Science.gov

Sample records for series temporelles cas

  1. Delivery of Cas9 Protein into Mouse Zygotes through a Series of Electroporation Dramatically Increases the Efficiency of Model Creation.

    PubMed

    Wang, Wenbo; Kutny, Peter M; Byers, Shannon L; Longstaff, Charles J; DaCosta, Michael J; Pang, Changhong; Zhang, Yingfan; Taft, Robert A; Buaas, Frank W; Wang, Haoyi

    2016-05-20

    Previously we established Zygote Electroporation of Nucleases (ZEN) technology as an efficient and high-throughput way to generate genetically modified mouse models. However, there were significant variations of the targeting efficiency among different genomic loci using our previously published protocol. In this study, we improved the ZEN technology by delivering Cas9 protein into mouse zygotes through a series of electroporation. Using this approach, we were able to introduce precise nucleotide substitutions, large segment deletion and short segment insertion into targeted loci with high efficiency. PMID:27210041

  2. [CAS General Standards 2012

    ERIC Educational Resources Information Center

    Council for the Advancement of Standards in Higher Education, 2011

    2011-01-01

    The mission of the Council for the Advancement of Standards in Higher Education (CAS) is to promote the improvement of programs and services to enhance the quality of student learning and development. CAS is a consortium of professional associations who work collaboratively to develop and promulgate standards and guidelines and to encourage…

  3. Cas9 Functionally Opens Chromatin.

    PubMed

    Barkal, Amira A; Srinivasan, Sharanya; Hashimoto, Tatsunori; Gifford, David K; Sherwood, Richard I

    2016-01-01

    Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding. PMID:27031353

  4. Cas9 Functionally Opens Chromatin

    PubMed Central

    Barkal, Amira A.; Srinivasan, Sharanya; Hashimoto, Tatsunori; Gifford, David K.; Sherwood, Richard I.

    2016-01-01

    Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding. PMID:27031353

  5. Prediction des vibrations eoliennes d'un systeme conducteur-amortisseur avec une methode temporelle non lineaire

    NASA Astrophysics Data System (ADS)

    Langlois, Sebastien

    Les vibrations eoliennes sont la cause principale de bris de conducteurs en fatigue des lignes aeriennes de transport d'energie electrique. Ces vibrations sont dues a des detachements tourbillonnaires produits dans le sillage du conducteur. Une methode commune de reduction des vibrations est l'ajout d'amortisseurs de vibrations pres des pinces de suspension. Contrairement aux essais en ligne experimentale, la modelisation numerique permet d'evaluer rapidement et a faible cout la performance d'un amortisseur de vibration sur une portee de ligne aerienne. La technologie la plus frequemment utilisee fait appel au principe de balance d'energie (PBE) en evaluant le niveau de vibrations pour lequel la puissance injectee par le vent est egale a la puissance dissipee par le conducteur et l'amortisseur. Les methodes actuelles pour la prediction des vibrations reposent sur des hypotheses simplificatrices quant a la modelisation de l'interaction conducteur-amortisseur. Une approche prometteuse pour la prediction des vibrations est l'utilisation d'un modele numerique temporel non lineaire qui permet de mieux representer la masse, la geometrie, la rigidite et l'amortissement du systeme. L'objectif principal de ce projet de recherche est de developper un modele numerique avec integration temporelle directe d'un conducteur et d'un amortisseur en vibration permettant de reproduire le comportement dynamique du systeme pour la gamme de frequence et d'amplitude typique des vibrations eoliennes des conducteurs. Un modele par elements finis d'un conducteur seul en vibration resolu par integration temporelle directe a d'abord ete developpe en considerant une rigidite de flexion variable. Comme une rigidite de flexion constante et egale a 50% de la rigidite de flexion maximale theorique ( EImax) est jugee adequate pour la modelisation du conducteur, c'est cette valeur qui a ete utilisee pour la suite du projet. Ensuite, des modeles non-lineaires pour deux types d'amortisseur de

  6. Dual nuclease activity of a Cas2 protein in CRISPR-Cas subtype I-B of Leptospira interrogans.

    PubMed

    Dixit, Bhuvan; Ghosh, Karukriti Kaushik; Fernandes, Gary; Kumar, Pankaj; Gogoi, Prerana; Kumar, Manish

    2016-04-01

    Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 carries a set of cas genes associated with CRISPR-Cas subtype I-B. Herein, we report for the first time active transcription of a set of cas genes (cas1 to cas8) of L. interrogans where cas4, cas1, cas2 and cas6, cas3, cas8, cas7, cas5 are clustered together in two independent operons. As an initial step toward comprehensive understanding of CRISPR-Cas system in spirochete, the biochemical study of one of the core Leptospira Cas2 proteins (Lep_Cas2) showed nuclease activity on both DNA and RNA in a nonspecific manner. Additionally, unlike other known Cas2 proteins, Lep_Cas2 showed metal-independent RNase activity and preferential activity on RNA over DNA. These results provide insight for understanding Cas2 diversity existing in the prokaryotic adaptive immune system. PMID:26950513

  7. Exploiting CRISPR/Cas systems for biotechnology

    PubMed Central

    Sampson, Timothy R.; Weiss, David S.

    2015-01-01

    The Cas9 endonuclease is the central component of the Type II CRISPR/Cas system, a prokaryotic adaptive restriction system against invading nucleic acids, such as those originating from bacteriophages and plasmids. Recently, this RNA-directed DNA endonuclease has been harnessed to target DNA sequences of interest. Here, we review the development of Cas9 as an important tool to not only edit the genomes of a number of different prokaryotic and eukaryotic species, but also as an efficient system for site-specific transcriptional repression or activation. Additionally, a specific Cas9 protein has been observed to target an RNA substrate, suggesting that Cas9 may have the ability to be programmed to target RNA as well. Cas proteins from other CRISPR/Cas subtypes may also be exploited in this regard. Thus, CRISPR/Cas systems represent an effective and versatile biotechnological tool, which will have significant impact on future advancements in genome engineering. PMID:24323919

  8. CAS-Induced Difficulties in Learning Mathematics?

    ERIC Educational Resources Information Center

    Jankvist, Uffe Thomas; Misfeldt, Morten

    2015-01-01

    In recent years computer algebra systems (CAS) have become an integrated part of the upper secondary school mathematics program. Despite the many positive possibilities of CAS, there also seems to be a flip side of the coin in relation to actual difficulties in learning mathematics, not least because a strong dependence on CAS for mathematical…

  9. "CAS" Statement of Shared Ethical Principles

    ERIC Educational Resources Information Center

    Council for the Advancement of Standards in Higher Education, 2006

    2006-01-01

    The Council for the Advancement of Standards in Higher Education (CAS) has served as a voice for quality assurance and promulgation of standards in higher education for over 25 years. CAS was established to promote inter-association efforts to address quality assurance, student learning, and professional integrity. CAS includes membership of over…

  10. CAS-1 lunar soil simulant

    NASA Astrophysics Data System (ADS)

    Zheng, Yongchun; Wang, Shijie; Ouyang, Ziyuan; Zou, Yongliao; Liu, Jianzhong; Li, Chunlai; Li, Xiongyao; Feng, Junming

    2009-02-01

    Lunar soil simulant is a geochemical reproduction of lunar regolith, and is needed for lunar science and engineering researches. This paper describes a new lunar soil simulant, CAS-1, prepared by the Chinese Academy of Sciences, to support lunar orbiter, soft-landing mission and sample return missions of China’s Lunar Exploration Program, which is scheduled for 2004 2020. Such simulants should match the samples returned from the Moon, all collected from the lunar regolith rather than outcrops. The average mineral and chemical composition of lunar soil sample returned from the Apollo 14 mission, which landed on the Fra Mauro Formation, is chosen as the model for the CAS-1 simulant. Source material for this simulant was a low-Ti basaltic scoria dated at 1600 years from the late Quaternary volcanic area in the Changbai Mountains of northeast China. The main minerals of this rock are pyroxene, olivine, and minor plagioclase, and about 20 40% modal glass. The scoria was analyzed by XRF and found to be chemically similar to Apollo 14 lunar sample 14163. It was crushed in an impact mill with a resulting median particle size 85.9 μm, similar to Apollo soils. Bulk density, shear resistance, complex permittivity, and reflectance spectra were also similar to Apollo 14 soil. We conclude that CAS-1 is an ideal lunar soil simulant for science and engineering research of future lunar exploration program.

  11. Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9

    PubMed Central

    Feng, Yan; Chen, Cheng; Han, Yuxiang; Chen, Zelin; Lu, Xiaochan; Liang, Fang; Li, Song; Qin, Wei; Lin, Shuo

    2016-01-01

    The type II CRISPR/Cas9 system has been used widely for genome editing in zebrafish. However, the requirement for the 5′-NGG-3′ protospacer-adjacent motif (PAM) of Cas9 from Streptococcus pyogenes (SpCas9) limits its targeting sequences. Here, we report that a Cas9 ortholog from Staphylococcus aureus (SaCas9), and its KKH variant, successfully induced targeted mutagenesis with high frequency in zebrafish. Confirming previous findings, the SpCas9 variant, VQR, can also induce targeted mutations in zebrafish. Bioinformatics analysis of these new Cas targets suggests that the number of available target sites in the zebrafish genome can be greatly expanded. Collectively, the expanded target repertoire of Cas9 in zebrafish should further facilitate the utility of this organism for genetic studies of vertebrate biology. PMID:27317783

  12. Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9.

    PubMed

    Feng, Yan; Chen, Cheng; Han, Yuxiang; Chen, Zelin; Lu, Xiaochan; Liang, Fang; Li, Song; Qin, Wei; Lin, Shuo

    2016-01-01

    The type II CRISPR/Cas9 system has been used widely for genome editing in zebrafish. However, the requirement for the 5'-NGG-3' protospacer-adjacent motif (PAM) of Cas9 from Streptococcus pyogenes (SpCas9) limits its targeting sequences. Here, we report that a Cas9 ortholog from Staphylococcus aureus (SaCas9), and its KKH variant, successfully induced targeted mutagenesis with high frequency in zebrafish. Confirming previous findings, the SpCas9 variant, VQR, can also induce targeted mutations in zebrafish. Bioinformatics analysis of these new Cas targets suggests that the number of available target sites in the zebrafish genome can be greatly expanded. Collectively, the expanded target repertoire of Cas9 in zebrafish should further facilitate the utility of this organism for genetic studies of vertebrate biology. PMID:27317783

  13. Caractérisation spectrale et temporelle de l'émission X issue de l'interaction laser-agrégats

    NASA Astrophysics Data System (ADS)

    Bonté, C.; Fourment, C.; Harmand, M.; Jouin, H.; Micheau, S.; Peyrusse, O.; Pons, B.; Santos, J. J.

    2006-12-01

    Les agrégats de gaz rares constituent un état de la matière intermédiaire entre les cibles solides massives et les atomes en phase gazeuse. Il a été démontré que les agrégats irradiés sont sources d'ions, d'électrons, de neutrons ainsi que de rayonnement allant du visible aux X durs. Cette source peut-être produite avec un taux de répétition élevé et a l'avantage de ne pas produire de débris, dommageables pour les optiques notamment, et de présenter une très forte conversion de l'énergie laser incidente. Nous nous intéressons au rayonnement X particulièrement, en le caractérisant en intensité, spectre et durée, comme préalable à toute application de cette source X et comme moyen privilégié d'étude de la physique des plasmas nanométriques chauds et denses. En collaboration avec l'INRS-Énergie (Varenne, Qc, Canada), nous avons mis en œuvre une caméra à balayage de fente dont la résolution temporelle est de 800 fs rms. En focalisant des impulsions laser courtes (30 fs 5 ps) et intenses (jusqu'à 1017 W/cm2) sur des agrégats d'argon dont le rayon varie de 15 à 30 nm, nous avons démontré que l'émission X dont l'énergie est supérieure à 2 keV est plus courte que 2 ps, limité par la résolution temporelle. En couplant la caméra à un cristal tronconique, dont la conception a été réalisée au LULI (Palaiseau, France), nous nous sommes intéressés au rayonnement de couche K dans la gamme 2,9 - 3,2 keV. Nous avons démontré que ce rayonnement a une durée inférieure à 3 ps (limite de la résolution temporelle), et que les raies étaient émises avec un écart relatif inférieur à 1 ps. Une simulation basée sur le modèle nano-plasma proposé par T. Ditmire et sur le code collisionnel-radiatif Transpec a été développée au CELIA. Les spectres X résolus en temps calculés reproduisent à la fois la brièveté d'émission du rayonnement X et les états de charge élevés observés.

