Science.gov

Sample records for series analysis approach

  1. A multiscale approach to InSAR time series analysis

    NASA Astrophysics Data System (ADS)

    Simons, M.; Hetland, E. A.; Muse, P.; Lin, Y. N.; Dicaprio, C.; Rickerby, A.

    2008-12-01

    We describe a new technique to constrain time-dependent deformation from repeated satellite-based InSAR observations of a given region. This approach, which we call MInTS (Multiscale analysis of InSAR Time Series), relies on a spatial wavelet decomposition to permit the inclusion of distance based spatial correlations in the observations while maintaining computational tractability. This approach also permits a consistent treatment of all data independent of the presence of localized holes in any given interferogram. In essence, MInTS allows one to considers all data at the same time (as opposed to one pixel at a time), thereby taking advantage of both spatial and temporal characteristics of the deformation field. In terms of the temporal representation, we have the flexibility to explicitly parametrize known processes that are expected to contribute to a given set of observations (e.g., co-seismic steps and post-seismic transients, secular variations, seasonal oscillations, etc.). Our approach also allows for the temporal parametrization to includes a set of general functions (e.g., splines) in order to account for unexpected processes. We allow for various forms of model regularization using a cross-validation approach to select penalty parameters. The multiscale analysis allows us to consider various contributions (e.g., orbit errors) that may affect specific scales but not others. The methods described here are all embarrassingly parallel and suitable for implementation on a cluster computer. We demonstrate the use of MInTS using a large suite of ERS-1/2 and Envisat interferograms for Long Valley Caldera, and validate our results by comparing with ground-based observations.

  2. A Multiscale Approach to InSAR Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Muse, P.; Simons, M.; Lin, N.; Dicaprio, C. J.

    2010-12-01

    We present a technique to constrain time-dependent deformation from repeated satellite-based InSAR observations of a given region. This approach, which we call MInTS (Multiscale InSAR Time Series analysis), relies on a spatial wavelet decomposition to permit the inclusion of distance based spatial correlations in the observations while maintaining computational tractability. As opposed to single pixel InSAR time series techniques, MInTS takes advantage of both spatial and temporal characteristics of the deformation field. We use a weighting scheme which accounts for the presence of localized holes due to decorrelation or unwrapping errors in any given interferogram. We represent time-dependent deformation using a dictionary of general basis functions, capable of detecting both steady and transient processes. The estimation is regularized using a model resolution based smoothing so as to be able to capture rapid deformation where there are temporally dense radar acquisitions and to avoid oscillations during time periods devoid of acquisitions. MInTS also has the flexibility to explicitly parametrize known time-dependent processes that are expected to contribute to a given set of observations (e.g., co-seismic steps and post-seismic transients, secular variations, seasonal oscillations, etc.). We use cross validation to choose the regularization penalty parameter in the inversion of for the time-dependent deformation field. We demonstrate MInTS using a set of 63 ERS-1/2 and 29 Envisat interferograms for Long Valley Caldera.

  3. A Multiscale Approach to InSAR Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Simons, M.; Hetland, E. A.; Muse, P.; Lin, Y.; Dicaprio, C. J.

    2009-12-01

    We describe progress in the development of MInTS (Multiscale analysis of InSAR Time Series), an approach to constructed self-consistent time-dependent deformation observations from repeated satellite-based InSAR images of a given region. MInTS relies on a spatial wavelet decomposition to permit the inclusion of distance based spatial correlations in the observations while maintaining computational tractability. In essence, MInTS allows one to considers all data at the same time as opposed to one pixel at a time, thereby taking advantage of both spatial and temporal characteristics of the deformation field. This approach also permits a consistent treatment of all data independent of the presence of localized holes due to unwrapping issues in any given interferogram. Specifically, the presence of holes is accounted for through a weighting scheme that accounts for the extent of actual data versus the area of holes associated with any given wavelet. In terms of the temporal representation, we have the flexibility to explicitly parametrize known processes that are expected to contribute to a given set of observations (e.g., co-seismic steps and post-seismic transients, secular variations, seasonal oscillations, etc.). Our approach also allows for the temporal parametrization to include a set of general functions in order to account for unexpected processes. We allow for various forms of model regularization using a cross-validation approach to select penalty parameters. We also experiment with the use of sparsity inducing regularization as a way to select from a large dictionary of time functions. The multiscale analysis allows us to consider various contributions (e.g., orbit errors) that may affect specific scales but not others. The methods described here are all embarrassingly parallel and suitable for implementation on a cluster computer. We demonstrate the use of MInTS using a large suite of ERS-1/2 and Envisat interferograms for Long Valley Caldera, and validate

  4. A Comparison of Alternative Approaches to the Analysis of Interrupted Time-Series.

    ERIC Educational Resources Information Center

    Harrop, John W.; Velicer, Wayne F.

    1985-01-01

    Computer generated data representative of 16 Auto Regressive Integrated Moving Averages (ARIMA) models were used to compare the results of interrupted time-series analysis using: (1) the known model identification, (2) an assumed (l,0,0) model, and (3) an assumed (3,0,0) model as an approximation to the General Transformation approach. (Author/BW)

  5. Complex networks approach to geophysical time series analysis: Detecting paleoclimate transitions via recurrence networks

    NASA Astrophysics Data System (ADS)

    Donner, R. V.; Zou, Y.; Donges, J. F.; Marwan, N.; Kurths, J.

    2009-12-01

    We present a new approach for analysing structural properties of time series from complex systems. Starting from the concept of recurrences in phase space, the recurrence matrix of a time series is interpreted as the adjacency matrix of an associated complex network which links different points in time if the evolution of the considered states is very similar. A critical comparison of these recurrence networks with similar existing techniques is presented, revealing strong conceptual benefits of the new approach which can be considered as a unifying framework for transforming time series into complex networks that also includes other methods as special cases. Based on different model systems, we demonstrate that there are fundamental interrelationships between the topological properties of recurrence networks and the statistical properties of the phase space density of the underlying dynamical system. Hence, the network description yields new quantitative characteristics of the dynamical complexity of a time series, which substantially complement existing measures of recurrence quantification analysis. Finally, we illustrate the potential of our approach for detecting hidden dynamical transitions from geoscientific time series by applying it to different paleoclimate records. In particular, we are able to resolve previously unknown climatic regime shifts in East Africa during the last about 4 million years, which might have had a considerable influence on the evolution of hominids in the area.

  6. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Koeppen, W. C.; Pilger, E.; Wright, R.

    2011-07-01

    We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

  7. Statistical Analysis of fMRI Time-Series: A Critical Review of the GLM Approach.

    PubMed

    Monti, Martin M

    2011-01-01

    Functional magnetic resonance imaging (fMRI) is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a general linear model (GLM) approach to separate stimulus induced signals from noise. Crucially, this approach relies on a number of assumptions about the data which, for inferences to be valid, must be met. The current paper reviews the GLM approach to analysis of fMRI time-series, focusing in particular on the degree to which such data abides by the assumptions of the GLM framework, and on the methods that have been developed to correct for any violation of those assumptions. Rather than biasing estimates of effect size, the major consequence of non-conformity to the assumptions is to introduce bias into estimates of the variance, thus affecting test statistics, power, and false positive rates. Furthermore, this bias can have pervasive effects on both individual subject and group-level statistics, potentially yielding qualitatively different results across replications, especially after the thresholding procedures commonly used for inference-making. PMID:21442013

  8. 3D time series analysis of cell shape using Laplacian approaches

    PubMed Central

    2013-01-01

    Background Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations. PMID:24090312

  9. Detection of chaos: New approach to atmospheric pollen time-series analysis

    NASA Astrophysics Data System (ADS)

    Bianchi, M. M.; Arizmendi, C. M.; Sanchez, J. R.

    1992-09-01

    Pollen and spores are biological particles that are ubiquitous to the atmosphere and are pathologically significant, causing plant diseases and inhalant allergies. One of the main objectives of aerobiological surveys is forecasting. Prediction models are required in order to apply aerobiological knowledge to medical or agricultural practice; a necessary condition of these models is not to be chaotic. The existence of chaos is detected through the analysis of a time series. The time series comprises hourly counts of atmospheric pollen grains obtained using a Burkard spore trap from 1987 to 1989 at Mar del Plata. Abraham's method to obtain the correlation dimension was applied. A low and fractal dimension shows chaotic dynamics. The predictability of models for atomspheric pollen forecasting is discussed.

  10. A hybrid wavelet analysis-cloud model data-extending approach for meteorologic and hydrologic time series

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ding, Hao; Singh, Vijay P.; Shang, Xiaosan; Liu, Dengfeng; Wang, Yuankun; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing

    2015-05-01

    For scientific and sustainable management of water resources, hydrologic and meteorologic data series need to be often extended. This paper proposes a hybrid approach, named WA-CM (wavelet analysis-cloud model), for data series extension. Wavelet analysis has time-frequency localization features, known as "mathematics microscope," that can decompose and reconstruct hydrologic and meteorologic series by wavelet transform. The cloud model is a mathematical representation of fuzziness and randomness and has strong robustness for uncertain data. The WA-CM approach first employs the wavelet transform to decompose the measured nonstationary series and then uses the cloud model to develop an extension model for each decomposition layer series. The final extension is obtained by summing the results of extension of each layer. Two kinds of meteorologic and hydrologic data sets with different characteristics and different influence of human activity from six (three pairs) representative stations are used to illustrate the WA-CM approach. The approach is also compared with four other methods, which are conventional correlation extension method, Kendall-Theil robust line method, artificial neural network method (back propagation, multilayer perceptron, and radial basis function), and single cloud model method. To evaluate the model performance completely and thoroughly, five measures are used, which are relative error, mean relative error, standard deviation of relative error, root mean square error, and Thiel inequality coefficient. Results show that the WA-CM approach is effective, feasible, and accurate and is found to be better than other four methods compared. The theory employed and the approach developed here can be applied to extension of data in other areas as well.

  11. A Time Series Approach to Random Number Generation: Using Recurrence Quantification Analysis to Capture Executive Behavior

    PubMed Central

    Oomens, Wouter; Maes, Joseph H. R.; Hasselman, Fred; Egger, Jos I. M.

    2015-01-01

    The concept of executive functions plays a prominent role in contemporary experimental and clinical studies on cognition. One paradigm used in this framework is the random number generation (RNG) task, the execution of which demands aspects of executive functioning, specifically inhibition and working memory. Data from the RNG task are best seen as a series of successive events. However, traditional RNG measures that are used to quantify executive functioning are mostly summary statistics referring to deviations from mathematical randomness. In the current study, we explore the utility of recurrence quantification analysis (RQA), a non-linear method that keeps the entire sequence intact, as a better way to describe executive functioning compared to traditional measures. To this aim, 242 first- and second-year students completed a non-paced RNG task. Principal component analysis of their data showed that traditional and RQA measures convey more or less the same information. However, RQA measures do so more parsimoniously and have a better interpretation. PMID:26097449

  12. A Time Series Approach to Random Number Generation: Using Recurrence Quantification Analysis to Capture Executive Behavior.

    PubMed

    Oomens, Wouter; Maes, Joseph H R; Hasselman, Fred; Egger, Jos I M

    2015-01-01

    The concept of executive functions plays a prominent role in contemporary experimental and clinical studies on cognition. One paradigm used in this framework is the random number generation (RNG) task, the execution of which demands aspects of executive functioning, specifically inhibition and working memory. Data from the RNG task are best seen as a series of successive events. However, traditional RNG measures that are used to quantify executive functioning are mostly summary statistics referring to deviations from mathematical randomness. In the current study, we explore the utility of recurrence quantification analysis (RQA), a non-linear method that keeps the entire sequence intact, as a better way to describe executive functioning compared to traditional measures. To this aim, 242 first- and second-year students completed a non-paced RNG task. Principal component analysis of their data showed that traditional and RQA measures convey more or less the same information. However, RQA measures do so more parsimoniously and have a better interpretation. PMID:26097449

  13. Time series analysis to monitor and assess water resources: a moving average approach.

    PubMed

    Reghunath, Rajesh; Murthy, T R Sreedhara; Raghavan, B R

    2005-10-01

    An understanding of the behavior of the groundwater body and its long-term trends are essential for making any management decision in a given watershed. Geostatistical methods can effectively be used to derive the long-term trends of the groundwater body. Here an attempt has been made to find out the long-term trends of the water table fluctuations of a river basin through a time series approach. The method was found to be useful for demarcating the zones of discharge and of recharge of an aquifer. The recharge of the aquifer is attributed to the return flow from applied irrigation. In the study area, farmers mainly depend on borewells for water and water is pumped from the deep aquifer indiscriminately. The recharge of the shallow aquifer implies excessive pumping of the deep aquifer. Necessary steps have to be taken immediately at appropriate levels to control the irrational pumping of deep aquifer groundwater, which is needed as a future water source. The study emphasizes the use of geostatistics for the better management of water resources and sustainable development of the area. PMID:16240189

  14. Detecting network modules in fMRI time series: a weighted network analysis approach.

    PubMed

    Mumford, Jeanette A; Horvath, Steve; Oldham, Michael C; Langfelder, Peter; Geschwind, Daniel H; Poldrack, Russell A

    2010-10-01

    Many network analyses of fMRI data begin by defining a set of regions, extracting the mean signal from each region and then analyzing the correlations between regions. One essential question that has not been addressed in the literature is how to best define the network neighborhoods over which a signal is combined for network analyses. Here we present a novel unsupervised method for the identification of tightly interconnected voxels, or modules, from fMRI data. This approach, weighted voxel coactivation network analysis (WVCNA), is based on a method that was originally developed to find modules of genes in gene networks. This approach differs from many of the standard network approaches in fMRI in that connections between voxels are described by a continuous measure, whereas typically voxels are considered to be either connected or not connected depending on whether the correlation between the two voxels survives a hard threshold value. Additionally, instead of simply using pairwise correlations to describe the connection between two voxels, WVCNA relies on a measure of topological overlap, which not only compares how correlated two voxels are but also the degree to which the pair of voxels is highly correlated with the same other voxels. We demonstrate the use of WVCNA to parcellate the brain into a set of modules that are reliably detected across data within the same subject and across subjects. In addition we compare WVCNA to ICA and show that the WVCNA modules have some of the same structure as the ICA components, but tend to be more spatially focused. We also demonstrate the use of some of the WVCNA network metrics for assessing a voxel's membership to a module and also how that voxel relates to other modules. Last, we illustrate how WVCNA modules can be used in a network analysis to find connections between regions of the brain and show that it produces reasonable results. PMID:20553896

  15. Detecting network modules in fMRI time series: A weighted network analysis approach

    PubMed Central

    Mumford, Jeanette A; Horvath, Steve; Oldham, Michael C.; Langfelder, Peter; Geschwind, Daniel H.; Poldrack, Russell A

    2010-01-01

    Many network analyses of fMRI data begin by defining a set of regions, extracting the mean signal from each region and then analyzing the correlations between regions. One essential question that has not been addressed in the literature is how to best define the network neighborhoods over which a signal is combined for network analyses. Here we present a novel unsupervised method for the identification of tightly interconnected voxels, or modules, from fMRI data. This approach, weighted voxel coactivation network analysis (WVCNA) is based on a method that was originally developed to find modules of genes in gene networks. This approach differs from many of the standard network approaches in fMRI in that connections between voxels are described by a continuous measure, whereas typically voxels are considered to be either connected or not connected depending on whether the correlation between the two voxels survives a hard threshold value. Additionally, instead of simply using pairwise correlations to describe the connection between two voxels, WVCNA relies on a measure of topological overlap, which not only compares how correlated two voxels are, but also the degree to which the pair of voxels is highly correlated with the same other voxels. We demonstrate the use of WVCNA to parcellate the brain into a set of modules that are reliably detected across data within the same subject and across subjects. In addition we compare WVCNA to ICA and show that the WVCNA modules have some of the same structure as the ICA components, but tend to be more spatially focused. We also demonstrate the use of some of the WVCNA network metrics for assessing a voxel’s membership to a module and also how that voxel relates to other modules. Last, we illustrate how WVCNA modules can be used in a network analysis to find connections between regions of the brain and show that it produces reasonable results. PMID:20553896

  16. The physiology analysis system: an integrated approach for warehousing, management and analysis of time-series physiology data.

    PubMed

    McKenna, Thomas M; Bawa, Gagandeep; Kumar, Kamal; Reifman, Jaques

    2007-04-01

    The physiology analysis system (PAS) was developed as a resource to support the efficient warehousing, management, and analysis of physiology data, particularly, continuous time-series data that may be extensive, of variable quality, and distributed across many files. The PAS incorporates time-series data collected by many types of data-acquisition devices, and it is designed to free users from data management burdens. This Web-based system allows both discrete (attribute) and time-series (ordered) data to be manipulated, visualized, and analyzed via a client's Web browser. All processes occur on a server, so that the client does not have to download data or any application programs, and the PAS is independent of the client's computer operating system. The PAS contains a library of functions, written in different computer languages that the client can add to and use to perform specific data operations. Functions from the library are sequentially inserted into a function chain-based logical structure to construct sophisticated data operators from simple function building blocks, affording ad hoc query and analysis of time-series data. These features support advanced mining of physiology data. PMID:17287043

  17. A genetic programming approach for time-series analysis and prediction in space physics.

    NASA Astrophysics Data System (ADS)

    Jorgensen, A. M.; Brumby, S. P.; Henderson, M. G.

    2004-12-01

    A central theme in space weather prediction is the ability to predict time-series of relevant quantities, both empirically, and from physics-based models. Empirical models are often based on educated guesses, or intuition. The task of finding an empirical relationship relating quantities can be tedious and time-consuming, especially when a large number of parameters are involved. Genetic Programming (GP) provides a method for automating the guesswork, and can in some instances automatically find functional relationships between data streams. GP is an evolutionary computation technique which is an extension of the Genetic Algorithm framework used for function optimization. In GP an evolutionary algorithm combines elementary function operators in an attempt to build a function which is able to reproduce a training example from a set of input data. We will illustrate how a GP algorithm can be used in space physics by addressing two relevant topics: The prediction of relativistic electron fluxes, and prediction of Dst.

  18. Novel approaches in Extended Principal Components Analysis to compare spatio-temporal patterns among multiple image time series

    NASA Astrophysics Data System (ADS)

    Neeti, N.; Eastman, R.

    2012-12-01

    Extended Principal Components Analysis (EPCA) aims to examine the patterns of variability shared among multiple image time series. Conventionally, this is done by virtually extending the spatial dimension of the time series by spatially concatenating the different time series and then performing S-mode PCA. In S-mode analysis, samples in space are the statistical variables and samples in time are the statistical observations. This paper introduces the concept of temporal concatenation of multiple image time series to perform EPCA. EPCA can also be done with T-mode orientation in which samples in time are the statistical variables and samples in space are the statistical observations. This leads to a total of four orientations in which EPCA can be carried out. This research explores these four orientations and their implications in investigating spatio-temporal relationships among multiple time series. This research demonstrates that EPCA carried out with temporal concatenation of the multiple time series with T-mode (tT) is able to identify similar spatial patterns among multiple time series. The conventional S-mode EPCA with spatial concatenation (sS) identifies similar temporal patterns among multiple time series. The other two modes, namely T-mode with spatial concatenation (sT) and S-mode with temporal concatenation (tS), are able to identify patterns which share consistent temporal phase relationships and consistent spatial phase relationships with each other, respectively. In a case study using three sets of precipitation time series data from GPCP, CMAP and NCEP-DOE, the results show that examination of all four modes provides an effective basis comparison of the series.

  19. Model dissection from earthquake time series: A comparative analysis using modern non-linear forecasting and artificial neural network approaches

    NASA Astrophysics Data System (ADS)

    Sri Lakshmi, S.; Tiwari, R. K.

    2009-02-01

    This study utilizes two non-linear approaches to characterize model behavior of earthquake dynamics in the crucial tectonic regions of Northeast India (NEI). In particular, we have applied a (i) non-linear forecasting technique to assess the dimensionality of the earthquake-generating mechanism using the monthly frequency earthquake time series (magnitude ⩾4) obtained from NOAA and USGS catalogues for the period 1960-2003 and (ii) artificial neural network (ANN) methods—based on the back-propagation algorithm (BPA) to construct the neural network model of the same data set for comparing the two. We have constructed a multilayered feed forward ANN model with an optimum input set configuration specially designed to take advantage of more completely on the intrinsic relationships among the input and retrieved variables and arrive at the feasible model for earthquake prediction. The comparative analyses show that the results obtained by the two methods are stable and in good agreement and signify that the optimal embedding dimension obtained from the non-linear forecasting analysis compares well with the optimal number of inputs used for the neural networks. The constructed model suggests that the earthquake dynamics in the NEI region can be characterized by a high-dimensional chaotic plane. Evidence of high-dimensional chaos appears to be associated with "stochastic seasonal" bias in these regions and would provide some useful constraints for testing the model and criteria to assess earthquake hazards on a more rigorous and quantitative basis.

  20. Cabinetmaker. Occupational Analysis Series.

    ERIC Educational Resources Information Center

    Chinien, Chris; Boutin, France

    This document contains the analysis of the occupation of cabinetmaker, or joiner, that is accepted by the Canadian Council of Directors as the national standard for the occupation. The front matter preceding the analysis includes exploration of the development of the analysis, structure of the analysis, validation method, scope of the cabinetmaker…

  1. Permutations and time series analysis.

    PubMed

    Cánovas, Jose S; Guillamón, Antonio

    2009-12-01

    The main aim of this paper is to show how the use of permutations can be useful in the study of time series analysis. In particular, we introduce a test for checking the independence of a time series which is based on the number of admissible permutations on it. The main improvement in our tests is that we are able to give a theoretical distribution for independent time series. PMID:20059199

  2. Language time series analysis

    NASA Astrophysics Data System (ADS)

    Kosmidis, Kosmas; Kalampokis, Alkiviadis; Argyrakis, Panos

    2006-10-01

    We use the detrended fluctuation analysis (DFA) and the Grassberger-Proccacia analysis (GP) methods in order to study language characteristics. Despite that we construct our signals using only word lengths or word frequencies, excluding in this way huge amount of information from language, the application of GP analysis indicates that linguistic signals may be considered as the manifestation of a complex system of high dimensionality, different from random signals or systems of low dimensionality such as the Earth climate. The DFA method is additionally able to distinguish a natural language signal from a computer code signal. This last result may be useful in the field of cryptography.

  3. FROG: Time-series analysis

    NASA Astrophysics Data System (ADS)

    Allan, Alasdair

    2014-06-01

    FROG performs time series analysis and display. It provides a simple user interface for astronomers wanting to do time-domain astrophysics but still offers the powerful features found in packages such as PERIOD (ascl:1406.005). FROG includes a number of tools for manipulation of time series. Among other things, the user can combine individual time series, detrend series (multiple methods) and perform basic arithmetic functions. The data can also be exported directly into the TOPCAT (ascl:1101.010) application for further manipulation if needed.

  4. Towards a classification approach using meta-biclustering: impact of discretization in the analysis of expression time series.

    PubMed

    Carreiro, André V; Ferreira, Artur J; Figueiredo, Mário A T; Madeira, Sara C

    2012-01-01

    Biclustering has been recognized as a remarkably effective method for discovering local temporal expression patterns and unraveling potential regulatory mechanisms, essential to understanding complex biomedical processes, such as disease progression and drug response. In this work, we propose a classification approach based on meta-biclusters (a set of similar biclusters) applied to prognostic prediction. We use real clinical expression time series to predict the response of patients with multiple sclerosis to treatment with Interferon-β. As compared to previous approaches, the main advantages of this strategy are the interpretability of the results and the reduction of data dimensionality, due to biclustering. This would allow the identification of the genes and time points which are most promising for explaining different types of response profiles, according to clinical knowledge. We assess the impact of different unsupervised and supervised discretization techniques on the classification accuracy. The experimental results show that, in many cases, the use of these discretization methods improves the classification accuracy, as compared to the use of the original features. PMID:22829578

  5. A phase-synchronization and random-matrix based approach to multichannel time-series analysis with application to epilepsy

    NASA Astrophysics Data System (ADS)

    Osorio, Ivan; Lai, Ying-Cheng

    2011-09-01

    We present a general method to analyze multichannel time series that are becoming increasingly common in many areas of science and engineering. Of particular interest is the degree of synchrony among various channels, motivated by the recognition that characterization of synchrony in a system consisting of many interacting components can provide insights into its fundamental dynamics. Often such a system is complex, high-dimensional, nonlinear, nonstationary, and noisy, rendering unlikely complete synchronization in which the dynamical variables from individual components approach each other asymptotically. Nonetheless, a weaker type of synchrony that lasts for a finite amount of time, namely, phase synchronization, can be expected. Our idea is to calculate the average phase-synchronization times from all available pairs of channels and then to construct a matrix. Due to nonlinearity and stochasticity, the matrix is effectively random. Moreover, since the diagonal elements of the matrix can be arbitrarily large, the matrix can be singular. To overcome this difficulty, we develop a random-matrix based criterion for proper choosing of the diagonal matrix elements. Monitoring of the eigenvalues and the determinant provides a powerful way to assess changes in synchrony. The method is tested using a prototype nonstationary noisy dynamical system, electroencephalogram (scalp) data from absence seizures for which enhanced cortico-thalamic synchrony is presumed, and electrocorticogram (intracranial) data from subjects having partial seizures with secondary generalization for which enhanced local synchrony is similarly presumed.

  6. Predicting road accidents: Structural time series approach

    NASA Astrophysics Data System (ADS)

    Junus, Noor Wahida Md; Ismail, Mohd Tahir

    2014-07-01

    In this paper, the model for occurrence of road accidents in Malaysia between the years of 1970 to 2010 was developed and throughout this model the number of road accidents have been predicted by using the structural time series approach. The models are developed by using stepwise method and the residual of each step has been analyzed. The accuracy of the model is analyzed by using the mean absolute percentage error (MAPE) and the best model is chosen based on the smallest Akaike information criterion (AIC) value. A structural time series approach found that local linear trend model is the best model to represent the road accidents. This model allows level and slope component to be varied over time. In addition, this approach also provides useful information on improving the conventional time series method.

  7. Hands-On Approach to Structure Activity Relationships: The Synthesis, Testing, and Hansch Analysis of a Series of Acetylcholineesterase Inhibitors

    ERIC Educational Resources Information Center

    Locock, Katherine; Tran, Hue; Codd, Rachel; Allan, Robin

    2015-01-01

    This series of three practical sessions centers on drugs that inhibit the enzyme acetylcholineesterase. This enzyme is responsible for the inactivation of acetylcholine and has been the target of drugs to treat glaucoma and Alzheimer's disease and for a number of insecticides and warfare agents. These sessions relate to a series of carbamate…

  8. Task Analysis Inventories. Series II.

    ERIC Educational Resources Information Center

    Wesson, Carl E.

    This second in a series of task analysis inventories contains checklists of work performed in twenty-two occupations. Each inventory is a comprehensive list of work activities, responsibilities, educational courses, machines, tools, equipment, and work aids used and the products produced or services rendered in a designated occupational area. The…

  9. Visibility Graph Based Time Series Analysis

    PubMed Central

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it’s microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks. PMID:26571115

  10. Multifractal Analysis of Sunspot Number Time Series

    NASA Astrophysics Data System (ADS)

    Kasde, Satish Kumar; Gwal, Ashok Kumar; Sondhiya, Deepak Kumar

    2016-07-01

    Multifractal analysis based approaches have been recently developed as an alternative framework to study the complex dynamical fluctuations in sunspot numbers data including solar cycles 20 to 23 and ascending phase of current solar cycle 24.To reveal the multifractal nature, the time series data of monthly sunspot number are analyzed by singularity spectrum and multi resolution wavelet analysis. Generally, the multifractility in sunspot number generate turbulence with the typical characteristics of the anomalous process governing the magnetosphere and interior of Sun. our analysis shows that singularities spectrum of sunspot data shows well Gaussian shape spectrum, which clearly establishes the fact that monthly sunspot number has multifractal character. The multifractal analysis is able to provide a local and adaptive description of the cyclic components of sunspot number time series, which are non-stationary and result of nonlinear processes. Keywords: Sunspot Numbers, Magnetic field, Multifractal analysis and wavelet Transform Techniques.

  11. Introduction to Time Series Analysis

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1986-01-01

    The field of time series analysis is explored from its logical foundations to the most modern data analysis techniques. The presentation is developed, as far as possible, for continuous data, so that the inevitable use of discrete mathematics is postponed until the reader has gained some familiarity with the concepts. The monograph seeks to provide the reader with both the theoretical overview and the practical details necessary to correctly apply the full range of these powerful techniques. In addition, the last chapter introduces many specialized areas where research is currently in progress.

