?(i). Application to two intrinsically disordered proteins, 140-residue ?-synuclein and a 352-residue isoform of Tau, demonstrates that the chemical shift information provided by the 6D HCACONCAH APSY allows efficient backbone resonance assignment of intrinsically disordered proteins. PMID:25367087

  11. Characterization of the structure and melting of DNAs containing backbone nicks and gaps

    SciTech Connect

    Snowden-Ifft, E.A.; Wemmer, D.E. )

    1990-06-26

    A DNA molecule containing a gap (a missing phosphate) has been examined and compared to two other molecules of the same sequence, one containing a nick (a phosphorylated gap) and the other a normal duplex containing no break in the backbone. A second gapped sequence was also compared to a normal duplex of the same sequence. The molecules containing nicks or gaps were generated as dumbbell molecules, short helices closed by a loop at each end. The dumbbells were formed by the association of two hairpins with self-complementary dangling 5'-ends. Nuclear magnetic resonance was used to monitor the melting transition and to probe structural differences between molecules. Under the conditions used here no change in stability was observed upon phosphorylation of the gap. Structural changes upon phosphorylation of a gap or closure of a nick were minimal and were localized to the region immediately around the gap or nick. Two transitions can be observed as a gapped or nicked molecule melts, although the resolution of the two transitions varies with the salt concentration. At moderate to high salt (greater than or equal to 30 mM) the molecule melts essentially all at once. At low salt the two transitions occur at temperatures that differ by as much as 15 degrees C. In addition, comparison with other NMR melting studies indicates that the duplex formed by the overlap of the dangling ends of the hairpins is stabilized relative to a free duplex of the same sequence, probably by stacking onto the hairpin stem.

  12. Analysis of the genetic composition of anther-derived potato by randomly amplified polymorphic DNA and simple sequence repeats.

    PubMed

    Veilleux, R E; Shen, L Y; Paz, M M

    1995-12-01

    Randomly amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) analyses were used to characterize the genetic composition of anther-derived plants of a diploid potato clone, CP2 (Solanum chacoense 80-1 x S. phureja 1-3). The ploidy of anther-derived plants was first determined by flow cytometry. A total of 44 decamer primers was screened for RAPD polymorphism. The loci that segregated were selected and scored. The monoploids had less than half as many loci carrying RAPD markers compared with the anther donor. Among 14 anther-derived diploids, 5 were identified as homozygous by marker frequency similar to monoploids and 9 as heterozygous. Five of seven SSRs obtained from published potato sequences were polymorphic in CP2. CP2 was found to be heterozygous with two alleles at four SSR loci (TC/TA, AAG, AGA, CTT) and three alleles at a ACTC locus. Primer pairs flanking each of the five polymorphic SSRs revealed that monoploids had only the allele contributed by S. chacoense 80-1. Homozygous diploids had only one band per SSR locus, whereas heterozygous diploids displayed more than one allele for at least one SSR locus. Results of the SSR analysis supported the findings based on RAPD markers; the same five diploid clones were characterized as homozygous by both SSR and RAPD markers. PMID:8654912

  13. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing.

    PubMed

    Ma, Qiao; Qu, Yuanyuan; Shen, Wenli; Zhang, Zhaojing; Wang, Jingwei; Liu, Ziyan; Li, Duanxing; Li, Huijie; Zhou, Jiti

    2015-03-01

    In this study, Illumina high-throughput sequencing was used to reveal the community structures of nine coking wastewater treatment plants (CWWTPs) in China for the first time. The sludge systems exhibited a similar community composition at each taxonomic level. Compared to previous studies, some of the core genera in municipal wastewater treatment plants such as Zoogloea, Prosthecobacter and Gp6 were detected as minor species. Thiobacillus (20.83%), Comamonas (6.58%), Thauera (4.02%), Azoarcus (7.78%) and Rhodoplanes (1.42%) were the dominant genera shared by at least six CWWTPs. The percentages of autotrophic ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were unexpectedly low, which were verified by both real-time PCR and fluorescence in situ hybridization analyses. Hierarchical clustering and canonical correspondence analysis indicated that operation mode, flow rate and temperature might be the key factors in community formation. This study provides new insights into our understanding of microbial community compositions and structures of CWWTPs. PMID:25569032

  14. Identification of protein N-termini in Cyanophora paradoxa cyanelles: transit peptide composition and sequence determinants for precursor maturation

    PubMed Central

    Khler, Daniel; Dobritzsch, Dirk; Hoehenwarter, Wolfgang; Helm, Stefan; Steiner, Jrgen M.; Baginsky, Sacha

    2015-01-01

    Glaucophyta, rhodophyta, and chloroplastida represent the three main evolutionary lineages that diverged from a common ancestor after primary endosymbiosis. Comparative analyses between members of these three lineages are a rich source of information on ancestral plastid features. We analyzed the composition and the cleavage site of cyanelle transit peptides from the glaucophyte Cyanophora paradoxa by terminal amine labeling of substrates (TAILS), and compared their characteristics to those of representatives of the chloroplastida. Our data show that transit peptide architecture is similar between members of these two lineages. This entails a comparable modular structure, an overrepresentation of serine or alanine and similarities in the amino acid composition around the processing peptidase cleavage site. The most distinctive difference is the overrepresentation of phenylalanine in the N-terminal 110 amino acids of cyanelle transit peptides. A quantitative proteome analysis with periplasm-free cyanelles identified 42 out of 262 proteins without the N-terminal phenylalanine, suggesting that the requirement for phenylalanine in the N-terminal region is not absolute. Proteins in this set are on average of low abundance, suggesting that either alternative import pathways are operating specifically for low abundance proteins or that the gene model annotation is incorrect for proteins with fewer EST sequences. We discuss these two possibilities and provide examples for both interpretations. PMID:26257763

  15. Deep-UV resonance Raman analysis of the Rhodobacter capsulatus cytochrome bc?complex reveals a potential marker for the transmembrane peptide backbone.

    PubMed

    Halsey, Christopher M; Oshokoya, Olayinka O; Jiji, Renee D; Cooley, Jason W

    2011-08-01

    Classical strategies for structure analysis of proteins interacting with a lipid phase typically correlate ensemble secondary structure content measurements with changes in the spectroscopic responses of localized aromatic residues or reporter molecules to map regional solvent environments. Deep-UV resonance Raman (DUVRR) spectroscopy probes the vibrational modes of the peptide backbone itself, is very sensitive to the ensemble secondary structures of a protein, and has been shown to be sensitive to the extent of solvent interaction with the peptide backbone [ Wang , Y. , Purrello , R. , Georgiou , S. , and Spiro , T. G. ( 1991 ) J. Am. Chem. Soc. 113 , 6368 - 6377 ]. Here we show that a large detergent solubilized membrane protein, the Rhodobacter capsulatus cytochrome bc(1) complex, has a distinct DUVRR spectrum versus that of an aqueous soluble protein with similar overall secondary structure content. Cross-section calculations of the amide vibrational modes indicate that the peptide backbone carbonyl stretching modes differ dramatically between these two proteins. Deuterium exchange experiments probing solvent accessibility confirm that the contribution of the backbone vibrational mode differences are derived from the lipid solubilized or transmembrane ?-helical portion of the protein complex. These findings indicate that DUVRR is sensitive to both the hydration status of a protein's peptide backbone, regardless of primary sequence, and its secondary structure content. Therefore, DUVRR may be capable of simultaneously measuring protein dynamics and relative water/lipid solvation of the protein. PMID:21718040

  16. Sortase-mediated backbone cyclization of proteins and peptides.

    PubMed

    van 't Hof, Wim; Hansenov Ma?skov, Silvie; Veerman, Enno C I; Bolscher, Jan G M

    2015-04-01

    Backbone cyclization has a profound impact on the biological activity and thermal and proteolytic stability of proteins and peptides. Chemical methods for cyclization are not always feasible, especially for large peptides or proteins. Recombinant Staphylococcus aureus sortase A shows potential as a new tool for the cyclization of both proteins and peptides. In this review, the scope and background of the sortase-mediated cyclization are discussed. High efficiency, versatility, and easy access make sortase A a promising cyclization tool, both for recombinant and chemo-enzymatic production methods. PMID:25581753

  17. Robust identification of backbone curves using control-based continuation

    NASA Astrophysics Data System (ADS)

    Renson, L.; Gonzalez-Buelga, A.; Barton, D. A. W.; Neild, S. A.

    2016-04-01

    Control-based continuation is a recently developed approach for testing nonlinear dynamic systems in a controlled manner and exploring their dynamic features as system parameters are varied. In this paper, control-based continuation is adapted to follow the locus where system response and excitation are in quadrature, extracting the backbone curve of the underlying conservative system. The method is applied to a single-degree-of-freedom oscillator under base excitation, and the results are compared with the standard resonant-decay method.

  18. Sequences of Mixed Ions in Polypeptoid Surfaces

    NASA Astrophysics Data System (ADS)

    Buss, Hilda; van Zoelen, Wendy; Ellebracht, Nathan; Zuckermann, Ronald; Segalman, Rachel

    2013-03-01

    Polypeptoids, a unique, sequence specific class of polymers, are used to investigate the influence of charge spacing, grouping, and chemistry on the surface properties of polymer coatings. Short peptoid oligomers composed of cationic and anionic groups, and superhydrophobic (fluorinated) functionalities were attached to a synthetic backbone to form comb-shaped molecules. These molecules display different surface chemistry as a function of side chain composition, as indicated by near edge X-ray absorption fine structure spectroscopy (NEXAFS). A 50:50 ratio of peptoid:fluorinated functionality resulted in optimal surface segregation of the comb block while preventing surface reconstruction upon immersing the polymer films in water. Antifouling experiments with the green algae Ulva showed that polymers with non-ionic peptoid functional groups resulted in superior antifouling coatings compared to polymers with charged peptoids. The effects of decreasing the peptoid charge spacing even further (zwitterionic side chains) and exploring stronger ionic moieties, such as phosphate groups, will also be discussed.

  19. Species composition of the genus Saprolegnia in fin fish aquaculture environments, as determined by nucleotide sequence analysis of the nuclear rDNA ITS regions.

    PubMed

    de la Bastide, Paul Y; Leung, Wai Lam; Hintz, William E

    2015-01-01

    The ITS region of the rDNA gene was compared for Saprolegnia spp. in order to improve our understanding of nucleotide sequence variability within and between species of this genus, determine species composition in Canadian fin fish aquaculture facilities, and to assess the utility of ITS sequence variability in genetic marker development. From a collection of more than 400 field isolates, ITS region nucleotide sequences were studied and it was determined that there was sufficient consistent inter-specific variation to support the designation of species identity based on ITS sequence data. This non-subjective approach to species identification does not rely upon transient morphological features. Phylogenetic analyses comparing our ITS sequences and species designations with data from previous studies generally supported the clade scheme of Diéguez-Uribeondo et al. (2007) and found agreement with the molecular taxonomic cluster system of Sandoval-Sierra et al. (2014). Our Canadian ITS sequence collection will thus contribute to the public database and assist the clarification of Saprolegnia spp. taxonomy. The analysis of ITS region sequence variability facilitated genus- and species-level identification of unknown samples from aquaculture facilities and provided useful information on species composition. A unique ITS-RFLP for the identification of S. parasitica was also described. PMID:25601147

  20. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning

    PubMed Central

    Heffernan, Rhys; Paliwal, Kuldip; Lyons, James; Dehzangi, Abdollah; Sharma, Alok; Wang, Jihua; Sattar, Abdul; Yang, Yuedong; Zhou, Yaoqi

    2015-01-01

    Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary structure and torsion angle prediction. In this study, we expand the iterative features to include solvent accessible surface area and backbone angles and dihedrals based on Cα atoms. By using a deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively, and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively, for an independent test dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but much higher than those of model structures from current state-of-the-art techniques. This suggests the potentially beneficial use of these predicted properties for model assessment and ranking. PMID:26098304

  1. Backbone resonance assignments of the human p73 DNA binding domain.

    PubMed

    Cino, Elio A; Soares, Iaci N; Freitas, Mônica S; Silva, Jerson L

    2016-04-01

    p53, p63, p73 family of proteins are transcription factors with crucial roles in regulating cellular processes such apoptosis, proliferation, differentiation, and DNA damage response. The three family members have both overlapping and unique biological functions. Sequence and structural homology are greatest in the DNA binding domains (DBD), which is the site of the majority of p53 mutations. Structurally unstable p53 DBD mutants can associate with themselves or p63 and p73 DBDs, impeding tumor suppressor functions. Evidence suggests that these proteins associate to form amyloid-like oligomers and fibrils through an aggregation-prone sequence within the DBDs. Despite having high sequence and structure similarities, p63 and p73 DBDs appear to have considerably lower tendencies to be incorporated into p53 aggregates, relative to p53. The backbone resonance assignments of p73 DBD reported here complement those previously reported for p53 and p63, allowing comparisons and providing molecular insights into their biological functions and roles in aggregation and tumor development. PMID:26294377

  2. The role of molecular structure of sugar-phosphate backbone and nucleic acid bases in the formation of single-stranded and double-stranded DNA structures.

    PubMed

    Poltev, Valeri; Anisimov, Victor M; Danilov, Victor I; Garcia, Dolores; Sanchez, Carolina; Deriabina, Alexandra; Gonzalez, Eduardo; Rivas, Francisco; Polteva, Nina

    2014-06-01

    Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na(+) -ions (dDMPs) have demonstrated that the main characteristics of Watson-Crick (WC) right-handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar-phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar-phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr-Pur from Pur-Pyr, and Pur-Pyr from Pyr-Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar-phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z-family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex. 2013 Wiley Periodicals, Inc. Biopolymers 101: 640-650, 2014. PMID:24170251

  3. Long-term forecasting of internet backbone traffic.

    PubMed

    Papagiannaki, Konstantina; Taft, Nina; Zhang, Zhi-Li; Diot, Christophe

    2005-09-01

    We introduce a methodology to predict when and where link additions/upgrades have to take place in an Internet protocol (IP) backbone network. Using simple network management protocol (SNMP) statistics, collected continuously since 1999, we compute aggregate demand between any two adjacent points of presence (PoPs) and look at its evolution at time scales larger than 1 h. We show that IP backbone traffic exhibits visible long term trends, strong periodicities, and variability at multiple time scales. Our methodology relies on the wavelet multiresolution analysis (MRA) and linear time series models. Using wavelet MRA, we smooth the collected measurements until we identify the overall long-term trend. The fluctuations around the obtained trend are further analyzed at multiple time scales. We show that the largest amount of variability in the original signal is due to its fluctuations at the 12-h time scale. We model inter-PoP aggregate demand as a multiple linear regression model, consisting of the two identified components. We show that this model accounts for 98% of the total energy in the original signal, while explaining 90% of its variance. Weekly approximations of those components can be accurately modeled with low-order autoregressive integrated moving average (ARIMA) models. We show that forecasting the long term trend and the fluctuations of the traffic at the 12-h time scale yields accurate estimates for at least 6 months in the future. PMID:16252820

  4. A phylogenetic backbone for Bivalvia: an RNA-seq approach

    PubMed Central

    González, Vanessa L.; Andrade, Sónia C. S.; Bieler, Rüdiger; Collins, Timothy M.; Dunn, Casey W.; Mikkelsen, Paula M.; Taylor, John D.; Giribet, Gonzalo

    2015-01-01

    Bivalves are an ancient and ubiquitous group of aquatic invertebrates with an estimated 10 000–20 000 living species. They are economically significant as a human food source, and ecologically important given their biomass and effects on communities. Their phylogenetic relationships have been studied for decades, and their unparalleled fossil record extends from the Cambrian to the Recent. Nevertheless, a robustly supported phylogeny of the deepest nodes, needed to fully exploit the bivalves as a model for testing macroevolutionary theories, is lacking. Here, we present the first phylogenomic approach for this important group of molluscs, including novel transcriptomic data for 31 bivalves obtained through an RNA-seq approach, and analyse these data with published genomes and transcriptomes of other bivalves plus outgroups. Our results provide a well-resolved, robust phylogenetic backbone for Bivalvia with all major lineages delineated, addressing long-standing questions about the monophyly of Protobranchia and Heterodonta, and resolving the position of particular groups such as Palaeoheterodonta, Archiheterodonta and Anomalodesmata. This now fully resolved backbone demonstrates that genomic approaches using hundreds of genes are feasible for resolving phylogenetic questions in bivalves and other animals. PMID:25589608

  5. A phylogenetic backbone for Bivalvia: an RNA-seq approach.

    PubMed

    Gonzlez, Vanessa L; Andrade, Snia C S; Bieler, Rdiger; Collins, Timothy M; Dunn, Casey W; Mikkelsen, Paula M; Taylor, John D; Giribet, Gonzalo

    2015-02-22

    Bivalves are an ancient and ubiquitous group of aquatic invertebrates with an estimated 10 000-20 000 living species. They are economically significant as a human food source, and ecologically important given their biomass and effects on communities. Their phylogenetic relationships have been studied for decades, and their unparalleled fossil record extends from the Cambrian to the Recent. Nevertheless, a robustly supported phylogeny of the deepest nodes, needed to fully exploit the bivalves as a model for testing macroevolutionary theories, is lacking. Here, we present the first phylogenomic approach for this important group of molluscs, including novel transcriptomic data for 31 bivalves obtained through an RNA-seq approach, and analyse these data with published genomes and transcriptomes of other bivalves plus outgroups. Our results provide a well-resolved, robust phylogenetic backbone for Bivalvia with all major lineages delineated, addressing long-standing questions about the monophyly of Protobranchia and Heterodonta, and resolving the position of particular groups such as Palaeoheterodonta, Archiheterodonta and Anomalodesmata. This now fully resolved backbone demonstrates that genomic approaches using hundreds of genes are feasible for resolving phylogenetic questions in bivalves and other animals. PMID:25589608

  6. Error tolerant NMR backbone resonance assignment and automated structure generation.

    PubMed

    Alipanahi, Babak; Gao, Xin; Karakoc, Emre; Li, Shuai Cheng; Balbach, Frank; Feng, Guangyu; Donaldson, Logan; Li, Ming

    2011-02-01

    Error tolerant backbone resonance assignment is the cornerstone of the NMR structure determination process. Although a variety of assignment approaches have been developed, none works sufficiently well on noisy fully automatically picked peaks to enable the subsequent automatic structure determination steps. We have designed an integer linear programming (ILP) based assignment system (IPASS) that has enabled fully automatic protein structure determination for four test proteins. IPASS employs probabilistic spin system typing based on chemical shifts and secondary structure predictions. Furthermore, IPASS extracts connectivity information from the inter-residue information and the (automatically picked) (15)N-edited NOESY peaks which are then used to fix reliable fragments. When applied to automatically picked peaks for real proteins, IPASS achieves an average precision and recall of 82% and 63%, respectively. In contrast, the next best method, MARS, achieves an average precision and recall of 77% and 36%, respectively. The assignments generated by IPASS are then fed into our protein structure calculation system, FALCON-NMR, to determine the 3D structures without human intervention. The final models have backbone RMSDs of 1.25, 0.88, 1.49, and 0.67 to the reference native structures for proteins TM1112, CASKIN, VRAR, and HACS1, respectively. The web server is publicly available at http://monod.uwaterloo.ca/nmr/ipass. PMID:21328705

  7. PS1-10jh: The disruption of a main-sequence star of near-solar composition

    SciTech Connect

    Guillochon, James; Manukian, Haik; Ramirez-Ruiz, Enrico

    2014-03-01

    When a star comes within a critical distance to a supermassive black hole (SMBH), immense tidal forces disrupt the star, resulting in a stream of debris that falls back onto the SMBH and powers a luminous flare. In this paper, we perform hydrodynamical simulations of the disruption of a main-sequence star by an SMBH to characterize the evolution of the debris stream after a tidal disruption. We demonstrate that this debris stream is confined by self-gravity in the two directions perpendicular to the original direction of the star's travel and as a consequence has a negligible surface area and makes almost no contribution to either the continuum or line emission. We therefore propose that any observed emission lines are not the result of photoionization in this unbound debris, but are produced in the region above and below the forming elliptical accretion disk, analogous to the broad-line region (BLR) in steadily accreting active galactic nuclei. As each line within a BLR is observationally linked to a particular location in the accretion disk, we suggest that the absence of a line indicates that the accretion disk does not yet extend to the distance required to produce that line. This model can be used to understand the spectral properties of the tidal disruption event PS1-10jh, for which He II lines are observed, but the Balmer series and He I are not. Using a maximum likelihood analysis, we show that the disruption of a main-sequence star of near-solar composition can reproduce this event.

  8. Backbone building from quadrilaterals: a fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates.

    PubMed

    Gront, Dominik; Kmiecik, Sebastian; Kolinski, Andrzej

    2007-07-15

    In this contribution, we present an algorithm for protein backbone reconstruction that comprises very high computational efficiency with high accuracy. Reconstruction of the main chain atomic coordinates from the alpha carbon trace is a common task in protein modeling, including de novo structure prediction, comparative modeling, and processing experimental data. The method employed in this work follows the main idea of some earlier approaches to the problem. The details and careful design of the present approach are new and lead to the algorithm that outperforms all commonly used earlier applications. BBQ (Backbone Building from Quadrilaterals) program has been extensively tested both on native structures as well as on near-native decoy models and compared with the different available existing methods. Obtained results provide a comprehensive benchmark of existing tools and evaluate their applicability to a large scale modeling using a reduced representation of protein conformational space. The BBQ package is available for downloading from our website at http://biocomp.chem.uw.edu.pl/services/BBQ/. This webpage also provides a user manual that describes BBQ functions in detail. PMID:17342707

  9. Refined solution structure and backbone dynamics of HIV-1 Nef.

    PubMed Central

    Grzesiek, S.; Bax, A.; Hu, J. S.; Kaufman, J.; Palmer, I.; Stahl, S. J.; Tjandra, N.; Wingfield, P. T.

    1997-01-01

    The tendency of HIV-1 Nef to form aggregates in solution, particularly at pH values below 8, together with its large fraction of highly mobile residues seriously complicated determination of its three-dimensional structure, both for heteronuclear solution NMR (Grzesiek et al., 1996a, Nat Struct Biol 3:340-345) and for X-ray crystallography (Lee et al., 1996, Cell 85:931-942). Methods used to determine the Nef structure by NMR at pH 8 and 0.6 mM concentration are presented, together with a detailed description of Nef's secondary and tertiary structure. The described techniques have general applicability for the NMR structure determination of proteins that are aggregating and/or have limited stability at low pH values. Extensive chemical shift assignments are reported for backbone and side chain 1H, 13C, and 15N resonances of the HIV-1 Nef deletion mutants NEF delta 2-39, NEF delta 2-39, delta 159-173, and of NEF delta 2-39, delta 159-173 in complex with the SH3 domain of the Hck tyrosine protein kinase. Besides a type II polyproline helix, Nef's structure consists of three alpha-helices, a 3(10) helix, and a five-stranded anti-parallel beta-sheet. The analysis of 15N relaxation parameters of the backbone amide sites reveals that all the secondary structure elements are non-mobile on the picosecond to nanosecond and on the millisecond time scale. A large number of slowly exchanging amide protons provides evidence for the stability of the Nef core even on the time scale of hours. Significant internal motions on the ps to ns time scale are detected for residues 60 to 71 and for residues 149 to 180, which form solvent-exposed loops. The residues of the HIV-1 protease cleavage site (W57/L58) do not exhibit large amplitude motions on the sub-nanosecond time scale, and their side chains insert themselves into a hydrophobic crevice formed between the C-terminus of helix 1 and the N-terminus of helix 2. A refined structure has been determined based on additional constraints for side-chain and backbone dihedral angles derived from a large number of three-bond J-coupling and ROE data. PMID:9194185

  10. Backbone dynamics of barstar: a (15)N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Majumdar, A; Udgaonkar, J B

    2000-12-01

    Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2 to 9.1 s(-1), indicating the presence of conformational averaging motions only for a small subset of residues. PMID:11056034

  11. Direct effects of phosphorylation on the preferred backbone conformation of peptides: a nuclear magnetic resonance study.

    PubMed Central

    Tholey, A; Lindemann, A; Kinzel, V; Reed, J

    1999-01-01

    Control of protein activity by phosphorylation appears to work principally by inducing conformational change, but the mechanisms so far reported are dependent on the structural context in which phosphorylation occurs. As the activity of many small peptides is also regulated by phosphorylation, we decided to investigate possible direct consequences of this on the preferred backbone conformation. We have performed 1H nuclear magnetic resonance (NMR) experiments with short model peptides of the pattern Gly-Ser-Xaa-Ser, where Xaa represents Ser, Thr, or Tyr in either phosphorylated or unphosphorylated form and with either free or blocked amino and carboxy termini. The chemical shifts of amide protons and the 3JNH-Halpha coupling constants were estimated from one-dimensional and two-dimensional scalar correlated spectroscopy (COSY) spectra at different pH values. The results clearly indicate a direct structural effect of serine and threonine phosphorylation on the preferred backbone dihedrals independent of the presence of charged groups in the surrounding sequence. Tyrosine phosphorylation does not induce such a charge-independent effect. Additionally, experiments with p-fluoro- and p-nitro-phenylalanine-containing peptides showed that the mere presence of an electronegative group on the aromatic ring of tyrosine does not produce direct structural effects. In the case of serine and threonine phosphorylation a strong dependence of the conformational shift on the protonation level of the phosphoryl group could be observed, showing that phosphorylation induces the strongest effect in its dianionic, i.e., physiological, form. The data reveal a hitherto unknown mechanism that may be added to the repertoire of conformational control of peptides and proteins by phosphorylation. PMID:9876124

  12. Evolution of Robust Network Topologies: Emergence of Central Backbones

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.; Bornholdt, Stefan

    2012-09-01

    We model the robustness against random failure or an intentional attack of networks with an arbitrary large-scale structure. We construct a block-based model which incorporatesin a general fashionboth connectivity and interdependence links, as well as arbitrary degree distributions and block correlations. By optimizing the percolation properties of this general class of networks, we identify a simple core-periphery structure as the topology most robust against random failure. In such networks, a distinct and small core of nodes with higher degree is responsible for most of the connectivity, functioning as a central backbone of the system. This centralized topology remains the optimal structure when other constraints are imposed, such as a given fraction of interdependence links and fixed degree distributions. This distinguishes simple centralized topologies as the most likely to emerge, when robustness against failure is the dominant evolutionary force.

  13. Reconstruction of the Sunspot Group Number: The Backbone Method

    NASA Astrophysics Data System (ADS)

    Svalgaard, Leif; Schatten, Kenneth H.

    2016-02-01

    We have reconstructed the sunspot-group count, not by comparisons with other reconstructions and correcting those where they were deemed to be deficient, but by a re-assessment of original sources. The resulting series is a pure solar index and does not rely on input from other proxies, e.g. radionuclides, auroral sightings, or geomagnetic records. "Backboning" the data sets, our chosen method, provides substance and rigidity by using long-time observers as a stiffness character. Solar activity, as defined by the Group Number, appears to reach and sustain for extended intervals of time the same level in each of the last three centuries since 1700 and the past several decades do not seem to have been exceptionally active, contrary to what is often claimed.

  14. Effects of phosphorylation on the intrinsic propensity of backbone conformations of serine/threonine.

    PubMed

    He, Erbin; Yan, Guanghui; Zhang, Jian; Wang, Jun; Li, Wenfei

    2016-03-01

    Each amino acid has its intrinsic propensity for certain local backbone conformations, which can be further modulated by the physicochemical environment and post-translational modifications. In this work, we study the effects of phosphorylation on the intrinsic propensity for different local backbone conformations of serine/threonine by molecular dynamics simulations. We showed that phosphorylation has very different effects on the intrinsic propensity for certain local backbone conformations for the serine and threonine. The phosphorylation of serine increases the propensity of forming polyproline II, whereas that of threonine has the opposite effect. Detailed analysis showed that such different responses to phosphorylation mainly arise from their different perturbations to the backbone hydration and the geometrical constraints by forming side-chain-backbone hydrogen bonds due to phosphorylation. Such an effect of phosphorylation on backbone conformations can be crucial for understanding the molecular mechanism of phosphorylation-regulated protein structures/dynamics and functions. PMID:26759163

  15. Isolation, sequencing, and structure-activity relationships of cyclotides.

    PubMed

    Ireland, David C; Clark, Richard J; Daly, Norelle L; Craik, David J

    2010-09-24

    Cyclotides are a topologically fascinating family of miniproteins discovered over the past decade that have expanded the diversity of plant-derived natural products. They are approximately 30 amino acids in size and occur in plants of the Violaceae, Rubiaceae, and Cucurbitaceae families. Despite their proteinaceous composition, cyclotides behave in much the same way as many nonpeptidic natural products in that they are resistant to degradation by enzymes or heat and can be extracted from plants using methanol. Their stability arises, in large part, due to their characteristic cyclic cystine knot (CCK) structural motif. Cystine knots are present in a variety of proteins of insect, plant, and animal origin, comprising a ring formed by two disulfide bonds and their connecting backbone segments that is threaded by a third disulfide bond. In cyclotides, the cystine knot is uniquely embedded within a head-to-tail cyclized peptide backbone, leading to the ultrastable CCK structural motif. Apart from the six absolutely conserved cysteine residues, the majority of amino acids in the six backbone loops of cyclotides are tolerant to variation. It has been predicted that the family might include up to 50,000 members; although, so far, sequences for only 140 have been reported. Cyclotides exhibit a variety of biological activities, including insecticidal, nematocidal, molluscicidal, antimicrobial, antibarnacle, anti-HIV, and antitumor activities. Due to their diverse activities and common structural core from which variable loops protrude, cyclotides can be thought of as combinatorial peptide templates capable of displaying a variety of amino acid sequences. They have thus attracted interest in drug design as well as in crop protection applications. PMID:20718473

  16. Backbone tree for Chaetothyriales with four new species of Minimelanolocus from aquatic habitats.

    PubMed

    Liu, Xiao-Ying; Udayanga, Dhanushka; Luo, Zong-Long; Chen, Li-Jiao; Zhou, De-Qun; Su, Hong Yan; Hyde, Kevin D

    2015-11-01

    We are studying the freshwater lignicolous fungi along a north-south latitudinal gradient in Asia. In this paper, fresh collections of Minimelanolocus from submerged wood in streams in Yunnan Province, China are characterised based on morphology and molecular phylogeny based on three rDNA regions: 18S (SSU), ITS1-5.8S-ITS2 (ITS) and 28S nuclear rDNA (LSU). The phylogenetic analysis of combined LSU and SSU sequence data and a separate analysis of ITS placed the isolates within the family Herpotrichiellaceae, order Chaetothyriales. An updated phylogenetic backbone tree for Chaetothyriales is provided with available ex-type and additional isolates. One of the isolates collected was identified as Minimelanolocus obscurus based on morphology and molecular data. Minimelanolocus aquaticus, M. asiaticus, M. curvatus and M. melanicus are described as new species considering the interspecific ITS variability and morphology. The phylogenetic placement of Minimelanolocus in Chaetothyriales is novel and provides new sequence data for the genus as a distinct lineage in Chaetothyriales. The conidial characters of all the known species in the genus are summarized. Descriptions and illustrations are provided for the five species of Minimelanolocus with notes on their taxonomy and phylogeny. PMID:26466879

  17. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    PubMed

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers. PMID:25723354

  18. Ultradeep 16S rRNA Sequencing Analysis of Geographically Similar but Diverse Unexplored Marine Samples Reveal Varied Bacterial Community Composition

    PubMed Central

    Karutha Pandian, Shunmugiah

    2013-01-01

    Background Bacterial community composition in the marine environment differs from one geographical location to another. Reports that delineate the bacterial diversity of different marine samples from geographically similar location are limited. The present study aims to understand whether the bacterial community compositions from different marine samples harbour similar bacterial diversity since these are geographically related to each other. Methods and Principal Findings In the present study, 16S rRNA deep sequencing analysis targeting V3 region was performed using Illumina bar coded sequencing. A total of 22.44 million paired end reads were obtained from the metagenomic DNA of Marine sediment, Rhizosphere sediment, Seawater and the epibacterial DNA of Seaweed and Seagrass. Diversity index analysis revealed that Marine sediment has the highest bacterial diversity and the least bacterial diversity was observed in Rhizosphere sediment. Proteobacteria, Actinobacteria and Bacteroidetes were the dominant taxa present in all the marine samples. Nearly 6271% of rare species were identified in all the samples and most of these rare species were unique to a particular sample. Further taxonomic assignment at the phylum and genus level revealed that the bacterial community compositions differ among the samples. Conclusion This is the first report that supports the fact that, bacterial community composition is specific for specific samples irrespective of its similar geographical location. Existence of specific bacterial community for each sample may drive overall difference in bacterial structural composition of each sample. Further studies like whole metagenomic sequencing will throw more insights to the key stone players and its interconnecting metabolic pathways. In addition, this is one of the very few reports that depicts the unexplored bacterial diversity of marine samples (Marine sediment, Rhizosphere sediment, Seawater) and the host associated marine samples (Seaweed and Seagrass) at higher depths from uncharacterised coastal region of Palk Bay, India using next generation sequencing technology. PMID:24167548

  19. Tuning the guest-binding ability of a helically folded capsule by in situ modification of the aromatic oligoamide backbone.

    PubMed

    Lautrette, Guillaume; Aube, Christophe; Ferrand, Yann; Pipelier, Muriel; Blot, Virginie; Thobie, Christine; Kauffmann, Brice; Dubreuil, Didier; Huc, Ivan

    2014-02-01

    Starting from a previously described aromatic oligoamide helically folded capsule that binds tartaric acid with high affinity and diastereoselectivity, we demonstrate the feasibility of the direct in situ modification of the helix backbone, which results in a conformational change that reduces its affinity for guests by two orders of magnitude. Specifically, ring contraction of the central pyridazine unit into a pyrrole in the full helical sequence was investigated by using electrochemical and chemical processes. The sequence containing the pyrrole was synthesized independently in a convergent manner to ascertain its structure. The conformation of the pyrrolic folded capsule was elucidated in the solid state by X-ray crystallography and in solution by using (1)H and (13)C?NMR spectroscopy. Solution studies revealed an unanticipated solvent-dependent equilibrium between the anti-anti and syn-syn conformations of the pyrrole ring with respect to its two adjacent pyridine units. Titrations of the pyrrole-containing sequence monitored by (1)H?NMR spectroscopy confirmed the expected drop in affinity for tartaric acid and malic acid that arises from the conformation change in the backbone that follows the replacement of the pyridazine by a pyrrole. The reduction of the pyridazine to a pyrrole was characterized by cyclic voltammetry both on the entire sequence and on a shorter precursor. The lower cathodic potential of the precursor made its preparative-scale electroreduction possible. Direct in situ modification of the pyridazine within the entire capsule sequence was achieved chemically by using zinc in acetic acid. PMID:24402735

  20. Sequencing-Based Analysis of the Bacterial and Fungal Composition of Kefir Grains and Milks from Multiple Sources

    PubMed Central

    Marsh, Alan J.; OSullivan, Orla; Hill, Colin; Ross, R. Paul; Cotter, Paul D.

    2013-01-01

    Kefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists. PMID:23894461

  1. Tackling speciose genera: species composition and phylogenetic position of Senecio sect. Jacobaea (Asteraceae) based onplastid and nrDNA sequences.

    PubMed

    Pelser, Pieter B; Gravendeel, Barbara; van der Meijden, Ruud

    2002-06-01

    The molecular phylogeny of Senecio sect. Jacobaea (Asteraceae; Senecioneae) was studied to clarify species composition and interspecific relationships of Senecio sect. Jacobaea. This information is necessary for studies seeking explanations of the evolutionary success of Senecio, in terms of high species numbers and the evolution of chemical defense mechanisms. Parsimony analyses with 60 species of the tribe Senecioneae, representing 23 genera and 11 sections of Senecio, based on DNA sequence data of the plastid genome (the trnT-L intergenic spacer, the trnL intron, and two parts of the trnK intron, flanking both sides of the matK gene) and nuclear genome (ITS1, 5.8S, and ITS2 gene and spacers) show that sect. Jacobaea is a strongly supported monophyletic group. Fifteen species have been identified as members of section Jacobaea, including three species that have been consistently ascribed to this section in taxonomic literature and 12 species that were either placed in other sections of Senecio or not exclusively ascribed to sect. Jacobaea. This section was traditionally circumscribed as a group of European, biennial, or perennial herbs with pinnately incised leaves, but the results of this study show that one annual species, a species from northeastern Asia, and a species growing in the Himalayas are members of sect. Jacobaea as well. Furthermore, not all species in the section have pinnately incised leaves. The genera Emilia, Packera, and Pseudogynoxys form the sister clade of sect. Jacobaea, but this relationship lacks strong bootstrap support and thus remains provisional. PMID:21665692

  2. Backbone conformational preferences of an intrinsically disordered protein in solution.

    PubMed

    Espinoza-Fonseca, L Michel; Ilizaliturri-Flores, Ian; Correa-Basurto, Jos

    2012-06-01

    We have performed a 4-?s molecular dynamics simulation to investigate the native conformational preferences of the intrinsically disordered kinase-inducible domain (KID) of the transcription factor CREB in solution. There is solid experimental evidence showing that KID does not possess a bound-like structure in solution; however, it has been proposed that coil-to-helix transitions upon binding to its binding partner (CBP) are template-driven. While these studies indicate that IDPs possess a bias towards the bound structure, they do not provide direct evidence on the time-dependent conformational preferences of IDPs in atomic detail. Our simulation captured intrinsic conformational characteristics of KID that are in good agreement with experimental data such as a very small percentage of helical structure in its segment ?(B) and structural disorder in solution. We used dihedral principal component analysis dPCA to map the conformations of KID in the microsecond timescale. By using principal components as reaction coordinates, we further constructed dPCA-based free energy landscapes of KID. Analysis of the free energy landscapes showed that KID is best characterized as a conformational ensemble of rapidly interconverting conformations. Interestingly, we found that despite the conformational heterogeneity of the backbone and the absence of substantial secondary structure, KID does not randomly sample the conformational space in solution: analysis of the (?, ?) dihedral angles showed that several individual residues of KID possess a strong bias toward the helical region of the Ramachandran plot. We suggest that the intrinsic conformational preferences of KID provide a bias toward the folded state without having to populate bound-like conformations before binding. Furthermore, we argue that these conformational preferences do not represent actual structural constraints which drive binding through a single pathway, which allows for specific interactions with multiple binding partners. Based on this evidence, we propose that the backbone conformational preferences of KID provide a thermodynamic advantage for folding and binding without negatively affecting the kinetics of binding. We further discuss the relation of our results to previous studies to rationalize the functional implications of the conformational preferences of IDPs, such as the optimization of structural disorder in protein-protein interactions. This study illustrates the importance in obtaining atomistic information of intrinsically disordered proteins in real time to reveal functional features arising from their complex conformational space. PMID:22506277

  3. Live-attenuated influenza A virus vaccines using a B virus backbone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The currently FDA-licensed live attenuated influenza virus vaccine contains a trivalent mixture of types A (H1N1 and H3N2) and B vaccine viruses. The two A virus vaccines have the backbone of a cold-adapted influenza A virus and the B virus vaccine has the six backbone segments derived from a cold-...

  4. Backbone of complex networks of corporations: The flow of control

    NASA Astrophysics Data System (ADS)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  5. Data Acquisition Backbone Core DABC release v1.0

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Essel, H. G.; Kurz, N.; Linev, S.

    2010-04-01

    The Data Acquisition Backbone Core (DABC) is a general purpose software framework designed for the implementation of a wide-range of data acquisition systems - from various small detector test beds to high performance systems. DABC consists of a compact data-flow kernel and a number of plug-ins for various functional components like data inputs, device drivers, user functional modules and applications. DABC provides configurable components for implementing event building over fast networks like InfiniBand or Gigabit Ethernet. A generic Java GUI provides the dynamic control and visualization of control parameters and commands, provided by DIM servers. A first set of application plug-ins has been implemented to use DABC as event builder for the front-end components of the GSI standard DAQ system MBS (Multi Branch System). Another application covers the connection to DAQ readout chains from detector front-end boards (N-XYTER) linked to read-out controller boards (ROC) over UDP into DABC for event building, archiving and data serving. This was applied for data taking in the September 2008 test beamtime for the CBM experiment at GSI. DABC version 1.0 is released and available from the website.

  6. Quantitative analysis of PMLA nanoconjugate components after backbone cleavage.

    PubMed

    Ding, Hui; Patil, Rameshwar; Portilla-Arias, Jose; Black, Keith L; Ljubimova, Julia Y; Holler, Eggehard

    2015-01-01

    Multifunctional polymer nanoconjugates containing multiple components show great promise in cancer therapy, but in most cases complete analysis of each component is difficult. Polymalic acid (PMLA) based nanoconjugates have demonstrated successful brain and breast cancer treatment. They consist of multiple components including targeting antibodies, Morpholino antisense oligonucleotides (AONs), and endosome escape moieties. The component analysis of PMLA nanoconjugates is extremely difficult using conventional spectrometry and HPLC method. Taking advantage of the nature of polyester of PMLA, which can be cleaved by ammonium hydroxide, we describe a method to analyze the content of antibody and AON within nanoconjugates simultaneously using SEC-HPLC by selectively cleaving the PMLA backbone. The selected cleavage conditions only degrade PMLA without affecting the integrity and biological activity of the antibody. Although the amount of antibody could also be determined using the bicinchoninic acid (BCA) method, our selective cleavage method gives more reliable results and is more powerful. Our approach provides a new direction for the component analysis of polymer nanoconjugates and nanoparticles. PMID:25894227

  7. Backbone Assignment of the MALT1 Paracaspase by Solution NMR

    PubMed Central

    Unnerståle, Sofia; Nowakowski, Michal; Baraznenok, Vera; Stenberg, Gun; Lindberg, Jimmy; Mayzel, Maxim; Orekhov, Vladislav; Agback, Tatiana

    2016-01-01

    Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a unique paracaspase protein whose protease activity mediates oncogenic NF-κB signalling in activated B cell-like diffuse large B cell lymphomas (ABC-DLBCLs). ABC-DLBCLs are aggressive lymphomas with high resistance to current chemotherapies. Low survival rate among patients emphasizes the urgent need for alternative treatment options. The characterization of the MALT1 will be an essential tool for developing new target-directed drugs against MALT1 dependent disorders. As the first step in the atomic-level NMR studies of the system, here we report, the 15N/13C/1H backbone assignment of the apo form of the MALT1 paracaspase region together with the third immunoglobulin-like (Ig3) domain, 44 kDa, by high resolution NMR. In addition, the non-uniform sampling (NUS) based targeted acquisition procedure is evaluated as a mean of decreasing acquisition and analysis time for larger proteins. PMID:26788853

  8. Thermogelling Biodegradable Polymers with Hydrophilic Backbones: PEG-g-PLGA

    SciTech Connect

    Jeong, Byeongmoon; Kibbey, Merinda R.; Birnbaum, Jerome C.; Won, You-Yeong; Gutowska, Anna

    2000-10-31

    The aqueous solutions of poly(ethylene glycol)grafted with poly(lactic acid-co-glycolic acid) flow freely at room temperature but form gels at higher temperature. The existence of micelles in water at low polymer concentration was confirmed by Cro-transmission electron microscopy and dye solubilization studies. The micellar diameter and critical micelle concentration are about 9 nm and 0.47 wt.% respectively. The critical gel concentration, above which a gel phase appears was 16 wt.% and sol-to-gel transition temperature was slightly affected by the concentration in the range of 16 {approx} 25 wt.%. At sol-to-gel transition, viscosity increased abruptly and C-NMR showed molecular motion of hydrophilic poly(lactic acid-co-glycolic acid) side-chains increased. The hydrogel of PEG-g-PLGA with hydrophilic backbones was transparent during degradation and remained a gel for one week, suggesting a promising material for short-term drug delivery.

  9. Quantitative Analysis of PMLA Nanoconjugate Components after Backbone Cleavage

    PubMed Central

    Ding, Hui; Patil, Rameshwar; Portilla-Arias, Jose; Black, Keith L.; Ljubimova, Julia Y.; Holler, Eggehard

    2015-01-01

    Multifunctional polymer nanoconjugates containing multiple components show great promise in cancer therapy, but in most cases complete analysis of each component is difficult. Polymalic acid (PMLA) based nanoconjugates have demonstrated successful brain and breast cancer treatment. They consist of multiple components including targeting antibodies, Morpholino antisense oligonucleotides (AONs), and endosome escape moieties. The component analysis of PMLA nanoconjugates is extremely difficult using conventional spectrometry and HPLC method. Taking advantage of the nature of polyester of PMLA, which can be cleaved by ammonium hydroxide, we describe a method to analyze the content of antibody and AON within nanoconjugates simultaneously using SEC-HPLC by selectively cleaving the PMLA backbone. The selected cleavage conditions only degrade PMLA without affecting the integrity and biological activity of the antibody. Although the amount of antibody could also be determined using the bicinchoninic acid (BCA) method, our selective cleavage method gives more reliable results and is more powerful. Our approach provides a new direction for the component analysis of polymer nanoconjugates and nanoparticles. PMID:25894227

  10. The Dominant Folding Route Minimizes Backbone Distortion in SH3

    PubMed Central

    Lammert, Heiko; Noel, Jeffrey K.; Onuchic, Jos N.

    2012-01-01

    Energetic frustration in protein folding is minimized by evolution to create a smooth and robust energy landscape. As a result the geometry of the native structure provides key constraints that shape protein folding mechanisms. Chain connectivity in particular has been identified as an essential component for realistic behavior of protein folding models. We study the quantitative balance of energetic and geometrical influences on the folding of SH3 in a structure-based model with minimal energetic frustration. A decomposition of the two-dimensional free energy landscape for the folding reaction into relevant energy and entropy contributions reveals that the entropy of the chain is not responsible for the folding mechanism. Instead the preferred folding route through the transition state arises from a cooperative energetic effect. Off-pathway structures are penalized by excess distortion in local backbone configurations and contact pair distances. This energy cost is a new ingredient in the malleable balance of interactions that controls the choice of routes during protein folding. PMID:23166485

  11. A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments.

    PubMed

    Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue

    2016-01-01

    The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure-function relationship. PMID:26978354

  12. Abundances of Triacylglycerol Positional Isomers and Enantiomers Comprised of a Dipalmitoylglycerol Backbone and Short- or Medium-chain Fatty Acids in Bovine Milk Fat.

    PubMed

    Nagai, Toshiharu; Watanabe, Natsuko; Yoshinaga, Kazuaki; Mizobe, Hoyo; Kojima, Koichi; Kuroda, Ikuma; Odanaka, Yuki; Saito, Tadao; Beppu, Fumiaki; Gotoh, Naohiro

    2015-01-01

    Bovine milk fat (BMF) is composed of triacylglycerols (TAG) rich in palmitic acid (P), oleic acid (O), and short-chain or medium-chain fatty acids (SCFAs or MCFAs). The composition and binding positions of the fatty acids on the glycerol backbone determine their physical and nutritional properties. SCFAs and MCFAs are known to characteristically bind to the sn-3 position of the TAGs in BMF; however, there are very few non-destructive analyses of TAG enantiomers binding the fatty acids at this position. We previously reported a method to resolve the enantiomers of TAGs, binding both long-chain saturated fatty acid and unsaturated fatty acid at the sn-1 and 3 positions, in palm oil, fish oil, and marine mammal oil using chiral HPLC. Here, we further developed a method to resolve several TAG enantiomers containing a dipalmitoyl (PP) glycerol backbone and one SCFA (or MCFA) in BMF. We revealed that the predominant TAG structure in BMF was homochiral, such as 1,2-dipalmitoyl-3-butyroyl-sn-glycerol. This is the first quantitative determination of many TAG enantiomers, which bind to a SCFA or MCFA, in BMF was evaluated simultaneously. Furthermore, the results indicated that the amount ratios of the positional isomers and enantiomers of TAGs consisting of a dipalmitoyl (PP) glycerol backbone and SCFA (or MCFA), resembled the whole TAG structures containing the other diacylglycerol backbones consisting of P, O, myristic acid, and/or stearic acid in BMF. PMID:26329769

  13. Strong liquid-crystalline polymeric compositions

    DOEpatents

    Dowell, Flonnie (Los Alamos, NM)

    1993-01-01

    Strong liquid-crystalline polymeric (LCP) compositions of matter. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment.

  14. Strong liquid-crystalline polymeric compositions

    DOEpatents

    Dowell, F.

    1993-12-07

    Strong liquid-crystalline polymeric (LCP) compositions of matter are described. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment. 27 figures.

  15. Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: development and characterisation.