  14. CAS as Environments for Implementing Mathematical Microworlds.

    ERIC Educational Resources Information Center

    Alpers, Burkhard

    2002-01-01

    Investigates whether computer algebra systems (CAS) are suitable environments for implementing mathematical microworlds. Recalls what constitutes a microworld and explores how CAS can be used for implementation, stating potentials as well as limitations. Provides as an example the microworld "Formula 1", implemented in Maple Software. (Author/KHR)

  15. CAS

    SciTech Connect

    Martinez, B.; Pomeroy, G. )

    1989-12-02

    The Security Alarm System is a data acquisition and control system which collects data from intrusion sensors and displays the information in a real-time environment for operators. The Access Control System monitors and controls the movement of personnel with the use of card readers and biometrics hand readers.

  16. RXTE Observations of Cas A

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Lingenfelter, R. E.; Heindl, W. A.; Blanco, P. R.; Pelling, M. R.; Gruber, D. E.; Allen, G. E.; Jahoda, K.; Swank, J. H.; Woosley, S. E.; Nomoto, K.; Higdon, J. C.; Dermer, Charles D. (Editor); Strickman, Mark S. (Editor); Kurfess, James D. (Editor)

    1997-01-01

    The exciting detection by the COMPTEL instrument of the 1157 keV Ti-44 line from the supernova remnant Cas A sets important new constraints on supernova dynamics and nucleosynthesis. The Ti-44 decay also produces x-ray lines at 68 and 78 keV, whose flux should be essentially the same as that of the gamma ray line. The revised COMPTEL flux of 4 x l0(exp -5) cm(exp -2)s(exp -1) is very near the sensitivity limit for line detection by the HEXTE instrument on RXTE. We report on the results from two RXTE observations - 20 ks during In Orbit Checkout in January 1996 and 200 ks in April 1996. We also find a strong continuum emission suggesting cosmic ray electron acceleration in the remnant.

  17. 48 CFR 9903.201-2 - Types of CAS coverage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Types of CAS coverage... ACCOUNTING STANDARDS CONTRACT COVERAGE CAS Program Requirements 9903.201-2 Types of CAS coverage. (a) Full coverage. Full coverage requires that the business unit comply with all of the CAS specified in part...

  18. 48 CFR 9903.201-2 - Types of CAS coverage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Types of CAS coverage... ACCOUNTING STANDARDS CONTRACT COVERAGE CAS Program Requirements 9903.201-2 Types of CAS coverage. (a) Full coverage. Full coverage requires that the business unit comply with all of the CAS specified in part...

  19. 48 CFR 9903.201-2 - Types of CAS coverage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Types of CAS coverage. 9903... ACCOUNTING STANDARDS CONTRACT COVERAGE CAS Program Requirements 9903.201-2 Types of CAS coverage. (a) Full coverage. Full coverage requires that the business unit comply with all of the CAS specified in part...

  20. Assisting Students' Cognitive Strategies with the Use of CAS

    ERIC Educational Resources Information Center

    Sarvari, Csaba; Lavicza, Zsolt; Klincsik, Mihaly

    2010-01-01

    This paper examines various cognitive strategies applied while CAS (Computer Algebra System) are used in undergraduate-level engineering mathematics teaching and learning. We posed some questions in relation to such CAS use: What kind of tools can CAS offer to enhance different cognitive strategies of students? How can the use of CAS widen the…

  1. 48 CFR 9903.201-2 - Types of CAS coverage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false Types of CAS coverage... ACCOUNTING STANDARDS CONTRACT COVERAGE CAS Program Requirements 9903.201-2 Types of CAS coverage. (a) Full coverage. Full coverage requires that the business unit comply with all of the CAS specified in part...

  2. A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cas9 endonuclease of the Type II-a clustered regularly interspersed short palindromic repeats (CRISPR), of Streptococcus pyogenes (SpCas9) has been adapted as a widely used tool for genome editing and genome engineering. Herein, we describe a gene encoding a novel Cas9 ortholog (BpsuCas9) and th...

  3. V723 Cas a borderline classical nova

    NASA Astrophysics Data System (ADS)

    Friedjung, M.; Iijima, T.

    2002-11-01

    V723 Cas had a light curve similar to that of HR Del before maximum, with a very slow pre-maximum rise, explained according to [2] by the presence of an optically thin wind before maximum unlike the optically thick wind generally seen for classical novae after maximum. Examination of the Fe II emission lines by the SAC method, is compatible with this also having been the case for V723 Cas.

  4. Characterization of Cas9-Guide RNA Orthologs.

    PubMed

    Braff, Jonathan L; Yaung, Stephanie J; Esvelt, Kevin M; Church, George M

    2016-01-01

    In light of the multitude of new Cas9-mediated functionalities, the ability to carry out multiple Cas9-enabled processes simultaneously and in a single cell is becoming increasingly valuable. Accomplishing this aim requires a set of Cas9-guide RNA (gRNA) pairings that are functionally independent and insulated from one another. For instance, two such protein-gRNA complexes would allow for concurrent activation and editing at independent target sites in the same cell. The problem of establishing orthogonal CRISPR systems can be decomposed into three stages. First, putatively orthogonal systems must be identified with an emphasis on minimizing sequence similarity of the Cas9 protein and its associated RNAs. Second, the systems must be characterized well enough to effectively express and target the systems using gRNAs. Third, the systems should be established as orthogonal to one another by testing for activity and cross talk. Here, we describe the value of these orthogonal CRISPR systems, outline steps for selecting and characterizing potentially orthogonal Cas9-gRNA pairs, and discuss considerations for the desired specificity in Cas9-coupled functions. PMID:27140923

  5. Putting the CAS Standards to Work. Training Manual for the CAS Self Assessment Guides.

    ERIC Educational Resources Information Center

    Yerian, Jean M.; Miller, Theodore K., Ed.

    These 18 self-assessment guides and training manual from the Council for the Advancement of Standards (CAS) for Student Services/Development Programs translate the CAS Standards and Guidelines of 1986 into a format for self-study purposes. These self-study guides allow an institution to assure compliance with minimally-acceptable practice, gain an…

  6. Exploring Fourier Series and Gibbs Phenomenon Using Mathematica

    ERIC Educational Resources Information Center

    Ghosh, Jonaki B.

    2011-01-01

    This article describes a laboratory module on Fourier series and Gibbs phenomenon which was undertaken by 32 Year 12 students. It shows how the use of CAS played the role of an "amplifier" by making higher level mathematical concepts accessible to students of year 12. Using Mathematica students were able to visualise Fourier series of functions…

  7. CAS2D- NONROTATING BLADE-TO-BLADE, STEADY, POTENTIAL TRANSONIC CASCADE FLOW ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1994-01-01

    An exact, full-potential-equation model for the steady, irrotational, homoentropic, and homoenergetic flow of a compressible, inviscid fluid through a two-dimensional planar cascade together with its appropriate boundary conditions has been derived. The CAS2D computer program numerically solves an artificially time-dependent form of the actual full-potential-equation, providing a nonrotating blade-to-blade, steady, potential transonic cascade flow analysis code. Comparisons of results with test data and theoretical solutions indicate very good agreement. In CAS2D, the governing equation is discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field is discretized by providing a boundary-fitted, nonuniform computational mesh. This mesh is generated by using a sequence of conformal mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the full-potential equation is solved iteratively by using successive line over relaxation. Possible isentropic shocks are captured by the explicit addition of an artificial viscosity in a conservative form. In addition, a four-level, consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two-dimensional cascade flows. The results from CAS2D are not directly applicable to three-dimensional, potential, rotating flows through a cascade of blades because CAS2D does not consider the effects of the Coriolis force that would be present in the three-dimensional case. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 200K of 8 bit bytes. The CAS2D program was developed in 1980.

  8. 48 CFR 970.3002 - CAS program requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false CAS program requirements. 970.3002 Section 970.3002 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY....3002 CAS program requirements....

  9. 48 CFR 970.3002 - CAS program requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false CAS program requirements. 970.3002 Section 970.3002 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY....3002 CAS program requirements....

  10. 48 CFR 970.3002 - CAS program requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false CAS program requirements. 970.3002 Section 970.3002 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY....3002 CAS program requirements....

  11. 48 CFR 970.3002 - CAS program requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false CAS program requirements. 970.3002 Section 970.3002 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY....3002 CAS program requirements....

  12. 48 CFR 970.3002 - CAS program requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false CAS program requirements. 970.3002 Section 970.3002 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY....3002 CAS program requirements....

  13. CRISPR-Cas: Revolutionising genome engineering.

    PubMed

    Nicholson, Samantha Anne; Pepper, Michael Sean

    2016-09-01

    The ability to permanently alter or repair the human genome has been the subject of a number of science fiction films, but with the recent advent of several customisable sequence-specific endonuclease technologies, genome engineering looks set to become a clinical reality in the near future. This article discusses recent advancements in the technology called 'clustered regularly interspaced palindromic repeat (CRISPR)-associated genes' (CRISPR-Cas), the potential of CRISPR-Cas to revolutionise molecular medicine, and the ethical and regulatory hurdles facing its application. PMID:27601107

  14. Engineered CRISPR-Cas9 nucleases with altered PAM specificities

    PubMed Central

    Kleinstiver, Benjamin P.; Prew, Michelle S.; Tsai, Shengdar Q.; Topkar, Ved; Nguyen, Nhu T.; Zheng, Zongli; Gonzales, Andrew P.W.; Li, Zhuyun; Peterson, Randall T.; Yeh, Jing-Ruey Joanna; Aryee, Martin J.; Joung, J. Keith

    2015-01-01

    Although CRISPR-Cas9 nucleases are widely used for genome editing1, 2, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM)3–6. As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-Seq analysis7. In addition, we identified and characterized another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also found that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities. PMID:26098369

  15. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.

    PubMed

    Kleinstiver, Benjamin P; Prew, Michelle S; Tsai, Shengdar Q; Topkar, Ved V; Nguyen, Nhu T; Zheng, Zongli; Gonzales, Andrew P W; Li, Zhuyun; Peterson, Randall T; Yeh, Jing-Ruey Joanna; Aryee, Martin J; Joung, J Keith

    2015-07-23

    Although CRISPR-Cas9 nucleases are widely used for genome editing, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM). As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome-editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-seq analysis. In addition, we identify and characterize another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also find that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities. PMID:26098369

  16. 48 CFR 30.201-1 - CAS applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CONTRACTING REQUIREMENTS COST ACCOUNTING STANDARDS ADMINISTRATION CAS Program Requirements 30.201-1 CAS applicability. See 48 CFR 9903.201-1 (FAR appendix). ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false CAS applicability....

  17. 48 CFR 30.201-2 - Types of CAS coverage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CONTRACTING REQUIREMENTS COST ACCOUNTING STANDARDS ADMINISTRATION CAS Program Requirements 30.201-2 Types of CAS coverage. See 48 CFR 9903.201-2 (FAR appendix). ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Types of CAS coverage....

  18. 48 CFR 30.201-1 - CAS applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CONTRACTING REQUIREMENTS COST ACCOUNTING STANDARDS ADMINISTRATION CAS Program Requirements 30.201-1 CAS applicability. See 48 CFR 9903.201-1 (FAR appendix). ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false CAS applicability....

  19. 48 CFR 30.201-2 - Types of CAS coverage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CONTRACTING REQUIREMENTS COST ACCOUNTING STANDARDS ADMINISTRATION CAS Program Requirements 30.201-2 Types of CAS coverage. See 48 CFR 9903.201-2 (FAR appendix). ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Types of CAS coverage....

  20. 48 CFR 9903.201-1 - CAS applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false CAS applicability. 9903... ACCOUNTING STANDARDS CONTRACT COVERAGE CAS Program Requirements 9903.201-1 CAS applicability. (a) This subsection describes the rules for determining whether a proposed contract or subcontract is exempt from...

  1. 48 CFR 30.201-2 - Types of CAS coverage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CONTRACTING REQUIREMENTS COST ACCOUNTING STANDARDS ADMINISTRATION CAS Program Requirements 30.201-2 Types of CAS coverage. See 48 CFR 9903.201-2 (FAR appendix). ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Types of CAS coverage....

  2. 48 CFR 9903.201-1 - CAS applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false CAS applicability. 9903... ACCOUNTING STANDARDS CONTRACT COVERAGE CAS Program Requirements 9903.201-1 CAS applicability. (a) This subsection describes the rules for determining whether a proposed contract or subcontract is exempt from...