  12. Approach to analysis of multiscale space-distributed time series: separation of spatio-temporal modes with essentially different time scales

    NASA Astrophysics Data System (ADS)

    Feigin, Alexander; Mukhin, Dmitry; Gavrilov, Andrey; Volodin, Evgeny; Loskutov, Evgeny

    2014-05-01

    Natural systems are in general space-distributed, and their evolution represents a broad spectrum of temporal scales. The multiscale nature may be resulted from multiplicity of mechanisms governing the system behaviour, and a large number of feedbacks and nonlinearities. A way to reveal and understand the underlying mechanisms as well as to model corresponding sub-systems is decomposition of the full (complex) system into well separated spatio-temporal patterns ("modes") that evolve with essentially different time scales. In the report a new method of a similar decomposition is discussed. The method is based on generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding space-distributed time series in basis of spatio-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points. The method is applied to decomposition of the Earth's climate system: on the base of 156 years time series of SST anomalies distributed over the globe [2] two climatic modes possessing by noticeably different time scales (3-5 and 9-11 years) are separated. For more accurate exclusion of "too slow" (and thus not represented correctly) processes from real data the numerically produced STEOF basis is used. For doing this the time series generated by the INM RAS Coupled Climate Model [3] is utilized. Relations of separated modes to ENSO and PDO are investigated. Possible development of the suggested approach in order to the separation of the modes that are nonlinearly uncorrelated is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/ 3. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm

  13. Analysis of time series from stochastic processes

    PubMed

    Gradisek; Siegert; Friedrich; Grabec

    2000-09-01

    Analysis of time series from stochastic processes governed by a Langevin equation is discussed. Several applications for the analysis are proposed based on estimates of drift and diffusion coefficients of the Fokker-Planck equation. The coefficients are estimated directly from a time series. The applications are illustrated by examples employing various synthetic time series and experimental time series from metal cutting. PMID:11088809

  14. Nonlinear time-series analysis revisited

    NASA Astrophysics Data System (ADS)

    Bradley, Elizabeth; Kantz, Holger

    2015-09-01

    In 1980 and 1981, two pioneering papers laid the foundation for what became known as nonlinear time-series analysis: the analysis of observed data—typically univariate—via dynamical systems theory. Based on the concept of state-space reconstruction, this set of methods allows us to compute characteristic quantities such as Lyapunov exponents and fractal dimensions, to predict the future course of the time series, and even to reconstruct the equations of motion in some cases. In practice, however, there are a number of issues that restrict the power of this approach: whether the signal accurately and thoroughly samples the dynamics, for instance, and whether it contains noise. Moreover, the numerical algorithms that we use to instantiate these ideas are not perfect; they involve approximations, scale parameters, and finite-precision arithmetic, among other things. Even so, nonlinear time-series analysis has been used to great advantage on thousands of real and synthetic data sets from a wide variety of systems ranging from roulette wheels to lasers to the human heart. Even in cases where the data do not meet the mathematical or algorithmic requirements to assure full topological conjugacy, the results of nonlinear time-series analysis can be helpful in understanding, characterizing, and predicting dynamical systems.

  15. Nonlinear time-series analysis revisited.

    PubMed

    Bradley, Elizabeth; Kantz, Holger

    2015-09-01

    In 1980 and 1981, two pioneering papers laid the foundation for what became known as nonlinear time-series analysis: the analysis of observed data-typically univariate-via dynamical systems theory. Based on the concept of state-space reconstruction, this set of methods allows us to compute characteristic quantities such as Lyapunov exponents and fractal dimensions, to predict the future course of the time series, and even to reconstruct the equations of motion in some cases. In practice, however, there are a number of issues that restrict the power of this approach: whether the signal accurately and thoroughly samples the dynamics, for instance, and whether it contains noise. Moreover, the numerical algorithms that we use to instantiate these ideas are not perfect; they involve approximations, scale parameters, and finite-precision arithmetic, among other things. Even so, nonlinear time-series analysis has been used to great advantage on thousands of real and synthetic data sets from a wide variety of systems ranging from roulette wheels to lasers to the human heart. Even in cases where the data do not meet the mathematical or algorithmic requirements to assure full topological conjugacy, the results of nonlinear time-series analysis can be helpful in understanding, characterizing, and predicting dynamical systems. PMID:26428563

  16. Hydrodynamic analysis of time series

    NASA Astrophysics Data System (ADS)

    Suciu, N.; Vamos, C.; Vereecken, H.; Vanderborght, J.

    2003-04-01

    It was proved that balance equations for systems with corpuscular structure can be derived if a kinematic description by piece-wise analytic functions is available [1]. For example, the hydrodynamic equations for one-dimensional systems of inelastic particles, derived in [2], were used to prove the inconsistency of the Fourier law of heat with the microscopic structure of the system. The hydrodynamic description is also possible for single particle systems. In this case, averages of physical quantities associated with the particle, over a space-time window, generalizing the usual ``moving averages'' which are performed on time intervals only, were shown to be almost everywhere continuous space-time functions. Moreover, they obey balance partial differential equations (continuity equation for the 'concentration', Navier-Stokes equation, a. s. o.) [3]. Time series can be interpreted as trajectories in the space of the recorded parameter. Their hydrodynamic interpretation is expected to enable deterministic predictions, when closure relations can be obtained for the balance equations. For the time being, a first result is the estimation of the probability density for the occurrence of a given parameter value, by the normalized concentration field from the hydrodynamic description. The method is illustrated by hydrodynamic analysis of three types of time series: white noise, stock prices from financial markets and groundwater levels recorded at Krauthausen experimental field of Forschungszentrum Jülich (Germany). [1] C. Vamoş, A. Georgescu, N. Suciu, I. Turcu, Physica A 227, 81-92, 1996. [2] C. Vamoş, N. Suciu, A. Georgescu, Phys. Rev E 55, 5, 6277-6280, 1997. [3] C. Vamoş, N. Suciu, W. Blaj, Physica A, 287, 461-467, 2000.

  17. Analysis of Polyphonic Musical Time Series

    NASA Astrophysics Data System (ADS)

    Sommer, Katrin; Weihs, Claus

    A general model for pitch tracking of polyphonic musical time series will be introduced. Based on a model of Davy and Godsill (Bayesian harmonic models for musical pitch estimation and analysis, Technical Report 431, Cambridge University Engineering Department, 2002) Davy and Godsill (2002) the different pitches of the musical sound are estimated with MCMC methods simultaneously. Additionally a preprocessing step is designed to improve the estimation of the fundamental frequencies (A comparative study on polyphonic musical time series using MCMC methods. In C. Preisach et al., editors, Data Analysis, Machine Learning, and Applications, Springer, Berlin, 2008). The preprocessing step compares real audio data with an alphabet constructed from the McGill Master Samples (Opolko and Wapnick, McGill University Master Samples [Compact disc], McGill University, Montreal, 1987) and consists of tones of different instruments. The tones with minimal Itakura-Saito distortion (Gray et al., Transactions on Acoustics, Speech, and Signal Processing ASSP-28(4):367-376, 1980) are chosen as first estimates and as starting points for the MCMC algorithms. Furthermore the implementation of the alphabet is an approach for the recognition of the instruments generating the musical time series. Results are presented for mixed monophonic data from McGill and for self recorded polyphonic audio data.

  18. Complex network approach to fractional time series

    NASA Astrophysics Data System (ADS)

    Manshour, Pouya

    2015-10-01

    In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacency matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.

  19. Complex network approach to fractional time series

    SciTech Connect

    Manshour, Pouya

    2015-10-15

    In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacency matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.

  20. Analysis of series resonant converter with series-parallel connection

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren; Huang, Chien-Lan

    2011-02-01

    In this study, a parallel inductor-inductor-capacitor (LLC) resonant converter series-connected on the primary side and parallel-connected on the secondary side is presented for server power supply systems. Based on series resonant behaviour, the power metal-oxide-semiconductor field-effect transistors are turned on at zero voltage switching and the rectifier diodes are turned off at zero current switching. Thus, the switching losses on the power semiconductors are reduced. In the proposed converter, the primary windings of the two LLC converters are connected in series. Thus, the two converters have the same primary currents to ensure that they can supply the balance load current. On the output side, two LLC converters are connected in parallel to share the load current and to reduce the current stress on the secondary windings and the rectifier diodes. In this article, the principle of operation, steady-state analysis and design considerations of the proposed converter are provided and discussed. Experiments with a laboratory prototype with a 24 V/21 A output for server power supply were performed to verify the effectiveness of the proposed converter.

  1. Nonlinear Analysis of Surface EMG Time Series

    NASA Astrophysics Data System (ADS)

    Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-04-01

    Applications of nonlinear analysis of surface electromyography time series of patients with and without low back pain are presented. Limitations of the standard methods based on the power spectrum are discussed.

  2. English Grammar, A Combined Tagmemic and Transformational Approach. A Constrastive Analysis of English and Vietnamese, Vol. 1. Linguistic Circle of Canberra Publications, Series C--Books, No. 3.

    ERIC Educational Resources Information Center

    Nguyen, Dang Liem

    This is the first volume of a contrastive analysis of English and Vietnamese in the light of a combined tagmemic and transformational approach. The dialects contrasted are Midwest Standard American English and Standard Saigon Vietnamese. The study has been designed chiefly for pedagogical applications. A general introduction gives the history of…

  3. Allan deviation analysis of financial return series

    NASA Astrophysics Data System (ADS)

    Hernández-Pérez, R.

    2012-05-01

    We perform a scaling analysis for the return series of different financial assets applying the Allan deviation (ADEV), which is used in the time and frequency metrology to characterize quantitatively the stability of frequency standards since it has demonstrated to be a robust quantity to analyze fluctuations of non-stationary time series for different observation intervals. The data used are opening price daily series for assets from different markets during a time span of around ten years. We found that the ADEV results for the return series at short scales resemble those expected for an uncorrelated series, consistent with the efficient market hypothesis. On the other hand, the ADEV results for absolute return series for short scales (first one or two decades) decrease following approximately a scaling relation up to a point that is different for almost each asset, after which the ADEV deviates from scaling, which suggests that the presence of clustering, long-range dependence and non-stationarity signatures in the series drive the results for large observation intervals.

  4. Time Series Analysis Using Geometric Template Matching.

    PubMed

    Frank, Jordan; Mannor, Shie; Pineau, Joelle; Precup, Doina

    2013-03-01

    We present a novel framework for analyzing univariate time series data. At the heart of the approach is a versatile algorithm for measuring the similarity of two segments of time series called geometric template matching (GeTeM). First, we use GeTeM to compute a similarity measure for clustering and nearest-neighbor classification. Next, we present a semi-supervised learning algorithm that uses the similarity measure with hierarchical clustering in order to improve classification performance when unlabeled training data are available. Finally, we present a boosting framework called TDEBOOST, which uses an ensemble of GeTeM classifiers. TDEBOOST augments the traditional boosting approach with an additional step in which the features used as inputs to the classifier are adapted at each step to improve the training error. We empirically evaluate the proposed approaches on several datasets, such as accelerometer data collected from wearable sensors and ECG data. PMID:22641699

  5. Entropic Analysis of Electromyography Time Series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Sung, Paul

    2005-03-01

    We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.

  6. 3D QSAR STUDIES ON A SERIES OF QUINAZOLINE DERRIVATIVES AS TYROSINE KINASE (EGFR) INHIBITOR: THE K-NEAREST NEIGHBOR MOLECULAR FIELD ANALYSIS APPROACH

    PubMed Central

    Noolvi, Malleshappa N.; Patel, Harun M.

    2010-01-01

    Epidermal growth factor receptor (EGFR) protein tyrosine kinases (PTKs) are known for its role in cancer. Quinazoline have been reported to be the molecules of interest, with potent anticancer activity and they act by binding to ATP site of protein kinases. ATP binding site of protein kinases provides an extensive opportunity to design newer analogs. With this background, we report an attempt to discern the structural and physicochemical requirements for inhibition of EGFR tyrosine kinase. The k-Nearest Neighbor Molecular Field Analysis (kNN-MFA), a three dimensional quantitative structure activity relationship (3D- QSAR) method has been used in the present case to study the correlation between the molecular properties and the tyrosine kinase (EGFR) inhibitory activities on a series of quinazoline derivatives. kNNMFA calculations for both electrostatic and steric field were carried out. The master grid maps derived from the best model has been used to display the contribution of electrostatic potential and steric field. The statistical results showed significant correlation coefficient r2 (q2) of 0.846, r2 for external test set (pred_r2) 0.8029, coefficient of correlation of predicted data set (pred_r2se) of 0.6658, degree of freedom 89 and k nearest neighbor of 2. Therefore, this study not only casts light on binding mechanism between EGFR and its inhibitors, but also provides hints for the design of new EGFR inhibitors with observable structural diversity PMID:24825983

  7. Topological analysis of chaotic time series

    NASA Astrophysics Data System (ADS)

    Gilmore, Robert

    1997-10-01

    Topological methods have recently been developed for the classification, analysis, and synthesis of chaotic time series. These methods can be applied to time series with a Lyapunov dimension less than three. The procedure determines the stretching and squeezing mechanisms which operate to create a strange attractor and organize all the unstable periodic orbits in the attractor in a unique way. Strange attractors are identified by a set of integers. These are topological invariants for a two dimensional branched manifold, which is the infinite dissipation limit of the strange attractor. It is remarkable that this topological information can be extracted from chaotic time series. The data required for this analysis need not be extensive or exceptionally clean. The topological invariants: (1) are subject to validation/invalidation tests; (2) describe how to model the data; and (3) do not change as control parameters change. Topological analysis is the first step in a doubly discrete classification scheme for strange attractors. The second discrete classification involves specification of a 'basis set' set of periodic orbits whose presence forces the existence of all other periodic orbits in the strange attractor. The basis set of orbits does change as control parameters change. Quantitative models developed to describe time series data are tested by the methods of entrainment. This analysis procedure has been applied to analyze a number of data sets. Several analyses are described.

  8. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, L.M.; Ng, E.G.

    1998-09-29

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data are disclosed. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated. 8 figs.

  9. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, Lee M.; Ng, Esmond G.

    1998-01-01

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated.

  10. Nonlinear Time Series Analysis via Neural Networks

    NASA Astrophysics Data System (ADS)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  11. Modelling road accidents: An approach using structural time series

    NASA Astrophysics Data System (ADS)

    Junus, Noor Wahida Md; Ismail, Mohd Tahir

    2014-09-01

    In this paper, the trend of road accidents in Malaysia for the years 2001 until 2012 was modelled using a structural time series approach. The structural time series model was identified using a stepwise method, and the residuals for each model were tested. The best-fitted model was chosen based on the smallest Akaike Information Criterion (AIC) and prediction error variance. In order to check the quality of the model, a data validation procedure was performed by predicting the monthly number of road accidents for the year 2012. Results indicate that the best specification of the structural time series model to represent road accidents is the local level with a seasonal model.

  12. Multifractal analysis of polyalanines time series

    NASA Astrophysics Data System (ADS)

    Figueirêdo, P. H.; Nogueira, E.; Moret, M. A.; Coutinho, Sérgio

    2010-05-01

    Multifractal properties of the energy time series of short α-helix structures, specifically from a polyalanine family, are investigated through the MF-DFA technique ( multifractal detrended fluctuation analysis). Estimates for the generalized Hurst exponent h(q) and its associated multifractal exponents τ(q) are obtained for several series generated by numerical simulations of molecular dynamics in different systems from distinct initial conformations. All simulations were performed using the GROMOS force field, implemented in the program THOR. The main results have shown that all series exhibit multifractal behavior depending on the number of residues and temperature. Moreover, the multifractal spectra reveal important aspects of the time evolution of the system and suggest that the nucleation process of the secondary structures during the visits on the energy hyper-surface is an essential feature of the folding process.

  13. Climate Time Series Analysis and Forecasting

    NASA Astrophysics Data System (ADS)

    Young, P. C.; Fildes, R.

    2009-04-01

    This paper will discuss various aspects of climate time series data analysis, modelling and forecasting being carried out at Lancaster. This will include state-dependent parameter, nonlinear, stochastic modelling of globally averaged atmospheric carbon dioxide; the computation of emission strategies based on modern control theory; and extrapolative time series benchmark forecasts of annual average temperature, both global and local. The key to the forecasting evaluation will be the iterative estimation of forecast error based on rolling origin comparisons, as recommended in the forecasting research literature. The presentation will conclude with with a comparison of the time series forecasts with forecasts produced from global circulation models and a discussion of the implications for climate modelling research.

  14. Ensemble vs. time averages in financial time series analysis

    NASA Astrophysics Data System (ADS)

    Seemann, Lars; Hua, Jia-Chen; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2012-12-01

    Empirical analysis of financial time series suggests that the underlying stochastic dynamics are not only non-stationary, but also exhibit non-stationary increments. However, financial time series are commonly analyzed using the sliding interval technique that assumes stationary increments. We propose an alternative approach that is based on an ensemble over trading days. To determine the effects of time averaging techniques on analysis outcomes, we create an intraday activity model that exhibits periodic variable diffusion dynamics and we assess the model data using both ensemble and time averaging techniques. We find that ensemble averaging techniques detect the underlying dynamics correctly, whereas sliding intervals approaches fail. As many traded assets exhibit characteristic intraday volatility patterns, our work implies that ensemble averages approaches will yield new insight into the study of financial markets’ dynamics.

  15. Delay Differential Analysis of Time Series

    PubMed Central

    Lainscsek, Claudia; Sejnowski, Terrence J.

    2015-01-01

    Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time

  16. Nonstationary time series prediction combined with slow feature analysis

    NASA Astrophysics Data System (ADS)

    Wang, G.; Chen, X.

    2015-07-01

    Almost all climate time series have some degree of nonstationarity due to external driving forces perturbing the observed system. Therefore, these external driving forces should be taken into account when constructing the climate dynamics. This paper presents a new technique of obtaining the driving forces of a time series from the slow feature analysis (SFA) approach, and then introduces them into a predictive model to predict nonstationary time series. The basic theory of the technique is to consider the driving forces as state variables and to incorporate them into the predictive model. Experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted to test the model. The results showed improved prediction skills.

  17. Time-Series Analysis: A Cautionary Tale

    NASA Technical Reports Server (NTRS)

    Damadeo, Robert

    2015-01-01

    Time-series analysis has often been a useful tool in atmospheric science for deriving long-term trends in various atmospherically important parameters (e.g., temperature or the concentration of trace gas species). In particular, time-series analysis has been repeatedly applied to satellite datasets in order to derive the long-term trends in stratospheric ozone, which is a critical atmospheric constituent. However, many of the potential pitfalls relating to the non-uniform sampling of the datasets were often ignored and the results presented by the scientific community have been unknowingly biased. A newly developed and more robust application of this technique is applied to the Stratospheric Aerosol and Gas Experiment (SAGE) II version 7.0 ozone dataset and the previous biases and newly derived trends are presented.

  18. Homogeneity analysis of precipitation series in Iran

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh Talaee, P.; Kouchakzadeh, Mahdi; Shifteh Some'e, B.

    2014-10-01

    Assessment of the reliability and quality of historical precipitation data is required in the modeling of hydrology and water resource processes and for climate change studies. The homogeneity of the annual and monthly precipitation data sets throughout Iran was tested using the Bayesian, Cumulative Deviations, and von Neumann tests at a significance level of 0.05. The precipitation records from 41 meteorological stations covering the years between 1966 and 2005 were considered. The annual series of Iranian precipitation were found to be homogeneous by applying the Bayesian and Cumulative Deviations tests, while the von Neumann test detected inhomogeneities at seven stations. Almost all the monthly precipitation data sets are homogeneous and considered as "useful." The outputs of the statistical tests for the homogeneity analysis of the precipitation time series had discrepancies in some cases which are related to different sensitivities of the tests to break in the time series. It was found that the von Neumann test is more sensitive than the Bayesian and Cumulative Deviations tests in the determination of inhomogeneity in the precipitation series.

  19. Exploratory Causal Analysis in Bivariate Time Series Data

    NASA Astrophysics Data System (ADS)

    McCracken, James M.

    Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data

  20. AN ALTERNATIVE APPROACH TO THE TREATMENT OF MENISCAL PATHOLOGIES: A CASE SERIES ANALYSIS OF THE MULLIGAN CONCEPT “SQUEEZE” TECHNIQUE

    PubMed Central

    Richmond, Amy; Sanchez, Belinda; Stevenson, Valerie; Baker, Russell T.; May, James; Nasypany, Alan; Reordan, Don

    2016-01-01

    ABSTRACT Background Partial meniscectomy does not consistently produce the desired positive outcomes intended for meniscal tears lesions; therefore, a need exists for research into alternatives for treating symptoms of meniscal tears. The purpose of this case series was to examine the effect of the Mulligan Concept (MC) “Squeeze” technique in physically active participants who presented with clinical symptoms of meniscal tears. Description of Cases The MC “Squeeze” technique was applied in five cases of clinically diagnosed meniscal tears in a physically active population. The Numeric Pain Rating Scale (NRS), the Patient Specific Functional Scale (PSFS), the Disability in the Physically Active (DPA) Scale, and the Knee injury and Osteoarthritis Outcomes Score (KOOS) were administered to assess participant pain level and function. Outcomes Statistically significant improvements were found on cumulative NRS (p ≤ 0.001), current NRS (p ≤ 0.002), PSFS (p ≤ 0.003), DPA (p ≤ 0.019), and KOOS (p ≤ 0.002) scores across all five participants. All participants exceeded the minimal clinically important difference (MCID) on the first treatment and reported an NRS score and current pain score of one point or less at discharge. The MC “Squeeze” technique produced statistically and clinically significant changes across all outcome measures in all five participants. Discussion The use of the MC “Squeeze” technique in this case series indicated positive outcomes in five participants who presented with meniscal tear symptoms. Of importance to the athletic population, each of the participants continued to engage in sport activity as tolerated unless otherwise required during the treatment period. The outcomes reported in this case series exceed those reported when using traditional conservative therapy and the return to play timelines for meniscal tears treated with partial meniscectomies. Levels of Evidence Level 4 PMID:27525181

  1. Long-Term Retrospective Analysis of Mackerel Spawning in the North Sea: A New Time Series and Modeling Approach to CPR Data

    PubMed Central

    Jansen, Teunis; Kristensen, Kasper; Payne, Mark; Edwards, Martin; Schrum, Corinna; Pitois, Sophie

    2012-01-01

    We present a unique view of mackerel (Scomber scombrus) in the North Sea based on a new time series of larvae caught by the Continuous Plankton Recorder (CPR) survey from 1948-2005, covering the period both before and after the collapse of the North Sea stock. Hydrographic backtrack modelling suggested that the effect of advection is very limited between spawning and larvae capture in the CPR survey. Using a statistical technique not previously applied to CPR data, we then generated a larval index that accounts for both catchability as well as spatial and temporal autocorrelation. The resulting time series documents the significant decrease of spawning from before 1970 to recent depleted levels. Spatial distributions of the larvae, and thus the spawning area, showed a shift from early to recent decades, suggesting that the central North Sea is no longer as important as the areas further west and south. These results provide a consistent and unique perspective on the dynamics of mackerel in this region and can potentially resolve many of the unresolved questions about this stock. PMID:22737221

  2. Sliced Inverse Regression for Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Li-Sue

    1995-11-01

    In this thesis, general nonlinear models for time series data are considered. A basic form is x _{t} = f(beta_sp{1} {T}X_{t-1},beta_sp {2}{T}X_{t-1},... , beta_sp{k}{T}X_ {t-1},varepsilon_{t}), where x_{t} is an observed time series data, X_{t } is the first d time lag vector, (x _{t},x_{t-1},... ,x _{t-d-1}), f is an unknown function, beta_{i}'s are unknown vectors, varepsilon_{t }'s are independent distributed. Special cases include AR and TAR models. We investigate the feasibility applying SIR/PHD (Li 1990, 1991) (the sliced inverse regression and principal Hessian methods) in estimating beta _{i}'s. PCA (Principal component analysis) is brought in to check one critical condition for SIR/PHD. Through simulation and a study on 3 well -known data sets of Canadian lynx, U.S. unemployment rate and sunspot numbers, we demonstrate how SIR/PHD can effectively retrieve the interesting low-dimension structures for time series data.

  3. Singular spectrum analysis for time series with missing data

    USGS Publications Warehouse

    Schoellhamer, D.H.

    2001-01-01

    Geophysical time series often contain missing data, which prevents analysis with many signal processing and multivariate tools. A modification of singular spectrum analysis for time series with missing data is developed and successfully tested with synthetic and actual incomplete time series of suspended-sediment concentration from San Francisco Bay. This method also can be used to low pass filter incomplete time series.

  4. Sutureless clear corneal DSAEK with a modified approach for preventing pupillary block and graft dislocation: case series with retrospective comparative analysis.

    PubMed

    Titiyal, Jeewan S; Tinwala, Sana I; Shekhar, Himanshu; Sinha, Rajesh

    2015-04-01

    The purpose of this study was to describe a modified technique of sutureless DSAEK with continuous pressurized internal air tamponade. This was a prospective interventional case series, single-center, institutional study. Twenty-seven patients with corneal decompensation without scarring were included. Aphakic patients and patients with cataractous lens requiring IOL implantation surgery were excluded. Following preparation of the donor tissue, a corneal tunnel was made nasally with two side ports. All incisions were kept long enough to be overlapped by the peripheral part of the donor tissue. Descemet membrane scoring was done using a reverse Sinskey hook, following which it was removed with the same instrument or by forceps. The donor lenticule was then inserted using Busin's glide. Continuous pressurized internal air tamponade was achieved by means of a 30-gauge needle, inserted through the posterior limbus, for 12-14 min. At the end of the surgery, air was partially replaced with BSS, leaving a moderate-sized mobile air bubble in the anterior chamber. At the 6 month's follow-up, CDVA improved from counting fingers at half meter-6/24 preoperatively to 6/9-6/18 postoperatively, and the mean endothelial cell count decreased: to 1,800 from 2,200 cell/mm(2) preoperatively (18.19 % endothelial cell loss). Donor lenticule thickness as documented on AS-OCT was 70-110 µ on Day 1 and 50-80 µ at 6 months postoperative. None of the cases had flat AC or peripheral anterior synechiae formation. None of the patients required a second intervention. There were no cases of primary graft failure, pupillary block glaucomax or donor lenticule dislocation postoperatively. Our modified technique is simple and effective with reduction in postoperative complications associated with DSAEK, thereby maximizing anatomic and functional outcomes associated. PMID:24728534

  5. A seasonal and heteroscedastic gamma model for hydrological time series: A Bayesian approach

    NASA Astrophysics Data System (ADS)

    Cuervo, Edilberto Cepeda; Andrade, Marinho G.; Achcar, Jorge Alberto

    2012-10-01

    Time series models are often used in hydrology to model streamflow series in order to forecast and generate synthetic series which are inputs for the analysis of complex water resources systems. In this paper, we introduce a new modeling approach for hydrologic time series assuming a gamma distribution for the data, where both the mean and conditional variance are being modeled. Bayesian methods using standard Markov Chain Monte Carlo Methods (MCMC) and a simulation algorithm introduced by [1] are used to simulate samples of the joint posterior distribution of interest. An example is given with a time series of monthly averages of natural streamflows, measured from 1931 to 2010 in Furnas hydroelectric dam, in southeastern Brazil.

  6. Compounding approach for univariate time series with nonstationary variances

    NASA Astrophysics Data System (ADS)

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  7. Compounding approach for univariate time series with nonstationary variances.

    PubMed

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances. PMID:26764768

  8. Irreversibility of financial time series: A graph-theoretical approach

    NASA Astrophysics Data System (ADS)

    Flanagan, Ryan; Lacasa, Lucas

    2016-04-01

    The relation between time series irreversibility and entropy production has been recently investigated in thermodynamic systems operating away from equilibrium. In this work we explore this concept in the context of financial time series. We make use of visibility algorithms to quantify, in graph-theoretical terms, time irreversibility of 35 financial indices evolving over the period 1998-2012. We show that this metric is complementary to standard measures based on volatility and exploit it to both classify periods of financial stress and to rank companies accordingly. We then validate this approach by finding that a projection in principal components space of financial years, based on time irreversibility features, clusters together periods of financial stress from stable periods. Relations between irreversibility, efficiency and predictability are briefly discussed.

  9. A simple classification of cranial-nasal-orbital communicating tumors that facilitate choice of surgical approaches: analysis of a series of 32 cases.