    PubMed

    Iqbal, Hafiz M N; Kyazze, Godfrey; Tron, Thierry; Keshavarz, Tajalli

    2014-11-26

    Bacterial cellulose (BC) exhibits high purity, mechanical strength and an ultra-fine fibrous 3-D network structure with bio-compatible and bio-degradable characteristics, while P(3 HB) are a bio-degradable matrix material derived from natural resources. Herein, we report a mild and eco-friendly fabrication of indigenously isolated P(3 HB) based novel composites consisting of BC (a straight-chain polysaccharide) as a backbone polymer and laccase was used as a grafting tool. The resulting composites were characterised by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic mechanical analyser (DMA) and water contact angle analyser (WCA). The FTIR spectra of the pure P(3 HB) and P(3 HB) containing graft composites [P(3 HB)-g-BC] showed their strong characteristic bands at 3358 cm(-1), 1721 cm(-1) and 1651 cm(-1), respectively. A homogenous dispersion of P(3 HB) in the backbone polymer of BC was achieved as evident by the SEM micrographs. XRD pattern for P(3 HB) showed distinct peaks at 2? values that represent the crystalline nature of P(3 HB). While, in comparison with those of neat P(3 HB), the degree of crystallinity for P(3 HB)-g-BC decreased and this reduction is mainly because of the new cross-linking of P(3 HB) within the backbone polymer that changes the morphology and destroys the crystallites. Laccase-assisted graft composite prepared from P(3 HB) and BC was fairly flexible and strong, judged by the tensile strength (64.5 MPa), elongations at break (15.7%), and Young's modulus (0.98 GPa) because inherently high strength of BC allowed the mechanical properties of P(3 HB) to improve in the P(3 HB)-g-BC composite. The hydrophilic property of the P(3 HB)-g-BC was much better than that of the individual counterparts which is also a desired characteristic to enhance the biocompatibility of the materials for proper cell adhesion and proliferation. PMID:25256467

  16. Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome

    PubMed Central

    2011-01-01

    Background One of the key goals of oak genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of forests to increase their health and productivity. Deep-coverage large-insert genomic libraries are a crucial tool for attaining this objective. We report herein the construction of a BAC library for Quercus robur, its characterization and an analysis of BAC end sequences. Results The EcoRI library generated consisted of 92,160 clones, 7% of which had no insert. Levels of chloroplast and mitochondrial contamination were below 3% and 1%, respectively. Mean clone insert size was estimated at 135 kb. The library represents 12 haploid genome equivalents and, the likelihood of finding a particular oak sequence of interest is greater than 99%. Genome coverage was confirmed by PCR screening of the library with 60 unique genetic loci sampled from the genetic linkage map. In total, about 20,000 high-quality BAC end sequences (BESs) were generated by sequencing 15,000 clones. Roughly 5.88% of the combined BAC end sequence length corresponded to known retroelements while ab initio repeat detection methods identified 41 additional repeats. Collectively, characterized and novel repeats account for roughly 8.94% of the genome. Further analysis of the BESs revealed 1,823 putative genes suggesting at least 29,340 genes in the oak genome. BESs were aligned with the genome sequences of Arabidopsis thaliana, Vitis vinifera and Populus trichocarpa. One putative collinear microsyntenic region encoding an alcohol acyl transferase protein was observed between oak and chromosome 2 of V. vinifera. Conclusions This BAC library provides a new resource for genomic studies, including SSR marker development, physical mapping, comparative genomics and genome sequencing. BES analysis provided insight into the structure of the oak genome. These sequences will be used in the assembly of a future genome sequence for oak. PMID:21645357

  17. Bacterial Community Composition in Central European Running Waters Examined by Temperature Gradient Gel Electrophoresis and Sequence Analysis of 16S rRNA Genes?

    PubMed Central

    Beier, Sara; Witzel, Karl-Paul; Marxsen, Jrgen

    2008-01-01

    The bacterial community composition in small streams and a river in central Germany was examined by temperature gradient gel electrophoresis (TGGE) with PCR products of 16S rRNA gene fragments and sequence analysis. Complex TGGE band patterns suggested high levels of diversity of bacterial species in all habitats of these environments. Cluster analyses demonstrated distinct differences among the communities in stream and spring water, sandy sediments, biofilms on stones, degrading leaves, and soil. The differences between stream water and sediment were more significant than those between sites within the same habitat along the stretch from the stream source to the mouth. TGGE data from an entire stream course suggest that, in the upper reach of the stream, a special suspended bacterial community is already established and changes only slightly downstream. The bacterial communities in water and sediment in an acidic headwater with a pH below 5 were highly similar to each other but deviated distinctly from the communities at the other sites. As ascertained by nucleotide sequence analysis, stream water communities were dominated by Betaproteobacteria (one-third of the total bacteria), whereas sediment communities were composed mainly of Betaproteobacteria and members of the Fibrobacteres/Acidobacteria group (each accounting for about 25% of bacteria). Sequences obtained from bacteria from water samples indicated the presence of typical cosmopolitan freshwater organisms. TGGE bands shared between stream and soil samples, as well as sequences found in bacteria from stream samples that were related to those of soil bacteria, demonstrated the occurrence of some species in both stream and soil habitats. Changes in bacterial community composition were correlated with geographic distance along a stream, but in comparisons of different streams and rivers, community composition was correlated only with environmental conditions. PMID:18024682

  18. MCBT: Multi-Hop Cluster Based Stable Backbone Trees for Data Collection and Dissemination in WSNs

    PubMed Central

    Shin, Inyoung; Kim, Moonseong; Mutka, Matt W.; Choo, Hyunseung; Lee, Tae-Jin

    2009-01-01

    We propose a stable backbone tree construction algorithm using multi-hop clusters for wireless sensor networks (WSNs). The hierarchical cluster structure has advantages in data fusion and aggregation. Energy consumption can be decreased by managing nodes with cluster heads. Backbone nodes, which are responsible for performing and managing multi-hop communication, can reduce the communication overhead such as control traffic and minimize the number of active nodes. Previous backbone construction algorithms, such as Hierarchical Cluster-based Data Dissemination (HCDD) and Multicluster, Mobile, Multimedia radio network (MMM), consume energy quickly. They are designed without regard to appropriate factors such as residual energy and degree (the number of connections or edges to other nodes) of a node for WSNs. Thus, the network is quickly disconnected or has to reconstruct a backbone. We propose a distributed algorithm to create a stable backbone by selecting the nodes with higher energy or degree as the cluster heads. This increases the overall network lifetime. Moreover, the proposed method balances energy consumption by distributing the traffic load among nodes around the cluster head. In the simulation, the proposed scheme outperforms previous clustering schemes in terms of the average and the standard deviation of residual energy or degree of backbone nodes, the average residual energy of backbone nodes after disseminating the sensed data, and the network lifetime. PMID:22454570

  19. Influence of backbone chemistry on the post-exposure bake temperature sensitivity of 193-nm photoresists

    NASA Astrophysics Data System (ADS)

    Bae, Young C.; Ogawa, Teruaki; Kavanagh, Robert J.; Kobayashi, Tatum; Lindsay, Tracy; Tanaka, Tsutomu; Xu, Cheng Bai; Orsula, George; DeSisto, Jason; Hellion, Marie

    2004-05-01

    It was found that the structure of a matrix polymer has strong influence on the PEB sensitivity of 193nm photoresists. As reported, photoresists containing CO polymers exhibited superior property in terms of PEB sensitivity to photoresists formulated with more popular 193 nm photoresist polymers such as VEMA, COMA and methacrylates. In addition, CO polymers exhibited little variation (< 1 nm/C) in PEB sensitivity when formulated with different PAGs and/or bases. VEMA polymers exhibited PEB sensitivity in the range of 4 ~ 6 nm/C. VEMA polymers with less leaving group (or lower blocking ratio) exhibited lower PEB sensitivity, but the nature of a leaving group (i.e., lower or higher temperature leaving groups) had little effect on PEB sensitivity. The most pronounced effect was found with functional monomers. For example, VEMA polymers prepared with novel functional monomers exhibited PEB sensitivity in the range of 3 ~ 4 nm/C. Photoresists formulated with methacrylates exhibited significant variation in PEB sensitivity ranging from 4 ~ 15 nm/C depending on the backbone chemistry and composition. For instance, with lower blocking ratio as well as lower temperature leaving group, PEB sensitivity of methacrylates were significantly improved by 40~45%. Again, the most pronounced effect was found with functional monomers with methacrylates and PEB sensitivity of methacrylates with novel monomers resulted in the range of 3 ~ 5 nm/C.

  20. Glucuronic acid directly linked to galacturonic acid in the rhamnogalacturonan backbone of beet pectins.

    PubMed

    Renard, C M; Crépeau, M J; Thibault, J F

    1999-12-01

    Sugar-beet pulp was de-esterified and submitted to 72 h hydrolysis by 0.1 M HCl at 80 degrees C. Oligomers containing a single glucuronic acid (GlcA) moiety in addition to n(>/= 2) repeats of the dimer -->4)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1--> were isolated from the hydrolysate by ion-exchange and gel-permeation. Glycosyl linkage composition analysis and 1H NMR studies indicated that the GlcA was attached to O-3 of a galacturonic acid (GalA) residue, as shown for the two pentamers beta-D-GlcpA-(1-->3)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-->4)-alpha-D-GalpA-(1-->2)-L-Rhap and alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-->4)-[beta-D-GlcpA-(1-->3)]-alpha-D-GalpA-(1-->2)-L-Rhap. Substitution by GlcA was estimated as occurring on one GalA residue out of 72 in the rhamnogalacturonan fraction of the backbone of beet pectins. PMID:10561599

  1. A precise reconstruction of the emergence and constrained radiations of Escherichia coli O157 portrayed by backbone concatenomic analysis

    PubMed Central

    Leopold, Shana R.; Magrini, Vincent; Holt, Nicholas J.; Shaikh, Nurmohammad; Mardis, Elaine R.; Cagno, Joseph; Ogura, Yoshitoshi; Iguchi, Atsushi; Hayashi, Tetsuya; Mellmann, Alexander; Karch, Helge; Besser, Thomas E.; Sawyer, Stanley A.; Whittam, Thomas S.; Tarr, Phillip I.

    2009-01-01

    Single nucleotide polymorphisms (SNPs) in stable genome regions provide durable measurements of species evolution. We systematically identified each SNP in concatenations of all backbone ORFs in 7 newly or previously sequenced evolutionarily instructive pathogenic Escherichia coli O157:H7, O157:H?, and O55:H7. The 1,113 synonymous SNPs demonstrate emergence of the largest cluster of this pathogen only in the last millennium. Unexpectedly, shared SNPs within circumscribed clusters of organisms suggest severely restricted survival and limited effective population sizes of pathogenic O157:H7, tenuous survival of these organisms in nature, source-sink evolutionary dynamics, or, possibly, a limited number of mutations that confer selective advantage. A single large segment spanning the rfb-gnd gene cluster is the only backbone region convincingly acquired by recombination as O157 emerged from O55. This concatenomic analysis also supports using SNPs to differentiate closely related pathogens for infection control and forensic purposes. However, constrained radiations raise the possibility of making false associations between isolates. PMID:19439656

  2. A precise reconstruction of the emergence and constrained radiations of Escherichia coli O157 portrayed by backbone concatenomic analysis.

    PubMed

    Leopold, Shana R; Magrini, Vincent; Holt, Nicholas J; Shaikh, Nurmohammad; Mardis, Elaine R; Cagno, Joseph; Ogura, Yoshitoshi; Iguchi, Atsushi; Hayashi, Tetsuya; Mellmann, Alexander; Karch, Helge; Besser, Thomas E; Sawyer, Stanley A; Whittam, Thomas S; Tarr, Phillip I

    2009-05-26

    Single nucleotide polymorphisms (SNPs) in stable genome regions provide durable measurements of species evolution. We systematically identified each SNP in concatenations of all backbone ORFs in 7 newly or previously sequenced evolutionarily instructive pathogenic Escherichia coli O157:H7, O157:H(-), and O55:H7. The 1,113 synonymous SNPs demonstrate emergence of the largest cluster of this pathogen only in the last millennium. Unexpectedly, shared SNPs within circumscribed clusters of organisms suggest severely restricted survival and limited effective population sizes of pathogenic O157:H7, tenuous survival of these organisms in nature, source-sink evolutionary dynamics, or, possibly, a limited number of mutations that confer selective advantage. A single large segment spanning the rfb-gnd gene cluster is the only backbone region convincingly acquired by recombination as O157 emerged from O55. This concatenomic analysis also supports using SNPs to differentiate closely related pathogens for infection control and forensic purposes. However, constrained radiations raise the possibility of making false associations between isolates. PMID:19439656

  3. Influence of backbone on the charge transport properties of G4-DNA molecules: a model-based calculation

    NASA Astrophysics Data System (ADS)

    Guo, Ai-Min; Yang, Zhi; Zhu, Hong-Jun; Xiong, Shi-Jie

    2010-02-01

    We put forward a model Hamiltonian to describe the influence of backbone energetics on charge transport through guanine-quadruplex DNA (G4-DNA) molecules. Our analytical results show that an energy gap can be produced in the energy spectrum of G4-DNA by hybridization effects between the backbone and the base and by on-site energy difference of the backbone from the base. The environmental effects are investigated by introducing different types of disorder into the backbone sites. Our numerical results suggest that the localization length of G4-DNA can be significantly enhanced by increasing the backbone disorder degree when the environment-induced disorder is sufficiently large. There exists a backbone disorder-induced semiconducting-metallic transition in short G4-DNA molecules, where G4-DNA behaves as a semiconductor if the backbone disorder is weak and behaves as a conductor if the backbone disorder degree surpasses a critical value.

  4. Ruthenium-catalyzed olefin metathesis accelerated by the steric effect of the backbone substituent in cyclic (alkyl)(amino) carbenes.

    PubMed

    Zhang, Jun; Song, Shangfei; Wang, Xiao; Jiao, Jiajun; Shi, Min

    2013-10-21

    Three ruthenium complexes bearing backbone-monosubstituted CAACs were prepared and displayed dramatic improvement in catalytic efficiency not only in RCM reaction but also in the ethenolysis of methyl oleate, compared to those bearing backbone-disubstituted CAACs. PMID:24013192

  5. Backbone and side-chain resonance assignment of the A147T polymorph of mouse TSPO in complex with a high-affinity radioligand.

    PubMed

    Jaremko, Mariusz; Jaremko, Łukasz; Giller, Karin; Becker, Stefan; Zweckstetter, Markus

    2016-04-01

    The integral polytopic membrane protein TSPO is the target for numerous endogenous and synthetic ligands. However, the affinity of many ligands is influenced by a common polymorphism in TSPO, in which an alanine at position 147 is replaced by threonine, thereby complicating the use of several radioligands for clinical diagnosis. In contrast, the best-characterized TSPO ligand (R)-PK11195 binds with similar affinity to both variants of mitochondrial TSPO (wild-type and A147T variant). Here we report the (1)H, (13)C, (15)N backbone and side-chain resonance assignment of the A147T polymorph of TSPO from Mus Musculus in complex with (R)-PK11195 in DPC detergent micelles. More than 90 % of all resonances were sequence-specifically assigned, demonstrating the ability to obtain high-quality spectral data for both the backbone and the side-chains of medically relevant integral membrane proteins. PMID:26364056

  6. Attosecond Electron Delocalization in the Conduction Band through the Phosphate Backbone of Genomic DNA

    NASA Astrophysics Data System (ADS)

    Ikeura-Sekiguchi, Hiromi; Sekiguchi, Tetsuhiro

    2007-11-01

    Partial density of states in the empty conduction band of the phosphate backbone sites in DNA was probed using energy-dependent resonant Auger spectroscopy. Results show that genomic DNA with periodic backbones exhibits an extended state despite separation of each phosphate group by an insulating sugar group. In antisense DNA with an aperiodic backbone, the equivalent state is localized. Remarkably rapid electron delocalization occurs at ca. 740 attoseconds for wet DNA, as estimated using the core-hole clock method. Such delocalization is comparable to the Fermi velocity of carbon nanotubes.

  7. Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold

    SciTech Connect

    Azoitei, Mihai L.; Correia, Bruno E.; Ban, Yih-En Andrew; Carrico, Chris; Kalyuzhniy, Oleksandr; Chen, Lei; Schroeter, Alexandria; Huang, Po-Ssu; McLellan, Jason S.; Kwong, Peter D.; Baker, David; Strong, Roland K.; Schief, William R.

    2012-02-07

    The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.

  8. Origin of the Temporal-compositional Variations in Monogenetic Vent Eruptions: Insights from the Crystal Cargo in the Papoose Canyon Sequence, Big Pine Volcanic Field, CA

    NASA Astrophysics Data System (ADS)

    Gao, R.; Ramirez, G.; Lassiter, J. C.

    2014-12-01

    Systematic temporal-compositional variations observed in many monogenetic vent eruption sequences (e.g. decreasing incompatible element concentrations, variation in major element and isotopic compositions) may reflect varying extents of crustal contamination (c.f., [1]), or melting and mixing of small-scale mantle heterogeneities (c.f., [2]). During eruption of the Papoose Canyon (PC) monogenetic vent incompatible trace element concentrations decreased a factor of 2, 87Sr/86Sr decreased (from ~0.7063 to 0.7055), and 143Nd/144Nd increased (from ~0.51246 to 0.51258) (c.f., [2]). Blondes et al. (2008) argued that the relatively primitive melt MgO content and apparent presence of mantle xenoliths in the sequence indicate limited melt storage and crustal contamination prior to eruption, and proposed melting and mixing of two distinct mantle components to explain the variations. However, PC olivine phenocryst compositions (Fo# ~76-89) span a wide range, extending to evolved (low-Fo) compositions, and the vast majority of phenocrysts are more evolved than olivines in equilibrium with the host scoria (Mg# ~87-89). In addition, olivine and clinopyroxene from xenoliths within the early sequence have Mg# (73-87) similar to the phenocrysts, and lower than typical mantle peridotites. Sr-Nd isotopic compositions of the xenoliths are similar to the early PC lavas, but less enriched than the host melts. Therefore, the xenoliths are most likely cognate xenoliths derived from fractionated PC magmas. Finally, both phenocryst and xenolith olivines have ?18O (~5.5 to 5.7 ) higher than most mantle peridotites (~5.2 0.2 ), and clinopyroxene trace element abundances indicate derivation from melts with trace element abundances higher than the most enriched PC lavas. In conjunction, these features suggest that the phenocrysts and xenoliths derive from early PC melts that ponded and fractionated and assimilated continental crust, possibly in crustal sills. These melts were drained and mixed with more primitive melts as the eruption began, and the temporal-compositional trends in part reflect decreasing contaminated sill component over time. These results indicate that even "primitive" melts may contain a significant signature of crustal contamination. [1] Erlund et al., 2010. [2] Blondes et al., 2008.

  9. Animal protection and structural studies of a consensus sequence vaccine targeting the receptor binding domain of the type IV pilus of Pseudomonas aeruginosa.

    PubMed

    Kao, Daniel J; Churchill, Mair E A; Irvin, Randall T; Hodges, Robert S

    2007-11-23

    One of the main obstacles in the development of a vaccine against Pseudomonas aeruginosa is the requirement that it is protective against a wide range of virulent strains. We have developed a synthetic-peptide consensus-sequence vaccine (Cs1) that targets the host receptor-binding domain (RBD) of the type IV pilus of P. aeruginosa. Here, we show that this vaccine provides increased protection against challenge by the four piliated strains that we have examined (PAK, PAO, KB7 and P1) in the A.BY/SnJ mouse model of acute P. aeruginosa infection. To further characterize the consensus sequence, we engineered Cs1 into the PAK monomeric pilin protein and determined the crystal structure of the chimeric Cs1 pilin to 1.35 A resolution. The substitutions (T130K and E135P) used to create Cs1 do not disrupt the conserved backbone conformation of the pilin RBD. In fact, based on the Cs1 pilin structure, we hypothesize that the E135P substitution bolsters the conserved backbone conformation and may partially explain the immunological activity of Cs1. Structural analysis of Cs1, PAK and K122-4 pilins reveal substitutions of non-conserved residues in the RBD are compensated for by complementary changes in the rest of the pilin monomer. Thus, the interactions between the RBD and the rest of the pilin can either be mediated by polar interactions of a hydrogen bond network in some strains or by hydrophobic interactions in others. Both configurations maintain a conserved backbone conformation of the RBD. Thus, the backbone conformation is critical in our consensus-sequence vaccine design and that cross-reactivity of the antibody response may be modulated by the composition of exposed side-chains on the surface of the RBD. This structure will guide our future vaccine design by focusing our investigation on the four variable residue positions that are exposed on the RBD surface. PMID:17936788

  10. Animal Protection and Structural Studies of a Consensus Sequence Vaccine Targeting the Receptor Binding Domain of the Type IV Pilus of Pseudomonas aeruginosa

    SciTech Connect

    Kao, Daniel J.; Churchill, Mair E.A.; Irvin, Randall T.; Hodges, Robert S.

    2008-09-23

    One of the main obstacles in the development of a vaccine against Pseudomonas aeruginosa is the requirement that it is protective against a wide range of virulent strains. We have developed a synthetic-peptide consensus-sequence vaccine (Cs1) that targets the host receptor-binding domain (RBD) of the type IV pilus of P. aeruginosa. Here, we show that this vaccine provides increased protection against challenge by the four piliated strains that we have examined (PAK, PAO, KB7 and P1) in the A.BY/SnJ mouse model of acute P. aeruginosa infection. To further characterize the consensus sequence, we engineered Cs1 into the PAK monomeric pilin protein and determined the crystal structure of the chimeric Cs1 pilin to 1.35 {angstrom} resolution. The substitutions (T130K and E135P) used to create Cs1 do not disrupt the conserved backbone conformation of the pilin RBD. In fact, based on the Cs1 pilin structure, we hypothesize that the E135P substitution bolsters the conserved backbone conformation and may partially explain the immunological activity of Cs1. Structural analysis of Cs1, PAK and K122-4 pilins reveal substitutions of non-conserved residues in the RBD are compensated for by complementary changes in the rest of the pilin monomer. Thus, the interactions between the RBD and the rest of the pilin can either be mediated by polar interactions of a hydrogen bond network in some strains or by hydrophobic interactions in others. Both configurations maintain a conserved backbone conformation of the RBD. Thus, the backbone conformation is critical in our consensus-sequence vaccine design and that cross-reactivity of the antibody response may be modulated by the composition of exposed side-chains on the surface of the RBD. This structure will guide our future vaccine design by focusing our investigation on the four variable residue positions that are exposed on the RBD surface.

  11. Composite-180 Pulse-Based Symmetry Sequences to Recouple Proton Chemical Shift Anisotropy Tensors under Ultrafast MAS Solid-State NMR Spectroscopy

    PubMed Central

    Pandey, Manoj Kumar; Malon, Michal; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-01-01

    There is considerable interest in the measurement of proton (1H) chemical shift anisotropy (CSA) tensors to obtain deeper insights into H-bonding interactions which find numerous applications in chemical and biological systems. However, the presence of strong 1H/1H dipolar interaction makes it difficult to determine small size 1H CSAs from the homogeneously broadened NMR spectra. Previously reported pulse sequences for 1H CSA recoupling are prone to the effects of radio frequency field (B1) inhomogeneity. In the present work we have carried out a systematic study using both numerical and experimental approaches to evaluate ?-encoded radio frequency (RF) pulse sequences based on R-symmetries that recouple 1H CSA in the indirect dimension of a 2D 1H/1H anisotropic/isotropic chemical shift correlation experiment under ultrafast magic angle spinning (MAS) frequencies. The spectral resolution and sensitivity can be significantly improved in both frequency dimensions of the 2D 1H/1H correlation spectrum without decoupling 1H/1H dipolar couplings but by using ultrafast MAS rates up to 70 kHz. We successfully demonstrate that with a reasonable RF field requirement (< 200 kHz) a set of symmetry-based recoupling sequences, with a series of phase-alternating 2700-90180 composite-180 pulses, are more robust in combating B1 inhomogeneity effects. In addition, our results show that the new pulse sequences render remarkable 1H CSA recoupling efficiency and undistorted CSA lineshapes. Experimental results on citric acid and malonic acid comparing the efficiencies of these newly developed pulse sequences with that of previously reported CSA recoupling pulse sequences are also reported under ultrafast MAS conditions. PMID:25497846

  12. Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Malon, Michal; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-01-01

    There is considerable interest in the measurement of proton ((1)H) chemical shift anisotropy (CSA) tensors to obtain deeper insights into H-bonding interactions which find numerous applications in chemical and biological systems. However, the presence of strong (1)H/(1)H dipolar interaction makes it difficult to determine small size (1)H CSAs from the homogeneously broadened NMR spectra. Previously reported pulse sequences for (1)H CSA recoupling are prone to the effects of radio frequency field (B1) inhomogeneity. In the present work we have carried out a systematic study using both numerical and experimental approaches to evaluate γ-encoded radio frequency (RF) pulse sequences based on R-symmetries that recouple (1)H CSA in the indirect dimension of a 2D (1)H/(1)H anisotropic/isotropic chemical shift correlation experiment under ultrafast magic angle spinning (MAS) frequencies. The spectral resolution and sensitivity can be significantly improved in both frequency dimensions of the 2D (1)H/(1)H correlation spectrum without decoupling (1)H/(1)H dipolar couplings but by using ultrafast MAS rates up to 70 kHz. We successfully demonstrate that with a reasonable RF field requirement (<200 kHz) a set of symmetry-based recoupling sequences, with a series of phase-alternating 270°0-90°180 composite-180° pulses, are more robust in combating B1 inhomogeneity effects. In addition, our results show that the new pulse sequences render remarkable (1)H CSA recoupling efficiency and undistorted CSA lineshapes. Experimental results on citric acid and malonic acid comparing the efficiencies of these newly developed pulse sequences with that of previously reported CSA recoupling pulse sequences are also reported under ultrafast MAS conditions. PMID:25497846

  13. Composite-180 pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Malon, Michal; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-01-01

    There is considerable interest in the measurement of proton (1H) chemical shift anisotropy (CSA) tensors to obtain deeper insights into H-bonding interactions which find numerous applications in chemical and biological systems. However, the presence of strong 1H/1H dipolar interaction makes it difficult to determine small size 1H CSAs from the homogeneously broadened NMR spectra. Previously reported pulse sequences for 1H CSA recoupling are prone to the effects of radio frequency field (B1) inhomogeneity. In the present work we have carried out a systematic study using both numerical and experimental approaches to evaluate ?-encoded radio frequency (RF) pulse sequences based on R-symmetries that recouple 1H CSA in the indirect dimension of a 2D 1H/1H anisotropic/isotropic chemical shift correlation experiment under ultrafast magic angle spinning (MAS) frequencies. The spectral resolution and sensitivity can be significantly improved in both frequency dimensions of the 2D 1H/1H correlation spectrum without decoupling 1H/1H dipolar couplings but by using ultrafast MAS rates up to 70 kHz. We successfully demonstrate that with a reasonable RF field requirement (<200 kHz) a set of symmetry-based recoupling sequences, with a series of phase-alternating 2700-90180 composite-180 pulses, are more robust in combating B1 inhomogeneity effects. In addition, our results show that the new pulse sequences render remarkable 1H CSA recoupling efficiency and undistorted CSA lineshapes. Experimental results on citric acid and malonic acid comparing the efficiencies of these newly developed pulse sequences with that of previously reported CSA recoupling pulse sequences are also reported under ultrafast MAS conditions.

  14. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

    DOE PAGESBeta

    None

    2014-12-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illuminamore » 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.« less

  15. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

    SciTech Connect

    2014-12-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illumina 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.

  16. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

    PubMed Central

    Rubin, Benjamin E R; Sanders, Jon G; Hampton-Marcell, Jarrad; Owens, Sarah M; Gilbert, Jack A; Moreau, Corrie S

    2014-01-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illumina 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied. PMID:25257543

  17. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure.

    PubMed

    Rubin, Benjamin E R; Sanders, Jon G; Hampton-Marcell, Jarrad; Owens, Sarah M; Gilbert, Jack A; Moreau, Corrie S

    2014-12-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illumina 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied. PMID:25257543

  18. Composite Sequence-Structure Stability Models as Screening Tools for Identifying Vulnerable Targets for HIV Drug and Vaccine Development.

    PubMed

    Manocheewa, Siriphan; Mittler, John E; Samudrala, Ram; Mullins, James I

    2015-11-01

    Rapid evolution and high sequence diversity enable Human Immunodeficiency Virus (HIV) populations to acquire mutations to escape antiretroviral drugs and host immune responses, and thus are major obstacles for the control of the pandemic. One strategy to overcome this problem is to focus drugs and vaccines on regions of the viral genome in which mutations are likely to cripple function through destabilization of viral proteins. Studies relying on sequence conservation alone have had only limited success in determining critically important regions. We tested the ability of two structure-based computational models to assign sites in the HIV-1 capsid protein (CA) that would be refractory to mutational change. The destabilizing mutations predicted by these models were rarely found in a database of 5811 HIV-1 CA coding sequences, with none being present at a frequency greater than 2%. Furthermore, 90% of variants with the low predicted stability (from a set of 184 CA variants whose replication fitness or infectivity has been studied in vitro) had aberrant capsid structures and reduced viral infectivity. Based on the predicted stability, we identified 45 CA sites prone to destabilizing mutations. More than half of these sites are targets of one or more known CA inhibitors. The CA regions enriched with these sites also overlap with peptides shown to induce cellular immune responses associated with lower viral loads in infected individuals. Lastly, a joint scoring metric that takes into account both sequence conservation and protein structure stability performed better at identifying deleterious mutations than sequence conservation or structure stability information alone. The computational sequence-structure stability approach proposed here might therefore be useful for identifying immutable sites in a protein for experimental validation as potential targets for drug and vaccine development. PMID:26556362

  19. High-throughput sequencing of 16S rDNA amplicons characterizes bacterial composition in cerebrospinal fluid samples from patients with purulent meningitis

    PubMed Central

    Liu, Aicui; Wang, Chao; Liang, Zhijuan; Zhou, Zhi-Wei; Wang, Lin; Ma, Qiaoli; Wang, Guowei; Zhou, Shu-Feng; Wang, Zhenhai

    2015-01-01

    Purulent meningitis (PM) is a severe infectious disease that is associated with high rates of morbidity and mortality. It has been recognized that bacterial infection is a major contributing factor to the pathogenesis of PM. However, there is a lack of information on the bacterial composition in PM, due to the low positive rate of cerebrospinal fluid bacterial culture. Herein, we aimed to discriminate and identify the main pathogens and bacterial composition in cerebrospinal fluid sample from PM patients using high-throughput sequencing approach. The cerebrospinal fluid samples were collected from 26 PM patients, and were determined as culture-negative samples. The polymerase chain reaction products of the hypervariable regions of 16S rDNA gene in these 26 samples of PM were sequenced using the 454 GS FLX system. The results showed that there were 71,440 pyrosequencing reads, of which, the predominant phyla were Proteobacteria and Firmicutes; and the predominant genera were Streptococcus, Acinetobacter, Pseudomonas, and Neisseria. The bacterial species in the cerebrospinal fluid were complex, with 61.5% of the samples presenting with mixed pathogens. A significant number of bacteria belonging to a known pathogenic potential was observed. The number of operational taxonomic units for individual samples ranged from six to 75 and there was a comparable difference in the species diversity that was calculated through alpha and beta diversity analysis. Collectively, the data show that high-throughput sequencing approach facilitates the characterization of the pathogens in cerebrospinal fluid and determine the abundance and the composition of bacteria in the cerebrospinal fluid samples of the PM patients, which may provide a better understanding of pathogens in PM and assist clinicians to make rational and effective therapeutic decisions. PMID:26300628

  20. Enhancement of transport in DNA-like systems induced by backbone disorder

    NASA Astrophysics Data System (ADS)

    Guo, Ai-Min; Xiong, Shi-Jie; Yang, Zhi; Zhu, Hong-Jun

    2008-12-01

    We report a theoretical study highlighting the fundamental effects of backbone disorder which simulates the environmental complications on charge transport properties of biological and synthetic DNA molecules. Based on effective tight-binding models of duplex DNA, the Lyapunov coefficient and current-voltage characteristics are numerically calculated by varying the backbone disorder degree. In contrast to the localization picture that the conduction of duplex DNA becomes poorer when the backbone disorder degree is increased, we find that the backbone disorder can enhance the charge transport ability of the DNA molecules when the environment-induced disorder surpasses a critical value, giving rise to a semiconducting-metallic transition. The physical origin for this is traced back to the antiresonant effects. These results provide a scenario to interpret a variety of transport behaviors observed in DNA molecules and suggest perspectives for future experiments intending to control the charge transport through DNA-based nanodevices.

  1. Cytokinin vectors mediate marker-free and backbone-free plant transformation.

    PubMed

    Richael, Craig M; Kalyaeva, Marina; Chretien, Robert C; Yan, Hua; Adimulam, Sathya; Stivison, Artesia; Weeks, J Troy; Rommens, Caius M

    2008-10-01

    Conventional Agrobacterium-mediated transformation methods rely on complex and genotype-specific tissue culture media for selection, proliferation, and regeneration of genetically modified cells. Resulting transgenic plants may not only contain selectable marker genes but also carry fragments of the vector backbone. Here, we describe a new method for the production of transgenic plants that lack such foreign DNA. This method employs vectors containing the bacterial isopentenyltransferase (ipt) gene as backbone integration marker. Agrobacterium strains carrying the resulting ipt gene-containing "cytokinin" vectors were used to infect explants of various Solanaceous plant species as well as canola (Brassica napus). Upon transfer to hormone-free media, 1.8% to 9.9% of the infected explants produced shoots that contained a marker-free T-DNA while lacking the backbone integration marker. These frequencies often equal or exceed those for backbone-free conventional transformation. PMID:18320338

  2. A highly selective and sensitive electrochemical CS-MWCNTs/Au-NPs composite DNA biosensor for Staphylococcus aureus gene sequence detection.

    PubMed

    Sun, Yange; He, Xingxing; Ji, Jian; Jia, Min; Wang, Zhouping; Sun, Xiulan

    2015-08-15

    This paper presents a new electrochemical DNA biosensor constructed using a substrate electrode composed of a novel nanocomposite material prepared using gold nanoparticles (Au-NPs) and multiwalled carbon nanotubes (MWCNTs) and further modified with an Au electrode (AuE), which was used as the substrate electrode. A single-stranded DNA (ssDNA) probe was immobilized on the Au-NPs/CS-MWCNTs/AuE electrode by means of facile gold-thiol affinity, which resulted in hybridization with the target ssDNA sequence. Hybridization reactions were assessed by using the reduction peak current of methylene blue (MB) as an electrochemical indicator. The advantages of the nanomaterials were found to include high surface area, favorable electronic properties, and strong electrocatalytic activity. The amount of ssDNA adsorbed on the electrode surface was increased and the electrochemical response of MB accelerated. The differential pulse voltammetric responses of MB were in line with the specific target ssDNA sequence within the concentration range 1.010(-15)-1.010(-8)M with the detection limit 3.310(-16)M (3?). In the colony forming unit (CFU) we were able to detect 10CFU mL(-1)of Staphylococcus aureus in the tap water, achieving good discrimination ability between one- and three-base mismatched ssDNA sequences. The polymerase chain reaction (PCR) amplification products of S. aureus nuc gene sequence were also detected with satisfactory results. PMID:25966418

  3. Bacterial Pathogens and Community Composition in Advanced Sewage Treatment Systems Revealed by Metagenomics Analysis Based on High-Throughput Sequencing

    PubMed Central

    Lu, Xin; Zhang, Xu-Xiang; Wang, Zhu; Huang, Kailong; Wang, Yuan; Liang, Weigang; Tan, Yunfei; Liu, Bo; Tang, Junying

    2015-01-01

    This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP) applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence. PMID:25938416

  4. Bacterial pathogens and community composition in advanced sewage treatment systems revealed by metagenomics analysis based on high-throughput sequencing.

    PubMed

    Lu, Xin; Zhang, Xu-Xiang; Wang, Zhu; Huang, Kailong; Wang, Yuan; Liang, Weigang; Tan, Yunfei; Liu, Bo; Tang, Junying

    2015-01-01

    This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP) applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence. PMID:25938416

  5. Paleoproterozoic sequences and magmatic complexes of the Losevo suture zone of the Voronezh crystalline massif: Geological position, material composition, geochemistry, and paleogeodynamics

    NASA Astrophysics Data System (ADS)

    Terentiev, R. A.

    2014-03-01

    In order to resolve the contradictions associated with uncertainty in the identification of the material composition, subdivision, and conditions of formation of the Paleoproterozoic intrusive, metavolcanogenic, and metasedimentary sequences of the Losevo suture zone of the Voronezh crystalline massif, this work presents geological, petrographic, petrochemical, and geochemical features of these sequences. The stratigraphic and magmatic scheme of the central part of the Losevo suture zone is clarified. In particular, the Paleoproterozoic Losevo Series is divided into two sequences: Strelitsa (marginal sea) and Podgornoe (island arc). A new hypabyssal Novo-Voronezh metagabbro-diabase complex, comagmatic to metatholeiites of the Podgornoe sequence, is distinguished. The isotope age of the Strelitsa sequence is assumed to be 2172 ± 17 Ma on the basis of the results of age dating of zircon cores from the Usman plagiogranites, intruding this sequence. The upper age boundary of the Strelitsa sequence corresponds to the age of premetamorphic gabbro of the Rozhdestvenskoe complex, comagmatic to metavolcanites (2120 ± 11-2158 ± 43 Ma). The age of the Usman plagiogranite complex is clarified. On the basis of geological-structural and petrographic-mineralogical analyses of metavolcanogenic rocks, lithological analysis of metasedimentary formations, and new geochemical data obtained from metavolcanites and metamorphosed deposits, the pattern of paleogeodynamic evolution of the Losevo suture zone in the first half of the Paleoproterozoic is proposed. The next stages are distinguished: (1) intrusion of tholeiites of transition T-MORB type in spreading zones and deposition of terrigenous strata in the marginal sea basins; (2) intrusion of Nb-depleted tholeiites and plagiorhyolites, the geochemical characteristics indicating their formation in the subduction setting; (3) intrusion of gabbroids of the Rozhdestvenskoe complex; (4) formation of an island arc synchronously with stage 2, tholeiitic and calc-alkaline (Podgornoe sequence) volcanism; (5) intrusions of gabbro-diabases, subsynchronous to volcanism, of the Novovoronezh complex and diorite-granitoides, crystallization of granitoides of the Usman complex; (6) a break in sedimentation and formation of molasses of the Voronezh (Somovo) Formation.

  6. On the Geometry and Electronic Structure of the As-DNA Backbone

    SciTech Connect

    Fuentes-Cabrera, Miguel A; Sponer, Jiri; Sponer, Judit; Sumpter, Bobby G; Mladek, Arnost

    2011-01-01

    High-level quantum chemical calculations have been applied to investigate the geometry and electronic properties of the arsenate analogue of the DNA backbone. The optimized geometries as well as hyperconjugation effects along the C30 O30 X O50 C50 linkage (X = P,As) exhibit a remarkable similarity for both arsenates and phosphates. This suggests that arsenates, if present, might serve as a potential substitute for phosphates in the DNA backbone.

  7. Composite

    NASA Astrophysics Data System (ADS)

    Kim, Su-Hyeon; Cho, Young-Hee; Lee, Jung-Moo

    2014-06-01

    Particle distribution and hot workability of an in situ Al-TiCp composite were investigated. The composite was fabricated by an in situ casting method using the self-propagating high-temperature synthesis of an Al-Ti-C system. Hot-compression tests were carried out, and power dissipation maps were constructed using a dynamic material model. Small globular TiC particles were not themselves fractured, but the clustering and grain boundary segregation of the particles contributed to the cracking of the matrix by causing the debonding of matrix/particle interfaces and providing a crack propagation path. The efficiency of power dissipation increased with increasing temperature and strain rate, and the maximum efficiency was obtained at a temperature of 723 K (450 C) and a strain rate of 1/s. The microstructural mechanism occurring in the maximum efficiency domain was dynamic recrystallization. The role of particles in the plastic flow and the microstructure evolution were discussed.

  8. Composites

    NASA Astrophysics Data System (ADS)

    Taylor, John G.

    The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.

  9. Novel electrochemical biosensor based on functional composite nanofibers for sensitive detection of p53 tumor suppressor gene.

    PubMed

    Wang, Xiaoying; Wang, Xiaobing; Wang, Xiaoning; Chen, Fentian; Zhu, Kehui; Xu, Qian; Tang, Meng

    2013-02-26

    A novel electrochemical biosensor based on functional composite nanofibers for sensitive hybridization detection of p53 tumor suppressor using methylene blue (MB) as an electrochemical indicator is developed. The carboxylated multi-walled carbon nanotubes (MWNTs) doped nylon 6 (PA6) composite nanofibers (MWNTs-PA6) was prepared using electrospinning, which served as the nanosized backbone for pyrrole (Py) electropolymerization. The functional composite nanofibers (MWNTs-PA6-PPy) used as supporting scaffolds for ssDNA immobilization can dramatically increase the amount of DNA attachment and the hybridization sensitivity. The biosensor displayed good sensitivity and specificity. The target wild type p53 sequence (wtp53) can be detected as low as 50 fM and the discrimination is up to 57.5% between the wtp53 and the mutant type p53 sequence (mtp53). It holds promise for the early diagnosis of cancer development and monitoring of patient therapy. PMID:23410627

  10. iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition.

    PubMed

    Chen, Wei; Feng, Peng-Mian; Deng, En-Ze; Lin, Hao; Chou, Kuo-Chen

    2014-10-01

    Translation is a key process for gene expression. Timely identification of the translation initiation site (TIS) is very important for conducting in-depth genome analysis. With the avalanche of genome sequences generated in the postgenomic age, it is highly desirable to develop automated methods for rapidly and effectively identifying TIS. Although some computational methods were proposed in this regard, none of them considered the global or long-range sequence-order effects of DNA, and hence their prediction quality was limited. To count this kind of effects, a new predictor, called "iTIS-PseTNC," was developed by incorporating the physicochemical properties into the pseudo trinucleotide composition, quite similar to the PseAAC (pseudo amino acid composition) approach widely used in computational proteomics. It was observed by the rigorous cross-validation test on the benchmark dataset that the overall success rate achieved by the new predictor in identifying TIS locations was over 97%. As a web server, iTIS-PseTNC is freely accessible at http://lin.uestc.edu.cn/server/iTIS-PseTNC. To maximize the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web server to obtain the desired results without the need to go through detailed mathematical equations, which are presented in this paper just for the integrity of the new prection method. PMID:25016190

  11. Backbone resonance assignments for G protein ?(i3) subunit in the GDP-bound state.

    PubMed

    Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2014-10-01

    Guanine-nucleotide binding proteins (G proteins) serve as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of the G protein ? subunit with GDP (G?GDP) and the G protein ?? subunit (G??). Ligand binding to GPCRs promotes the GDP-GTP exchange on G?, leading to the dissociation of the GTP-bound form of G? (G?GTP) and G??. Then, G?GTP and G?? bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, G? hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with G??. The G proteins are classified with four major families based on the amino acid sequences of G?: i/o, s, q/11, and 12/13. Here, we established the backbone resonance assignments of human G?i3, a member of the i/o family with a molecular weight of 41 K, in complex with GDP. The chemical shifts were compared with those of G?(i3) in complex with a GTP-analogue, GTP?S, which we recently reported, indicating that the residues with significant chemical shift differences are mostly consistent with the regions with the structural differences between the GDP- and GTP?S-bound states, as indicated in the crystal structures. The assignments of G?(i3)GDP would be useful for the analyses of the dynamics of G?(i3) and its interactions with various target molecules. PMID:23771857

  12. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor.

    PubMed

    Isogai, Shin; Deupi, Xavier; Opitz, Christian; Heydenreich, Franziska M; Tsai, Ching-Ju; Brueckner, Florian; Schertler, Gebhard F X; Veprintsev, Dmitry B; Grzesiek, Stephan

    2016-02-11

    G protein-coupled receptors (GPCRs) are physiologically important transmembrane signalling proteins that trigger intracellular responses upon binding of extracellular ligands. Despite recent breakthroughs in GPCR crystallography, the details of ligand-induced signal transduction are not well understood owing to missing dynamical information. In principle, such information can be provided by NMR, but so far only limited data of functional relevance on few side-chain sites of eukaryotic GPCRs have been obtained. Here we show that receptor motions can be followed at virtually any backbone site in a thermostabilized mutant of the turkey β1-adrenergic receptor (β1AR). Labelling with [(15)N]valine in a eukaryotic expression system provides over twenty resolved resonances that report on structure and dynamics in six ligand complexes and the apo form. The response to the various ligands is heterogeneous in the vicinity of the binding pocket, but gets transformed into a homogeneous readout at the intracellular side of helix 5 (TM5), which correlates linearly with ligand efficacy for the G protein pathway. The effect of several pertinent, thermostabilizing point mutations was assessed by reverting them to the native sequence. Whereas the response to ligands remains largely unchanged, binding of the G protein mimetic nanobody NB80 and G protein activation are only observed when two conserved tyrosines (Y227 and Y343) are restored. Binding of NB80 leads to very strong spectral changes throughout the receptor, including the extracellular ligand entrance pocket. This indicates that even the fully thermostabilized receptor undergoes activating motions in TM5, but that the fully active state is only reached in presence of Y227 and Y343 by stabilization with a G protein-like partner. The combined analysis of chemical shift changes from the point mutations and ligand responses identifies crucial connections in the allosteric activation pathway, and presents a general experimental method to delineate signal transmission networks at high resolution in GPCRs. PMID:26840483

  13. Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic ?-N-acetylhexosaminidases.

    PubMed

    Nyffenegger, Christian; Nordvang, Rune Thorbjrn; Zeuner, Birgitte; ???yk, Mateusz; Difilippo, Elisabetta; Logtenberg, Madelon J; Schols, Henk A; Meyer, Anne S; Mikkelsen, Jrn Dalgaard

    2015-10-01

    This paper describes the discovery and characterization of two novel ?-N-acetylhexosaminidases HEX1 and HEX2, capable of catalyzing the synthesis of human milk oligosaccharides (HMO) backbone structures with fair yields using chitin oligomers as ?-N-acetylglucosamine (GlcNAc) donor. The enzyme-encoding genes were identified by functional screening of a soil-derived metagenomic library. The ?-N-acetylhexosaminidases were expressed in Escherichia coli with an N-terminal His6-tag and were purified by nickel affinity chromatography. The sequence similarities of the enzymes with their respective closest homologues are 59 % for HEX1 and 51 % for HEX2 on the protein level. Both ?-N-acetylhexosaminidases are classified into glycosyl hydrolase family 20 (GH 20) are able to hydrolyze para-nitrophenyl-?-N-acetylglucosamine (pNP-GlcNAc) as well as para-nitrophenyl-?-N-acetylgalactosamine (pNP-GalNAc) and exhibit pH optima of 8 and 6 for HEX1 and HEX2, respectively. The enzymes are able to hydrolyze N-acetylchitooligosaccharides with a degree of polymerization of two, three, and four. The major findings were, that HEX1 and HEX2 catalyze trans-glycosylation reactions with lactose as acceptor, giving rise to the human milk oligosaccharide precursor lacto-N-triose II (LNT2) with yields of 2 and 8 % based on the donor substrate. In total, trans-glycosylation reactions were tested with the disaccharide acceptors ?-lactose, sucrose, and maltose, as well as with the monosaccharides galactose and glucose resulting in the successful attachment of GlcNAc to the acceptor in all cases. PMID:25843303

  14. Composites

    NASA Astrophysics Data System (ADS)

    Chmielewski, M.; Nosewicz, S.; Pietrzak, K.; Rojek, J.; Strojny-N?dza, A.; Mackiewicz, S.; Dutkiewicz, J.

    2014-11-01

    It is commonly known that the properties of sintered materials are strongly related to technological conditions of the densification process. This paper shows the sintering behavior of a NiAl-Al2O3 composite, and its individual components sintered separately. Each kind of material was processed via the powder metallurgy route (hot pressing). The progress of sintering at different stages of the process was tested. Changes in the microstructure were examined using scanning and transmission electron microscopy. Metal-ceramics interface was clean and no additional phases were detected. Correlation between the microstructure, density, and mechanical properties of the sintered materials was analyzed. The values of elastic constants of NiAl/Al2O3 were close to intermetallic ones due to the volume content of the NiAl phase particularly at low densities, where small alumina particles had no impact on the composite's stiffness. The influence of the external pressure of 30 MPa seemed crucial for obtaining satisfactory stiffness for three kinds of the studied materials which were characterized by a high dense microstructure with a low number of isolated spherical pores.

  15. Whole-rock geochemistry and Sr-Nd isotopic composition of the pre-rift sequence of the Camamu Basin, northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Silva, D. R. A.; Mizusaki, A. M. P.; Milani, E. J.; Pimentel, M.; Kawashita, K.