  3. 48 CFR 30.201-2 - Types of CAS coverage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CONTRACTING REQUIREMENTS COST ACCOUNTING STANDARDS ADMINISTRATION CAS Program Requirements 30.201-2 Types of CAS coverage. See 48 CFR 9903.201-2 (FAR appendix). ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Types of CAS coverage....

  4. 48 CFR 30.201-1 - CAS applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CONTRACTING REQUIREMENTS COST ACCOUNTING STANDARDS ADMINISTRATION CAS Program Requirements 30.201-1 CAS applicability. See 48 CFR 9903.201-1 (FAR appendix). ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false CAS applicability....

  5. 48 CFR 9903.201-1 - CAS applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false CAS applicability. 9903... ACCOUNTING STANDARDS CONTRACT COVERAGE CAS Program Requirements 9903.201-1 CAS applicability. (a) This subsection describes the rules for determining whether a proposed contract or subcontract is exempt from...

  6. 48 CFR 30.201-1 - CAS applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CONTRACTING REQUIREMENTS COST ACCOUNTING STANDARDS ADMINISTRATION CAS Program Requirements 30.201-1 CAS applicability. See 48 CFR 9903.201-1 (FAR appendix). ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false CAS applicability....

  7. 48 CFR 9903.201-1 - CAS applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true CAS applicability. 9903.201... ACCOUNTING STANDARDS CONTRACT COVERAGE CAS Program Requirements 9903.201-1 CAS applicability. (a) This subsection describes the rules for determining whether a proposed contract or subcontract is exempt from...

  8. 48 CFR 30.201-2 - Types of CAS coverage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONTRACTING REQUIREMENTS COST ACCOUNTING STANDARDS ADMINISTRATION CAS Program Requirements 30.201-2 Types of CAS coverage. See 48 CFR 9903.201-2 (FAR appendix). ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Types of CAS coverage....

  9. 48 CFR 30.201-1 - CAS applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONTRACTING REQUIREMENTS COST ACCOUNTING STANDARDS ADMINISTRATION CAS Program Requirements 30.201-1 CAS applicability. See 48 CFR 9903.201-1 (FAR appendix). ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false CAS applicability....

  10. Structural plasticity and in vivo activity of Cas1 from the type I-F CRISPR-Cas system.

    PubMed

    Wilkinson, Max E; Nakatani, Yoshio; Staals, Raymond H J; Kieper, Sebastian N; Opel-Reading, Helen K; McKenzie, Rebecca E; Fineran, Peter C; Krause, Kurt L

    2016-04-15

    CRISPR-Cas systems are adaptive immune systems in prokaryotes that provide protection against viruses and other foreign DNA. In the adaptation stage, foreign DNA is integrated into CRISPR (clustered regularly interspaced short palindromic repeat) arrays as new spacers. These spacers are used in the interference stage to guide effector CRISPR associated (Cas) protein(s) to target complementary foreign invading DNA. Cas1 is the integrase enzyme that is central to the catalysis of spacer integration. There are many diverse types of CRISPR-Cas systems, including type I-F systems, which are typified by a unique Cas1-Cas2-3 adaptation complex. In the present study we characterize the Cas1 protein of the potato phytopathogen Pectobacterium atrosepticum, an important model organism for understanding spacer acquisition in type I-F CRISPR-Cas systems. We demonstrate by mutagenesis that Cas1 is essential for adaptation in vivo and requires a conserved aspartic acid residue. By X-ray crystallography, we show that although P. atrosepticum Cas1 adopts a fold conserved among other Cas1 proteins, it possesses remarkable asymmetry as a result of structural plasticity. In particular, we resolve for the first time a flexible, asymmetric loop that may be unique to type I-F Cas1 proteins, and we discuss the implications of these structural features for DNA binding and enzymatic activity. PMID:26929403

  11. Historic light curve of V890 Cas

    NASA Astrophysics Data System (ADS)

    Nesci, R.

    2016-05-01

    The variability of V890 Cas is studied with 87 -band plates of the Asiago archive. The star shows variations of about 5 mag with an average magnitude =13 and a period of 486 days. An 5.0 color index is also derived near the maximum luminosity.

  12. Using the CAS Standards in Assessment Projects

    ERIC Educational Resources Information Center

    Dean, Laura A.

    2013-01-01

    This chapter provides an overview of the use of professional standards of practice in assessment and of the Council for the Advancement of Standards in Higher Education (CAS). It outlines a model for conducting program self-studies and discusses the importance of implementing change based on assessment results.

  13. Lessons Learned on Management of CAS Development.

    ERIC Educational Resources Information Center

    Boyadjieff, Kiril

    1995-01-01

    Computer-assisted studies (CAS) attract foreign language professionals' attention due to the reliability of personal computers, the decreasing cost of available technology, and the new generation of students for whom electronic media are a familiar habitat. This article focuses on a project of the Defense Language Institute that produced over…

  14. CasHRA (Cas9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA.

    PubMed

    Zhou, Jianting; Wu, Ronghai; Xue, Xiaoli; Qin, Zhongjun

    2016-08-19

    Current DNA assembly methods for preparing highly purified linear subassemblies require complex and time-consuming in vitro manipulations that hinder their ability to construct megabase-sized DNAs (e.g. synthetic genomes). We have developed a new method designated 'CasHRA (Cas9-facilitated Homologous Recombination Assembly)' that directly uses large circular DNAs in a one-step in vivo assembly process. The large circular DNAs are co-introduced into Saccharomyces cerevisiae by protoplast fusion, and they are cleaved by RNA-guided Cas9 nuclease to release the linear DNA segments for subsequent assembly by the endogenous homologous recombination system. The CasHRA method allows efficient assembly of multiple large DNA segments in vivo; thus, this approach should be useful in the last stage of genome construction. As a proof of concept, we combined CasHRA with an upstream assembly method (Gibson procedure of genome assembly) and successfully constructed a 1.03 Mb MGE-syn1.0 (Minimal Genome of Escherichia coli) that contained 449 essential genes and 267 important growth genes. We expect that CasHRA will be widely used in megabase-sized genome constructions. PMID:27220470

  15. Controlling UCAVs by JTACs in CAS missions

    NASA Astrophysics Data System (ADS)

    Kumaş, A. E.

    2014-06-01

    By means of evolving technology, capabilities of UAVs (Unmanned Aerial Vehicle)s are increasing rapidly. This development provides UAVs to be used in many different areas. One of these areas is CAS (Close Air Support) mission. UAVs have several advantages compared to manned aircraft, however there are also some problematic areas. The remote controlling of these vehicles from thousands of nautical miles away via satellite may lead to various problems both ethical and tactical aspects. Therefore, CAS missions require a good level of ALI (Air-Land Integration), a high SA (situational awareness) and precision engagement. In fact, there is an aware friendly element in the target area in CAS missions, unlike the other UAV operations. This element is an Airman called JTAC (Joint Terminal Attack Controller). Unlike the JTAC, UAV operators are too far away from target area and use the limited FOV (Field of View) provided by camera and some other sensor data. In this study, target area situational awareness of a UAV operator and a JTAC, in a high-risk mission for friendly ground forces and civilians such as CAS, are compared. As a result of this comparison, answer to the question who should control the UCAV (Unmanned Combat Aerial Vehicle) in which circumstances is sought. A literature review is made in UAV and CAS fields and recent air operations are examined. The control of UCAV by the JTAC is assessed by SWOT analysis and as a result it is deduced that both control methods can be used in different situations within the framework of the ROE (Rules Of Engagement) is reached.

  16. In vivo genome editing using Staphylococcus aureus Cas9

    PubMed Central

    Ran, F. Ann; Cong, Le; Yan, Winston X.; Scott, David A.; Gootenberg, Jonathan S.; Kriz, Andrea J.; Zetsche, Bernd; Shalem, Ophir; Wu, Xuebing; Makarova, Kira S.; Koonin, Eugene; Sharp, Phillip A.; Zhang, Feng

    2015-01-01

    The RNA-guided endonuclease Cas9 has emerged as a versatile genome-editing platform. However, the size of the commonly used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for basic research and therapeutic applications that employ the highly versatile adeno-associated virus (AAV) delivery vehicle. Here, we characterize six smaller Cas9 orthologs and show that Cas9 from Staphylococcus aureus (SaCas9) can edit the genome with efficiencies similar to those of SpCas9, while being >1kb shorter. We packaged SaCas9 and its sgRNA expression cassette into a single AAV vector and targeted the cholesterol regulatory gene Pcsk9 in the mouse liver. Within one week of injection, we observed >40% gene modification, accompanied by significant reductions in serum Pcsk9 and total cholesterol levels. We further demonstrate the power of using BLESS to assess the genome-wide targeting specificity of SaCas9 and SpCas9, and show that SaCas9 can mediate genome editing in vivo with high specificity. PMID:25830891

  17. Structure and Engineering of Francisella novicida Cas9

    PubMed Central

    Hirano, Hisato; Gootenberg, Jonathan S.; Horii, Takuro; Abudayyeh, Omar O.; Kimura, Mika; Hsu, Patrick D.; Nakane, Takanori; Ishitani, Ryuichiro; Hatada, Izuho; Zhang, Feng; Nishimasu, Hiroshi; Nureki, Osamu

    2016-01-01

    Summary The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA, and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5′-NGG-3′ PAM, and used the structural information to create a variant that can recognize the more relaxed 5′-YG-3′ PAM. Furthermore, we demonstrated that pre-assembled FnCas9 ribonucleoprotein complexes can be microinjected into mouse zygotes to edit endogenous sites with the 5′-YG-3′ PAMs, thus expanding the target space of the CRISPR-Cas9 toolbox. PMID:26875867

  18. Structure and Engineering of Francisella novicida Cas9.

    PubMed

    Hirano, Hisato; Gootenberg, Jonathan S; Horii, Takuro; Abudayyeh, Omar O; Kimura, Mika; Hsu, Patrick D; Nakane, Takanori; Ishitani, Ryuichiro; Hatada, Izuho; Zhang, Feng; Nishimasu, Hiroshi; Nureki, Osamu

    2016-02-25

    The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5'-NGG-3' PAM, and used the structural information to create a variant that can recognize the more relaxed 5'-YG-3' PAM. Furthermore, we demonstrated that the FnCas9-ribonucleoprotein complex can be microinjected into mouse zygotes to edit endogenous sites with the 5'-YG-3' PAM, thus expanding the target space of the CRISPR-Cas9 toolbox. PMID:26875867

  19. Photoactivatable CRISPR-Cas9 for optogenetic genome editing.

    PubMed

    Nihongaki, Yuta; Kawano, Fuun; Nakajima, Takahiro; Sato, Moritoshi

    2015-07-01

    We describe an engineered photoactivatable Cas9 (paCas9) that enables optogenetic control of CRISPR-Cas9 genome editing in human cells. paCas9 consists of split Cas9 fragments and photoinducible dimerization domains named Magnets. In response to blue light irradiation, paCas9 expressed in human embryonic kidney 293T cells induces targeted genome sequence modifications through both nonhomologous end joining and homology-directed repair pathways. Genome editing activity can be switched off simply by extinguishing the light. We also demonstrate activation of paCas9 in spatial patterns determined by the sites of irradiation. Optogenetic control of targeted genome editing should facilitate improved understanding of complex gene networks and could prove useful in biomedical applications. PMID:26076431

  20. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems

    PubMed Central

    2011-01-01

    Background The CRISPR-Cas adaptive immunity systems that are present in most Archaea and many Bacteria function by incorporating fragments of alien genomes into specific genomic loci, transcribing the inserts and using the transcripts as guide RNAs to destroy the genome of the cognate virus or plasmid. This RNA interference-like immune response is mediated by numerous, diverse and rapidly evolving Cas (CRISPR-associated) proteins, several of which form the Cascade complex involved in the processing of CRISPR transcripts and cleavage of the target DNA. Comparative analysis of the Cas protein sequences and structures led to the classification of the CRISPR-Cas systems into three Types (I, II and III). Results A detailed comparison of the available sequences and structures of Cas proteins revealed several unnoticed homologous relationships. The Repeat-Associated Mysterious Proteins (RAMPs) containing a distinct form of the RNA Recognition Motif (RRM) domain, which are major components of the CRISPR-Cas systems, were classified into three large groups, Cas5, Cas6 and Cas7. Each of these groups includes many previously uncharacterized proteins now shown to adopt the RAMP structure. Evidence is presented that large subunits contained in most of the CRISPR-Cas systems could be homologous to Cas10 proteins which contain a polymerase-like Palm domain and are predicted to be enzymatically active in Type III CRISPR-Cas systems but inactivated in Type I systems. These findings, the fact that the CRISPR polymerases, RAMPs and Cas2 all contain core RRM domains, and distinct gene arrangements in the three types of CRISPR-Cas systems together provide for a simple scenario for origin and evolution of the CRISPR-Cas machinery. Under this scenario, the CRISPR-Cas system originated in thermophilic Archaea and subsequently spread horizontally among prokaryotes. Conclusions Because of the extreme diversity of CRISPR-Cas systems, in-depth sequence and structure comparison continue to

  1. Substrate generation for endonucleases of CRISPR/cas systems.

    PubMed

    Zoephel, Judith; Dwarakanath, Srivatsa; Richter, Hagen; Plagens, André; Randau, Lennart

    2012-01-01

    The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1) (1-3). Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems (4). The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster (5). The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs (6-8). These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence (9). A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity(10). Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA (11,12) . These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases (4). Here, we present methods to generate crRNAs and precursor-cRNAs for

  2. Protein engineering of Cas9 for enhanced function

    PubMed Central

    Oakes, Benjamin L.; Nadler, Dana C.; Savage, David F.