    PubMed

    Deng, Yue-Fei; Lei, Bing-Xi; Zheng, Mei-Guang; Zheng, Yi-Qing; Chen, Wei-Liang; Lan, Yu-Qing

    2016-08-01

    Cranial-nasal-orbital communicating tumors involving the anterior and middle skull base are among the most challenging to treat surgically, with high rates of incomplete resection and surgical complications. Currently, there is no recognized classification of tumors with regard to the choice of surgical approaches. From January 2004 to January 2014, we classified 32 cranial-nasal-orbital communicating tumors treated in our center into three types according to the tumor body location, scope of extension and direction of invasion: lateral (type I), central (type II) and extensive (type III). This classification considerably facilitated the choice of surgical routes and significantly influenced the surgical time and amount of hemorrhage during operation. In addition, we emphasized the use of transnasal endoscopy for large and extensive tumors, individualized treatment strategies drafted by a group of multidisciplinary collaborators, and careful reconstruction of the skull base defects. Our treatment strategies achieved good surgical outcomes, with a high ratio of total resection (87.5 %, 28/32, including 16 cases of benign tumors and 12 cases of malignant tumors) and a low percentage of surgical complications (18.8 %, 6/32). Original symptoms were alleviated in 29 patients. The average KPS score improved from 81.25 % preoperatively to 91.25 % at 3 months after surgery. No serious perioperative complications occurred. During the follow-up of 3 years on average, four patients with malignant tumors died, including three who had subtotal resections. The 3-year survival rate of patients with malignant tumors was 78.6 %, and the overall 3-year survival rate was 87.5 %. Our data indicate that the simple classification method has practical significance in guiding the choice of surgical approaches for cranial-nasal-orbital communicating tumors and may be extended to other types of skull base tumors. PMID:27016919

  10. Mixed Spectrum Analysis on fMRI Time-Series.

    PubMed

    Kumar, Arun; Lin, Feng; Rajapakse, Jagath C

    2016-06-01

    Temporal autocorrelation present in functional magnetic resonance image (fMRI) data poses challenges to its analysis. The existing approaches handling autocorrelation in fMRI time-series often presume a specific model of autocorrelation such as an auto-regressive model. The main limitation here is that the correlation structure of voxels is generally unknown and varies in different brain regions because of different levels of neurogenic noises and pulsatile effects. Enforcing a universal model on all brain regions leads to bias and loss of efficiency in the analysis. In this paper, we propose the mixed spectrum analysis of the voxel time-series to separate the discrete component corresponding to input stimuli and the continuous component carrying temporal autocorrelation. A mixed spectral analysis technique based on M-spectral estimator is proposed, which effectively removes autocorrelation effects from voxel time-series and identify significant peaks of the spectrum. As the proposed method does not assume any prior model for the autocorrelation effect in voxel time-series, varying correlation structure among the brain regions does not affect its performance. We have modified the standard M-spectral method for an application on a spatial set of time-series by incorporating the contextual information related to the continuous spectrum of neighborhood voxels, thus reducing considerably the computation cost. Likelihood of the activation is predicted by comparing the amplitude of discrete component at stimulus frequency of voxels across the brain by using normal distribution and modeling spatial correlations among the likelihood with a conditional random field. We also demonstrate the application of the proposed method in detecting other desired frequencies. PMID:26800533

  11. Behavior of road accidents: Structural time series approach

    NASA Astrophysics Data System (ADS)

    Junus, Noor Wahida Md; Ismail, Mohd Tahir; Arsad, Zainudin

    2014-12-01

    Road accidents become a major issue in contributing to the increasing number of deaths. Few researchers suggest that road accidents occur due to road structure and road condition. The road structure and condition may differ according to the area and volume of traffic of the location. Therefore, this paper attempts to look up the behavior of the road accidents in four main regions in Peninsular Malaysia by employing a structural time series (STS) approach. STS offers the possibility of modelling the unobserved component such as trends and seasonal component and it is allowed to vary over time. The results found that the number of road accidents is described by a different model. Perhaps, the results imply that the government, especially a policy maker should consider to implement a different approach in ways to overcome the increasing number of road accidents.

  12. Time series analysis of temporal networks

    NASA Astrophysics Data System (ADS)

    Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh

    2016-01-01

    A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue

  13. Flutter Analysis for Turbomachinery Using Volterra Series

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Yao, Weigang

    2014-01-01

    The objective of this paper is to describe an accurate and efficient reduced order modeling method for aeroelastic (AE) analysis and for determining the flutter boundary. Without losing accuracy, we develop a reduced order model based on the Volterra series to achieve significant savings in computational cost. The aerodynamic force is provided by a high-fidelity solution from the Reynolds-averaged Navier-Stokes (RANS) equations; the structural mode shapes are determined from the finite element analysis. The fluid-structure coupling is then modeled by the state-space formulation with the structural displacement as input and the aerodynamic force as output, which in turn acts as an external force to the aeroelastic displacement equation for providing the structural deformation. NASA's rotor 67 blade is used to study its aeroelastic characteristics under the designated operating condition. First, the CFD results are validated against measured data available for the steady state condition. Then, the accuracy of the developed reduced order model is compared with the full-order solutions. Finally the aeroelastic solutions of the blade are computed and a flutter boundary is identified, suggesting that the rotor, with the material property chosen for the study, is structurally stable at the operating condition, free of encountering flutter.

  14. Multifractal Analysis of Aging and Complexity in Heartbeat Time Series

    NASA Astrophysics Data System (ADS)

    Muñoz D., Alejandro; Almanza V., Victor H.; del Río C., José L.

    2004-09-01

    Recently multifractal analysis has been used intensively in the analysis of physiological time series. In this work we apply the multifractal analysis to the study of heartbeat time series from healthy young subjects and other series obtained from old healthy subjects. We show that this multifractal formalism could be a useful tool to discriminate these two kinds of series. We used the algorithm proposed by Chhabra and Jensen that provides a highly accurate, practical and efficient method for the direct computation of the singularity spectrum. Aging causes loss of multifractality in the heartbeat time series, it means that heartbeat time series of elderly persons are less complex than the time series of young persons. This analysis reveals a new level of complexity characterized by the wide range of necessary exponents to characterize the dynamics of young people.

  15. Deciding on the best (in this case) approach to time-series forecasting

    SciTech Connect

    Pack, D.J.

    1980-01-01

    This paper was motivated by a Decision Sciences article (v. 10, no. 2, 232-244(April 1979)) that presented comparisons of the adaptive estimation procedure (AEP), adaptive filtering, the Box-Jenkins (BJ) methodology, and multiple regression analysis as they apply to time-series forecasting with single-series models. While such comparisons are to be applauded in general, it is demonstrated that the empirical comparisons of the above paper are quite misleading with respect to choosing between the AEP and BJ approaches. This demonstration is followed by a somewhat philosophical discussion on comparison-of-methods techniques.

  16. Apparatus for statistical time-series analysis of electrical signals

    NASA Technical Reports Server (NTRS)

    Stewart, C. H. (Inventor)

    1973-01-01

    An apparatus for performing statistical time-series analysis of complex electrical signal waveforms, permitting prompt and accurate determination of statistical characteristics of the signal is presented.

  17. Time Series in Education: The Analysis of Daily Attendance in Two High Schools

    ERIC Educational Resources Information Center

    Koopmans, Matthijs

    2011-01-01

    This presentation discusses the use of a time series approach to the analysis of daily attendance in two urban high schools over the course of one school year (2009-10). After establishing that the series for both schools were stationary, they were examined for moving average processes, autoregression, seasonal dependencies (weekly cycles),…

  18. Time-series analysis of offshore-wind-wave groupiness

    SciTech Connect

    Liang, H.B.

    1988-01-01

    This research is to applies basic time-series-analysis techniques on the complex envelope function where the study of the offshore-wind-wave groupiness is a relevant interest. In constructing the complex envelope function, a phase-unwrapping technique is integrated into the algorithm for estimating the carrier frequency and preserving the phase information for further studies. The Gaussian random wave model forms the basis of the wave-group statistics by the envelope-amplitude crossings. Good agreement between the theory and the analysis of field records is found. Other linear models, such as the individual-waves approach and the energy approach, are compared to the envelope approach by analyzing the same set of records. It is found that the character of the filter used in each approach dominates the wave-group statistics. Analyses indicate that the deep offshore wind waves are weakly nonlinear and the Gaussian random assumption remains appropriate for describing the sea state. Wave groups statistics derived from the Gaussian random wave model thus become applicable.

  19. Time-series analysis of Campylobacter incidence in Switzerland.

    PubMed

    Wei, W; Schüpbach, G; Held, L

    2015-07-01

    Campylobacteriosis has been the most common food-associated notifiable infectious disease in Switzerland since 1995. Contact with and ingestion of raw or undercooked broilers are considered the dominant risk factors for infection. In this study, we investigated the temporal relationship between the disease incidence in humans and the prevalence of Campylobacter in broilers in Switzerland from 2008 to 2012. We use a time-series approach to describe the pattern of the disease by incorporating seasonal effects and autocorrelation. The analysis shows that prevalence of Campylobacter in broilers, with a 2-week lag, has a significant impact on disease incidence in humans. Therefore Campylobacter cases in humans can be partly explained by contagion through broiler meat. We also found a strong autoregressive effect in human illness, and a significant increase of illness during Christmas and New Year's holidays. In a final analysis, we corrected for the sampling error of prevalence in broilers and the results gave similar conclusions. PMID:25400006

  20. Critical Thinking Skills. Analysis and Action Series.

    ERIC Educational Resources Information Center

    Heiman, Marcia; Slomianko, Joshua

    Intended for teachers across grade levels and disciplines, this monograph reviews research on the development of critical thinking skills and introduces a series of these skills that can be incorporated into classroom teaching. Beginning with a definition of critical thinking, the monograph contains two main sections. The first section reviews…

  1. Three Analysis Examples for Time Series Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With improvements in instrumentation and the automation of data collection, plot level repeated measures and time series data are increasingly available to monitor and assess selected variables throughout the duration of an experiment or project. Records and metadata on variables of interest alone o...

  2. Singular spectrum analysis and forecasting of hydrological time series

    NASA Astrophysics Data System (ADS)

    Marques, C. A. F.; Ferreira, J. A.; Rocha, A.; Castanheira, J. M.; Melo-Gonçalves, P.; Vaz, N.; Dias, J. M.

    The singular spectrum analysis (SSA) technique is applied to some hydrological univariate time series to assess its ability to uncover important information from those series, and also its forecast skill. The SSA is carried out on annual precipitation, monthly runoff, and hourly water temperature time series. Information is obtained by extracting important components or, when possible, the whole signal from the time series. The extracted components are then subject to forecast by the SSA algorithm. It is illustrated the SSA ability to extract a slowly varying component (i.e. the trend) from the precipitation time series, the trend and oscillatory components from the runoff time series, and the whole signal from the water temperature time series. The SSA was also able to accurately forecast the extracted components of these time series.

  3. A Time Series Approach for Soil Moisture Estimation

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin; vanZyl, Jakob

    2006-01-01

    Soil moisture is a key parameter in understanding the global water cycle and in predicting natural hazards. Polarimetric radar measurements have been used for estimating soil moisture of bare surfaces. In order to estimate soil moisture accurately, the surface roughness effect must be compensated properly. In addition, these algorithms will not produce accurate results for vegetated surfaces. It is difficult to retrieve soil moisture of a vegetated surface since the radar backscattering cross section is sensitive to the vegetation structure and environmental conditions such as the ground slope. Therefore, it is necessary to develop a method to estimate the effect of the surface roughness and vegetation reliably. One way to remove the roughness effect and the vegetation contamination is to take advantage of the temporal variation of soil moisture. In order to understand the global hydrologic cycle, it is desirable to measure soil moisture with one- to two-days revisit. Using these frequent measurements, a time series approach can be implemented to improve the soil moisture retrieval accuracy.

  4. Stratospheric ozone time series analysis using dynamical linear models

    NASA Astrophysics Data System (ADS)

    Laine, Marko; Kyrölä, Erkki

    2013-04-01

    We describe a hierarchical statistical state space model for ozone profile time series. The time series are from satellite measurements by the SAGE II and GOMOS instruments spanning years 1984-2012. The original data sets are combined and gridded monthly using 10 degree latitude bands, and covering 20-60 km with 1 km vertical spacing. Model components include level, trend, seasonal effect with solar activity, and quasi biennial oscillations as proxy variables. A typical feature of an atmospheric time series is that they are not stationary but exhibit both slowly varying and abrupt changes in the distributional properties. These are caused by external forcing such as changes in the solar activity or volcanic eruptions. Further, the data sampling is often nonuniform, there are data gaps, and the uncertainty of the observations can vary. When observations are combined from various sources there will be instrument and retrieval method related biases. The differences in sampling lead also to uncertainties. Standard classical ARIMA type of statistical time series methods are mostly useless for atmospheric data. A more general approach makes use of dynamical linear models and Kalman filter type of sequential algorithms. These state space models assume a linear relationship between the unknown state of the system and the observations and for the process evolution of the hidden states. They are still flexible enough to model both smooth trends and sudden changes. The above mentioned methodological challenges are discussed, together with analysis of change points in trends related to recovery of stratospheric ozone. This work is part of the ESA SPIN and ozone CCI projects.

  5. Multifractal Time Series Analysis Based on Detrended Fluctuation Analysis

    NASA Astrophysics Data System (ADS)

    Kantelhardt, Jan; Stanley, H. Eugene; Zschiegner, Stephan; Bunde, Armin; Koscielny-Bunde, Eva; Havlin, Shlomo

    2002-03-01

    In order to develop an easily applicable method for the multifractal characterization of non-stationary time series, we generalize the detrended fluctuation analysis (DFA), which is a well-established method for the determination of the monofractal scaling properties and the detection of long-range correlations. We relate the new multifractal DFA method to the standard partition function-based multifractal formalism, and compare it to the wavelet transform modulus maxima (WTMM) method which is a well-established, but more difficult procedure for this purpose. We employ the multifractal DFA method to determine if the heartrhythm during different sleep stages is characterized by different multifractal properties.

  6. Time series analysis of Monte Carlo neutron transport calculations

    NASA Astrophysics Data System (ADS)

    Nease, Brian Robert

    A time series based approach is applied to the Monte Carlo (MC) fission source distribution to calculate the non-fundamental mode eigenvalues of the system. The approach applies Principal Oscillation Patterns (POPs) to the fission source distribution, transforming the problem into a simple autoregressive order one (AR(1)) process. Proof is provided that the stationary MC process is linear to first order approximation, which is a requirement for the application of POPs. The autocorrelation coefficient of the resulting AR(1) process corresponds to the ratio of the desired mode eigenvalue to the fundamental mode eigenvalue. All modern k-eigenvalue MC codes calculate the fundamental mode eigenvalue, so the desired mode eigenvalue can be easily determined. The strength of this approach is contrasted against the Fission Matrix method (FMM) in terms of accuracy versus computer memory constraints. Multi-dimensional problems are considered since the approach has strong potential for use in reactor analysis, and the implementation of the method into production codes is discussed. Lastly, the appearance of complex eigenvalues is investigated and solutions are provided.

  7. A time-series approach to dynamical systems from classical and quantum worlds

    SciTech Connect

    Fossion, Ruben

    2014-01-08

    This contribution discusses some recent applications of time-series analysis in Random Matrix Theory (RMT), and applications of RMT in the statistial analysis of eigenspectra of correlation matrices of multivariate time series.

  8. Assessing Spontaneous Combustion Instability with Nonlinear Time Series Analysis

    NASA Technical Reports Server (NTRS)

    Eberhart, C. J.; Casiano, M. J.

    2015-01-01

    Considerable interest lies in the ability to characterize the onset of spontaneous instabilities within liquid propellant rocket engine (LPRE) combustion devices. Linear techniques, such as fast Fourier transforms, various correlation parameters, and critical damping parameters, have been used at great length for over fifty years. Recently, nonlinear time series methods have been applied to deduce information pertaining to instability incipiency hidden in seemingly stochastic combustion noise. A technique commonly used in biological sciences known as the Multifractal Detrended Fluctuation Analysis has been extended to the combustion dynamics field, and is introduced here as a data analysis approach complementary to linear ones. Advancing, a modified technique is leveraged to extract artifacts of impending combustion instability that present themselves a priori growth to limit cycle amplitudes. Analysis is demonstrated on data from J-2X gas generator testing during which a distinct spontaneous instability was observed. Comparisons are made to previous work wherein the data were characterized using linear approaches. Verification of the technique is performed by examining idealized signals and comparing two separate, independently developed tools.

  9. Analysis of Multipsectral Time Series for supporting Forest Management Plans

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Carone, M. T.; Costantini, G.; Frattegiani, M.; Lanfredi, M.; Macchiato, M.

    2010-05-01

    Adequate forest management requires specific plans based on updated and detailed mapping. Multispectral satellite time series have been largely applied to forest monitoring and studies at different scales tanks to their capability of providing synoptic information on some basic parameters descriptive of vegetation distribution and status. As a low expensive tool for supporting forest management plans in operative context, we tested the use of Landsat-TM/ETM time series (1987-2006) in the high Agri Valley (Southern Italy) for planning field surveys as well as for the integration of existing cartography. As preliminary activity to make all scenes radiometrically consistent the no-change regression normalization was applied to the time series; then all the data concerning available forest maps, municipal boundaries, water basins, rivers, and roads were overlapped in a GIS environment. From the 2006 image we elaborated the NDVI map and analyzed the distribution for each land cover class. To separate the physiological variability and identify the anomalous areas, a threshold on the distributions was applied. To label the non homogenous areas, a multitemporal analysis was performed by separating heterogeneity due to cover changes from that linked to basilar unit mapping and classification labelling aggregations. Then a map of priority areas was produced to support the field survey plan. To analyze the territorial evolution, the historical land cover maps were elaborated by adopting a hybrid classification approach based on a preliminary segmentation, the identification of training areas, and a subsequent maximum likelihood categorization. Such an analysis was fundamental for the general assessment of the territorial dynamics and in particular for the evaluation of the efficacy of past intervention activities.

  10. The U-series comminution approach: where to from here

    NASA Astrophysics Data System (ADS)

    Handley, Heather; Turner, Simon; Afonso, Juan; Turner, Michael; Hesse, Paul

    2015-04-01

    Quantifying the rates of landscape evolution in response to climate change is inhibited by the difficulty of dating the formation of continental detrital sediments. The 'comminution age' dating model of DePaolo et al. (2006) hypothesises that the measured disequilibria between U-series nuclides (234U and 238U) in fine-grained continental (detrital) sediments can be used to calculate the time elapsed since mechanical weathering of a grain to the threshold size ( 50 µm). The comminution age includes the time that a particle has been mobilised in transport, held in temporary storage (e.g., soils and floodplains) and the time elapsed since final deposition to present day. Therefore, if the deposition age of sediment can be constrained independently, for example via optically stimulated luminescence (OSL) dating, the residence time of sediment (e.g., a palaeochannel deposit) can be determined. Despite the significant potential of this approach, there is still much work to be done before meaningful absolute comminution ages can be obtained. The calculated recoil loss factor and comminution age are highly dependent on the method of recoil loss factor determination used and the inherent assumptions. We present new and recently published uranium isotope data for aeolian sediment deposits, leached and unleached palaeochannel sediments and bedrock samples from Australia to exemplify areas of current uncertainty in the comminution age approach. In addition to the information gained from natural samples, Monte Carlo simulations have been conducted for a synthetic sediment sample to determine the individual and combined comminution age uncertainties associated to each input variable. Using a reasonable associated uncertainty for each input factor and including variations in the source rock and measured (234U/238U) ratios, the total combined uncertainty on comminution age in our simulation (for two methods of recoil loss factor estimation: weighted geometric and surface area

  11. Evolutionary factor analysis of replicated time series.

    PubMed

    Motta, Giovanni; Ombao, Hernando

    2012-09-01

    In this article, we develop a novel method that explains the dynamic structure of multi-channel electroencephalograms (EEGs) recorded from several trials in a motor-visual task experiment. Preliminary analyses of our data suggest two statistical challenges. First, the variance at each channel and cross-covariance between each pair of channels evolve over time. Moreover, the cross-covariance profiles display a common structure across all pairs, and these features consistently appear across all trials. In the light of these features, we develop a novel evolutionary factor model (EFM) for multi-channel EEG data that systematically integrates information across replicated trials and allows for smoothly time-varying factor loadings. The individual EEGs series share common features across trials, thus, suggesting the need to pool information across trials, which motivates the use of the EFM for replicated time series. We explain the common co-movements of EEG signals through the existence of a small number of common factors. These latent factors are primarily responsible for processing the visual-motor task which, through the loadings, drive the behavior of the signals observed at different channels. The estimation of the time-varying loadings is based on the spectral decomposition of the estimated time-varying covariance matrix. PMID:22364516

  12. Performance of multifractal detrended fluctuation analysis on short time series

    NASA Astrophysics Data System (ADS)

    López, Juan Luis; Contreras, Jesús Guillermo

    2013-02-01

    The performance of the multifractal detrended analysis on short time series is evaluated for synthetic samples of several mono- and multifractal models. The reconstruction of the generalized Hurst exponents is used to determine the range of applicability of the method and the precision of its results as a function of the decreasing length of the series. As an application the series of the daily exchange rate between the U.S. dollar and the euro is studied.

  13. Biological Time Series Analysis Using a Context Free Language: Applicability to Pulsatile Hormone Data

    PubMed Central

    Dean, Dennis A.; Adler, Gail K.; Nguyen, David P.; Klerman, Elizabeth B.

    2014-01-01

    We present a novel approach for analyzing biological time-series data using a context-free language (CFL) representation that allows the extraction and quantification of important features from the time-series. This representation results in Hierarchically AdaPtive (HAP) analysis, a suite of multiple complementary techniques that enable rapid analysis of data and does not require the user to set parameters. HAP analysis generates hierarchically organized parameter distributions that allow multi-scale components of the time-series to be quantified and includes a data analysis pipeline that applies recursive analyses to generate hierarchically organized results that extend traditional outcome measures such as pharmacokinetics and inter-pulse interval. Pulsicons, a novel text-based time-series representation also derived from the CFL approach, are introduced as an objective qualitative comparison nomenclature. We apply HAP to the analysis of 24 hours of frequently sampled pulsatile cortisol hormone data, which has known analysis challenges, from 14 healthy women. HAP analysis generated results in seconds and produced dozens of figures for each participant. The results quantify the observed qualitative features of cortisol data as a series of pulse clusters, each consisting of one or more embedded pulses, and identify two ultradian phenotypes in this dataset. HAP analysis is designed to be robust to individual differences and to missing data and may be applied to other pulsatile hormones. Future work can extend HAP analysis to other time-series data types, including oscillatory and other periodic physiological signals. PMID:25184442

  14. Nonlinear times series analysis of epileptic human electroencephalogram (EEG)

    NASA Astrophysics Data System (ADS)

    Li, Dingzhou

    The problem of seizure anticipation in patients with epilepsy has attracted significant attention in the past few years. In this paper we discuss two approaches, using methods of nonlinear time series analysis applied to scalp electrode recordings, which is able to distinguish between epochs temporally distant from and just prior to, the onset of a seizure in patients with temporal lobe epilepsy. First we describe a method involving a comparison of recordings taken from electrodes adjacent to and remote from the site of the seizure focus. In particular, we define a nonlinear quantity which we call marginal predictability. This quantity is computed using data from remote and from adjacent electrodes. We find that the difference between the marginal predictabilities computed for the remote and adjacent electrodes decreases several tens of minutes prior to seizure onset, compared to its value interictally. We also show that these difl'crcnc es of marginal predictability intervals are independent of the behavior state of the patient. Next we examine the please coherence between different electrodes both in the long-range and the short-range. When time is distant from seizure onsets ("interictally"), epileptic patients have lower long-range phase coherence in the delta (1-4Hz) and beta (18-30Hz) frequency band compared to nonepileptic subjects. When seizures approach (''preictally"), we observe an increase in phase coherence in the beta band. However, interictally there is no difference in short-range phase coherence between this cohort of patients and non-epileptic subjects. Preictally short-range phase coherence also increases in the alpha (10-13Hz) and the beta band. Next we apply the quantity marginal predictability on the phase difference time series. Such marginal predictabilities are lower in the patients than in the non-epileptic subjects. However, when seizure approaches, the former moves asymptotically towards the latter.

  15. The bone lamina technique: a novel approach for lateral ridge augmentation--a case series.

    PubMed

    Wachtel, Hannes; Fickl, Stefan; Hinze, Marc; Bolz, Wolfgang; Thalmair, Tobias

    2013-01-01

    The goal of this case series is to present a novel treatment approach for lateral ridge augmentation. Four systemically healthy patients (aged 48 to 59 years) with inadequate dental alveolar ridge widths were selected for inclusion. All ridge defects were augmented using a xenogeneic cortical bone shield in combination with particulated bone substitutes and a thin collagen barrier. At baseline and after 6 months, digital cone beam computed tomography scans were performed. Biopsy specimens were harvested at reentry surgery and processed for histologic analysis. The results revealed a sufficient amount of bone structure for implant placement without additional augmentation procedures. The histologic analysis demonstrated that new bone formation had taken place and the bone shield had resorbed entirely. This case series indicates that the bone lamina technique has the biologic and mechanical properties to successfully achieve hard tissue augmentation of deficient ridges. PMID:23820709

  16. Analysis of Time-Series Quasi-Experiments. Final Report.

    ERIC Educational Resources Information Center

    Glass, Gene V.; Maguire, Thomas O.

    The objective of this project was to investigate the adequacy of statistical models developed by G. E. P. Box and G. C. Tiao for the analysis of time-series quasi-experiments: (1) The basic model developed by Box and Tiao is applied to actual time-series experiment data from two separate experiments, one in psychology and one in educational…

  17. A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series.

    PubMed

    Demanuele, Charmaine; Bähner, Florian; Plichta, Michael M; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas; Durstewitz, Daniel

    2015-01-01

    Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze (RAM) task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC), but not in the primary visual cortex (V1). Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in

  18. A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series

    PubMed Central

    Demanuele, Charmaine; Bähner, Florian; Plichta, Michael M.; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas; Durstewitz, Daniel

    2015-01-01

    Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze (RAM) task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC), but not in the primary visual cortex (V1). Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in

  19. Automatising the analysis of stochastic biochemical time-series

    PubMed Central

    2015-01-01

    Background Mathematical and computational modelling of biochemical systems has seen a lot of effort devoted to the definition and implementation of high-performance mechanistic simulation frameworks. Within these frameworks it is possible to analyse complex models under a variety of configurations, eventually selecting the best setting of, e.g., parameters for a target system. Motivation This operational pipeline relies on the ability to interpret the predictions of a model, often represented as simulation time-series. Thus, an efficient data analysis pipeline is crucial to automatise time-series analyses, bearing in mind that errors in this phase might mislead the modeller's conclusions. Results For this reason we have developed an intuitive framework-independent Python tool to automate analyses common to a variety of modelling approaches. These include assessment of useful non-trivial statistics for simulation ensembles, e.g., estimation of master equations. Intuitive and domain-independent batch scripts will allow the researcher to automatically prepare reports, thus speeding up the usual model-definition, testing and refinement pipeline. PMID:26051821

  20. Statistical Evaluation of Time Series Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Benignus, V. A.

    1973-01-01

    The performance of a modified version of NASA's multivariate spectrum analysis program is discussed. A multiple regression model was used to make the revisions. Performance improvements were documented and compared to the standard fast Fourier transform by Monte Carlo techniques.

  1. Wavelet transform approach for fitting financial time series data

    NASA Astrophysics Data System (ADS)

    Ahmed, Amel Abdoullah; Ismail, Mohd Tahir

    2015-10-01

    This study investigates a newly developed technique; a combined wavelet filtering and VEC model, to study the dynamic relationship among financial time series. Wavelet filter has been used to annihilate noise data in daily data set of NASDAQ stock market of US, and three stock markets of Middle East and North Africa (MENA) region, namely, Egypt, Jordan, and Istanbul. The data covered is from 6/29/2001 to 5/5/2009. After that, the returns of generated series by wavelet filter and original series are analyzed by cointegration test and VEC model. The results show that the cointegration test affirms the existence of cointegration between the studied series, and there is a long-term relationship between the US, stock markets and MENA stock markets. A comparison between the proposed model and traditional model demonstrates that, the proposed model (DWT with VEC model) outperforms traditional model (VEC model) to fit the financial stock markets series well, and shows real information about these relationships among the stock markets.

  2. Time series analysis of air pollutants in Beirut, Lebanon.

    PubMed

    Farah, Wehbeh; Nakhlé, Myriam Mrad; Abboud, Maher; Annesi-Maesano, Isabella; Zaarour, Rita; Saliba, Nada; Germanos, Georges; Gerard, Jocelyne

    2014-12-01

    This study reports for the first time a time series analysis of daily urban air pollutant levels (CO, NO, NO2, O3, PM10, and SO2) in Beirut, Lebanon. The study examines data obtained between September 2005 and July 2006, and their descriptive analysis shows long-term variations of daily levels of air pollution concentrations. Strong persistence of these daily levels is identified in the time series using an autocorrelation function, except for SO2. Time series of standardized residual values (SRVs) are also calculated to compare fluctuations of the time series with different levels. Time series plots of the SRVs indicate that NO and NO2 had similar temporal fluctuations. However, NO2 and O3 had opposite temporal fluctuations, attributable to weather conditions and the accumulation of vehicular emissions. The effects of both desert dust storms and airborne particulate matter resulting from the Lebanon War in July 2006 are also discernible in the SRV plots. PMID:25150052

  3. Rice-planted area extraction by time series analysis of ENVISAT ASAR WS data using a phenology-based classification approach: A case study for Red River Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyen, D.; Wagner, W.; Naeimi, V.; Cao, S.