    2012-11-01

    Whole-rock geochemistry, combined with Sr-Nd isotopic composition of pelitic sedimentary rocks, have been considered to be useful parameters to estimate not only their provenance but also to make inferences about their depositional environment as well as the weathering processes they have been through. The basal sedimentary units of the basins of the northeastern Brazilian continental margin, particularly those of the pre-rift sequence, have been subject of interest of studies based on chemical and isotopic data, since they lack fossil content to establish their age and, therefore, stratigraphic correlations are difficult. The major and trace element contents as well as Sr-Nd isotopic compositions of whole-rock shale samples from five outcrops attributed to the pre-rift supersequence of the Camamu Basin were analyzed with the purpose of characterizing and obtaining further information that would allow a better correlation between the sites studied. The geochemical data suggest that the rocks exposed in the studied outcrops are part of the same sedimentary unit and that they might be correlated to the Capianga Member of the Aliana Formation of the Recncavo Basin, exposed to the north of the Camamu Basin. The chemical index of alteration (CIA) suggests conditions associated with a humid tropical/subtropical climate at the time of deposition. Nd isotopic compositions indicate provenance from the Paleoproterozoic rocks of the Sao Francisco craton. The results presented here, therefore, show that the combined use of chemical and isotopic analyses may be of great interest to characterize and correlate lithologically homogeneous clastic sedimentary sequences.

  16. Emergence of sequence type 779 methicillin-resistant Staphylococcus aureus harboring a novel pseudo staphylococcal cassette chromosome mec (SCCmec)-SCC-SCCCRISPR composite element in Irish hospitals.

    PubMed

    Kinnevey, Peter M; Shore, Anna C; Brennan, Grainne I; Sullivan, Derek J; Ehricht, Ralf; Monecke, Stefan; Slickers, Peter; Coleman, David C

    2013-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has been a major cause of nosocomial infection in Irish hospitals for 4 decades, and replacement of predominant MRSA clones has occurred several times. An MRSA isolate recovered in 2006 as part of a larger study of sporadic MRSA exhibited a rare spa (t878) and multilocus sequence (ST779) type and was nontypeable by PCR- and DNA microarray-based staphylococcal cassette chromosome mec (SCCmec) element typing. Whole-genome sequencing revealed the presence of a novel 51-kb composite island (CI) element with three distinct domains, each flanked by direct repeat and inverted repeat sequences, including (i) a pseudo SCCmec element (16.3 kb) carrying mecA with a novel mec class region, a fusidic acid resistance gene (fusC), and two copper resistance genes (copB and copC) but lacking ccr genes; (ii) an SCC element (17.5 kb) carrying a novel ccrAB4 allele; and (iii) an SCC element (17.4 kb) carrying a novel ccrC allele and a clustered regularly interspaced short palindromic repeat (CRISPR) region. The novel CI was subsequently identified by PCR in an additional 13 t878/ST779 MRSA isolates, six from bloodstream infections, recovered between 2006 and 2011 in 11 hospitals. Analysis of open reading frames (ORFs) carried by the CI showed amino acid sequence similarity of 44 to 100% to ORFs from S. aureus and coagulase-negative staphylococci (CoNS). These findings provide further evidence of genetic transfer between S. aureus and CoNS and show how this contributes to the emergence of novel SCCmec elements and MRSA strains. Ongoing surveillance of this MRSA strain is warranted and will require updating of currently used SCCmec typing methods. PMID:23147725

  17. Purifying selection, sequence composition, and context-specific indel mutations shape intraspecific variation in a bacterial endosymbiont.

    PubMed

    Williams, Laura E; Wernegreen, Jennifer J

    2012-01-01

    Comparative genomics of closely related bacterial strains can clarify mutational processes and selective forces that impact genetic variation. Among primary bacterial endosymbionts of insects, such analyses have revealed ongoing genome reduction, raising questions about the ultimate evolutionary fate of these partnerships. Here, we explored genomic variation within Blochmannia vafer, an obligate mutualist of the ant Camponotus vafer. Polymorphism analysis of the Illumina data set used previously for de novo assembly revealed a second Bl. vafer genotype. To determine why a single ant colony contained two symbiont genotypes, we examined polymorphisms in 12 C. vafer mitochondrial sequences assembled from the Illumina data; the spectrum of variants suggests that the colony contained two maternal lineages, each harboring a distinct Bl. vafer genotype. Comparing the two Bl. vafer genotypes revealed that purifying selection purged most indels and nonsynonymous differences from protein-coding genes. We also discovered that indels occur frequently in multimeric simple sequence repeats, which are relatively abundant in Bl. vafer and may play a more substantial role in generating variation in this ant mutualist than in the aphid endosymbiont Buchnera. Finally, we explored how an apparent relocation of the origin of replication in Bl. vafer and the resulting shift in strand-associated mutational pressures may have caused accelerated gene loss and an elevated rate of indel polymorphisms in the region spanning the origin relocation. Combined, these results point to significant impacts of purifying selection on genomic polymorphisms as well as distinct patterns of indels associated with unusual genomic features of Blochmannia. PMID:22117087

  18. Subgraph Backbone Analysis of Dynamic Brain Networks during Consciousness and Anesthesia

    PubMed Central

    Shin, Jeongkyu; Mashour, George A.; Ku, Seungwoo; Kim, Seunghwan; Lee, Uncheol

    2013-01-01

    General anesthesia significantly alters brain network connectivity. Graph-theoretical analysis has been used extensively to study static brain networks but may be limited in the study of rapidly changing brain connectivity during induction of or recovery from general anesthesia. Here we introduce a novel method to study the temporal evolution of network modules in the brain. We recorded multichannel electroencephalograms (EEG) from 18 surgical patients who underwent general anesthesia with either propofol (n?=?9) or sevoflurane (n?=?9). Time series data were used to reconstruct networks; each electroencephalographic channel was defined as a node and correlated activity between the channels was defined as a link. We analyzed the frequency of subgraphs in the network with a defined number of links; subgraphs with a high probability of occurrence were deemed network backbones. We analyzed the behavior of network backbones across consciousness, anesthetic induction, anesthetic maintenance, and two points of recovery. Constitutive, variable and state-specific backbones were identified across anesthetic state transitions. Brain networks derived from neurophysiologic data can be deconstructed into network backbones that change rapidly across states of consciousness. This technique enabled a granular description of network evolution over time. The concept of network backbones may facilitate graph-theoretical analysis of dynamically changing networks. PMID:23967131

  19. Fast Bayesian identification of a class of elastic weakly nonlinear systems using backbone curves

    NASA Astrophysics Data System (ADS)

    Hill, T. L.; Green, P. L.; Cammarano, A.; Neild, S. A.

    2016-01-01

    This paper introduces a method for the identification of the parameters of nonlinear structures using a probabilistic Bayesian framework, employing a Markov chain Monte Carlo algorithm. This approach uses analytical models to describe the unforced, undamped dynamic responses of structures in the frequency-amplitude domain, known as the backbone curves. The analytical models describing these backbone curves are then fitted to measured responses, found using the resonant-decay method. To investigate the proposed identification method, a nonlinear two-degree-of-freedom example structure is simulated numerically and analytical expressions describing the backbone curves are found. These expressions are then used, in conjunction with the backbone curve data found through simulated experiment, to estimate the system parameters. It is shown that the use of these computationally-cheap analytical expressions allows for an extremely efficient method for modelling the dynamic behaviour, providing an identification procedure that is both fast and accurate. Furthermore, for the example structure, it is shown that the estimated parameters may be used to accurately predict the existence of dynamic behaviours that are well-away from the backbone curve data provided; specifically the existence of an isola is predicted.

  20. Complete backbone and DENQ side chain NMR assignments in proteins from a single experiment: implications to structure-function studies.

    PubMed

    Reddy, Jithender G; Hosur, Ramakrishna V

    2014-03-01

    Resonance assignment is the first and the most crucial step in all nuclear magnetic resonance (NMR) investigations on structure-function relationships in biological macromolecules. Often, the assignment exercise has to be repeated several times when specific interactions with ligands, substrates etc., have to be elucidated for understanding the functional mechanisms. While the protein backbone serves to provide a scaffold, the side chains interact directly with the ligands. Such investigations will be greatly facilitated, if there are rapid methods for obtaining exhaustive information with minimum of NMR experimentation. In this context, we present here a pulse sequence which exploits the recently introduced technique of parallel detectionof multiple nuclei, e.g. (1)H and (13)C, and results in two 3D-data sets simultaneously. These yield complete backbone resonance assignment ((1)H(N), (15)N, (13)CO, (1)H?/(13)C?, and (1)H?/(13)C? chemical shifts) and side chain assignment of D, E, N and Q residues. Such an exhaustive assignment has the potential of yielding accurate 3D structures using one or more of several algorithms which calculate structures of the molecules very reliably on the basis of NMR chemical shifts alone. The side chain assignments of D, E, N, and Q will be extremely valuable for interaction studies with different ligands; Dand E side chains are known to be involved in majority of catalytic activities. Utility of this experiment has been demonstrated with Ca(2+) bound M-crystallin, which contains largely D, E, N and Q residues at the metal binding sites. PMID:24535112

  1. A backbone based protein model with explicit solvent

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Buldyrev, Sergey; Rossky, Peter J.; Stanley, H. Eugene; Debenedetti, Pablo G.; Angell, C. Austen; Kumar, Sanat K.

    2011-03-01

    The computational expense of folding atomistically detailed protein models is prohibitive. Hence minimalist models of proteins are a popular choice. The minimalist models developed so far have excluded water, and treated the hydrophobic effect as an effective attraction between hydrophobic monomers. This simplified treatment does not capture the temperature-dependent variations in entropy and enthalpy of water molecules. Proteins have a predominantly water-screened hydrophobic core and water-exposed polar groups. This structural feature should alter the dynamics of proteins and surrounding water from that of a hydrophobic homopolymer in water. To include these features in a minimalist model, we designed heteropolymers of polar and hydrophobic monomers in explicit water-like medium. The polar monomers and water molecules were modeled with the Jagla potential, which has been shown to reproduce many water-like thermodynamic properties, and the hydrophobic monomers as hard spheres. We discuss a methodology for optimizing the sequence of these heteropolymers and how the hydrophobic collapse of these heteropolymers differs from that of a random heteropolymer.

  2. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins.

    PubMed

    Pradhan, Mohan R; Pal, Arumay; Hu, Zhongqiao; Kannan, Srinivasaraghavan; Chee Keong, Kwoh; Lane, David P; Verma, Chandra S

    2016-02-01

    Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation. Proteins 2016; 84:254-266. 2015 Wiley Periodicals, Inc. PMID:26677132

  3. Liquid crystall elastomers as artificial muscles: role of side-chain-backbone coupling

    NASA Astrophysics Data System (ADS)

    Ratna, Banahalli R.; Thomsen, D. Laurence, III; Keller, Patrick

    2001-07-01

    Ordered liquid crystal elastomer films exhibit anisotropic deformations on macroscopic length scales on changing the orientational order of the liquid crystal group by external stimuli such as temperature and electric field. We have developed laterally attached side-chain nematic elastomers with mechanical properties approaching stress, strain and time scale of skeletal muscle activation. The mechanical and structural characterization has led to the ability to improve desired physical properties such as backbone extension and coupling between the backbone and liquid crystal side chain. We have studied the effect of the coupling length on the change in the conformational entropy of the backbone and the viscoelastic behavior. In this paper we discuss the results of our stress relaxation tests.

  4. Cross-backbone templating; ribodinucleotides made on poly(C)

    PubMed Central

    Majerfeld, Irene; Puthenvedu, Deepa; Yarus, Michael

    2016-01-01

    G5′pp5′G synthesis from pG and chemically activated 2MeImpG is accelerated by the addition of complementary poly(C), but affected only slightly by poly(G) and not at all by poly(U) and poly(A). This suggests that 3′–5′ poly(C) is a template for uncatalyzed synthesis of 5′–5′ GppG, as was poly(U) for AppA synthesis, previously. The reaction occurs at 50 mM mono- and divalent ion concentrations, at moderate temperatures, and near pH 7. The reactive complex at the site of enhanced synthesis of 5′–5′ GppG seems to contain a single pG, a single phosphate-activated nucleotide 2MeImpG, and a single strand of poly(C). Most likely this structure is base-paired, as the poly(C)-enhanced reaction is completely disrupted between 30 and 37°C, whereas slower, untemplated synthesis of GppG accelerates. More specifically, the reactive center acts as would be expected for short, isolated G nucleotide stacks expanded and ordered by added poly(C). For example, poly(C)-mediated GppG production is very nonlinear in overall nucleotide concentration. Uncatalyzed NppN synthesis is now known for two polymers and their complementary free nucleotides. These data suggest that varied, simple, primordial 3′–5′ RNA sequences could express a specific chemical phenotype by encoding synthesis of complementary, reactive, coenzyme-like 5′–5′ ribodinucleotides. PMID:26759450

  5. Remote Enantioselection Transmitted by an Achiral Peptide Nucleic Acid Backbone

    NASA Technical Reports Server (NTRS)

    Kozlov, Igor A.; Orgel, Leslie E.; Nielsen, Peter E.

    2000-01-01

    short homochiral segment of DNA into a PNA helix could have guaranteed that the next short segment of DNA to be incorporated would have the same handedness as the first. Once two segments of the same handedness were present, the probability that a third segment would have the same handedness would increase, and so on. Evolution could then slowly dilute out the PNA part. This scenario would ultimately allow the formation of a chiral oligonucleotide by processes that are largely resistant to enantiomeric crossinhibition. It is important to note that the ligation of homochiral dinucleotides on a nucleic acid template would probably be at least as enantiospecific as the reaction that we have studied. The disadvantage of using chiral monomers as components of a replicating system arises from the difficulty of generating a first long homochiral template from a racemic mixture of monomers, although results of experiments designed to overcome this difficulty by employing homochiral tetramers have been reported.l l The probability of obtaining a homochiral n-mer from achiral substrates is approximately 1P-I if the nontemplate-directed extension of the primer is not enantioselective. Hence, it would be very hard to get started with a homochiral 40-mer, for example. No such difficulty exists in a scenario that originates with an achiral genetic material and in which the incorporation of very few chiral monomers in this achiral background gradually progresses towards homochirality. It seems possible that some PNA sequences could act as catalysts, analogous to ribozymes, even though PNA lacks clear metal binding sites. Although such catalysts could not be enantioselective, the incorporation of as few as two chiral nucleotides could then impose chiral specificity on the system. Furthermore, such patch chimeras could help to bridge the gap in catalytic potential between PNA and RNA, while guaranteeing enantioselectivity.

  6. Chicken skin virome analyzed by high-throughput sequencing shows a composition highly different from human skin.

    PubMed

    Denesvre, Caroline; Dumarest, Marine; Rémy, Sylvie; Gourichon, David; Eloit, Marc

    2015-10-01

    Recent studies show that human skin at homeostasis is a complex ecosystem whose virome include circular DNA viruses, especially papillomaviruses and polyomaviruses. To determine the chicken skin virome in comparison with human skin virome, a chicken swabs pool sample from fifteen indoor healthy chickens of five genetic backgrounds was examined for the presence of DNA viruses by high-throughput sequencing (HTS). The results indicate a predominance of herpesviruses from the Mardivirus genus, coming from either vaccinal origin or presumably asymptomatic infection. Despite the high sensitivity of the HTS method used herein to detect small circular DNA viruses, we did not detect any papillomaviruses, polyomaviruses, or circoviruses, indicating that these viruses may not be resident of the chicken skin. The results suggest that the turkey herpesvirus is a resident of chicken skin in vaccinated chickens. This study indicates major differences between the skin viromes of chickens and humans. The origin of this difference remains to be further studied in relation with skin physiology, environment, or virus population dynamics. PMID:26223320

  7. TargetFreeze: Identifying Antifreeze Proteins via a Combination of Weights using Sequence Evolutionary Information and Pseudo Amino Acid Composition.

    PubMed

    He, Xue; Han, Ke; Hu, Jun; Yan, Hui; Yang, Jing-Yu; Shen, Hong-Bin; Yu, Dong-Jun

    2015-12-01

    Antifreeze proteins (AFPs) are indispensable for living organisms to survive in an extremely cold environment and have a variety of potential biotechnological applications. The accurate prediction of antifreeze proteins has become an important issue and is urgently needed. Although considerable progress has been made, AFP prediction is still a challenging problem due to the diversity of species. In this study, we proposed a new sequence-based AFP predictor, called TargetFreeze. TargetFreeze utilizes an enhanced feature representation method that weightedly combines multiple protein features and takes the powerful support vector machine as the prediction engine. Computer experiments on benchmark datasets demonstrate the superiority of the proposed TargetFreeze over most recently released AFP predictors. We also implemented a user-friendly web server, which is openly accessible for academic use and is available at http://csbio.njust.edu.cn/bioinf/TargetFreeze. TargetFreeze supplements existing AFP predictors and will have potential applications in AFP-related biotechnology fields. PMID:26058944

  8. Concordance of HIV Type 1 Tropism Phenotype to Predictions Using Web-Based Analysis of V3 Sequences: Composite Algorithms May Be Needed to Properly Assess Viral Tropism

    PubMed Central

    Cabral, Gabriela Bastos; Ferreira, Joo Leandro de Paula; Coelho, Luana Portes Osrio; Fonsi, Mylva; Estevam, Denise Lotufo; Cavalcanti, Jaqueline Souza

    2012-01-01

    Abstract Genotypic prediction of HIV-1 tropism has been considered a practical surrogate for phenotypic tests and recently an European Consensus has set up recommendations for its use in clinical practice. Twenty-five antiretroviral-experienced patients, all heavily treated cases with a median of 16 years of antiretroviral therapy, had viral tropism determined by the Trofile assay and predicted by HIV-1 sequencing of partial env, followed by interpretation using web-based tools. Trofile determined 17/24 (71%) as X4 tropic or dual/mixed viruses, with one nonreportable result. The use of European consensus recommendations for single sequences (geno2pheno false-positive rates 20% cutoff) would lead to 4/24 (16.7%) misclassifications, whereas a composite algorithm misclassified 1/24 (4%). The use of the geno2pheno clinical option using CD4 T cell counts at collection was useful in resolving some discrepancies. Applying the European recommendations followed by additional web-based tools for cases around the recommended cutoff would resolve most misclassifications. PMID:21919801

  9. Concordance of HIV type 1 tropism phenotype to predictions using web-based analysis of V3 sequences: composite algorithms may be needed to properly assess viral tropism.

    PubMed

    Cabral, Gabriela Bastos; Ferreira, Joo Leandro de Paula; Coelho, Luana Portes Osrio; Fonsi, Mylva; Estevam, Denise Lotufo; Cavalcanti, Jaqueline Souza; Brgido, Luis Fernando de Macedo

    2012-07-01

    Genotypic prediction of HIV-1 tropism has been considered a practical surrogate for phenotypic tests and recently an European Consensus has set up recommendations for its use in clinical practice. Twenty-five antiretroviral-experienced patients, all heavily treated cases with a median of 16 years of antiretroviral therapy, had viral tropism determined by the Trofile assay and predicted by HIV-1 sequencing of partial env, followed by interpretation using web-based tools. Trofile determined 17/24 (71%) as X4 tropic or dual/mixed viruses, with one nonreportable result. The use of European consensus recommendations for single sequences (geno2pheno false-positive rates 20% cutoff) would lead to 4/24 (16.7%) misclassifications, whereas a composite algorithm misclassified 1/24 (4%). The use of the geno2pheno clinical option using CD4 T cell counts at collection was useful in resolving some discrepancies. Applying the European recommendations followed by additional web-based tools for cases around the recommended cutoff would resolve most misclassifications. PMID:21919801

  10. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition.

    PubMed

    Lin, Hao; Deng, En-Ze; Ding, Hui; Chen, Wei; Chou, Kuo-Chen

    2014-12-01

    The ?(54) promoters are unique in prokaryotic genome and responsible for transcripting carbon and nitrogen-related genes. With the avalanche of genome sequences generated in the postgenomic age, it is highly desired to develop automated methods for rapidly and effectively identifying the ?(54) promoters. Here, a predictor called 'iPro54-PseKNC' was developed. In the predictor, the samples of DNA sequences were formulated by a novel feature vector called 'pseudo k-tuple nucleotide composition', which was further optimized by the incremental feature selection procedure. The performance of iPro54-PseKNC was examined by the rigorous jackknife cross-validation tests on a stringent benchmark data set. As a user-friendly web-server, iPro54-PseKNC is freely accessible at http://lin.uestc.edu.cn/server/iPro54-PseKNC. For the convenience of the vast majority of experimental scientists, a step-by-step protocol guide was provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics that were presented in this paper just for its integrity. Meanwhile, we also discovered through an in-depth statistical analysis that the distribution of distances between the transcription start sites and the translation initiation sites were governed by the gamma distribution, which may provide a fundamental physical principle for studying the ?(54) promoters. PMID:25361964

  11. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition

    PubMed Central

    Lin, Hao; Deng, En-Ze; Ding, Hui; Chen, Wei; Chou, Kuo-Chen

    2014-01-01

    The ?54 promoters are unique in prokaryotic genome and responsible for transcripting carbon and nitrogen-related genes. With the avalanche of genome sequences generated in the postgenomic age, it is highly desired to develop automated methods for rapidly and effectively identifying the ?54 promoters. Here, a predictor called iPro54-PseKNC was developed. In the predictor, the samples of DNA sequences were formulated by a novel feature vector called pseudo k-tuple nucleotide composition, which was further optimized by the incremental feature selection procedure. The performance of iPro54-PseKNC was examined by the rigorous jackknife cross-validation tests on a stringent benchmark data set. As a user-friendly web-server, iPro54-PseKNC is freely accessible at http://lin.uestc.edu.cn/server/iPro54-PseKNC. For the convenience of the vast majority of experimental scientists, a step-by-step protocol guide was provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics that were presented in this paper just for its integrity. Meanwhile, we also discovered through an in-depth statistical analysis that the distribution of distances between the transcription start sites and the translation initiation sites were governed by the gamma distribution, which may provide a fundamental physical principle for studying the ?54 promoters. PMID:25361964

  12. Lactobacillus rhamnosus Accelerates Zebrafish Backbone Calcification and Gonadal Differentiation through Effects on the GnRH and IGF Systems

    PubMed Central

    Avella, Matteo A.; Place, Allen; Du, Shao-Jun; Williams, Ernest; Silvi, Stefania; Zohar, Yonathan; Carnevali, Oliana

    2012-01-01

    Endogenous microbiota play essential roles in the host’s immune system, physiology, reproduction and nutrient metabolism. We hypothesized that a continuous administration of an exogenous probiotic might also influence the host’s development. Thus, we treated zebrafish from birth to sexual maturation (2-months treatment) with Lactobacillus rhamnosus, a probiotic species intended for human use. We monitored for the presence of L. rhamnosus during the entire treatment. Zebrafish at 6 days post fertilization (dpf) exhibited elevated gene expression levels for Insulin-like growth factors -I and -II, Peroxisome proliferator activated receptors -α and -β, VDR-α and RAR-γ when compared to untreated-10 days old zebrafish. Using a gonadotropin-releasing hormone 3 GFP transgenic zebrafish (GnRH3-GFP), higher GnRH3 expression was found at 6, 8 and 10 dpf upon L. rhamnosus treatment. The same larvae exhibited earlier backbone calcification and gonad maturation. Noteworthy in the gonad development was the presence of first testes differentiation at 3 weeks post fertilization in the treated zebrafish population -which normally occurs at 8 weeks- and a dramatic sex ratio modulation (93% females, 7% males in control vs. 55% females, 45% males in the treated group). We infer that administration of L. rhamnosus stimulated the IGF system, leading to a faster backbone calcification. Moreover we hypothesize a role for administration of L. rhamnosus on GnRH3 modulation during early larval development, which in turn affects gonadal development and sex differentiation. These findings suggest a significant role of the microbiota composition on the host organism development profile and open new perspectives in the study of probiotics usage and application. PMID:23029107

  13. Influence of backbone conformational rigidity in temperature-sensitive amphiphilic supramolecular assemblies.

    PubMed

    Raghupathi, Krishna R; Sridhar, Uma; Byrne, Kevin; Raghupathi, Kishore; Thayumanavan, S

    2015-04-29

    Molecular design features that endow amphiphilic supramolecular assemblies with a unique temperature-sensitive transition have been investigated. We find that conformational rigidity in the backbone is an important feature for eliciting this feature. We also find that intramolecular hydrogen-bonding can induce such rigidity in amphiphile backbone. Guest encapsulation stability of these assemblies was found to be significantly altered within a narrow temperature window, which correlates with the temperature-sensitive size transition of the molecular assembly. Molecular design principles demonstrated here could have broad implications in developing future temperature-responsive systems. PMID:25893806

  14. Electric field induced localization phenomena in a ladder network with superlattice configuration: Effect of backbone environment

    SciTech Connect

    Dutta, Paramita; Karmakar, S. N.; Maiti, Santanu K.

    2014-09-15

    Electric field induced localization properties of a tight-binding ladder network in presence of backbone sites are investigated. Based on Green's function formalism we numerically calculate two-terminal transport together with density of states for different arrangements of atomic sites in the ladder and its backbone. Our results lead to a possibility of getting multiple mobility edges which essentially plays a switching action between a completely opaque to fully or partly conducting region upon the variation of system Fermi energy, and thus, support in fabricating mesoscopic or DNA-based switching devices.

  15. Solvation thermodynamics of amino acid side chains on a short peptide backbone.

    PubMed

    Hajari, Timir; van der Vegt, Nico F A

    2015-04-14

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side chain cavities in bulk water, in agreement with earlier work in the literature on analysis of cavity fluctuations at nonpolar molecular surfaces. The cavity and dispersion interaction contributions correlate quite well with the solvent accessible surface area of the nonpolar side chains attached to the backbone. This correlation however is weak for the overall solvation free energies owing to the fact that the cavity and dispersion free energy contributions are almost exactly cancelling each other. PMID:25877585

  16. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    NASA Astrophysics Data System (ADS)

    Hajari, Timir; van der Vegt, Nico F. A.

    2015-04-01

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side chain cavities in bulk water, in agreement with earlier work in the literature on analysis of cavity fluctuations at nonpolar molecular surfaces. The cavity and dispersion interaction contributions correlate quite well with the solvent accessible surface area of the nonpolar side chains attached to the backbone. This correlation however is weak for the overall solvation free energies owing to the fact that the cavity and dispersion free energy contributions are almost exactly cancelling each other.

  17. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    SciTech Connect

    Hajari, Timir; Vegt, Nico F. A. van der

    2015-04-14

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side chain cavities in bulk water, in agreement with earlier work in the literature on analysis of cavity fluctuations at nonpolar molecular surfaces. The cavity and dispersion interaction contributions correlate quite well with the solvent accessible surface area of the nonpolar side chains attached to the backbone. This correlation however is weak for the overall solvation free energies owing to the fact that the cavity and dispersion free energy contributions are almost exactly cancelling each other.

  18. Polyboramines for Hydrogen Release: Polymers Containing Lewis Pairs in their Backbone.

    PubMed

    Ledoux, Audrey; Larini, Paolo; Boisson, Christophe; Monteil, Vincent; Raynaud, Jean; Lacôte, Emmanuel

    2015-12-21

    The one-step polycondensation of diamines and diboranes triggered by the in situ deprotonation of the diammonium salts and concomitant reduction of bisboronic acids leads to the assembly of polymer chains through multiple Lewis pairing in their backbone. These new polyboramines are dihydrogen reservoirs that can be used for the hydrogenation of imines and carbonyl compounds. They also display a unique dihydrogen thermal release profile that is a direct consequence of the insertion of the amine-borane linkages in the polymeric backbone. PMID:26563914

  19. The sequence of intermetallic formation and solidification pathway of an Al–13Mg–7Si–2Cu in-situ composite

    SciTech Connect

    Farahany, Saeed; Nordin, Nur Azmah; Ourdjini, Ali; Abu Bakar, TutyAsma; Hamzah, Esah; Idris, Mohd Hasbullah; Hekmat-Ardakan, Alireza

    2014-12-15

    The phase transformation sequence and solidification behaviour of an Al–13Mg–7Si–2Cu in-situ composite was examined using a combination of computer-aided cooling curve thermal analysis and interrupted quenching techniques. Five different phases were identified by analysing the derivative cooling curves, the X-ray diffraction profile, optical and scanning electron microscopy images and the corresponding energy dispersive spectroscopy. It has been found that the solidification of this alloy begins with primary Mg{sub 2}Si precipitation and continues with the formation of eutectic Al–Mg{sub 2}Si, followed by Al{sub 5}FeSi and simultaneous precipitation of Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 2}Cu complex intermetallic phases. The formation of the last three intermetallic compounds changes the solidification behaviour of these composites remarkably due to their complex eutectic formation reactions. The solidification of the alloy, calculated using the Factsage thermochemical analysis software, has demonstrated a good agreement with the experiments in terms of compound prediction, their weight fractions and reaction temperatures. - Highlights: • Solidification path of a commercial Al-13Mg-7Si-2Cu composite was characterized. • Five different phases were identified and then confirmed with EDS and XRD results. • Mg{sub 2}Si, Al-Mg{sub 2}Si,Al{sub 5}FeSi (β),Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} (Q) and Al{sub 2}Cu(θ) precipitated respectively. • Solidification was predicted using the Factsage thermochemical analysis software.

  20. Improved knockdown from artificial microRNAs in an enhanced miR-155 backbone: a designer's guide to potent multi-target RNAi

    PubMed Central

    Fowler, Daniel K.; Williams, Carly; Gerritsen, Alida T.; Washbourne, Philip

    2016-01-01

    Artificial microRNA (amiRNA) sequences embedded in natural microRNA (miRNA) backbones have proven to be useful tools for RNA interference (RNAi). amiRNAs have reduced off-target and toxic effects compared to other RNAi-based methods such as short-hairpin RNAs (shRNA). amiRNAs are often less effective for knockdown, however, compared to their shRNA counterparts. We screened a large empirically-designed amiRNA set in the synthetic inhibitory BIC/miR-155 RNA (SIBR) scaffold and show common structural and sequence-specific features associated with effective amiRNAs. We then introduced exogenous motifs into the basal stem region which increase amiRNA biogenesis and knockdown potency. We call this modified backbone the enhanced SIBR (eSIBR) scaffold. Using chained amiRNAs for multi-gene knockdown, we show that concatenation of miRNAs targeting different genes is itself sufficient for increased knockdown efficacy. Further, we show that eSIBR outperforms wild-type SIBR (wtSIBR) when amiRNAs are chained. Finally, we use a lentiviral expression system in cultured neurons, where we again find that eSIBR amiRNAs are more potent for multi-target knockdown of endogenous genes. eSIBR will be a valuable tool for RNAi approaches, especially for studies where knockdown of multiple targets is desired. PMID:26582923

  1. Improved knockdown from artificial microRNAs in an enhanced miR-155 backbone: a designer's guide to potent multi-target RNAi.

    PubMed

    Fowler, Daniel K; Williams, Carly; Gerritsen, Alida T; Washbourne, Philip

    2016-03-18

    Artificial microRNA (amiRNA) sequences embedded in natural microRNA (miRNA) backbones have proven to be useful tools for RNA interference (RNAi). amiRNAs have reduced off-target and toxic effects compared to other RNAi-based methods such as short-hairpin RNAs (shRNA). amiRNAs are often less effective for knockdown, however, compared to their shRNA counterparts. We screened a large empirically-designed amiRNA set in the synthetic inhibitory BIC/miR-155 RNA (SIBR) scaffold and show common structural and sequence-specific features associated with effective amiRNAs. We then introduced exogenous motifs into the basal stem region which increase amiRNA biogenesis and knockdown potency. We call this modified backbone the enhanced SIBR (eSIBR) scaffold. Using chained amiRNAs for multi-gene knockdown, we show that concatenation of miRNAs targeting different genes is itself sufficient for increased knockdown efficacy. Further, we show that eSIBR outperforms wild-type SIBR (wtSIBR) when amiRNAs are chained. Finally, we use a lentiviral expression system in cultured neurons, where we again find that eSIBR amiRNAs are more potent for multi-target knockdown of endogenous genes. eSIBR will be a valuable tool for RNAi approaches, especially for studies where knockdown of multiple targets is desired. PMID:26582923

  2. Animals without Backbones: The Invertebrate Story. Grade Level 5-9.

    ERIC Educational Resources Information Center

    Jerome, Brian; Fuqua, Paul

    This guide, when used in tandem with the videotape "Animals Without Backbones," helps students learn about invertebrates. These materials promote hands-on discovery and learning. The guide is composed of six curriculum-based teaching units: (1) "Getting Started"; (2) "Porifera"; (3) "Cnidarians"; (4) "Worms"; (5) "Mollusks"; (6) "Arthropods"; and

  3. Backbone-directed perylene dye self-assembly into oligomer stacks.

    PubMed

    Shao, Changzhun; Stolte, Matthias; Wrthner, Frank

    2013-09-27

    Arm wrestling: Backbone-directed "arm-to-arm" aggregation of a newly designed perylene bisimide (PBI) dyad with a defined intramolecular space leads to the growth of kinetically stable extended PBI ?-stacks. This PBI dyad was shown to assemble into oligomers up to 21 units in length. PMID:23943193

  4. Graduate Education in Kinesiology: Are We Part of "America's Backbone for Competitiveness and Innovation"?

    ERIC Educational Resources Information Center

    DePauw, Karen P.

    2008-01-01

    Graduate education in the United States has been identified as being the backbone of American competitiveness and innovation in a recent report by the Council of Graduate Schools. The report provides a framework for examining the role of graduate education in partnership with business and government to advance an action agenda for achieving

  5. Interpreting the forced responses of a two-degree-of-freedom nonlinear oscillator using backbone curves

    NASA Astrophysics Data System (ADS)

    Hill, T. L.; Cammarano, A.; Neild, S. A.; Wagg, D. J.

    2015-08-01

    In this paper the backbone curves of a two-degree-of-freedom nonlinear oscillator are used to interpret its behaviour when subjected to external forcing. The backbone curves describe the loci of dynamic responses of a system when unforced and undamped, and are represented in the frequency-amplitude projection. In this study we provide an analytical method for relating the backbone curves, found using the second-order normal form technique, to the forced responses. This is achieved using an energy-based analysis to predict the resonant crossing points between the forced responses and the backbone curves. This approach is applied to an example system subjected to two different forcing cases: one in which the forcing is applied directly to an underlying linear mode and the other subjected to forcing in both linear modes. Additionally, a method for assessing the accuracy of the prediction of the resonant crossing points is then introduced, and these predictions are then compared to responses found using numerical continuation.

  6. Animals without Backbones: The Invertebrate Story. Grade Level 5-9.

    ERIC Educational Resources Information Center

    Jerome, Brian; Fuqua, Paul

    This guide, when used in tandem with the videotape "Animals Without Backbones," helps students learn about invertebrates. These materials promote hands-on discovery and learning. The guide is composed of six curriculum-based teaching units: (1) "Getting Started"; (2) "Porifera"; (3) "Cnidarians"; (4) "Worms"; (5) "Mollusks"; (6) "Arthropods"; and…

  7. Lactobacillus plantarum possesses the capability for wall teichoic acid backbone alditol switching

    PubMed Central

    2012-01-01

    Background Specific strains of Lactobacillus plantarum are marketed as health-promoting probiotics. The role and interplay of cell-wall compounds like wall- and lipo-teichoic acids (WTA and LTA) in bacterial physiology and probiotic-host interactions remain obscure. L. plantarum WCFS1 harbors the genetic potential to switch WTA backbone alditol, providing an opportunity to study the impact of WTA backbone modifications in an isogenic background. Results Through genome mining and mutagenesis we constructed derivatives that synthesize alternative WTA variants. The mutants were shown to completely lack WTA, or produce WTA and LTA that lack D-Ala substitution, or ribitol-backbone WTA instead of the wild-type glycerol-containing backbone. DNA micro-array experiments established that the tarIJKL gene cluster is required for the biosynthesis of this alternative WTA backbone, and suggest ribose and arabinose are precursors thereof. Increased tarIJKL expression was not observed in any of our previously performed DNA microarray experiments, nor in qRT-PCR analyses of L. plantarum grown on various carbon sources, leaving the natural conditions leading to WTA backbone alditol switching, if any, to be identified. Human embryonic kidney NF-?B reporter cells expressing Toll like receptor (TLR)-2/6 were exposed to purified WTAs and/or the TA mutants, indicating that WTA is not directly involved in TLR-2/6 signaling, but attenuates this signaling in a backbone independent manner, likely by affecting the release and exposure of immunomodulatory compounds such as LTA. Moreover, human dendritic cells did not secrete any cytokines when purified WTAs were applied, whereas they secreted drastically decreased levels of the pro-inflammatory cytokines IL-12p70 and TNF-? after stimulation with the WTA mutants as compared to the wild-type. Conclusions The study presented here correlates structural differences in WTA to their functional characteristics, thereby providing important information aiding to improve our understanding of molecular host-microbe interactions and probiotic functionality. PMID:22967304

  8. Inferring the Evolutionary History of IncP-1 Plasmids Despite Incongruence among Backbone Gene Trees

    PubMed Central

    Sen, Diya; Brown, Celeste J.; Top, Eva M.; Sullivan, Jack

    2013-01-01

    Plasmids of the incompatibility group IncP-1 can transfer and replicate in many genera of the Proteobacteria. They are composed of backbone genes that encode a variety of essential functions and accessory genes that have implications for human health and environmental remediation. Although it is well understood that the accessory genes are transferred horizontally between plasmids, recent studies have also provided examples of recombination in the backbone genes of IncP-1 plasmids. As a consequence, phylogeny estimation based on backbone genes is expected to produce conflicting gene tree topologies. The main goal of this study was therefore to infer the evolutionary history of IncP-1 plasmids in the presence of both vertical and horizontal gene transfer. This was achieved by quantifying the incongruence among gene trees and attributing it to known causes such as 1) phylogenetic uncertainty, 2) coalescent stochasticity, and 3) horizontal inheritance. Topologies of gene trees exhibited more incongruence than could be attributed to phylogenetic uncertainty alone. Species-tree estimation using a Bayesian framework that takes coalescent stochasticity into account was well supported, but it differed slightly from the maximum-likelihood tree estimated by concatenation of backbone genes. After removal of the gene that demonstrated a signal of intergroup recombination, the concatenated tree was congruent with the species-tree estimate, which itself was robust to inclusion/exclusion of the recombinant gene. Thus, in spite of horizontal gene exchange both within and among IncP-1 subgroups, the backbone genome of these IncP-1 plasmids retains a detectable vertical evolutionary history. PMID:22936717

  9. Analysis of Polygala tenuifolia Transcriptome and Description of Secondary Metabolite Biosynthetic Pathways by Illumina Sequencing

    PubMed Central

    Tian, Hongling; Xu, Xiaoshuang; Zhang, Fusheng; Wang, Yaoqin; Guo, Shuhong; Qin, Xuemei; Du, Guanhua

    2015-01-01

    Radix polygalae, the dried roots of Polygala tenuifolia and P. sibirica, is one of the most well-known traditional Chinese medicinal plants. Radix polygalae contains various saponins, xanthones, and oligosaccharide esters and these compounds are responsible for several pharmacological properties. To provide basic breeding information, enhance molecular biological analysis, and determine secondary metabolite biosynthetic pathways of P. tenuifolia, we applied Illumina sequencing technology and de novo assembly. We also applied this technique to gain an overview of P. tenuifolia transcriptome from samples with different years. Using Illumina sequencing, approximately 67.2% of unique sequences were annotated by basic local alignment search tool similarity searches against public sequence databases. We classified the annotated unigenes by using Nr, Nt, GO, COG, and KEGG databases compared with NCBI. We also obtained many candidates CYP450s and UGTs by the analysis of genes in the secondary metabolite biosynthetic pathways, including putative terpenoid backbone and phenylpropanoid biosynthesis pathway. With this transcriptome sequencing, future genetic and genomics studies related to the molecular mechanisms associated with the chemical composition of P. tenuifolia may be improved. Genes involved in the enrichment of secondary metabolite biosynthesis-related pathways could enhance the potential applications of P. tenuifolia in pharmaceutical industries. PMID:26543847

  10. Phase behaviour of two-component bottle-brush polymers with flexible backbones under poor solvent conditions

    NASA Astrophysics Data System (ADS)

    Fytas, Nikolaos G.; Theodorakis, Panagiotis E.

    2014-03-01

    The phase behaviour of two-component bottle-brush polymers with fully flexible backbones under poor solvent conditions is studied via molecular-dynamics simulations, using a coarse-grained bead-spring model and side chains of up to N = 40 effective monomers. We consider a symmetric model where side chains of type A and B are grafted alternately onto a flexible backbone. The aim of this study is to explore the phase behaviour of two-component bottle-brushes depending on parameters, such as as the grafting density \\sigma , the backbone length {{N}_{b}}, the side-chain length N, and the temperature T. Based on a cluster analysis, we identify for our range of parameters the regimes of fully phase separated systems, i.e., A-type side chains form one cluster and B-type chains another, while the interface that separates these two clusters contains the backbone monomers. We find that pearl-necklace or Janus-like structures, which normally occur for bottle-brush polymers with rigid backbones under poor solvent conditions, are fully attributed to the backbone rigidity, and, therefore, such structures are unlikely in the case of bottle brushes with fully flexible backbones. Also, a comparative discussion with earlier work on the phase behaviour of single-component bottle-brush polymers with flexible backbones is performed.

  11. Acute effects of TiO2 nanomaterials on the viability and taxonomic composition of aquatic bacterial communities assessed via high-throughput screening and next generation sequencing.

    PubMed

    Binh, Chu Thi Thanh; Tong, Tiezheng; Gaillard, Jean-Franois; Gray, Kimberly A; Kelly, John J

    2014-01-01

    The nanotechnology industry is growing rapidly, leading to concerns about the potential ecological consequences of the release of engineered nanomaterials (ENMs) to the environment. One challenge of assessing the ecological risks of ENMs is the incredible diversity of ENMs currently available and the rapid pace at which new ENMs are being developed. High-throughput screening (HTS) is a popular approach to assessing ENM cytotoxicity that offers the opportunity to rapidly test in parallel a wide range of ENMs at multiple concentrations. However, current HTS approaches generally test one cell type at a time, which limits their ability to predict responses of complex microbial communities. In this study toxicity screening via a HTS platform was used in combination with next generation sequencing (NGS) to assess responses of bacterial communities from two aquatic habitats, Lake Michigan (LM) and the Chicago River (CR), to short-term exposure in their native waters to several commercial TiO2 nanomaterials under simulated solar irradiation. Results demonstrate that bacterial communities from LM and CR differed in their sensitivity to nano-TiO2, with the community from CR being more resistant. NGS analysis revealed that the composition of the bacterial communities from LM and CR were significantly altered by exposure to nano-TiO2, including decreases in overall bacterial diversity, decreases in the relative abundance of Actinomycetales, Sphingobacteriales, Limnohabitans, and Flavobacterium, and a significant increase in Limnobacter. These results suggest that the release of nano-TiO2 to the environment has the potential to alter the composition of aquatic bacterial communities, which could have implications for the stability and function of aquatic ecosystems. The novel combination of HTS and NGS described in this study represents a major advance over current methods for assessing ENM ecotoxicity because the relative toxicities of multiple ENMs to thousands of naturally occurring bacterial species can be assessed simultaneously under environmentally relevant conditions. PMID:25162615

  12. Acute Effects of TiO2 Nanomaterials on the Viability and Taxonomic Composition of Aquatic Bacterial Communities Assessed via High-Throughput Screening and Next Generation Sequencing

    PubMed Central

    Binh, Chu Thi Thanh; Tong, Tiezheng; Gaillard, Jean-Franois; Gray, Kimberly A.; Kelly, John J.

    2014-01-01

    The nanotechnology industry is growing rapidly, leading to concerns about the potential ecological consequences of the release of engineered nanomaterials (ENMs) to the environment. One challenge of assessing the ecological risks of ENMs is the incredible diversity of ENMs currently available and the rapid pace at which new ENMs are being developed. High-throughput screening (HTS) is a popular approach to assessing ENM cytotoxicity that offers the opportunity to rapidly test in parallel a wide range of ENMs at multiple concentrations. However, current HTS approaches generally test one cell type at a time, which limits their ability to predict responses of complex microbial communities. In this study toxicity screening via a HTS platform was used in combination with next generation sequencing (NGS) to assess responses of bacterial communities from two aquatic habitats, Lake Michigan (LM) and the Chicago River (CR), to short-term exposure in their native waters to several commercial TiO2 nanomaterials under simulated solar irradiation. Results demonstrate that bacterial communities from LM and CR differed in their sensitivity to nano-TiO2, with the community from CR being more resistant. NGS analysis revealed that the composition of the bacterial communities from LM and CR were significantly altered by exposure to nano-TiO2, including decreases in overall bacterial diversity, decreases in the relative abundance of Actinomycetales, Sphingobacteriales, Limnohabitans, and Flavobacterium, and a significant increase in Limnobacter. These results suggest that the release of nano-TiO2 to the environment has the potential to alter the composition of aquatic bacterial communities, which could have implications for the stability and function of aquatic ecosystems. The novel combination of HTS and NGS described in this study represents a major advance over current methods for assessing ENM ecotoxicity because the relative toxicities of multiple ENMs to thousands of naturally occurring bacterial species can be assessed simultaneously under environmentally relevant conditions. PMID:25162615

  13. The Impact of Different DNA Extraction Kits and Laboratories upon the Assessment of Human Gut Microbiota Composition by 16S rRNA Gene Sequencing

    PubMed Central

    Kennedy, Nicholas A.; Walker, Alan W.; Berry, Susan H.; Duncan, Sylvia H.; Farquarson, Freda M.; Louis, Petra; Thomson, John M.; Ahmad, T; Anderson, CA; Barrett, JC; Drummond, H; Edwards, C; Hart, A; Hawkey, C; Henderson, P; Khan, M; Lamb, CA; Lee, JC; Mansfield, JC; Mathew, CG; Mowat, C; Newman, WG; Prescott, NJ; Simmons, A; Simpson, P; Taylor, K; Taylor, K; Wilson, DC; Satsangi, Jack; Flint, Harry J.; Parkhill, Julian

    2014-01-01

    Introduction Determining bacterial community structure in fecal samples through DNA sequencing is an important facet of intestinal health research. The impact of different commercially available DNA extraction kits upon bacterial community structures has received relatively little attention. The aim of this study was to analyze bacterial communities in volunteer and inflammatory bowel disease (IBD) patient fecal samples extracted using widely used DNA extraction kits in established gastrointestinal research laboratories. Methods Fecal samples from two healthy volunteers (H3 and H4) and two relapsing IBD patients (I1 and I2) were investigated. DNA extraction was undertaken using MoBio Powersoil and MP Biomedicals FastDNA SPIN Kit for Soil DNA extraction kits. PCR amplification for pyrosequencing of bacterial 16S rRNA genes was performed in both laboratories on all samples. Hierarchical clustering of sequencing data was done using the Yue and Clayton similarity coefficient. Results DNA extracted using the FastDNA kit and the MoBio kit gave median DNA concentrations of 475 (interquartile range 228-561) and 22 (IQR 9-36) ng/µL respectively (p<0.0001). Hierarchical clustering of sequence data by Yue and Clayton coefficient revealed four clusters. Samples from individuals H3 and I2 clustered by patient; however, samples from patient I1 extracted with the MoBio kit clustered with samples from patient H4 rather than the other I1 samples. Linear modelling on relative abundance of common bacterial families revealed significant differences between kits; samples extracted with MoBio Powersoil showed significantly increased Bacteroidaceae, Ruminococcaceae and Porphyromonadaceae, and lower Enterobacteriaceae, Lachnospiraceae, Clostridiaceae, and Erysipelotrichaceae (p<0.05). Conclusion This study demonstrates significant differences in DNA yield and bacterial DNA composition when comparing DNA extracted from the same fecal sample with different extraction kits. This highlights the importance of ensuring that samples in a study are prepared with the same method, and the need for caution when cross-comparing studies that use different methods. PMID:24586470

  14. Cloud Point Depression in Dilute Solutions of HEMA/DMAEMA Copolymers with Prescribed Composition Profiles and Gradient Strengths

    NASA Astrophysics Data System (ADS)

    Gallow, Keith; Jhon, Young; Genzer, Jan; Loo, Yueh-Lin

    2011-03-01

    We have synthesized a random copolymer and gradient copolymers of hydroxyethyl methacrylate and dimethylaminoethyl methacrylate whose instantaneous compositions vary linearly and according to hyperbolic tangent (Tanh) functions along the backbones, all having similar molecular weights and overall compositions. The cloud point of the dilute solution of the random copolymer is 20.0circ; C; the transparent-to-turbid transition occurs over 1.0circ; C. Dilute solutions of linear gradient copolymers exhibit cloud point depressions of up to 3.5circ; C and transition breadths of 1-3circ; C compared to that of the random copolymer. The cloud points of dilute solutions of gradient copolymers with Tanh composition profiles are further suppressed by as much as 9.0circ; C compared to that of the random copolymer. Our observations demonstrate the importance of monomer sequence distribution in altering the macroscopic solution properties of copolymers.