    2015-01-01

    CRISPR/Cas systems act to protect the cell from invading nucleic acids in many bacteria and archaea. The bacterial immune protein Cas9 is a component of one of these CRISPR/Cas systems and has recently been adapted as a tool for genome editing. Cas9 is easily targeted to bind and cleave a DNA sequence via a complimentary RNA; this straightforward programmability has gained Cas9 rapid acceptance in the field of genetic engineering. While this technology has developed quickly, a number of challenges regarding Cas9 specificity, efficiency, fusion protein function, and spatiotemporal control within the cell remain. In this work, we develop a platform for constructing novel proteins to address these open questions. We demonstrate methods to either screen or select active Cas9 mutants and use the screening technique to isolate functional Cas9 variants with a heterologous PDZ domain inserted directly into the protein. As a proof of concept, these methods lay the groundwork for the future construction of diverse Cas9 proteins. Straightforward and accessible techniques for genetic editing are helping to elucidate biology in new and exciting ways; a platform to engineer new functionalities into Cas9 will help forge the next generation of genome modifying tools. PMID:25398355

  3. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri.

    PubMed

    Oh, Jee-Hwan; van Pijkeren, Jan-Peter

    2014-01-01

    Clustered regularly interspaced palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) nuclease protect bacteria and archeae from foreign DNA by site-specific cleavage of incoming DNA. Type-II CRISPR-Cas systems, such as the Streptococcus pyogenes CRISPR-Cas9 system, can be adapted such that Cas9 can be guided to a user-defined site in the chromosome to introduce double-stranded breaks. Here we have developed and optimized CRISPR-Cas9 function in the lactic acid bacterium Lactobacillus reuteri ATCC PTA 6475. We established proof-of-concept showing that CRISPR-Cas9 selection combined with single-stranded DNA (ssDNA) recombineering is a realistic approach to identify at high efficiencies edited cells in a lactic acid bacterium. We show for three independent targets that subtle changes in the bacterial genome can be recovered at efficiencies ranging from 90 to 100%. By combining CRISPR-Cas9 and recombineering, we successfully applied codon saturation mutagenesis in the L. reuteri chromosome. Also, CRISPR-Cas9 selection is critical to identify low-efficiency events such as oligonucleotide-mediated chromosome deletions. This also means that CRISPR-Cas9 selection will allow identification of recombinant cells in bacteria with low recombineering efficiencies, eliminating the need for ssDNA recombineering optimization procedures. We envision that CRISPR-Cas genome editing has the potential to change the landscape of genome editing in lactic acid bacteria, and other Gram-positive bacteria. PMID:25074379

  4. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus

    PubMed Central

    Vale, Pedro F.; Lafforgue, Guillaume; Gatchitch, Francois; Gardan, Rozenn; Moineau, Sylvain; Gandon, Sylvain

    2015-01-01

    CRISPR-Cas is a form of adaptive sequence-specific immunity in microbes. This system offers unique opportunities for the study of coevolution between bacteria and their viral pathogens, bacteriophages. A full understanding of the coevolutionary dynamics of CRISPR-Cas requires knowing the magnitude of the cost of resisting infection. Here, using the gram-positive bacterium Streptococcus thermophilus and its associated virulent phage 2972, a well-established model system harbouring at least two type II functional CRISPR-Cas systems, we obtained different fitness measures based on growth assays in isolation or in pairwise competition. We measured the fitness cost associated with different components of this adaptive immune system: the cost of Cas protein expression, the constitutive cost of increasing immune memory through additional spacers, and the conditional costs of immunity during phage exposure. We found that Cas protein expression is particularly costly, as Cas-deficient mutants achieved higher competitive abilities than the wild-type strain with functional Cas proteins. Increasing immune memory by acquiring up to four phage-derived spacers was not associated with fitness costs. In addition, the activation of the CRISPR-Cas system during phage exposure induces significant but small fitness costs. Together these results suggest that the costs of the CRISPR-Cas system arise mainly due to the maintenance of the defence system. We discuss the implications of these results for the evolution of CRISPR-Cas-mediated immunity. PMID:26224708

  5. Expanding the catalog of cas genes with metagenomes.

    PubMed

    Zhang, Quan; Doak, Thomas G; Ye, Yuzhen

    2014-02-01

    The CRISPR (clusters of regularly interspaced short palindromic repeats)-Cas adaptive immune system is an important defense system in bacteria, providing targeted defense against invasions of foreign nucleic acids. CRISPR-Cas systems consist of CRISPR loci and cas (CRISPR-associated) genes: sequence segments of invaders are incorporated into host genomes at CRISPR loci to generate specificity, while adjacent cas genes encode proteins that mediate the defense process. We pursued an integrated approach to identifying putative cas genes from genomes and metagenomes, combining similarity searches with genomic neighborhood analysis. Application of our approach to bacterial genomes and human microbiome datasets allowed us to significantly expand the collection of cas genes: the sequence space of the Cas9 family, the key player in the recently engineered RNA-guided platforms for genome editing in eukaryotes, is expanded by at least two-fold with metagenomic datasets. We found genes in cas loci encoding other functions, for example, toxins and antitoxins, confirming the recently discovered potential of coupling between adaptive immunity and the dormancy/suicide systems. We further identified 24 novel Cas families; one novel family contains 20 proteins, all identified from the human microbiome datasets, illustrating the importance of metagenomics projects in expanding the diversity of cas genes. PMID:24319142

  6. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice

    PubMed Central

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2016-01-01

    Recent reports of CRISPR- (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) mediated heritable mutagenesis in plants highlight the need for accuracy of the mutagenesis directed by this system. Off-target mutations are an important issue when considering functional gene analysis, as well as the molecular breeding of crop plants with large genome size, i.e. with many duplicated genes, and where the whole-genome sequence is still lacking. In mammals, off-target mutations can be suppressed by using Cas9 paired nickases together with paired guide RNAs (gRNAs). However, the performance of Cas9 paired nickases has not yet been fully assessed in plants. Here, we analyzed on- and off-target mutation frequency in rice calli and regenerated plants using Cas9 nuclease or Cas9 nickase with paired gRNAs. When Cas9 paired nickases were used, off-target mutations were fully suppressed in rice calli and regenerated plants. However, on-target mutation frequency also decreased compared with that induced by the Cas9 paired nucleases system. Since the gRNA sequence determines specific binding of Cas9 protein–gRNA ribonucleoproteins at the targeted sequence, the on-target mutation frequency of Cas9 paired nickases depends on the design of paired gRNAs. Our results suggest that a combination of gRNAs that can induce mutations at high efficiency with Cas9 nuclease should be used together with Cas9 nickase. Furthermore, we confirmed that a combination of gRNAs containing a one nucleotide (1 nt) mismatch toward the target sequence could not induce mutations when expressed with Cas9 nickase. Our results clearly show the effectiveness of Cas9 paired nickases in delivering on-target specific mutations. PMID:26936792

  7. Efficient Mitochondrial Genome Editing by CRISPR/Cas9

    PubMed Central

    Jo, Areum; Ham, Sangwoo; Lee, Gum Hwa; Lee, Yun-Il; Kim, SangSeong; Lee, Yun-Song; Shin, Joo-Ho; Lee, Yunjong

    2015-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system has been widely used for nuclear DNA editing to generate mutations or correct specific disease alleles. Despite its flexible application, it has not been determined if CRISPR/Cas9, originally identified as a bacterial defense system against virus, can be targeted to mitochondria for mtDNA editing. Here, we show that regular FLAG-Cas9 can localize to mitochondria to edit mitochondrial DNA with sgRNAs targeting specific loci of the mitochondrial genome. Expression of FLAG-Cas9 together with gRNA targeting Cox1 and Cox3 leads to cleavage of the specific mtDNA loci. In addition, we observed disruption of mitochondrial protein homeostasis following mtDNA truncation or cleavage by CRISPR/Cas9. To overcome nonspecific distribution of FLAG-Cas9, we also created a mitochondria-targeted Cas9 (mitoCas9). This new version of Cas9 localizes only to mitochondria; together with expression of gRNA targeting mtDNA, there is specific cleavage of mtDNA. MitoCas9-induced reduction of mtDNA and its transcription leads to mitochondrial membrane potential disruption and cell growth inhibition. This mitoCas9 could be applied to edit mtDNA together with gRNA expression vectors without affecting genomic DNA. In this brief study, we demonstrate that mtDNA editing is possible using CRISPR/Cas9. Moreover, our development of mitoCas9 with specific localization to the mitochondria should facilitate its application for mitochondrial genome editing. PMID:26448933

  8. Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes.

    PubMed

    Oliveros, Juan C; Franch, Mònica; Tabas-Madrid, Daniel; San-León, David; Montoliu, Lluis; Cubas, Pilar; Pazos, Florencio

    2016-07-01

    The CRISPR/Cas technology is enabling targeted genome editing in multiple organisms with unprecedented accuracy and specificity by using RNA-guided nucleases. A critical point when planning a CRISPR/Cas experiment is the design of the guide RNA (gRNA), which directs the nuclease and associated machinery to the desired genomic location. This gRNA has to fulfil the requirements of the nuclease and lack homology with other genome sites that could lead to off-target effects. Here we introduce the Breaking-Cas system for the design of gRNAs for CRISPR/Cas experiments, including those based in the Cas9 nuclease as well as others recently introduced. The server has unique features not available in other tools, including the possibility of using all eukaryotic genomes available in ENSEMBL (currently around 700), placing variable PAM sequences at 5' or 3' and setting the guide RNA length and the scores per nucleotides. It can be freely accessed at: http://bioinfogp.cnb.csic.es/tools/breakingcas, and the code is available upon request. PMID:27166368

  9. Advances in therapeutic CRISPR/Cas9 genome editing.

    PubMed

    Savić, Nataša; Schwank, Gerald

    2016-02-01

    Targeted nucleases are widely used as tools for genome editing. Two years ago the clustered regularly interspaced short palindromic repeat (CRISPR)-associated Cas9 nuclease was used for the first time, and since then has largely revolutionized the field. The tremendous success of the CRISPR/Cas9 genome editing tool is powered by the ease design principle of the guide RNA that targets Cas9 to the desired DNA locus, and by the high specificity and efficiency of CRISPR/Cas9-generated DNA breaks. Several studies recently used CRISPR/Cas9 to successfully modulate disease-causing alleles in vivo in animal models and ex vivo in somatic and induced pluripotent stem cells, raising hope for therapeutic genome editing in the clinics. In this review, we will summarize and discuss such preclinical CRISPR/Cas9 gene therapy reports. PMID:26470680

  10. Inducible in vivo genome editing with CRISPR/Cas9

    PubMed Central

    O'Rourke, Kevin P; Muley, Ashlesha; Kastenhuber, Edward R; Livshits, Geulah; Tschaharganeh, Darjus F; Socci, Nicholas D; Lowe, Scott W