    2015-04-01

    Recent studies have shown the potential of Synthetic Aperture Radars (SAR) for mapping of rice fields and some other vegetation types. For rice field classification, conventional classification techniques have been mostly used including manual threshold-based and supervised classification approaches. The challenge of the threshold-based approach is to find acceptable thresholds to be used for each individual SAR scene. Furthermore, the influence of local incidence angle on backscatter hinders using a single threshold for the entire scene. Similarly, the supervised classification approach requires different training samples for different output classes. In case of rice crop, supervised classification using temporal data requires different training datasets to perform classification procedure which might lead to inconsistent mapping results. In this study we present an automatic method to identify rice crop areas by extracting phonological parameters after performing an empirical regression-based normalization of the backscatter to a reference incidence angle. The method is evaluated in the Red River Delta (RRD), Vietnam using the time series of ENVISAT Advanced SAR (ASAR) Wide Swath (WS) mode data. The results of rice mapping algorithm compared to the reference data indicate the Completeness (User accuracy), Correctness (Producer accuracy) and Quality (Overall accuracies) of 88.8%, 92.5 % and 83.9 % respectively. The total area of the classified rice fields corresponds to the total rice cultivation areas given by the official statistics in Vietnam (R2  0.96). The results indicates that applying a phenology-based classification approach using backscatter time series in optimal incidence angle normalization can achieve high classification accuracies. In addition, the method is not only useful for large scale early mapping of rice fields in the Red River Delta using the current and future C-band Sentinal-1A&B backscatter data but also might be applied for other rice

  4. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  5. Wavelet analysis and scaling properties of time series.

    PubMed

    Manimaran, P; Panigrahi, Prasanta K; Parikh, Jitendra C

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior. PMID:16383481

  6. Time series expression analyses using RNA-seq: a statistical approach.

    PubMed

    Oh, Sunghee; Song, Seongho; Grabowski, Gregory; Zhao, Hongyu; Noonan, James P

    2013-01-01

    RNA-seq is becoming the de facto standard approach for transcriptome analysis with ever-reducing cost. It has considerable advantages over conventional technologies (microarrays) because it allows for direct identification and quantification of transcripts. Many time series RNA-seq datasets have been collected to study the dynamic regulations of transcripts. However, statistically rigorous and computationally efficient methods are needed to explore the time-dependent changes of gene expression in biological systems. These methods should explicitly account for the dependencies of expression patterns across time points. Here, we discuss several methods that can be applied to model timecourse RNA-seq data, including statistical evolutionary trajectory index (SETI), autoregressive time-lagged regression (AR(1)), and hidden Markov model (HMM) approaches. We use three real datasets and simulation studies to demonstrate the utility of these dynamic methods in temporal analysis. PMID:23586021

  7. Fractal and natural time analysis of geoelectrical time series

    NASA Astrophysics Data System (ADS)

    Ramirez Rojas, A.; Moreno-Torres, L. R.; Cervantes, F.

    2013-05-01

    In this work we show the analysis of geoelectric time series linked with two earthquakes of M=6.6 and M=7.4. That time series were monitored at the South Pacific Mexican coast, which is the most important active seismic subduction zone in México. The geolectric time series were analyzed by using two complementary methods: a fractal analysis, by means of the detrended fluctuation analysis (DFA) in the conventional time, and the power spectrum defined in natural time domain (NTD). In conventional time we found long-range correlations prior to the EQ-occurrences and simultaneously in NTD, the behavior of the power spectrum suggest the possible existence of seismo electric signals (SES) similar with the previously reported in equivalent time series monitored in Greece prior to earthquakes of relevant magnitude.

  8. Time Series Analysis of Insar Data: Methods and Trends

    NASA Technical Reports Server (NTRS)

    Osmanoglu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cano-Cabral, Enrique

    2015-01-01

    Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ''unwrapping" of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.

  9. The Effectiveness of Blind Source Separation Using Independent Component Analysis for GNSS Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Dong, Danan; Chen, Wen

    2016-04-01

    Due to the development of GNSS technology and the improvement of its positioning accuracy, observational data obtained by GNSS is widely used in Earth space geodesy and geodynamics research. Whereas the GNSS time series data of observation stations contains a plenty of information. This includes geographical space changes, deformation of the Earth, the migration of subsurface material, instantaneous deformation of the Earth, weak deformation and other blind signals. In order to decompose some instantaneous deformation underground, weak deformation and other blind signals hided in GNSS time series, we apply Independent Component Analysis (ICA) to daily station coordinate time series of the Southern California Integrated GPS Network. As ICA is based on the statistical characteristics of the observed signal. It uses non-Gaussian and independence character to process time series to obtain the source signal of the basic geophysical events. In term of the post-processing procedure of precise time-series data by GNSS, this paper examines GNSS time series using the principal component analysis (PCA) module of QOCA and ICA algorithm to separate the source signal. Then we focus on taking into account of these two signal separation technologies, PCA and ICA, for separating original signal that related geophysical disturbance changes from the observed signals. After analyzing these separation process approaches, we demonstrate that in the case of multiple factors, PCA exists ambiguity in the separation of source signals, that is the result related is not clear, and ICA will be better than PCA, which means that dealing with GNSS time series that the combination of signal source is unknown is suitable to use ICA.

  10. WUATSA: Weighted usable area time series analysis

    SciTech Connect

    Franc, G.M.

    1995-12-31

    As stated in my paper entitled, {open_quotes}FISHN-Minimum Flow Selection Made Easy{close_quotes}, there continues to exist differences of opinion between environmental resource agencies (Agencies) and power producers in the interpretation of Weighted Usable Area (WUA) versus flow data, as a tool for making minimum flow recommendations. WUA-flow curves are developed from Instream Flow Incremental Methodology (IFIM) studies. Each point on a WUA-flow curve defines the usable habitat area created within a bypassed reach, for a specific species and life stage, due to a specified minimum flow being constantly maintained within that reach. In the FISHN paper I discussed the Federal Energy Regulatory Commission`s (FERCs) effort to standardize the use of WUA-flow data to assist in minimum flow selection, as proposed in their article entitled, {open_quotes}Evaluating Relicense Proposals at the Federal Energy Regulatory Commission{close_quotes}. This FERC paper advanced a technique which has subsequently become known as the FARGO method (named after the primary author). The FISHN paper initially critiqued FARGO and then focused discussion on an alternative approach (FISHN) which is an extension to the IFIM methodology.

  11. Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory

    NASA Astrophysics Data System (ADS)

    Wang, Na; Li, Dong; Wang, Qiwen

    2012-12-01

    The visibility graph approach and complex network theory provide a new insight into time series analysis. The inheritance of the visibility graph from the original time series was further explored in the paper. We found that degree distributions of visibility graphs extracted from Pseudo Brownian Motion series obtained by the Frequency Domain algorithm exhibit exponential behaviors, in which the exponential exponent is a binomial function of the Hurst index inherited in the time series. Our simulations presented that the quantitative relations between the Hurst indexes and the exponents of degree distribution function are different for different series and the visibility graph inherits some important features of the original time series. Further, we convert some quarterly macroeconomic series including the growth rates of value-added of three industry series and the growth rates of Gross Domestic Product series of China to graphs by the visibility algorithm and explore the topological properties of graphs associated from the four macroeconomic series, namely, the degree distribution and correlations, the clustering coefficient, the average path length, and community structure. Based on complex network analysis we find degree distributions of associated networks from the growth rates of value-added of three industry series are almost exponential and the degree distributions of associated networks from the growth rates of GDP series are scale free. We also discussed the assortativity and disassortativity of the four associated networks as they are related to the evolutionary process of the original macroeconomic series. All the constructed networks have “small-world” features. The community structures of associated networks suggest dynamic changes of the original macroeconomic series. We also detected the relationship among government policy changes, community structures of associated networks and macroeconomic dynamics. We find great influences of government

  12. Time series data analysis using DFA

    NASA Astrophysics Data System (ADS)

    Okumoto, A.; Akiyama, T.; Sekino, H.; Sumi, T.

    2014-02-01

    Detrended fluctuation analysis (DFA) was originally developed for the evaluation of DNA sequence and interval for heart rate variability (HRV), but it is now used to obtain various biological information. In this study we perform DFA on artificially generated data where we already know the relationship between signal and the physical event causing the signal. We generate artificial data using molecular dynamics. The Brownian motion of a polymer under an external force is investigated. In order to generate artificial fluctuation in the physical properties, we introduce obstacle pillars fixed to nanostructures. Using different conditions such as presence or absence of obstacles, external field, and the polymer length, we perform DFA on energies and positions of the polymer.

  13. Schoolwide Approaches to Discipline. The Informed Educator Series.

    ERIC Educational Resources Information Center

    Porch, Stephanie

    Although there are no simple solutions for how to turn around a school with serious discipline problems, schoolwide approaches have been effective, according to this report. The report examines research on schoolwide approaches to discipline and discusses the characteristics of programs that promote a culture of safety and support, improved…

  14. Aroma characterization based on aromatic series analysis in table grapes

    PubMed Central

    Wu, Yusen; Duan, Shuyan; Zhao, Liping; Gao, Zhen; Luo, Meng; Song, Shiren; Xu, Wenping; Zhang, Caixi; Ma, Chao; Wang, Shiping

    2016-01-01

    Aroma is an important part of quality in table grape, but the key aroma compounds and the aroma series of table grapes remains unknown. In this paper, we identified 67 aroma compounds in 20 table grape cultivars; 20 in pulp and 23 in skin were active compounds. C6 compounds were the basic background volatiles, but the aroma contents of pulp juice and skin depended mainly on the levels of esters and terpenes, respectively. Most obviously, ‘Kyoho’ grapevine series showed high contents of esters in pulp, while Muscat/floral cultivars showed abundant monoterpenes in skin. For the aroma series, table grapes were characterized mainly by herbaceous, floral, balsamic, sweet and fruity series. The simple and visualizable aroma profiles were established using aroma fingerprints based on the aromatic series. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed that the aroma profiles of pulp juice, skin and whole berries could be classified into 5, 3, and 5 groups, respectively. Combined with sensory evaluation, we could conclude that fatty and balsamic series were the preferred aromatic series, and the contents of their contributors (β-ionone and octanal) may be useful as indicators for the improvement of breeding and cultivation measures for table grapes. PMID:27487935

  15. Aroma characterization based on aromatic series analysis in table grapes.

    PubMed

    Wu, Yusen; Duan, Shuyan; Zhao, Liping; Gao, Zhen; Luo, Meng; Song, Shiren; Xu, Wenping; Zhang, Caixi; Ma, Chao; Wang, Shiping

    2016-01-01

    Aroma is an important part of quality in table grape, but the key aroma compounds and the aroma series of table grapes remains unknown. In this paper, we identified 67 aroma compounds in 20 table grape cultivars; 20 in pulp and 23 in skin were active compounds. C6 compounds were the basic background volatiles, but the aroma contents of pulp juice and skin depended mainly on the levels of esters and terpenes, respectively. Most obviously, 'Kyoho' grapevine series showed high contents of esters in pulp, while Muscat/floral cultivars showed abundant monoterpenes in skin. For the aroma series, table grapes were characterized mainly by herbaceous, floral, balsamic, sweet and fruity series. The simple and visualizable aroma profiles were established using aroma fingerprints based on the aromatic series. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed that the aroma profiles of pulp juice, skin and whole berries could be classified into 5, 3, and 5 groups, respectively. Combined with sensory evaluation, we could conclude that fatty and balsamic series were the preferred aromatic series, and the contents of their contributors (β-ionone and octanal) may be useful as indicators for the improvement of breeding and cultivation measures for table grapes. PMID:27487935

  16. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  17. Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslides

    NASA Astrophysics Data System (ADS)

    Šilhán, Karel; Stoffel, Markus

    2015-05-01

    Different approaches and thresholds have been utilized in the past to date landslides with growth ring series of disturbed trees. Past work was mostly based on conifer species because of their well-defined ring boundaries and the easy identification of compression wood after stem tilting. More recently, work has been expanded to include broad-leaved trees, which are thought to produce less and less evident reactions after landsliding. This contribution reviews recent progress made in dendrogeomorphic landslide analysis and introduces a new approach in which landslides are dated via ring eccentricity formed after tilting. We compare results of this new and the more conventional approaches. In addition, the paper also addresses tree sensitivity to landslide disturbance as a function of tree age and trunk diameter using 119 common beech (Fagus sylvatica L.) and 39 Crimean pine (Pinus nigra ssp. pallasiana) trees growing on two landslide bodies. The landslide events reconstructed with the classical approach (reaction wood) also appear as events in the eccentricity analysis, but the inclusion of eccentricity clearly allowed for more (162%) landslides to be detected in the tree-ring series. With respect to tree sensitivity, conifers and broad-leaved trees show the strongest reactions to landslides at ages comprised between 40 and 60 years, with a second phase of increased sensitivity in P. nigra at ages of ca. 120-130 years. These phases of highest sensitivities correspond with trunk diameters at breast height of 6-8 and 18-22 cm, respectively (P. nigra). This study thus calls for the inclusion of eccentricity analyses in future landslide reconstructions as well as for the selection of trees belonging to different age and diameter classes to allow for a well-balanced and more complete reconstruction of past events.

  18. Iranian rainfall series analysis by means of nonparametric tests

    NASA Astrophysics Data System (ADS)

    Talaee, P. Hosseinzadeh

    2014-05-01

    The study of the trends and fluctuations in rainfall has received a great deal of attention, since changes in rainfall patterns may lead to floods or droughts. The objective of this study was to analyze the annual, seasonal, and monthly rainfall time series at seven rain gauge stations in the west of Iran for a 40-year period (from October 1969 to September 2009). The homogeneity of the rainfall data sets at the rain gauge stations was checked by using the cumulative deviations test. Three nonparametric tests, namely Kendall, Spearman, and Mann-Kendall, at the 95 % confidence level were used for the trend analysis and the Theil-Sen estimator was applied for determining the magnitudes of the trends. According to the homogeneity analysis, all of the rainfall series except the September series at Vasaj station were found to be homogeneous. The obtained results showed an insignificant trend in the annual and seasonal rainfall series at the majority of the considered stations. Moreover, only three significant trends were observed at the February rainfall of Aghajanbolaghi station, the November series of Vasaj station, and the March rainfall series of Khomigan station. The findings of this study on the temporal trends of rainfall can be implemented to improve the water resources strategies in the study region.

  19. Instructional Approaches to Slow Learning. Practical Suggestions for Teaching Series.

    ERIC Educational Resources Information Center

    Younie, William J.

    Designed for teachers, the text distinguishes types of slow learners and suggests practical approaches for their educational problems. Slow learning and its types are defined; the slow learner is characterized; stages of educational evaluation and aspects of administration are outlined. Curriculum considerations for different levels are described,…

  20. Emergent Approaches to Mental Health Problems. The Century Psychology Series.

    ERIC Educational Resources Information Center

    Cowen, Emory L., Ed.; And Others

    Innovative approaches to mental health problems are described. Conceptualizations about the following areas are outlined: psychiatry, the universe, and the community; theoretical malaise and community mental health; the relation of conceptual models to manpower needs; and mental health manpower and institutional change. Community programs and new…

  1. Activity Approach to Just Beyond the Classroom. Environmental Education Series.

    ERIC Educational Resources Information Center

    Skliar, Norman; La Mantia, Laura

    To provide teachers with some of the many activities that can be carried on "just beyond the classroom," the booklet presents plans for more than 40 outdoor education activities, all emphasizing multidisciplinary, inquiry approach to learning. The school grounds offer optimum conditions for initiating studies in the out-of-doors. While every…

  2. A Corpus Analysis of Vocabulary Coverage and Vocabulary Learning Opportunities within a Children's Story Series

    ERIC Educational Resources Information Center

    Sun, Yu-Chih

    2016-01-01

    Extensive reading for second language learners have been widely documented over the past few decades. However, few studies, if any, have used a corpus analysis approach to analyze the vocabulary coverage within a single-author story series, its repetition of vocabulary, and the incidental and intentional vocabulary learning opportunities therein.…

  3. Clinical immunology review series: an approach to desensitization

    PubMed Central

    Krishna, M T; Huissoon, A P

    2011-01-01

    Allergen immunotherapy describes the treatment of allergic disease through administration of gradually increasing doses of allergen. This form of immune tolerance induction is now safer, more reliably efficacious and better understood than when it was first formally described in 1911. In this paper the authors aim to summarize the current state of the art in immunotherapy in the treatment of inhalant, venom and drug allergies, with specific reference to its practice in the United Kingdom. A practical approach has been taken, with reference to current evidence and guidelines, including illustrative protocols and vaccine schedules. A number of novel approaches and techniques are likely to change considerably the way in which we select and treat allergy patients in the coming decade, and these advances are previewed. PMID:21175592

  4. A Monte Carlo Approach to Biomedical Time Series Search

    PubMed Central

    Woodbridge, Jonathan; Mortazavi, Bobak; Sarrafzadeh, Majid; Bui, Alex A.T.

    2016-01-01

    Time series subsequence matching (or signal searching) has importance in a variety of areas in health care informatics. These areas include case-based diagnosis and treatment as well as the discovery of trends and correlations between data. Much of the traditional research in signal searching has focused on high dimensional R-NN matching. However, the results of R-NN are often small and yield minimal information gain; especially with higher dimensional data. This paper proposes a randomized Monte Carlo sampling method to broaden search criteria such that the query results are an accurate sampling of the complete result set. The proposed method is shown both theoretically and empirically to improve information gain. The number of query results are increased by several orders of magnitude over approximate exact matching schemes and fall within a Gaussian distribution. The proposed method also shows excellent performance as the majority of overhead added by sampling can be mitigated through parallelization. Experiments are run on both simulated and real-world biomedical datasets.

  5. Improvements in Accurate GPS Positioning Using Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Koyama, Yuichiro; Tanaka, Toshiyuki

    Although the Global Positioning System (GPS) is used widely in car navigation systems, cell phones, surveying, and other areas, several issues still exist. We focus on the continuous data received in public use of GPS, and propose a new positioning algorithm that uses time series analysis. By fitting an autoregressive model to the time series model of the pseudorange, we propose an appropriate state-space model. We apply the Kalman filter to the state-space model and use the pseudorange estimated by the filter in our positioning calculations. The results of the authors' positioning experiment show that the accuracy of the proposed method is much better than that of the standard method. In addition, as we can obtain valid values estimated by time series analysis using the state-space model, the proposed state-space model can be applied to several other fields.

  6. Time series analysis and the analysis of aquatic and riparian ecosystems

    USGS Publications Warehouse

    Milhous, R.T.

    2003-01-01

    Time series analysis of physical instream habitat and the riparian zone is not done as frequently as would be beneficial in understanding the fisheries aspects of the aquatic ecosystem. This paper presents two case studies have how time series analysis may be accomplished. Time series analysis is the analysis of the variation of the physical habitat or the hydro-period in the riparian zone (in many situations, the floodplain).

  7. Analysis of Complex Intervention Effects in Time-Series Experiments.

    ERIC Educational Resources Information Center

    Bower, Cathleen

    An iterative least squares procedure for analyzing the effect of various kinds of intervention in time-series data is described. There are numerous applications of this design in economics, education, and psychology, although until recently, no appropriate analysis techniques had been developed to deal with the model adequately. This paper…

  8. Time Series Analysis Based on Running Mann Whitney Z Statistics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...

  9. ADAPTIVE DATA ANALYSIS OF COMPLEX FLUCTUATIONS IN PHYSIOLOGIC TIME SERIES

    PubMed Central

    PENG, C.-K.; COSTA, MADALENA; GOLDBERGER, ARY L.

    2009-01-01

    We introduce a generic framework of dynamical complexity to understand and quantify fluctuations of physiologic time series. In particular, we discuss the importance of applying adaptive data analysis techniques, such as the empirical mode decomposition algorithm, to address the challenges of nonlinearity and nonstationarity that are typically exhibited in biological fluctuations. PMID:20041035

  10. Identification of human operator performance models utilizing time series analysis

    NASA Technical Reports Server (NTRS)

    Holden, F. M.; Shinners, S. M.

    1973-01-01

    The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.

  11. Nonlinear Analysis of Surface EMG Time Series of Back Muscles

    NASA Astrophysics Data System (ADS)

    Dolton, Donald C.; Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-10-01

    A nonlinear analysis of surface electromyography time series of subjects with and without low back pain is presented. The mean-square displacement and entropy shows anomalous diffusive behavior on intermediate time range 10 ms < t < 1 s. This behavior implies the presence of correlations in the signal. We discuss the shape of the power spectrum of the signal.

  12. Born-series approach to the calculation of Casimir forces

    NASA Astrophysics Data System (ADS)

    Bennett, Robert

    2014-06-01

    The Casimir force between two objects is notoriously difficult to calculate in anything other than parallel-plate geometries due to its nonadditive nature. This means that for more complicated, realistic geometries one usually has to resort to approaches such as making the crude proximity force approximation (PFA). Another issue with calculation of Casimir forces in real-world situations (such as with realistic materials) is that there are continuing doubts about the status of Lifshitz's original treatment as a true quantum theory. Here we demonstrate an alternative approach to the calculation of Casimir forces for arbitrary geometries which sidesteps both of these problems. Our calculations are based upon a Born expansion of the Green's function of the quantized electromagnetic vacuum field, interpreted as multiple scattering, with the relevant coupling strength being the difference in the dielectric functions of the various materials involved. This allows one to consider arbitrary geometries in single or multiple scattering simply by integrating over the desired shape, meaning that extension beyond the PFA is trivial. This work is mostly dedicated to illustration of the method by reproduction of known parallel-slab results—a process that turns out to be nontrivial and provides several useful insights. We also present a short example of calculation of the Casimir energy for a more complicated geometry; namely, that of two finite slabs.

  13. Wavelet analysis for non-stationary, nonlinear time series

    NASA Astrophysics Data System (ADS)

    Schulte, Justin A.

    2016-08-01

    Methods for detecting and quantifying nonlinearities in nonstationary time series are introduced and developed. In particular, higher-order wavelet analysis was applied to an ideal time series and the quasi-biennial oscillation (QBO) time series. Multiple-testing problems inherent in wavelet analysis were addressed by controlling the false discovery rate. A new local autobicoherence spectrum facilitated the detection of local nonlinearities and the quantification of cycle geometry. The local autobicoherence spectrum of the QBO time series showed that the QBO time series contained a mode with a period of 28 months that was phase coupled to a harmonic with a period of 14 months. An additional nonlinearly interacting triad was found among modes with periods of 10, 16 and 26 months. Local biphase spectra determined that the nonlinear interactions were not quadratic and that the effect of the nonlinearities was to produce non-smoothly varying oscillations. The oscillations were found to be skewed so that negative QBO regimes were preferred, and also asymmetric in the sense that phase transitions between the easterly and westerly phases occurred more rapidly than those from westerly to easterly regimes.

  14. Optimal trading strategies—a time series approach

    NASA Astrophysics Data System (ADS)

    Bebbington, Peter A.; Kühn, Reimer

    2016-05-01

    Motivated by recent advances in the spectral theory of auto-covariance matrices, we are led to revisit a reformulation of Markowitz’ mean-variance portfolio optimization approach in the time domain. In its simplest incarnation it applies to a single traded asset and allows an optimal trading strategy to be found which—for a given return—is minimally exposed to market price fluctuations. The model is initially investigated for a range of synthetic price processes, taken to be either second order stationary, or to exhibit second order stationary increments. Attention is paid to consequences of estimating auto-covariance matrices from small finite samples, and auto-covariance matrix cleaning strategies to mitigate against these are investigated. Finally we apply our framework to real world data.

  15. A three-phase series-parallel resonant converter -- analysis, design, simulation and experimental results

    SciTech Connect

    Bhat, A.K.S.; Zheng, L.

    1995-12-31

    A three-phase dc-to-dc series-parallel resonant converter is proposed and its operating modes for 180{degree} wide gating pulse scheme are explained. A detailed analysis of the converter using constant current model and Fourier series approach is presented. Based on the analysis, design curves are obtained and a design example of 1 kW converter is given. SPICE simulation results for the designed converter and experimental results for a 500 W converter are presented to verify the performance of the proposed converter for varying load conditions. The converter operates in lagging PF mode for the entire load range and requires a narrow variation in switching frequency.

  16. Scaling analysis of multi-variate intermittent time series

    NASA Astrophysics Data System (ADS)

    Kitt, Robert; Kalda, Jaan

    2005-08-01

    The scaling properties of the time series of asset prices and trading volumes of stock markets are analysed. It is shown that similar to the asset prices, the trading volume data obey multi-scaling length-distribution of low-variability periods. In the case of asset prices, such scaling behaviour can be used for risk forecasts: the probability of observing next day a large price movement is (super-universally) inversely proportional to the length of the ongoing low-variability period. Finally, a method is devised for a multi-factor scaling analysis. We apply the simplest, two-factor model to equity index and trading volume time series.

  17. Interglacial climate dynamics and advanced time series analysis

    NASA Astrophysics Data System (ADS)

    Mudelsee, Manfred; Bermejo, Miguel; Köhler, Peter; Lohmann, Gerrit

    2013-04-01

    Studying the climate dynamics of past interglacials (IGs) helps to better assess the anthropogenically influenced dynamics of the current IG, the Holocene. We select the IG portions from the EPICA Dome C ice core archive, which covers the past 800 ka, to apply methods of statistical time series analysis (Mudelsee 2010). The analysed variables are deuterium/H (indicating temperature) (Jouzel et al. 2007), greenhouse gases (Siegenthaler et al. 2005, Loulergue et al. 2008, L¨ü thi et al. 2008) and a model-co-derived climate radiative forcing (Köhler et al. 2010). We select additionally high-resolution sea-surface-temperature records from the marine sedimentary archive. The first statistical method, persistence time estimation (Mudelsee 2002) lets us infer the 'climate memory' property of IGs. Second, linear regression informs about long-term climate trends during IGs. Third, ramp function regression (Mudelsee 2000) is adapted to look on abrupt climate changes during IGs. We compare the Holocene with previous IGs in terms of these mathematical approaches, interprete results in a climate context, assess uncertainties and the requirements to data from old IGs for yielding results of 'acceptable' accuracy. This work receives financial support from the Deutsche Forschungsgemeinschaft (Project ClimSens within the DFG Research Priority Program INTERDYNAMIK) and the European Commission (Marie Curie Initial Training Network LINC, No. 289447, within the 7th Framework Programme). References Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793. Köhler P, Bintanja R

  18. Theoretical approach for plasma series resonance effect in geometrically symmetric dual radio frequency plasma

    SciTech Connect

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.

    2012-02-27

    Plasma series resonance (PSR) effect is well known in geometrically asymmetric capacitively couple radio frequency plasma. However, plasma series resonance effect in geometrically symmetric plasma has not been properly investigated. In this work, a theoretical approach is made to investigate the plasma series resonance effect and its influence on Ohmic and stochastic heating in geometrically symmetric discharge. Electrical asymmetry effect by means of dual frequency voltage waveform is applied to excite the plasma series resonance. The results show considerable variation in heating with phase difference between the voltage waveforms, which may be applicable in controlling the plasma parameters in such plasma.

  19. The Novel Transvestibule Approach for Endoscopic Thyroidectomy: A Case Series

    PubMed Central

    Yang, Kai; Ding, Boni; Lin, Changwei; Li, Wanwan

    2016-01-01

    Object: To evaluate the feasibility of NOTES for thyroid by the transvestibule approach. Methods: Six patients diagnosed with benign thyroid diseases were enrolled and underwent transvestibule endoscopic thyroidectomy in our hospital from October 2013 to September 2014. Results: All 6 patients completed transvestibule endoscopic thyroidectomy successfully with no conversion to open surgery. The mean operation time was 122 minutes (100 to 150 min). The average blood loss during surgery was 30 mL (10 to 40 mL). The pathologic diagnosis coincided with the preoperative diagnosis, which was 1 case of thyroid adenoma and 5 cases of thyroid goiters. The mean length of hospital stay was 8.2 days (8 to 10 d). No severe complications were reported during the 3 to 13 months’ follow-up. Conclusions: Transvestibule endoscopic thyroidectomy is feasible, with a satisfactory cosmetic effect; yet, further improvement of surgical techniques are required on account of the complexity of the surgical procedure and the prolonged operation time. PMID:26813240

  20. Toward a practical approach for ergodicity analysis

    NASA Astrophysics Data System (ADS)

    Wang, H.; Wang, C.; Zhao, Y.; Lin, X.; Yu, C.