  15. Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR 15N-Relaxation Measurements

    PubMed Central

    Lo, Ryan H.; Kroncke, Brett M.; Solomon, Tsega L.; Columbus, Linda

    2014-01-01

    The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the sensitivity to backbone motions. To determine whether membrane protein backbone dynamics could be mapped with SDSL, a nitroxide was introduced at 55 independent sites in a model polytopic membrane protein, TM0026. Electron paramagnetic resonance spectral parameters were compared with NMR 15N-relaxation data. Sequential scans revealed backbone dynamics with the same trends observed for the R1 relaxation rate, suggesting that nitroxide dynamics remain coupled to the backbone on membrane proteins. PMID:25296323

  16. A Plasmid Bearing the bla(CTX-M-15) Gene and Phage P1-Like Sequences from a Sequence Type 11 Klebsiella pneumoniae Isolate.

    PubMed

    Shin, Juyoun; Ko, Kwan Soo

    2015-10-01

    Plasmid pKP12226 was extracted and analyzed from a CTX-M-15-producing Klebsiella pneumoniae sequence type 11 (ST11) isolate collected in South Korea. The plasmid represents chimeric characteristics consisting of a pIP1206-like backbone and lysogenized phage P1-like sequences. It bears a resistance region that includes resistance genes to several antibiotics and is different from previously characterized plasmids from South Korea bearing blaCTX-M-15. It may have resulted from recombination between an Escherichia coli plasmid backbone, a blaCTX-M-15-bearing resistance region, and lysogenized phage P1-like sequences. PMID:26195513

  17. Backbone chemical shift assignments for Xanthomonas campestris peroxiredoxin Q in the reduced and oxidized states: a dramatic change in backbone dynamics.

    PubMed

    Buchko, Garry W; Perkins, Arden; Parsonage, Derek; Poole, Leslie B; Karplus, P Andrew

    2016-04-01

    Peroxiredoxins (Prx) are ubiquitous enzymes that reduce peroxides as part of antioxidant defenses and redox signaling. While Prx catalytic activity and sensitivity to hyperoxidative inactivation depend on their dynamic properties, there are few examples where their dynamics has been characterized by NMR spectroscopy. Here, we provide a foundation for studies of the solution properties of peroxiredoxin Q from the plant pathogen Xanthomonas campestris (XcPrxQ) by assigning the observable (1)H(N), (15)N, (13)C(α), (13)C(β), and (13)C' chemical shifts for both the reduced (dithiol) and oxidized (disulfide) states. In the reduced state, most of the backbone amide resonances (149/152, 98 %) can be assigned in the XcPrxQ (1)H-(15)N HSQC spectrum. In contrast, a remarkable 51 % (77) of these amide resonances are not visible in the (1)H-(15)N HSQC spectrum of the disulfide state of the enzyme, indicating a substantial change in backbone dynamics associated with the formation of an intramolecular C48-C84 disulfide bond. PMID:26438558

  18. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dinesh, Bhimareddy; Squillaci, Marco A.; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-09-01

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04665c

  19. Backbone dynamics measurements on leukemia inhibitory factor, a rigid four-helical bundle cytokine.

    PubMed

    Yao, S; Smith, D K; Hinds, M G; Zhang, J G; Nicola, N A; Norton, R S

    2000-04-01

    The backbone dynamics of the four-helical bundle cytokine leukemia inhibitory factor (LIF) have been investigated using 15N NMR relaxation and amide proton exchange measurements on a murine-human chimera, MH35-LIF. For rapid backbone motions (on a time scale of 10 ps to 100 ns), as probed by 15N relaxation measurements, the dynamics parameters were calculated using the model-free formalism incorporating the model selection approach. The principal components of the inertia tensor of MH35-LIF, as calculated from its NMR structure, were 1:0.98:0.38. The global rotational motion of the molecule was, therefore, assumed to be axially symmetric in the analysis of its relaxation data. This yielded a diffusion anisotropy D(parallel)/D(perpendicular) of 1.31 and an effective correlation time (4D(perpendicular) + 2D(parallel))(-1) of 8.9 ns. The average values of the order parameters (S2) for the four helices, the long interhelical loops, and the N-terminus were 0.91, 0.84, and 0.65, respectively, indicating that LIF is fairly rigid in solution, except at the N-terminus. The S2 values for the long interhelical loops of MH35-LIF were higher than those of their counterparts in short-chain members of the four-helical bundle cytokine family. Residues involved in LIF receptor binding showed no consistent pattern of backbone mobilities, with S2 values ranging from 0.71 to 0.95, but residues contributing to receptor binding site III had relatively lower S2 values, implying higher amplitude motions than for the backbone of sites I and II. In the relatively slow motion regime, backbone amide exchange measurements showed that a number of amides from the helical bundle exchanged extremely slowly, persisting for several months in 2H2O at 37 degrees C. Evidence for local unfolding was considered, and correlations among various structure-related parameters and the backbone amide exchange rates were examined. Both sets of data concur in showing that LIF is one of the most rigid four-helical bundle cytokines. PMID:10794409

  20. Persistence and epidemic propagation of a Pseudomonas aeruginosa sequence type 235 clone harboring an IS26 composite transposon carrying the blaIMP-1 integron in Hiroshima, Japan, 2005 to 2012.

    PubMed

    Shimizu, Wataru; Kayama, Shizuo; Kouda, Shuntaro; Ogura, Yoshitoshi; Kobayashi, Kanao; Shigemoto, Norifumi; Shimada, Norimitsu; Yano, Raita; Hisatsune, Junzo; Kato, Fuminori; Hayashi, Tetsuya; Sueda, Taijiro; Ohge, Hiroki; Sugai, Motoyuki

    2015-05-01

    A 9-year surveillance for multidrug-resistant (MDR) Pseudomonas aeruginosa in the Hiroshima region showed that the number of isolates harboring the metallo-?-lactamase gene bla(IMP-1) abruptly increased after 2004, recorded the highest peak in 2006, and showed a tendency to decline afterwards, indicating a history of an epidemic. PCR mapping of the variable regions of the integrons showed that this epidemic was caused by the clonal persistence and propagation of an MDR P. aeruginosa strain harboring the bla(IMP-1) gene and an aminoglycoside 6'-N-acetyltransferase gene, aac(6')-Iae in a class I integron (In113), whose integrase gene intl1 was disrupted by an IS26 insertion. Sequence analysis of the representative strain PA058447 resistance element containing the In113-derived gene cassette array showed that the element forms an IS26 transposon embedded in the chromosome. It has a Tn21 backbone and is composed of two segments sandwiched by three IS26s. In Japan, clonal nationwide expansion of an MDR P. aeruginosa NCGM2.S1 harboring chromosomally encoded In113 with intact intl1 is reported. Multilocus sequence typing and genomic comparison strongly suggest that PA058447 and NCGM2.S1 belong to the same clonal lineage. Moreover, the structures of the resistance element in the two strains are very similar, but the sites of insertion into the chromosome are different. Based on tagging information of the IS26 present in both resistance elements, we suggest that the MDR P. aeruginosa clone causing the epidemic in Hiroshima for the past 9 years originated from a common ancestor genome of PA058447 and NCGM2.S1 through an IS26 insertion into intl1 of In113 and through IS26-mediated genomic rearrangements. PMID:25712351

  1. Persistence and Epidemic Propagation of a Pseudomonas aeruginosa Sequence Type 235 Clone Harboring an IS26 Composite Transposon Carrying the blaIMP-1 Integron in Hiroshima, Japan, 2005 to 2012

    PubMed Central

    Shimizu, Wataru; Kayama, Shizuo; Kouda, Shuntaro; Ogura, Yoshitoshi; Kobayashi, Kanao; Shigemoto, Norifumi; Shimada, Norimitsu; Yano, Raita; Hisatsune, Junzo; Kato, Fuminori; Hayashi, Tetsuya; Sueda, Taijiro; Ohge, Hiroki

    2015-01-01

    A 9-year surveillance for multidrug-resistant (MDR) Pseudomonas aeruginosa in the Hiroshima region showed that the number of isolates harboring the metallo-?-lactamase gene blaIMP-1 abruptly increased after 2004, recorded the highest peak in 2006, and showed a tendency to decline afterwards, indicating a history of an epidemic. PCR mapping of the variable regions of the integrons showed that this epidemic was caused by the clonal persistence and propagation of an MDR P. aeruginosa strain harboring the blaIMP-1 gene and an aminoglycoside 6?-N-acetyltransferase gene, aac(6?)-Iae in a class I integron (In113), whose integrase gene intl1 was disrupted by an IS26 insertion. Sequence analysis of the representative strain PA058447 resistance element containing the In113-derived gene cassette array showed that the element forms an IS26 transposon embedded in the chromosome. It has a Tn21 backbone and is composed of two segments sandwiched by three IS26s. In Japan, clonal nationwide expansion of an MDR P. aeruginosa NCGM2.S1 harboring chromosomally encoded In113 with intact intl1 is reported. Multilocus sequence typing and genomic comparison strongly suggest that PA058447 and NCGM2.S1 belong to the same clonal lineage. Moreover, the structures of the resistance element in the two strains are very similar, but the sites of insertion into the chromosome are different. Based on tagging information of the IS26 present in both resistance elements, we suggest that the MDR P. aeruginosa clone causing the epidemic in Hiroshima for the past 9 years originated from a common ancestor genome of PA058447 and NCGM2.S1 through an IS26 insertion into intl1 of In113 and through IS26-mediated genomic rearrangements. PMID:25712351

  2. Structural Conservation, Variability, and Immunogenicity of the T6 Backbone Pilin of Serotype M6 Streptococcus pyogenes

    PubMed Central

    Moreland, Nicole J.; Loh, Jacelyn M.; Bell, Anita; Atatoa Carr, Polly; Proft, Thomas; Baker, Edward N.

    2014-01-01

    Group A streptococcus (GAS; Streptococcus pyogenes) is a Gram-positive human pathogen that causes a broad range of diseases ranging from acute pharyngitis to the poststreptococcal sequelae of acute rheumatic fever. GAS pili are highly diverse, long protein polymers that extend from the cell surface. They have multiple roles in infection and are promising candidates for vaccine development. This study describes the structure of the T6 backbone pilin (BP; Lancefield T-antigen) from the important M6 serotype. The structure reveals a modular arrangement of three tandem immunoglobulin-like domains, two with internal isopeptide bonds. The T6 pilin lysine, essential for polymerization, is located in a novel VAKS motif that is structurally homologous to the canonical YPKN pilin lysine in other three- and four-domain Gram-positive pilins. The T6 structure also highlights a conserved pilin core whose surface is decorated with highly variable loops and extensions. Comparison to other Gram-positive BPs shows that many of the largest variable extensions are found in conserved locations. Studies with sera from patients diagnosed with GAS-associated acute rheumatic fever showed that each of the three T6 domains, and the largest of the variable extensions (V8), are targeted by IgG during infection in vivo. Although the GAS BP show large variations in size and sequence, the modular nature of the pilus proteins revealed by the T6 structure may aid the future design of a pilus-based vaccine. PMID:24778112

  3. Structural conservation, variability, and immunogenicity of the T6 backbone pilin of serotype M6 Streptococcus pyogenes.

    PubMed

    Young, Paul G; Moreland, Nicole J; Loh, Jacelyn M; Bell, Anita; Atatoa Carr, Polly; Proft, Thomas; Baker, Edward N

    2014-07-01

    Group A streptococcus (GAS; Streptococcus pyogenes) is a Gram-positive human pathogen that causes a broad range of diseases ranging from acute pharyngitis to the poststreptococcal sequelae of acute rheumatic fever. GAS pili are highly diverse, long protein polymers that extend from the cell surface. They have multiple roles in infection and are promising candidates for vaccine development. This study describes the structure of the T6 backbone pilin (BP; Lancefield T-antigen) from the important M6 serotype. The structure reveals a modular arrangement of three tandem immunoglobulin-like domains, two with internal isopeptide bonds. The T6 pilin lysine, essential for polymerization, is located in a novel VAKS motif that is structurally homologous to the canonical YPKN pilin lysine in other three- and four-domain Gram-positive pilins. The T6 structure also highlights a conserved pilin core whose surface is decorated with highly variable loops and extensions. Comparison to other Gram-positive BPs shows that many of the largest variable extensions are found in conserved locations. Studies with sera from patients diagnosed with GAS-associated acute rheumatic fever showed that each of the three T6 domains, and the largest of the variable extensions (V8), are targeted by IgG during infection in vivo. Although the GAS BP show large variations in size and sequence, the modular nature of the pilus proteins revealed by the T6 structure may aid the future design of a pilus-based vaccine. PMID:24778112

  4. Recognizing Sequences of Sequences

    PubMed Central

    Kiebel, Stefan J.; von Kriegstein, Katharina; Daunizeau, Jean; Friston, Karl J.

    2009-01-01

    The brain's decoding of fast sensory streams is currently impossible to emulate, even approximately, with artificial agents. For example, robust speech recognition is relatively easy for humans but exceptionally difficult for artificial speech recognition systems. In this paper, we propose that recognition can be simplified with an internal model of how sensory input is generated, when formulated in a Bayesian framework. We show that a plausible candidate for an internal or generative model is a hierarchy of stable heteroclinic channels. This model describes continuous dynamics in the environment as a hierarchy of sequences, where slower sequences cause faster sequences. Under this model, online recognition corresponds to the dynamic decoding of causal sequences, giving a representation of the environment with predictive power on several timescales. We illustrate the ensuing decoding or recognition scheme using synthetic sequences of syllables, where syllables are sequences of phonemes and phonemes are sequences of sound-wave modulations. By presenting anomalous stimuli, we find that the resulting recognition dynamics disclose inference at multiple time scales and are reminiscent of neuronal dynamics seen in the real brain. PMID:19680429

  5. Nonparametric Combinatorial Sequence Models

    NASA Astrophysics Data System (ADS)

    Wauthier, Fabian L.; Jordan, Michael I.; Jojic, Nebojsa

    This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This paper presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three sequence datasets which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution induced by the prior. By integrating out the posterior our method compares favorably to leading binding predictors.

  6. Tension trapping of carbonyl ylides facilitated by a change in polymer backbone.

    PubMed

    Klukovich, Hope M; Kean, Zachary S; Black Ramirez, Ashley L; Lenhardt, Jeremy M; Lin, Jiaxing; Hu, Xiangqian; Craig, Stephen L

    2012-06-13

    Epoxidized polybutadiene and epoxidized polynorbornene were subjected to pulsed ultrasound in the presence of small molecules capable of being trapped by carbonyl ylides. When epoxidized polybutadiene was sonicated, there was no observable small molecule addition to the polymer. Concurrently, no appreciable isomerization (cis to trans epoxide) was observed, indicating that the epoxide rings along the backbone are not mechanically active under the experimental conditions employed. In contrast, when epoxidized polynorbornene was subjected to the same conditions, both addition of ylide trapping reagents and net isomerization of cis to trans epoxide were observed. The results demonstrate the mechanical activity of epoxides, show that mechanophore activity is determined not only by the functional group but also the polymer backbone in which it is embedded, and facilitate a characterization of the reactivity of the ring-opened dialkyl epoxide. PMID:22650366

  7. Protonation-deprotonation of the glycine backbone as followed by Raman scattering and multiconformational analysis

    NASA Astrophysics Data System (ADS)

    Hernndez, Beln; Pflger, Fernando; Kruglik, Sergei G.; Ghomi, Mahmoud

    2013-11-01

    Because of the absence of the side chain in its chemical structure and its well defined Raman spectra, glycine was selected here to follow its backbone protonation-deprotonation. The scan of the recorded spectra in the 1800-300 cm-1 region led us to assign those obtained at pH 1, 6 and 12 to the cationic, zwitterionic and anionic species, respectively. These data complete well those previously published by Bykov et al. (2008) [16] devoted to the high wavenumber Raman spectra (>2500 cm-1). To reinforce our discussion, DFT calculations were carried out on the clusters of glycine + 5H2O, mimicking reasonably the first hydration shell of the amino acid. Geometry optimization of 141 initial clusters, reflecting plausible combinations of the backbone torsion angles, allowed exploration of the conformational features, as well as construction of the theoretical Raman spectra by considering the most stable clusters containing each glycine species.

  8. Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A.

    PubMed

    Stanger, Karen; Maurer, Till; Kaluarachchi, Harini; Coons, Mary; Franke, Yvonne; Hannoush, Rami N

    2014-11-28

    Cyclotides belong to the family of cyclic cystine-knot peptides and have shown promise as scaffolds for protein engineering and pharmacological modulation of cellular protein activity. Cyclotides are characterized by a cystine-knotted topology and a head-to-tail cyclic polypeptide backbone. While they are primarily produced in plants, cyclotides have also been obtained by chemical synthesis. However, there is still a need for methods to generate cyclotides in high yields to near homogeneity. Here, we report a biomimetic approach which utilizes an engineered version of the enzyme Sortase A to catalyze amide backbone cyclization of the recombinant cyclotide MCoTI-II, thereby allowing the efficient production of active homogenous species in high yields. Our results provide proof of concept for using engineered Sortase A to produce cyclic MCoTI-II and should be generally applicable to generating other cyclic cystine-knot peptides. PMID:25448598

  9. Simulation study of chiral two dimensional ultraviolet (2DUV) spectroscopy of the protein backbone

    PubMed Central

    Abramavicius, Darius; Jiang, Jun; Bulheller, Benjamin M.; Hirst, Jonathan D.; Mukamel, Shaul

    2010-01-01

    Amide n –π* and π-π* excitations around 200 nm are prominent spectroscopic signatures of the protein backbone, which are routinely used in ultraviolet (UV) circular dichroism for structure characterization. Recently developed ultrafast laser sources may be used to extend these studies to two dimensions (2D). We apply a new algorithm for modelling protein electronic transitions to simulate two-dimensional ultraviolet (2DUV) photon echo signals in this regime and to identify signatures of protein backbone secondary (and tertiary) structure. Simulated signals for a set of globular and fibrillar proteins and their specific regions reveal characteristic patterns of helical and sheet secondary structures. We investigate how these patterns vary and converge with the size of the structural motif. Specific chiral polarization configurations of the UV pulses are found to be sensitive to aspects of the protein structure. This information significantly augments that available from linear circular dichroism. PMID:20481498

  10. Graft Copolymers with Conducting Polymer Backbones: A Versatile Route to Functional Materials.

    PubMed

    Strover, Lisa T; Malmström, Jenny; Travas-Sejdic, Jadranka

    2016-02-01

    Graft copolymers with a conducting polymer backbone are a promising class of materials for diverse applications including, but not limited to, organic electronics, stimuli-responsive surfaces, sensors, and biomedical devices. These materials take advantage of the unique electrochemical and optoelectronic properties of conducting polymers, complemented by chemical and/or physical properties of the grafted sidechains. In this Personal Account, we discuss our work in designing functional surfaces based on graft copolymers with a conducting polymer backbone, in the context of broader developments in the field. We review the synthetic approaches available for the rational design of conducting-polymer-based graft copolymers, and examine the types of functional surfaces and soluble materials that may be engineered using these techniques. PMID:26785693

  11. Backbone structure and dynamics of a hemolymph protein from the mealworm beetle Tenebrio molitor.

    PubMed

    Rothemund, S; Liou, Y C; Davies, P L; Snnichsen, F D

    1997-11-11

    Pheromones play a vital role in the survival of insects and are used for chemical communication between members of the same species by their olfactory system. The selection and transportation of these lipophilic messengers by carrier proteins through the hydrophilic sensillum lymph in the antennae toward their membrane receptors remains the initial step for the signal transduction pathway. A moderately abundant 12.4 kDa hydrophilic protein present in hemolymph from the mealworm beetle Tenebrio molitor is approximately 38% identical to a family of insect pheromone-binding proteins. The backbone structure and dynamics of the 108-residue protein have been characterized using three-dimensional 1H-15N NMR spectroscopy, combined with 15N relaxation and 1H/D exchange measurements. The secondary structure, derived from characteristic patterns of dipolar connectivities between backbone protons, secondary chemical shifts, and homonuclear three-bond JHNH alpha coupling constants, consists of a predominantly disordered N-terminus from residues 1 to 10 and six alpha-helices connected by four 4-7 residue loops and one beta-hairpin structure. The up-and-down arrangement of alpha-helices is stabilized by two disulfide bonds and hydrophobic interactions between amphipathic helices. The backbone dynamics were characterized by the overall correlation time, order parameters, and effective correlation times for internal motions. Overall, a good correlation between secondary structure and backbone dynamics was found. The 15N relaxation parameters T1 and T2 and steady-state NOE values of the six alpha-helices could satisfactorily fit the Lipari-Szabo model. In agreement with their generalized order parameters (> 0.88), residues in helical regions exhibited restricted motions on a picosecond time scale. The stability of this highly helical protein was confirmed by thermal denaturation studies. PMID:9374855

  12. Accelerated Fmoc solid-phase synthesis of peptides with aggregation-disrupting backbones.

    PubMed

    Huang, Yi-Chao; Guan, Chao-Jian; Tan, Xiang-Long; Chen, Chen-Chen; Guo, Qing-Xiang; Li, Yi-Ming

    2015-02-01

    In this work, we describe an accelerated solid-phase synthetic protocol for ordinary or difficult peptides involving air-bath heating and amide protection. For the Hmsb-based backbone amide protection, an optimized acyl shift condition using 1,4-dioxane was discovered. The efficiency and robustness of the protocol was validated in the course of preparation of classical difficult peptides and ubiquitin protein segments. PMID:25476596

  13. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1992-03-31

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

  14. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, George A.; Nelson, David A.; Molton, Peter M.

    1992-01-01

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium.

  15. Methods and Compositions for Amplification and Detection of microRNAs (miRNAs) and Noncoding RNAs (ncRNAs) Using the Signature Sequence Amplification Method (SSAM)

    PubMed Central

    Ginsberg, Stephen D.; Che, Shaoli

    2015-01-01

    The signature sequence amplification method (SSAM) described herein is an approach for amplifying noncoding RNA (ncRNA), microRNA (miRNA), and small polynucleotide sequences. A key point of the SSAM technology is the generation of signature sequences. The signature sequences include target sequences (miRNA, ncRNA, and/or any small polynucleotide sequence) flanked by two DNA fragments. Target sequences can be amplified through DNA synthesis, RNA synthesis, or the combination of DNA and RNA synthesis. The amplification of signature sequences provides an efficient and reproducible mechanism to determine the presence or absence of the target miRNAs/ncRNAs, to analyze the quantities of the miRNAs in biological samples, and for miRNA/ncRNA profiling. PMID:25564022

  16. On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent

    PubMed Central

    Riml, Christian; Glasner, Heidelinde; Rodgers, M. T.; Micura, Ronald; Breuker, Kathrin

    2015-01-01

    Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in top-down strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)n+ and (M?nH)n? ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into c and y ions from phosphodiester bond cleavage. PMID:25904631

  17. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase

    PubMed Central

    Harris, Karen S.; Durek, Thomas; Kaas, Quentin; Poth, Aaron G.; Gilding, Edward K.; Conlan, Brendon F.; Saska, Ivana; Daly, Norelle L.; van der Weerden, Nicole L.; Craik, David J.; Anderson, Marilyn A.

    2015-01-01

    Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired. PMID:26680698

  18. Conjugated backbone orientation variation in high mobility regioregular PT based copolymers

    NASA Astrophysics Data System (ADS)

    Perez, Louis; Ying, Lei; Bazan, Guillermo; Kramer, Edward

    2013-03-01

    The synthesis of novel solution processable conjugated polymers is an active field of study due to the potential to fabricate low cost, high though-put electronic devices such as organic field effect transistors (OFET). A regioregular copolymer based on cyclopenta[2,1- b:3,4-b']dithiophene (CDT) and pyridal[2,1,3]thiadiazole (PT) structural units has been prepared by using polymerization reactions involving reactants specifically designed to avoid random orientation of the asymmetric PT heterocycle. Compared to it's regiorandom counterpart, the regioregular polymer exhibits a two orders of magnitude increase in hole mobility from 0.005 to 0.6 cm2 V-1 s-1. A combination of X-ray scattering techniques were employed to quantitatively access the degree of orientation and crystallinity in thin films (15-20 nm) that matched device architecture. We examined the backbone orientation dependence as a function of depth via grazing incidence wide angle X-ray scattering (GIWAXS) and found significant differences in the backbone stacking orientation between the regiorandom and regioregular copolymers. These experiments suggest the backbone regularity leads to significant differences in the structural arrangement and it is another important design criteria to consider in the design of new conjugated copolymers with asymmetric structural units.

  19. Probing the Backbone Function of Tumor Targeting Peptides by an Amide-to-Triazole Substitution Strategy.

    PubMed

    Valverde, Ibai E; Vomstein, Sandra; Fischer, Christiane A; Mascarin, Alba; Mindt, Thomas L

    2015-09-24

    Novel backbone-modified radiolabeled analogs based on the tumor targeting peptide bombesin were synthesized and fully evaluated in vitro and in vivo. We have recently introduced the use of 1,4-disubstituted 1,2,3-triazoles as metabolically stable trans-amide bond surrogates in radiolabeled peptides in order to improve their tumor targeting. As an extension of our approach, we now report several backbone-modified analogs of the studied bombesin peptide bearing multiple triazole substitutions. We investigated the effect of the modifications on several biological parameters including the internalization of the radiopeptidomimetics into tumor cells, their affinity toward the gastrin releasing peptide receptor (GRPr), metabolic stability in blood plasma, and biodistribution in mice bearing GRPr-expressing xenografts. The backbone-modified radiotracers exhibited a significantly increased resistance to proteolytic degradation. In addition, some of the radiopeptidomimetics retained a nanomolar affinity toward GRPr, resulting in an up to 2-fold increased tumor uptake in vivo in comparison to a (all amide bond) reference compound. PMID:26309061

  20. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase.

    PubMed

    Harris, Karen S; Durek, Thomas; Kaas, Quentin; Poth, Aaron G; Gilding, Edward K; Conlan, Brendon F; Saska, Ivana; Daly, Norelle L; van der Weerden, Nicole L; Craik, David J; Anderson, Marilyn A

    2015-01-01

    Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired. PMID:26680698

  1. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    PubMed

    Dinesh, Bhimareddy; Squillaci, Marco A; Mnard-Moyon, Ccilia; Samor, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of ? and ? homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, ? and ? peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of ? and ? peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of ? and ? peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing. PMID:26359907

  2. Diagnostics for a troubled backbone: testing topological hypotheses of trapelioid lichenized fungi in a large-scale phylogeny of Ostropomycetidae (Lecanoromycetes)

    PubMed Central

    Resl, Philipp; Schneider, Kevin; Westberg, Martin; Printzen, Christian; Palice, Zden?k; Thor, Gran; Fryday, Alan; Mayrhofer, Helmut; Spribille, Toby

    2016-01-01

    Trapelioid fungi constitute a widespread group of mostly crust-forming lichen mycobionts that are key to understanding the early evolutionary splits in the Ostropomycetidae, the second-most species-rich subclass of lichenized Ascomycota. The uncertain phylogenetic resolution of the approximately 170 species referred to this group contributes to a poorly resolved backbone for the entire subclass. Based on a data set including 657 newly generated sequences from four ribosomal and four protein-coding gene loci, we tested a series of a priori and new evolutionary hypotheses regarding the relationships of trapelioid clades within Ostropomycetidae. We found strong support for a monophyletic group of nine core trapelioid genera but no statistical support to reject the long-standing hypothesis that trapelioid genera are sister to Baeomycetaceae or Hymeneliaceae. However, we can reject a sister group relationship to Ostropales with high confidence. Our data also shed light on several long-standing questions, recovering Anamylopsoraceae nested within Baeomycetaceae, elucidating two major monophyletic groups within trapelioids (recognized here as Trapeliaceae and Xylographaceae), and rejecting the monophyly of the genus Rimularia. We transfer eleven species of the latter genus to Lambiella and describe the genus Parainoa to accommodate a previously misunderstood species of Trapeliopsis. Past phylogenetic studies in Ostropomycetidae have invoked divergence order for drawing taxonomic conclusions on higher level taxa. Our data show that if backbone support is lacking, contrasting solutions may be recovered with different or added data. We accordingly urge caution in concluding evolutionary relationships from unresolved phylogenies.

  3. Design of peptide standards with the same composition and minimal sequence variation to monitor performance/selectivity of reversed-phase matrices.

    PubMed

    Mant, Colin T; Hodges, Robert S

    2012-03-23

    The present manuscript extends our de novo peptide design approach to the synthesis and evaluation of a new generation of reversed-phase HPLC peptide standards with the same composition and minimal sequence variation (SCMSV). Thus, we have designed and synthesized four series of peptide standards with the sequences Gly-X-Leu-Gly-Leu-Ala-Leu-Gly-Gly-Leu-Lys-Lys-amide, where the N-terminal is either N(?)-acetylated (Series 1) or contains a free ?-amino group (Series 3); and Gly-Gly-Leu-Gly-Gly-Ala-Leu-Gly-X-Leu-Lys-Lys-amide, where the N-terminal is either N(?)-acetylated (Series 2) or contains a free ?-amino group (Series 4). In this initial study, the single substitution position, X, was substituted with alkyl side-chains (Ala

  4. Emphasis: Composition.

    ERIC Educational Resources Information Center

    Knudson, Richard L., Ed.

    1974-01-01

    This issue of "The English Record," devoted largely to the teaching of composition, includes such articles as "Writing in the Reading Class"; "A Sequence of Writing Tasks for a Composition Elective for Juniors and Seniors"; "An Inquiry into the Composing Process"; "A Spin-off from Kenneth Koch's 'Wishes, Lies, and Dreams'"; "Interdisciplinary

  5. Aptameric inhibition of p210bcr-abl tyrosine kinase autophosphorylation by oligodeoxynucleotides of defined sequence and backbone structure.

    PubMed Central

    Bergan, R; Connell, Y; Fahmy, B; Kyle, E; Neckers, L

    1994-01-01

    Protein tyrosine kinases play key roles in cellular physiology. Specific inhibitors of these enzymes are important laboratory tools and may prove to be novel therapeutic agents. In this report we describe a new class of tyrosine kinase inhibitor, synthetic oligodeoxynucleotides (ODNs). An ODN is described which specifically inhibits p210bcr-abl tyrosine kinase autophosphorylation in vitro with a Ki of 0.5 microM. Inhibition is non-competitive with respect to ATP. The effects upon inhibitory activity of ODN structure modifications are described. The inhibition described is not mediated by classical antisense mechanisms and represents an example of the recently recognized aptameric properties of ODNs. Images PMID:8029025

  6. Backbone (1)H, (15)N, (13)C NMR assignment of the 518-627 fragment of the androgen receptor encompassing N-terminal and DNA binding domains.

    PubMed

    Meyer, Sandra; Wang, Ying-Hui; Pérez-Escrivà, Pau; Kieffer, Bruno

    2016-04-01

    Androgen receptor (AR) belongs to the nuclear receptor superfamily that are ligand dependent transcription factors. This protein binds to steroid hormones such as dihydrotestosterone, to specific DNA sequences as well as to a number of co-regulatory factors. A number of these interactions involve the N-terminal domain (NTD), that is predicted to be intrinsically disordered. In order to provide functional information about possible cross-talk mechanisms between the AR NTD and its DNA binding domain (DBD), we have undertaken the NMR study of a fragment of human AR encompassing the last 37 residues of the NTD and the DBD (NTD-DBD518-627). The backbone (1)H, (15)N, (13)C NMR resonance assignments of this fragment indicate the presence of residual helical secondary structure within the AR NTD. PMID:26732902

  7. Exposing Hidden Alternative Backbone Conformations in X-ray Crystallography Using qFit

    PubMed Central

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry

    2015-01-01

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the flap regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Overall, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems. PMID:26506617

  8. Solution structure and backbone dynamics of an omega-conotoxin precursor.

    PubMed

    Goldenberg, D P; Koehn, R E; Gilbert, D E; Wagner, G

    2001-03-01

    Nuclear magnetic resonance spectroscopy was used to characterize the solution structure and backbone dynamics of a putative precursor form of omega-conotoxin MVIIA, a 25-amino-acid residue peptide antagonist of voltage-gated Ca(2+) channels. The mature peptide is found in the venom of a fish-hunting marine snail Conus magus and contains an amidated carboxyl terminus that is generated by oxidative cleavage of a Gly residue. The form examined in this study is identical to the mature peptide except for the presence of the unmodified carboxy-terminal Gly. This form, referred to as omega-MVIIA-Gly, has previously been shown to refold and form its disulfides more efficiently than the mature form, suggesting that the presence of the terminal Gly may favor folding in vivo. The nuclear magnetic resonance (NMR) structure determination indicated that the fold of omega-MVIIA-Gly is very similar to that previously determined for the mature form, but revealed that the terminal Gly residue participates in a network of hydrogen bonds involving both backbone and side chain atoms, very likely accounting for the enhanced stability and folding efficiency. (15)N relaxation experiments indicated that the backbone is well ordered on the nanosecond time scale but that residues 9-15 undergo a conformational exchange processes with a time constant of approximately 35 microseconds. Other studies have implicated this segment in the binding of the peptide to its physiological target, and the observed motions may play a role in allowing the peptide to enter the binding site PMID:11344322

  9. Exposing Hidden Alternative Backbone Conformations in X-ray Crystallography Using qFit.

    PubMed

    Keedy, Daniel A; Fraser, James S; van den Bedem, Henry

    2015-10-01

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the "flap" regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Overall, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems. PMID:26506617

  10. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions†

    PubMed Central

    2015-01-01

    Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C–H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P–N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files (https://zenodo.org/collection/user-nmrlipids) has become the most extensive publicly available collection of molecular dynamics simulation trajectories of lipid bilayers. PMID:26509669

  11. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics

    NASA Astrophysics Data System (ADS)

    Krokhotin, Andrey; Niemi, Antti J.; Peng, Xubiao

    2013-05-01

    We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit.

  12. Comparison of multiple AMBER force fields and development of improved protein backbone parameters

    PubMed Central

    Hornak, Viktor; Abel, Robert; Okur, Asim; Strockbine, Bentley; Roitberg, Adrian; Simmerling, Carlos

    2016-01-01

    The ff94 force field that is commonly associated with the AMBER simulation package is one of the most widely used parameter sets for biomolecular simulation. After a decade of extensive use and testing, limitations in this force field, such as over stabilization of α-helices, were reported by us and other researchers. This led to a number of attempts to improve these parameters, resulting in a variety of “AMBER” force fields and significant difficulty in determining which should be used for a particular application. We show that several of these continue to suffer from inadequate balance between different secondary structure elements. In addition, the approach used in most of these studies neglected to account for the existence in AMBER of two sets of backbone φ/ψ dihedral terms. This led to parameter sets that provide unreasonable conformational preferences for glycine. We report here an effort to improve the φ/ψ dihedral terms in the ff99 energy function. Dihedral term parameters are based on fitting the energies of multiple conformations of glycine and alanine tetrapeptides from high level ab-initio quantum mechanical calculations. The new parameters for backbone dihedrals replace those in the existing ff99 force field. This parameter set, which we denote ff99SB, achieves a better balance of secondary structure elements as judged by improved distribution of backbone dihedrals for glycine and alanine with respect to PDB survey data. It also accomplishes improved agreement with published experimental data for conformational preferences of short alanine peptides, and better accord with experimental NMR relaxation data of test protein systems. PMID:16981200

  13. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone

    PubMed Central

    Doucet, Christine M.; Esmery, Nina; de Saint-Jean, Maud; Antonny, Bruno

    2015-01-01

    Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests that the chemistry of ALPS motifs is a key parameter for membrane curvature sensitivity, which can be further modulated by the surrounding protein backbone. PMID:26366573

  14. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions.

    PubMed

    Botan, Alexandru; Favela-Rosales, Fernando; Fuchs, Patrick F J; Javanainen, Matti; Kandu?, Matej; Kulig, Waldemar; Lamberg, Antti; Loison, Claire; Lyubartsev, Alexander; Miettinen, Markus S; Monticelli, Luca; Mtt, Jukka; Ollila, O H Samuli; Retegan, Marius; Rg, Tomasz; Santuz, Hubert; Tynkkynen, Joona

    2015-12-10

    Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C-H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P-N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files ( https://zenodo.org/collection/user-nmrlipids ) has become the most extensive publicly available collection of molecular dynamics simulation trajectories of lipid bilayers. PMID:26509669

  15. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics.

    PubMed

    Krokhotin, Andrey; Niemi, Antti J; Peng, Xubiao

    2013-05-01

    We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrdinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the ?-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit. PMID:23656161

  16. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    DOE PAGESBeta

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; Shehu, Amarda

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechainmore » conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.« less

  17. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    SciTech Connect

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; Shehu, Amarda

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.

  18. Design of peptide standards with the same composition and minimal sequence variation (SCMSV) to monitor performance/selectivity of reversed-phase matrices

    PubMed Central

    Mant, Colin T.; Hodges, Robert S.

    2012-01-01

    The present manuscript extends our de novo peptide design approach to the synthesis and evaluation of a new generation of reversed-phase HPLC peptide standards with the same composition and minimal sequence variation (SCMSV). Thus, we have designed and synthesized four series of peptide standards with the sequences Gly-X-Leu-Gly-Leu-Ala-Leu-Gly-Gly-Leu-Lys-Lys-amide, where the N-terminal is either N?-acetylated (Series 1) or contains a free ?-amino group (Series 3); and Gly-Gly-Leu-Gly-Gly-Ala-Leu-Gly-X-Leu-Lys-Lys-amide, where the N-terminal is either N?-acetylated (Series 2) or contains a free ?-amino group (Series 4). In this initial study, the single substitution position, X, was substituted with alkyl side-chains (Ala

  19. Localization of strain in the RNA backbone and its functional implication

    NASA Astrophysics Data System (ADS)

    Fernndez, Ariel; Rabitz, Herschel

    1992-07-01

    It is known that an RNA molecule capable of self-splicing shares a common pattern of Watson-Crick base paris with other RNA species endowed with the same capability. The aim of this work is to introduce a minimal model Hamiltonian which determines a localized strain in the RNA backbone as the search for the molecular conformation is subject to the constraint imposed by the concensus secondary structure. The site where the strain is localized is shown to coincide with the splicing site of the molecule. As justified posteriori, the level of structural complexity of the model is sufficient to account for energy localization in a nontrivial fashion.

  20. Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone.

    PubMed

    Chang, Hojun; Min, Kyungtaek; Lee, Myungjae; Kang, Minsu; Park, Yeonsang; Cho, Kyung-Sang; Roh, Young-Geun; Woo Hwang, Sung; Jeon, Heonsu

    2016-03-17

    We report the room-temperature lasing action from two-dimensional photonic crystal (PC) structures composed of a passive Si3N4 backbone with an over-coat of CdSe/CdS/ZnS colloidal quantum dots (CQDs) for optical gain. When optically excited, devices lased in dual PC band-edge modes, with the modal dominance governed by the thickness of the CQD over-layer. The demonstrated laser platform should have an impact on future photonic integrated circuits as the on-chip coupling between active and passive components is readily achievable. PMID:26935411

  1. An algorithm for converting a virtual-bond chain into a complete polypeptide backbone chain

    NASA Technical Reports Server (NTRS)

    Luo, N.; Shibata, M.; Rein, R.

    1991-01-01

    A systematic analysis is presented of the algorithm for converting a virtual-bond chain, defined by the coordinates of the alpha-carbons of a given protein, into a complete polypeptide backbone. An alternative algorithm, based upon the same set of geometric parameters used in the Purisima-Scheraga algorithm but with a different "linkage map" of the algorithmic procedures, is proposed. The global virtual-bond chain geometric constraints are more easily separable from the loal peptide geometric and energetic constraints derived from, for example, the Ramachandran criterion, within the framework of this approach.

  2. DNA sequences and composition from 12 BAC clones-derived MUSB SSR markers mapped to cotton (Gossypium Hirsutum L. x G. Barbadense L.)chromosomes 11 and 21

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To discover resistance (R) and/or pathogen-induced (PR) genes involved in disease response, 12 bacterial artificial chromosome (BAC) clones from cv. Acala Maxxa (G. hirsutum) were sequenced at the Clemson University, Genomics Institute, Clemson, SC. These BACs derived MUSB single sequence repeat (SS...

  3. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2010-12-07

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  4. Anion-Conducting Polymer, Composition, and Membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2008-10-21

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  5. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2011-11-22

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  6. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  7. TALOS+: A hybrid method for predicting protein backbone torsion angles from NMR chemical shifts

    PubMed Central

    Shen, Yang; Delaglio, Frank; Cornilescu, Gabriel; Bax, Ad

    2009-01-01

    NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between 13C, 15N and 1H chemical shifts and backbone torsion angles ? and ? (G. Cornilescu et al. J. Biomol. NMR. 13, 289302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5 percent. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted ? and ? angles, equals 13. Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy. PMID:19548092

  8. First-principles study of the effect of functional groups on polyaniline backbone

    NASA Astrophysics Data System (ADS)

    Chen, X. P.; Jiang, J. K.; Liang, Q. H.; Yang, N.; Ye, H. Y.; Cai, M.; Shen, L.; Yang, D. G.; Ren, T. L.

    2015-11-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate that the chemical reactivity of the polyaniline derivatives is significantly enhanced by protonic acid doping of the substituted materials. Further study of the density of states at the Fermi level, band gap, HOMO and LUMO shows that both the unprotonated and protonated states of these polyanilines are altered to different degrees depending on the functional group. We also note that changes in both the chemical and electronic properties are very sensitive to the polarity and size of the functional group. It is worth noting that these changes do not substantially alter the inherent chemical and electronic properties of polyaniline. Our results demonstrate that introducing different functional groups on a polymer backbone is an effective approach to obtain tailored conductive polymers with desirable properties while retaining their intrinsic properties, such as conductivity.

  9. The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin.

    PubMed

    Castelain, Mickaël; Duviau, Marie-Pierre; Canette, Alexis; Schmitz, Philippe; Loubière, Pascal; Cocaign-Bousquet, Muriel; Piard, Jean-Christophe; Mercier-Bonin, Muriel

    2016-01-01

    Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0-200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis. PMID:27010408

  10. Highly stable alkaline polymer electrolyte based on a poly(ether ether ketone) backbone.

    PubMed

    Han, Juanjuan; Peng, Hanqing; Pan, Jing; Wei, Ling; Li, Guangwei; Chen, Chen; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2013-12-26

    Alkaline polymer electrolyte fuel cells (APEFCs) promise the use of nonprecious metal catalysts and thus have attracted much research attention in the recent decade. Among the challenges of developing practical APEFC technology, the chemical stability of alkaline polymer electrolytes (APEs) seems to be rather difficult. Research found that, upon attachment of a cationic functional group, an originally stable polymer backbone, such as polysulfone (PSF), would degrade in an alkaline environment. In the present work, we try to employ poly(ether ether ketone) (PEEK), a very inert engineering plastic, as the backbone of APEs. The PEEK is functionalized with both a sulfonic acid (SA) group and a quaternary ammonia (QA) group, with the latter as the majority amount. Ionic cross-linking between SA and QA has rendered the thus-obtained membrane (xQAPEEK) with high mechanical strength and low swelling degree. More importantly, the xQAPEEK membrane exhibits outstanding stability in a 1 mol/L KOH solution at 80 C for a test period of 30 days: the total weight loss of xQAPEEK is only 6 wt %, in comparison to a large degradation of quaternary ammonia PSF (more than 40 wt %) under the same conditions. Our findings not only have demonstrated an effective approach to preparing PEEK-based APE but also cast a new light on the development of highly stable APEs for fuel-cell application. PMID:24229363

  11. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators.

    PubMed

    Flierl, Ulrike; Nero, Tracy L; Lim, Bock; Arthur, Jane F; Yao, Yu; Jung, Stephanie M; Gitz, Eelo; Pollitt, Alice Y; Zaldivia, Maria T K; Jandrot-Perrus, Martine; Schäfer, Andreas; Nieswandt, Bernhard; Andrews, Robert K; Parker, Michael W; Gardiner, Elizabeth E; Peter, Karlheinz

    2015-02-01

    Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function-deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone-dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics. PMID:25646267

  12. Fragmentation-Rearrangement of Peptide Backbones Mediated by the Air Pollutant NO2 (.).

    PubMed

    Gamon, Luke F; Nathanael, Joses G; Taggert, Bethany I; Henry, Fraser A; Bogena, Jana; Wille, Uta

    2015-10-12

    The fragmentation-rearrangement of peptide backbones mediated by nitrogen dioxide, NO2 (.) , was explored using di-, tri-, and tetrapeptides 8-18 as model systems. The reaction, which is initiated through nonradical N-nitrosation of the peptide bond, shortens the peptide chain by the expulsion of one amino acid moiety with simultaneous fusion of the remaining molecular termini through formation of a new peptide bond. The relative rate of the fragmentation-rearrangement depends on the nature of the amino acids and decreases with increasing steric bulk at the ? carbon in the order Gly>Ala>Val. Peptides that possessed consecutive aromatic side chains only gave products that resulted from nitrosation of the sterically less congested N-terminal amide. Such backbone fragmentation-rearrangement occurs under physiologically relevant conditions and could be an important reaction pathway for peptides, in which sections without readily oxidizable side chains are exposed to the air pollutant NO2 (.) . In addition to NO2 (.) -induced radical oxidation processes, this outcome shows that ionic reaction pathways, in particular nitrosation, should be factored in when assessing NO2 (.) reactivity in biological systems. PMID:26333002

  13. Osmolyte effects on protein stability and solubility: a balancing act between backbone and side-chains

    PubMed Central

    Auton, Matthew; Rösgen, Jörg; Sinev, Mikhail; Holthauzen, Luis Marcelo F.; Bolen, D. Wayne

    2011-01-01

    In adaptation biology the discovery of intracellular osmolyte molecules that in some cases reach molar levels, raises questions of how they influence protein thermodynamics. We’ve addressed such questions using the premise that from atomic coordinates, the transfer free energy of a native protein (ΔGtr,N) can be predicted by summing measured water-to-osmolyte transfer free energies of the protein’s solvent exposed side chain and backbone component parts. ΔGtr,D is predicted using a self avoiding random coil model for the protein, and ΔGtr,D − ΔGtr,N, predicts the m-value, a quantity that measures the osmolyte effect on the N ⇌ D transition. Using literature and newly measured m-values we show 1:1 correspondence between predicted and measured m-values covering a range of 12 kcal/mol/M in protein stability for 46 proteins and 9 different osmolytes. Osmolytes present a range of side chain and backbone effects on N and D solubility and protein stability key to their biological roles. PMID:21683504

  14. Structure and assembly of group B streptococcus pilus 2b backbone protein.

    PubMed

    Cozzi, Roberta; Malito, Enrico; Lazzarin, Maddalena; Nuccitelli, Annalisa; Castagnetti, Andrea; Bottomley, Matthew J; Margarit, Immaculada; Maione, Domenico; Rinaudo, C Daniela

    2015-01-01

    Group B Streptococcus (GBS) is a major cause of invasive disease in infants. Like other Gram-positive bacteria, GBS uses a sortase C-catalyzed transpeptidation mechanism to generate cell surface pili from backbone and ancillary pilin precursor substrates. The three pilus types identified in GBS contain structural subunits that are highly immunogenic and are promising candidates for the development of a broadly-protective vaccine. Here we report the X-ray crystal structure of the backbone protein of pilus 2b (BP-2b) at 1.06 resolution. The structure reveals a classical IgG-like fold typical of the pilin subunits of other Gram-positive bacteria. The crystallized portion of the protein (residues 185-468) encompasses domains D2 and D3 that together confer high stability to the protein due to the presence of an internal isopeptide bond within each domain. The D2+D3 region, lacking the N-terminal D1 domain, was as potent as the entire protein in conferring protection against GBS challenge in a well-established mouse model. By site-directed mutagenesis and complementation studies in GBS knock-out strains we identified the residues and motives essential for assembly of the BP-2b monomers into high-molecular weight complexes, thus providing new insights into pilus 2b polymerization. PMID:25942637

  15. First-principles study of the effect of functional groups on polyaniline backbone

    PubMed Central

    Chen, X. P.; Jiang, J. K.; Liang, Q. H.; Yang, N.; Ye, H. Y.; Cai, M.; Shen, L.; Yang, D. G.; Ren, T. L.

    2015-01-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate that the chemical reactivity of the polyaniline derivatives is significantly enhanced by protonic acid doping of the substituted materials. Further study of the density of states at the Fermi level, band gap, HOMO and LUMO shows that both the unprotonated and protonated states of these polyanilines are altered to different degrees depending on the functional group. We also note that changes in both the chemical and electronic properties are very sensitive to the polarity and size of the functional group. It is worth noting that these changes do not substantially alter the inherent chemical and electronic properties of polyaniline. Our results demonstrate that introducing different functional groups on a polymer backbone is an effective approach to obtain tailored conductive polymers with desirable properties while retaining their intrinsic properties, such as conductivity. PMID:26584671

  16. Generation of Transgenic Drosophila Expressing shRNAs in the miR-1 Backbone

    PubMed Central

    Chang, Kenneth; Marran, Krista; Valentine, Amy; Hannon, Gregory J.