    2015-01-01

    CRISPR/Cas9-based genome editing enables the rapid genetic manipulation of any genomic locus without the need for gene targeting by homologous recombination. Here we describe a conditional transgenic approach that allows temporal control of CRISPR/Cas9 activity for inducible genome editing in adult mice. We show that doxycycline-regulated Cas9 induction enables widespread gene disruption in multiple tissues and that limiting the duration of Cas9 expression or using a Cas9D10A (Cas9n) variant, can regulate the frequency and size of target gene modifications, respectively. Further, we show that the inducible CRISPR (iCRISPR) system can be used effectively to create biallelic mutation in multiple target loci and thus, provides a flexible and fast platform to study loss of function phenotypes in vivo. PMID:25690852

  11. Intrication temporelle et communication quantique

    NASA Astrophysics Data System (ADS)

    Bussieres, Felix

    Quantum communication is the art of transferring a quantum state from one place to another and the study of tasks that can be accomplished with it. This thesis is devoted to the development of tools and tasks for quantum communication in a real-world setting. These were implemented using an underground optical fibre link deployed in an urban environment. The technological and theoretical innovations presented here broaden the range of applications of time-bin entanglement through new methods of manipulating time-bin qubits, a novel model for characterizing sources of photon pairs, new ways of testing non-locality and the design and the first implementation of a new loss-tolerant quantum coin-flipping protocol. Manipulating time-bin qubits. A single photon is an excellent vehicle in which a qubit, the fundamental unit of quantum information, can be encoded. In particular, the time-bin encoding of photonic qubits is well suited for optical fibre transmission. Before this thesis, the applications of quantum communication based on the time-bin encoding were limited due to the lack of methods to implement arbitrary operations and measurements. We have removed this restriction by proposing the first methods to realize arbitrary deterministic operations on time-bin qubits as well as single qubit measurements in an arbitrary basis. We applied these propositions to the specific case of optical measurement-based quantum computing and showed how to implement the feedforward operations, which are essential to this model. This therefore opens new possibilities for creating an optical quantum computer, but also for other quantum communication tasks. Characterizing sources of photon pairs. Experimental quantum communication requires the creation of single photons and entangled photons. These two ingredients can be obtained from a source of photon pairs based on non-linear spontaneous processes. Several tasks in quantum communication require a precise knowledge of the properties of the source being used. We developed and implemented a fast and simple method to characterize a source of photon pairs. This method is well suited for a realistic setting where experimental conditions, such as channel transmittance, may fluctuate, and for which the characterization of the source has to be done in real time. Testing the non-locality of time-bin entanglement. Entanglement is a resource needed for the realization of many important tasks in quantum communication. It also allows two physical systems to be correlated in a way that cannot be explained by classical physics; this manifestation of entanglement is called non-locality. We built a source of time-bin entangled photonic qubits and characterized it with the new methods implementing arbitrary single qubit measurements that we developed. This allowed us to reveal the non-local nature of our source of entanglement in ways that were never implemented before. It also opens the door to study previously untested features of non-locality using this source. Theses experiments were performed in a realistic setting where quantum (non-local) correlations were observed even after transmission of one of the entangled qubits over 12.4 km of an underground optical fibre. Flipping quantum coins. Quantum coin-flipping is a quantum cryptographic primitive proposed in 1984, that is when the very first steps of quantum communication were being taken, where two players alternate in sending classical and quantum information in order to generate a shared random bit. The use of quantum information is such that a potential cheater cannot force the outcome to his choice with certainty. Classically, however, one of the players can always deterministically choose the outcome. Unfortunately, the security of all previous quantum coin-flipping protocols is seriously compromised in the presence of losses on the transmission channel, thereby making this task impractical. We found a solution to this problem and obtained the first loss-tolerant quantum coin-flipping protocol whose security is independent of the amount of the losses. We have also experimentally demonstrated our loss-tolerant protocol using our source of time-bin entanglement combined with our arbitrary single qubit measurement methods. This experiment took place in a realistic setting where qubits travelled over an underground optical fibre link. This new task thus joins quantum key distribution as a practical application of quantum communication. Keywords. quantum communication, photonics, time-bin encoding, source of photon pairs, heralded single photon source, entanglement, non-locality, time-bin entanglement, hybrid entanglement, quantum network, quantum cryptography, quantum coin-flipping, measurement-based quantum computation, telecommunication, optical fibre, nonlinear optics.

  12. Evaporated CaS thin films for AC electroluminescence devices

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Tanaka, S.; Shanker, V.; Shiiki, M.; Deguchi, H.

    1985-08-01

    The growth behavior of evaporated CaS thin films has been investigated to achieve bright electroluminescence. The crystallinity of CaS films is improved with substrate temperature and for temperatures higher than 300°C, the films orient to the (200) plane. Sulfur coevaporation further helps to form a more perfect film even at lower temperatures. A CaS: Ce,Cl electroluminescent thin film device has been fabricated with a brightness of 650 cd/m 2.

  13. Foreign DNA capture during CRISPR–Cas adaptive immunity

    PubMed Central

    Nuñez, James K.; Harrington, Lucas B.; Kranzusch, Philip J.; Engelman, Alan N.; Doudna, Jennifer A.

    2015-01-01

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30–40 base pair (bp) lengths into clustered regularly interspaced short palindromic repeats (CRISPR) loci as spacer segments1–6. The universally conserved Cas1–Cas2 integrase complex catalyzes spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases7–13. How the Cas1–Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1–Cas2 complex bound to cognate 33 nucleotide (nt) protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3′–OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo2–4. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1–Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci. PMID:26503043

  14. CRISPR-Cas9-guided Genome Engineering in C. elegans

    PubMed Central

    Kim, Hyun-Min; Colaiácovo, Monica P.

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is successfully being used for efficient and targeted genome editing in various organisms including the nematode C. elegans. Recent studies developed various CRISPR-Cas9 approaches to enhance genome engineering via two major DNA double-strand break repair pathways: non-homologous end joining and homologous recombination. Here we describe a protocol for Cas9-mediated C. elegans genome editing together with single guide RNA (sgRNA) and repair template cloning and injection methods required for delivering Cas9, sgRNAs and repair template DNA into the C. elegans germline. PMID:27366893

  15. Foreign DNA capture during CRISPR-Cas adaptive immunity.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Kranzusch, Philip J; Engelman, Alan N; Doudna, Jennifer A

    2015-11-26

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30-40-base-pair lengths into clustered regularly interspaced short palindromic repeat (CRISPR) loci as spacer segments. The universally conserved Cas1-Cas2 integrase complex catalyses spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases. How the Cas1-Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1-Cas2 complex bound to cognate 33-nucleotide protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3'-OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1-Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci. PMID:26503043

  16. Cas9 as a versatile tool for engineering biology

    PubMed Central

    Mali, Prashant; Esvelt, Kevin M; Church, George M

    2014-01-01

    RNA-guided Cas9 nucleases derived from clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have dramatically transformed our ability to edit the genomes of diverse organisms. We believe tools and techniques based on Cas9, a single unifying factor capable of colocalizing RNA, DNA and protein, will grant unprecedented control over cellular organization, regulation and behavior. Here we describe the Cas9 targeting methodology, detail current and prospective engineering advances and suggest potential applications ranging from basic science to the clinic. PMID:24076990

  17. Optical Control of CRISPR/Cas9 Gene Editing

    PubMed Central

    Hemphill, James; Borchardt, Erin K.; Brown, Kalyn; Asokan, Aravind; Deiters, Alexander

    2016-01-01

    The CRISPR/Cas9 system has emerged as an important tool in biomedical research for a wide range of applications, with significant potential for genome engineering and gene therapy. In order to achieve conditional control of the CRISPR/Cas9 system, a genetically encoded light-activated Cas9 was engineered through the site-specific installation of a caged lysine amino acid. Several potential lysine residues were identified as viable caging sites that can be modified to optically control Cas9 function, as demonstrated through optical activation and deactivation of both exogenous and endogenous gene function. PMID:25905628

  18. Tenth anniversary of CAS ONLINE service : What CAS services should be in the new era of chemical information

    NASA Astrophysics Data System (ADS)

    Kostakos, Charles N.

    Chemical Abstracts Service celebrated 10th anniversary of CAS online information service in 1990. A speech given on the occasion reviewed history of the CAS ONLINE, in relation to its most important benefits for scientists and engineers. The development of STN international, the network through which CAS ONLINE is accessible around the world, was also discussed in the speech. The CAS ONLINE now contains a wide variety of files relating to chemical field including CA file, Registry file. CA previews,. CASREACT, CIN. MARPAT, etc for supplying chemical information worldwide.

  19. Superorbital variability of the X-ray flux in the Be-donor binaries SXP 138, GX-304, and γ Cas

    NASA Astrophysics Data System (ADS)

    Chashkina, A. A.; Abolmasov, P. K.; Biryukov, A. V.; Shakura, N. I.

    2015-06-01

    RXTE observations of the X-ray binary systems SXP 138, GX-304, and γ Cas in 1997-2011 have shown for the first time that these objects (X-ray binaries with Be donors) display X-ray flux variations on timescales of ˜1000 days. This timescale is about 10 times longer than their orbital periods, and is comparable to the total time of the observations. The observed variations are apparently not strictly periodic and represent stochastic variability, as is characteristic of such systems in the optical. γ Cas is considered as an example. The series of optical observations of this system available in the AAVSO database covers 78 years, and is much longer than the timescale of the variability studied. Our analysis of this series has shown that γ Cas variability on a timescale of tens of years is predominantly stochastic with a power-law spectrum.

  20. Recent Advances in Genome Editing Using CRISPR/Cas9

    PubMed Central

    Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding. PMID:27252719

  1. Cas9 Variants Expand the Target Repertoire in Caenorhabditis elegans.

    PubMed

    Bell, Ryan T; Fu, Becky X H; Fire, Andrew Z

    2016-02-01

    The proliferation of CRISPR/Cas9-based methods in Caenorhabditis elegans has enabled efficient genome editing and precise genomic tethering of Cas9 fusion proteins. Experimental designs using CRISPR/Cas9 are currently limited by the need for a protospacer adjacent motif (PAM) in the target with the sequence NGG. Here we report the characterization of two modified Cas9 proteins in C. elegans that recognize NGA and NGCG PAMs. We found that each variant could stimulate homologous recombination with a donor template at multiple loci and that PAM specificity was comparable to that of wild-type Cas9. To directly compare effectiveness, we used CRISPR/Cas9 genome editing to generate a set of assay strains with a common single-guide RNA (sgRNA) target sequence, but that differ in the juxtaposed PAM (NGG, NGA, or NGCG). In this controlled setting, we determined that the NGA PAM Cas9 variant can be as effective as wild-type Cas9. We similarly edited a genomic target to study the influence of the base following the NGA PAM. Using four strains with four NGAN PAMs differing only at the fourth position and adjacent to the same sgRNA target, we observed that efficient homologous replacement was attainable with any base in the fourth position, with an NGAG PAM being the most effective. In addition to demonstrating the utility of two Cas9 mutants in C. elegans and providing reagents that permit CRISPR/Cas9 experiments with fewer restrictions on potential targets, we established a means to benchmark the efficiency of different Cas9::PAM combinations that avoids variations owing to differences in the sgRNA sequence. PMID:26680661

  2. CRISPR-Cas9 Genome Engineering in Saccharomyces cerevisiae Cells.

    PubMed

    Ryan, Owen W; Poddar, Snigdha; Cate, Jamie H D

    2016-01-01

    This protocol describes a method for CRISPR-Cas9-mediated genome editing that results in scarless and marker-free integrations of DNA into Saccharomyces cerevisiae genomes. DNA integration results from cotransforming (1) a single plasmid (pCAS) that coexpresses the Cas9 endonuclease and a uniquely engineered single guide RNA (sgRNA) expression cassette and (2) a linear DNA molecule that is used to repair the chromosomal DNA damage by homology-directed repair. For target specificity, the pCAS plasmid requires only a single cloning modification: replacing the 20-bp guide RNA sequence within the sgRNA cassette. This CRISPR-Cas9 protocol includes methods for (1) cloning the unique target sequence into pCAS, (2) assembly of the double-stranded DNA repair oligonucleotides, and (3) cotransformation of pCAS and linear repair DNA into yeast cells. The protocol is technically facile and requires no special equipment. It can be used in any S. cerevisiae strain, including industrial polyploid isolates. Therefore, this CRISPR-Cas9-based DNA integration protocol is achievable by virtually any yeast genetics and molecular biology laboratory. PMID:27250940