    2015-09-01

    It is of importance to perform hydrological forecast using a finite hydrological time series. Most time series analysis approaches presume a data series to be ergodic without justifying this assumption. This paper presents a practical approach to analyze the mean ergodic property of hydrological processes by means of autocorrelation function evaluation and Augmented Dickey Fuller test, a radial basis function neural network, and the definition of mean ergodicity. The mean ergodicity of precipitation processes at the Lanzhou Rain Gauge Station in the Yellow River basin, the Ankang Rain Gauge Station in Han River, both in China, and at Newberry, MI, USA are analyzed using the proposed approach. The results indicate that the precipitations of March, July, and August in Lanzhou, and of May, June, and August in Ankang have mean ergodicity, whereas, the precipitation of any other calendar month in these two rain gauge stations do not have mean ergodicity. The precipitation of February, May, July, and December in Newberry show ergodic property, although the precipitation of each month shows a clear increasing or decreasing trend.

  1. Multivariate stochastic analysis for Monthly hydrological time series at Cuyahoga River Basin

    NASA Astrophysics Data System (ADS)

    zhang, L.

    2011-12-01

    Copula has become a very powerful statistic and stochastic methodology in case of the multivariate analysis in Environmental and Water resources Engineering. In recent years, the popular one-parameter Archimedean copulas, e.g. Gumbel-Houggard copula, Cook-Johnson copula, Frank copula, the meta-elliptical copula, e.g. Gaussian Copula, Student-T copula, etc. have been applied in multivariate hydrological analyses, e.g. multivariate rainfall (rainfall intensity, duration and depth), flood (peak discharge, duration and volume), and drought analyses (drought length, mean and minimum SPI values, and drought mean areal extent). Copula has also been applied in the flood frequency analysis at the confluences of river systems by taking into account the dependence among upstream gauge stations rather than by using the hydrological routing technique. In most of the studies above, the annual time series have been considered as stationary signal which the time series have been assumed as independent identically distributed (i.i.d.) random variables. But in reality, hydrological time series, especially the daily and monthly hydrological time series, cannot be considered as i.i.d. random variables due to the periodicity existed in the data structure. Also, the stationary assumption is also under question due to the Climate Change and Land Use and Land Cover (LULC) change in the fast years. To this end, it is necessary to revaluate the classic approach for the study of hydrological time series by relaxing the stationary assumption by the use of nonstationary approach. Also as to the study of the dependence structure for the hydrological time series, the assumption of same type of univariate distribution also needs to be relaxed by adopting the copula theory. In this paper, the univariate monthly hydrological time series will be studied through the nonstationary time series analysis approach. The dependence structure of the multivariate monthly hydrological time series will be

  2. Recurrence quantification analysis and state space divergence reconstruction for financial time series analysis

    NASA Astrophysics Data System (ADS)

    Strozzi, Fernanda; Zaldívar, José-Manuel; Zbilut, Joseph P.

    2007-03-01

    The application of recurrence quantification analysis (RQA) and state space divergence reconstruction for the analysis of financial time series in terms of cross-correlation and forecasting is illustrated using high-frequency time series and random heavy-tailed data sets. The results indicate that these techniques, able to deal with non-stationarity in the time series, may contribute to the understanding of the complex dynamics hidden in financial markets. The results demonstrate that financial time series are highly correlated. Finally, an on-line trading strategy is illustrated and the results shown using high-frequency foreign exchange time series.

  3. Modelling trends in climatic time series using the state space approach

    NASA Astrophysics Data System (ADS)

    Laine, Marko; Kyrölä, Erkki

    2014-05-01

    A typical feature of an atmospheric time series is that they are not stationary but exhibit both slowly varying and abrupt changes in the distributional properties. These are caused by external forcing such as changes in the solar activity or volcanic eruptions. Further, the data sampling is often nonuniform, there are data gaps, and the uncertainty of the observations can vary. When observations are combined from various sources there will be instrument and retrieval method related biases. The differences in sampling lead to uncertainties, also. Dynamic regression with state space representation of the underlying processes provides flexible tools for these challenges in the analysis. By explicitly allowing for variability in the regression coefficients we let the system properties change in time. This change in time can be modelled and estimated, also. Furthermore, the use of unobservable state variables allows modelling of the processes that are driving the observed variability, such as seasonality or external forcing, and we can explicitly allow for some modelling error. The state space approach provides a well-defined hierarchical statistical model for assessing trends defined as long term background changes in the time series. The modelling assumptions can be evaluated and the method provides realistic uncertainty estimates for the model based statements on the quantities of interest. We show that a linear dynamic model (DLM) provides very flexible tool for trend and change point analysis in time series. Given the structural parameters of the model, the Kalman filter and Kalman smoother formulas can be used to estimate the model states. Further, we provide an efficient way to account for the structural parameter uncertainty by using adaptive Markov chain Monte Carlo (MCMC) algorithm. Then, the trend related statistics can be estimated by simulating realizations of the estimated processes with fully quantified uncertainties. This presentation will provide a

  4. Time Series Analysis of 3D Coordinates Using Nonstochastic Observations

    NASA Astrophysics Data System (ADS)

    Velsink, Hiddo

    2016-03-01

    Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to formulate constraints on the unknown parameters of the adjustment problem. Thus they describe deformation patterns. If deformation is absent, the epochs of the time series are supposed to be related via affine, similarity or congruence transformations. S-basis invariant testing of deformation patterns is treated. The model is experimentally validated by showing the procedure for a point set of 3D coordinates, determined from total station measurements during five epochs. The modelling of two patterns, the movement of just one point in several epochs, and of several points, is shown. Full, rank deficient covariance matrices of the 3D coordinates, resulting from free network adjustments of the total station measurements of each epoch, are used in the analysis.

  5. Mode Analysis with Autocorrelation Method (Single Time Series) in Tokamak

    NASA Astrophysics Data System (ADS)

    Saadat, Shervin; Salem, Mohammad K.; Goranneviss, Mahmoud; Khorshid, Pejman

    2010-08-01

    In this paper plasma mode analyzed with statistical method that designated Autocorrelation function. Auto correlation function used from one time series, so for this purpose we need one Minov coil. After autocorrelation analysis on mirnov coil data, spectral density diagram is plotted. Spectral density diagram from symmetries and trends can analyzed plasma mode. RHF fields effects with this method ate investigated in IR-T1 tokamak and results corresponded with multichannel methods such as SVD and FFT.

  6. Time series analysis as a tool for karst water management

    NASA Astrophysics Data System (ADS)

    Fournier, Matthieu; Massei, Nicolas; Duran, Léa

    2015-04-01

    Karst hydrosystems are well known for their vulnerability to turbidity due to their complex and unique characteristics which make them very different from other aquifers. Moreover, many parameters can affect their functioning. It makes the characterization of their vulnerability difficult and needs the use of statistical analyses Time series analyses on turbidity, electrical conductivity and water discharge datasets, such as correlation and spectral analyses, have proven to be useful in improving our understanding of karst systems. However, the loss of information on time localization is a major drawback of those Fourier spectral methods; this problem has been overcome by the development of wavelet analysis (continuous or discrete) for hydrosystems offering the possibility to better characterize the complex modalities of variation inherent to non stationary processes. Nevertheless, from wavelet transform, signal is decomposed on several continuous wavelet signals which cannot be true with local-time processes frequently observed in karst aquifer. More recently, a new approach associating empirical mode decomposition and the Hilbert transform was presented for hydrosystems. It allows an orthogonal decomposition of the signal analyzed and provides a more accurate estimation of changing variability scales across time for highly transient signals. This study aims to identify the natural and anthropogenic parameters which control turbidity released at a well for drinking water supply. The well is located in the chalk karst aquifer near the Seine river at 40 km of the Seine estuary in western Paris Basin. At this location, tidal variations greatly affect the level of the water in the Seine. Continuous wavelet analysis on turbidity dataset have been used to decompose turbidity release at the well into three components i) the rain event periods, ii) the pumping periods and iii) the tidal range of Seine river. Time-domain reconstruction by inverse wavelet transform allows

  7. The application of complex network time series analysis in turbulent heated jets

    NASA Astrophysics Data System (ADS)

    Charakopoulos, A. K.; Karakasidis, T. E.; Papanicolaou, P. N.; Liakopoulos, A.

    2014-06-01

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

  8. The application of complex network time series analysis in turbulent heated jets

    SciTech Connect

    Charakopoulos, A. K.; Karakasidis, T. E. Liakopoulos, A.; Papanicolaou, P. N.

    2014-06-15

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

  9. Satellite time series analysis using Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Pannimpullath, R. Renosh; Doolaeghe, Diane; Loisel, Hubert; Vantrepotte, Vincent; Schmitt, Francois G.

    2016-04-01

    Geophysical fields possess large fluctuations over many spatial and temporal scales. Satellite successive images provide interesting sampling of this spatio-temporal multiscale variability. Here we propose to consider such variability by performing satellite time series analysis, pixel by pixel, using Empirical Mode Decomposition (EMD). EMD is a time series analysis technique able to decompose an original time series into a sum of modes, each one having a different mean frequency. It can be used to smooth signals, to extract trends. It is built in a data-adaptative way, and is able to extract information from nonlinear signals. Here we use MERIS Suspended Particulate Matter (SPM) data, on a weekly basis, during 10 years. There are 458 successive time steps. We have selected 5 different regions of coastal waters for the present study. They are Vietnam coastal waters, Brahmaputra region, St. Lawrence, English Channel and McKenzie. These regions have high SPM concentrations due to large scale river run off. Trend and Hurst exponents are derived for each pixel in each region. The energy also extracted using Hilberts Spectral Analysis (HSA) along with EMD method. Normalised energy computed for each mode for each region with the total energy. The total energy computed using all the modes are extracted using EMD method.

  10. Time series analysis using semiparametric regression on oil palm production

    NASA Astrophysics Data System (ADS)

    Yundari, Pasaribu, U. S.; Mukhaiyar, U.

    2016-04-01

    This paper presents semiparametric kernel regression method which has shown its flexibility and easiness in mathematical calculation, especially in estimating density and regression function. Kernel function is continuous and it produces a smooth estimation. The classical kernel density estimator is constructed by completely nonparametric analysis and it is well reasonable working for all form of function. Here, we discuss about parameter estimation in time series analysis. First, we consider the parameters are exist, then we use nonparametrical estimation which is called semiparametrical. The selection of optimum bandwidth is obtained by considering the approximation of Mean Integrated Square Root Error (MISE).

  11. Combination of equiprobable symbolization and time reversal asymmetry for heartbeat interval series analysis

    NASA Astrophysics Data System (ADS)

    Hou, Fengzhen; Huang, Xiaolin; Chen, Ying; Huo, Chengyu; Liu, Hongxing; Ning, Xinbao

    2013-01-01

    Symbolic dynamics method and time reversal asymmetry analysis are both important approaches in the study of heartbeat interval series. However, there is limited research work reported on combining these two methods. We provide a method of time reversal asymmetry analysis which focuses on the differences between the forward and backward embedding “m words” after the operation of equiprobable symbolization. To investigate the total amplitude as well as the distribution features of the difference, four indices are proposed. Based on the application to simulation series, we found that these measures can successfully detect time reversal asymmetry in chaos series. With application to human heartbeat interval series (RR series), it is suggested that the distribution features of the forward-backward difference can sensitively capture the dynamical changes caused by diseases or aging. In particular, the index ED, which reflects the random degree of the forward-backward difference distribution, can significantly discriminate healthy subjects from diseased ones. We conclude that RR series from healthy subjects show more asymmetry in temporal structure on the original time scale from the perspective of equiprobable symbolization, whereas diseases account for loss of this asymmetry.

  12. KALREF—A Kalman filter and time series approach to the International Terrestrial Reference Frame realization

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Abbondanza, Claudio; Altamimi, Zuheir; Chin, T. Mike; Collilieux, Xavier; Gross, Richard S.; Heflin, Michael B.; Jiang, Yan; Parker, Jay W.

    2015-05-01

    The current International Terrestrial Reference Frame is based on a piecewise linear site motion model and realized by reference epoch coordinates and velocities for a global set of stations. Although linear motions due to tectonic plates and glacial isostatic adjustment dominate geodetic signals, at today's millimeter precisions, nonlinear motions due to earthquakes, volcanic activities, ice mass losses, sea level rise, hydrological changes, and other processes become significant. Monitoring these (sometimes rapid) changes desires consistent and precise realization of the terrestrial reference frame (TRF) quasi-instantaneously. Here, we use a Kalman filter and smoother approach to combine time series from four space geodetic techniques to realize an experimental TRF through weekly time series of geocentric coordinates. In addition to secular, periodic, and stochastic components for station coordinates, the Kalman filter state variables also include daily Earth orientation parameters and transformation parameters from input data frames to the combined TRF. Local tie measurements among colocated stations are used at their known or nominal epochs of observation, with comotion constraints applied to almost all colocated stations. The filter/smoother approach unifies different geodetic time series in a single geocentric frame. Fragmented and multitechnique tracking records at colocation sites are bridged together to form longer and coherent motion time series. While the time series approach to TRF reflects the reality of a changing Earth more closely than the linear approximation model, the filter/smoother is computationally powerful and flexible to facilitate incorporation of other data types and more advanced characterization of stochastic behavior of geodetic time series.

  13. The multiscale analysis between stock market time series

    NASA Astrophysics Data System (ADS)

    Shi, Wenbin; Shang, Pengjian

    2015-11-01

    This paper is devoted to multiscale cross-correlation analysis on stock market time series, where multiscale DCCA cross-correlation coefficient as well as multiscale cross-sample entropy (MSCE) is applied. Multiscale DCCA cross-correlation coefficient is a realization of DCCA cross-correlation coefficient on multiple scales. The results of this method present a good scaling characterization. More significantly, this method is able to group stock markets by areas. Compared to multiscale DCCA cross-correlation coefficient, MSCE presents a more remarkable scaling characterization and the value of each log return of financial time series decreases with the increasing of scale factor. But the results of grouping is not as good as multiscale DCCA cross-correlation coefficient.

  14. Diagnosis of nonlinear systems using time series analysis

    SciTech Connect

    Hunter, N.F. Jr.

    1991-01-01

    Diagnosis and analysis techniques for linear systems have been developed and refined to a high degree of precision. In contrast, techniques for the analysis of data from nonlinear systems are in the early stages of development. This paper describes a time series technique for the analysis of data from nonlinear systems. The input and response time series resulting from excitation of the nonlinear system are embedded in a state space. The form of the embedding is optimized using local canonical variate analysis and singular value decomposition techniques. From the state space model, future system responses are estimated. The expected degree of predictability of the system is investigated using the state transition matrix. The degree of nonlinearity present is quantified using the geometry of the transfer function poles in the z plane. Examples of application to a linear single-degree-of-freedom system, a single-degree-of-freedom Duffing Oscillator, and linear and nonlinear three degree of freedom oscillators are presented. 11 refs., 9 figs.

  15. Time series analysis of electron flux at geostationary orbit

    SciTech Connect

    Szita, S.; Rodgers, D.J.; Johnstone, A.D.

    1996-07-01

    Time series of energetic (42.9{endash}300 keV) electron flux data from the geostationary satellite Meteosat-3 shows variability over various timescales. Of particular interest are the strong local time dependence of the flux data and the large flux peaks associated with particle injection events which occur over a timescale of a few hours. Fourier analysis has shown that for this energy range, the average electron flux diurnal variation can be approximated by a combination of two sine waves with periods of 12 and 24 hours. The data have been further examined using wavelet analysis, which shows how the diurnal variation changes and where it appears most significant. The injection events have a characteristic appearance but do not occur in phase with one another and therefore do not show up in a Fourier spectrum. Wavelet analysis has been used to look for characteristic time scales for these events. {copyright} {ital 1996 American Institute of Physics.}

  16. Phase synchronization based minimum spanning trees for analysis of financial time series with nonlinear correlations

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Srinivasan; Duvvuru, Arjun; Sultornsanee, Sivarit; Kamarthi, Sagar

    2016-02-01

    The cross correlation coefficient has been widely applied in financial time series analysis, in specific, for understanding chaotic behaviour in terms of stock price and index movements during crisis periods. To better understand time series correlation dynamics, the cross correlation matrices are represented as networks, in which a node stands for an individual time series and a link indicates cross correlation between a pair of nodes. These networks are converted into simpler trees using different schemes. In this context, Minimum Spanning Trees (MST) are the most favoured tree structures because of their ability to preserve all the nodes and thereby retain essential information imbued in the network. Although cross correlations underlying MSTs capture essential information, they do not faithfully capture dynamic behaviour embedded in the time series data of financial systems because cross correlation is a reliable measure only if the relationship between the time series is linear. To address the issue, this work investigates a new measure called phase synchronization (PS) for establishing correlations among different time series which relate to one another, linearly or nonlinearly. In this approach the strength of a link between a pair of time series (nodes) is determined by the level of phase synchronization between them. We compare the performance of phase synchronization based MST with cross correlation based MST along selected network measures across temporal frame that includes economically good and crisis periods. We observe agreement in the directionality of the results across these two methods. They show similar trends, upward or downward, when comparing selected network measures. Though both the methods give similar trends, the phase synchronization based MST is a more reliable representation of the dynamic behaviour of financial systems than the cross correlation based MST because of the former's ability to quantify nonlinear relationships among time

  17. On-line analysis of reactor noise using time-series analysis

    SciTech Connect

    McGevna, V.G.

    1981-10-01

    A method to allow use of time series analysis for on-line noise analysis has been developed. On-line analysis of noise in nuclear power reactors has been limited primarily to spectral analysis and related frequency domain techniques. Time series analysis has many distinct advantages over spectral analysis in the automated processing of reactor noise. However, fitting an autoregressive-moving average (ARMA) model to time series data involves non-linear least squares estimation. Unless a high speed, general purpose computer is available, the calculations become too time consuming for on-line applications. To eliminate this problem, a special purpose algorithm was developed for fitting ARMA models. While it is based on a combination of steepest descent and Taylor series linearization, properties of the ARMA model are used so that the auto- and cross-correlation functions can be used to eliminate the need for estimating derivatives.

  18. Time series analysis for psychological research: examining and forecasting change.

    PubMed

    Jebb, Andrew T; Tay, Louis; Wang, Wei; Huang, Qiming

    2015-01-01

    Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials. PMID:26106341

  19. Time series analysis for psychological research: examining and forecasting change

    PubMed Central

    Jebb, Andrew T.; Tay, Louis; Wang, Wei; Huang, Qiming

    2015-01-01

    Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials. PMID:26106341

  20. Chaotic time series analysis in economics: Balance and perspectives

    SciTech Connect

    Faggini, Marisa

    2014-12-15

    The aim of the paper is not to review the large body of work concerning nonlinear time series analysis in economics, about which much has been written, but rather to focus on the new techniques developed to detect chaotic behaviours in economic data. More specifically, our attention will be devoted to reviewing some of these techniques and their application to economic and financial data in order to understand why chaos theory, after a period of growing interest, appears now not to be such an interesting and promising research area.

  1. Series analysis of Q-state checkerboard Potts models

    SciTech Connect

    Hansel, D.; Maillard, J.M.

    1988-12-01

    The series analysis of the low temperature expansion of the checkerboard q-state Potts model in a magnetic field initiated in two previous papers is continued. In particular algebraic varieties of the parameter space (corresponding or generalizing the so-called disorder solutions), the checkerboard Potts model and its Bethe approximation are indistinguishable as far as one is concerned with the partition function and its first order derivatives. The difference between the two models occurs for higher order derivatives. In particular one gives the exact expression of the (low temperature expansion of the) susceptibility of the checkerboard Ising model in zero magnetic field on one of these varieties.

  2. Analysis of some meteorological variables time series relevant in urban environments by applying the multifractal analysis

    NASA Astrophysics Data System (ADS)

    Pavon-Dominguez, Pablo; Ariza-Villaverde, Ana B.; Jimenez-Hornero, Francisco J.; Gutierrez de Rave, Eduardo

    2010-05-01

    The time series corresponding to variables related with the climate have been frequently studied by using the descriptive statistics. However, as several works have suggested, other approaches such as the multifractal analysis can be taken into account to complete the information about some climatic and environmental phenomena obtained from the standard methods. As a consequence, the main aim of this work was to check whether some meteorological variables relevant in urban environments (i.e. air temperature, rainfall, relative humidity, solar radiation and surface wind velocity and direction) exhibited a multifractal nature. The analysis was extended to several time scales determining the multifractal parameters and exploring the existing relationships between them and those reported by the descriptive statistics. The daily time series studied in this work were recorded in Córdoba (37.85°N 4.85°W), southern Spain, from 2001 to 2006. The altitude of this location is 117 m and the climate of this location can be defined as a mixture of Mediterranean characteristics and Continental effects. The multifractal spectra showed convex shapes for all the considered variables, confirming the presence of a multifractal type of scaling that was kept for time resolutions ranging from one day to six years. In the case of rainfall, the observed range of time scales that exhibited a multifractal nature was more restrictive due to the presence of many zeros in the daily data that characterized the precipitation regime in some places of southern Spain. The multifractal spectra corresponding to surface wind velocity and rainfall showed longer left tails implying greater heterogeneity in the time series high values. However, the multifractal spectra obtained for the rest of meteorological variables exhibited the opposite behavior meaning that the low data in the time series had more influence in the distribution variability. The presence of rare low values was significant for

  3. Three-dimensional Neumann-series approach to model light transport in nonuniform media

    PubMed Central

    Jha, Abhinav K.; Kupinski, Matthew A.; Barrett, Harrison H.; Clarkson, Eric; Hartman, John H.

    2014-01-01

    We present the implementation, validation, and performance of a three-dimensional (3D) Neumann-series approach to model photon propagation in nonuniform media using the radiative transport equation (RTE). The RTE is implemented for nonuniform scattering media in a spherical harmonic basis for a diffuse-optical-imaging setup. The method is parallelizable and implemented on a computing system consisting of NVIDIA Tesla C2050 graphics processing units (GPUs). The GPU implementation provides a speedup of up to two orders of magnitude over non-GPU implementation, which leads to good computational efficiency for the Neumann-series method. The results using the method are compared with the results obtained using the Monte Carlo simulations for various small-geometry phantoms, and good agreement is observed. We observe that the Neumann-series approach gives accurate results in many cases where the diffusion approximation is not accurate. PMID:23201945

  4. Period analysis of hydrologic series through moving-window correlation analysis method

    NASA Astrophysics Data System (ADS)

    Xie, Yangyang; Huang, Qiang; Chang, Jianxia; Liu, Saiyan; Wang, Yimin

    2016-07-01

    Period analysis is of great significance for understanding various hydrologic processes and predicting the future hydrological regime of a watershed or region. Hence, many period analysis methods including fast Fourier transform (FFT), maximum entropy spectral analysis (MESA) and wavelet analysis (WA) have been developed to study this issue. However, due to the complex components of hydrologic series and the limitations of these conventional methods, the problem is still difficult to be solved. In this paper, the moving-window correlation analysis method (MWCA) has been proposed for analyzing the periodic component of hydrologic series, which includes construction of periodic processes, significant test of periods and time frequency analysis. Three commonly used methods (FFT, MESA and WA) and MWCA are employed to investigate the periods of synthetic series and observed hydrologic series, respectively. The results show that FFT, MESA and WA are not always as good as expected when detecting periods of a time series. By contrast, MWCA has better application effects, which could identify the true periods of time series, extract the reliable periodic components, find the active time ranges of periodic components and resist the disturbance of noises. In conclusion, MWCA is suitable to identify the true periods of hydrologic time series.

  5. Approaches to Language Testing. Advances in Language Testing Series: 2. Papers in Applied Linguistics.

    ERIC Educational Resources Information Center

    Spolsky, Bernard, Ed.

    This volume, one in a series on modern language testing, collects four essays dealing with current approaches to lanquage testing. The introduction traces the development of language testing theory and examines the role of linguistics in this area. "The Psycholinguistic Basis," by E. Ingram, discusses some interpretations of the term…

  6. Automatic change detection in time series of Synthetic Aperture Radar data using a scale-driven approach

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.

    2013-12-01

    Automatic change detection and change classification from Synthetic Aperture Radar (SAR) images is a difficult task mostly due to the high level of speckle noise inherent to SAR data and the highly non-Gaussian nature of the SAR amplitude information. Several approaches were developed in recent years to deal with SAR specific change detection problems from image pairs and time series of images. Despite these considerable efforts, no satisfying solution to this problem has been found so far. In this paper we present a promising new algorithm for change detection from SAR that is based on a multi-scale analysis of a times series of SAR images. Our approach is composed of three steps, including (1) data enhancement and filtering, (2) multi-scale change detection, and (3) time-series analysis of change detection maps. In the data enhancement and filtering step, we first form time-series of ratio images by dividing all SAR images by a reference acquisition to suppress stationary image information and enhance change signatures. Several methods for reference image selection will be discussed in the paper. The generated ratio images are further log-transformed to create near-Gaussian data and to convert the originally multiplicative noise into additive noise. A subsequent fast non-local mean filter is applied to reduce image noise whilst preserving most of the image details. The filtered log-ratio images are then inserted into a multi-scale change detection algorithm that is composed of: (1) a multi-scale decomposition of the input images using a two-dimensional discrete stationary wavelet transform (2D-SWT); (2) a multi-resolution classification into 'change' and 'no-change' areas; and (3) a scale-driven fusion of the classification results. In a final time-series analysis step the multi-temporal change detection maps are analyzed to identify seasonal, gradual, and abrupt changes. The performance of the developed approach will be demonstrated by application to the

  7. Time series clustering analysis of health-promoting behavior

    NASA Astrophysics Data System (ADS)

    Yang, Chi-Ta; Hung, Yu-Shiang; Deng, Guang-Feng

    2013-10-01

    Health promotion must be emphasized to achieve the World Health Organization goal of health for all. Since the global population is aging rapidly, ComCare elder health-promoting service was developed by the Taiwan Institute for Information Industry in 2011. Based on the Pender health promotion model, ComCare service offers five categories of health-promoting functions to address the everyday needs of seniors: nutrition management, social support, exercise management, health responsibility, stress management. To assess the overall ComCare service and to improve understanding of the health-promoting behavior of elders, this study analyzed health-promoting behavioral data automatically collected by the ComCare monitoring system. In the 30638 session records collected for 249 elders from January, 2012 to March, 2013, behavior patterns were identified by fuzzy c-mean time series clustering algorithm combined with autocorrelation-based representation schemes. The analysis showed that time series data for elder health-promoting behavior can be classified into four different clusters. Each type reveals different health-promoting needs, frequencies, function numbers and behaviors. The data analysis result can assist policymakers, health-care providers, and experts in medicine, public health, nursing and psychology and has been provided to Taiwan National Health Insurance Administration to assess the elder health-promoting behavior.

  8. On statistical inference in time series analysis of the evolution of road safety.

    PubMed

    Commandeur, Jacques J F; Bijleveld, Frits D; Bergel-Hayat, Ruth; Antoniou, Constantinos; Yannis, George; Papadimitriou, Eleonora

    2013-11-01

    Data collected for building a road safety observatory usually include observations made sequentially through time. Examples of such data, called time series data, include annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle kilometers driven in a country, as well as the corresponding values of safety performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc.). Some commonly used statistical techniques imply assumptions that are often violated by the special properties of time series data, namely serial dependency among disturbances associated with the observations. The first objective of this paper is to demonstrate the impact of such violations to the applicability of standard methods of statistical inference, which leads to an under or overestimation of the standard error and consequently may produce erroneous inferences. Moreover, having established the adverse consequences of ignoring serial dependency issues, the paper aims to describe rigorous statistical techniques used to overcome them. In particular, appropriate time series analysis techniques of varying complexity are employed to describe the development over time, relating the accident-occurrences to explanatory factors such as exposure measures or safety performance indicators, and forecasting the development into the near future. Traditional regression models (whether they are linear, generalized linear or nonlinear) are shown not to naturally capture the inherent dependencies in time series data. Dedicated time series analysis techniques, such as the ARMA-type and DRAG approaches are discussed next, followed by structural time series models, which are a subclass of state space methods. The paper concludes with general recommendations and practice guidelines for the use of time series models in road safety research. PMID:23260716

  9. Analysis of graded-index optical fibers by the spectral parameter power series method

    NASA Astrophysics Data System (ADS)

    Castillo-Pérez, Raúl; Kravchenko, Vladislav V.; Torba, Sergii M.

    2015-02-01

    The spectral parameter power series (SPPS) method is a recently introduced technique (Kravchenko 2008 Complex Var. Elliptic Equ. 53 775-89, Kravchenko and Porter 2010 Math. Methods Appl. Sci. 33 459-68) for solving linear differential equations and related spectral problems. In this work we develop an approach based on the SPPS for analysis of graded-index optical fibers. The characteristic equation of the eigenvalue problem for calculation of guided modes is obtained in an analytical form in terms of SPPS. Truncation of the series and consideration in this way of the approximate characteristic equation gives us a simple and efficient numerical method for solving the problem. Comparison with the results obtained by other available techniques reveals clear advantages for the SPPS approach, in particular, with regards to accuracy. Based on the solution of the eigenvalue problem, parameters describing the dispersion are analyzed as well.