    2015-01-01

    In Drosophila, long-term effects of RNA interference (RNAi) must be achieved by integrating into the genome a template from which an RNAi trigger is transcribed by cellular RNA polymerases, generally RNA polymerase II or III. With encoded triggers, not only can essentially permanent silencing be achieved, but control can also be exerted over the level of trigger expression, with a resulting variation in the degree to which the target is silenced. Knockdown can also be controlled in a temporal and cell-type-dependent fashion through the use of well-established transgenic methodologies and well-tested promoters. The forms of encoded triggers vary. Long double-stranded RNAs can be expressed as extended inverted repeats. The nearest equivalent of a small interfering RNA is an artificial microRNA (miRNA) or short hairpin RNA (shRNA), where a natural miRNA backbone (also called a scaffold) is remodeled to produce a different small RNA or a small inverted repeat (<30 nucleotides) is simply expressed. This protocol describes creation of transgenic Drosophila carrying shRNA inserts in a remodeled endogenous miRNA backbone. The protocol applies to the use of miRNA-based shRNAs, but most of the vectors, principles of experimental design, and methods are also applicable to long inverted repeat transgenes. PMID:24786506

  17. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement

    DOE PAGESBeta

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; Karplus, P. Andrew

    2014-06-17

    Ideal values of bond angles and lengths used as external restraints are crucial for the successful refinement of protein crystal structures at all but the highest of resolutions. The restraints in common usage today have been designed based on the assumption that each type of bond or angle has a single ideal value independent of context. However, recent work has shown that the ideal values are, in fact, sensitive to local conformation, and as a first step toward using such information to build more accurate models, ultra-high resolution protein crystal structures have been used to derive a conformation-dependent library (CDL)more » of restraints for the protein backbone (Berkholz et al. 2009. Structure. 17, 1316). Here, we report the introduction of this CDL into the Phenix package and the results of test refinements of thousands of structures across a wide range of resolutions. These tests show that use of the conformation dependent library yields models that have substantially better agreement with ideal main-chain bond angles and lengths and, on average, a slightly enhanced fit to the X-ray data. No disadvantages of using the backbone CDL are apparent. In Phenix usage of the CDL can be selected by simply specifying the cdl=True option. This successful implementation paves the way for further aspects of the context-dependence of ideal geometry to be characterized and applied to improve experimental and predictive modelling accuracy.« less

  18. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement

    SciTech Connect

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; Karplus, P. Andrew

    2014-06-17

    Ideal values of bond angles and lengths used as external restraints are crucial for the successful refinement of protein crystal structures at all but the highest of resolutions. The restraints in common usage today have been designed based on the assumption that each type of bond or angle has a single ideal value independent of context. However, recent work has shown that the ideal values are, in fact, sensitive to local conformation, and as a first step toward using such information to build more accurate models, ultra-high resolution protein crystal structures have been used to derive a conformation-dependent library (CDL) of restraints for the protein backbone (Berkholz et al. 2009. Structure. 17, 1316). Here, we report the introduction of this CDL into the Phenix package and the results of test refinements of thousands of structures across a wide range of resolutions. These tests show that use of the conformation dependent library yields models that have substantially better agreement with ideal main-chain bond angles and lengths and, on average, a slightly enhanced fit to the X-ray data. No disadvantages of using the backbone CDL are apparent. In Phenix usage of the CDL can be selected by simply specifying the cdl=True option. This successful implementation paves the way for further aspects of the context-dependence of ideal geometry to be characterized and applied to improve experimental and predictive modelling accuracy.

  19. Backbone and benzoyl mustard carrying moiety modifies DNA interactions of distamycin analogues.

    PubMed

    Ciucci, A; Manzini, S; Lombardi, P; Arcamone, F

    1996-01-15

    Alkylating distamycin derivative FCE-24517 (l) is the prototype of a novel class of alkylating agents. In the present study we have investigated the effect of further chemical modifications introduced in the alkylating distamycin-derived molecule with the aim of improving their ability to bind DNA. The new compound, MEN 10710 (II), has a four pyrrolecarboxamide backbone linked at its N-terminus and through a butanamido residue to a 4-[bis(chloroethyl)amino]phenyl moiety. We have demonstrated that the presence of the flexible trimethylene chain confers to the novel distamycin derivative a peculiar mode of interaction with DNA as compared with I or melphalan. In fact, interstrand cross-links are detected in DNA samples treated even with low concentrations of II (being 200-fold more efficient than melphalan) but not with I. Similar results were obtained with a related compound of II containing a three pyrrole ring backbone. Compound II induces a conformational change in the DNA structure as deduced from the inhibition of T4 DNA ligase activity. In alkylation experiments, unlike melphalan, both I and II induce DNA breaks at bases closely located to AT-rich tracts, however II was more potent than I in producing greater amount of covalent adducts. These data suggest that the new compound shows a different and peculiar mechanism of interaction with DNA. PMID:8628655

  20. First-principles study of the effect of functional groups on polyaniline backbone.

    PubMed

    Chen, X P; Jiang, J K; Liang, Q H; Yang, N; Ye, H Y; Cai, M; Shen, L; Yang, D G; Ren, T L

    2015-01-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate that the chemical reactivity of the polyaniline derivatives is significantly enhanced by protonic acid doping of the substituted materials. Further study of the density of states at the Fermi level, band gap, HOMO and LUMO shows that both the unprotonated and protonated states of these polyanilines are altered to different degrees depending on the functional group. We also note that changes in both the chemical and electronic properties are very sensitive to the polarity and size of the functional group. It is worth noting that these changes do not substantially alter the inherent chemical and electronic properties of polyaniline. Our results demonstrate that introducing different functional groups on a polymer backbone is an effective approach to obtain tailored conductive polymers with desirable properties while retaining their intrinsic properties, such as conductivity. PMID:26584671

  1. Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications

    PubMed Central

    Meade, Bryan R; Gogoi, Khirud; Hamil, Alexander S; Palm-Apergi, Caroline; van den Berg, Arjen; Hagopian, Jonathan C; Springer, Aaron D; Eguchi, Akiko; Kacsinta, Apollo D; Dowdy, Connor F; Presente, Asaf; Lönn, Peter; Kaulich, Manuel; Yoshioka, Naohisa; Gros, Edwige; Cui, Xian-Shu; Dowdy, Steven F

    2015-01-01

    RNA interference (RNAi) has great potential to treat human disease1–3. However, in vivo delivery of short interfering RNAs (siRNAs), which are negatively charged double-stranded RNA macromolecules, remains a major hurdle4–9. Current siRNA delivery has begun to move away from large lipid and synthetic nanoparticles to more defined molecular conjugates9. Here we address this issue by synthesis of short interfering ribonucleic neutrals (siRNNs) whose phosphate backbone contains neutral phosphotriester groups, allowing for delivery into cells. Once inside cells, siRNNs are converted by cytoplasmic thioesterases into native, charged phosphodiester-backbone siRNAs, which induce robust RNAi responses. siRNNs have favorable drug-like properties, including high synthetic yields, serum stability and absence of innate immune responses. Unlike siRNAs, siRNNs avidly bind serum albumin to positively influence pharmacokinetic properties. Systemic delivery of siRNNs conjugated to a hepatocyte-specific targeting domain induced extended dose-dependent in vivo RNAi responses in mice. We believe that siRNNs represent a technology that will open new avenues for development of RNAi therapeutics. PMID:25402614

  2. The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin

    PubMed Central

    Castelain, Mickaël; Duviau, Marie-Pierre; Canette, Alexis; Schmitz, Philippe; Loubière, Pascal; Cocaign-Bousquet, Muriel; Piard, Jean-Christophe; Mercier-Bonin, Muriel

    2016-01-01

    Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0–200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis. PMID:27010408

  3. Structure and Assembly of Group B Streptococcus Pilus 2b Backbone Protein

    PubMed Central

    Cozzi, Roberta; Malito, Enrico; Lazzarin, Maddalena; Nuccitelli, Annalisa; Castagnetti, Andrea; Bottomley, Matthew J.; Margarit, Immaculada; Maione, Domenico; Rinaudo, C. Daniela

    2015-01-01

    Group B Streptococcus (GBS) is a major cause of invasive disease in infants. Like other Gram-positive bacteria, GBS uses a sortase C-catalyzed transpeptidation mechanism to generate cell surface pili from backbone and ancillary pilin precursor substrates. The three pilus types identified in GBS contain structural subunits that are highly immunogenic and are promising candidates for the development of a broadly-protective vaccine. Here we report the X-ray crystal structure of the backbone protein of pilus 2b (BP-2b) at 1.06 resolution. The structure reveals a classical IgG-like fold typical of the pilin subunits of other Gram-positive bacteria. The crystallized portion of the protein (residues 185-468) encompasses domains D2 and D3 that together confer high stability to the protein due to the presence of an internal isopeptide bond within each domain. The D2+D3 region, lacking the N-terminal D1 domain, was as potent as the entire protein in conferring protection against GBS challenge in a well-established mouse model. By site-directed mutagenesis and complementation studies in GBS knock-out strains we identified the residues and motives essential for assembly of the BP-2b monomers into high-molecular weight complexes, thus providing new insights into pilus 2b polymerization. PMID:25942637

  4. Ultraviolet spectroscopy of protein backbone transitions in aqueous solution: combined QM and MM simulations.

    PubMed

    Jiang, Jun; Abramavicius, Darius; Bulheller, Benjamin M; Hirst, Jonathan D; Mukamel, Shaul

    2010-06-24

    A generalized approach combining quantum mechanics (QM) and molecular mechanics (MM) calculations is developed to simulate the n --> pi* and pi --> pi* backbone transitions of proteins in aqueous solution. These transitions, which occur in the ultraviolet (UV) at 180-220 nm, provide a sensitive probe for secondary structures. The excitation Hamiltonian is constructed using high-level electronic structure calculations of N-methylacetamide (NMA). Its electrostatic fluctuations are modeled using a new algorithm, EHEF, which combines a molecular dynamics (MD) trajectory obtained with a MM forcefield and electronic structures of sampled MD snapshots calculated by QM. The lineshapes and excitation splittings induced by the electrostatic environment in the experimental UV linear absorption (LA) and circular dichroism (CD) spectra of several proteins in aqueous solution are reproduced by our calculations. The distinct CD features of alpha-helix and beta-sheet protein structures are observed in the simulations and can be assigned to different backbone geometries. The fine structure of the UV spectra is accurately characterized and enables us to identify signatures of secondary structures. PMID:20503991

  5. Di-Isocyanate Crosslinked Aerogels with 1, 6-Bis (Trimethoxysilyl) Hexane Incorporated in Silica Backbone

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Nguyen, Baochau N.; Quade, Derek; Randall, Jason; Perry, Renee

    2008-01-01

    Silica aerogels are desirable materials for many applications that take advantage of their light weight and low thermal conductivity. Addition of a conformal polymer coating which bonds with the amine decorated surface of the silica network improves the strength of the aerogels by as much as 200 times. Even with vast improvement in strength they still tend to undergo brittle failure due to the rigid silica backbone. We hope to increase the flexibility and elastic recovery of the silica based aerogel by altering the silica back-bone by incorporation of more flexible hexane links. To this end, we investigated the use of 1,6-bis(trimethoxysilyl)hexane (BTMSH), a polysilsesquioxane precursor3, as an additional co-reactant to prepare silica gels which were subsequently cross-linked with di-isocyanate. Previously, this approach of adding flexibility by BTMSH incorporation was demonstrated with styrene cross-linked aerogels. In our study, we varied silane concentration, mol % of silicon from BTMSH and di-isocyanate concentration by weight percent to attempt to optimize both the flexibility and the strength of the aerogels.

  6. Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella.

    PubMed

    Crowhurst, Karin A; Horn, James V C; Weers, Paul M M

    2016-04-01

    Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain (1)H, (13)C and (15)N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein. PMID:26493308

  7. Solution NMR analysis of the interaction between the actinoporin sticholysin I and DHPC micelles--correlation with backbone dynamics.

    PubMed

    Lpez-Castilla, Aracelys; Pazos, Fabiola; Schreier, Shirley; Pires, Jos Ricardo

    2014-06-01

    Sticholysin I (StI), an actinoporin expressed as a water-soluble protein by the sea anemone Stichodactyla helianthus, binds to natural and model membranes, forming oligomeric pores. It is proposed that the first event of a multistep pore formation mechanism consists of the monomeric protein attachment to the lipid bilayer. To date there is no high-resolution structure of the actinoporin pore or other membrane-bound form available. Here we evaluated StI:micelle complexes of variable lipid composition to look for a suitable model for NMR studies. Micelles of pure or mixed lysophospholipids and of dihexanoyl phosphatidylcholine (DHPC) were examined. The StI:DHPC micelle was found to be the best system, yielding a stable sample and good quality spectra. A comprehensive chemical shift perturbation analysis was performed to map the StI membrane recognition site in the presence of DHPC micelles. The region mapped (residues F(51), R(52), S(53) in loop 3; F(107), D(108), Y(109), W(111), Y(112), W(115) in loop 7; Q(129), Y(132), D(134), M(135), Y(136), Y(137), G(138) in helix-?2) is in agreement with previously reported data, but additional residues were found to interact, especially residues V(81), A(82), T(83), G(84) in loop 5, and A(85), A(87) in strand-?5. Backbone dynamics measurements of StI free in solution and bound to micelles highlighted the relevance of protein flexibility for membrane binding and suggested that a conformer selection process may take place during protein-membrane interaction. We conclude that the StI:DHPC micelles system is a suitable model for further characterization of an actinoporin membrane-bound form by solution NMR. PMID:24218049

  8. Transcriptome Sequencing and Expression Analysis of Terpenoid Biosynthesis Genes in Litsea cubeba

    PubMed Central

    Han, Xiao-Jiao; Wang, Yang-Dong; Chen, Yi-Cun; Lin, Li-Yuan; Wu, Qing-Ke

    2013-01-01

    Background Aromatic essential oils extracted from fresh fruits of Litsea cubeba (Lour.) Pers., have diverse medical and economic values. The dominant components in these essential oils are monoterpenes and sesquiterpenes. Understanding the molecular mechanisms of terpenoid biosynthesis is essential for improving the yield and quality of terpenes. However, the 40 available L. cubeba nucleotide sequences in the public databases are insufficient for studying the molecular mechanisms. Thus, high-throughput transcriptome sequencing of L. cubeba is necessary to generate large quantities of transcript sequences for the purpose of gene discovery, especially terpenoid biosynthesis related genes. Results Using Illumina paired-end sequencing, approximately 23.5 million high-quality reads were generated. De novo assembly yielded 68,648 unigenes with an average length of 834 bp. A total of 38,439 (56%) unigenes were annotated for their functions, and 35,732 and 25,806 unigenes could be aligned to the GO and COG database, respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 16,130 unigenes were assigned to 297 KEGG pathways, and 61 unigenes, which contained the mevalonate and 2-C-methyl-D-erythritol 4-phosphate pathways, could be related to terpenoid backbone biosynthesis. Of the 12,963 unigenes, 285 were annotated to the terpenoid pathways using the PlantCyc database. Additionally, 14 terpene synthase genes were identified from the transcriptome. The expression patterns of the 16 genes related to terpenoid biosynthesis were analyzed by RT-qPCR to explore their putative functions. Conclusion RNA sequencing was effective in identifying a large quantity of sequence information. To our knowledge, this study is the first exploration of the L. cubeba transcriptome, and the substantial amount of transcripts obtained will accelerate the understanding of the molecular mechanisms of essential oils biosynthesis. The results may help improve future genetic and genomics studies on the molecular mechanisms behind the chemical composition of essential oils in L. cubeba fruits. PMID:24130803

  9. Digital Sequences

    NASA Astrophysics Data System (ADS)

    Xiang, Ning

    This section discusses the applications of digital sequences in acoustical system identification and characterization and describes Golay codes and binary maximum-length sequences (MLSs) in some detail. Legendre sequences and other coded signals are briefly described. Golay codes and MLS have been used for acoustic applications for years. Applications of Legendre sequences have also been reported. Digital sequences of other classes such as, e.g., binary Gold sequences and Kasami sequences have only recently found applications in acoustical system identification and characterization.

  10. The Inherent Conformational Preferences of Glutamine-Containing Peptides: the Role for Side-Chain Backbone Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    2015-06-01

    Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.

  11. Effect of backbone chemistry on hybridization thermodynamics of oligonucleic acids: a coarse-grained molecular dynamics simulation study.

    PubMed

    Ghobadi, Ahmadreza F; Jayaraman, Arthi

    2016-02-17

    In this paper we study how varying oligonucleic acid backbone chemistry affects the hybridization/melting thermodynamics of oligonucleic acids. We first describe the coarse-grained (CG) model with tunable parameters that we developed to enable the study of both naturally occurring oligonucleic acids, such as DNA, and their chemically-modified analogues, such as peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). The DNA melting curves obtained using such a CG model and molecular dynamics simulations in an implicit solvent and with explicit ions match with the melting curves obtained using the empirical nearest-neighbor models. We use these CG simulations to then elucidate the effect of backbone flexibility, charge, and nucleobase spacing along the backbone on the melting curves, potential energy and conformational entropy change upon hybridization and base-pair hydrogen bond residence time. We find that increasing backbone flexibility decreases duplex thermal stability and melting temperature mainly due to increased conformational entropy loss upon hybridization. Removing charges from the backbone enhances duplex thermal stability due to the elimination of electrostatic repulsion and as a result a larger energetic gain upon hybridization. Lastly, increasing nucleobase spacing decreases duplex thermal stability due to decreasing stacking interactions that are important for duplex stability. PMID:26777980

  12. Sequence composition of BAC clones and SSR markers mapped to Upland cotton chromosomes 11 and 21 targeting resistance to soil-borne pathogens

    PubMed Central

    Wang, Congli; Ulloa, Mauricio; Shi, Xinyi; Yuan, Xiaohui; Saski, Christopher; Yu, John Z.; Roberts, Philip A.

    2015-01-01

    Genetic and physical framework mapping in cotton (Gossypium spp.) were used to discover putative gene sequences involved in resistance to common soil-borne pathogens. Chromosome (Chr) 11 and its homoeologous Chr 21 of Upland cotton (G. hirsutum) are foci for discovery of resistance (R) or pathogen-induced R (PR) genes underlying QTLs involved in response to root-knot nematode (Meloidogyne incognita), reniform nematode (Rotylenchulus reniformis), Fusarium wilt (Fusarium oxysporum f.sp. vasinfectum), Verticillium wilt (Verticillium dahliae), and black root rot (Thielaviopsis basicola). Simple sequence repeat (SSR) markers and bacterial artificial chromosome (BAC) clones from a BAC library developed from the Upland cotton Acala Maxxa were mapped on Chr 11 and Chr 21. DNA sequence through Gene Ontology (GO) of 99 of 256 Chr 11 and 109 of 239 Chr 21 previously mapped SSRs revealed response elements to internal and external stimulus, stress, signaling process, and cell death. The reconciliation between genetic and physical mapping of gene annotations from new DNA sequences of 20 BAC clones revealed 467 (Chr 11) and 285 (Chr 21) G. hirsutum putative coding sequences, plus 146 (Chr 11) and 98 (Chr 21) predicted genes. GO functional profiling of Unigenes uncovered genes involved in different metabolic functions and stress response elements (SRE). Our results revealed that Chrs 11 and 21 harbor resistance gene rich genomic regions. Sequence comparisons with the ancestral diploid D5 (G. raimondii), A2 (G. arboreum) and domesticated tetraploid TM-1 AD1 (G. hirsutum) genomes revealed abundance of transposable elements and confirmed the richness of resistance gene motifs in these chromosomes. The sequence information of SSR markers and BAC clones and the genetic mapping of BAC clones provide enhanced genetic and physical frameworks of resistance gene-rich regions of the cotton genome, thereby aiding discovery of R and PR genes and breeding for resistance to cotton diseases. PMID:26483808

  13. Sequence composition of BAC clones and SSR markers mapped to Upland cotton chromosomes 11 and 21 targeting resistance to soil-borne pathogens.

    PubMed

    Wang, Congli; Ulloa, Mauricio; Shi, Xinyi; Yuan, Xiaohui; Saski, Christopher; Yu, John Z; Roberts, Philip A

    2015-01-01

    Genetic and physical framework mapping in cotton (Gossypium spp.) were used to discover putative gene sequences involved in resistance to common soil-borne pathogens. Chromosome (Chr) 11 and its homoeologous Chr 21 of Upland cotton (G. hirsutum) are foci for discovery of resistance (R) or pathogen-induced R (PR) genes underlying QTLs involved in response to root-knot nematode (Meloidogyne incognita), reniform nematode (Rotylenchulus reniformis), Fusarium wilt (Fusarium oxysporum f.sp. vasinfectum), Verticillium wilt (Verticillium dahliae), and black root rot (Thielaviopsis basicola). Simple sequence repeat (SSR) markers and bacterial artificial chromosome (BAC) clones from a BAC library developed from the Upland cotton Acala Maxxa were mapped on Chr 11 and Chr 21. DNA sequence through Gene Ontology (GO) of 99 of 256 Chr 11 and 109 of 239 Chr 21 previously mapped SSRs revealed response elements to internal and external stimulus, stress, signaling process, and cell death. The reconciliation between genetic and physical mapping of gene annotations from new DNA sequences of 20 BAC clones revealed 467 (Chr 11) and 285 (Chr 21) G. hirsutum putative coding sequences, plus 146 (Chr 11) and 98 (Chr 21) predicted genes. GO functional profiling of Unigenes uncovered genes involved in different metabolic functions and stress response elements (SRE). Our results revealed that Chrs 11 and 21 harbor resistance gene rich genomic regions. Sequence comparisons with the ancestral diploid D5 (G. raimondii), A2 (G. arboreum) and domesticated tetraploid TM-1 AD1 (G. hirsutum) genomes revealed abundance of transposable elements and confirmed the richness of resistance gene motifs in these chromosomes. The sequence information of SSR markers and BAC clones and the genetic mapping of BAC clones provide enhanced genetic and physical frameworks of resistance gene-rich regions of the cotton genome, thereby aiding discovery of R and PR genes and breeding for resistance to cotton diseases. PMID:26483808

  14. EMSCOPE - Electromagnetic Component of EarthScope Backbone and Transportable Array Experiments 2006-2008

    NASA Astrophysics Data System (ADS)

    Egbert, G.; Evans, R.; Ingate, S.; Livelybrooks, D.; Mickus, K.; Park, S.; Schultz, A.; Unsworth, M.; Wannamaker, P.

    2007-12-01

    USArray (http://www.iris.edu/USArray) in conjunction with EMSOC (Electromagnetic Studies of the Continents) (http://emsoc.ucr.edu/emsoc) is installing magnetotelluric (MT) stations as part of Earthscope. The MT component of Earthscope consists of permanent (Backbone) and transportable long period stations to record naturally occurring, time varying electric and magnetic fields to produce a regional lithospheric/asthensospheric electrical conductivity map of the United States. The recent arrival of 28 long period MT instruments allows for the final installation of the Backbone stations throughout the US and yearly transportable array studies. The Backbone MT survey consists of 7 stations spaced throughout the continental US with preliminary installation at Soap Creek, Oregon; Parkfield, California; Braden, Missouri and Socorro, New Mexico.Siting and permitting are underway or completed at stations in eastern Montana, northern Wisconsin and Virginia. These stations will be recording for at least five years to determine electrical conductivities at depths that extend into the mantle transition zone. The first transportable array experiment was performed in the summer and fall of 2006 in central and eastern Oregon (Oregon Pilot Project) using equipment loaned from EMSOC. Thirty-one long period MT stations were recorded with 14 to 21 day occupations. Preliminary 3D inverse models indicate several lithospheric electrical conductivity anomalies including a linear zone marked by low-high conductivity transition along the Klamath-Blue Mountain Lineament associated with a linear trend of gravity minima. High electrical conductivity values occur in the upper crust under the accreted terrains in the Blue Mountains region. The second transportable array experiment was performed in the summer and fall of 2007 and completes coverage of the Oregon, Washington, and western Idaho, targeting the Cascadia subduction zone, Precambrian boundaries, and sub-basalt lithologies. The 2008 transportable MT experiment will focus on the Snake River Plain and the Yellowstone Hot Spot. The disposition of future USArray magnetotelluric geotransects will be the subject of an upcoming NSF-supported planning workshop. Time series are available now from the IRIS data center (www.iris.edu/data), and magnetotelluric transfer functions will soon be available.

  15. Backbone and side chain dynamics of uncomplexed human adipocyte and muscle fatty acid-binding proteins.

    PubMed

    Constantine, K L; Friedrichs, M S; Wittekind, M; Jamil, H; Chu, C H; Parker, R A; Goldfarb, V; Mueller, L; Farmer, B T

    1998-06-01

    Adipocyte lipid-binding protein (A-LBP) and muscle fatty acid-binding protein (M-FABP) are members of a family of small ( approximately 15 kDa) cytosolic proteins that are involved in the metabolism of fatty acids and other lipid-soluble molecules. Although highly homologous (65%) and structurally very similar, A-LBP and M-FABP display distinct ligand binding characteristics. Since ligand binding may be influenced by intrinsic protein dynamical properties, we have characterized the backbone and side chain dynamics of uncomplexed (apo) human A-LBP and M-FABP. Backbone dynamics were characterized by measurements of 15N T1 and T2 values and 1H-15N NOEs. These data were analyzed using model-free spectral density functions and reduced spectral density mapping. The dynamics of methyl-containing side chains were charaterized by measurements of 2H T1 and T1rho relaxation times of 13C1H22H groups. The 2H relaxation data were analyzed using the model-free approach. For A-LBP, 15N relaxation data were obtained for 111 residues and 2H relaxation data were obtained for 42 methyl groups. For M-FABP, 15N relaxation data were obtained for 111 residues and 2H relaxation data were obtained for 53 methyl groups. The intrinsic flexibilities of these two proteins are compared, with particular emphasis placed on binding pocket residues. There are a number of distinct dynamical differences among corresponding residues between the two proteins. In particular, many residues display greater backbone picosecond to nanosecond and/or microsecond to millisecond time scale mobility in A-LBP relative to M-FABP, including F57, K58, and most residues in alpha-helix 2 (residues 28-35). Variations in the dynamics of this region may play a role in ligand selectivity. The side chains lining the fatty acid binding pocket display a wide range of motional restriction in both proteins. Side chains showing distinct dynamical differences between the two proteins include those of residues 20, 29, and 51. This information provides a necessary benchmark for determining dynamical changes induced by ligand binding and may ultimately lead to an enhanced understanding of ligand affinity and selectivity among fatty acid-binding proteins. PMID:9609689

  16. The assignment of the resonances of the backbone amide protons of arginine vasopressin and gramicidin S in D 2O by decoupling during exchange

    NASA Astrophysics Data System (ADS)

    Fischman, Alan J.; Live, David H.; Wittbold, William M.; Wyssbrod, Herman R.

    The resonances of six of the seven backbone amide protons of [8-arginine]vasopressin (AVP) and of all four nonequivalent backbone amide protons of gramicidin S (GS) in D 2O were assigned by decoupling of the amide protons from their respective vicinal C ? protons while exchange of the amide protons for deuterons was occurring. The simple pulsed Fourier transform method involving only a (?/2-FID) sequence of pulses was used. This method of assigning resonances of exchangeable protons is termed on-the-fly decoupling. Values for the chemical shifts of the amide protons ( ?N H) and for the coupling constants between vicinal amide and C ? protons of AVP in D 2O are shown to be quite similar to the corresponding ones previously published for [8-lysine]vasopressin in H 2O at a slightly different acidity and temperature [ J. D. Glickson, D. W. Urry, and R. Walter, Proc. Nat. Acad. Sci. USA69, 2566 (1972) ]. Values for the ?N HS of GS in D 2O are shown to be quite similar to the corresponding ones previously published for this peptide in CH 3OH at the same temperature [ D. W. Urry, in "The Enzymes of Biological Membranes" (A. Martonosi, Ed.), Vol. 1, pp. 31-69, Plenum, New York, 1976 ]. It is concluded that on-the-fly decoupling can be used to assign resonances of exchangeable protons in compounds dissolved at millimolar concentrations in solvents with exchangeable deuterons and that the spectral simplification that results when signals from rapidly exchanging protons are not observed may be advantageous.

  17. The mouse DNA binding protein Rc for the kappa B motif of transcription and for the V(D)J recombination signal sequences contains composite DNA-protein interaction domains and belongs to a new family of large transcriptional proteins

    SciTech Connect

    Wu, Lai-Chu; Liu, Yiling; Li, Zhiling

    1996-08-01

    Rc is a DNA binding protein with dual specificities for the V(D)J recombination signal sequences and for the B motif of the immunoglobulin kappa chain gene enhancer. The largest Rc transcript present in lymphoid cells/tissues is {approximately} 9 kb. Molecular cloning and sequence determination for 8822 bp of mouse Rc cDNA revealed an open reading frame of 2282 amino acids and long 5{prime}- and 3{prime}- untranslated regions. The derived amino acid sequence contains multiple DNA and protein interaction domains. Composite ZAS structures with tandem zinc fingers, and acidic motif, and a Ser/Thr-rich segment are located near the N-terminal and the C-terminal regions. The middle region of Rc contains a lone zinc finger, an acidic motif, a Ser-rich region, a nucleus localization signal, and GTPase motifs. Cloning and characterization of a mouse Rc gene show that the Rc cDNA corresponds to seven exons located in a genomic region spanning 70 kb. Exon 2 is exceptionally large, with 5487 bp. cDNA cloning and Northern blot analyses revealed multiple Rc transcripts, probably generated by alternative splicings. Sequence comparisons show that Rc belongs to a ZAS protein family that is involved in gene transcription and/or DNA recombination. The major histocompatibility complex class I gene enhancer binding proteins MBP1 and MBP2 are other representatives of this ZAS protein family. 43 refs., 6 figs., 2 tabs.

  18. Facile backbone structure determination of human membrane proteins by NMR spectroscopy

    PubMed Central

    Klammt, Christian; Maslennikov, Innokentiy; Bayrhuber, Monika; Eichmann, Cédric; Vajpai, Navratna; Chiu, Ellis Jeremy Chua; Blain, Katherine Y; Esquivies, Luis; Kwon, June Hyun Jung; Balana, Bartosz; Pieper, Ursula; Sali, Andrej; Slesinger, Paul A; Kwiatkowski, Witek; Riek, Roland; Choe, Senyon

    2013-01-01

    Although nearly half of today’s major pharmaceutical drugs target human integral membrane proteins (hIMPs), only 30 hIMP structures are currently available in the Protein Data Bank, largely owing to inefficiencies in protein production. Here we describe a strategy for the rapid structure determination of hIMPs, using solution NMR spectroscopy with systematically labeled proteins produced via cell-free expression. We report new backbone structures of six hIMPs, solved in only 18 months from 15 initial targets. Application of our protocols to an additional 135 hIMPs with molecular weight <30 kDa yielded 38 hIMPs suitable for structural characterization by solution NMR spectroscopy without additional optimization. PMID:22609626

  19. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone.

    PubMed

    Wilkerson, C G; Mansfield, S D; Lu, F; Withers, S; Park, J-Y; Karlen, S D; Gonzales-Vigil, E; Padmakshan, D; Unda, F; Rencoret, J; Ralph, J

    2014-04-01

    Redesigning lignin, the aromatic polymer fortifying plant cell walls, to be more amenable to chemical depolymerization can lower the energy required for industrial processing. We have engineered poplar trees to introduce ester linkages into the lignin polymer backbone by augmenting the monomer pool with monolignol ferulate conjugates. Herein, we describe the isolation of a transferase gene capable of forming these conjugates and its xylem-specific introduction into poplar. Enzyme kinetics, in planta expression, lignin structural analysis, and improved cell wall digestibility after mild alkaline pretreatment demonstrate that these trees produce the monolignol ferulate conjugates, export them to the wall, and use them during lignification. Tailoring plants to use such conjugates during cell wall biosynthesis is a promising way to produce plants that are designed for deconstruction. PMID:24700858

  20. Modification of Rifamycin Polyketide Backbone Leads to Improved Drug Activity against Rifampicin-resistant Mycobacterium tuberculosis*

    PubMed Central

    Nigam, Aeshna; Almabruk, Khaled H.; Saxena, Anjali; Yang, Jongtae; Mukherjee, Udita; Kaur, Hardeep; Kohli, Puneet; Kumari, Rashmi; Singh, Priya; Zakharov, Lev N.; Singh, Yogendra; Mahmud, Taifo; Lal, Rup

    2014-01-01

    Rifamycin B, a product of Amycolatopsis mediterranei S699, is the precursor of clinically used antibiotics that are effective against tuberculosis, leprosy, and AIDS-related mycobacterial infections. However, prolonged usage of these antibiotics has resulted in the emergence of rifamycin-resistant strains of Mycobacterium tuberculosis. As part of our effort to generate better analogs of rifamycin, we substituted the acyltransferase domain of module 6 of rifamycin polyketide synthase with that of module 2 of rapamycin polyketide synthase. The resulting mutants (rifAT6::rapAT2) of A. mediterranei S699 produced new rifamycin analogs, 24-desmethylrifamycin B and 24-desmethylrifamycin SV, which contained modification in the polyketide backbone. 24-Desmethylrifamycin B was then converted to 24-desmethylrifamycin S, whose structure was confirmed by MS, NMR, and X-ray crystallography. Subsequently, 24-desmethylrifamycin S was converted to 24-desmethylrifampicin, which showed excellent antibacterial activity against several rifampicin-resistant M. tuberculosis strains. PMID:24923585

  1. Side chain and backbone contributions of Phe508 to CFTR folding

    SciTech Connect

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J.

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  2. Importance of the Peptide Backbone Description in Modeling the Selectivity Filter in Potassium Channels

    PubMed Central

    Ba?tu?, Turgut; Kuyucak, Serdar

    2009-01-01

    A dihedral energy correction (CMAP) term has been recently included in the CHARMM force field to obtain a more accurate description of the peptide backbone. Its importance in improving dynamical properties of proteins and preserving their stability in long molecular-dynamics simulations has been established for several globular proteins. Here we investigate its role in maintaining the structure and function of two potassium channels, Shaker Kv1.2 and KcsA, by performing molecular-dynamics simulations with and without the CMAP correction in otherwise identical systems. We show that without CMAP, it is not possible to maintain the experimentally observed orientations of the carbonyl groups in the selectivity filter in Shaker, and the channel loses its selectivity property. In the case of KcsA, the channel retains some selectivity even without CMAP because the carbonyl orientations are relatively better preserved compared to Shaker. PMID:19450472

  3. On the photostability of peptides after selective photoexcitation of the backbone: prompt versus slow dissociation.

    PubMed

    Byskov, Camilla Skinnerup; Jensen, Frank; Jrgensen, Thomas J D; Nielsen, Steen Brndsted

    2014-08-14

    Vulnerability of biomolecules to ultraviolet radiation is intimately linked to deexcitation pathways: photostability requires fast internal conversion to the electronic ground state, but also intramolecular vibrational redistribution and cooling on a time scale faster than dissociation. Here we present a protocol to disentangle slow and non-hazardous statistical dissociation from prompt cleavage of peptide bonds by 210 nm light based on experiments on protonated peptides isolated in vacuo and tagged by 18-crown-6 ether (CE). The weakest link in the system is between the charged site and CE, which is remote from the initial site of excitation. Hence loss of CE serves as direct proof that energy has reached the charge-site end, leaving the backbone intact. Our work demonstrates that excitation of tertiary amide moieties (proline linkages) results in both prompt dissociation and statistical dissociation after energy randomisation over all vibrational degrees of freedom. PMID:24945849

  4. Essential roles of four-carbon backbone chemicals in the control of metabolism.

    PubMed

    Chriett, Sabrina; Pirola, Luciano

    2015-08-26

    The increasing incidence of obesity worldwide and its related cardiometabolic complications is an urgent public health problem. While weight gain results from a negative balance between the energy expenditure and calorie intake, recent research has demonstrated that several small organic molecules containing a four-carbon backbone can modulate this balance by favoring energy expenditure, and alleviating endoplasmic reticulum stress and oxidative stress. Such small molecules include the bacterially produced short chain fatty acid butyric acid, its chemically produced derivative 4-phenylbutyric acid, the main ketone body D-?-hydroxybutyrate - synthesized by the liver - and the recently discovered myokine ?-aminoisobutyric acid. Conversely, another butyrate-related molecule, ?-hydroxybutyrate, has been found to be an early predictor of insulin resistance and glucose intolerance. In this minireview, we summarize recent advances in the understanding of the mechanism of action of these molecules, and discuss their use as therapeutics to improve metabolic homeostasis or their detection as early biomarkers of incipient insulin resistance. PMID:26322177

  5. Modeling the Backbone Dynamics of Reduced and Oxidized Solvated Rat Microsomal Cytochrome b5

    PubMed Central

    Giachetti, Andrea; Penna, Giovanni La; Perico, Angelo; Banci, Lucia

    2004-01-01

    In this article, a description of the statistics and dynamics of cytochrome b5 in both reduced and oxidized forms is given. Results of molecular dynamics computer simulations in the explicit solvent have been combined with mode-coupling diffusion models including and neglecting the molecule-solvent correlations. R1 and R1? nuclear magnetic relaxation parameters of 15N in the protein backbone have been calculated and compared with experiments. Slight changes in charge density in the heme upon oxidation produces a cascade of changes in charge distributions from heme propionates up to charged residues ?1.5 nm from Fe. These changes in charge distributions modify the molecular surface and the water shell surrounding the protein. The statistical changes upon oxidation can be included in diffusive models that physically explain the upper and lower limits of R1? relaxation parameters at high off-resonance fields. PMID:15240483

  6. Sequential backbone resonance assignments of the E. coli dihydrofolate reductase Gly67Val mutant: folate complex.

    PubMed

    Puthenpurackal Narayanan, Sunilkumar; Maeno, Akihiro; Wada, Yuji; Tate, Shin-Ichi; Akasaka, Kazuyuki

    2016-04-01

    Occasionally, a mutation in an exposed loop region causes a significant change in protein function and/or stability. A single mutation Gly67Val of E. coli dihydrofolate reductase (DHFR) in the exposed CD loop is such an example. We have carried out the chemical shift assignments for H(N), N(H), C(α) and C(β) atoms of the Gly67Val mutant of E. coli DHFR complexed with folate at pH 7.0, 35 °C, and then evaluated the H(N), N(H), C(α) and C(β) chemical shift changes caused by the mutation. The result indicates that, while the overall secondary structure remains the same, the single mutation Gly67Val causes site-specific conformational changes of the polypeptide backbone restricted around the adenosine-binding subdomain (residues 38-88) and not in the distant catalytic domain. PMID:26482924

  7. Extensive Air Showers: from the muonic smoking guns to the hadronic backbone

    NASA Astrophysics Data System (ADS)

    Cazon, L.

    2013-06-01

    Extensive Air Showers are complex macroscopic objects initiated by single ultra-high energy particles. They are the result of millions of high energy reactions in the atmosphere and can be described as the superposition of hadronic and electromagnetic cascades. The hadronic cascade is the air shower backbone, and it is mainly made of pions. Decays of neutral pions initiate electromagnetic cascades, while the decays of charged pions produce muons which leave the hadronic core and travel many kilometers almost unaffected. Muons are smoking guns of the hadronic cascade: the energy, transverse momentum, spatial distribution and depth of production are key to reconstruct the history of the air shower. In this work, we overview the phenomenology of muons on the air shower and its relation to the hadronic cascade. We briefly review the experimental efforts to analyze muons within air showers and discuss possible paths to use this information.

  8. X-shooter-backbone and UV-blue and visible spectrographs: final AIV and measured performances

    NASA Astrophysics Data System (ADS)

    Rasmussen, Per Kjrgaard; Zerbi, Filippo M.; Dekker, Hans; Vernet, Joel; Andersen, Jeppe J.; De Caprio, Vincenzo; Dimarcantonio, Paolo; D'Odorico, Sandro; Lizon, Jean-Louis; Lucuix, Christian; Michaelsen, Niels; Molinari, Emilio; Nrregaard, Preben; Riva, Alberto; Riva, Marco; Santin, Paolo; Srensen, Anton N.; Span, Paolo; Wistisen, Dennis

    2008-07-01

    X-shooter is a wide band (U to K) intermediate resolution (4000-14000) single object three-arms spectrograph for the VLT. Currently in the last phase of integration, X-shooter will see the first light at ESO Paranal as the first of the VLT second generation instruments in the last quarter of 2008. We describe in this paper the final steps in the integration and testing phase of the central Backbone with its key functions (including the active flexure compensation mirrors) and of the two UV-Blue and Visible spectroscopic arms. We report on the stability results of the preslit optics and of the spectrographs and on the remarkable efficiency which is derived from the measurements of the optical components of the instrument.

  9. Protection against Staphylococcus aureus by antibody to the polyglycerolphosphate backbone of heterologous lipoteichoic acid.

    PubMed

    Theilacker, Christian; Kropec, Andrea; Hammer, Felix; Sava, Irina; Wobser, Dominique; Sakinc, Tuerkan; Code, Jeroen D C; Hogendorf, Wouter F J; van der Marel, Gijsbert A; Huebner, Johannes

    2012-04-01

    Type 1 lipoteichoic acid (LTA) is present in many clinically important gram-positive bacteria, including enterococci, streptococci, and staphylococci, and antibodies against LTA have been shown to opsonize nonencapsulated Enterococcus faecalis strains. In the present study, we show that antibodies against E. faecalis LTA also bind to type 1 LTA from other gram-positive species and opsonized Staphylocccus epidermidis and Staphylcoccus aureus strains as well as group B streptococci. Inhibition studies using teichoic acid oligomers indicated that cross-reactive opsonic antibodies bind to the teichoic acid backbone. Passive immunization with rabbit antibodies against E. faecalis LTA promoted the clearance of bacteremia by E. faecalis and S. epidermidis in mice. Furthermore, passive protection also reduced mortality in a murine S. aureus peritonitis model. The effectiveness of rabbit antibody against LTA suggests that this conserved bacterial structure could function as a single vaccine antigen that targets multiple gram-positive pathogens. PMID:22362863

  10. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone.

    PubMed

    Osorio, Jorge E; Wallace, Derek; Stinchcomb, Dan T

    2016-04-01

    Dengue fever is caused by infection with one of four dengue virus (DENV) serotypes (DENV-1-4), necessitating tetravalent dengue vaccines that can induce protection against all four DENV. Takeda's live attenuated tetravalent dengue vaccine candidate (TDV) comprises an attenuated DENV-2 strain plus chimeric viruses containing the prM and E genes of DENV-1, -3 and -4 cloned into the attenuated DENV-2 'backbone'. In Phase 1 and 2 studies, TDV was well tolerated by children and adults aged 1.5-45 years, irrespective of prior dengue exposure; mild injection-site symptoms were the most common adverse events. TDV induced neutralizing antibody responses and seroconversion to all four DENV as well as cross-reactive T cell-mediated responses that may be necessary for broad protection against dengue fever. PMID:26635182

  11. The Effects of NHC-Backbone Substitution on Efficiency in Ruthenium-based Olefin Metathesis

    PubMed Central

    Kuhn, Kevin M.; Bourg, Jean-Baptiste; Chung, Cheol K.; Virgil, Scott C.; Grubbs, Robert H.

    2009-01-01

    A series of ruthenium olefin metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands with varying degrees of backbone and N-aryl substitution have been prepared. These complexes show greater resistance to decomposition through CH activation of the N-aryl group, resulting in increased catalyst lifetimes. This work has utilized robotic technology to examine the activity and stability of each catalyst in metathesis, providing insights into the relationship between ligand architecture and enhanced efficiency. The development of this robotic methodology has also shown that, under optimized conditions, catalyst loadings as low as 25 ppm can lead to 100% conversion in the ring-closing metathesis of diethyl diallylmalonate. PMID:19351207

  12. Sendai virus as a backbone for vaccines against RSV and other human paramyxoviruses.

    PubMed

    Russell, Charles J; Hurwitz, Julia L

    2016-02-01

    Human paramyxoviruses are the etiological agents for life-threatening respiratory virus infections of infants and young children. These viruses, including respiratory syncytial virus (RSV), the human parainfluenza viruses (hPIV1-4) and human metapneumovirus (hMPV), are responsible for millions of serious lower respiratory tract infections each year worldwide. There are currently no standard treatments and no licensed vaccines for any of these pathogens. Here we review research with which Sendai virus, a mouse parainfluenza virus type 1, is being advanced as a Jennerian vaccine for hPIV1 and as a backbone for RSV, hMPV and other hPIV vaccines for children. PMID:26648515

  13. Gene families as soft cliques with backbones: Amborella contrasted with other flowering plants

    PubMed Central

    2014-01-01

    Background Chaining is a major problem in constructing gene families. Results We define a new kind of cluster on graphs with strong and weak edges: soft cliques with backbones (SCWiB). This differs from other definitions in how it controls the "chaining effect", by ensuring clusters satisfy a tolerant edge density criterion that takes into account cluster size. We implement algorithms for decomposing a graph of similarities into SCWiBs. We compare examples of output from SCWiB and the Markov Cluster Algorithm (MCL), and also compare some curated Arabidopsis thaliana gene families with the results of automatic clustering. We apply our method to 44 published angiosperm genomes with annotation, and discover that Amborella trichopoda is distinct from all the others in having substantially and systematically smaller proportions of moderate- and large-size gene families. Conclusions We offer several possible evolutionary explanations for this result. PMID:25572777

  14. Backbone model of an aquareovirus virion by cryo-electron microscopy and bioinformatics.

    PubMed

    Cheng, Lingpeng; Zhu, Jiang; Hui, Wong Hoi; Zhang, Xiaokang; Honig, Barry; Fang, Qin; Zhou, Z Hong

    2010-04-01

    Grass carp reovirus (GCRV) is a member of the aquareovirus genus in the Reoviridae family and has a capsid with two shells-a transcription-competent core surrounded by a coat. We report a near-atomic-resolution reconstruction of the GCRV virion by cryo-electron microscopy and single-particle reconstruction. A backbone model of the GCRV virion, including seven conformers of the five capsid proteins making up the 1500 molecules in both the core and the coat, was derived using cryo-electron microscopy density-map-constrained homology modeling and refinement. Our structure clearly showed that the amino-terminal segment of core protein VP3B forms an approximately 120-A-long alpha-helix-rich extension bridging across the icosahedral 2-fold-symmetry-related molecular interface. The presence of this unique structure across this interface and the lack of an external cementing molecule at this location in GCRV suggest a stabilizing role of this extended amino-terminal density. Moreover, part of this amino-terminal extension becomes invisible in the reconstruction of transcription-competent core particles, suggesting its involvement in endogenous viral RNA transcription. Our structure of the VP1 turret represents its open state, and comparison with its related structures at the closed state suggests hinge-like domain movements associated with the mRNA-capping machinery. Overall, this first backbone model of an aquareovirus virion provides a wealth of structural information for understanding the structural basis of GCRV assembly and transcription. PMID:20036256

  15. An avian live attenuated master backbone for potential use in epidemic and pandemic influenza vaccines.

    PubMed

    Hickman, Danielle; Hossain, Md Jaber; Song, Haichen; Araya, Yonas; Solórzano, Alicia; Perez, Daniel R

    2008-11-01

    The unprecedented emergence in Asia of multiple avian influenza virus (AIV) subtypes with a broad host range poses a major challenge in the design of vaccination strategies that are both effective and available in a timely manner. The present study focused on the protective effects of a genetically modified AIV as a source for the preparation of vaccines for epidemic and pandemic influenza. It has previously been demonstrated that a live attenuated AIV based on the internal backbone of influenza A/Guinea fowl/Hong Kong/WF10/99 (H9N2), called WF10att, is effective at protecting poultry species against low- and high-pathogenicity influenza strains. More importantly, this live attenuated virus provided effective protection when administered in ovo. In order to characterize the WF10att backbone further for use in epidemic and pandemic influenza vaccines, this study evaluated its protective effects in mice. Intranasal inoculation of modified attenuated viruses in mice provided adequate protective immunity against homologous lethal challenges with both the wild-type influenza A/WSN/33 (H1N1) and A/Vietnam/1203/04 (H5N1) viruses. Adequate heterotypic immunity was also observed in mice vaccinated with modified attenuated viruses carrying H7N2 surface proteins. The results presented in this report suggest that the internal genes of a genetically modified AIV confer similar protection in a mouse model and thus could be used as a master donor strain for the generation of live attenuated vaccines for epidemic and pandemic influenza. PMID:18931063

  16. Backbone circularization of Bacillus subtilis family 11 xylanase increases its thermostability and its resistance against aggregation.