  3. Interacting Parallel Constructions of Knowledge in a CAS Context

    ERIC Educational Resources Information Center

    Kidron, Ivy; Dreyfus, Tommy

    2010-01-01

    We consider the influence of a CAS context on a learner's process of constructing a justification for the bifurcations in a logistic dynamical process. We describe how instrumentation led to cognitive constructions and how the roles of the learner and the CAS intertwine, especially close to the branching and combining of constructing actions. The…

  4. Semiotic and Discursive Variables in CAS-Based Didactical Engineering.

    ERIC Educational Resources Information Center

    Winslow, Carl

    2003-01-01

    Presents a semiotic analysis of the potential of computer algebra systems (CAS) for enabling mathematical activity on a conceptual level higher than usual. Illustrates examples of theoretical points from a development project in the context of a first year university course in calculus. Discusses how CAS may be used in a didactical analysis and in…

  5. Transformation of OODT CAS to Perform Larger Tasks

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris; Freeborn, Dana; Crichton, Daniel; Hughes, John; Ramirez, Paul; Hardman, Sean; Woollard, David; Kelly, Sean

    2008-01-01

    A computer program denoted OODT CAS has been transformed to enable performance of larger tasks that involve greatly increased data volumes and increasingly intensive processing of data on heterogeneous, geographically dispersed computers. Prior to the transformation, OODT CAS (also alternatively denoted, simply, 'CAS') [wherein 'OODT' signifies 'Object-Oriented Data Technology' and 'CAS' signifies 'Catalog and Archive Service'] was a proven software component used to manage scientific data from spaceflight missions. In the transformation, CAS was split into two separate components representing its canonical capabilities: file management and workflow management. In addition, CAS was augmented by addition of a resource-management component. This third component enables CAS to manage heterogeneous computing by use of diverse resources, including high-performance clusters of computers, commodity computing hardware, and grid computing infrastructures. CAS is now more easily maintainable, evolvable, and reusable. These components can be used separately or, taking advantage of synergies, can be used together. Other elements of the transformation included addition of a separate Web presentation layer that supports distribution of data products via Really Simple Syndication (RSS) feeds, and provision for full Resource Description Framework (RDF) exports of metadata.

  6. 48 CFR 970.3002-1 - CAS applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....3002-1 CAS applicability. The provisions of 48 CFR part 30 and 48 CFR chapter 99 (FAR Appendix) shall... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false CAS applicability. 970.3002-1 Section 970.3002-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY...

  7. 48 CFR 970.3002-1 - CAS applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....3002-1 CAS applicability. The provisions of 48 CFR part 30 and 48 CFR chapter 99 (FAR Appendix) shall... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false CAS applicability. 970.3002-1 Section 970.3002-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY...

  8. 48 CFR 970.3002-1 - CAS applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....3002-1 CAS applicability. The provisions of 48 CFR part 30 and 48 CFR chapter 99 (FAR Appendix) shall... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false CAS applicability. 970.3002-1 Section 970.3002-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY...

  9. Teaching Undergraduate Mathematics Using CAS Technology: Issues and Prospects

    ERIC Educational Resources Information Center

    Tobin, Patrick C.; Weiss, Vida

    2016-01-01

    The use of handheld CAS technology in undergraduate mathematics courses in Australia is paradoxically shrinking under sustained disapproval or disdain from the professional mathematics community. Mathematics education specialists argue with their mathematics colleagues over a range of issues in course development and this use of CAS or even…

  10. 48 CFR 970.3002-1 - CAS applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....3002-1 CAS applicability. The provisions of 48 CFR part 30 and 48 CFR chapter 99 (FAR Appendix) shall... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false CAS applicability. 970.3002-1 Section 970.3002-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY...

  11. 48 CFR 970.3002-1 - CAS applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....3002-1 CAS applicability. The provisions of 48 CFR part 30 and 48 CFR chapter 99 (FAR Appendix) shall... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false CAS applicability. 970.3002-1 Section 970.3002-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY...

  12. From Calculus to Dynamical Systems through DGS and CAS

    ERIC Educational Resources Information Center

    García, Jeanett López; Zamudio, Jorge Javier Jiménez

    2015-01-01

    Several factors have motivated the use of CAS or DGS in the teaching-learning process, such as: the development of new technologies, the availability of computers, and the widespread use of the Internet, among others. Even more, the trend to include CAS and DGS in the curricula of some undergraduate studies has resulted in the instruction of the…

  13. Optimization of genome editing through CRISPR-Cas9 engineering.

    PubMed

    Zhang, Jian-Hua; Adikaram, Poorni; Pandey, Mritunjay; Genis, Allison; Simonds, William F

    2016-04-01

    CRISPR (Clustered Regularly-Interspaced Short Palindromic Repeats)-Cas9 (CRISPR associated protein 9) has rapidly become the most promising genome editing tool with great potential to revolutionize medicine. Through guidance of a 20 nucleotide RNA (gRNA), CRISPR-Cas9 finds and cuts target protospacer DNA precisely 3 base pairs upstream of a PAM (Protospacer Adjacent Motif). The broken DNA ends are repaired by either NHEJ (Non-Homologous End Joining) resulting in small indels, or by HDR (Homology Directed Repair) for precise gene or nucleotide replacement. Theoretically, CRISPR-Cas9 could be used to modify any genomic sequences, thereby providing a simple, easy, and cost effective means of genome wide gene editing. However, the off-target activity of CRISPR-Cas9 that cuts DNA sites with imperfect matches with gRNA have been of significant concern because clinical applications require 100% accuracy. Additionally, CRISPR-Cas9 has unpredictable efficiency among different DNA target sites and the PAM requirements greatly restrict its genome editing frequency. A large number of efforts have been made to address these impeding issues, but much more is needed to fully realize the medical potential of CRISPR-Cas9. In this article, we summarize the existing problems and current advances of the CRISPR-Cas9 technology and provide perspectives for the ultimate perfection of Cas9-mediated genome editing. PMID:27340770

  14. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.

    PubMed

    Generoso, Wesley Cardoso; Gottardi, Manuela; Oreb, Mislav; Boles, Eckhard

    2016-08-01

    CRISPR-Cas has become a powerful technique for genetic engineering of yeast. Here, we present an improved version by using only one single plasmid expressing Cas9 and one or two guide-RNAs. A high gene deletion efficiency was achieved even with simultaneous recombination cloning of the plasmid and deletion in industrial strains. PMID:27327211

  15. Recent Progress in CRISPR/Cas9 Technology.

    PubMed

    Mei, Yue; Wang, Yan; Chen, Huiqian; Sun, Zhong Sheng; Ju, Xing-Da

    2016-02-20

    The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, a simple and efficient tool for genome editing, has experienced rapid progress in its technology and applicability in the past two years. Here, we review the recent advances in CRISPR/Cas9 technology and the ways that have been adopted to expand our capacity for precise genome manipulation. First, we introduce the mechanism of CRISPR/Cas9, including its biochemical and structural implications. Second, we highlight the latest improvements in the CRISPR/Cas9 system, especially Cas9 protein modifications for customization. Third, we review its current applications, in which the versatile CRISPR/Cas9 system was employed to edit the genome, epigenome, or RNA of various organisms. Although CRISPR/Cas9 allows convenient genome editing accompanied by many benefits, we should not ignore the significant ethical and biosafety concerns that it raises. Finally, we discuss the prospective applications and challenges of several promising techniques adapted from CRISPR/Cas9. PMID:26924689

  16. Cas9-mediated targeting of viral RNA in eukaryotic cells

    PubMed Central

    Price, Aryn A.; Sampson, Timothy R.; Ratner, Hannah K.; Grakoui, Arash; Weiss, David S.

    2015-01-01

    Clustered, regularly interspaced, short palindromic repeats–CRISPR associated (CRISPR-Cas) systems are prokaryotic RNA-directed endonuclease machineries that act as an adaptive immune system against foreign genetic elements. Using small CRISPR RNAs that provide specificity, Cas proteins recognize and degrade nucleic acids. Our previous work demonstrated that the Cas9 endonuclease from Francisella novicida (FnCas9) is capable of targeting endogenous bacterial RNA. Here, we show that FnCas9 can be directed by an engineered RNA-targeting guide RNA to target and inhibit a human +ssRNA virus, hepatitis C virus, within eukaryotic cells. This work reveals a versatile and portable RNA-targeting system that can effectively function in eukaryotic cells and be programmed as an antiviral defense. PMID:25918406

  17. Conditional Control of CRISPR/Cas9 Function.

    PubMed

    Zhou, Wenyuan; Deiters, Alexander

    2016-04-25

    The recently discovered CRISPR/Cas9 endonuclease system, comprised of a guide RNA for the recognition of a DNA target and the Cas9 nuclease protein for binding and processing the target, has been extensively studied and has been widely applied in genome editing, synthetic biology, and transcriptional modulation in cells and animals. Toward more precise genomic modification and further expansion of the CRISPR/Cas9 system as a spatiotemporally controlled gene regulatory system, several approaches of conditional activation of Cas9 function using small molecules and light have recently been developed. These methods have led to improvements in the genome editing specificity of the CRISPR/Cas9 system and enabled its activation with temporal and spatial precision. PMID:26996256

  18. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cells

    PubMed Central

    Mercx, Sébastien; Tollet, Jérémie; Magy, Bertrand; Navarre, Catherine; Boutry, Marc

    2016-01-01

    Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells. PMID:26870061

  19. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cells.

    PubMed

    Mercx, Sébastien; Tollet, Jérémie; Magy, Bertrand; Navarre, Catherine; Boutry, Marc

    2016-01-01

    Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells. PMID:26870061

  20. An Approach to the Study of Systems of Equations with Geogebra: Learning Opportunities Provided by the Integration of CAS View: Story of a Workshop Experience with Teachers

    ERIC Educational Resources Information Center

    Alejandra, Almirón; Fernando, Bifano; Leonardo, Lupinacci

    2015-01-01

    Solving systems of equations at school, at least in Argentina, is usually a task that students are given as a series of techniques that "allow" them to find a solution. How to overcome educational obstacles that are generated from a fragmented approach of knowledge? What can DGS do, in particular the CAS environment? What epistemic and…

  1. Implementing the CAS Standards: The Implementation of the CAS Standards in Student Affairs as a Comprehensive Assessment Approach

    ERIC Educational Resources Information Center

    Dorman, Jesse A.

    2012-01-01

    The increasing use of the CAS standards as a comprehensive assessment approach in divisions of student affairs necessitates a more in-depth understanding of how the CAS standards are being implemented in these settings. In response to increasing calls for improvement, accountability and professionalism in student affairs (Bresciani, 2006; Cooper…

  2. Interference activity of a minimal Type I CRISPR–Cas system from Shewanella putrefaciens

    PubMed Central

    Dwarakanath, Srivatsa; Brenzinger, Susanne; Gleditzsch, Daniel; Plagens, André; Klingl, Andreas; Thormann, Kai; Randau, Lennart

    2015-01-01

    Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. PMID:26350210

  3. Efficient chromosomal gene modification with CRISPR/cas9 and PCR-based homologous recombination donors in cultured Drosophila cells

    PubMed Central

    Böttcher, Romy; Hollmann, Manuel; Merk, Karin; Nitschko, Volker; Obermaier, Christina; Philippou-Massier, Julia; Wieland, Isabella; Gaul, Ulrike; Förstemann, Klaus

    2014-01-01

    The ability to edit the genome is essential for many state-of-the-art experimental paradigms. Since DNA breaks stimulate repair, they can be exploited to target site-specific integration. The clustered, regularly interspaced, short palindromic repeats (CRISPR)/cas9 system from Streptococcus pyogenes has been harnessed into an efficient and programmable nuclease for eukaryotic cells. We thus combined DNA cleavage by cas9, the generation of homologous recombination donors by polymerase chain reaction (PCR) and transient depletion of the non-homologous end joining factor lig4. Using cultured Drosophila melanogaster S2-cells and the phosphoglycerate kinase gene as a model, we reached targeted integration frequencies of up to 50% in drug-selected cell populations. Homology arms as short as 29 nt appended to the PCR primer resulted in detectable integration, slightly longer extensions are beneficial. We confirmed established rules for S. pyogenes cas9 sgRNA design and demonstrate that the complementarity region allows length variation and 5′-extensions. This enables generation of U6-promoter fusion templates by overlap-extension PCR with a standardized protocol. We present a series of PCR template vectors for C-terminal protein tagging and clonal Drosophila S2 cell lines with stable expression of a myc-tagged cas9 protein. The system can be used for epitope tagging or reporter gene knock-ins in an experimental setup that can in principle be fully automated. PMID:24748663