  10. Weighted permutation entropy based on different symbolic approaches for financial time series

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Shang, Pengjian

    2016-02-01

    In this paper, we introduce weighted permutation entropy (WPE) and three different symbolic approaches to investigate the complexities of stock time series containing amplitude-coded information and explore the influence of using different symbolic approaches on obtained WPE results. We employ WPE based on symbolic approaches to the US and Chinese stock markets and make a comparison between the results of US and Chinese stock markets. Three symbolic approaches are able to help the complexity containing in the stock time series by WPE method drop whatever the embedding dimension is. The similarity between these stock markets can be detected by the WPE based on Binary Δ-coding-method, while the difference between them can be revealed by the WPE based on σ-method, Max-min-method. The combinations of the symbolic approaches: σ-method and Max-min-method, and WPE method are capable of reflecting the multiscale structure of complexity by different time delay and analyze the differences between complexities of stock time series in more detail and more accurately. Furthermore, the correlations between stock markets in the same region and the similarities hidden in the S&P500 and DJI, ShangZheng and ShenCheng are uncovered by the comparison of the WPE based on Binary Δ-coding-method of six stock markets.

  11. Hybrid grammar-based approach to nonlinear dynamical system identification from biological time series

    NASA Astrophysics Data System (ADS)

    McKinney, B. A.; Crowe, J. E., Jr.; Voss, H. U.; Crooke, P. S.; Barney, N.; Moore, J. H.

    2006-02-01

    We introduce a grammar-based hybrid approach to reverse engineering nonlinear ordinary differential equation models from observed time series. This hybrid approach combines a genetic algorithm to search the space of model architectures with a Kalman filter to estimate the model parameters. Domain-specific knowledge is used in a context-free grammar to restrict the search space for the functional form of the target model. We find that the hybrid approach outperforms a pure evolutionary algorithm method, and we observe features in the evolution of the dynamical models that correspond with the emergence of favorable model components. We apply the hybrid method to both artificially generated time series and experimentally observed protein levels from subjects who received the smallpox vaccine. From the observed data, we infer a cytokine protein interaction network for an individual’s response to the smallpox vaccine.

  12. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  13. Inorganic chemical analysis of environmental materials—A lecture series

    USGS Publications Warehouse

    Crock, J.G.; Lamothe, P.J.

    2011-01-01

    At the request of the faculty of the Colorado School of Mines, Golden, Colorado, the authors prepared and presented a lecture series to the students of a graduate level advanced instrumental analysis class. The slides and text presented in this report are a compilation and condensation of this series of lectures. The purpose of this report is to present the slides and notes and to emphasize the thought processes that should be used by a scientist submitting samples for analyses in order to procure analytical data to answer a research question. First and foremost, the analytical data generated can be no better than the samples submitted. The questions to be answered must first be well defined and the appropriate samples collected from the population that will answer the question. The proper methods of analysis, including proper sample preparation and digestion techniques, must then be applied. Care must be taken to achieve the required limits of detection of the critical analytes to yield detectable analyte concentration (above "action" levels) for the majority of the study's samples and to address what portion of those analytes answer the research question-total or partial concentrations. To guarantee a robust analytical result that answers the research question(s), a well-defined quality assurance and quality control (QA/QC) plan must be employed. This QA/QC plan must include the collection and analysis of field and laboratory blanks, sample duplicates, and matrix-matched standard reference materials (SRMs). The proper SRMs may include in-house materials and/or a selection of widely available commercial materials. A discussion of the preparation and applicability of in-house reference materials is also presented. Only when all these analytical issues are sufficiently addressed can the research questions be answered with known certainty.

  14. Feature extraction for change analysis in SAR time series

    NASA Astrophysics Data System (ADS)

    Boldt, Markus; Thiele, Antje; Schulz, Karsten; Hinz, Stefan

    2015-10-01

    In remote sensing, the change detection topic represents a broad field of research. If time series data is available, change detection can be used for monitoring applications. These applications require regular image acquisitions at identical time of day along a defined period. Focusing on remote sensing sensors, radar is especially well-capable for applications requiring regularity, since it is independent from most weather and atmospheric influences. Furthermore, regarding the image acquisitions, the time of day plays no role due to the independence from daylight. Since 2007, the German SAR (Synthetic Aperture Radar) satellite TerraSAR-X (TSX) permits the acquisition of high resolution radar images capable for the analysis of dense built-up areas. In a former study, we presented the change analysis of the Stuttgart (Germany) airport. The aim of this study is the categorization of detected changes in the time series. This categorization is motivated by the fact that it is a poor statement only to describe where and when a specific area has changed. At least as important is the statement about what has caused the change. The focus is set on the analysis of so-called high activity areas (HAA) representing areas changing at least four times along the investigated period. As first step for categorizing these HAAs, the matching HAA changes (blobs) have to be identified. Afterwards, operating in this object-based blob level, several features are extracted which comprise shape-based, radiometric, statistic, morphological values and one context feature basing on a segmentation of the HAAs. This segmentation builds on the morphological differential attribute profiles (DAPs). Seven context classes are established: Urban, infrastructure, rural stable, rural unstable, natural, water and unclassified. A specific HA blob is assigned to one of these classes analyzing the CovAmCoh time series signature of the surrounding segments. In combination, also surrounding GIS information

  15. Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James

    2013-01-01

    This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks [Scargle 1998]-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piece- wise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by [Arias-Castro, Donoho and Huo 2003]. In the spirit of Reproducible Research [Donoho et al. (2008)] all of the code and data necessary to reproduce all of the figures in this paper are included as auxiliary material.

  16. Time series analysis of waterfowl species number change

    NASA Astrophysics Data System (ADS)

    Mengjung Chou, Caroline; Da-Wei Tsai, David; Honglay Chen, Paris

    2014-05-01

    The objective of this study is to analyze the time series of waterfowl species numbers in Da-du estuary which was set up as Important Bird Areas (IBAs) from birdlife international in 2004. The multiplicative decomposition method has been adapted to determine the species variations, including long-term (T), seasonal (S), circular (C), and irregular (I). The results indicated: (1) The long-term trend decreased with time from 1989 to 2012; (2) There were two seasonal high peaks in April and November each year with the lowest peak in June. Moreover, since the winter visitors had the dominant numbers in total species numbers, the seasonal changes were mainly depended on the winter birds' migration. (3) The waterfowl was gradually restored back from lowest point in 1996, but the difference between 1989 and 2003 indicated the irreversible effect existed already. (4) The irregular variation was proved as a random distribution by several statistical tests including normality test, homogeneity of variance, independence test and variation probability method to portray the characteristics of the distributions and to demonstrate its randomness. Consequently, this study exhibited the time series analysis methods were reasonable well to present the waterfowl species changes numerically. And those results could be the precious data for the researches of ecosystem succession and anthropogenic impacts in the estuary.

  17. STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS

    SciTech Connect

    Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James

    2013-02-20

    This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by Arias-Castro et al. In the spirit of Reproducible Research all of the code and data necessary to reproduce all of the figures in this paper are included as supplementary material.

  18. Microvascular decompression for glossopharyngeal neuralgia through a microasterional approach: A case series

    PubMed Central

    Revuelta-Gutiérrez, Rogelio; Morales-Martínez, Andres Humberto; Mejías-Soto, Carolina; Martínez-Anda, Jaime Jesús; Ortega-Porcayo, Luis Alberto

    2016-01-01

    Background: Glossopharyngeal neuralgia (GPN) is an uncommon craniofacial pain syndrome. It is characterized by a sudden onset lancinating pain usually localized in the sensory distribution of the IX cranial nerve associated with excessive vagal outflow, which leads to bradycardia, hypotension, syncope, or cardiac arrest. This study aims to review our surgical experience performing microvascular decompression (MVD) in patients with GPN. Methods: Over the last 20 years, 14 consecutive cases were diagnosed with GPN. MVD using a microasterional approach was performed in all patients. Demographic data, clinical presentation, surgical findings, clinical outcome, complications, and long-term follow-up were reviewed. Results: The median age of onset was 58.7 years. The mean time from onset of symptoms to treatment was 8.8 years. Glossopharyngeal and vagus nerve compression was from the posterior inferior cerebellar artery in eleven cases (78.5%), vertebral artery in two cases (14.2%), and choroid plexus in one case (7.1%). Postoperative mean follow-up was 26 months (3–180 months). Pain analysis demonstrated long-term pain improvement of 114 ± 27.1 months and pain remission in 13 patients (92.9%) (P = 0.0001) two complications were documented, one patient had a cerebrospinal fluid leak, and another had bacterial meningitis. There was no surgical mortality. Conclusions: GPN is a rare entity, and secondary causes should be discarded. MVD through a retractorless microasterional approach is a safe and effective technique. Our series demonstrated an excellent clinical outcome with pain remission in 92.9%. PMID:27213105

  19. A three-phase series-parallel resonant converter -- analysis, design, simulation, and experimental results

    SciTech Connect

    Bhat, A.K.S.; Zheng, R.L.

    1996-07-01

    A three-phase dc-to-dc series-parallel resonant converter is proposed /and its operating modes for a 180{degree} wide gating pulse scheme are explained. A detailed analysis of the converter using a constant current model and the Fourier series approach is presented. Based on the analysis, design curves are obtained and a design example of a 1-kW converter is given. SPICE simulation results for the designed converter and experimental results for a 500-W converter are presented to verify the performance of the proposed converter for varying load conditions. The converter operates in lagging power factor (PF) mode for the entire load range and requires a narrow variation in switching frequency, to adequately regulate the output power.

  20. Motion Artifact Reduction in Ultrasound Based Thermal Strain Imaging of Atherosclerotic Plaques Using Time Series Analysis

    PubMed Central

    Dutta, Debaditya; Mahmoud, Ahmed M.; Leers, Steven A.; Kim, Kang

    2013-01-01

    Large lipid pools in vulnerable plaques, in principle, can be detected using US based thermal strain imaging (US-TSI). One practical challenge for in vivo cardiovascular application of US-TSI is that the thermal strain is masked by the mechanical strain caused by cardiac pulsation. ECG gating is a widely adopted method for cardiac motion compensation, but it is often susceptible to electrical and physiological noise. In this paper, we present an alternative time series analysis approach to separate thermal strain from the mechanical strain without using ECG. The performance and feasibility of the time-series analysis technique was tested via numerical simulation as well as in vitro water tank experiments using a vessel mimicking phantom and an excised human atherosclerotic artery where the cardiac pulsation is simulated by a pulsatile pump. PMID:24808628

  1. Identification of statistical patterns in complex systems via symbolic time series analysis.

    PubMed

    Gupta, Shalabh; Khatkhate, Amol; Ray, Asok; Keller, Eric

    2006-10-01

    Identification of statistical patterns from observed time series of spatially distributed sensor data is critical for performance monitoring and decision making in human-engineered complex systems, such as electric power generation, petrochemical, and networked transportation. This paper presents an information-theoretic approach to identification of statistical patterns in such systems, where the main objective is to enhance structural integrity and operation reliability. The core concept of pattern identification is built upon the principles of Symbolic Dynamics, Automata Theory, and Information Theory. To this end, a symbolic time series analysis method has been formulated and experimentally validated on a special-purpose test apparatus that is designed for data acquisition and real-time analysis of fatigue damage in polycrystalline alloys. PMID:17063932

  2. Visibility graph network analysis of gold price time series

    NASA Astrophysics Data System (ADS)

    Long, Yu

    2013-08-01

    Mapping time series into a visibility graph network, the characteristics of the gold price time series and return temporal series, and the mechanism underlying the gold price fluctuation have been explored from the perspective of complex network theory. The network degree distribution characters, which change from power law to exponent law when the series was shuffled from original sequence, and the average path length characters, which change from L∼lnN into lnL∼lnN as the sequence was shuffled, demonstrate that price series and return series are both long-rang dependent fractal series. The relations of Hurst exponent to the power-law exponent of degree distribution demonstrate that the logarithmic price series is a fractal Brownian series and the logarithmic return series is a fractal Gaussian series. Power-law exponents of degree distribution in a time window changing with window moving demonstrates that a logarithmic gold price series is a multifractal series. The Power-law average clustering coefficient demonstrates that the gold price visibility graph is a hierarchy network. The hierarchy character, in light of the correspondence of graph to price fluctuation, means that gold price fluctuation is a hierarchy structure, which appears to be in agreement with Elliot’s experiential Wave Theory on stock price fluctuation, and the local-rule growth theory of a hierarchy network means that the hierarchy structure of gold price fluctuation originates from persistent, short term factors, such as short term speculation.

  3. Homogenization of atmospheric pressure time series recorded at VLBI stations using a segmentation LASSO approach

    NASA Astrophysics Data System (ADS)

    Balidakis, Kyriakos; Heinkelmann, Robert; Lu, Cuixian; Soja, Benedikt; Karbon, Maria; Nilsson, Tobias; Glaser, Susanne; Andres Mora-Diaz, Julian; Anderson, James; Liu, Li; Raposo-Pulido, Virginia; Xu, Minghui; Schuh, Harald

    2015-04-01

    Time series of meteorological parameters recorded at VLBI (Very Long Baseline Interferometry) observatories allow us to realistically model and consequently to eliminate the atmosphere-induced effects in the VLBI products to a large extent. Nevertheless, this advantage of VLBI is not fully exploited since such information is contaminated with inconsistencies, such as uncertainties regarding the calibration and location of the meteorological sensors, outliers, missing data points, and breaks. It has been shown that such inconsistencies in meteorological data used for VLBI data analysis impose problems in the geodetic products (e.g vertical site position) and result in mistakes in geophysical interpretation. The aim of the procedure followed here is to optimally model the tropospheric delay and bending effects that are still the main sources of error in VLBI data analysis. In this study, the meteorological data recorded with sensors mounted in the vicinity of VLBI stations have been homogenized spanning the period from 1979 until today. In order to meet this objective, inhomogeneities were detected and adjusted using test results and metadata. Some of the approaches employed include Alexandersson's Standard Normal Homogeneity Test and an iterative procedure, of which the segmentation part is based on a dynamic programming algorithm and the functional part on a LASSO (Least Absolute Shrinkage and Selection Operator) estimator procedure. For the provision of reference time series that are necessary to apply the aforementioned methods, ECMWF's (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis surface data were employed. Special care was taken regarding the datum definition of this model. Due to the significant height difference between the VLBI antenna's reference point and the elevation included in geopotential fields of the specific numerical weather models, a hypsometric adjustment is applied using the absolute pressure level from the WMO

  4. Multidimensional stock network analysis: An Escoufier's RV coefficient approach

    NASA Astrophysics Data System (ADS)

    Lee, Gan Siew; Djauhari, Maman A.

    2013-09-01

    The current practice of stocks network analysis is based on the assumption that the time series of closed stock price could represent the behaviour of the each stock. This assumption leads to consider minimal spanning tree (MST) and sub-dominant ultrametric (SDU) as an indispensible tool to filter the economic information contained in the network. Recently, there is an attempt where researchers represent stock not only as a univariate time series of closed price but as a bivariate time series of closed price and volume. In this case, they developed the so-called multidimensional MST to filter the important economic information. However, in this paper, we show that their approach is only applicable for that bivariate time series only. This leads us to introduce a new methodology to construct MST where each stock is represented by a multivariate time series. An example of Malaysian stock exchange will be presented and discussed to illustrate the advantages of the method.

  5. Multifractal detrended fluctuation analysis of Pannonian earthquake magnitude series

    NASA Astrophysics Data System (ADS)

    Telesca, Luciano; Toth, Laszlo

    2016-04-01

    The multifractality of the series of magnitudes of the earthquakes occurred in Pannonia region from 2002 to 2012 has been investigated. The shallow (depth less than 40 km) and deep (depth larger than 70 km) seismic catalogues were analysed by using the multifractal detrended fluctuation analysis. The shallow and deep catalogues are characterized by different multifractal properties: (i) the magnitudes of the shallow events are weakly persistent, while those of the deep ones are almost uncorrelated; (ii) the deep catalogue is more multifractal than the shallow one; (iii) the magnitudes of the deep catalogue are characterized by a right-skewed multifractal spectrum, while that of the shallow magnitude is rather symmetric; (iv) a direct relationship between the b-value of the Gutenberg-Richter law and the multifractality of the magnitudes is suggested.

  6. A non linear analysis of human gait time series based on multifractal analysis and cross correlations

    NASA Astrophysics Data System (ADS)

    Muñoz-Diosdado, A.

    2005-01-01

    We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems.

  7. Time series analysis of diverse extreme phenomena: universal features

    NASA Astrophysics Data System (ADS)

    Eftaxias, K.; Balasis, G.

    2012-04-01

    The field of study of complex systems holds that the dynamics of complex systems are founded on universal principles that may used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. We suggest that earthquake, epileptic seizures, solar flares, and magnetic storms dynamics can be analyzed within similar mathematical frameworks. A central property of aforementioned extreme events generation is the occurrence of coherent large-scale collective behavior with very rich structure, resulting from repeated nonlinear interactions among the corresponding constituents. Consequently, we apply the Tsallis nonextensive statistical mechanics as it proves an appropriate framework in order to investigate universal principles of their generation. First, we examine the data in terms of Tsallis entropy aiming to discover common "pathological" symptoms of transition to a significant shock. By monitoring the temporal evolution of the degree of organization in time series we observe similar distinctive features revealing significant reduction of complexity during their emergence. Second, a model for earthquake dynamics coming from a nonextensive Tsallis formalism, starting from first principles, has been recently introduced. This approach leads to an energy distribution function (Gutenberg-Richter type law) for the magnitude distribution of earthquakes, providing an excellent fit to seismicities generated in various large geographic areas usually identified as seismic regions. We show that this function is able to describe the energy distribution (with similar non-extensive q-parameter) of solar flares, magnetic storms, epileptic and earthquake shocks. The above mentioned evidence of a universal statistical behavior suggests the possibility of a common approach for studying space weather, earthquakes and epileptic seizures.

  8. Time series modeling by a regression approach based on a latent process.

    PubMed

    Chamroukhi, Faicel; Samé, Allou; Govaert, Gérard; Aknin, Patrice

    2009-01-01

    Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations. PMID:19616918

  9. Novex Analysis: A Cognitive Science Approach to Instructional Design.

    ERIC Educational Resources Information Center

    Taylor, James C.

    1994-01-01

    Describes the Novice-Expert (Novex) Analysis, a nine-step approach to instructional design aimed at effecting the shift from novice to expert by creating a series of learning activities to enable novices to construct an expert knowledge base. The "Dimensions of Processing Model" diagram illustrates how learning processes influence memory.…

  10. Finite element techniques in computational time series analysis of turbulent flows

    NASA Astrophysics Data System (ADS)

    Horenko, I.

    2009-04-01

    In recent years there has been considerable increase of interest in the mathematical modeling and analysis of complex systems that undergo transitions between several phases or regimes. Such systems can be found, e.g., in weather forecast (transitions between weather conditions), climate research (ice and warm ages), computational drug design (conformational transitions) and in econometrics (e.g., transitions between different phases of the market). In all cases, the accumulation of sufficiently detailed time series has led to the formation of huge databases, containing enormous but still undiscovered treasures of information. However, the extraction of essential dynamics and identification of the phases is usually hindered by the multidimensional nature of the signal, i.e., the information is "hidden" in the time series. The standard filtering approaches (like f.~e. wavelets-based spectral methods) have in general unfeasible numerical complexity in high-dimensions, other standard methods (like f.~e. Kalman-filter, MVAR, ARCH/GARCH etc.) impose some strong assumptions about the type of the underlying dynamics. Approach based on optimization of the specially constructed regularized functional (describing the quality of data description in terms of the certain amount of specified models) will be introduced. Based on this approach, several new adaptive mathematical methods for simultaneous EOF/SSA-like data-based dimension reduction and identification of hidden phases in high-dimensional time series will be presented. The methods exploit the topological structure of the analysed data an do not impose severe assumptions on the underlying dynamics. Special emphasis will be done on the mathematical assumptions and numerical cost of the constructed methods. The application of the presented methods will be first demonstrated on a toy example and the results will be compared with the ones obtained by standard approaches. The importance of accounting for the mathematical

  11. REDFIT-X: Cross-spectral analysis of unevenly spaced paleoclimate time series

    NASA Astrophysics Data System (ADS)

    Björg Ólafsdóttir, Kristín; Schulz, Michael; Mudelsee, Manfred

    2016-06-01

    Cross-spectral analysis is commonly used in climate research to identify joint variability between two variables and to assess the phase (lead/lag) between them. Here we present a Fortran 90 program (REDFIT-X) that is specially developed to perform cross-spectral analysis of unevenly spaced paleoclimate time series. The data properties of climate time series that are necessary to take into account are for example data spacing (unequal time scales and/or uneven spacing between time points) and the persistence in the data. Lomb-Scargle Fourier transform is used for the cross-spectral analyses between two time series with unequal and/or uneven time scale and the persistence in the data is taken into account when estimating the uncertainty associated with cross-spectral estimates. We use a Monte Carlo approach to estimate the uncertainty associated with coherency and phase. False-alarm level is estimated from empirical distribution of coherency estimates and confidence intervals for the phase angle are formed from the empirical distribution of the phase estimates. The method is validated by comparing the Monte Carlo uncertainty estimates with the traditionally used measures. Examples are given where the method is applied to paleoceanographic time series.

  12. A Systematic Review of Methodology: Time Series Regression Analysis for Environmental Factors and Infectious Diseases

    PubMed Central

    Imai, Chisato; Hashizume, Masahiro

    2015-01-01

    Background: Time series analysis is suitable for investigations of relatively direct and short-term effects of exposures on outcomes. In environmental epidemiology studies, this method has been one of the standard approaches to assess impacts of environmental factors on acute non-infectious diseases (e.g. cardiovascular deaths), with conventionally generalized linear or additive models (GLM and GAM). However, the same analysis practices are often observed with infectious diseases despite of the substantial differences from non-infectious diseases that may result in analytical challenges. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, systematic review was conducted to elucidate important issues in assessing the associations between environmental factors and infectious diseases using time series analysis with GLM and GAM. Published studies on the associations between weather factors and malaria, cholera, dengue, and influenza were targeted. Findings: Our review raised issues regarding the estimation of susceptible population and exposure lag times, the adequacy of seasonal adjustments, the presence of strong autocorrelations, and the lack of a smaller observation time unit of outcomes (i.e. daily data). These concerns may be attributable to features specific to infectious diseases, such as transmission among individuals and complicated causal mechanisms. Conclusion: The consequence of not taking adequate measures to address these issues is distortion of the appropriate risk quantifications of exposures factors. Future studies should pay careful attention to details and examine alternative models or methods that improve studies using time series regression analysis for environmental determinants of infectious diseases. PMID:25859149

  13. Inverting geodetic time series with a principal component analysis-based inversion method

    NASA Astrophysics Data System (ADS)

    Kositsky, A. P.; Avouac, J.-P.

    2010-03-01

    The Global Positioning System (GPS) system now makes it possible to monitor deformation of the Earth's surface along plate boundaries with unprecedented accuracy. In theory, the spatiotemporal evolution of slip on the plate boundary at depth, associated with either seismic or aseismic slip, can be inferred from these measurements through some inversion procedure based on the theory of dislocations in an elastic half-space. We describe and test a principal component analysis-based inversion method (PCAIM), an inversion strategy that relies on principal component analysis of the surface displacement time series. We prove that the fault slip history can be recovered from the inversion of each principal component. Because PCAIM does not require externally imposed temporal filtering, it can deal with any kind of time variation of fault slip. We test the approach by applying the technique to synthetic geodetic time series to show that a complicated slip history combining coseismic, postseismic, and nonstationary interseismic slip can be retrieved from this approach. PCAIM produces slip models comparable to those obtained from standard inversion techniques with less computational complexity. We also compare an afterslip model derived from the PCAIM inversion of postseismic displacements following the 2005 8.6 Nias earthquake with another solution obtained from the extended network inversion filter (ENIF). We introduce several extensions of the algorithm to allow statistically rigorous integration of multiple data sources (e.g., both GPS and interferometric synthetic aperture radar time series) over multiple timescales. PCAIM can be generalized to any linear inversion algorithm.

  14. Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach.

    PubMed

    Zunino, L; Soriano, M C; Rosso, O A

    2012-10-01

    In this paper we introduce a multiscale symbolic information-theory approach for discriminating nonlinear deterministic and stochastic dynamics from time series associated with complex systems. More precisely, we show that the multiscale complexity-entropy causality plane is a useful representation space to identify the range of scales at which deterministic or noisy behaviors dominate the system's dynamics. Numerical simulations obtained from the well-known and widely used Mackey-Glass oscillator operating in a high-dimensional chaotic regime were used as test beds. The effect of an increased amount of observational white noise was carefully examined. The results obtained were contrasted with those derived from correlated stochastic processes and continuous stochastic limit cycles. Finally, several experimental and natural time series were analyzed in order to show the applicability of this scale-dependent symbolic approach in practical situations. PMID:23214666

  15. Three approaches to reliability analysis

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.

    1989-01-01

    It is noted that current reliability analysis tools differ not only in their solution techniques, but also in their approach to model abstraction. The analyst must be satisfied with the constraints that are intrinsic to any combination of solution technique and model abstraction. To get a better idea of the nature of these constraints, three reliability analysis tools (HARP, ASSIST/SURE, and CAME) were used to model portions of the Integrated Airframe/Propulsion Control System architecture. When presented with the example problem, all three tools failed to produce correct results. In all cases, either the tool or the model had to be modified. It is suggested that most of the difficulty is rooted in the large model size and long computational times which are characteristic of Markov model solutions.

  16. Learning Rates and States from Biophysical Time Series: A Bayesian Approach to Model Selection and Single-Molecule FRET Data

    PubMed Central

    Bronson, Jonathan E.; Fei, Jingyi; Hofman, Jake M.; Gonzalez, Ruben L.; Wiggins, Chris H.

    2009-01-01

    Abstract Time series data provided by single-molecule Förster resonance energy transfer (smFRET) experiments offer the opportunity to infer not only model parameters describing molecular complexes, e.g., rate constants, but also information about the model itself, e.g., the number of conformational states. Resolving whether such states exist or how many of them exist requires a careful approach to the problem of model selection, here meaning discrimination among models with differing numbers of states. The most straightforward approach to model selection generalizes the common idea of maximum likelihood—selecting the most likely parameter values—to maximum evidence: selecting the most likely model. In either case, such an inference presents a tremendous computational challenge, which we here address by exploiting an approximation technique termed variational Bayesian expectation maximization. We demonstrate how this technique can be applied to temporal data such as smFRET time series; show superior statistical consistency relative to the maximum likelihood approach; compare its performance on smFRET data generated from experiments on the ribosome; and illustrate how model selection in such probabilistic or generative modeling can facilitate analysis of closely related temporal data currently prevalent in biophysics. Source code used in this analysis, including a graphical user interface, is available open source via http://vbFRET.sourceforge.net. PMID:20006957

  17. Hypnobehavioral approaches for school-age children with dysphagia and food aversion: a case series.

    PubMed

    Culbert, T P; Kajander, R L; Kohen, D P; Reaney, J B

    1996-10-01

    The purpose of this article is to describe hypnobehavioral treatment of five school-age children with maladaptive eating behaviors, including functional dysphagia, food aversion, globus hystericus, and conditioned fear of eating (phagophobia). The unique treatment approach described emphasizes the successful use of self-management techniques, particularly hypnosis, by all five children. Common etiological factors, treatment strategies, and proposed mechanisms of change are discussed. To the authors' knowledge, this is the first such case series in the mainstream pediatric literature describing the use of a hypnobehavioral approach for children with these maladaptive eating problems. PMID:8897222

  18. Fuzzy Inference System Approach for Locating Series, Shunt, and Simultaneous Series-Shunt Faults in Double Circuit Transmission Lines

    PubMed Central

    Swetapadma, Aleena; Yadav, Anamika

    2015-01-01

    Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance. PMID:26413088

  19. An Alternative Approach to Atopic Dermatitis: Part I—Case-Series Presentation

    PubMed Central

    2004-01-01

    Atopic dermatitis (AD) is a complex disease of obscure pathogenesis. A substantial portion of AD patients treated with conventional therapy become intractable after several cycles of recurrence. Over the last 20 years we have developed an alternative approach to treat many of these patients by diet and Kampo herbal medicine. However, as our approach is highly individualized and the Kampo formulae sometimes complicated, it is not easy to provide evidence to establish usefulness of this approach. In this Review, to demonstrate the effectiveness of the method of individualized Kampo therapy, results are presented for a series of patients who had failed with conventional therapy but were treated afterwards in our institution. Based on these data, we contend that there exist a definite subgroup of AD patients in whom conventional therapy fails, but the ‘Diet and Kampo’ approach succeeds, to heal. Therefore, this approach should be considered seriously as a second-line treatment for AD patients. In the Discussion, we review the evidential status of the current conventional strategies for AD treatment in general, and then specifically discuss the possibility of integrating Kampo regimens into it, taking our case-series presented here as evidential basis. We emphasize that Kampo therapy for AD is more ‘art’ than technology, for which expertise is an essential pre-requisite. PMID:15257326

  20. Spatiotemporal analysis of GPS time series in vertical direction using independent component analysis

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Dai, Wujiao; Peng, Wei; Meng, Xiaolin

    2015-11-01

    GPS has been widely used in the field of geodesy and geodynamics thanks to its technology development and the improvement of positioning accuracy. A time series observed by GPS in vertical direction usually contains tectonic signals, non-tectonic signals, residual atmospheric delay, measurement noise, etc. Analyzing these information is the basis of crustal deformation research. Furthermore, analyzing the GPS time series and extracting the non-tectonic information are helpful to study the effect of various geophysical events. Principal component analysis (PCA) is an effective tool for spatiotemporal filtering and GPS time series analysis. But as it is unable to extract statistically independent components, PCA is unfavorable for achieving the implicit information in time series. Independent component analysis (ICA) is a statistical method of blind source separation (BSS) and can separate original signals from mixed observations. In this paper, ICA is used as a spatiotemporal filtering method to analyze the spatial and temporal features of vertical GPS coordinate time series in the UK and Sichuan-Yunnan region in China. Meanwhile, the contributions from atmospheric and soil moisture mass loading are evaluated. The analysis of the relevance between the independent components and mass loading with their spatial distribution shows that the signals extracted by ICA have a strong correlation with the non-tectonic deformation, indicating that ICA has a better performance in spatiotemporal analysis.