    PubMed

    Waldhauer, Max C; Schmitz, Silvan N; Ahlmann-Eltze, Constantin; Gleixner, Jan G; Schmelas, Carolin C; Huhn, Anna G; Bunne, Charlotte; Bscher, Magdalena; Horn, Max; Klughammer, Nils; Kreft, Jakob; Schfer, Elisabeth; Bayer, Philipp A; Krmer, Stephen G; Neugebauer, Julia; Wehler, Pierre; Mayer, Matthias P; Eils, Roland; Di Ventura, Barbara

    2015-11-10

    The activity of proteins is dictated by their three-dimensional structure, the native state, and is influenced by their ability to remain in or return to the folded native state under physiological conditions. Backbone circularization is thought to increase protein stability by decreasing the conformational entropy in the unfolded state. A positive effect of circularization on stability has been shown for several proteins. Here, we report the development of a cloning standard that facilitates implementing the SICLOPPS technology to circularize proteins of interest using split inteins. To exemplify the usage of the cloning standard we constructed two circularization vectors based on the Npu DnaE and gp41-1 split inteins, respectively. We use these vectors to overexpress in Escherichia coli circular forms of the Bacillus subtilis enzyme family 11 xylanase that differ in the identity and number of additional amino acids used for circularization (exteins). We found that the variant circularized with only one additional serine has increased thermostability of 7 C compared to native xylanase. The variant circularized with six additional amino acids has only a mild increase in thermostability compared to the corresponding exteins-bearing linear xylanase, but is less stable than native xylanase. However, this circular xylanase retains more than 50% of its activity after heat shock at elevated temperatures, while native xylanase and the corresponding exteins-bearing linear xylanase are largely inactivated. We correlate this residual activity to the fewer protein aggregates found in the test tubes of circular xylanase after heat shock, suggesting that circularization protects the protein from aggregation under these conditions. Taken together, these data indicate that backbone circularization has a positive effect on xylanase and can lead to increased thermostability, provided the appropriate exteins are selected. We believe that our cloning standard and circularization vectors will facilitate testing the effects of circularization on other proteins. PMID:26434634

  17. 40-Gbps optical backbone network deep packet inspection based on FPGA

    NASA Astrophysics Data System (ADS)

    Zuo, Yuan; Huang, Zhiping; Su, Shaojing

    2014-11-01

    In the era of information, the big data, which contains huge information, brings about some problems, such as high speed transmission, storage and real-time analysis and process. As the important media for data transmission, the Internet is the significant part for big data processing research. With the large-scale usage of the Internet, the data streaming of network is increasing rapidly. The speed level in the main fiber optic communication of the present has reached 40Gbps, even 100Gbps, therefore data on the optical backbone network shows some features of massive data. Generally, data services are provided via IP packets on the optical backbone network, which is constituted with SDH (Synchronous Digital Hierarchy). Hence this method that IP packets are directly mapped into SDH payload is named POS (Packet over SDH) technology. Aiming at the problems of real time process of high speed massive data, this paper designs a process system platform based on ATCA for 40Gbps POS signal data stream recognition and packet content capture, which employs the FPGA as the CPU. This platform offers pre-processing of clustering algorithms, service traffic identification and data mining for the following big data storage and analysis with high efficiency. Also, the operational procedure is proposed in this paper. Four channels of 10Gbps POS signal decomposed by the analysis module, which chooses FPGA as the kernel, are inputted to the flow classification module and the pattern matching component based on TCAM. Based on the properties of the length of payload and net flows, buffer management is added to the platform to keep the key flow information. According to data stream analysis, DPI (deep packet inspection) and flow balance distribute, the signal is transmitted to the backend machine through the giga Ethernet ports on back board. Practice shows that the proposed platform is superior to the traditional applications based on ASIC and NP.

  18. Statistical mechanics of protein allostery: Roles of backbone and side-chain structural fluctuations

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuhito; Sasai, Masaki

    2011-03-01

    A statistical mechanical model of allosteric transition of proteins is developed by extending the structure-based model of protein folding to cases that a protein has two different native conformations. Partition function is calculated exactly within the model and free-energy surfaces associated with allostery are derived. In this paper, the model of allosteric transition proposed in a previous paper [Proc. Natl. Acad. Sci. U.S.A 134, 7775 (2010)] is reformulated to describe both fluctuation in side-chain configurations and that in backbone structures in a balanced way. The model is applied to example proteins, Ras, calmodulin, and CheY: Ras undergoes the allosteric transition between guanosine diphosphate (GDP)-bound and guanosine triphosphate (GTP)-bound forms, and the model results show that the GDP-bound form is stabilized enough to prevent unnecessary signal transmission, but the conformation in the GTP-bound state bears large fluctuation in side-chain configurations, which may help to bind multiple target proteins for multiple pathways of signaling. The calculated results of calmodulin show the scenario of sequential ordering in Ca2 + binding and the associated allosteric conformational change, which are realized though the sequential appearing of pre-existing structural fluctuations, i.e., fluctuations to show structures suitable to bind Ca2 + before its binding. Here, the pre-existing fluctuations to accept the second and third Ca2 + ions are dominated by the side-chain fluctuation. In CheY, the calculated side-chain fluctuation of Tyr106 is coordinated with the backbone structural change in the ?4-?4 loop, which explains the pre-existing Y-T coupling process in this protein. Ability of the model to explain allosteric transitions of example proteins supports the view that the large entropic effects lower the free-energy barrier of allosteric transition.

  19. Quantum Chemical Benchmark Study on 46 RNA Backbone Families Using a Dinucleotide Unit.

    PubMed

    Kruse, Holger; Mladek, Arnost; Gkionis, Konstantinos; Hansen, Andreas; Grimme, Stefan; Sponer, Jiri

    2015-10-13

    We have created a benchmark set of quantum chemical structure-energy data denoted as UpU46, which consists of 46 uracil dinucleotides (UpU), representing all known 46 RNA backbone conformational families. Penalty-function-based restrained optimizations with COSMO TPSS-D3/def2-TZVP ensure a balance between keeping the target conformation and geometry relaxation. The backbone geometries are close to the clustering-means of their respective RNA bioinformatics family classification. High-level wave function methods (DLPNO-CCSD(T) as reference) and a wide-range of dispersion-corrected or inclusive DFT methods (DFT-D3, VV10, LC-BOP-LRD, M06-2X, M11, and more) are used to evaluate the conformational energies. The results are compared to the Amber RNA bsc0?OL3 force field. Most dispersion-corrected DFT methods surpass the Amber force field significantly in accuracy and yield mean absolute deviations (MADs) for relative conformational energies of ?0.4-0.6 kcal/mol. Double-hybrid density functionals represent the most accurate class of density functionals. Low-cost quantum chemical methods such as PM6-D3H+, HF-3c, DFTB3-D3, as well as small basis set calculations corrected for basis set superposition errors (BSSEs) by the gCP procedure are also tested. Unfortunately, the presently available low-cost methods are struggling to describe the UpU conformational energies with satisfactory accuracy. The UpU46 benchmark is an ideal test for benchmarking and development of fast methods to describe nucleic acids, including force fields. PMID:26574283

  20. Solution structure and backbone dynamics of human epidermal-type fatty acid-binding protein (E-FABP).

    PubMed Central

    Gutirrez-Gonzlez, Luis H; Ludwig, Christian; Hohoff, Carsten; Rademacher, Martin; Hanhoff, Thorsten; Rterjans, Heinz; Spener, Friedrich; Lcke, Christian

    2002-01-01

    Human epidermal-type fatty acid-binding protein (E-FABP) belongs to a family of intracellular 14-15 kDa lipid-binding proteins, whose functions have been associated with fatty acid signalling, cell growth, regulation and differentiation. As a contribution to understanding the structure-function relationship, we report in the present study features of its solution structure and backbone dynamics determined by NMR spectroscopy. Applying multi-dimensional high-resolution NMR techniques on unlabelled and 15N-enriched recombinant human E-FABP, the 1H and 15N resonance assignments were completed. On the basis of 2008 distance restraints, the three-dimensional solution structure of human E-FABP was subsequently obtained (backbone atom root-mean-square deviation of 0.92+/-0.11 A; where 1 A=0.1 nm), consisting mainly of 10 anti-parallel beta-strands that form a beta-barrel structure. 15N relaxation experiments (T1, T2 and heteronuclear nuclear Overhauser effects) at 500, 600 and 800 MHz provided information on the internal dynamics of the protein backbone. Nearly all non-terminal backbone amide groups showed order parameters S(2)>0.8, with an average value of 0.88+/-0.04, suggesting a uniformly low backbone mobility in the nanosecond-to-picosecond time range. Moreover, hydrogen/deuterium exchange experiments indicated a direct correlation between the stability of the hydrogen-bonding network in the beta-sheet structure and the conformational exchange in the millisecond-to-microsecond time range. The features of E-FABP backbone dynamics elaborated in the present study differ markedly from those of the phylogenetically closely related heart-type FABP and the more distantly related ileal lipid-binding protein, implying a strong interdependence with the overall protein stability and possibly also with the ligand-binding affinity for members of the lipid-binding protein family. PMID:12049637

  1. An effective approach for alleviating cation-induced backbone degradation in aromatic ether-based alkaline polymer electrolytes.

    PubMed

    Han, Juanjuan; Liu, Qiong; Li, Xueqi; Pan, Jing; Wei, Ling; Wu, Ying; Peng, Hanqing; Wang, Ying; Li, Guangwei; Chen, Chen; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2015-02-01

    Aromatic ether-based alkaline polymer electrolytes (APEs) are one of the most popular types of APEs being used in fuel cells. However, recent studies have demonstrated that upon being grafted by proximal cations some polar groups in the backbone of such APEs can be attacked by OH(-), leading to backbone degradation in an alkaline environment. To resolve this issue, we performed a systematic study on six APEs. We first replaced the polysulfone (PS) backbone with polyphenylsulfone (PPSU) and polyphenylether (PPO), whose molecular structures contain fewer polar groups. Although improved stability was seen after this change, cation-induced degradation was still obvious. Thus, our second move was to replace the ordinary quaternary ammonia (QA) cation, which had been closely attached to the polymer backbone, with a pendant-type QA (pQA), which was linked to the backbone through a long side chain. After a stability test in a 1 mol/L KOH solution at 80 °C for 30 days, all pQA-type APEs (pQAPS, pQAPPSU, and pQAPPO) exhibited as low as 8 wt % weight loss, which is close to the level of the bare backbone (5 wt %) and remarkably lower than those of the QA-type APEs (QAPS, QAPPSU, and QAPPO), whose weight losses under the same conditions were >30%. The pQA-type APEs also possessed clear microphase segregation morphology, which led to ionic conductivities that were higher, and water uptakes and degrees of membrane swelling that were lower, than those of the QA-type APEs. These observations unambiguously indicate that designing pendant-type cations is an effective approach to increasing the chemical stability of aromatic ether-based APEs. PMID:25594224

  2. Analysis on the sequence of formation of Ti{sub 3}SiC{sub 2} and Ti{sub 3}SiC{sub 2}/SiC composites

    SciTech Connect

    Radhakrishnan, R.; Bhaduri, S.B.; Henager, C.H. Jr.

    1995-05-01

    Ti{sub 3}SiC{sub 2}, a compound in the ternary Ti-Si-C system, is reported to be ductile. This paper reports the sequence of formation of Ti{sub 3}SiC{sub 2} and Ti{sub 3}SiC{sub 2}/SiC composites involving either combustion synthesis or by displacement reaction, respectively. Onset of exothermic reaction temperatures were determined using Differential Thermal Analysis (DTA). Phases present after the exothermic temperatures were analyzed by X-Ray diffraction. Based on these observations, a route to formation of Ti{sub 3}SiC{sub 2} and Ti{sub 3}SiC{sub 2}/SiC composites is proposed for the two`s thesis methods.

  3. High-temperature lasing characteristics of randomly assembled SnO2 backbone nanowires coated with ZnO nanofins

    NASA Astrophysics Data System (ADS)

    Yang, H. Y.; Yu, S. F.; Liang, H. K.; Mote, Rakesh G.; Cheng, C. W.; Fan, H. J.; Sun, T.; Hng, H. H.

    2009-12-01

    Lasing characteristics of randomly assembled SnO2 backbone nanowires coated with ZnO nanofins are investigated. It is shown that the hierarchical nanostructures can sustain ultraviolet random lasing action even at substrate temperature higher than 700 K and the corresponding characteristic temperature is found to be about 390 K. This is because the presence of ZnO nanofins improves heat transfer from the SnO2 backbone nanowires to the surrounding. Hence, some portion of the hierarchical nanostructures can be cooled down and the corresponding optical gain can be maintained even at high substrate temperature.

  4. Backbone 1H, 13C, and 15N NMR assignments for the Cyanothece 51142 protein cce_0567: a protein associated with nitrogen fixation in the DUF683 family

    SciTech Connect

    Buchko, Garry W.; Sofia, Heidi J.

    2008-06-01

    The recently sequenced genome of the diurnal cyanobacterium Cyanothece sp. PCC 51142 (contig 83.1_1_243_746) contains the sequence for an hypothetical protein that falls into the DUF683 family. As observed for the other 54 DUF683 proteins currently listed in the GenBank database, this 78-residue (9.0 kDa) protein in Cyanothece is also found in a nitrogen fixation gene cluster suggesting that it is involved in the process. To date no structural information exists for any of the proteins in the DUF683 family. In an effort to elucidate the biochemical role DUF683 may play in nitrogen fixation and to obtain structural information for a member of the DUF683 protein family, a construct containing DUF683 from Cyanothece 51142 was generated, expressed, purified, and the solution properties characterized. A total rotational correlation time (tc) of 17.1 ns was estimated by nuclear magnetic resonance (NMR) spectroscopy suggesting a molecular weight of ~ 40 kDa, an observation dictating that DUF683 is a tetramer in solution. Using triple-labeled (2H, 13C, 15N) and residue-specific 15N-labeled amino acids (L, K, V, and E/Q) samples, most of the backbone and side chain resonances for DUF683 were assigned. The 13C alpha chemical shifts and NOESY NMR data indicate that the protein is helical from K18-E75.

  5. Sequence of phase transitions induced by chemical composition and high temperature in [Ba2CaWO6](1-x)[Sr2CaWO6]x double perovskite tungsten oxides

    NASA Astrophysics Data System (ADS)

    Mirinioui, F.; Manoun, Bouchaib; Tamraoui, Y.; Lazor, P.

    2015-12-01

    [Ba2CaWO6]1-x[Sr2CaWO6]x (0?x?1) materials were synthesized by the high temperature solid state reaction and firing methods, and characterized using techniques of X-ray diffraction and Raman spectroscopy. The crystal structures were determined by Rietveld refinements on the laboratory X-ray powder diffraction data. As a function of composition, upon increasing the strontium content, the samples exhibit a sequence of three phase transitions: from cubic (Fm 3 ?m) to tetragonal (I4/m) to monoclinic structural phases (I2/m, P21/n). These transitions have been confirmed by Raman studies Fm 3 bar m x = 0 ? I 4 / m 0.1 ? x ? 0.2 ? I 2 / m 0.3 ? x ? 0.5 ? P21 / n 0.6 ? x ? 1 Furthermore, increasing the temperature for the compositions [Ba2CaWO6]1-x[Sr2CaWO6]x (0.1?x<1), manifests the P21/n to I2/m, the I2/m to I4/m and the I4/m to Fm 3 ?m phase transitions. For the compositions (0.1?x?0.2) the tetragonal to cubic phase transition is well illustrated. For the room temperature I2/m monoclinic compositions, two phase transitions were observed for all the compositions with x ranging from 0.3 to 0.5: from the monoclinic (I2/m) to tetragonal (I4/m), and from I4/m to Fm 3 ?m structures. Finally, for the room temperature P21/n monoclinic compositions, only two phase transitions are observed in the temperature range probed by Raman spectroscopy, the temperature was not high enough to reach the tetragonal-to-cubic phase transition.

  6. Structural Insights into the Evolution of a Sexy Protein: Novel Topology and Restricted Backbone Flexibility in a Hypervariable Pheromone from the Red-Legged Salamander, Plethodon shermani

    PubMed Central

    Wilburn, Damien B.; Bowen, Kathleen E.; Doty, Kari A.; Arumugam, Sengodagounder; Lane, Andrew N.; Feldhoff, Pamela W.; Feldhoff, Richard C.

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake three-finger topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique adaptation may establish new paradigms for how receptor:ligand pairs co-evolve, in particular with respect to sexual conflict. PMID:24849290

  7. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    PubMed

    Wilburn, Damien B; Bowen, Kathleen E; Doty, Kari A; Arumugam, Sengodagounder; Lane, Andrew N; Feldhoff, Pamela W; Feldhoff, Richard C

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique adaptation may establish new paradigms for how receptor:ligand pairs co-evolve, in particular with respect to sexual conflict. PMID:24849290

  8. Polarized Raman spectroscopy of double-stranded RNA from bacteriophage phi6: local Raman tensors of base and backbone vibrations.

    PubMed Central

    Benevides, J M; Tsuboi, M; Bamford, J K; Thomas, G J

    1997-01-01

    Raman tensors for localized vibrations of base (A, U, G, and C), ribose and phosphate groups of double-stranded RNA have been determined from polarized Raman measurements on oriented fibers of the genomic RNA of bacteriophage phi6. Polarized Raman intensities for which electric vectors of both the incident and scattered light are polarized either perpendicular (I[bb]) or parallel (I[cc]) to the RNA fiber axis have been obtained by Raman microspectroscopy using 514.5-nm excitation. Similarly, the polarized Raman components, I(bc) and I(cb), for which incident and scattered vectors are mutually perpendicular, have been obtained. Spectra collected from fibers maintained at constant relative humidity in both H2O and D2O environments indicate the effects of hydrogen-isotopic shifts on the Raman polarizations and tensors. Novel findings are the following: 1) the intense Raman band at 813 cm(-1), which is assigned to phosphodiester (OPO) symmetrical stretching and represents the key marker of the A conformation of double-stranded RNA, is characterized by a moderately anisotropic Raman tensor; 2) the prominent RNA band at 1101 cm(-1), which is assigned to phosphodioxy (PO2-) symmetrical stretching, also exhibits a moderately anisotropic Raman tensor. Comparison with results obtained previously on A, B, and Z DNA suggests that tensors for localized vibrations of backbone phosphodiester and phosphodioxy groups are sensitive to helix secondary structure and local phosphate group environment; and 3) highly anisotropic Raman tensors have been found for prominent and well-resolved Raman markers of all four bases of the RNA duplex. These enable the use of polarized Raman spectroscopy for the determination of purine and pyrimidine base residue orientations in ribonucleoprotein assemblies. The present determination of Raman tensors for dsRNA is comprehensive and accurate. Unambiguous tensors have been deduced for virtually all local vibrational modes of the 300-1800 cm(-1) spectral interval. The results provide a reliable basis for future evaluations of the effects of base pairing, base stacking, and sequence context on the polarized Raman spectra of nucleic acids. PMID:9168049

  9. Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle.

    PubMed

    Raven, Lesley-Ann; Cocks, Benjamin G; Kemper, Kathryn E; Chamberlain, Amanda J; Vander Jagt, Christy J; Goddard, Michael E; Hayes, Ben J

    2016-02-01

    Dairy cattle are an interesting model for gaining insights into the genes responsible for the large variation between and within mammalian species in the protein and fat content of their milk and their milk volume. Large numbers of phenotypes for these traits are available, as well as full genome sequence of key founders of modern dairy cattle populations. In twenty target QTL regions affecting milk production traits, we imputed full genome sequence variant genotypes into a population of 16,721 Holstein and Jersey cattle with excellent phenotypes. Association testing was used to identify variants within each target region, and gene expression data were used to identify possible gene candidates. There was statistical support for imputed sequence variants in or close to BTRC, MGST1, SLC37A1, STAT5A, STAT5B, PAEP, VDR, CSF2RB, MUC1, NCF4, and GHDC associated with milk production, and EPGN for calving interval. Of these candidates, analysis of RNA-Seq data demonstrated that PAEP, VDR, SLC37A1, GHDC, MUC1, CSF2RB, and STAT5A were highly differentially expressed in mammary gland compared to 15 other tissues. For nine of the other target regions, the most significant variants were in non-coding DNA. Genomic predictions in a third dairy breed (Australian Reds) using sequence variants in only these candidate genes were for some traits more accurate than genomic predictions from 632,003 common SNP on the Bovine HD array. The genes identified in this study are interesting candidates for improving milk production in cattle and could be investigated for novel biological mechanisms driving lactation traits in other mammals. PMID:26613780

  10. The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination

    PubMed Central

    Norberg, Peter; Bergström, Maria; Jethava, Vinay; Dubhashi, Devdatt; Hermansson, Malte

    2011-01-01

    Plasmids are important members of the bacterial mobile gene pool, and are among the most important contributors to horizontal gene transfer between bacteria. They typically harbour a wide spectrum of host beneficial traits, such as antibiotic resistance, inserted into their backbones. Although these inserted elements have drawn considerable interest, evolutionary information about the plasmid backbones, which encode plasmid related traits, is sparse. Here we analyse 25 complete backbone genomes from the broad-host-range IncP-1 plasmid family. Phylogenetic analysis reveals seven clades, in which two plasmids that we isolated from a marine biofilm represent a novel clade. We also found that homologous recombination is a prominent feature of the plasmid backbone evolution. Analysis of genomic signatures indicates that the plasmids have adapted to different host bacterial species. Globally circulating IncP-1 plasmids hence contain mosaic structures of segments derived from several parental plasmids that have evolved in, and adapted to, different, phylogenetically very distant host bacterial species. PMID:21468020

  11. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    SciTech Connect

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-07

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 ?s, and the obtained trajectory of C{sub ?} atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  12. Backbone 1H, 13C and 15N resonance assignments of the extracellular domain of tissue factor

    PubMed Central

    Boettcher, John M.; Clay, Mary C.; LaHood, Benjamin J.; Morrissey, James H.

    2010-01-01

    Backbone 1H, 13C and 15N resonance assignments are presented for the extracellular domain of tissue factor. Tissue factor is the integral membrane protein that initiates blood coagulation through the formation an enzymatic complex with the plasma serine protease, factor VIIa. PMID:20526825

  13. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes

    PubMed Central

    Arges, Christopher G.; Ramani, Vijay

    2013-01-01

    Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629

  14. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-01

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 ?s, and the obtained trajectory of C? atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  15. Biosensors for DNA sequence detection

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  16. Sediment Dispersal and Clinoform Geometry as a key for Discerning Composite Milankovitch Cyclicity (ca. 100 and 20 kyr) in Pleistocene Progradational Sequences (Adriatic Margin, Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ridente, D.; Piva, A.; Asioli, A.; Trincardi, F.

    2006-12-01

    The Adriatic Sea is a narrow asymmetric basin where the main sediment sources (the Po delta and other smaller Apenninic rivers) are located hundreds of km north of the deepest part of the basin, and several morphological highs of tectonic origin act as barriers or sills to sediment transport. As a consequence, offshore currents control sediment dispersal and accumulation along complex source-to-sink pathways, influencing the internal geometry of sedimentary bodies and the regional distribution of depocenters. On the Adriatic shelf, the late Holocene-modern highstand deposition is controlled by advection (southward dispersal) of fine sediment supplied by the northern rivers. This offshore lateral dispersal of fine-grained sediment enhances subaqueous progradation of low-angle clinoforms, and determines coast-parallel, elongated depocenters. During Quaternary climate-driven sea level cycles, supply switched from modern-like advection-dominated (during interstadial relative highstands) to coastal-dominated (during stadial relative lowstands), thus impacting on the depositional pattern of progradational units. In particular we observe variations in the downlap pattern and in the seaward extent and thickness of the bottomsets of clinoforms that compose 100 kyr depositional sequences. Commonly, the 100 kyr cycle is the most impacting on the stratigraphic architecture of Quaternary margins. This cycle generates depositional sequences bounded by shelf-wide erosional unconformities that record the overall sea level fall within each cycle. Erosional surfaces reflecting higher frequency sea level fluctuations are rarely preserved, and the stratigraphic signature of this shorter cyclicity is more difficult to discern. In the Adriatic, this higher frequency cyclicity is recorded by variable geometry of progradational units (reflecting changes in supply-dispersal dynamics), rather than by smaller-scale sequences or parasequesences within the 100 kyr units.

  17. High-throughput sequencing of 16S rDNA amplicons characterizes bacterial composition in bronchoalveolar lavage fluid in patients with ventilator-associated pneumonia

    PubMed Central

    Yang, Xiao-Jun; Wang, Yan-Bo; Zhou, Zhi-Wei; Wang, Guo-Wei; Wang, Xiao-Hong; Liu, Qing-Fu; Zhou, Shu-Feng; Wang, Zhen-Hai

    2015-01-01

    Ventilator-associated pneumonia (VAP) is a life-threatening disease that is associated with high rates of morbidity and likely mortality, placing a heavy burden on an individual and society. Currently available diagnostic and therapeutic approaches for VAP treatment are limited, and the prognosis of VAP is poor. The present study aimed to reveal and discriminate the identification of the full spectrum of the pathogens in patients with VAP using high-throughput sequencing approach and analyze the species richness and complexity via alpha and beta diversity analysis. The bronchoalveolar lavage fluid samples were collected from 27 patients with VAP in intensive care unit. The polymerase chain reaction products of the hypervariable regions of 16S rDNA gene in these 27 samples of VAP were sequenced using the 454 GS FLX system. A total of 103,856 pyrosequencing reads and 638 operational taxonomic units were obtained from these 27 samples. There were four dominant phyla, including Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. There were 90 different genera, of which 12 genera occurred in over ten different samples. The top five dominant genera were Streptococcus, Acinetobacter, Limnohabitans, Neisseria, and Corynebacterium, and the most widely distributed genera were Streptococcus, Limnohabitans, and Acinetobacter in these 27 samples. Of note, the mixed profile of causative pathogens was observed. Taken together, the results show that the high-throughput sequencing approach facilitates the characterization of the pathogens in bronchoalveolar lavage fluid samples and the determination of the profile for bacteria in the bronchoalveolar lavage fluid samples of the patients with VAP. This study can provide useful information of pathogens in VAP and assist clinicians to make rational and effective therapeutic decisions. PMID:26345636

  18. 1H, 15N and 13C backbone resonance assignment of Rv1567c, an integral membrane protein from Mycobacterium tuberculosis.

    PubMed

    Nguyen, Hau B; Cross, Timothy A

    2008-06-01

    We report here the backbone assignment of Rv1567c, an integral membrane protein from Mycobacterium tuberculosis. The backbone resonance assignments were determined based on triple-resonance experiments with uniformly [13C,15N]-labeled protein in LMPG detergent micelles. PMID:19636922

  19. The Manufacturing Process for the NASA Composite Crew Module Demonstration Structure

    NASA Technical Reports Server (NTRS)

    Pelham, Larry; Higgins, John E.

    2008-01-01

    This paper will describe the approaches and methods selected in fabrication of a carbon composite demonstration structure for the Composite Crew Module (CCM) Program. The program is managed by the NASA Safety and Engineering Center with participants from ten NASA Centers and AFRL. Multiple aerospace contractors are participating in the design development, tooling and fabrication effort as well. The goal of the program is to develop an agency wide design team for composite habitable spacecraft. The specific goals for this development project are: a).To gain hands on experience in design, building and testing a composite crew module. b) To validate key assumptions by resolving composite spacecraft design details through fabrication and testing of hardware. This abstract is based on Preliminary Design data..The final design will continue to evolve through the fall of 2007 with fabrication mostly completed by conference date. From a structures perspective, the.CCM can be viewed as a pressure module with variable pressure time histories and a series of both impact and quasi-static, high intensity point, line, and area distributed loads. The portion of the overall space vehicle being designed and. fabricated by the CCM team is just the pressure module and primary loading points. The heaviest point loads are applied and distributed to the pressure module at.an aluminum Service Module/Alternate Launch Abort System (SM/ALAS) fittings and at Main and Drogue Chute fittings. Significant line loads with metal to metal impact is applied at.the Lids ring. These major external point and line loads as well as pressure impact loads (blast and water landing) are applied to the lobed floor though the reentry shield and crushable materials. The pressure module is divided into upper and lower. shells that mate together with a bonded belly band splice joint to create the completed structural assembly. The benefits of a split CCM far outweigh the risks of a joint. These benefits include lower tooling cost and less manufacturing risk. Assembly of the top and bottom halves of the pressure shell will allow access to the interior of the shell throughout remaining fabrication sequence and can also potentially permit extensive installation of equipment and .crew facilities prior to final assembly of the two shell halves. A Pi pre-form is a woven carbon composite material which is provided in pre-impregnated form and frozen for long term storage. The cross-section shape allows the top of the pi to be bonded to a flat or curved surface with a second flat plate composite section bonded between two upstanding legs of the Pi. One of the regions relying on the merits of the Pi pre-form is the backbone. All connections among plates of the backbone structure, including the upper flanges, and to the lobe base of the pressure shell are currently joined by Pi pre-forms. The intersection of backbone composite plates is formed by application of two Pi pre-forms, top flanges and lobed surfaces are bonded with one Pi pre-form. The process of applying the pre-impregnated pi-preform will be demonstrated to include important steps like surface preparation, forming, application of pressure dams, vacuum bagging for consolidation, and curing techniques. Chopped carbon fiber tooling was selected over other traditional metallic and carbon fiber tooling. The requirement of schedule and cost economy for a moderate reuse cure tool warranted composite tooling options. Composite tooling schedule duration of 18 weeks compared favorably against other metallic tooling including invar tooling. Composite tooling also shows significant cost savings over low CTE metallic options. The composite tooling options were divided into two groups and the final decision was based on the cost, schedule, tolerance, temperature, and reuse requirements.

  20. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR

    PubMed Central

    Knight, Michael J.; Pell, Andrew J.; Bertini, Ivano; Felli, Isabella C.; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido

    2012-01-01

    We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with 1H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of 15N and 13C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu+ (diamagnetic) or Cu2+ (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to 1H-1H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a Gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable. PMID:22723345

  1. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators

    PubMed Central

    Flierl, Ulrike; Nero, Tracy L.; Lim, Bock; Arthur, Jane F.; Yao, Yu; Jung, Stephanie M.; Gitz, Eelo; Pollitt, Alice Y.; Zaldivia, Maria T.K.; Jandrot-Perrus, Martine; Schäfer, Andreas; Nieswandt, Bernhard; Andrews, Robert K.; Parker, Michael W.; Gardiner, Elizabeth E.

    2015-01-01

    Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function–deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone–dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics. PMID:25646267

  2. Pairing of isolated nucleic-acid bases in the absence of the DNA backbone

    NASA Astrophysics Data System (ADS)

    Nir, Eyal; Kleinermanns, Karl; de Vries, Mattanjah S.

    2000-12-01

    The two intertwined strands of DNA are held together through base pairing-the formation of hydrogen bonds between bases located opposite each other on the two strands. DNA replication and transcription involve the breaking and re-forming of these hydrogen bonds, but it is difficult to probe these processes directly. For example, conventional DNA spectroscopy is dominated by solvent interactions, crystal modes and collective modes of the DNA backbone; gas-phase studies, in contrast, can in principle measure interactions between individual molecules in the absence of external effects, but require the vaporization of the interacting species without thermal degradation. Here we report the generation of gas-phase complexes comprising paired bases, and the spectroscopic characterization of the hydrogen bonding in isolated guanine-cytosine (G-C) and guanine-guanine (G-G) base pairs. We find that the gas-phase G-C base pair adopts a single configuration, which may be Watson-Crick, whereas G-G exists in two different configurations, and we see evidence for proton transfer in the G-C pair, an important step in radiation-induced DNA damage pathways. Interactions between different bases and between bases and water molecules can also be characterized by our approach, providing stringent tests for high-level ab initio computations that aim to elucidate the fundamental aspects of nucleotide interactions.

  3. Purification, crystallization and halide phasing of a Streptococcus agalactiae backbone pilin GBS80 fragment

    PubMed Central

    Vengadesan, Krishnan; Ma, Xin; Dwivedi, Prabhat; Ton-That, Hung; Narayana, Sthanam V. L.

    2010-01-01

    The Gram-positive pathogen Streptococcus agalactiae or group B streptococcus (GBS) is the leading cause of bacterial septicemia, pneumonia and meningitis among neonates around the world. The pathogen assembles two types of pili on its surface, named PI-1 and PI-2, that mediate bacterial adherence to host cells. The GBS PI-1 pilus is formed by the major pilin GBS80, which forms the pilus shaft, and two minor pilins GBS104 and GBS52, which are incorporated into thepilus structure. While considerable structural information exists on Gram-negative pili, the structural study of Gram-positive pili is an emerging area of research. Here, the purification, crystallization and initial phasing of the 35?kDa major fragment of the backbone pilin GBS80 are reported. Crystals were obtained in two different space groups: P21 and C2. SAD data collected from an iodide-derivative crystal at the home source were used to obtain initial phases and interpretable electron-density maps. PMID:21139220

  4. Design and Synthesis of Efficient Fluorescent Dyes for Incorporation into DNA Backbone and Biomolecule Detection

    PubMed Central

    Wang, Wei; Li, Alexander D. Q.

    2008-01-01

    We report here the design and synthesis of a series of ?-conjugated fluorescent dyes with D-A-D (D: donor; A: Acceptor), D-?-D, A-?-A, and D-?-A for applications as the signaling motif in biological-synthetic hybrid foldamers for DNA detection. Horner-Wadsworth-Emmons (HWE) reaction and Knoevenagel condensation were demonstrated as the optimum ways for construction of long ?-conjugated systems. Such rod-like chromophores have distinct advantages, as their fluorescence properties are not quenched by the presence of DNA. To be incorporated into the backbone of DNA, the chromophores need to be reasonably soluble in organic solvent for solid-phase synthesis, and therefore a strategy of using flexible tetra(ethylene glycol) (TEG) linkers at either end of these rod-like dyes were developed. The presence of TEG facilitates the protection of the chain-growing hydroxyl group with DMTrCl (dimethoxy trityl chloride) as well as the activation of the coupling step with phosphoramidite chemistry on an automated DNA synthesizer. To form fluorescence resonance energy transfer (FRET) pairs, six synthetic chromophores with blue to red fluorescence have been developed and those with orthogonal fluorescent emission were chosen for incorporation into DNA-chromophore hybrid foldamers. PMID:17508711

  5. Backbones versus core agents in initial ART regimens: one game, two players.

    PubMed

    Llibre, Josep M; Walmsley, Sharon; Gatell, Josep M

    2016-04-01

    The advances seen in ART during the last 30 years have been outstanding. Treatment has evolved from the initial use of single agents as monotherapy. The ability to use HIV RNA as a surrogate marker for clinical outcomes allowed the more rapid evaluation of new therapies. This led to the understanding that triple-drug regimens, including a core agent (an NNRTI or a boosted PI) and two NRTIs, are optimal. These combinations have demonstrated continued improvements in their efficacy and toxicity as initial therapy. However, the need for pharmacokinetic boosting, with potential drug-drug interactions, or residual issues of efficacy or toxicity have persisted for some agents. Most recently, integrase strand transfer inhibitors, particularly dolutegravir, have shown unparalleled safety and efficacy and are currently the core agents of choice. Regimens that included only core agents or only backbone agents have not been as successful as combined therapy in antiretroviral-naive patients. It appears that at least one NRTI is needed for optimal performance and lamivudine and emtricitabine may be the ideal candidates. Several studies are ongoing of agents with longer dosing intervals, lower cost and new NRTI-saving strategies to address unmet needs. PMID:26747092

  6. An enhanced backbone-assisted reliable framework for wireless sensor networks.

    PubMed

    Tufail, Ali; Khayam, Syed Ali; Raza, Muhammad Taqi; Ali, Amna; Kim, Ki-Hyung

    2010-01-01

    An extremely reliable source to sink communication is required for most of the contemporary WSN applications especially pertaining to military, healthcare and disaster-recovery. However, due to their intrinsic energy, bandwidth and computational constraints, Wireless Sensor Networks (WSNs) encounter several challenges in reliable source to sink communication. In this paper, we present a novel reliable topology that uses reliable hotlines between sensor gateways to boost the reliability of end-to-end transmissions. This reliable and efficient routing alternative reduces the number of average hops from source to the sink. We prove, with the help of analytical evaluation, that communication using hotlines is considerably more reliable than traditional WSN routing. We use reliability theory to analyze the cost and benefit of adding gateway nodes to a backbone-assisted WSN. However, in hotline assisted routing some scenarios where source and the sink are just a couple of hops away might bring more latency, therefore, we present a Signature Based Routing (SBR) scheme. SBR enables the gateways to make intelligent routing decisions, based upon the derived signature, hence providing lesser end-to-end delay between source to the sink communication. Finally, we evaluate our proposed hotline based topology with the help of a simulation tool and show that the proposed topology provides manifold increase in end-to-end reliability. PMID:22294890

  7. Essential roles of four-carbon backbone chemicals in the control of metabolism

    PubMed Central

    Chriett, Sabrina; Pirola, Luciano

    2015-01-01

    The increasing incidence of obesity worldwide and its related cardiometabolic complications is an urgent public health problem. While weight gain results from a negative balance between the energy expenditure and calorie intake, recent research has demonstrated that several small organic molecules containing a four-carbon backbone can modulate this balance by favoring energy expenditure, and alleviating endoplasmic reticulum stress and oxidative stress. Such small molecules include the bacterially produced short chain fatty acid butyric acid, its chemically produced derivative 4-phenylbutyric acid, the main ketone body D-β-hydroxybutyrate - synthesized by the liver - and the recently discovered myokine β-aminoisobutyric acid. Conversely, another butyrate-related molecule, α-hydroxybutyrate, has been found to be an early predictor of insulin resistance and glucose intolerance. In this minireview, we summarize recent advances in the understanding of the mechanism of action of these molecules, and discuss their use as therapeutics to improve metabolic homeostasis or their detection as early biomarkers of incipient insulin resistance. PMID:26322177

  8. Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential.

    PubMed

    Mukherjee, Sudipto; Zhou, Guangfeng; Michel, Chris; Voelz, Vincent A

    2015-12-17

    Peptoids (N-substituted oligoglycines) are biomimetic polymers that can fold into a variety of unique structural scaffolds. Peptoid helices, which result from the incorporation of bulky chiral side chains, are a key peptoid structural motif whose formation has not yet been accurately modeled in molecular simulations. Here, we report that a simple modification of the backbone ?-angle potential in GAFF is able to produce well-folded cis-amide helices of (S)-N-(1-phenylethyl)glycine (Nspe), consistent with experiment. We validate our results against both QM calculations and NMR experiments. For this latter task, we make quantitative comparisons to sparse NOE data using the Bayesian Inference of Conformational Populations (BICePs) algorithm, a method we have recently developed for this purpose. We then performed extensive REMD simulations of Nspe oligomers as a function of chain length and temperature to probe the molecular forces driving cooperative helix formation. Analysis of simulation data by Lifson-Roig helix-coil theory show that the modified potential predicts much more cooperative folding for Nspe helices. Unlike peptides, per-residue entropy changes for helix nucleation and extension are mostly positive, suggesting that steric bulk provides the main driving force for folding. We expect these results to inform future work aimed at predicting and designing peptoid peptidomimetics and tertiary assemblies of peptoid helices. PMID:26584227

  9. Mechanics and Chemistry: Sinle Molecule Bond Rupture Forces Correlate with Molecular Backbone Structure

    SciTech Connect

    Frei, M.; Hybertsen, M.; Aradhya, S.V.; Koentopp, M.; Venkataraman, L.

    2011-03-02

    We simultaneously measure conductance and force across nanoscale junctions. A new, two-dimensional histogram technique is introduced to statistically extract bond rupture forces from a large data set of individual junction elongation traces. For the case of Au point contacts, we find a rupture force of 1.4 {+-} 0.2 nN, which is in good agreement with previous measurements. We then study systematic trends for single gold metal-molecule-metal junctions for a series of molecules terminated with amine and pyridine linkers. For all molecules studied, single molecule junctions rupture at the Au-N bond. Selective binding of the linker group allows us to correlate the N-Au bond-rupture force to the molecular backbone. We find that the rupture force ranges from 0.8 nN for 4,4' bipyridine to 0.5 nN in 1,4 diaminobenzene. These experimental results are in excellent quantitative agreement with density functional theory based adiabatic molecular junction elongation and rupture calculations.

  10. Noise assisted excitation energy transfer in a linear model of a selectivity filter backbone strand.

    PubMed

    Bassereh, Hassan; Salari, Vahid; Shahbazi, Farhad

    2015-07-15

    In this paper, we investigate the effect of noise and disorder on the efficiency of excitation energy transfer (EET) in a N = 5 sites linear chain with 'static' dipole-dipole couplings. In fact, here, the disordered chain is a toy model for one strand of the selectivity filter backbone in ion channels. It has recently been discussed that the presence of quantum coherence in the selectivity filter is possible and can play a role in mediating ion-conduction and ion-selectivity in the selectivity filter. The question is 'how a quantum coherence can be effective in such structures while the environment of the channel is dephasing (i.e. noisy)?' Basically, we expect that the presence of the noise should have a destructive effect in the quantum transport. In fact, we show that such expectation is valid for ordered chains. However, our results indicate that introducing the dephasing in the disordered chains leads to the weakening of the localization effects, arising from the multiple back-scatterings due to the randomness, and then increases the efficiency of quantum energy transfer. Thus, the presence of noise is crucial for the enhancement of EET efficiency in disordered chains. We also show that the contribution of both classical and quantum mechanical effects are required to improve the speed of energy transfer along the chain. Our analysis may help for better understanding of fast and efficient functioning of the selectivity filters in ion channels. PMID:26061758

  11. Noise assisted excitation energy transfer in a linear model of a selectivity filter backbone strand

    NASA Astrophysics Data System (ADS)

    Bassereh, Hassan; Salari, Vahid; Shahbazi, Farhad

    2015-07-01

    In this paper, we investigate the effect of noise and disorder on the efficiency of excitation energy transfer (EET) in a N=5 sites linear chain with ‘static’ dipole-dipole couplings. In fact, here, the disordered chain is a toy model for one strand of the selectivity filter backbone in ion channels. It has recently been discussed that the presence of quantum coherence in the selectivity filter is possible and can play a role in mediating ion-conduction and ion-selectivity in the selectivity filter. The question is ‘how a quantum coherence can be effective in such structures while the environment of the channel is dephasing (i.e. noisy)?’ Basically, we expect that the presence of the noise should have a destructive effect in the quantum transport. In fact, we show that such expectation is valid for ordered chains. However, our results indicate that introducing the dephasing in the disordered chains leads to the weakening of the localization effects, arising from the multiple back-scatterings due to the randomness, and then increases the efficiency of quantum energy transfer. Thus, the presence of noise is crucial for the enhancement of EET efficiency in disordered chains. We also show that the contribution of both classical and quantum mechanical effects are required to improve the speed of energy transfer along the chain. Our analysis may help for better understanding of fast and efficient functioning of the selectivity filters in ion channels.

  12. Toward High Performance n-Type Thermoelectric Materials by Rational Modification of BDPPV Backbones.

    PubMed

    Shi, Ke; Zhang, Fengjiao; Di, Chong-An; Yan, Tian-Wei; Zou, Ye; Zhou, Xu; Zhu, Daoben; Wang, Jie-Yu; Pei, Jian

    2015-06-10

    Three n-type polymers BDPPV, ClBDPPV, and FBDPPV which exhibit outstanding electrical conductivities when mixed with an n-type dopant, N-DMBI ((4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine), in solution. High electron mobility and an efficient doping process endow FBDPPV with the highest electrical conductivities of 14 S cm(-1) and power factors up to 28 ?W m(-1) K(-2), which is the highest thermoelectric (TE) power factor that has been reported for solution processable n-type conjugated polymers. Our investigations reveal that introduction of halogen atoms to the polymer backbones has a dramatic influence on not only the electron mobilities but also the doping levels, both of which are critical to the electrical conductivities. This work suggests the significance of rational modification of polymer structures and opens the gate for applying the rapidly developed organic semiconductors with high carrier mobilities to thermoelectric field. PMID:25997085

  13. A Low-Dimensional Principal Manifold as the "Attractor Backbone" of a Chaotic Beam System

    NASA Astrophysics Data System (ADS)

    Bollt, Erik M.; Skufca, Joseph D.

    We model an elastic beam subject to a contact load which displaces under a chaotic external forcing, motivated by application of a ship carrying either a crane, or fluids in internal tanks. This model not only has rich dynamics and relevance in its own right, it gives rise to a Partial Differential Equation (PDE) whose solutions are chaotic, with an attractor whose points lie "near" a low-dimensional curve. This form identifies a data-driven dimensionality reduction which encapsulates a Cartesian product, approximately, of a principal manifold, corresponding to spatial regularity, against a temporal complex dynamics of the intrinsic variable of the manifold. The principal manifold element serves to translate the complex information at one site to all other sites on the beam. Although points of the attractor do not lie on the principal manifold, they lie sufficiently close that we describe that manifold as a "backbone" running through the attractor, allowing the manifold to serve as a suitable space to approximate behaviors.

  14. An Enhanced Backbone-Assisted Reliable Framework for Wireless Sensor Networks

    PubMed Central

    Tufail, Ali; Khayam, Syed Ali; Raza, Muhammad Taqi; Ali, Amna; Kim, Ki-Hyung

    2010-01-01

    An extremely reliable source to sink communication is required for most of the contemporary WSN applications especially pertaining to military, healthcare and disaster-recovery. However, due to their intrinsic energy, bandwidth and computational constraints, Wireless Sensor Networks (WSNs) encounter several challenges in reliable source to sink communication. In this paper, we present a novel reliable topology that uses reliable hotlines between sensor gateways to boost the reliability of end-to-end transmissions. This reliable and efficient routing alternative reduces the number of average hops from source to the sink. We prove, with the help of analytical evaluation, that communication using hotlines is considerably more reliable than traditional WSN routing. We use reliability theory to analyze the cost and benefit of adding gateway nodes to a backbone-assisted WSN. However, in hotline assisted routing some scenarios where source and the sink are just a couple of hops away might bring more latency, therefore, we present a Signature Based Routing (SBR) scheme. SBR enables the gateways to make intelligent routing decisions, based upon the derived signature, hence providing lesser end-to-end delay between source to the sink communication. Finally, we evaluate our proposed hotline based topology with the help of a simulation tool and show that the proposed topology provides manifold increase in end-to-end reliability. PMID:22294890

  15. Improved Dynamic Lightpath Provisioning for Large Wavelength-Division Multiplexed Backbones

    NASA Astrophysics Data System (ADS)

    Kong, Huifang; Phillips, Chris

    2007-07-01

    Technology already exists that would allow future optical networks to support automatic lightpath configuration in response to dynamic traffic demands. Given appropriate commercial drivers, it is possible to foresee carrier network operators migrating away from semipermanent provisioning to enable on-demand short-duration communications. However, with traditional lightpath reservation protocols, a portion of the lightpath is idly held during the signaling propagation phase, which can significantly reduce the lightpath bandwidth efficiency in large wavelength-division multiplexed backbones. This paper proposes a prebooking mechanism to improve the lightpath efficiency over traditional reactive two-way reservation protocols, consequently liberating network resources to support higher traffic loads. The prebooking mechanism predicts the time when the traffic will appear at the optical cross connects, and intelligently schedules the lightpath components such that resources are only consumed as necessary. We describe the proposed signaling procedure for both centralized and distributed control planes and analyze its performance. This paper also investigates the aggregated flow length characteristics with the self-similar incident traffic and examines the effects of traffic prediction on the blocking probability as well as the ability to support latency sensitive traffic in a wide-area environment.

  16. Dependence of crystallite formation and preferential backbone orientations on the side chain pattern in PBDTTPD polymers.

    PubMed

    El Labban, Abdulrahman; Warnan, Julien; Cabanetos, Clment; Ratel, Olivier; Tassone, Christopher; Toney, Michael F; Beaujuge, Pierre M

    2014-11-26

    Alkyl substituents appended to the ?-conjugated main chain account for the solution-processability and film-forming properties of most ?-conjugated polymers for organic electronic device applications, including field-effect transistors (FETs) and bulk-heterojunction (BHJ) solar cells. Beyond film-forming properties, recent work has emphasized the determining role that side-chain substituents play on polymer self-assembly and thin-film nanostructural order, and, in turn, on device performance. However, the factors that determine polymer crystallite orientation in thin-films, implying preferential backbone orientation relative to the device substrate, are a matter of some debate, and these structural changes remain difficult to anticipate. In this report, we show how systematic changes in the side-chain pattern of poly(benzo[1,2-b:4,5-b']dithiophene-alt-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers can (i) influence the propensity of the polymer to order in the ?-stacking direction, and (ii) direct the preferential orientation of the polymer crystallites in thin films (e.g., "face-on" vs "edge-on"). Oriented crystallites, specifically crystallites that are well-ordered in the ?-stacking direction, are believed to be a key contributor to improved thin-film device performance in both FETs and BHJ solar cells. PMID:25347287

  17. Antimicrobial Activity of Chitosan Derivatives Containing N-Quaternized Moieties in Its Backbone: A Review

    PubMed Central

    Martins, Alessandro F.; Facchi, Suelen P.; Follmann, Heveline D. M.; Pereira, Antonio G. B.; Rubira, Adley F.; Muniz, Edvani C.