  4. Pilomatricome: étude de 22 cas

    PubMed Central

    Nasreddine, Fatima Zahra; Hali, Fouzia; Chiheb, Soumiya

    2016-01-01

    Le pilomatricome est une tumeur cutanée fréquente et bénigne du follicule pileux chez l'enfant. C'est une tumeur annexielle souvent méconnue et confondue avec d'autres lésions cutanées. Les localisations habituelles sont la tête et le cou. Le but de ce travail est de rapporter une série de 22 cas comportant des formes inhabituelles colligées au service de dermatologie sur une période allant de Janvier 2006 jusqu'au Mai 2015. L’étude a concerné 16 femmes et 6 hommes. La moyenne d’âge était de 23,3 ans (4-80 ans). La localisation cervico faciale a été observée dans 12 cas, 2 patients avaient des localisations multiples, un garçon de 4ans avait une localisation au niveau fronto-temporal et une fillette de 14 ans avait une localisation au niveau du visage et de l'avant-bras, et un patient de 48 ans avait une localisation sous unguéale. L'aspect clinique était typique dans tous les cas avec des nodules sous cutanés de consistance pierreuse. Tous les patients ont bénéficié d'une exérèse des nodules sous anesthésie locale. L’étude histologique était en faveur d'un épithélioma momifié de Malherbe d'exérèse complète sans signes de malignité. Aucun patient n'a présenté de rechute. L'originalité de notre étude réside dans la présence de localisations exceptionnelles au niveau latéro-vertébral, des membres et sous-unguéale, l’âge de survenue inhabituel à 80 ans et la présence de localisations multiples signalées chez 2 enfants. PMID:27516819

  5. CRISPR/Cas9 in Genome Editing and Beyond.

    PubMed

    Wang, Haifeng; La Russa, Marie; Qi, Lei S

    2016-06-01

    The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers. PMID:27145843

  6. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function

    PubMed Central

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-01-01

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo. DOI: http://dx.doi.org/10.7554/eLife.13450.001 PMID:27130520

  7. CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum.

    PubMed

    Pohl, C; Kiel, J A K W; Driessen, A J M; Bovenberg, R A L; Nygård, Y

    2016-07-15

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially relevant cell factory. The developed CRISPR/Cas9 toolbox is highly flexible and allows editing of new targets with minimal cloning efforts. The Cas9 protein and the sgRNA can be either delivered during transformation, as preassembled CRISPR-Cas9 ribonucleoproteins (RNPs) or expressed from an AMA1 based plasmid within the cell. The direct delivery of the Cas9 protein with in vitro synthesized sgRNA to the cells allows for a transient method for genome engineering that may rapidly be applicable for other filamentous fungi. The expression of Cas9 from an AMA1 based vector was shown to be highly efficient for marker-free gene deletions. PMID:27072635

  8. HPCCP/CAS Workshop Proceedings 1998

    NASA Technical Reports Server (NTRS)

    Schulbach, Catherine; Mata, Ellen (Editor); Schulbach, Catherine (Editor)

    1999-01-01

    This publication is a collection of extended abstracts of presentations given at the HPCCP/CAS (High Performance Computing and Communications Program/Computational Aerosciences Project) Workshop held on August 24-26, 1998, at NASA Ames Research Center, Moffett Field, California. The objective of the Workshop was to bring together the aerospace high performance computing community, consisting of airframe and propulsion companies, independent software vendors, university researchers, and government scientists and engineers. The Workshop was sponsored by the HPCCP Office at NASA Ames Research Center. The Workshop consisted of over 40 presentations, including an overview of NASA's High Performance Computing and Communications Program and the Computational Aerosciences Project; ten sessions of papers representative of the high performance computing research conducted within the Program by the aerospace industry, academia, NASA, and other government laboratories; two panel sessions; and a special presentation by Mr. James Bailey.

  9. Adaptation in CRISPR-Cas Systems.

    PubMed

    Sternberg, Samuel H; Richter, Hagen; Charpentier, Emmanuelle; Qimron, Udi

    2016-03-17

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in prokaryotes. The system preserves memories of prior infections by integrating short segments of foreign DNA, termed spacers, into the CRISPR array in a process termed adaptation. During the past 3 years, significant progress has been made on the genetic requirements and molecular mechanisms of adaptation. Here we review these recent advances, with a focus on the experimental approaches that have been developed, the insights they generated, and a proposed mechanism for self- versus non-self-discrimination during the process of spacer selection. We further describe the regulation of adaptation and the protein players involved in this fascinating process that allows bacteria and archaea to harbor adaptive immunity. PMID:26949040

  10. Characterization and evolution of Salmonella CRISPR-Cas systems.

    PubMed

    Shariat, Nikki; Timme, Ruth E; Pettengill, James B; Barrangou, Rodolphe; Dudley, Edward G

    2015-02-01

    Prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes) systems provide adaptive immunity from invasive genetic elements and encompass three essential features: (i) cas genes, (ii) a CRISPR array composed of spacers and direct repeats and (iii) an AT-rich leader sequence upstream of the array. We performed in-depth sequence analysis of the CRISPR-Cas systems in >600 Salmonella, representing four clinically prevalent serovars. Each CRISPR-Cas feature is extremely conserved in the Salmonella, and the CRISPR1 locus is more highly conserved than CRISPR2. Array composition is serovar-specific, although no convincing evidence of recent spacer acquisition against exogenous nucleic acids exists. Only 12% of spacers match phage and plasmid sequences and self-targeting spacers are associated with direct repeat variants. High nucleotide identity (>99.9%) exists across the cas operon among isolates of a single serovar and in some cases this conservation extends across divergent serovars. These observations reflect historical CRISPR-Cas immune activity, showing that this locus has ceased undergoing adaptive events. Intriguingly, the high level of conservation across divergent serovars shows that the genetic integrity of these inactive loci is maintained over time, contrasting with the canonical view that inactive CRISPR loci degenerate over time. This thorough characterization of Salmonella CRISPR-Cas systems presents new insights into Salmonella CRISPR evolution, particularly with respect to cas gene conservation, leader sequences, organization of direct repeats and protospacer matches. Collectively, our data suggest that Salmonella CRISPR-Cas systems are no longer immunogenic; rather, their impressive conservation indicates they may have an alternative function in Salmonella. PMID:25479838

  11. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani

    PubMed Central

    Zhang, Wen-Wei

    2015-01-01

    ABSTRACT The prokaryotic CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9, an RNA-guided endonuclease, has been shown to mediate efficient genome editing in a wide variety of organisms. In the present study, the CRISPR-Cas9 system has been adapted to Leishmania donovani, a protozoan parasite that causes fatal human visceral leishmaniasis. We introduced the Cas9 nuclease into L. donovani and generated guide RNA (gRNA) expression vectors by using the L. donovani rRNA promoter and the hepatitis delta virus (HDV) ribozyme. It is demonstrated within that L. donovani mainly used homology-directed repair (HDR) and microhomology-mediated end joining (MMEJ) to repair the Cas9 nuclease-created double-strand DNA break (DSB). The nonhomologous end-joining (NHEJ) pathway appears to be absent in L. donovani. With this CRISPR-Cas9 system, it was possible to generate knockouts without selection by insertion of an oligonucleotide donor with stop codons and 25-nucleotide homology arms into the Cas9 cleavage site. Likewise, we disrupted and precisely tagged endogenous genes by inserting a bleomycin drug selection marker and GFP gene into the Cas9 cleavage site. With the use of Hammerhead and HDV ribozymes, a double-gRNA expression vector that further improved gene-targeting efficiency was developed, and it was used to make precise deletion of the 3-kb miltefosine transporter gene (LdMT). In addition, this study identified a novel single point mutation caused by CRISPR-Cas9 in LdMT (M381T) that led to miltefosine resistance, a concern for the only available oral antileishmanial drug. Together, these results demonstrate that the CRISPR-Cas9 system represents an effective genome engineering tool for L. donovani. PMID:26199327

  12. 41 CFR 102-33.435 - What CAS cost and utilization data must we report?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What CAS cost and... Services (cas) Cost and Utilization Data § 102-33.435 What CAS cost and utilization data must we report? You must report the costs and flying hours for each CAS aircraft you hire. You must also report...

  13. 41 CFR 102-33.130 - If we hire CAS, what are our management responsibilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false If we hire CAS, what are... § 102-33.130 If we hire CAS, what are our management responsibilities? If you hire CAS, you are... agreements; (b) Accounting for the cost of your aircraft and services hired as CAS; (c) Accounting for use...

  14. 41 CFR 102-33.440 - Who must report CAS cost and utilization data?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Who must report CAS cost... (cas) Cost and Utilization Data § 102-33.440 Who must report CAS cost and utilization data? Executive agencies, except the Armed Forces and U.S. intelligence agencies, must report CAS cost and utilization...

  15. 41 CFR 102-33.130 - If we hire CAS, what are our management responsibilities?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false If we hire CAS, what are... § 102-33.130 If we hire CAS, what are our management responsibilities? If you hire CAS, you are... agreements; (b) Accounting for the cost of your aircraft and services hired as CAS; (c) Accounting for use...

  16. 41 CFR 102-33.435 - What CAS cost and utilization data must we report?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What CAS cost and... Services (cas) Cost and Utilization Data § 102-33.435 What CAS cost and utilization data must we report? You must report the costs and flying hours for each CAS aircraft you hire. You must also report...

  17. 41 CFR 102-33.440 - Who must report CAS cost and utilization data?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Who must report CAS cost... (cas) Cost and Utilization Data § 102-33.440 Who must report CAS cost and utilization data? Executive agencies, except the Armed Forces and U.S. intelligence agencies, must report CAS cost and utilization...

  18. 41 CFR 102-33.435 - What CAS cost and utilization data must we report?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What CAS cost and... Services (cas) Cost and Utilization Data § 102-33.435 What CAS cost and utilization data must we report? You must report the costs and flying hours for each CAS aircraft you hire. You must also report...

  19. 41 CFR 102-33.130 - If we hire CAS, what are our management responsibilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false If we hire CAS, what are... § 102-33.130 If we hire CAS, what are our management responsibilities? If you hire CAS, you are... agreements; (b) Accounting for the cost of your aircraft and services hired as CAS; (c) Accounting for use...

  20. 41 CFR 102-33.440 - Who must report CAS cost and utilization data?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Who must report CAS cost... (cas) Cost and Utilization Data § 102-33.440 Who must report CAS cost and utilization data? Executive agencies, except the Armed Forces and U.S. intelligence agencies, must report CAS cost and utilization...

  1. 41 CFR 102-33.435 - What CAS cost and utilization data must we report?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What CAS cost and... Services (cas) Cost and Utilization Data § 102-33.435 What CAS cost and utilization data must we report? You must report the costs and flying hours for each CAS aircraft you hire. You must also report...

  2. 41 CFR 102-33.440 - Who must report CAS cost and utilization data?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Who must report CAS cost... (cas) Cost and Utilization Data § 102-33.440 Who must report CAS cost and utilization data? Executive agencies, except the Armed Forces and U.S. intelligence agencies, must report CAS cost and utilization...

  3. 41 CFR 102-33.130 - If we hire CAS, what are our management responsibilities?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false If we hire CAS, what are... § 102-33.130 If we hire CAS, what are our management responsibilities? If you hire CAS, you are... agreements; (b) Accounting for the cost of your aircraft and services hired as CAS; (c) Accounting for use...

  4. 41 CFR 102-33.435 - What CAS cost and utilization data must we report?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What CAS cost and... Services (cas) Cost and Utilization Data § 102-33.435 What CAS cost and utilization data must we report? You must report the costs and flying hours for each CAS aircraft you hire. You must also report...

  5. 41 CFR 102-33.440 - Who must report CAS cost and utilization data?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Who must report CAS cost... (cas) Cost and Utilization Data § 102-33.440 Who must report CAS cost and utilization data? Executive agencies, except the Armed Forces and U.S. intelligence agencies, must report CAS cost and utilization...

  6. 41 CFR 102-33.130 - If we hire CAS, what are our management responsibilities?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false If we hire CAS, what are... § 102-33.130 If we hire CAS, what are our management responsibilities? If you hire CAS, you are... agreements; (b) Accounting for the cost of your aircraft and services hired as CAS; (c) Accounting for use...

  7. Determination of the Physical Dimensions of μ Cas

    NASA Astrophysics Data System (ADS)

    Bach, K.; Kang, W.