  1. An approach for estimating time-variable rates from geodetic time series

    NASA Astrophysics Data System (ADS)

    Didova, Olga; Gunter, Brian; Riva, Riccardo; Klees, Roland; Roese-Koerner, Lutz

    2016-06-01

    There has been considerable research in the literature focused on computing and forecasting sea-level changes in terms of constant trends or rates. The Antarctic ice sheet is one of the main contributors to sea-level change with highly uncertain rates of glacial thinning and accumulation. Geodetic observing systems such as the Gravity Recovery and Climate Experiment (GRACE) and the Global Positioning System (GPS) are routinely used to estimate these trends. In an effort to improve the accuracy and reliability of these trends, this study investigates a technique that allows the estimated rates, along with co-estimated seasonal components, to vary in time. For this, state space models are defined and then solved by a Kalman filter (KF). The reliable estimation of noise parameters is one of the main problems encountered when using a KF approach, which is solved by numerically optimizing likelihood. Since the optimization problem is non-convex, it is challenging to find an optimal solution. To address this issue, we limited the parameter search space using classical least-squares adjustment (LSA). In this context, we also tested the usage of inequality constraints by directly verifying whether they are supported by the data. The suggested technique for time-series analysis is expanded to classify and handle time-correlated observational noise within the state space framework. The performance of the method is demonstrated using GRACE and GPS data at the CAS1 station located in East Antarctica and compared to commonly used LSA. The results suggest that the outlined technique allows for more reliable trend estimates, as well as for more physically valuable interpretations, while validating independent observing systems.

  2. Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization

    PubMed Central

    Dequéant, Mary-Lee; Fagegaltier, Delphine; Hu, Yanhui; Spirohn, Kerstin; Simcox, Amanda; Hannon, Gregory J.; Perrimon, Norbert

    2015-01-01

    The use of time series profiling to identify groups of functionally related genes (synexpression groups) is a powerful approach for the discovery of gene function. Here we apply this strategy during RasV12 immortalization of Drosophila embryonic cells, a phenomenon not well characterized. Using high-resolution transcriptional time-series datasets, we generated a gene network based on temporal expression profile similarities. This analysis revealed that common immortalized cells are related to adult muscle precursors (AMPs), a stem cell-like population contributing to adult muscles and sharing properties with vertebrate satellite cells. Remarkably, the immortalized cells retained the capacity for myogenic differentiation when treated with the steroid hormone ecdysone. Further, we validated in vivo the transcription factor CG9650, the ortholog of mammalian Bcl11a/b, as a regulator of AMP proliferation predicted by our analysis. Our study demonstrates the power of time series synexpression analysis to characterize Drosophila embryonic progenitor lines and identify stem/progenitor cell regulators. PMID:26438832

  3. New insights into time series analysis. I. Correlated observations

    NASA Astrophysics Data System (ADS)

    Ferreira Lopes, C. E.; Cross, N. J. G.

    2016-02-01

    indices computed in this new approach allow us to reduce misclassification and these will be implemented in an automatic classifier which will be addressed in a forthcoming paper in this series.

  4. Use of recurrence plot and recurrence quantification analysis in Taiwan unemployment rate time series

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Shing

    2011-04-01

    The aim of the article is to answer the question if the Taiwan unemployment rate dynamics is generated by a non-linear deterministic dynamic process. This paper applies a recurrence plot and recurrence quantification approach based on the analysis of non-stationary hidden transition patterns of the unemployment rate of Taiwan. The case study uses the time series data of the Taiwan’s unemployment rate during the period from 1978/01 to 2010/06. The results show that recurrence techniques are able to identify various phases in the evolution of unemployment transition in Taiwan.

  5. Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction.

    PubMed

    Ak, Ronay; Fink, Olga; Zio, Enrico

    2016-08-01

    The increasing liberalization of European electricity markets, the growing proportion of intermittent renewable energy being fed into the energy grids, and also new challenges in the patterns of energy consumption (such as electric mobility) require flexible and intelligent power grids capable of providing efficient, reliable, economical, and sustainable energy production and distribution. From the supplier side, particularly, the integration of renewable energy sources (e.g., wind and solar) into the grid imposes an engineering and economic challenge because of the limited ability to control and dispatch these energy sources due to their intermittent characteristics. Time-series prediction of wind speed for wind power production is a particularly important and challenging task, wherein prediction intervals (PIs) are preferable results of the prediction, rather than point estimates, because they provide information on the confidence in the prediction. In this paper, two different machine learning approaches to assess PIs of time-series predictions are considered and compared: 1) multilayer perceptron neural networks trained with a multiobjective genetic algorithm and 2) extreme learning machines combined with the nearest neighbors approach. The proposed approaches are applied for short-term wind speed prediction from a real data set of hourly wind speed measurements for the region of Regina in Saskatchewan, Canada. Both approaches demonstrate good prediction precision and provide complementary advantages with respect to different evaluation criteria. PMID:25910257

  6. Water Resources Management Plan for Ganga River using SWAT Modelling and Time series Analysis

    NASA Astrophysics Data System (ADS)

    Satish, L. N. V.

    2015-12-01

    Water resources management of the Ganga River is one of the primary objectives of National Ganga River Basin Environmental Management Plan. The present study aims to carry out water balance study and development of appropriate methodologies to compute environmental flow in the middle Ganga river basin between Patna-Farraka, India. The methodology adopted here are set-up a hydrological model to estimate monthly discharge at the tributaries under natural condition, hydrological alternation analysis of both observed and simulated discharge series, flow health analysis to obtain status of the stream health in the last 4 decades and estimating the e-flow using flow health indicators. ArcSWAT, was used to simulate 8 tributaries namely Kosi, Gandak and others. This modelling is quite encouraging and helps to provide the monthly water balance analysis for all tributaries for this study. The water balance analysis indicates significant change in surface and ground water interaction pattern within the study time period Indicators of hydrological alternation has been used for both observed and simulated data series to quantify hydrological alternation occurred in the tributaries and the main river in the last 4 decades,. For temporal variation of stream health, flow health tool has been used for observed and simulated discharge data. A detailed stream health analysis has been performed by considering 3 approaches based on i) observed flow time series, ii) observed and simulated flow time series and iii) simulated flow time series at small upland basin, major tributary and main Ganga river basin levels. At upland basin level, these approaches show that stream health and its temporal variations are good with non-significant temporal variation. At major tributary level, the stream health and its temporal variations are found to be deteriorating from 1970s. At the main Ganga reach level river health and its temporal variations does not show any declining trend. Finally, E- flows

  7. The EarthLabs Climate Series: Approaching Climate Literacy From Multiple Contexts

    NASA Astrophysics Data System (ADS)

    Haddad, N.; Ledley, T. S.; Ellins, K.; McNeal, K.; Bardar, E. W.; Youngman, E.; Lockwood, J.; Dunlap, C.

    2015-12-01

    The EarthLabs Climate Series is a set of four distinct but related high school curriculum modules that help build student and teacher understanding of our planet's complex climate system. The web-based, freely available curriculum modules include a rich set of resources for teachers, and are tied together by a common set of climate related themes that include: 1) the Earth system with the complexities of its positive and negative feedback loops; 2) the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and 3) the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. The four modules (Climate and the Cryosphere; Climate and the Biosphere; Climate and the Carbon Cycle; and Climate Detectives) approach climate literacy from different contexts, and have provided teachers of biology, chemistry, marine science, environmental science, and earth science with opportunities to address climate science by selecting a module that best supplements the content of their particular course. This presentation will highlight the four curriculum modules in the Climate Series, the multiple pathways they offer teachers for introducing climate science into their existing courses, and the two newest elements of the series: the Climate Series Intro, which holds an extensive set of climate related resources for teachers; and the Climate Detectives module, which is based on the 2013 expedition of the Joides Resolution to collect cores from the seafloor below the Gulf of Alaska.

  8. Time Series Analysis of the Blazar OJ 287

    NASA Astrophysics Data System (ADS)

    Gamel, Ellen; Ryle, W. T.; Carini, M. T.

    2013-06-01

    Blazars are a subset of active galactic nuclei (AGN) where the light is viewed along the jet of radiation produced by the central supermassive black hole. These very luminous objects vary in brightness and are associated with the cores of distant galaxies. The blazar, OJ 287, has been monitored and its brightness tracked over time. From these light curves the relationship between the characteristic “break frequency” and black hole mass can be determined through the use of power density spectra. In order to obtain a well-sampled light curve, this blazar will be observed at a wide range of timescales. Long time scales will be obtained using archived light curves from published literature. Medium time scales were obtained through a combination of data provided by Western Kentucky University and data collected at The Bank of Kentucky Observatory. Short time scales were achieved via a single night of observation at the 72” Perkins Telescope at Lowell Observatory in Flagstaff, AZ. Using time series analysis, we present a revised mass estimate for the super massive black hole of OJ 287. This object is of particular interest because it may harbor a binary black hole at its center.

  9. Permutation Entropy Analysis of Geomagnetic Indices Time Series

    NASA Astrophysics Data System (ADS)

    De Michelis, Paola; Consolini, Giuseppe

    2013-04-01

    The Earth's magnetospheric dynamics displays a very complex nature in response to solar wind changes as widely documented in the scientific literature. This complex dynamics manifests in various physical processes occurring in different regions of the Earth's magnetosphere as clearly revealed by previous analyses on geomagnetic indices (AE-indices, Dst, Sym-H, ....., etc.). One of the most interesting features of the geomagnetic indices as proxies of the Earth's magnetospheric dynamics is the multifractional nature of the time series of such indices. This aspect has been interpreted as the occurrence of intermittence and dynamical phase transition in the Earth's magnetosphere. Here, we investigate the Markovian nature of different geomagnetic indices (AE-indices, Sym-H, Asy-H) and their fluctuations by means of Permutation Entropy Analysis. The results clearly show the non-Markovian and different nature of the distinct sets of geomagnetic indices, pointing towards diverse underlying physical processes. A discussion in connection with the nature of the physical processes responsible of each set of indices and their multifractional character is attempted.

  10. Chaotic time series analysis of vision evoked EEG

    NASA Astrophysics Data System (ADS)

    Zhang, Ningning; Wang, Hong

    2009-12-01

    To investigate the human brain activities for aesthetic processing, beautiful woman face picture and ugly buffoon face picture were applied. Twelve subjects were assigned the aesthetic processing task while the electroencephalogram (EEG) was recorded. Event-related brain potential (ERP) was required from the 32 scalp electrodes and the ugly buffoon picture produced larger amplitudes for the N1, P2, N2, and late slow wave components. Average ERP from the ugly buffoon picture were larger than that from the beautiful woman picture. The ERP signals shows that the ugly buffoon elite higher emotion waves than the beautiful woman face, because some expression is on the face of the buffoon. Then, chaos time series analysis was carried out to calculate the largest Lyapunov exponent using small data set method and the correlation dimension using G-P algorithm. The results show that the largest Lyapunov exponents of the ERP signals are greater than zero, which indicate that the ERP signals may be chaotic. The correlations dimensions coming from the beautiful woman picture are larger than that from the ugly buffoon picture. The comparison of the correlations dimensions shows that the beautiful face can excite the brain nerve cells. The research in the paper is a persuasive proof to the opinion that cerebrum's work is chaotic under some picture stimuli.

  11. Chaotic time series analysis of vision evoked EEG

    NASA Astrophysics Data System (ADS)

    Zhang, Ningning; Wang, Hong

    2010-01-01

    To investigate the human brain activities for aesthetic processing, beautiful woman face picture and ugly buffoon face picture were applied. Twelve subjects were assigned the aesthetic processing task while the electroencephalogram (EEG) was recorded. Event-related brain potential (ERP) was required from the 32 scalp electrodes and the ugly buffoon picture produced larger amplitudes for the N1, P2, N2, and late slow wave components. Average ERP from the ugly buffoon picture were larger than that from the beautiful woman picture. The ERP signals shows that the ugly buffoon elite higher emotion waves than the beautiful woman face, because some expression is on the face of the buffoon. Then, chaos time series analysis was carried out to calculate the largest Lyapunov exponent using small data set method and the correlation dimension using G-P algorithm. The results show that the largest Lyapunov exponents of the ERP signals are greater than zero, which indicate that the ERP signals may be chaotic. The correlations dimensions coming from the beautiful woman picture are larger than that from the ugly buffoon picture. The comparison of the correlations dimensions shows that the beautiful face can excite the brain nerve cells. The research in the paper is a persuasive proof to the opinion that cerebrum's work is chaotic under some picture stimuli.

  12. Time series analysis of the cataclysmic variable V1101 Aquilae

    NASA Astrophysics Data System (ADS)

    Spahn, Alexander C.

    This work reports on the application of various time series analysis techniques to a two month portion of the light curve of the cataclysmic variable V1101 Aquilae. The system is a Z Cam type dwarf nova with an orbital period of 4.089 hours and an active outburst cycle of 15.15 days due to a high mass transfer rate. The system's light curve also displays higher frequency variations, known as negative sumperhums, with a period of 3.891 hours and a period deficit of --5.1%. The amplitude of the negative superhumps varies as an inverse function of system brightness, with an amplitude of 0.70358 during outburst and 0.97718 during quiescence (relative flux units). These variations are believed to be caused by the contrast between the accretion disk and the bright spot. An O--?C diagram was constructed and reveals the system's evolution. In general, during the rise to outburst, the disk moment of inertia decreases as mass is lost from the disk, causing the precession period of the tilted disk to increase and with it the negative superhump period. The decline of outburst is associated with the opposite effects. While no standstills were observed in this data, they are present in the AAVSO data and the results agree with the conditions for Z Cam stars.

  13. Detrended fluctuation analysis of laser Doppler flowmetry time series.

    PubMed

    Esen, Ferhan; Aydin, Gülsün Sönmez; Esen, Hamza

    2009-12-01

    Detrended fluctuation analysis (DFA) of laser Doppler flow (LDF) time series appears to yield improved prognostic power in microvascular dysfunction, through calculation of the scaling exponent, alpha. In the present study the long lasting strenuous activity-induced change in microvascular function was evaluated by DFA in basketball players compared with sedentary control. Forearm skin blood flow was measured at rest and during local heating. Three scaling exponents, the slopes of the three regression lines, were identified corresponding to cardiac, cardio-respiratory and local factors. Local scaling exponent was always approximately one, alpha=1.01+/-0.15, in the control group and did not change with local heating. However, we found a broken line with two scaling exponents (alpha(1)=1.06+/-0.01 and alpha(2)=0.75+/-0.01) in basketball players. The broken line became a single line having one scaling exponent (alpha(T)=0.94+/-0.01) with local heating. The scaling exponents, alpha(2) and alpha(T), smaller than 1 indicate reduced long-range correlation in blood flow due to a loss of integration in local mechanisms and suggest endothelial dysfunction as the most likely candidate. Evaluation of microvascular function from a baseline LDF signal at rest is the superiority of DFA to other methods, spectral or not, that use the amplitude changes of evoked relative signal. PMID:19660479

  14. On the Fourier and Wavelet Analysis of Coronal Time Series

    NASA Astrophysics Data System (ADS)

    Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.

    2016-07-01

    Using Fourier and wavelet analysis, we critically re-assess the significance of our detection of periodic pulsations in coronal loops. We show that the proper identification of the frequency dependence and statistical properties of the different components of the power spectra provides a strong argument against the common practice of data detrending, which tends to produce spurious detections around the cut-off frequency of the filter. In addition, the white and red noise models built into the widely used wavelet code of Torrence & Compo cannot, in most cases, adequately represent the power spectra of coronal time series, thus also possibly causing false positives. Both effects suggest that several reports of periodic phenomena should be re-examined. The Torrence & Compo code nonetheless effectively computes rigorous confidence levels if provided with pertinent models of mean power spectra, and we describe the appropriate manner in which to call its core routines. We recall the meaning of the default confidence levels output from the code, and we propose new Monte-Carlo-derived levels that take into account the total number of degrees of freedom in the wavelet spectra. These improvements allow us to confirm that the power peaks that we detected have a very low probability of being caused by noise.

  15. Spectral Procedures Enhance the Analysis of Three Agricultural Time Series

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many agricultural and environmental variables are influenced by cyclic processes that occur naturally. Consequently their time series often have cyclic behavior. This study developed times series models for three different phenomenon: (1) a 60 year-long state average crop yield record, (2) a four ...

  16. Analytical framework for recurrence network analysis of time series

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Donner, Reik V.; Kurths, Jürgen

    2012-04-01

    Recurrence networks are a powerful nonlinear tool for time series analysis of complex dynamical systems. While there are already many successful applications ranging from medicine to paleoclimatology, a solid theoretical foundation of the method has still been missing so far. Here, we interpret an ɛ-recurrence network as a discrete subnetwork of a “continuous” graph with uncountably many vertices and edges corresponding to the system's attractor. This step allows us to show that various statistical measures commonly used in complex network analysis can be seen as discrete estimators of newly defined continuous measures of certain complex geometric properties of the attractor on the scale given by ɛ. In particular, we introduce local measures such as the ɛ-clustering coefficient, mesoscopic measures such as ɛ-motif density, path-based measures such as ɛ-betweennesses, and global measures such as ɛ-efficiency. This new analytical basis for the so far heuristically motivated network measures also provides an objective criterion for the choice of ɛ via a percolation threshold, and it shows that estimation can be improved by so-called node splitting invariant versions of the measures. We finally illustrate the framework for a number of archetypical chaotic attractors such as those of the Bernoulli and logistic maps, periodic and two-dimensional quasiperiodic motions, and for hyperballs and hypercubes by deriving analytical expressions for the novel measures and comparing them with data from numerical experiments. More generally, the theoretical framework put forward in this work describes random geometric graphs and other networks with spatial constraints, which appear frequently in disciplines ranging from biology to climate science.

  17. A Bayesian approach to estimation of a statistical change-point in the mean parameter for high dimensional non-linear time series

    NASA Astrophysics Data System (ADS)

    Speegle, Darrin; Steward, Robert

    2015-08-01

    We propose a semiparametric approach to infer the existence of and estimate the location of a statistical change-point to a nonlinear high dimensional time series contaminated with an additive noise component. In particular, we consider a p―dimensional stochastic process of independent multivariate normal observations where the mean function varies smoothly except at a single change-point. Our approach first involves a dimension reduction of the original time series through a random matrix multiplication. Next, we conduct a Bayesian analysis on the empirical detail coefficients of this dimensionally reduced time series after a wavelet transform. We also present a means to associate confidence bounds to the conclusions of our results. Aside from being computationally efficient and straight forward to implement, the primary advantage of our methods is seen in how these methods apply to a much larger class of time series whose mean functions are subject to only general smoothness conditions.

  18. Nonlinear time series analysis of normal and pathological human walking

    NASA Astrophysics Data System (ADS)

    Dingwell, Jonathan B.; Cusumano, Joseph P.

    2000-12-01

    Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the

  19. Use of a Principal Components Analysis for the Generation of Daily Time Series.

    NASA Astrophysics Data System (ADS)

    Dreveton, Christine; Guillou, Yann

    2004-07-01

    A new approach for generating daily time series is considered in response to the weather-derivatives market. This approach consists of performing a principal components analysis to create independent variables, the values of which are then generated separately with a random process. Weather derivatives are financial or insurance products that give companies the opportunity to cover themselves against adverse climate conditions. The aim of a generator is to provide a wider range of feasible situations to be used in an assessment of risk. Generation of a temperature time series is required by insurers or bankers for pricing weather options. The provision of conditional probabilities and a good representation of the interannual variance are the main challenges of a generator when used for weather derivatives. The generator was developed according to this new approach using a principal components analysis and was applied to the daily average temperature time series of the Paris-Montsouris station in France. The observed dataset was homogenized and the trend was removed to represent correctly the present climate. The results obtained with the generator show that it represents correctly the interannual variance of the observed climate; this is the main result of the work, because one of the main discrepancies of other generators is their inability to represent accurately the observed interannual climate variance—this discrepancy is not acceptable for an application to weather derivatives. The generator was also tested to calculate conditional probabilities: for example, the knowledge of the aggregated value of heating degree-days in the middle of the heating season allows one to estimate the probability if reaching a threshold at the end of the heating season. This represents the main application of a climate generator for use with weather derivatives.


  20. Time-series analysis reveals genetic responses to intensive management of razorback sucker (Xyrauchen texanus).

    PubMed

    Dowling, Thomas E; Turner, Thomas F; Carson, Evan W; Saltzgiver, Melody J; Adams, Deborah; Kesner, Brian; Marsh, Paul C

    2014-03-01

    Time-series analysis is used widely in ecology to study complex phenomena and may have considerable potential to clarify relationships of genetic and demographic processes in natural and exploited populations. We explored the utility of this approach to evaluate population responses to management in razorback sucker, a long-lived and fecund, but declining freshwater fish species. A core population in Lake Mohave (Arizona-Nevada, USA) has experienced no natural recruitment for decades and is maintained by harvesting naturally produced larvae from the lake, rearing them in protective custody, and repatriating them at sizes less vulnerable to predation. Analyses of mtDNA and 15 microsatellites characterized for sequential larval cohorts collected over a 15-year time series revealed no changes in geographic structuring but indicated significant increase in mtDNA diversity for the entire population over time. Likewise, ratios of annual effective breeders to annual census size (N b /N a) increased significantly despite sevenfold reduction of N a. These results indicated that conservation actions diminished near-term extinction risk due to genetic factors and should now focus on increasing numbers of fish in Lake Mohave to ameliorate longer-term risks. More generally, time-series analysis permitted robust testing of trends in genetic diversity, despite low precision of some metrics. PMID:24665337

  1. Time-series analysis reveals genetic responses to intensive management of razorback sucker (Xyrauchen texanus)

    PubMed Central

    Dowling, Thomas E; Turner, Thomas F; Carson, Evan W; Saltzgiver, Melody J; Adams, Deborah; Kesner, Brian; Marsh, Paul C

    2014-01-01

    Time-series analysis is used widely in ecology to study complex phenomena and may have considerable potential to clarify relationships of genetic and demographic processes in natural and exploited populations. We explored the utility of this approach to evaluate population responses to management in razorback sucker, a long-lived and fecund, but declining freshwater fish species. A core population in Lake Mohave (Arizona-Nevada, USA) has experienced no natural recruitment for decades and is maintained by harvesting naturally produced larvae from the lake, rearing them in protective custody, and repatriating them at sizes less vulnerable to predation. Analyses of mtDNA and 15 microsatellites characterized for sequential larval cohorts collected over a 15-year time series revealed no changes in geographic structuring but indicated significant increase in mtDNA diversity for the entire population over time. Likewise, ratios of annual effective breeders to annual census size (Nb/Na) increased significantly despite sevenfold reduction of Na. These results indicated that conservation actions diminished near-term extinction risk due to genetic factors and should now focus on increasing numbers of fish in Lake Mohave to ameliorate longer-term risks. More generally, time-series analysis permitted robust testing of trends in genetic diversity, despite low precision of some metrics. PMID:24665337

  2. Examining deterrence of adult sex crimes: A semi-parametric intervention time series approach

    PubMed Central

    Park, Jin-Hong; Bandyopadhyay, Dipankar; Letourneau, Elizabeth

    2013-01-01

    Motivated by recent developments on dimension reduction (DR) techniques for time series data, the association of a general deterrent effect towards South Carolina (SC)’s registration and notification (SORN) policy for preventing sex crimes was examined. Using adult sex crime arrestee data from 1990 to 2005, the the idea of Central Mean Subspace (CMS) is extended to intervention time series analysis (CMS-ITS) to model the sequential intervention effects of 1995 (the year SC’s SORN policy was initially implemented) and 1999 (the year the policy was revised to include online notification) on the time series spectrum. The CMS-ITS model estimation was achieved via kernel smoothing techniques, and compared to interrupted auto-regressive integrated time series (ARIMA) models. Simulation studies and application to the real data underscores our model’s ability towards achieving parsimony, and to detect intervention effects not earlier determined via traditional ARIMA models. From a public health perspective, findings from this study draw attention to the potential general deterrent effects of SC’s SORN policy. These findings are considered in light of the overall body of research on sex crime arrestee registration and notification policies, which remain controversial. PMID:24795489

  3. Correlation between detrended fluctuation analysis and the Lempel-Ziv complexity in nonlinear time series analysis

    NASA Astrophysics Data System (ADS)

    Tang, You-Fu; Liu, Shu-Lin; Jiang, Rui-Hong; Liu, Ying-Hui

    2013-03-01

    We study the correlation between detrended fluctuation analysis (DFA) and the Lempel-Ziv complexity (LZC) in nonlinear time series analysis in this paper. Typical dynamic systems including a logistic map and a Duffing model are investigated. Moreover, the influence of Gaussian random noise on both the DFA and LZC are analyzed. The results show a high correlation between the DFA and LZC, which can quantify the non-stationarity and the nonlinearity of the time series, respectively. With the enhancement of the random component, the exponent a and the normalized complexity index C show increasing trends. In addition, C is found to be more sensitive to the fluctuation in the nonlinear time series than α. Finally, the correlation between the DFA and LZC is applied to the extraction of vibration signals for a reciprocating compressor gas valve, and an effective fault diagnosis result is obtained.

  4. A pairwise likelihood-based approach for changepoint detection in multivariate time series models

    PubMed Central

    Ma, Ting Fung; Yau, Chun Yip

    2016-01-01

    This paper develops a composite likelihood-based approach for multiple changepoint estimation in multivariate time series. We derive a criterion based on pairwise likelihood and minimum description length for estimating the number and locations of changepoints and for performing model selection in each segment. The number and locations of the changepoints can be consistently estimated under mild conditions and the computation can be conducted efficiently with a pruned dynamic programming algorithm. Simulation studies and real data examples demonstrate the statistical and computational efficiency of the proposed method. PMID:27279666

  5. Approximate Symmetry Reduction Approach: Infinite Series Reductions to the KdV-Burgers Equation

    NASA Astrophysics Data System (ADS)

    Jiao, Xiaoyu; Yao, Ruoxia; Zhang, Shunli; Lou, Sen Y.

    2009-11-01

    For weak dispersion and weak dissipation cases, the (1+1)-dimensional KdV-Burgers equation is investigated in terms of approximate symmetry reduction approach. The formal coherence of similarity reduction solutions and similarity reduction equations of different orders enables series reduction solutions. For the weak dissipation case, zero-order similarity solutions satisfy the Painlevé II, Painlevé I, and Jacobi elliptic function equations. For the weak dispersion case, zero-order similarity solutions are in the form of Kummer, Airy, and hyperbolic tangent functions. Higher-order similarity solutions can be obtained by solving linear variable coefficients ordinary differential equations.

  6. Volterra Series Approach for Nonlinear Aeroelastic Response of 2-D Lifting Surfaces

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Marzocca, Piergiovanni; Librescu, Liviu

    2001-01-01

    The problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via Volterra series approach is addressed. The related aeroelastic governing equations are based upon the inclusion of structural nonlinearities, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of geometric nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.