    2014-01-01

    Chitosan, which is derived from a deacetylation reaction of chitin, has attractive antimicrobial activity. However, chitosan applications as a biocide are only effective in acidic medium due to its low solubility in neutral and basic conditions. Also, the positive charges carried by the protonated amine groups of chitosan (in acidic conditions) that are the driving force for its solubilization are also associated with its antimicrobial activity. Therefore, chemical modifications of chitosan are required to enhance its solubility and broaden the spectrum of its applications, including as biocide. Quaternization on the nitrogen atom of chitosan is the most used route to render water-soluble chitosan-derivatives, especially at physiological pH conditions. Recent reports in the literature demonstrate that such chitosan-derivatives present excellent antimicrobial activity due to permanent positive charge on nitrogen atoms side-bonded to the polymer backbone. This review presents some relevant work regarding the use of quaternized chitosan-derivatives obtained by different synthetic paths in applications as antimicrobial agents. PMID:25402643

  18. Backbone resonance assignment of N15, N30 and D10 T cell receptor β subunits.

    PubMed

    Mallis, Robert J; Reinherz, Ellis L; Wagner, Gerhard; Arthanari, Haribabu

    2016-04-01

    The αβT Cell receptor (TCR) governs T cell immunity through its interaction with peptide bound to major histocompatibility complex molecules (pMHC). Previously, soluble ectodomain constructs have been used to elucidate the binding mode of the TCR for the MHC. However, the full heterodimeric αβTCR has proven difficult to produce reproducibly in recombinant systems to the extent seen in the routine production of novel antibodies. Particularly, the route of production in E. coli, which is most convenient for isotopic labeling of proteins, is challenging for a wide range of αβTCR, including N15αβ, N30αβ, but not D10αβ. With the aim of understanding the TCR-pMHC interaction through the use of dynamic binding measurements, we set out to produce TCRβ subunits with which we could investigate binding with pMHC. The TCRβ constructs are more readily produced and refolded than their αβ counterparts and have proven to be an effective model of preTCR in pMHC binding studies. As a first step towards characterizing potential interactions with protein ligands, we have assigned the backbone resonances of three TCRβ subunits, N15β, N30β and D10β. PMID:26275917

  19. Ionization Cross Sections and Dissociation Channels of the DNA Sugar-Phosphate Backbone by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher; Huo, Winifred M.; Fletcher, Graham D.

    2004-01-01

    It has been suggested that the genotoxic effects of ionizing radiation in living cells are not caused by the highly energetic incident radiation, but rather are induced by less energetic secondary species generated, the most abundant of which are free electrons.' The secondary electrons will further react to cause DNA damage via indirect and direct mechanisms. Detailed knowledge of these mechanisms is ultimately important for the development of global models of cellular radiation damage. We are studying one possible mechanism for the formation cf DNA strand breaks involving dissociative ionization of the DNA sugar-phosphate backbone induced by secondary electron co!lisions. We will present ionization cross sections at electron collision energies between threshold and 10 KeV using the improved binary encounter dipole (iBED) formulation' Preliminary results of the possible dissociative ionization pathways will be presented. It is speculated that radical fragments produced from the dissociative ionization can further react, providing a possible mechanism for double strand breaks and base damage.

  20. Dynamic changes in the composition of photosynthetic picoeukaryotes in the northwestern Pacific Ocean revealed by high-throughput tag sequencing of plastid 16S rRNA genes.

    PubMed

    Choi, Dong H; An, Sung M; Chun, Sungjun; Yang, Eun C; Selph, Karen E; Lee, Charity M; Noh, Jae H

    2016-02-01

    Photosynthetic picoeukaryotes (PPEs) are major oceanic primary producers. However, the diversity of such communities remains poorly understood, especially in the northwestern (NW) Pacific. We investigated the abundance and diversity of PPEs, and recorded environmental variables, along a transect from the coast to the open Pacific Ocean. High-throughput tag sequencing (using the MiSeq system) revealed the diversity of plastid 16S rRNA genes. The dominant PPEs changed at the class level along the transect. Prymnesiophyceae were the only dominant PPEs in the warm pool of the NW Pacific, but Mamiellophyceae dominated in coastal waters of the East China Sea. Phylogenetically, most Prymnesiophyceae sequences could not be resolved at lower taxonomic levels because no close relatives have been cultured. Within the Mamiellophyceae, the genera Micromonas and Ostreococcus dominated in marginal coastal areas affected by open water, whereas Bathycoccus dominated in the lower euphotic depths of oligotrophic open waters. Cryptophyceae and Phaeocystis (of the Prymnesiophyceae) dominated in areas affected principally by coastal water. We also defined the biogeographical distributions of Chrysophyceae, prasinophytes, Bacillariophyceaea and Pelagophyceae. These distributions were influenced by temperature, salinity and chlorophyll a and nutrient concentrations. PMID:26712350

  1. Nucleotide sequence composition adjacent to intronic splice sites improves splicing efficiency via its effect on pre-mRNA local folding in fungi.

    PubMed

    Zafrir, Zohar; Tuller, Tamir

    2015-10-01

    RNA splicing is the central process of intron removal in eukaryotes known to regulate various cellular functions such as growth, development, and response to external signals. The canonical sequences indicating the splicing sites needed for intronic boundary recognition are well known. However, the roles and evolution of the local folding of intronic and exonic sequence features adjacent to splice sites has yet to be thoroughly studied. Here, focusing on four fungi (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus nidulans, and Candida albicans), we performed for the first time a comprehensive high-resolution study aimed at characterizing the encoding of intronic splicing efficiency in pre-mRNA transcripts and its effect on intron evolution. Our analysis supports the conjecture that pre-mRNA local folding strength at intronic boundaries is under selective pressure, as it significantly affects splicing efficiency. Specifically, we show that in the immediate region of 12-30 nucleotides (nt) surrounding the intronic donor site there is a preference for weak pre-mRNA folding; similarly, in the region of 15-33 nt surrounding the acceptor and branch sites there is a preference for weak pre-mRNA folding. We also show that in most cases there is a preference for strong pre-mRNA folding further away from intronic splice sites. In addition, we demonstrate that these signals are not associated with gene-specific functions, and they correlate with splicing efficiency measurements (r = 0.77, P = 2.98 10(-21)) and with expression levels of the corresponding genes (P = 1.24 10(-19)). We suggest that pre-mRNA folding strength in the above-mentioned regions has a direct effect on splicing efficiency by improving the recognition of intronic boundaries. These new discoveries are contributory steps toward a broader understanding of splicing regulation and intronic/transcript evolution. PMID:26246046

  2. The Construction of Metal-Organic Framework with Active Backbones by the Utilization of Reticular Chemistry

    NASA Astrophysics Data System (ADS)

    Choi, Eunwoo

    With the principles of reticular chemistry, metal-organic frameworks with ultra-high porosity, chiral-recognition unit as a chiral stationary phase, metalloporhyrins for enhanced hydrogen adsorption and an intrinsic conductivity to form porous conductors, have been prepared. This dissertation presents how the principles of reticular chemistry were utilized to achieve in the preparations of metal-organic frameworks with a large surface area and active backbones. Through the simple isoreticular (having the same framework topology) expansion from MOF-177 composed with 1,3,5-tris(4'-carboxyphenyl-)benzene (BTB3-) as the strut; MOF-200 was prepared with 4,4',4"-(benzene-1,3,5-triyl-tris(benzene-4,1-diy1))tribenzoic acid an extension from BTB3- by a phenylene unit to yield one of the most porous MOFs with a Langmuir surface area of 10,400 m2. and the lowest density of 0.22 cm3.g-1. A successful thermal polymerization reaction at 325 C inside of the pores of highly porous MOF, MOF-177, was performed and verified the integrity of the MOF structure even after the thermal reaction. 1,4-Diphenylbutadiyne that is known to polymerize upon heating to form a conjugated backbone was impregnated via solution-diffusion into MOF-177 and then subsequently polymerized by heat to form polymer impregnated MOF-177. Characterization was carried out using powder X-ray diffraction and volumetric sorption analyzer. MOF-1020 with a linear quaterphenyl dicarboxylate-based strut was designed to contain a chiral bisbinaphthyl crown-ether moiety for alkyl ammonium resolution was precisely placed into a Zn4O(CO2)6-based cubic MOF structure. Unfortunately, the chiral resolution was not achieved due to the sensitivity and the pore environment of MOF-1020. However, an interesting phenomenon was observed, where the loss of crystallinity occurs upon solvent removal while the crystallites remain shiny and crystalline, but it readily is restored upon re-solvation of the crystallites. This rare phenomenon was studied by powder X-ray diffraction and supported by gas adsorption and thermogravimetric analysis. Layered MOFs with metalloporphyrins with Zn, Cu, Co and Fe at their +2 oxidation states as struts were prepared to facilitate non-structural metal sites and tested for hydrogen adsorption and the binding enthalpies. Steep uptakes are indeed observed, but rather due to the optimal interlayer distance of 9 A for dihydrogen, and the binding enthalpies are 6.7 -- 7.6 kJ . mo1-1 which are not extraordinary. Although the metals did not seem to play a large role, a trend was observed where the binding enthalpies increase as the metals in the metalloporphyrins go from late to early transition metals. With the concept of conductive metal oxides, a journey of constructing conductive MOFs was taken by attempting the formation of metal-carbon bonds by linking transition metal ions with conjugated organic struts which are 1,4-benzenediisonitrile, 1,4-benzenediethynylide and p-cyanophenylethynylide. Among the attempted systems, a reaction of Cr(III) and 1,4-benzenediethynylide yielded an amorphous material with a BET (Brunauer-Emmett-Teller) surface area of 80 m2.g-1, hydrogen uptake of 47 cm 3. g-1 and a resistance of 20 MO. Also a crystalline compound was prepared by mimicking Prussian blue by using p-cyanophenylethynylide where one end can bind metal with ethynylic carbon and the other end with the cyano nitrogen by following the similar synthesis of Prussian blue analogues. The principles of reticular chemistry are demonstrated through each chapter and show how powerful and beneficial reticular chemistry is by allowing the predetermination of the structure and function. The details of the ways to approach an ideal compound and the synthetic aspects are also described in this dissertation.

  3. Backbones in the parameter plane of the Hénon map

    NASA Astrophysics Data System (ADS)

    Falcolini, Corrado; Tedeschini-Lalli, Laura

    2016-01-01

    Parameter plane (b, a) of the real Hénon map has been investigated for curves of bifurcation, curves of homoclinic heteroclinic onsets, and also searching for borders of areas variously characterized. Such curves are, in general, complicated and show singularities. Pieces of two monotone curves, spanning the (b, a) parameter plane of the real Hénon map, can be detected in four quite different studies appeared along the years 1982-2008. We study the extent of their similarity to read and interpret them into the same curves. To us, these two curves are the accumulation loci of bifurcation curves of two principal families of periodic sinks of type "period-adding machine." We call them "backbones," because they are monotone; moreover, they are the borders of some important regions in the (b, a)-plane. Hamouly and Mira in 1982 [C. R. Acad. Sc. Paris1 293, 525-528 (1982)] studied the structure of bifurcation of periodic orbits and their mutual position and intersection. Gonchenko et al. [SIAM J. Appl. Dyn. Syst. 4, 407-436 (2005)] display the continuation (in parameter plane) of the first heteroclinic connection and of the first homoclinic connection between the two fixed points of the map. Alligood and Sauer [Commun. Math. Phys. 120, 105-119 (1988)] studied parameter regions characterized by the same rotation number of the "accessible" periodic saddle. Finally, Lorenz [Physica D 237, 1689-1704 (2008)] in 2008 draws areas in the parameter plane statistically characterized by a finite attractor. In this paper, we show how these criteria interact. We therefore conjecture that the wealth of curves of homoclinic onsets could be in general hierarchized by the structure of accessible saddles.

  4. Membrane-forming properties of pseudoglyceryl backbone based gemini lipids possessing oxyethylene spacers.

    PubMed

    Bhattacharya, Santanu; Bajaj, Avinash

    2007-03-15

    Five pseudoglyceryl backbone based gemini lipids possessing varying lengths of oxyethylene [(-CH2-O-CH2-)n] spacers between cationic ammonium head groups have been synthesized, where n varies from 1 to 5. The membrane-forming properties of these gemini cationic lipids have been investigated. All the gemini lipids formed stable suspensions in water. The presence of membranous aggregates in such lipid suspensions was evidenced by transmission electron microscopy. The membrane-forming characteristics of these gemini lipids were compared with those of the corresponding monomeric lipid with one head group to understand the effect of lipid dimerization. The lipid suspensions were further characterized by dynamic light scattering and zeta potential measurements. Except for the gemini lipid with -CH2-CH2-O-CH2-CH2- spacer (2a), zeta potential of aggregates of all other gemini lipids were significantly greater than that of monomeric lipid suspensions. X-ray diffraction studies with lipid cast films revealed the increase in membrane bilayer width with increase in the length of the spacer (-CH2-O-CH2-)n. Clear thermotropic phase transitions typical of membranous assemblies were observed for all the lipid suspensions by high sensitivity differential scanning calorimetry. Aggregates of gemini lipid 2a bearing one oxyethylene [-(CH2-CH2-O-CH2-CH2)-] unit between headgroups manifested the highest phase transition temperature as compared to other gemini analogues as well as that of monomeric lipid 1. The phase transitions were reversible and exhibited large hysteresis, indicating that the observed phase transitions were of first order. To probe the surface hydration of these membranous aggregates, Paldan fluorescence studies were performed. These studies indicated the high polarity of the vesicular surface of gemini lipid 2a both in the gel and fluid melted phase as compared to vesicles of other gemini lipids. PMID:17309291

  5. The multiscale backbone of the human phenotype network based on biological pathways

    PubMed Central

    2014-01-01

    Background Networks are commonly used to represent and analyze large and complex systems of interacting elements. In systems biology, human disease networks show interactions between disorders sharing common genetic background. We built pathway-based human phenotype network (PHPN) of over 800 physical attributes, diseases, and behavioral traits; based on about 2,300 genes and 1,200 biological pathways. Using GWAS phenotype-to-genes associations, and pathway data from Reactome, we connect human traits based on the common patterns of human biological pathways, detecting more pleiotropic effects, and expanding previous studies from a gene-centric approach to that of shared cell-processes. Results The resulting network has a heavily right-skewed degree distribution, placing it in the scale-free region of the network topologies spectrum. We extract the multi-scale information backbone of the PHPN based on the local densities of the network and discarding weak connection. Using a standard community detection algorithm, we construct phenotype modules of similar traits without applying expert biological knowledge. These modules can be assimilated to the disease classes. However, we are able to classify phenotypes according to shared biology, and not arbitrary disease classes. We present examples of expected clinical connections identified by PHPN as proof of principle. Conclusions We unveil a previously uncharacterized connection between phenotype modules and discuss potential mechanistic connections that are obvious only in retrospect. The PHPN shows tremendous potential to become a useful tool both in the unveiling of the diseases common biology, and in the elaboration of diagnosis and treatments. PMID:24460644

  6. Are Proteins Just Coiled Cords? Local and Global Analysis of Contact Maps Reveals the Backbone-Dependent Nature of Proteins.

    PubMed

    Santoni, Daniele; Paci, Paola; Di Paola, Luisa; Giuliani, Alessandro

    2016-01-01

    In this work, we present an extensive analysis of protein contact network topology applied to a wide data set. We extended the concept of degree distribution to graphlets, describing local connectivity patterns. We compared results to those derived from artificial networks of the same size (number of nodes), reproducing the average degree of each protein network. The artificial networks resemble the coiling of immaterial cords and we tried to understand if they could catch the protein structure topology upon the sole constraint of backbone (cord). We found a surprisingly similar pattern for local topological descriptors (graphlets distribution) while real proteins and cords differ at large extent in the global topological invariant average shortest path that presumably catches the systemic nature of protein and the non negligible encumbrance of backbone (residues steric hindrance). We demonstrated average shortest path to link polymer length and physical size of the molecule, and its minimization plays the role of `target function` of folding process. PMID:26412790

  7. Functional RNAs exhibit tolerance for non-heritable 2?-5? versus 3?-5? backbone heterogeneity

    NASA Astrophysics Data System (ADS)

    Engelhart, Aaron E.; Powner, Matthew W.; Szostak, Jack W.

    2013-05-01

    A plausible process for non-enzymatic RNA replication would greatly simplify models of the transition from prebiotic chemistry to simple biology. However, all known conditions for the chemical copying of an RNA template result in the synthesis of a complementary strand that contains a mixture of 2?-5? and 3?-5? linkages, rather than the selective synthesis of only 3?-5? linkages as found in contemporary RNA. Here we show that such backbone heterogeneity is compatible with RNA folding into defined three-dimensional structures that retain molecular recognition and catalytic properties and, therefore, would not prevent the evolution of functional RNAs such as ribozymes. Moreover, the same backbone heterogeneity lowers the melting temperature of RNA duplexes that would otherwise be too stable for thermal strand separation. By allowing copied strands to dissociate, this heterogeneity may have been one of the essential features that allowed RNA to emerge as the first biopolymer.

  8. Fluorous Peptide Nucleic Acids: PNA Analogues with Fluorine in Backbone (γ-CF2-apg-PNA) Enhance Cellular Uptake.

    PubMed

    Ellipilli, Satheesh; Ganesh, Krishna N

    2015-09-18

    Fluorous PNA analogues possessing fluorine as inherent part of aminopropylglycine (apg) backbone (γ-CF2-apg PNA) have been synthesized and evaluated for biophysical and cell penetrating properties. These form duplexes of higher thermal stability with cRNA than cDNA, although destabilized compared to duplexes of standard aeg-PNA. Cellular uptake of the fluorinated γ-CF2-apg PNAs in NIH 3T3 and HeLa cells was 2-3-fold higher compared to that of nonfluorinated apg PNA, with NIH 3T3 cells showing better permeability compared to HeLa cells. The backbone fluorinated PNAs, which are first in this class, when combined with other chemical modifications may have potential for future PNA-based antisense agents. PMID:26322827

  9. Free vibration analysis of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses

    NASA Astrophysics Data System (ADS)

    Coral, W.; Rossi, C.; Curet, O. M.

    2015-12-01

    This paper presents a Differential Quadrature Element Method for free transverse vibration of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses (fish ribs). The proposed method is based on the theory of a Timoshenko cantilever beam. The effects of the masses (number, magnitude and position) on the value of natural frequencies are investigated. Governing equations, compatibility and boundary conditions are formulated according to the Differential Quadrature rules. The convergence, efficiency and accuracy are compared to other analytical solution proposed in the literature. Moreover, the proposed method has been validate against the physical prototype of a flexible fish backbone. The main advantages of this method, compared to the exact solutions available in the literature are twofold: first, smaller computational cost and second, it allows analysing the free vibration in beams whose section is an arbitrary function, which is normally difficult or even impossible with other analytical methods.

  10. The influence of the primary and secondary xanthan structure on the enzymatic hydrolysis of the xanthan backbone.

    PubMed

    Kool, Marijn M; Schols, Henk A; Delahaije, Roy J B M; Sworn, Graham; Wierenga, Peter A; Gruppen, Harry

    2013-09-12

    Differently modified xanthans, varying in degree of acetylation and/or pyruvylation were incubated with the experimental cellulase mixture C1-G1 from Myceliophthora thermophila C1. The ionic strength and/or temperature of the xanthan solutions were varied, to obtain different xanthan conformations. The exact conformation at the selected incubation conditions was determined by circular dichroism. The xanthan degradation was analyzed by size exclusion chromatography. It was shown that at a fixed xanthan conformation, the backbone degradation by cellulases is equal for each type of xanthan. Complete backbone degradation is only obtained at a fully disordered conformation, indicating that only the secondary xanthan structure influences the final degree of hydrolysis by cellulases. It is thereby shown that, independently on the degree of substitution, xanthan can be completely hydrolyzed to oligosaccharides. These oligosaccharides can be used to further investigate the primary structure of different xanthans and to correlate the molecular structure to the xanthan functionalities. PMID:23911459

  11. Short sequence motifs, overrepresented in mammalian conservednon-coding sequences

    SciTech Connect

    Minovitsky, Simon; Stegmaier, Philip; Kel, Alexander; Kondrashov,Alexey S.; Dubchak, Inna

    2007-02-21

    Background: A substantial fraction of non-coding DNAsequences of multicellular eukaryotes is under selective constraint. Inparticular, ~;5 percent of the human genome consists of conservednon-coding sequences (CNSs). CNSs differ from other genomic sequences intheir nucleotide composition and must play important functional roles,which mostly remain obscure.Results: We investigated relative abundancesof short sequence motifs in all human CNSs present in the human/mousewhole-genome alignments vs. three background sets of sequences: (i)weakly conserved or unconserved non-coding sequences (non-CNSs); (ii)near-promoter sequences (located between nucleotides -500 and -1500,relative to a start of transcription); and (iii) random sequences withthe same nucleotide composition as that of CNSs. When compared tonon-CNSs and near-promoter sequences, CNSs possess an excess of AT-richmotifs, often containing runs of identical nucleotides. In contrast, whencompared to random sequences, CNSs contain an excess of GC-rich motifswhich, however, lack CpG dinucleotides. Thus, abundance of short sequencemotifs in human CNSs, taken as a whole, is mostly determined by theiroverall compositional properties and not by overrepresentation of anyspecific short motifs. These properties are: (i) high AT-content of CNSs,(ii) a tendency, probably due to context-dependent mutation, of A's andT's to clump, (iii) presence of short GC-rich regions, and (iv) avoidanceof CpG contexts, due to their hypermutability. Only a small number ofshort motifs, overrepresented in all human CNSs are similar to bindingsites of transcription factors from the FOX family.Conclusion: Human CNSsas a whole appear to be too broad a class of sequences to possess strongfootprints of any short sequence-specific functions. Such footprintsshould be studied at the level of functional subclasses of CNSs, such asthose which flank genes with a particular pattern of expression. Overallproperties of CNSs are affected by patterns in mutation, suggesting thatselection which causes their conservation is not always verystrong.

  12. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  13. Backbone assignments of mini-RecA intein with short native exteins and an active N-terminal catalytic cysteine.

    PubMed

    Pearson, C Seth; Belfort, Georges; Belfort, Marlene; Shekhtman, Alexander

    2015-10-01

    The backbone resonance assignments of an engineered splicing-inactive mini-RecA intein based on triple resonance experiments with [(13)C,(15)N]-labeled protein are reported. The construct contains inactivating mutations specifically designed to retain most catalytic residues, especially those that are potentially metal-coordinating. The assignments are essential for protein structure determination of a precursor with an active N-terminal catalytic cysteine and for investigation of the atomic details of splicing. PMID:25281002

  14. Direct Formation of the C5?-Radical in the Sugar-Phosphate Backbone of DNA by High Energy Radiation

    PubMed Central

    Adhikary, Amitava; Becker, David; Palmer, Brian J.; Heizer, Alicia N.; Sevilla, Michael D.

    2012-01-01

    Neutral sugar radicals formed in DNA sugar-phosphate backbone are well-established as precursors of biologically important damage such as DNA-strand scission and crosslinking. In this work, we present electron spin resonance (ESR) evidence showing that the sugar radical at C5? (C5?) is one of the most abundant (ca. 30%) sugar radicals formed by ?- and Ar ion-beam irradiated hydrated DNA samples. Taking dimethyl phosphate as a model of sugar-phosphate backbone, ESR and theoretical (DFT) studies of ?-irradiated dimethyl phosphate were carried out. CH3OP(O2?)OCH2 is formed via deprotonation from the methyl group of directly ionized dimethyl phosphate at 77 K. Formation of CH3OP(O2?)OCH2 is independent of dimethyl phosphate concentration (neat or in aqueous solution) or pH. ESR spectra of C5? found in DNA and of CH3OP(O2?)OCH2 do not show an observable ?-phosphorous hyperfine coupling (HFC). Further, C5? found in DNA does not show a significant C4?-H ?proton HFC. Applying the DFT/B3LYP/6-31G(d) method, a study of conformational dependence of the phosphorous HFC in CH3OP(O2?)OCH2 shows that in its minimum energy conformation, CH3OP(O2?)OCH2 has a negligible ?-phosphorous HFC. Based on these results, formation of radiation-induced C5? is proposed to occur via a very rapid deprotonation from the directly ionized sugar-phosphate backbone and rate of this deprotonation must be faster than that of energetically downhill transfer of the unpaired spin (hole) from ionized sugar-phosphate backbone to the DNA bases. Moreover, C5? in irradiated DNA is found to be in a conformation that does not exhibit ? proton or ? phosphorous HFCs. PMID:22553971

  15. Molecular dynamics simulations of single-component bottle-brush polymers with flexible backbones under poor solvent conditions

    NASA Astrophysics Data System (ADS)

    Fytas, Nikolaos G.; Theodorakis, Panagiotis E.

    2013-07-01

    Conformations of a single-component bottle-brush polymer with a fully flexible backbone under poor solvent conditions are studied by molecular dynamics simulations, using a coarse-grained bead-spring model with side chains of up to N = 40 effective monomers. By variation of the solvent quality and the grafting density σ with which side chains are grafted onto the flexible backbone, we study for backbone lengths of up to Nb = 100 the crossover from the brush/coil regime to the dense collapsed state. At lower temperatures, where collapsed chains with a constant monomer density are observed, the choice of the above parameters does not play any role and it is the total number of monomers that defines the dimensions of the chains. Furthermore, bottle-brush polymers with longer side chains possess higher spherical symmetry compared to polymers with lower side-chain lengths in contrast to what one may intuitively expect, as the stretching of the side chains is less important than the increase of their length. At higher temperatures, always below the Theta (Θ) temperature, coil-like configurations, similar to a single polymer chain, or brush-like configurations, similar to a homogeneous cylindrical bottle-brush polymer with a rigid backbone, are observed, depending on the choice of the particular parameters N and σ. In the crossover regime between the collapsed state (globule) and the coil/brush regime the acylindricity increases, whereas for temperatures outside of this range, bottle-brush polymers maintain a highly cylindrical symmetry in all configurational states.

  16. Helium-abundance and other composition effects on the properties of stellar surface convection in solar-like main-sequence stars

    SciTech Connect

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre

    2013-12-01

    We investigate the effect of helium abundance and ?-element enhancement on the properties of convection in envelopes of solar-like main-sequence stars using a grid of three-dimensional radiation hydrodynamic simulations. Helium abundance increases the mean molecular weight of the gas and alters opacity by displacing hydrogen. Since the scale of the effect of helium may depend on the metallicity, the grid consists of simulations with three helium abundances (Y = 0.1, 0.2, 0.3), each with two metallicities (Z = 0.001, 0.020). We find that changing the helium mass fraction generally affects structure and convective dynamics in a way opposite to that of metallicity. Furthermore, the effect is considerably smaller than that of metallicity. The signature of helium differs from that of metallicity in the manner in which the photospheric velocity distribution is affected. We also find that helium abundance and surface gravity behave largely in similar ways, but differ in the way they affect the mean molecular weight. A simple model for spectral line formation suggests that the bisectors and absolute Doppler shifts of spectral lines depend on the helium abundance. We look at the effect of ?-element enhancement and find that it has a considerably smaller effect on the convective dynamics in the superadiabatic layer compared to that of helium abundance.

  17. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees C, 30 degrees C, and 35 degrees C.

    PubMed

    Ebrahimi, Sirous; Gabus, Sbastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2010-07-01

    Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures. PMID:20461512

  18. The effect of junction modes between backbones and side chains of polyimides on the stability of liquid crystal vertical alignment.

    PubMed

    Che, Xinyuan; Gong, Shiming; Zhang, Heng; Liu, Bin; Wang, Yinghan

    2016-01-27

    Polyimides (PI-N9 and PI-N12) were synthesized from two kinds of functional diamines, whose junction modes between backbones and side chains were different. Side chains of PI-N9 were linked to the backbones with an ether bond spacer; and side chains of PI-N12 were directly linked to the backbones without any spacer. The PI alignment layer surfaces were investigated by atomic force microscopy, surface free energy measurements, X-ray photo-electron spectroscopy and polarized attenuated total reflection Fourier transformed infrared spectroscopy. It was found that PI-N9 lost the vertical alignment capability after high-strength rubbing, while PI-N12 could still induce liquid crystals (LCs) to align vertically under the same condition. The mechanism of the macroscopic molecular orientation of the PI surface is proposed. During the high-strength rubbing process, the side chain could rotate around the flexible ether bond which existed between the side chain and the main chain of PI-N9 and then fell over. Therefore, PI-N9 could not induce the vertical alignment of LCs anymore. But PI-N12 could keep LCs aligning vertically all the time, which proved that the stability of LC alignment induced by PI-N12 was better. PMID:26766667

  19. NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of AT phosphoramidite building blocks

    PubMed Central

    Schmidtgall, Boris; Hbartner, Claudia

    2015-01-01

    Summary Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at TT sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at XT motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' AT phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues. PMID:25670992

  20. Predicting Protein Backbone Chemical Shifts From C? Coordinates: Extracting High Resolution Experimental Observables from Low Resolution Models

    PubMed Central

    2015-01-01

    Given the demonstrated utility of coarse-grained modeling and simulations approaches in studying protein structure and dynamics, developing methods that allow experimental observables to be directly recovered from coarse-grained models is of great importance. In this work, we develop one such method that enables protein backbone chemical shifts (1HN, 1H?, 13C?, 13C, 13C?, and 15N) to be predicted from C? coordinates. We show that our C?-based method, LARMORC?, predicts backbone chemical shifts with comparable accuracy to some all-atom approaches. More importantly, we demonstrate that LARMORC? predicted chemical shifts are able to resolve native structure from decoy pools that contain both native and non-native models, and so it is sensitive to protein structure. As an application, we use LARMORC? to characterize the transient state of the fast-folding protein gpW using recently published NMR relaxation dispersion derived backbone chemical shifts. The model we obtain is consistent with the previously proposed model based on independent analysis of the chemical shift dispersion pattern of the transient state. We anticipate that LARMORC? will find utility as a tool that enables important protein conformational substates to be identified by parsing trajectories and ensembles generated using coarse-grained modeling and simulations. PMID:25620895

  1. A maximum entropy approach to the study of residue-specific backbone angle distributions in ?-synuclein, an intrinsically disordered protein

    PubMed Central

    Mantsyzov, Alexey B; Maltsev, Alexander S; Ying, Jinfa; Shen, Yang; Hummer, Gerhard; Bax, Ad

    2014-01-01

    ?-Synuclein is an intrinsically disordered protein of 140 residues that switches to an ?-helical conformation upon binding phospholipid membranes. We characterize its residue-specific backbone structure in free solution with a novel maximum entropy procedure that integrates an extensive set of NMR data. These data include intraresidue and sequential HNH? and HNHN NOEs, values for 3JHNH?, 1JH?C?, 2JC?N, and 1JC?N, as well as chemical shifts of 15N, 13C?, and 13C? nuclei, which are sensitive to backbone torsion angles. Distributions of these torsion angles were identified that yield best agreement to the experimental data, while using an entropy term to minimize the deviation from statistical distributions seen in a large protein coil library. Results indicate that although at the individual residue level considerable deviations from the coil library distribution are seen, on average the fitted distributions agree fairly well with this library, yielding a moderate population (2030%) of the PPII region and a somewhat higher population of the potentially aggregation-prone ? region (2040%) than seen in the database. A generally lower population of the ?R region (1020%) is found. Analysis of 1H1H NOE data required consideration of the considerable backbone diffusion anisotropy of a disordered protein. PMID:24976112

  2. Altered backbone and side-chain interactions result in route heterogeneity during the folding of interleukin-1? (IL-1?).

    PubMed

    Capraro, Dominique T; Lammert, Heiko; Heidary, David K; Roy, Melinda; Gross, Larry A; Onuchic, Jos N; Jennings, Patricia A

    2013-08-20

    Deletion of the ?-bulge trigger-loop results in both a switch in the preferred folding route, from the functional loop packing folding route to barrel closure, as well as conversion of the agonist activity of IL-1? into antagonist activity. Conversely, circular permutations of IL-1? conserve the functional folding route as well as the agonist activity. These two extremes in the folding-functional interplay beg the question of whether mutations in IL-1? would result in changes in the populations of heterogeneous folding routes and the signaling activity. A series of topologically equivalent water-mediated ?-strand bridging interactions within the pseudosymmetric ?-trefoil fold of IL-1? highlight the backbone water interactions that stabilize the secondary and tertiary structure of the protein. Additionally, conserved aromatic residues lining the central cavity appear to be essential for both stability and folding. Here, we probe these protein backbone-water molecule and side chain-side chain interactions and the role they play in the folding mechanism of this geometrically stressed molecule. We used folding simulations with structure-based models, as well as a series of folding kinetic experiments to examine the effects of the F42W core mutation on the folding landscape of IL-1?. This mutation alters water-mediated backbone interactions essential for maintaining the trefoil fold. Our results clearly indicate that this perturbation in the primary structure alters a structural water interaction and consequently modulates the population of folding routes accessed during folding and signaling activity. PMID:23972849

  3. Altered Backbone and Side-Chain Interactions Result in Route Heterogeneity during the Folding of Interleukin-1? (IL-1?)

    PubMed Central

    Capraro, DominiqueT.; Lammert, Heiko; Heidary, DavidK.; Roy, Melinda; Gross, LarryA.; Onuchic, JosN.; Jennings, PatriciaA.

    2013-01-01

    Deletion of the ?-bulge trigger-loop results in both a switch in the preferred folding route, from the functional loop packing folding route to barrel closure, as well as conversion of the agonist activity of IL-1? into antagonist activity. Conversely, circular permutations of IL-1? conserve the functional folding route as well as the agonist activity. These two extremes in the folding-functional interplay beg the question of whether mutations in IL-1? would result in changes in the populations of heterogeneous folding routes and the signaling activity. A series of topologically equivalent water-mediated ?-strand bridging interactions within the pseudosymmetric ?-trefoil fold of IL-1? highlight the backbone water interactions that stabilize the secondary and tertiary structure of the protein. Additionally, conserved aromatic residues lining the central cavity appear to be essential for both stability and folding. Here, we probe these protein backbone-water molecule and side chain-side chain interactions and the role they play in the folding mechanism of this geometrically stressed molecule. We used folding simulations with structure-based models, as well as a series of folding kinetic experiments to examine the effects of the F42W core mutation on the folding landscape of IL-1?. This mutation alters water-mediated backbone interactions essential for maintaining the trefoil fold. Our results clearly indicate that this perturbation in the primary structure alters a structural water interaction and consequently modulates the population of folding routes accessed during folding and signaling activity. PMID:23972849

  4. Electron-impact total ionization cross sections of DNA sugar-phosphate backbone and an additivity principle

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.

    2005-01-01

    The improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)l is used to study the total ionization cross sections of the DNA sugar-phosphate backbone by electron impact. Calculations using neutral fragments found that the total ionization cross sections of C3' - and C5', -deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3' - and C5" -deoxyribose-phospate cross sections, differing by less than 10%. The result implies that certain properties of the-DNA, like the total singly ionization cross section, are localized properties and a building-up or additivity principle may apply. This allows us to obtain accurate properties of larger molecular systems built up from the results of smaller subsystem fragments. Calculations are underway using a negatively charged sugar-phosphate backbone with a metal counter-ion.

  5. A natural fiber composite in a pelagic limestone-chert sequence. The importance of mechanical stratigraphy for fracture type development in carbonate anticlines.

    NASA Astrophysics Data System (ADS)

    Petracchini, Lorenzo; Antonellini, Marco; Scrocca, Davide; Billi, Andrea

    2013-04-01

    Thrust fault-related folds in carbonate rocks are characterized by deformation accommodated by different kinds of structures, such as joints, faults, pressure solution seams (PSSs), and deformation bands, which may form at various stages during the folding process. Defining the distribution, orientation, and the type of fold-related structures and understanding the relationships between folding and fracturing is significant both for theoretical and practical purposes. Furthermore, as the deformation related to the folding process influences fluid flow through rocks, identifying the types of structures formed during folding is as important as predicting their geometries. To unravel the relationship between mechanical stratigraphy and folding process, the well-exposed Cingoli anticline (Northern Apennines), has been studied in detail. The Upper Cretaceous-Middle Eocene stratigraphy of the Cingoli anticline is characterized by a pelagic multilayer made up of fine-grained pelagic limestones and, marly limestones, in places alternated with thin continuous chert layers. The presence of several outcrops located in different structural positions of the anticline makes the Cingoli anticline an excellent natural laboratory to investigate relationships between folding, fracturing, and mechanical stratigraphy relative to the structural setting of the fold. The field data collected show that high angle to bedding PSSs, which formed before tilting and during the first stage of folding, are not homogeneously distributed in the pelagic limestones. Generally, high angle to bedding PSSs form in the marly pelagic limestones and they have been observed in several outcrops and in different structural positions except where the marly limestones are inter-bedded with stiffer chert layers. In order to analyse theoretically what observed in the field, we compared the deformation of limestones and chert layers with the deformation acting on fiber composites. In the mechanics of materials, composites refer to a matrix reinforced with particles, fibers, or laminae. During the early stage of folding, when the compressive stress is almost bedding parallel, chert layers act as a stiff lamina embedded in a weak limestone matrix. As a result, the stress is partitioned and the chert layers bear the greatest stress. Considering the mechanical properties (Poisson and Young's modulus) of the two materials (chert and limestone), and the estimated tectonic stress acting at the onset of the folding process, the stress magnitude in the limestone beds does not reach the expected value for the onset of pressure solution. For this reason, pelagic limestones containing chert layers are mainly characterized by joints whereas PSSs form in pelagic limestones without the stiffer phase (chert). This study suggests that within the same fold, and even within the same formation, different mechanical units can be characterized by different fractures types and fluid flow behaviour as a result of mechanical stratigraphy distribution.

  6. Proteoglycan sequence

    PubMed Central

    Li, Lingyun; Ly, Mellisa

    2012-01-01

    Proteoglycans (PGs) are among the most structurally complex biomacromolecules in nature. They are present in all animal cells and frequently exert their critical biological functions through interactions with protein ligands and receptors. PGs are comprised of a core protein to which one or multiple, heterogeneous, and polydisperse glycosaminoglycan (GAG) chains are attached. Proteins, including the protein core of PGs, are now routinely sequenced either directly using proteomics or indirectly using molecular biology through their encoding DNA. The sequencing of the GAG component of PGs poses a considerably more difficult challenge because of the relatively underdeveloped state of glycomics and because the control of their biosynthesis in the endoplasmic reticulum and the Golgi is poorly understood and not believed to be template driven. Recently, the GAG chain of the simplest PG has been suggested to have a defined sequence based on its top-down Fourier transform mass spectral sequencing. This review examines the advances made over the past decade in the sequencing of GAG chains and the challenges the field face in sequencing complex PGs having critical biological functions in developmental biology and pathogenesis. PMID:22513887

  7. Mineralogy, composition and PGM of chromitites from Pefki, Pindos ophiolite complex (NW Greece): evidence for progressively elevated fAs conditions in the upper mantle sequence

    NASA Astrophysics Data System (ADS)

    Kapsiotis, Argirios; Grammatikopoulos, Tassos A.; Tsikouras, Basilios; Hatzipanagiotou, Konstantin; Zaccarini, Federica; Garuti, Giorgio

    2011-01-01

    The Pindos ophiolite complex, located in the northwestern part of continental Greece, hosts various chromite deposits of both metallurgical (high-Cr) and refractory (high-Al) type. The Pefki chromitites are banded and sub-concordant to the surrounding serpentinized dunites. The Cr# [Cr/(Cr + Al)] of magnesiochromite varies between 0.75 and 0.79. The total PGE grade ranges from 105.9 up to 300.0 ppb. IPGE are higher than PPGE, typical of mantle hosted ophiolitic chromitites. The PGM assemblage in chromitites comprises anduoite, ruarsite, laurite, irarsite, sperrylite, hollingworthite, Os-Ru-Ir alloys including osmium and rutheniridosmine, Ru-bearing oxides, braggite, paolovite, platarsite, cooperite, vysotskite, and palladodymite. Iridarsenite and omeiite were also observed as exsolutions in other PGM. Rare electrum and native Ag are recovered in concentrates. This PGM assemblage is of great petrogenetic importance because it is significantly different from that commonly observed in podiform mantle-hosted and banded crustal-hosted ophiolitic chromitites. PGE chalcogenides of As and S are primary, and possibly crystallized directly from a progressively enriched in As boninitic melt before or during magnesiochromite precipitation. The presence of Ru-bearing oxides implies simultaneous desulfurization and dearsenication processes. Chemically zoned laurite and composite paolovite-electrum intergrowths are indicative of the relatively high mobility of certain PGE at low temperatures under locally oxidizing conditions. The PGM assemblage and chemistry, in conjunction with geological and petrologic data of the studied chromitites, indicate that it is characteristic of chromitites found within or close to the petrologic Moho. Furthermore, the strikingly different PGM assemblages between the high-Cr chromitites within the Pindos massif is suggestive of non-homogeneous group of ores.

  8. Development of novel bifunctional chelating agents containing rigid cyclic hydrocarbon backbones

    SciTech Connect

    Sweet, M.P.; Joshi, V.; Mease, R.C.

    1995-05-01

    We are developing a new class of ligands in which the metal-binding polyaminocarboxylate groups are incorporated onto rigid cyclic hydrocarbon backbones. These ligands, with increased preorganization, should produce radiometal-bioconjugates with higher in-vivo stability. The synthesis of the first in this series of ligands (2,3-diaminobicyclo[2.2.2] octanetetraacetic acid, BODTA) began with a Diels-Alder reaction of 1,3-diacetylimidazolin-2-one and 1,3-cyclohexadiene. Base hydrolysis, alkylation with ethyl iodoacetate, hydrolysis of the esters, and catalytic hydrogenation gave BODTA. For conjugation to MAbs, an average of one COOH group of unsaturated BODTA was converted into an NHS ester using 0.8 equivalent of DCC. The second ligand under development is the decadentate tethered bis-cyclohexyl-EDTA (bis-CDTA) in which 2 cyclohexyl rings are tied together with an ethylene tether. Acylation of monotrityl-1,2-diaminocyclohexane with the di-NHS ester of oxalic acid, reduction of the amide moieties, and removal of the trityl groups followed by cyanomethylation has afforded a hexanitrile whose hydrolysis will produce tethered bis-CDTA. An anti-CEA F(ab{prime}){sub 2} MAb was conjugated with an average of 0.6 BODTA per MAb molecule, labeled with Co-57, and purified by size-exclusion HPLC. Stability of this radioconjugate in mouse serum at 48 h was somewhat better (2% loss) than that of the conventional DTPA-dianhydride (DTPA-DA) conjugate (8% loss). In human tumor-xenografted nude mice (LS-174T cells), tumor (T), blood (B), liver (L), and kidney (K) uptakes (% ID/g) at 24h were: TODTA, 21.6, 4.4, 4.8, 6.0; DTPA-DA, 13.6, 2.5, 5.0, 2.9. The tumor to normal tissue ratios at 48 h for BODTA and DTPA-DA respectively were: T/B, 18.0, 13.9; T/L 4.9, 2.3; T/K, 5.4, 3.9. These preliminary results show promise for using the basic BODTA structure to produce improved bioconjugates with small radiometal ions.

  9. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from differential intramolecular interactions within the intact inhibitors (OMIPF3 vs OMTKY3) in a region of each protein that becomes disordered upon reactive site cleavage (to OMIPF3* and OMTKY3*). PMID:12731859

  10. The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: A side-chain prediction algorithm based on side-chain backbone interactions

    PubMed Central

    Spassov, Velin Z.; Yan, Lisa; Flook, Paul K.

    2007-01-01

    The basic differences between the 20 natural amino acid residues are due to differences in their side-chain structures. This characteristic design of protein building blocks implies that side-chain–side-chain interactions play an important, even dominant role in 3D-structural realization of amino acid codes. Here we present the results of a comparative analysis of the contributions of side-chain–side-chain (s-s) and side-chain–backbone (s-b) interactions to the stabilization of folded protein structures within the framework of the CHARMm molecular data model. Contrary to intuition, our results suggest that side-chain–backbone interactions play the major role in side-chain packing, in stabilizing the folded structures, and in differentiating the folded structures from the unfolded or misfolded structures, while the interactions between side chains have a secondary effect. An additional analysis of electrostatic energies suggests that combinatorial dominance of the interactions between opposite charges makes the electrostatic interactions act as an unspecific folding force that stabilizes not only native structure, but also compact random conformations. This observation is in agreement with experimental findings that, in the denatured state, the charge–charge interactions stabilize more compact conformations. Taking advantage of the dominant role of side-chain–backbone interactions in side-chain packing to reduce the combinatorial problem, we developed a new algorithm, ChiRotor, for rapid prediction of side-chain conformations. We present the results of a validation study of the method based on a set of high resolution X-ray structures. PMID:17242380

  11. The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: a side-chain prediction algorithm based on side-chain backbone interactions.

    PubMed

    Spassov, Velin Z; Yan, Lisa; Flook, Paul K

    2007-03-01

    The basic differences between the 20 natural amino acid residues are due to differences in their side-chain structures. This characteristic design of protein building blocks implies that side-chain-side-chain interactions play an important, even dominant role in 3D-structural realization of amino acid codes. Here we present the results of a comparative analysis of the contributions of side-chain-side-chain (s-s) and side-chain-backbone (s-b) interactions to the stabilization of folded protein structures within the framework of the CHARMm molecular data model. Contrary to intuition, our results suggest that side-chain-backbone interactions play the major role in side-chain packing, in stabilizing the folded structures, and in differentiating the folded structures from the unfolded or misfolded structures, while the interactions between side chains have a secondary effect. An additional analysis of electrostatic energies suggests that combinatorial dominance of the interactions between opposite charges makes the electrostatic interactions act as an unspecific folding force that stabilizes not only native structure, but also compact random conformations. This observation is in agreement with experimental findings that, in the denatured state, the charge-charge interactions stabilize more compact conformations. Taking advantage of the dominant role of side-chain-backbone interactions in side-chain packing to reduce the combinatorial problem, we developed a new algorithm, ChiRotor, for rapid prediction of side-chain conformations. We present the results of a validation study of the method based on a set of high resolution X-ray structures. PMID:17242380

  12. Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens.

    PubMed

    Ye, Xudong; Williams, Edward J; Shen, Junjiang; Johnson, Susan; Lowe, Brenda; Radke, Sharon; Strickland, Steve; Esser, James A; Petersen, Michael W; Gilbertson, Larry A

    2011-08-01

    Single transgene copy, vector backbone-free transgenic crop plants are highly desired for functional genomics and many biotechnological applications. We demonstrate that binary vectors that use a replication origin derived from the Ri plasmid of Agrobacterium rhizogenes (oriRi) increase the frequency of single copy, backbone-free transgenic plants in Agrobacterium tumefaciens mediated transformation of soybean, canola, and corn, compared to RK2-derived binary vectors (RK2 oriV). In large scale soybean transformation experiments, the frequency of single copy, backbone-free transgenic plants was nearly doubled in two versions of the oriRi vectors compared to the RK2 oriV control vector. In canola transformation experiments, the oriRi vector produced more single copy, backbone-free transgenic plants than did the RK2 oriV vector. In corn transformation experiments, the frequency of single copy backbone-free transgenic plants was also significantly increased when using the oriRi vector, although the transformation frequency dropped. These results, derived from transformation experiments using three crops, indicate the advantage of oriRi vectors over RK2 oriV binary vectors for the production of single copy, backbone-free transgenic plants using Agrobacterium-mediated transformation. PMID:21042934

  13. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA.

    PubMed

    Zgarbov, Marie; poner, Ji?; Otyepka, Michal; Cheatham, Thomas E; Galindo-Murillo, Rodrigo; Jure?ka, Petr

    2015-12-01

    Z-DNA duplexes are a particularly complicated test case for current force fields. We performed a set of explicit solvent molecular dynamics (MD) simulations with various AMBER force field parametrizations including our recent refinements of the ?/? and glycosidic torsions. None of these force fields described the ZI/ZII and other backbone substates correctly, and all of them underpredicted the population of the important ZI substate. We show that this underprediction can be attributed to an inaccurate potential for the sugar-phosphate backbone torsion angle ?. We suggest a refinement of this potential, ?OL1, which was derived using our recently introduced methodology that includes conformation-dependent solvation effects. The new potential significantly increases the stability of the dominant ZI backbone substate and improves the overall description of the Z-DNA backbone. It also has a positive (albeit small) impact on another important DNA form, the antiparallel guanine quadruplex (G-DNA), and improves the description of the canonical B-DNA backbone by increasing the population of BII backbone substates, providing a better agreement with experiment. We recommend using ?OL1 in combination with our previously introduced corrections, ??OL1 and ?OL4, (the combination being named OL15) as a possible alternative to the current ? torsion potential for more accurate modeling of nucleic acids. PMID:26588601

  14. Thermoplastic copolyimides and composites therefrom

    NASA Technical Reports Server (NTRS)

    Harris, Frank (Inventor); Gabori, Patricia A. (Inventor)

    1994-01-01

    Copolyimide compositions and methods for their preparation which are melt-processible at relative low pressures, i.e. less than 1000 psi, and are suited for laminating and molding, are described. The invention additionally encompasses copolyimide precursors, reinforced polyimide composites and laminates made from said polyimides where the composite is reinforced by fibrous materials. This is achieved by reacting at least one aromatic dianhydride where each anhydride group is located on an aromatic ring with the carbonyl units in an ortho orientation relative to one another, with at least one diamine which is capable of a transmidization reaction upon incorporation into the polyimide backbone, and with at least one other diamine which is not capable of undergoing such reaction, the diamine which is capable of undergoing the transimidization reaction being present in an amount of from about 1-50 mole percent in relation to the diamine that is not susceptable to transimidization.