  7. GNSS Vertical Coordinate Time Series Analysis Using Single-Channel Independent Component Analysis Method

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Dai, Wujiao; Santerre, Rock; Cai, Changsheng; Kuang, Cuilin

    2016-05-01

    Daily vertical coordinate time series of Global Navigation Satellite System (GNSS) stations usually contains tectonic and non-tectonic deformation signals, residual atmospheric delay signals, measurement noise, etc. In geophysical studies, it is very important to separate various geophysical signals from the GNSS time series to truthfully reflect the effect of mass loadings on crustal deformation. Based on the independence of mass loadings, we combine the Ensemble Empirical Mode Decomposition (EEMD) with the Phase Space Reconstruction-based Independent Component Analysis (PSR-ICA) method to analyze the vertical time series of GNSS reference stations. In the simulation experiment, the seasonal non-tectonic signal is simulated by the sum of the correction of atmospheric mass loading and soil moisture mass loading. The simulated seasonal non-tectonic signal can be separated into two independent signals using the PSR-ICA method, which strongly correlated with atmospheric mass loading and soil moisture mass loading, respectively. Likewise, in the analysis of the vertical time series of GNSS reference stations of Crustal Movement Observation Network of China (CMONOC), similar results have been obtained using the combined EEMD and PSR-ICA method. All these results indicate that the EEMD and PSR-ICA method can effectively separate the independent atmospheric and soil moisture mass loading signals and illustrate the significant cause of the seasonal variation of GNSS vertical time series in the mainland of China.

  8. Endoscopic Endonasal Transclival Approaches: Case Series and Outcomes for Different Clival Regions

    PubMed Central

    Little, Ryan E.; Taylor, Robert J.; Miller, Justin D.; Ambrose, Emily C.; Germanwala, Anand V.; Sasaki-Adams, Deanna M.; Ewend, Matthew G.; Zanation, Adam M.

    2014-01-01

    Objective Transclival endoscopic endonasal approaches to the skull base are novel with few published cases. We report our institution's experience with this technique and discuss outcomes according to the clival region involved. Design Retrospective case series. Setting Tertiary care academic medical center Participants All patients who underwent endoscopic endonasal transclival approaches for skull base lesions from 2008 to 2012. Main Outcome Measures Pathologies encountered, mean intraoperative time, intraoperative complications, gross total resection, intraoperative cerebrospinal fluid (CSF) leak, postoperative CSF leak, postoperative complications, and postoperative clinical course. Results A total of 49 patients underwent 55 endoscopic endonasal transclival approaches. Pathology included 43 benign and 12 malignant lesions. Mean follow-up was 15.4 months. Mean operative time was 167.9 minutes, with one patient experiencing an intraoperative internal carotid artery injury. Of the 15 cases with intraoperative cerebrospinal fluid (CSF) leaks, 1 developed postoperative CSF leak (6.7%). There were six other postoperative complications: four systemic complications, one case of meningitis, and one retropharyngeal abscess. Gross total resection was achieved for all malignancies approached with curative intent. Conclusions This study provides evidence that endoscopic endonasal transclival approaches are a safe and effective strategy for the surgical management of a variety of benign and malignant lesions. Level of Evidence 4. PMID:25093148

  9. A Kalman-Filter-Based Approach to Combining Independent Earth-Orientation Series

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Eubanks, T. M.; Steppe, J. A.; Freedman, A. P.; Dickey, J. O.; Runge, T. F.

    1998-01-01

    An approach. based upon the use of a Kalman filter. that is currently employed at the Jet Propulsion Laboratory (JPL) for combining independent measurements of the Earth's orientation, is presented. Since changes in the Earth's orientation can be described is a randomly excited stochastic process, the uncertainty in our knowledge of the Earth's orientation grows rapidly in the absence of measurements. The Kalman-filter methodology allows for an objective accounting of this uncertainty growth, thereby facilitating the intercomparison of measurements taken at different epochs (not necessarily uniformly spaced in time) and with different precision. As an example of this approach to combining Earth-orientation series, a description is given of a combination, SPACE95, that has been generated recently at JPL.

  10. Geodetic Time Series: An Overview of UNAVCO Community Resources and Examples of Time Series Analysis Using GPS and Strainmeter Data

    NASA Astrophysics Data System (ADS)

    Phillips, D. A.; Meertens, C. M.; Hodgkinson, K. M.; Puskas, C. M.; Boler, F. M.; Snett, L.; Mattioli, G. S.

    2013-12-01

    We present an overview of time series data, tools and services available from UNAVCO along with two specific and compelling examples of geodetic time series analysis. UNAVCO provides a diverse suite of geodetic data products and cyberinfrastructure services to support community research and education. The UNAVCO archive includes data from 2500+ continuous GPS stations, borehole geophysics instruments (strainmeters, seismometers, tiltmeters, pore pressure sensors), and long baseline laser strainmeters. These data span temporal scales from seconds to decades and provide global spatial coverage with regionally focused networks including the EarthScope Plate Boundary Observatory (PBO) and COCONet. This rich, open access dataset is a tremendous resource that enables the exploration, identification and analysis of time varying signals associated with crustal deformation, reference frame determinations, isostatic adjustments, atmospheric phenomena, hydrologic processes and more. UNAVCO provides a suite of time series exploration and analysis resources including static plots, dynamic plotting tools, and data products and services designed to enhance time series analysis. The PBO GPS network allow for identification of ~1 mm level deformation signals. At some GPS stations seasonal signals and longer-term trends in both the vertical and horizontal components can be dominated by effects of hydrological loading from natural and anthropogenic sources. Modeling of hydrologic deformation using GLDAS and a variety of land surface models (NOAH, MOSAIC, VIC and CLM) shows promise for independently modeling hydrologic effects and separating them from tectonic deformation as well as anthropogenic loading sources. A major challenge is to identify where loading is dominant and corrections from GLDAS can apply and where pumping is the dominant signal and corrections are not possible without some other data. In another arena, the PBO strainmeter network was designed to capture small short

  11. Applications of time-series analysis to mood fluctuations in bipolar disorder to promote treatment innovation: a case series.

    PubMed

    Holmes, E A; Bonsall, M B; Hales, S A; Mitchell, H; Renner, F; Blackwell, S E; Watson, P; Goodwin, G M; Di Simplicio, M

    2016-01-01

    Treatment innovation for bipolar disorder has been hampered by a lack of techniques to capture a hallmark symptom: ongoing mood instability. Mood swings persist during remission from acute mood episodes and impair daily functioning. The last significant treatment advance remains Lithium (in the 1970s), which aids only the minority of patients. There is no accepted way to establish proof of concept for a new mood-stabilizing treatment. We suggest that combining insights from mood measurement with applied mathematics may provide a step change: repeated daily mood measurement (depression) over a short time frame (1 month) can create individual bipolar mood instability profiles. A time-series approach allows comparison of mood instability pre- and post-treatment. We test a new imagery-focused cognitive therapy treatment approach (MAPP; Mood Action Psychology Programme) targeting a driver of mood instability, and apply these measurement methods in a non-concurrent multiple baseline design case series of 14 patients with bipolar disorder. Weekly mood monitoring and treatment target data improved for the whole sample combined. Time-series analyses of daily mood data, sampled remotely (mobile phone/Internet) for 28 days pre- and post-treatment, demonstrated improvements in individuals' mood stability for 11 of 14 patients. Thus the findings offer preliminary support for a new imagery-focused treatment approach. They also indicate a step in treatment innovation without the requirement for trials in illness episodes or relapse prevention. Importantly, daily measurement offers a description of mood instability at the individual patient level in a clinically meaningful time frame. This costly, chronic and disabling mental illness demands innovation in both treatment approaches (whether pharmacological or psychological) and measurement tool: this work indicates that daily measurements can be used to detect improvement in individual mood stability for treatment innovation (MAPP

  12. An effective approach for gap-filling continental scale remotely sensed time-series

    PubMed Central

    Weiss, Daniel J.; Atkinson, Peter M.; Bhatt, Samir; Mappin, Bonnie; Hay, Simon I.; Gething, Peter W.

    2014-01-01

    The archives of imagery and modeled data products derived from remote sensing programs with high temporal resolution provide powerful resources for characterizing inter- and intra-annual environmental dynamics. The impressive depth of available time-series from such missions (e.g., MODIS and AVHRR) affords new opportunities for improving data usability by leveraging spatial and temporal information inherent to longitudinal geospatial datasets. In this research we develop an approach for filling gaps in imagery time-series that result primarily from cloud cover, which is particularly problematic in forested equatorial regions. Our approach consists of two, complementary gap-filling algorithms and a variety of run-time options that allow users to balance competing demands of model accuracy and processing time. We applied the gap-filling methodology to MODIS Enhanced Vegetation Index (EVI) and daytime and nighttime Land Surface Temperature (LST) datasets for the African continent for 2000–2012, with a 1 km spatial resolution, and an 8-day temporal resolution. We validated the method by introducing and filling artificial gaps, and then comparing the original data with model predictions. Our approach achieved R2 values above 0.87 even for pixels within 500 km wide introduced gaps. Furthermore, the structure of our approach allows estimation of the error associated with each gap-filled pixel based on the distance to the non-gap pixels used to model its fill value, thus providing a mechanism for including uncertainty associated with the gap-filling process in downstream applications of the resulting datasets. PMID:25642100

  13. An effective approach for gap-filling continental scale remotely sensed time-series

    NASA Astrophysics Data System (ADS)

    Weiss, Daniel J.; Atkinson, Peter M.; Bhatt, Samir; Mappin, Bonnie; Hay, Simon I.; Gething, Peter W.

    2014-12-01

    The archives of imagery and modeled data products derived from remote sensing programs with high temporal resolution provide powerful resources for characterizing inter- and intra-annual environmental dynamics. The impressive depth of available time-series from such missions (e.g., MODIS and AVHRR) affords new opportunities for improving data usability by leveraging spatial and temporal information inherent to longitudinal geospatial datasets. In this research we develop an approach for filling gaps in imagery time-series that result primarily from cloud cover, which is particularly problematic in forested equatorial regions. Our approach consists of two, complementary gap-filling algorithms and a variety of run-time options that allow users to balance competing demands of model accuracy and processing time. We applied the gap-filling methodology to MODIS Enhanced Vegetation Index (EVI) and daytime and nighttime Land Surface Temperature (LST) datasets for the African continent for 2000-2012, with a 1 km spatial resolution, and an 8-day temporal resolution. We validated the method by introducing and filling artificial gaps, and then comparing the original data with model predictions. Our approach achieved R2 values above 0.87 even for pixels within 500 km wide introduced gaps. Furthermore, the structure of our approach allows estimation of the error associated with each gap-filled pixel based on the distance to the non-gap pixels used to model its fill value, thus providing a mechanism for including uncertainty associated with the gap-filling process in downstream applications of the resulting datasets.

  14. Uniform approach to linear and nonlinear interrelation patterns in multivariate time series

    NASA Astrophysics Data System (ADS)

    Rummel, Christian; Abela, Eugenio; Müller, Markus; Hauf, Martinus; Scheidegger, Olivier; Wiest, Roland; Schindler, Kaspar

    2011-06-01

    Currently, a variety of linear and nonlinear measures is in use to investigate spatiotemporal interrelation patterns of multivariate time series. Whereas the former are by definition insensitive to nonlinear effects, the latter detect both nonlinear and linear interrelation. In the present contribution we employ a uniform surrogate-based approach, which is capable of disentangling interrelations that significantly exceed random effects and interrelations that significantly exceed linear correlation. The bivariate version of the proposed framework is explored using a simple model allowing for separate tuning of coupling and nonlinearity of interrelation. To demonstrate applicability of the approach to multivariate real-world time series we investigate resting state functional magnetic resonance imaging (rsfMRI) data of two healthy subjects as well as intracranial electroencephalograms (iEEG) of two epilepsy patients with focal onset seizures. The main findings are that for our rsfMRI data interrelations can be described by linear cross-correlation. Rejection of the null hypothesis of linear iEEG interrelation occurs predominantly for epileptogenic tissue as well as during epileptic seizures.

  15. On fractal analysis of cardiac interbeat time series

    NASA Astrophysics Data System (ADS)

    Guzmán-Vargas, L.; Calleja-Quevedo, E.; Angulo-Brown, F.

    2003-09-01

    In recent years the complexity of a cardiac beat-to-beat time series has been taken as an auxiliary tool to identify the health status of human hearts. Several methods has been employed to characterize the time series complexity. In this work we calculate the fractal dimension of interbeat time series arising from three groups: 10 young healthy persons, 8 elderly healthy persons and 10 patients with congestive heart failures. Our numerical results reflect evident differences in the dynamic behavior corresponding to each group. We discuss these results within the context of the neuroautonomic control of heart rate dynamics. We also propose a numerical simulation which reproduce aging effects of heart rate behavior.

  16. Multiscale entropy analysis of complex physiologic time series.

    PubMed

    Costa, Madalena; Goldberger, Ary L; Peng, C-K

    2002-08-01

    There has been considerable interest in quantifying the complexity of physiologic time series, such as heart rate. However, traditional algorithms indicate higher complexity for certain pathologic processes associated with random outputs than for healthy dynamics exhibiting long-range correlations. This paradox may be due to the fact that conventional algorithms fail to account for the multiple time scales inherent in healthy physiologic dynamics. We introduce a method to calculate multiscale entropy (MSE) for complex time series. We find that MSE robustly separates healthy and pathologic groups and consistently yields higher values for simulated long-range correlated noise compared to uncorrelated noise. PMID:12190613

  17. Minimum entropy density method for the time series analysis

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae

    2009-01-01

    The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.

  18. Global coseismic deformations, GNSS time series analysis, and earthquake scaling laws

    NASA Astrophysics Data System (ADS)

    Métivier, Laurent; Collilieux, Xavier; Lercier, Daphné; Altamimi, Zuheir; Beauducel, François

    2014-12-01

    We investigate how two decades of coseismic deformations affect time series of GPS station coordinates (Global Navigation Satellite System) and what constraints geodetic observations give on earthquake scaling laws. We developed a simple but rapid model for coseismic deformations, assuming different earthquake scaling relations, that we systematically applied on earthquakes with magnitude larger than 4. We found that coseismic displacements accumulated during the last two decades can be larger than 10 m locally and that the cumulative displacement is not only due to large earthquakes but also to the accumulation of many small motions induced by smaller earthquakes. Then, investigating a global network of GPS stations, we demonstrate that a systematic global modeling of coseismic deformations helps greatly to detect discontinuities in GPS coordinate time series, which are still today one of the major sources of error in terrestrial reference frame construction (e.g., the International Terrestrial Reference Frame). We show that numerous discontinuities induced by earthquakes are too small to be visually detected because of seasonal variations and GPS noise that disturb their identification. However, not taking these discontinuities into account has a large impact on the station velocity estimation, considering today's precision requirements. Finally, six groups of earthquake scaling laws were tested. Comparisons with our GPS time series analysis on dedicated earthquakes give insights on the consistency of these scaling laws with geodetic observations and Okada coseismic approach.

  19. Investigation on Law and Economics Based on Complex Network and Time Series Analysis

    PubMed Central

    Yang, Jian; Qu, Zhao; Chang, Hui

    2015-01-01

    The research focuses on the cooperative relationship and the strategy tendency among three mutually interactive parties in financing: small enterprises, commercial banks and micro-credit companies. Complex network theory and time series analysis were applied to figure out the quantitative evidence. Moreover, this paper built up a fundamental model describing the particular interaction among them through evolutionary game. Combining the results of data analysis and current situation, it is justifiable to put forward reasonable legislative recommendations for regulations on lending activities among small enterprises, commercial banks and micro-credit companies. The approach in this research provides a framework for constructing mathematical models and applying econometrics and evolutionary game in the issue of corporation financing. PMID:26076460

  20. A Rigorous Analysis of Series-Connected, Multi-Bandgap, Tandem Thermophotovoltaic (TPV) Energy Converters

    NASA Astrophysics Data System (ADS)

    Wanlass, M. W.; Albin, D. S.

    2004-11-01

    Multi-bandgap, photonic energy conversion is under investigation for nearly every class of photovoltaic materials, with monolithic, series-connected device structures being the preferred mode of implementation. For TPV energy conversion systems, such an approach represents the next wave in TPV converter advancement. In this paper, we focus on a rigorous analysis of series-connected, multi-bandgap, tandem (SCMBT) converter structures according to Kirchhoff's circuit laws. A general formulation is presented, followed by an application of the general formulation to a typical, semi-realistic model for well-behaved, p-n junction, photovoltaic devices. Using results generated from a computer code written in Visual Basic, we then present example calculations for SCMBT TPV converters with two subcells, for a TPV system utilizing a blackbody radiator operating at 954°C (1750°F). A comparison of the results obtained using the rigorous analysis, with those obtained by using the commonly adopted subcell-photocurrent-matching design rule, is discussed in detail. An output power density increase of ˜ 5% is realized in the solution determined by the rigorous analysis, as compared to that obtained with the subcell-photocurrent-matching rule. Additional interesting, non-intuitive results are also highlighted.

  1. A Time-Series Analysis of Hispanic Unemployment.

    ERIC Educational Resources Information Center

    Defreitas, Gregory

    1986-01-01

    This study undertakes the first systematic time-series research on the cyclical patterns and principal determinants of Hispanic joblessness in the United States. The principal findings indicate that Hispanics tend to bear a disproportionate share of increases in unemployment during recessions. (Author/CT)

  2. Time Series Analysis for the Drac River Basin (france)

    NASA Astrophysics Data System (ADS)

    Parra-Castro, K.; Donado-Garzon, L. D.; Rodriguez, E.

    2013-12-01

    This research is based on analyzing of discharge time-series in four stream flow gage stations located in the Drac River basin in France: (i) Guinguette Naturelle, (ii) Infernet, (iii) Parassat and the stream flow gage (iv) Villard Loubière. In addition, time-series models as the linear regression (single and multiple) and the MORDOR model were implemented to analyze the behavior the Drac River from year 1969 until year 2010. Twelve different models were implemented to assess the daily and monthly discharge time-series for the four flow gage stations. Moreover, five selection criteria were use to analyze the models: average division, variance division, the coefficient R2, Kling-Gupta Efficiency (KGE) and the Nash Number. The selection of the models was made to have the strongest models with an important level confidence. In this case, according to the best correlation between the time-series of stream flow gage stations and the best fitting models. Four of the twelve models were selected: two models for the stream flow gage station Guinguette Naturel, one for the station Infernet and one model for the station Villard Loubière. The R2 coefficients achieved were 0.87, 0.95, 0.85 and 0.87 respectively. Consequently, both confidence levels (the modeled and the empirical) were tested in the selected model, leading to the best fitting of both discharge time-series and models with the empirical confidence interval. Additionally, a procedure for validation of the models was conducted using the data for the year 2011, where extreme hydrologic and changes in hydrologic regimes events were identified. Furthermore, two different forms of estimating uncertainty through the use of confidence levels were studied: the modeled and the empirical confidence levels. This research was useful to update the used procedures and validate time-series in the four stream flow gage stations for the use of the company Électricité de France. Additionally, coefficients for both the models and

  3. Wavelet spectrum analysis approach to model validation of dynamic systems

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaomo; Mahadevan, Sankaran

    2011-02-01

    Feature-based validation techniques for dynamic system models could be unreliable for nonlinear, stochastic, and transient dynamic behavior, where the time series is usually non-stationary. This paper presents a wavelet spectral analysis approach to validate a computational model for a dynamic system. Continuous wavelet transform is performed on the time series data for both model prediction and experimental observation using a Morlet wavelet function. The wavelet cross-spectrum is calculated for the two sets of data to construct a time-frequency phase difference map. The Box-plot, an exploratory data analysis technique, is applied to interpret the phase difference for validation purposes. In addition, wavelet time-frequency coherence is calculated using the locally and globally smoothed wavelet power spectra of the two data sets. Significance tests are performed to quantitatively verify whether the wavelet time-varying coherence is significant at a specific time and frequency point, considering uncertainties in both predicted and observed time series data. The proposed wavelet spectrum analysis approach is illustrated with a dynamics validation challenge problem developed at the Sandia National Laboratories. A comparison study is conducted to demonstrate the advantages of the proposed methodologies over classical frequency-independent cross-correlation analysis and time-independent cross-coherence analysis for the validation of dynamic systems.

  4. Array magnetics modal analysis for the DIII-D tokamak based on localized time-series modelling

    NASA Astrophysics Data System (ADS)

    Olofsson, K. E. J.; Hanson, J. M.; Shiraki, D.; Volpe, F. A.; Humphreys, D. A.; La Haye, R. J.; Lanctot, M. J.; Strait, E. J.; Welander, A. S.; Kolemen, E.; Okabayashi, M.

    2014-09-01

    Time-series analysis of magnetics data in tokamaks is typically done using block-based fast Fourier transform methods. This work presents the development and deployment of a new set of algorithms for magnetic probe array analysis. The method is based on an estimation technique known as stochastic subspace identification (SSI). Compared with the standard coherence approach or the direct singular value decomposition approach, the new technique exhibits several beneficial properties. For example, the SSI method does not require that frequencies are orthogonal with respect to the timeframe used in the analysis. Frequencies are obtained directly as parameters of localized time-series models. The parameters are extracted by solving small-scale eigenvalue problems. Applications include maximum-likelihood regularized eigenmode pattern estimation, detection of neoclassical tearing modes, including locked mode precursors, and automatic clustering of modes, and magnetics-pattern characterization of sawtooth pre- and postcursors, edge harmonic oscillations and fishbones.

  5. Complexity analysis of the turbulent environmental fluid flow time series

    NASA Astrophysics Data System (ADS)

    Mihailović, D. T.; Nikolić-Đorić, E.; Drešković, N.; Mimić, G.

    2014-02-01

    We have used the Kolmogorov complexities, sample and permutation entropies to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period 1926-1990. In particular, we have examined the monthly river flow time series from two rivers (the Miljacka and the Bosnia) in the mountain part of their flow and then calculated the Kolmogorov complexity (KL) based on the Lempel-Ziv Algorithm (LZA) (lower-KLL and upper-KLU), sample entropy (SE) and permutation entropy (PE) values for each time series. The results indicate that the KLL, KLU, SE and PE values in two rivers are close to each other regardless of the amplitude differences in their monthly flow rates. We have illustrated the changes in mountain river flow complexity by experiments using (i) the data set for the Bosnia River and (ii) anticipated human activities and projected climate changes. We have explored the sensitivity of considered measures in dependence on the length of time series. In addition, we have divided the period 1926-1990 into three subintervals: (a) 1926-1945, (b) 1946-1965, (c) 1966-1990, and calculated the KLL, KLU, SE, PE values for the various time series in these subintervals. It is found that during the period 1946-1965, there is a decrease in their complexities, and corresponding changes in the SE and PE, in comparison to the period 1926-1990. This complexity loss may be primarily attributed to (i) human interventions, after the Second World War, on these two rivers because of their use for water consumption and (ii) climate change in recent times.

  6. Seasonal and annual precipitation time series trend analysis in North Carolina, United States

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, Mohammad; Jha, Manoj K.

    2014-02-01

    The present study performs the spatial and temporal trend analysis of the annual and seasonal time-series of a set of uniformly distributed 249 stations precipitation data across the state of North Carolina, United States over the period of 1950-2009. The Mann-Kendall (MK) test, the Theil-Sen approach (TSA) and the Sequential Mann-Kendall (SQMK) test were applied to quantify the significance of trend, magnitude of trend, and the trend shift, respectively. Regional (mountain, piedmont and coastal) precipitation trends were also analyzed using the above-mentioned tests. Prior to the application of statistical tests, the pre-whitening technique was used to eliminate the effect of autocorrelation of precipitation data series. The application of the above-mentioned procedures has shown very notable statewide increasing trend for winter and decreasing trend for fall precipitation. Statewide mixed (increasing/decreasing) trend has been detected in annual, spring, and summer precipitation time series. Significant trends (confidence level ≥ 95%) were detected only in 8, 7, 4 and 10 nos. of stations (out of 249 stations) in winter, spring, summer, and fall, respectively. Magnitude of the highest increasing (decreasing) precipitation trend was found about 4 mm/season (- 4.50 mm/season) in fall (summer) season. Annual precipitation trend magnitude varied between - 5.50 mm/year and 9 mm/year. Regional trend analysis found increasing precipitation in mountain and coastal regions in general except during the winter. Piedmont region was found to have increasing trends in summer and fall, but decreasing trend in winter, spring and on an annual basis. The SQMK test on "trend shift analysis" identified a significant shift during 1960 - 70 in most parts of the state. Finally, the comparison between winter (summer) precipitations with the North Atlantic Oscillation (Southern Oscillation) indices concluded that the variability and trend of precipitation can be explained by the

  7. Extensive mapping of coastal change in Alaska by Landsat time-series analysis, 1972-2013

    NASA Astrophysics Data System (ADS)

    Reynolds, J.; Macander, M. J.; Swingley, C. S.; Spencer, S. R.

    2014-12-01

    The landscape-scale effects of coastal storms on Alaska's Bering Sea and Gulf of Alaska coasts includes coastal erosion, migration of spits and barrier islands, breaching of coastal lakes and lagoons, and inundation and salt-kill of vegetation. Large changes in coastal storm frequency and intensity are expected due to climate change and reduced sea-ice extent. Storms have a wide range of impacts on carbon fluxes and on fish and wildlife resources, infrastructure siting and operation, and emergency response planning. In areas experiencing moderate to large effects, changes can be mapped by analyzing trends in time series of Landsat imagery from Landsat 1 through Landsat 8. The authors are performing a time-series trend analysis for over 22,000 kilometers of coastline along the Bering Sea and Gulf of Alaska. Ice- and cloud-free Landsat imagery from Landsat 1-8, covering 1972-2013, were analyzed using a combination of regression, changepoint detection, and classification tree approaches to detect, classify, and map changes in near-infrared reflectance. Areas with significant changes in coastal features, as well as timing of dominant changes and, in some cases, rates of change were identified . The approach captured many coastal changes over the 42-year study period, including coastal erosion exceeding the 60-m pixel resolution of the Multispectral Scanner (MSS) data and migrations of coastal spits and estuarine channels.

  8. InSAR time series analysis of crustal deformation in southern California from 1992-2010

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Lundgren, P.

    2010-12-01

    Since early the 1990’s, Interferometric Satellite Aperture Radar (InSAR) data has had some success imaging surface deformation of plate boundary deformation zones. The ~18 years of extensive data collection over southern California now make it possible to generate a long time interval InSAR-based line-of-sight (LOS) velocity map to examine the resolution of both steady-state and transient deformation processes. We perform InSAR time series analysis on an extensive catalog of ERS-1/2 and Envisat data from 1992 up to the present in southern California by applying a variant of the Small Baseline Subset (SBAS) time series analysis approach. Despite the limitation imposed by atmospheric phase delay, the large number of data acquisitions and long duration of data sampling allow us to effectively suppress the atmospheric noise through spatiotemporal smoothing in the time series analysis. We integrate an updated version of a California GPS velocity solution with InSAR to constrain the long wavelength deformation signals while estimating and removing the effect of orbital error. A large number of interferograms (> 800) over 5 tracks in southern California have been processed and analyzed. We examine the time dependency of resulting deformation patterns. Preliminary results from the ~18 year time series already reveal some interesting features. For example, the InSAR LOS displacements show significant transient variations in greater spatial resolution following the 1999 Mw7.1 Hector Mine earthquake. The 7-year post-seismic rate map demonstrates a broad transient deformation pattern and much localized deformation near the fault surface trace, reflecting a combined effect from afterslip, poroelastic, and viscoelastic relaxation at different spatiotemporal scales. We observe a variation of deformation rate across the Blackwater-Little lake fault system in the Eastern California Shear Zone, suggesting a possible transient variation over this part of the plate boundary. The In

  9. Simulating photon-transport in uniform media using the radiative transport equation: a study using the Neumann-series approach

    PubMed Central

    Jha, Abhinav K.; Kupinski, Matthew A.; Masumura, Takahiro; Clarkson, Eric; Maslov, Alexey V.; Barrett, Harrison H.

    2014-01-01

    We present the implementation, validation, and performance of a Neumann-series approach for simulating light propagation at optical wavelengths in uniform media using the radiative transport equation (RTE). The RTE is solved for an anisotropic-scattering medium in a spherical harmonic basis for a diffuse-optical-imaging setup. The main objectives of this paper are threefold: to present the theory behind the Neumann-series form for the RTE, to design and develop the mathematical methods and the software to implement the Neumann series for a diffuse-optical-imaging setup, and, finally, to perform an exhaustive study of the accuracy, practical limitations, and computational efficiency of the Neumann-series method. Through our results, we demonstrate that the Neumann-series approach can be used to model light propagation in uniform media with small geometries at optical wavelengths. PMID:23201893

  10. On the Interpretation of Running Trends as Summary Statistics for Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Vigo, Isabel M.; Trottini, Mario; Belda, Santiago

    2016-04-01

    In recent years, running trends analysis (RTA) has been widely used in climate applied research as summary statistics for time series analysis. There is no doubt that RTA might be a useful descriptive tool, but despite its general use in applied research, precisely what it reveals about the underlying time series is unclear and, as a result, its interpretation is unclear too. This work contributes to such interpretation in two ways: 1) an explicit formula is obtained for the set of time series with a given series of running trends, making it possible to show that running trends, alone, perform very poorly as summary statistics for time series analysis; and 2) an equivalence is established between RTA and the estimation of a (possibly nonlinear) trend component of the underlying time series using a weighted moving average filter. Such equivalence provides a solid ground for RTA implementation and interpretation/validation.