  15. Increased hydrophobicity and decreased backbone flexibility explain lower solubility of cataract-linked mutant of γD-crystallin

    PubMed Central

    Banerjee, Priya R.; Puttamadappa, Shadakshara S.; Pande, Ajay; Shekhtman, Alexander; Pande, Jayanti

    2011-01-01

    A number of point mutations in γD-crystallin are associated with human cataract. The Pro23Thr (P23T) mutation is perhaps the most common, geographically-widespread, and presents itself in a variety of phenotypes. It is therefore important to understand the molecular basis of lens opacity due to this mutation. In our earlier studies we noted that P23T shows retrograde and sharply lowered solubility, possibly due to the emergence of hydrophobic patches involved in protein aggregation. Binding of Bis-ANS dye, a commonly used probe of surfacehydrophobicity, competed with aggregation, suggesting that the residues involved in Bis-ANS binding are also involved in protein aggregation. Here, using NMR spectroscopy in conjunction with Bis-ANS binding, we identify three residues, Y16, D21 and Y50 in P23T, involved in binding the dye. Furthermore, using 15N NMR-relaxation experiments, we show that in the mutant protein, backbone fluctuations are restricted in picosecond to nanosecond and microsecond time-scales, relative to the wild type. Our present studies identify the residues involved in these two pivotal characteristics of the mutant protein, namely increased surface hydrophobicity and restricted mobility of the protein backbone, which can explain the nucleation and further propagation of protein aggregates. Thus we have now identified the residues in the P23T mutant that give rise to novel hydrophobic surfaces, as well as those regions of the protein backbone where fluctuations in different time-scales are restricted, providing a comprehensive understanding of how lens opacity could result from this mutation. PMID:21827768

  16. Using protein backbone mutagenesis to dissect the link between ion occupancy and C-type inactivation in K+ channels.

    PubMed

    Matulef, Kimberly; Komarov, Alexander G; Costantino, Corey A; Valiyaveetil, Francis I

    2013-10-29

    K(+) channels distinguish K(+) from Na(+) in the selectivity filter, which consists of four ion-binding sites (S1-S4, extracellular to intracellular) that are built mainly using the carbonyl oxygens from the protein backbone. In addition to ionic discrimination, the selectivity filter regulates the flow of ions across the membrane in a gating process referred to as C-type inactivation. A characteristic of C-type inactivation is a dependence on the permeant ion, but the mechanism by which permeant ions modulate C-type inactivation is not known. To investigate, we used amide-to-ester substitutions in the protein backbone of the selectivity filter to alter ion binding at specific sites and determined the effects on inactivation. The amide-to-ester substitutions in the protein backbone were introduced using protein semisynthesis or in vivo nonsense suppression approaches. We show that an ester substitution at the S1 site in the KcsA channel does not affect inactivation whereas ester substitutions at the S2 and S3 sites dramatically reduce inactivation. We determined the structure of the KcsA S2 ester mutant and found that the ester substitution eliminates K(+) binding at the S2 site. We also show that an ester substitution at the S2 site in the KvAP channel has a similar effect of slowing inactivation. Our results link C-type inactivation to ion occupancy at the S2 site. Furthermore, they suggest that the differences in inactivation of K(+) channels in K(+) compared with Rb(+) are due to different ion occupancies at the S2 site. PMID:24128761

  17. Backbone and side-chain NMR assignments for the bromodomain of mouse BAZ1A (ACF1).

    PubMed

    Fan, Kai; Chen, Shengrong; Ge, Yifeng; Ye, Kaiqin; Yao, Qi; Jing, Jun; Zhang, Jiahai; Tu, Xiaoming; Yao, Bing

    2016-04-01

    BAZ1A, a non-catalytic subunit of the chromatin remodeler complexes ACF and CHRAC, is thought to modulate the ATPase's activity of the complexes and participate in gene transcription, DNA damage checkpoint and double-strand break repair. Recently, the essential role of BAZ1A in mouse male fertility has also been reported. BAZ1A contains one C-terminal bromodomain, which specifically recognizes acetylation of lysine. Here, we report the backbone and side chain (1)H, (13)C and (15)N resonance assignment of the mouse BAZ1A-bromodomain, as a basis for further functional studies and structure determination. PMID:26542424

  18. Incorporation of Heterocycles into the Backbone of Peptoids to Generate Diverse Peptoid-Inspired One Bead One Compound Libraries

    PubMed Central

    Aditya, Animesh; Kodadek, Thomas

    2012-01-01

    Combinatorial libraries of peptoids (oligo-N-substituted glycines) have proven to be useful sources of protein ligands. Each unit of the peptoid oligomer is derived from 2-haloacetic acid and a primary amine. In order to increase the chemical diversity available in peptoid libraries, we demonstrate here that heterocyclic halomethyl carboxylic acids can be employed as backbone building blocks in the synthesis of peptoid-based oligomers. Optimized conditions are reported that allow the creation of large, high quality combinatorial libraries containing these units. PMID:22320121

  19. MSLICE Sequencing

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas M.; Joswig, Joseph C.; Shams, Khawaja S.; Norris, Jeffrey S.; Morris, John R.

    2011-01-01

    MSLICE Sequencing is a graphical tool for writing sequences and integrating them into RML files, as well as for producing SCMF files for uplink. When operated in a testbed environment, it also supports uplinking these SCMF files to the testbed via Chill. This software features a free-form textural sequence editor featuring syntax coloring, automatic content assistance (including command and argument completion proposals), complete with types, value ranges, unites, and descriptions from the command dictionary that appear as they are typed. The sequence editor also has a "field mode" that allows tabbing between arguments and displays type/range/units/description for each argument as it is edited. Color-coded error and warning annotations on problematic tokens are included, as well as indications of problems that are not visible in the current scroll range. "Quick Fix" suggestions are made for resolving problems, and all the features afforded by modern source editors are also included such as copy/cut/paste, undo/redo, and a sophisticated find-and-replace system optionally using regular expressions. The software offers a full XML editor for RML files, which features syntax coloring, content assistance and problem annotations as above. There is a form-based, "detail view" that allows structured editing of command arguments and sequence parameters when preferred. The "project view" shows the user s "workspace" as a tree of "resources" (projects, folders, and files) that can subsequently be opened in editors by double-clicking. Files can be added, deleted, dragged-dropped/copied-pasted between folders or projects, and these operations are undoable and redoable. A "problems view" contains a tabular list of all problems in the current workspace. Double-clicking on any row in the table opens an editor for the appropriate sequence, scrolling to the specific line with the problem, and highlighting the problematic characters. From there, one can invoke "quick fix" as described above to resolve the issue. Once resolved, saving the file causes the problem to be removed from the problem view.

  20. Synthesis, drug release, and biological evaluation of new anticancer drug-bioconjugates containing somatostatin backbone cyclic analog as a targeting moiety.

    PubMed

    Redko, Boris; Ragozin, Elena; Andreii, Bazylevich; Helena, Tuchinsky; Amnon, Albeck; Talia, Shekhter Zahavi; Mor, Oron-Herman; Genady, Kostenich; Gary, Gellerman

    2015-11-01

    Peptide conjugates containing somatostatin (SST) cyclic analogs as a targeting moiety are able to deliver chemotherapeutic agents specifically to cancer cells expressing SST receptors (SSTRs), and hence increasing their local efficacy while limiting the peripheral toxicity. Here, we report on the synthesis and biochemical characterization of new SSTR-specific anticancer peptide conjugates, with different anticancer payloads acting through different oncogenic mechanisms to evaluate their biological activities and to provide a comparative study of their drug release profiles. The SSTR2-specific backbone cyclic peptide 3207-86 was chosen for the synthesis of a variety of novel anticancer drug conjugates with a broad drug release capabilities. The N-terminus of 3207-86 was equipped with GABA to generate free amino group available for the conjugation of chlorambucil, Camptothecin (CPT), Combretastatin 4A, ABT-751, and Amonafide through the formation of various biodegradable bonds. The chemo- and biostability/drug release of all the synthetic compounds was investigated at various pHs and in the presence of mouse liver homogenate, respectively. Their selective cytotoxic effect was evaluated on several human cancer cell lines that overexpress SSTR2. Compared with the free drugs, our peptide-drug conjugates exhibited considerable cytotoxic effect on cancer cell lines versus low SSTR2-expressed human embryonic kidney cells. Functional versatility of the conjugates was reflected in the variability of their drug release profiles, whereas the conserved sequence of a selective binding to the SSTR2 likely preserved their binding to the receptor and consequently their favorable toxicity toward targeted cancer cells. 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 104: 743-752, 2015. PMID:26058565

  1. {{text{C}}_{α }} - {text{C}} Bond Cleavage of the Peptide Backbone in MALDI In-Source Decay Using Salicylic Acid Derivative Matrices

    NASA Astrophysics Data System (ADS)

    Asakawa, Daiki; Takayama, Mitsuo

    2011-07-01

    The use of 5-formylsalicylic acid (5-FSA) and 5-nitrosalicylic acid (5-NSA) as novel matrices for in-source decay (ISD) of peptides in matrix-assisted laser desorption/ionization (MALDI) is described. The use of 5-FSA and 5-NSA generated a- and x-series ions accompanied by oxidized peptides [M - 2 H + H]+. The preferential formation of a- and x-series ions was found to be dependent on the hydrogen-accepting ability of matrix. The hydrogen-accepting ability estimated from the ratio of signal intensity of oxidized product [M - 2 H + H]+ to that of non-oxidized protonated molecule [M + H]+ of peptide was of the order 5-NSA > 5-FSA > 5-aminosalicylic acid (5-ASA) ≒ 2,5-dihydroxyl benzoic acid (2,5-DHB) ≒ 0. The results suggest that the hydrogen transfer reaction from peptide to 5-FSA and 5-NSA occurs during the MALDI-ISD processes. The hydrogen abstraction from peptides results in the formation of oxidized peptides containing a radical site on the amide nitrogen with subsequent radical-induced cleavage at the {{{C}}_{α }} - {{C}} bond, leading to the formation of a- and x-series ions. The most significant feature of MALDI-ISD with 5-FSA and 5-NSA is the specific cleavage of the {{{C}}_{α }} - {{C}} bond of the peptide backbone without degradation of side-chain and post-translational modifications (PTM). The matrix provides a useful complementary method to conventional MALDI-ISD for amino acid sequencing and site localization of PTMs in peptides.

  2. Evaluation of Diverse α/β Backbone Patterns for Functional α-Helix Mimicry: Analogues of the Bim BH3 Domain

    PubMed Central

    Boersma, Melissa D.; Haase, Holly S.; Peterson-Kaufman, Kimberly J.; Lee, Erinna F.; Clarke, Oliver B.; Colman, Peter M.; Smith, Brian J.; Horne, W. Seth; Fairlie, W. Douglas; Gellman, Samuel H.

    2012-01-01

    Peptidic oligomers that contain both α- and β-amino acid residues, in regular patterns throughout the backbone, are emerging as structural mimics of α-helix-forming conventional peptides (composed exclusively of α-amino acid residues). Here we describe a comprehensive evaluation of diverse α/β-peptide homologues of the Bim BH3 domain in terms of their ability to bind to the BH3-recognition sites on two partner proteins, Bcl-xL and Mcl-1. These proteins are members of the anti-apoptotic Bcl-2 family, and both bind tightly to the Bim BH3 domain itself. All α/β-peptide homologues retain the side chain sequence of the Bim BH3 domain, but each homologue contains periodic α-residue → β3-residue substitutions. Previous work has shown that the ααβαααβ pattern, which aligns the β3-residues in a 'stripe' along one side of the helix, can support functional α-helix mimicry, and the results reported here support this conclusion. The present study provides the first evaluation of functional mimicry by ααβ and αααβ patterns, which cause the β3-residues to spiral around the helix periphery. We find that the αααβ pattern can support effective mimicry of the Bim BH3 domain, as manifested by the crystal structure of an α/β-peptide bound to Bcl-xL, affinity for a variety of Bcl-2 family proteins, and induction of apoptotic signaling in mouse embryonic fibroblast extracts. The best αααβ homologue shows substantial protection from proteolytic degradation relative to the Bim BH3 α-peptide. PMID:22040025

  3. Proteomics-grade de novo sequencing approach.

    PubMed

    Savitski, Mikhail M; Nielsen, Michael L; Kjeldsen, Frank; Zubarev, Roman A

    2005-01-01

    The conventional approach in modern proteomics to identify proteins from limited information provided by molecular and fragment masses of their enzymatic degradation products carries an inherent risk of both false positive and false negative identifications. For reliable identification of even known proteins, complete de novo sequencing of their peptides is desired. The main problems of conventional sequencing based on tandem mass spectrometry are incomplete backbone fragmentation and the frequent overlap of fragment masses. In this work, the first proteomics-grade de novo approach is presented, where the above problems are alleviated by the use of complementary fragmentation techniques CAD and ECD. Implementation of a high-current, large-area dispenser cathode as a source of low-energy electrons provided efficient ECD of doubly charged peptides, the most abundant species (65-80%), in a typical trypsin-based proteomics experiment. A new linear de novo algorithm is developed combining efficiency and speed, processing on a conventional 3 GHz PC, 1000 MS/MS data sets in 60 s. More than 6% of all MS/MS data for doubly charged peptides yielded complete sequences, and another 13% gave nearly complete sequences with a maximum gap of two amino acid residues. These figures are comparable with the typical success rates (5-15%) of database identification. For peptides reliably found in the database (Mowse score > or = 34), the agreement with de novo-derived full sequences was >95%. Full sequences were derived in 67% of the cases when full sequence information was present in MS/MS spectra. Thus the new de novo sequencing approach reached the same level of efficiency and reliability as conventional database-identification strategies. PMID:16335984

  4. Composition of the summer photosynthetic pico and nanoplankton communities in the Beaufort Sea assessed by T-RFLP and sequences of the 18S rRNA gene from flow cytometry sorted samples.

    PubMed

    Balzano, Sergio; Marie, Dominique; Gourvil, Priscillia; Vaulot, Daniel

    2012-08-01

    The composition of photosynthetic pico and nanoeukaryotes was investigated in the North East Pacific and the Arctic Ocean with special emphasis on the Beaufort Sea during the MALINA cruise in summer 2009. Photosynthetic populations were sorted using flow cytometry based on their size and pigment fluorescence. Diversity of the sorted photosynthetic eukaryotes was determined using terminal-restriction fragment length polymorphism analysis and cloning/sequencing of the 18S ribosomal RNA gene. Picoplankton was dominated by Mamiellophyceae, a class of small green algae previously included in the prasinophytes: in the North East Pacific, the contribution of an Arctic Micromonas ecotype increased steadily northward becoming the only taxon occurring at most stations throughout the Beaufort Sea. In contrast, nanoplankton was more diverse: North Pacific stations were dominated by Pseudo-nitzschia sp. whereas those in the Beaufort Sea were dominated by two distinct Chaetoceros species as well as by Chrysophyceae, Pelagophyceae and Chrysochromulina spp.. This study confirms the importance of Arctic Micromonas within picoplankton throughout the Beaufort Sea and demonstrates that the photosynthetic picoeukaryote community in the Arctic is much less diverse than at lower latitudes. Moreover, in contrast to what occurs in warmer waters, most of the key pico- and nanoplankton species found in the Beaufort Sea could be successfully established in culture. PMID:22278671

  5. Composition of the summer photosynthetic pico and nanoplankton communities in the Beaufort Sea assessed by T-RFLP and sequences of the 18S rRNA gene from flow cytometry sorted samples

    PubMed Central

    Balzano, Sergio; Marie, Dominique; Gourvil, Priscillia; Vaulot, Daniel

    2012-01-01

    The composition of photosynthetic pico and nanoeukaryotes was investigated in the North East Pacific and the Arctic Ocean with special emphasis on the Beaufort Sea during the MALINA cruise in summer 2009. Photosynthetic populations were sorted using flow cytometry based on their size and pigment fluorescence. Diversity of the sorted photosynthetic eukaryotes was determined using terminal-restriction fragment length polymorphism analysis and cloning/sequencing of the 18S ribosomal RNA gene. Picoplankton was dominated by Mamiellophyceae, a class of small green algae previously included in the prasinophytes: in the North East Pacific, the contribution of an Arctic Micromonas ecotype increased steadily northward becoming the only taxon occurring at most stations throughout the Beaufort Sea. In contrast, nanoplankton was more diverse: North Pacific stations were dominated by Pseudo-nitzschia sp. whereas those in the Beaufort Sea were dominated by two distinct Chaetoceros species as well as by Chrysophyceae, Pelagophyceae and Chrysochromulina spp.. This study confirms the importance of Arctic Micromonas within picoplankton throughout the Beaufort Sea and demonstrates that the photosynthetic picoeukaryote community in the Arctic is much less diverse than at lower latitudes. Moreover, in contrast to what occurs in warmer waters, most of the key pico- and nanoplankton species found in the Beaufort Sea could be successfully established in culture. PMID:22278671

  6. Insertion Sequences

    PubMed Central

    Mahillon, Jacques; Chandler, Michael

    1998-01-01

    Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available. PMID:9729608

  7. The reducing end sequence of wheat endosperm cell wall arabinoxylans.

    PubMed

    Ratnayake, Sunil; Beahan, Cherie T; Callahan, Damien L; Bacic, Antony

    2014-03-11

    Walls from wheat (Triticum aestivum L.) endosperm are composed primarily of hetero-(arabino)xylans (AXs) (70%) and (1?3)(1?4)-?-D-glucans (20%) with minor amounts of cellulose and heteromannans (2% each). To understand the differential solubility properties of the AXs, as well as aspects of their biosynthesis, we are sequencing the xylan backbone and examining the reducing end (RE) sequence(s) of wheat (monocot) AXs. A previous study of grass AXs (switchgrass, rice, Brachypodium, Miscanthus and foxtail millet) concluded that grasses lacked the comparable RE glycosyl sequence (4-?-D-Xylp-(1?4)-?-D-Xylp-(1?3)-?-L-Rhap-(1?2)-?-D-GalpA-(1?4)-D-Xylp) found in dicots and gymnosperms but the actual RE sequence was not determined. Here we report the isolation and structural characterisation of the RE oligosaccharide sequence(s) of wheat endosperm cell wall AXs. Walls were isolated as an alcohol-insoluble residue (AIR) and sequentially extracted with hot water (W-sol Fr) and 1M KOH containing 1% NaBH4 (KOH-sol Fr). Detailed structural analysis of the RE oligosaccharides was performed using a combination of methylation analysis, MALDI-TOF-MS, ESI-QTOF-MS, ESI-MS(n) and enzymic analysis. Analysis of RE oligosaccharides, both 2AB labelled (from W-sol Fr) and glycosyl-alditol (from KOH-sol Fr), revealed that the RE glycosyl sequence of wheat endosperm AX comprises a linear (1?4)-?-D-Xylp backbone which may be mono-substituted with either an ?-L-Araf residue at the reducing end ?-D-Xylp residue and/or penultimate RE ?-D-Xyl residue; ?-D-Xylp-(1?4)-[?-L-Araf-(1?3)](+/-)-?-D-Xylp-(1?4)-[?-L-Araf-(1?3)](+/-)-?-D-Xylp and/or an ?-D-GlcpA residue at the reducing end ?-D-Xylp residue; ?-D-Xylp-(1?4)-[?-L-Araf-(1?3)](+/-)-?-D-Xylp-(1?4)-[?-D-GlcAp-(1?2)]-?-D-Xylp. Thus, wheat endosperm AX backbones lacks the RE sequence found in dicot and gymnosperm xylans; a finding consistent with previous reports from other grass species. PMID:24462668

  8. Ultrafast clustering algorithms for metagenomic sequence analysis

    PubMed Central

    Fu, Limin; Niu, Beifang; Wu, Sitao; Wooley, John

    2012-01-01

    The rapid advances of high-throughput sequencing technologies dramatically prompted metagenomic studies of microbial communities that exist at various environments. Fundamental questions in metagenomics include the identities, composition and dynamics of microbial populations and their functions and interactions. However, the massive quantity and the comprehensive complexity of these sequence data pose tremendous challenges in data analysis. These challenges include but are not limited to ever-increasing computational demand, biased sequence sampling, sequence errors, sequence artifacts and novel sequences. Sequence clustering methods can directly answer many of the fundamental questions by grouping similar sequences into families. In addition, clustering analysis also addresses the challenges in metagenomics. Thus, a large redundant data set can be represented with a small non-redundant set, where each cluster can be represented by a single entry or a consensus. Artifacts can be rapidly detected through clustering. Errors can be identified, filtered or corrected by using consensus from sequences within clusters. PMID:22772836

  9. Pemetrexed With Platinum Combination as a Backbone for Targeted Therapy in Non-Small-Cell Lung Cancer.

    PubMed

    Stinchcombe, Thomas E; Borghaei, Hossein; Barker, Scott S; Treat, Joseph Anthony; Obasaju, Coleman

    2016-01-01

    Standard platinum-based chemotherapy combinations for advanced non-small-cell lung cancer (NSCLC) have reached a plateau in terms of the survival benefit they offer for patients. In addition, the emerging clinical trend of tailored treatment based on patient characteristics has led to the development of therapeutic strategies that target specific cancer-related molecular pathways, including epidermal growth factor receptor (EGFR), angiogenesis, and anaplastic lymphoma kinase inhibitors. Current research is focused on combining targeted therapy with platinum-based chemotherapy in an endeavor to achieve an additional benefit in specific patient populations. Currently, pemetrexed is indicated for use in the first-line, maintenance, and second-line settings for the treatment of nonsquamous NSCLC. The combination of pemetrexed and cisplatin is well tolerated and is the approved standard first-line therapy. Thus, the pemetrexed-platinum backbone provides an attractive option for combination with targeted therapies. This review aims to summarize the current knowledge and future prospects of the use of pemetrexed-platinum as a backbone for combination with targeted therapies for NSCLC. PMID:26340853

  10. Color Tuning of Core-Shell Fluorescent Microspheres by Controlling the Conjugation of Poly(p-phenylenevinylene) Backbone.

    PubMed

    Chen, Yun; Chen, Hong; Zhang, Heng; Fan, Li-Juan

    2015-12-01

    A series of poly(p-phenylenevinylene) (PPV)-coated microspheres with varied fluorescent emission colors have been prepared by controlling the average length of the conjugated segments on the polymer backbone. A modified Wessling method was used for preparing PPV with different conjugation segments. The labile sulfonium groups of the initial polymer precursor of PPV (pre-PPV) were partly substituted by relatively stable methoxyl groups. A series of precursors with different degrees of substitution were prepared by controlling the time of reaction; these precursors were adsorbed onto the negatively charged substrate spheres. Subsequently, heterogeneous thermal treatment eliminated the sulfonium groups selectively to form the conjugated segments on the PPV backbone with varied average conjugation lengths. Under UV exposure, the as-prepared PPV-coated microspheres displayed emission colors ranging from blue to green; a 65 nm shift in the emission maximum was observed in the fluorescence spectra. The gradual color change in emission of spheres was also confirmed in a confocal microscopy study. Further characterizations indicated that these microspheres possessed clear core-shell structure, good monodispersity in size, smooth surfaces, uniform emission, and superior thermal and photo stability. Flow cytometry measurements indicated that these spheres have very different patterns of intensity combination from four-signal receiving channels. The simple method reported herein, which can effectively and efficiently tune the emission color of the fluorescent microspheres, is a promising approach for preparation of microspheres used as encoded signal carrier in flow cytometry and other high-throughput techniques. PMID:26553581

  11. Improved site-specific recombinase-based method to produce selectable marker- and vector-backbone-free transgenic cells

    NASA Astrophysics Data System (ADS)

    Yu, Yuan; Tong, Qi; Li, Zhongxia; Tian, Jinhai; Wang, Yizhi; Su, Feng; Wang, Yongsheng; Liu, Jun; Zhang, Yong

    2014-02-01

    PhiC31 integrase-mediated gene delivery has been extensively used in gene therapy and animal transgenesis. However, random integration events are observed in phiC31-mediated integration in different types of mammalian cells; as a result, the efficiencies of pseudo attP site integration and evaluation of site-specific integration are compromised. To improve this system, we used an attB-TK fusion gene as a negative selection marker, thereby eliminating random integration during phiC31-mediated transfection. We also excised the selection system and plasmid bacterial backbone by using two other site-specific recombinases, Cre and Dre. Thus, we generated clean transgenic bovine fetal fibroblast cells free of selectable marker and plasmid bacterial backbone. These clean cells were used as donor nuclei for somatic cell nuclear transfer (SCNT), indicating a similar developmental competence of SCNT embryos to that of non-transgenic cells. Therefore, the present gene delivery system facilitated the development of gene therapy and agricultural biotechnology.

  12. Localization of electrons in the sugar/phosphate backbone in DNA investigated via resonant Auger decay spectra

    SciTech Connect

    Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie; Nath, Krishna G.

    2006-11-15

    In order to elucidate the localized nature of electrons in sugar/phosphate backbone in DNA molecules, resonant Auger decay spectra excited by soft x-rays around the inner-shell ionization thresholds have been measured for single-strand DNA. The systems investigated are thin films of DNA as well as related phosphorus compounds such as nucleotide (adenosine triphosphate, ATP), sodium phosphate, and indium phosphide. For ATP and DNA, it was observed that the resonant excitations from P 1s to valence unoccupied {pi}* orbitals are followed by spectator-type Auger decays where the excited electrons remain in valence orbitals during the core-hole decays. It was also found that the energy of the P KL{sub 2,3}L{sub 2,3} (2p{sup -1}{center_dot}{pi}*) spectator Auger peak shifts linearly with the photon energy due to the resonant Auger Raman scattering. Most of the decay channel at the core-to-valence resonant excitation is spectator-type Auger decay in DNA, which is quite different from the Auger decay processes in metallic and semiconducting materials. We conclude that the excited electrons in valence unoccupied states around the phosphates in DNA molecules are strongly localized, resulting in the insulating properties in a one-dimensional direction along sugar/phosphate backbone.

  13. Effect of the hydrocarbon chain and polymethylene spacer lengths on gene transfection efficacies of gemini lipids based on aromatic backbone.

    PubMed

    Bajaj, Avinash; Paul, Bishwajit; Indi, S S; Kondaiah, Paturu; Bhattacharya, Santanu

    2007-01-01

    Design, syntheses, and gene delivery efficacies of fifteen novel gemini (dimeric) and three monomeric cationic lipids anchored on an aromatic backbone have been described. Each new lipid has been used for liposome formation, and optimal formulations were used to determine the structure-activity correlation of the gene transfection efficacies of these lipids in HeLa and HT1080 cells. The results of the present investigation bring out the effect of hydrocarbon chain lengths and the length of the spacer between the headgroups on gene transfection efficiencies of the cationic gemini lipids based on aromatic backbone. The lipids bearing n-C 14H 29 hydrocarbon chain lengths have been found to be the best transfecting agents compared to their counterparts with n-C 16H 33 and n-C 12H 25 chains in HeLa cells. On the other hand, in HT1080 cells, the lipids based on n-C 12H 25 and n-C 14H 29 chains were found to be more potent transfecting agents than lipids possessing n-C 16H 33 chains. Transmission electron microscopy examination revealed the existence of spherical lipid-DNA complexes. PMID:18030994

  14. Synonymous codon bias and functional constraint on GC3-related DNA backbone dynamics in the prokaryotic nucleoid

    PubMed Central

    Babbitt, Gregory A.; Alawad, Mohammed A.; Schulze, Katharina V.; Hudson, Andr O.

    2014-01-01

    While mRNA stability has been demonstrated to control rates of translation, generating both global and local synonymous codon biases in many unicellular organisms, this explanation cannot adequately explain why codon bias strongly tracks neighboring intergene GC content; suggesting that structural dynamics of DNA might also influence codon choice. Because minor groove width is highly governed by 3-base periodicity in GC, the existence of triplet-based codons might imply a functional role for the optimization of local DNA molecular dynamics via GC content at synonymous sites (?GC3). We confirm a strong association between GC3-related intrinsic DNA flexibility and codon bias across 24 different prokaryotic multiple whole-genome alignments. We develop a novel test of natural selection targeting synonymous sites and demonstrate that GC3-related DNA backbone dynamics have been subject to moderate selective pressure, perhaps contributing to our observation that many genes possess extreme DNA backbone dynamics for their given protein space. This dual function of codons may impose universal functional constraints affecting the evolution of synonymous and non-synonymous sites. We propose that synonymous sites may have evolved as an accessory during an early expansion of a primordial genetic code, allowing for multiplexed protein coding and structural dynamic information within the same molecular context. PMID:25200075

  15. Solubility of polyethers in hydrocarbons at low temperatures. A model for potential genetic backbones on warm titans.

    PubMed

    McLendon, Christopher; Opalko, F Jeffrey; Illangkoon, Heshan I; Benner, Steven A

    2015-03-01

    Ethers are proposed here as the repeating backbone linking units in linear genetic biopolymers that might support Darwinian evolution in hydrocarbon oceans. Hydrocarbon oceans are found in our own solar system as methane mixtures on Titan. They may be found as mixtures of higher alkanes (propane, for example) on warmer hydrocarbon-rich planets in exosolar systems ("warm Titans"). We report studies on the solubility of several short polyethers in propane over its liquid range (from 85 to 231 K, or -188 C to -42 C). These show that polyethers are reasonably soluble in propane at temperatures down to ca. 200 K. However, their solubilities drop dramatically at still lower temperatures and become immeasurably low below 170 K, still well above the ? 95 K in Titan's oceans. Assuming that a liquid phase is essential for any living system, and genetic biopolymers must dissolve in that biosolvent to support Darwinism, these data suggest that we must look elsewhere to identify linear biopolymers that might support genetics in Titan's surface oceans. However, genetic molecules with polyether backbones may be suitable to support life in hydrocarbon oceans on warm Titans, where abundant organics and environments lacking corrosive water might make it easier for life to originate. PMID:25761113

  16. Vanishing amplitude of backbone dynamics causes a true protein dynamical transition: 2H NMR studies on perdeuterated C-phycocyanin.

    PubMed

    Kmpf, Kerstin; Kremmling, Beke; Vogel, Michael

    2014-03-01

    Using a combination of H2 nuclear magnetic resonance (NMR) methods, we study internal rotational dynamics of the perdeuterated protein C-phycocyanin (CPC) in dry and hydrated states over broad temperature and dynamic ranges with high angular resolution. Separating H2 NMR signals from methyl deuterons, we show that basically all backbone deuterons exhibit highly restricted motion occurring on time scales faster than microseconds. The amplitude of this motion increases when a hydration shell exists, while it decreases upon cooling and vanishes near 175 K. We conclude that the vanishing of the highly restricted motion marks a dynamical transition, which is independent of the time window and of a fundamental importance. This conclusion is supported by results from experimental and computational studies of the proteins myoglobin and elastin. In particular, we argue based on findings in molecular dynamics simulations that the behavior of the highly restricted motion of proteins at the dynamical transition resembles that of a characteristic secondary relaxation of liquids at the glass transition, namely the nearly constant loss. Furthermore, H2 NMR studies on perdeuterated CPC reveal that, in addition to highly restricted motion, small fractions of backbone segments exhibit weakly restricted dynamics when temperature and hydration are sufficiently high. PMID:24730877

  17. Synthesis of graft polyrotaxane by simultaneous capping of backbone and grafting from rings of pseudo-polyrotaxane

    PubMed Central

    Inoue, Katsunari; Kudo, Masabumi

    2014-01-01

    Summary Graft polyrotaxanes, with poly(?-caprolactone) (PCL) graft chains on the ring components were synthesized by the simultaneous ring-opening polymerization of ?-caprolactone from both ends of the backbone polymer, an end-functionalized polyethylene glycol (PEG) and the formation of inclusion complexes with ?-cyclodextrin (?-CD). PEG with multiple functional groups at each end was prepared by the condensation of PEG-amine and D-gluconic acid; the PEG derivative formed an inclusion complex with ?-CD. The polymerization of multiple hydroxy groups at the backbone ends resulted in a star-shaped end group, which served as a bulky capping group to prevent dethreading. In contrast, PEG with only one hydroxy group at each end did not produce polyrotaxanes, indicating that single PCL chains were too thin to confine ?-CDs to the complex. In addition, the grafting polymerization proceeded properly only when robust hydrogen bonds formed between ?-CDs were dissociated using a basic catalyst. Since the dissociation also induced dethreading, kinetic control of the polymerization and dissociation were crucial for producing graft polyrotaxanes. Consequently, this three-step reaction yielded graft polyrotaxanes in a good yield, demonstrating a significant simplification of the synthesis of graft polyrotaxanes. PMID:25383129

  18. Synthesis of graft polyrotaxane by simultaneous capping of backbone and grafting from rings of pseudo-polyrotaxane.

    PubMed

    Kato, Kazuaki; Inoue, Katsunari; Kudo, Masabumi; Ito, Kohzo

    2014-01-01

    Graft polyrotaxanes, with poly(?-caprolactone) (PCL) graft chains on the ring components were synthesized by the simultaneous ring-opening polymerization of ?-caprolactone from both ends of the backbone polymer, an end-functionalized polyethylene glycol (PEG) and the formation of inclusion complexes with ?-cyclodextrin (?-CD). PEG with multiple functional groups at each end was prepared by the condensation of PEG-amine and D-gluconic acid; the PEG derivative formed an inclusion complex with ?-CD. The polymerization of multiple hydroxy groups at the backbone ends resulted in a star-shaped end group, which served as a bulky capping group to prevent dethreading. In contrast, PEG with only one hydroxy group at each end did not produce polyrotaxanes, indicating that single PCL chains were too thin to confine ?-CDs to the complex. In addition, the grafting polymerization proceeded properly only when robust hydrogen bonds formed between ?-CDs were dissociated using a basic catalyst. Since the dissociation also induced dethreading, kinetic control of the polymerization and dissociation were crucial for producing graft polyrotaxanes. Consequently, this three-step reaction yielded graft polyrotaxanes in a good yield, demonstrating a significant simplification of the synthesis of graft polyrotaxanes. PMID:25383129

  19. Genome Sequence of Yersinia pestis KIM

    PubMed Central

    Deng, Wen; Burland, Valerie; Plunkett III, Guy; Boutin, Adam; Mayhew, George F.; Liss, Paul; Perna, Nicole T.; Rose, Debra J.; Mau, Bob; Zhou, Shiguo; Schwartz, David C.; Fetherston, Jaqueline D.; Lindler, Luther E.; Brubaker, Robert R.; Plano, Gregory V.; Straley, Susan C.; McDonough, Kathleen A.; Nilles, Matthew L.; Matson, Jyl S.; Blattner, Frederick R.; Perry, Robert D.

    2002-01-01

    We present the complete genome sequence of Yersinia pestis KIM, the etiologic agent of bubonic and pneumonic plague. The strain KIM, biovar Mediaevalis, is associated with the second pandemic, including the Black Death. The 4.6-Mb genome encodes 4,198 open reading frames (ORFs). The origin, terminus, and most genes encoding DNA replication proteins are similar to those of Escherichia coli K-12. The KIM genome sequence was compared with that of Y. pestis CO92, biovar Orientalis, revealing homologous sequences but a remarkable amount of genome rearrangement for strains so closely related. The differences appear to result from multiple inversions of genome segments at insertion sequences, in a manner consistent with present knowledge of replication and recombination. There are few differences attributable to horizontal transfer. The KIM and E. coli K-12 genome proteins were also compared, exposing surprising amounts of locally colinear backbone, or synteny, that is not discernible at the nucleotide level. Nearly 54% of KIM ORFs are significantly similar to K-12 proteins, with conserved housekeeping functions. However, a number of E. coli pathways and transport systems and at least one global regulator were not found, reflecting differences in lifestyle between them. In KIM-specific islands, new genes encode candidate pathogenicity proteins, including iron transport systems, putative adhesins, toxins, and fimbriae. PMID:12142430

  20. Original stimuli-sensitive polysaccharide derivatives/N-isopropylacrylamide hydrogels. Role of polysaccharide backbone.

    PubMed

    Hamcerencu, Mihaela; Desbrieres, Jacques; Popa, Marcel; Riess, Gérard

    2012-06-20

    This article compares the properties of a novel class of unsaturated Xanthan and Gellan derivatives/N-isopropylacrylamide stimuli-responsive hydrogels synthesized by free radical polymerization. Xanthan and Gellan Gum were partially functionalized by esterification with maleic anhydride under various conditions. By copolymerization of these maleate polysaccharides with a N-isopropylacrylamide known temperature sensitive precursor, water-swollen hydrogels with interpenetrating polymer networks (IPN) were obtained. The hydrogels were characterized for their temperature and pH-responsive behaviour by equilibrium swelling experiments and differential scanning calorimetry. The investigation of these materials also includes solid-state (13)CP/MAS NMR and elemental analysis of the nitrogen content. Morphology was visualized by scanning electron microscopy. Depending upon composition and the nature of the base-polysaccharide, the hydrogels showed different response rates to the external changes of temperature as well as pH. By changing the feed composition ratio of precursors and crosslinking agent (β-cyclodextrin acrylate or N,N'-methylenebisacrylamide respectively) the phase transition temperature (lower critical solution temperature) could also be adjusted near to the body temperature for biomedical and biotechnological applications. The role of the rigidity and the charge density of the polysaccharide chain, its ability to form hydrogen bonding on these properties are more particularly considered. PMID:24750741

  1. Radical Additions to Aromatic Residues in Peptides Facilitate Unexpected Side Chain and Backbone Losses

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Julian, Ryan R.

    2014-04-01

    Accurate identification of fragments in tandem mass spectrometry experiments is aided by knowledge of relevant fragmentation mechanisms. Herein, novel radical addition reactions that direct unexpected side-chain dissociations at tryptophan and tyrosine residues are reported. Various mechanisms that can account for the observed dissociation channels are investigated by experiment and theory. The propensity for radical addition at a particular site is found to be primarily under kinetic control, which is largely dictated by molecular structure. In certain peptides, intramolecular radical addition reactions are favored, which leads to the observation of numerous unexpected fragments. In one pathway, radical addition leads to migration of an aromatic side chain to another residue. Alternatively, radical addition followed by hydrogen atom loss leads to cyclization of the peptide and increased observation of internal sequence fragments. Radical addition reactions should be considered when assigning fragmentation spectra obtained from activation of hydrogen deficient peptides.

  2. Protein structure quality assessment based on the distance profiles of consecutive backbone C? atoms.

    PubMed

    Chakraborty, Sandeep; Venkatramani, Ravindra; Rao, Basuthkar J; Asgeirsson, Bjarni; Dandekar, Abhaya M

    2013-01-01

    Predicting the three dimensional native state structure of a protein from its primary sequence is an unsolved grand challenge in molecular biology. Two main computational approaches have evolved to obtain the structure from the protein sequence - ab initio/de novo methods and template-based modeling - both of which typically generate multiple possible native state structures. Model quality assessment programs (MQAP) validate these predicted structures in order to identify the correct native state structure. Here, we propose a MQAP for assessing the quality of protein structures based on the distances of consecutive C? atoms. We hypothesize that the root-mean-square deviation of the distance of consecutive C? (RDCC) atoms from the ideal value of 3.8 , derived from a statistical analysis of high quality protein structures (top100H database), is minimized in native structures. Based on tests with the top100H set, we propose a RDCC cutoff value of 0.012 , above which a structure can be filtered out as a non-native structure. We applied the RDCC discriminator on decoy sets from the Decoys 'R' Us database to show that the native structures in all decoy sets tested have RDCC below the 0.012 cutoff. While most decoy sets were either indistinguishable using this discriminator or had very few violations, all the decoy structures in the fisa decoy set were discriminated by applying the RDCC criterion. This highlights the physical non-viability of the fisa decoy set, and possible issues in benchmarking other methods using this set. The source code and manual is made available at https://github.com/sanchak/mqap and permanently available on 10.5281/zenodo.7134. PMID:24555103

  3. Protein structure quality assessment based on the distance profiles of consecutive backbone C? atoms

    PubMed Central

    Chakraborty, Sandeep; Venkatramani, Ravindra; Rao, Basuthkar J.; Asgeirsson, Bjarni; Dandekar, Abhaya M.

    2013-01-01

    Predicting the three dimensional native state structure of a protein from its primary sequence is an unsolved grand challenge in molecular biology. Two main computational approaches have evolved to obtain the structure from the protein sequence - ab initio/de novo methods and template-based modeling - both of which typically generate multiple possible native state structures. Model quality assessment programs (MQAP) validate these predicted structures in order to identify the correct native state structure. Here, we propose a MQAP for assessing the quality of protein structures based on the distances of consecutive C? atoms. We hypothesize that the root-mean-square deviation of the distance of consecutive C? (RDCC) atoms from the ideal value of 3.8 , derived from a statistical analysis of high quality protein structures (top100H database), is minimized in native structures. Based on tests with the top100H set, we propose a RDCC cutoff value of 0.012 , above which a structure can be filtered out as a non-native structure. We applied the RDCC discriminator on decoy sets from the Decoys 'R' Us database to show that the native structures in all decoy sets tested have RDCC below the 0.012 cutoff. While most decoy sets were either indistinguishable using this discriminator or had very few violations, all the decoy structures in the fisa decoy set were discriminated by applying the RDCC criterion. This highlights the physical non-viability of the fisa decoy set, and possible issues in benchmarking other methods using this set. The source code and manual is made available at https://github.com/sanchak/mqap and permanently available on 10.5281/zenodo.7134. PMID:24555103

  4. Solid State Nuclear Magnetic Resonance Investigation of Polymer Backbone Dynamics in Poly(Ethylene Oxide) Based Lithium and Sodium Polyether-ester-sulfonate Ionomers

    SciTech Connect

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2013-01-01

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (Tg) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. Previous 1H and 7Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from 1H to 13C nuclei, becomes similar for T ? 1.1 Tg in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for the dependence of backbone dynamics on cation density (and here, cation identity as well) in these amorphous PEO-based ionomer systems.

  5. Solid state nuclear magnetic resonance investigation of polymer backbone dynamics in poly(ethylene oxide) based lithium and sodium polyether-ester-sulfonate ionomers

    NASA Astrophysics Data System (ADS)

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2013-05-01

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (Tg) have been investigated using solid-state nuclear magnetic resonance. Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. Previous 1H and 7Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from 1H to 13C nuclei, becomes similar for T x 1{.1} Tg in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for the dependence of backbone dynamics on cation density (and here, cation identity as well) in these amorphous PEO-based ionomer systems.

  6. Accurate measurements of the effects of deuteration at backbone amide positions on the chemical shifts of ?N, C?, C?, CO and H? nuclei in proteins.

    PubMed

    Zhang, Daoning; Tugarinov, Vitali

    2013-06-01

    An approach towards accurate NMR measurements of deuterium isotope effects on the chemical shifts of all backbone nuclei in proteins ((15)N, (13)C?, (13)CO, (1)H?) and (13)C? nuclei arising from (1)H-to-D substitutions at amide nitrogen positions is described. Isolation of molecular species with a defined protonation/deuteration pattern at successive backbone nitrogen positions in the polypeptide chain allows quantifying all deuterium isotope shifts of these nuclei from the first to the fourth order. Some of the deuterium isotope shifts measured in the proteins ubiquitin and GB1 can be interpreted in terms of backbone geometry via empirical relationships describing their dependence on (?; ?) backbone dihedral angles. Because of their relatively large variability and notable dependence on the protein secondary structure, the two- and three-bond (13)C? isotope shifts, (2)?C?(NiD) and (3)?C?(Ni+1D), and three-bond (13)C? isotope shifts, (3)?C?(NiD), are useful reporters of the local geometry of the protein backbone. PMID:23612994

  7. Treatment of Gram-negative pneumonia in the critical care setting: is the beta-lactam antibiotic backbone broken beyond repair?

    PubMed

    Bassetti, Matteo; Welte, Tobias; Wunderink, Richard G

    2016-01-01

    Beta-lactam antibiotics form the backbone of treatment for Gram-negative pneumonia in mechanically ventilated patients in the intensive care unit. However, this beta-lactam antibiotic backbone is increasingly under pressure from emerging resistance across all geographical regions, and health-care professionals in many countries are rapidly running out of effective treatment options. Even in regions that currently have only low levels of resistance, the effects of globalization are likely to increase local pressures on the beta-lactam antibiotic backbone in the near future. Therefore, clinicians are increasingly faced with a difficult balancing act: the need to prescribe adequate and appropriate antibiotic therapy while reducing the emergence of resistance and the overuse of antibiotics. In this review, we explore the burden of Gram-negative pneumonia in the critical care setting and the pressure that antibiotic resistance places on current empiric therapy regimens (and the beta-lactam antibiotic backbone) in this patient population. New treatment approaches, such as systemic and inhaled antibiotic alternatives, are on the horizon and are likely to help tackle the rising levels of beta-lactam antibiotic resistance. In the meantime, it is imperative that the beta-lactam antibiotic backbone of currently available antibiotics be supported through stringent antibiotic stewardship programs. PMID:26821535

  8. Enzyme IIBcellobiose of the phosphoenol-pyruvate-dependent phosphotransferase system of Escherichia coli: backbone assignment and secondary structure determined by three-dimensional NMR spectroscopy.

    PubMed Central

    Ab, E.; Schuurman-Wolters, G. K.; Saier, M. H.; Reizer, J.; Jacuinod, M.; Roepstorff, P.; Dijkstra, K.; Scheek, R. M.; Robillard, G. T.

    1994-01-01

    The assignment of backbone resonances and the secondary structure determination of the Cys 10 Ser mutant of enzyme IIBcellobiose of the Escherichia coli cellobiose-specific phosphoenol-pyruvate-dependent phosphotransferase system are presented. The backbone resonances were assigned using 4 triple resonance experiments, the HNCA and HN(CO)CA experiments, correlating backbone 1H, 15N, and 13C alpha resonances, and the HN(CA)CO and HNCO experiments, correlating backbone 1H,15N and 13CO resonances. Heteronuclear 1H-NOE 1H-15N single quantum coherence (15N-NOESY-HSQC) spectroscopy and heteronuclear 1H total correlation 1H-15N single quantum coherence (15N-TOCSY-HSQC) spectroscopy were used to resolve ambiguities arising from overlapping 13C alpha and 13CO frequencies and to check the assignments from the triple resonance experiments. This procedure, together with a 3-dimensional 1H alpha-13C alpha-13CO experiment (COCAH), yielded the assignment for all observed backbone resonances. The secondary structure was determined using information both from the deviation of observed 1H alpha and 13C alpha chemical shifts from their random coil values and 1H-NOE information from the 15N-NOESY-HSQC. These data show that enzyme IIBcellobiose consists of a 4-stranded parallel beta-sheet and 5 alpha-helices. In the wild-type enzyme IIBcellobiose, the catalytic residue appears to be located at the end of a beta-strand. PMID:8003964

  9. Enzyme IIBcellobiose of the phosphoenol-pyruvate-dependent phosphotransferase system of Escherichia coli: backbone assignment and secondary structure determined by three-dimensional NMR spectroscopy.

    PubMed

    Ab, E; Schuurman-Wolters, G K; Saier, M H; Reizer, J; Jacuinod, M; Roepstorff, P; Dijkstra, K; Scheek, R M; Robillard, G T

    1994-02-01

    The assignment of backbone resonances and the secondary structure determination of the Cys 10 Ser mutant of enzyme IIBcellobiose of the Escherichia coli cellobiose-specific phosphoenol-pyruvate-dependent phosphotransferase system are presented. The backbone resonances were assigned using 4 triple resonance experiments, the HNCA and HN(CO)CA experiments, correlating backbone 1H, 15N, and 13C alpha resonances, and the HN(CA)CO and HNCO experiments, correlating backbone 1H,15N and 13CO resonances. Heteronuclear 1H-NOE 1H-15N single quantum coherence (15N-NOESY-HSQC) spectroscopy and heteronuclear 1H total correlation 1H-15N single quantum coherence (15N-TOCSY-HSQC) spectroscopy were used to resolve ambiguities arising from overlapping 13C alpha and 13CO frequencies and to check the assignments from the triple resonance experiments. This procedure, together with a 3-dimensional 1H alpha-13C alpha-13CO experiment (COCAH), yielded the assignment for all observed backbone resonances. The secondary structure was determined using information both from the deviation of observed 1H alpha and 13C alpha chemical shifts from their random coil values and 1H-NOE information from the 15N-NOESY-HSQC. These data show that enzyme IIBcellobiose consists of a 4-stranded parallel beta-sheet and 5 alpha-helices. In the wild-type enzyme IIBcellobiose, the catalytic residue appears to be located at the end of a beta-strand. PMID:8003964

  10. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Udgaonkar, J B; Hosur, R V

    2000-10-01

    Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 degrees C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D [1H]-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear [1H]-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total