    2015-07-01

    We investigate the physical properties of the nearby astrometric binary μ Cas based on a spectroscopic analysis and evolutionary calculations. The chemical composition of the μ Cas system has been determined based on high resolution spectroscopy from BOES. Combining our spectroscopic analysis with observations from Hipparcos and CHARA, we determine the evolutionary status of μ Cas. With well-constrained stellar parameters, the internal structure and frequency modes have also been calculated. The ultimate goal of this study is to describe the physical processes inside stars through a comprehensive modeling.

  8. Grossesse intra murale à propos d'un cas

    PubMed Central

    de Tové, Kofi-Mensa Savi; Salifou, Kabibou; Imorou, Rachidi Sidi; Biaou, Olivier; Boco, Vicentia

    2015-01-01

    La grossesse intra-murale est la variété la plus rare de grossesse extra-utérine. Il s'agit de la localisation de l’œuf dans l’épaisseur du myomètre. En cas de retard diagnostic, l’évolution peut être catastrophique avec rupture utérine et hémorragie cataclysmique. L’échographie permet dans certains cas un diagnostic pré opératoire. Les auteurs rapportent un cas survenu chez une patiente aux antécédents de curetage. PMID:26448812

  9. Introducing the TI-Nspire CAS Learning Technology

    NASA Astrophysics Data System (ADS)

    Osbourne, Michael

    2008-03-01

    Engage your students! In this hands-on workshop, we will demonstrate how TI's newest graphing technology can be integrated into the physics classroom. Come experience both the TI-NspireT CAS Handheld and the TI- NspireT CAS Computer Software. The new TI-Nspire learning technology has been developed to allow students to explore physics and to better understand concepts through the manipulation of complex formulas,graphing, spreadsheets, data analysis, and simulations. During the workshop you will receive an overview of the technology, sample activities, along with the opportunity to experience how TI-Nspire CAS can be effectively integrated into the physics classroom. Limited to 20 participants.

  10. Assiniboine Series.

    ERIC Educational Resources Information Center

    Allen, Minerva

    This series of illustrated booklets presents 13 Indian stories in a bilingual format of English and Assiniboine, an Indian tribal language. Written on the first grade level, the stories have the following titles: (1) "Orange Tree in Lodgepole"; (2) "Pretty Flower"; (3) Inktomi and the Rock"; (4) "Inktomi and the Ducks"; (5) "Inktomi and the…

  11. The Structural Biology of CRISPR-Cas Systems

    PubMed Central

    Jiang, Fuguo; Doudna, Jennifer A.

    2015-01-01

    Prokaryotic CRISPR-Cas genomic loci encode RNA-mediated adaptive immune systems that bear some functional similarities with eukaryotic RNA interference. Acquired and heritable immunity against bacteriophage and plasmids begins with integration of ~30 base pair foreign DNA sequences into the host genome. CRISPR-derived transcripts assemble with CRISPR-associated (Cas) proteins to target complementary nucleic acids for degradation. Here we review recent advances in the structural biology of these targeting complexes, with a focus on structural studies of the multisubunit Type I CRISPR RNA-guided surveillance and the Cas9 DNA endonuclease found in Type II CRISPR-Cas systems. These complexes have distinct structures that are each capable of site-specific double-stranded DNA binding and local helix unwinding. PMID:25723899

  12. CAS Standards and Guidelines for Student Services/Development Programs.

    ERIC Educational Resources Information Center

    NACADA Journal, 1986

    1986-01-01

    The Council for the Advancement of Standards for Student Services/Development Programs (CAS) developed and adopted standards and interpretive guidelines for specific functional areas of student services/development programs within postsecondary educational institutions. These guidelines are presented. (MLW)

  13. CRISPR-Cas9-Guided Genome Engineering in C. elegans.

    PubMed

    Kim, Hyun-Min; Colaiácovo, Monica P

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is successfully being used for efficient and targeted genome editing in various organisms, including the nematode C. elegans. Recent studies have developed various CRISPR-Cas9 approaches to enhance genome engineering via two major DNA double-strand break repair pathways: non-homologous end joining and homologous recombination. Here we describe a protocol for Cas9-mediated C. elegans genome editing together with single guide RNA (sgRNA) and repair template cloning, as well as injection methods required for delivering Cas9, sgRNAs, and repair template DNA into the C. elegans germline. © 2016 by John Wiley & Sons, Inc. PMID:27366893

  14. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity.

    PubMed

    Tycko, Josh; Myer, Vic E; Hsu, Patrick D

    2016-08-01

    Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing mutations. Although the Cas9 protein has been shown to bind and cleave DNA at off-target sites, the field of Cas9 specificity is rapidly progressing, with marked improvements in guide RNA selection, protein and guide engineering, novel enzymes, and off-target detection methods. We review important challenges and breakthroughs in the field as a comprehensive practical guide to interested users of genome editing technologies, highlighting key tools and strategies for optimizing specificity. The genome editing community should now strive to standardize such methods for measuring and reporting off-target activity, while keeping in mind that the goal for specificity should be continued improvement and vigilance. PMID:27494557

  15. Engineering the Caenorhabditis elegans genome with CRISPR/Cas9.

    PubMed

    Waaijers, Selma; Boxem, Mike

    2014-08-01

    The development in early 2013 of CRISPR/Cas9-based genome engineering promises to dramatically advance our ability to alter the genomes of model systems at will. A single, easily produced targeting RNA guides the Cas9 endonuclease to a specific DNA sequence where it creates a double strand break. Imprecise repair of the break can yield mutations, while homologous recombination with a repair template can be used to effect specific changes to the genome. The tremendous potential of this system led several groups to independently adapt it for use in Caenorhabditiselegans, where it was successfully used to generate mutations and to create tailored genome changes through homologous recombination. Here, we review the different approaches taken to adapt CRISPR/Cas9 for C. elegans, and provide practical guidelines for CRISPR/Cas9-based genome engineering. PMID:24685391

  16. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    PubMed

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  17. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    PubMed Central

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  18. An updated evolutionary classification of CRISPR-Cas systems.

    PubMed

    Makarova, Kira S; Wolf, Yuri I; Alkhnbashi, Omer S; Costa, Fabrizio; Shah, Shiraz A; Saunders, Sita J; Barrangou, Rodolphe; Brouns, Stan J J; Charpentier, Emmanuelle; Haft, Daniel H; Horvath, Philippe; Moineau, Sylvain; Mojica, Francisco J M; Terns, Rebecca M; Terns, Michael P; White, Malcolm F; Yakunin, Alexander F; Garrett, Roger A; van der Oost, John; Backofen, Rolf; Koonin, Eugene V

    2015-11-01

    The evolution of CRISPR-cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR-cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR-Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized. PMID:26411297

  19. Comparison of Cas9 activators in multiple species.

    PubMed

    Chavez, Alejandro; Tuttle, Marcelle; Pruitt, Benjamin W; Ewen-Campen, Ben; Chari, Raj; Ter-Ovanesyan, Dmitry; Haque, Sabina J; Cecchi, Ryan J; Kowal, Emma J K; Buchthal, Joanna; Housden, Benjamin E; Perrimon, Norbert; Collins, James J; Church, George

    2016-07-01

    Several programmable transcription factors exist based on the versatile Cas9 protein, yet their relative potency and effectiveness across various cell types and species remain unexplored. Here, we compare Cas9 activator systems and examine their ability to induce robust gene expression in several human, mouse, and fly cell lines. We also explore the potential for improved activation through the combination of the most potent activator systems, and we assess the role of cooperativity in maximizing gene expression. PMID:27214048

  20. Potential pitfalls of CRISPR/Cas9-mediated genome editing.

    PubMed

    Peng, Rongxue; Lin, Guigao; Li, Jinming

    2016-04-01

    Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the 'curious sequences of unknown biological function' into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co-expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off-target effects and the incidence of homology-directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012. PMID:26535798

  1. Target specificity of the CRISPR-Cas9 system

    PubMed Central

    Wu, Xuebing; Kriz, Andrea J.; Sharp, Phillip A.

    2015-01-01

    The CRISPR-Cas9 system, naturally a defense mechanism in prokaryotes, has been repurposed as an RNA-guided DNA targeting platform. It has been widely used for genome editing and transcriptome modulation, and has shown great promise in correcting mutations in human genetic diseases. Off-target effects are a critical issue for all of these applications. Here we review the current status on the target specificity of the CRISPR-Cas9 system. PMID:25722925

  2. Rational design of a split-Cas9 enzyme complex

    DOE PAGESBeta

    Wright, Addison V.; Sternberg, Samuel H.; Taylor, David W.; Staahl, Brett T.; Bardales, Jorge A.; Kornfeld, Jack E.; Doudna, Jennifer A.

    2015-02-23

    Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. The lobes do not interactmore » on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.« less

  3. Internal guide RNA interactions interfere with Cas9-mediated cleavage.

    PubMed

    Thyme, Summer B; Akhmetova, Laila; Montague, Tessa G; Valen, Eivind; Schier, Alexander F

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9-gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9-gRNA complex formation. PMID:27282953

  4. CRISPR-Cas9 Based Engineering of Actinomycetal Genomes.

    PubMed

    Tong, Yaojun; Charusanti, Pep; Zhang, Lixin; Weber, Tilmann; Lee, Sang Yup

    2015-09-18

    Bacteria of the order Actinomycetales are one of the most important sources of pharmacologically active and industrially relevant secondary metabolites. Unfortunately, many of them are still recalcitrant to genetic manipulation, which is a bottleneck for systematic metabolic engineering. To facilitate the genetic manipulation of actinomycetes, we developed a highly efficient CRISPR-Cas9 system to delete gene(s) or gene cluster(s), implement precise gene replacements, and reversibly control gene expression in actinomycetes. We demonstrate our system by targeting two genes, actIORF1 (SCO5087) and actVB (SCO5092), from the actinorhodin biosynthetic gene cluster in Streptomyces coelicolor A3(2). Our CRISPR-Cas9 system successfully inactivated the targeted genes. When no templates for homology-directed repair (HDR) were present, the site-specific DNA double-strand breaks (DSBs) introduced by Cas9 were repaired through the error-prone nonhomologous end joining (NHEJ) pathway, resulting in a library of deletions with variable sizes around the targeted sequence. If templates for HDR were provided at the same time, precise deletions of the targeted gene were observed with near 100% frequency. Moreover, we developed a system to efficiently and reversibly control expression of target genes, deemed CRISPRi, based on a catalytically dead variant of Cas9 (dCas9). The CRISPR-Cas9 based system described here comprises a powerful and broadly applicable set of tools to manipulate actinomycetal genomes. PMID:25806970

  5. Rational design of a split-Cas9 enzyme complex

    PubMed Central

    Wright, Addison V.; Sternberg, Samuel H.; Taylor, David W.; Staahl, Brett T.; Bardales, Jorge A.; Kornfeld, Jack E.; Doudna, Jennifer A.

    2015-01-01

    Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. Although the lobes do not interact on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications. PMID:25713377

  6. Internal guide RNA interactions interfere with Cas9-mediated cleavage

    PubMed Central

    Thyme, Summer B.; Akhmetova, Laila; Montague, Tessa G.; Valen, Eivind; Schier, Alexander F.

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9–gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9–gRNA complex formation. PMID:27282953

  7. Rational design of a split-Cas9 enzyme complex

    SciTech Connect

    Wright, Addison V.; Sternberg, Samuel H.; Taylor, David W.; Staahl, Brett T.; Bardales, Jorge A.; Kornfeld, Jack E.; Doudna, Jennifer A.

    2015-02-23

    Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. The lobes do not interact on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.

  8. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9

    PubMed Central

    Kaya, Hidetaka; Mikami, Masafumi; Endo, Akira; Endo, Masaki; Toki, Seiichi

    2016-01-01

    The CRISPR/Cas9 system is an efficient and convenient tool for genome editing in plants. Cas9 nuclease derived from Streptococcus pyogenes (Sp) is commonly used in this system. Recently, Staphylococcus aureus Cas9 (SaCas9)-mediated genome editing was reported in human cells and Arabidopsis. Because SaCas9 (1053 a.a.) is smaller than SpCas9 (1368 a.a.), SaCas9 could have substantial advantages for delivering and expressing Cas9 protein, especially using virus vectors. Since the protospacer adjacent motif (PAM) sequence of SaCas9 (5′-NNGRRT-3′) differs from that of SpCas9 (5′-NGG-3′), the use of this alternative Cas9 nuclease could expand the selectivity at potential cleavage target sites of the CRISPR/Cas9 system. Here we show that SaCas9 can mutagenize target sequences in tobacco and rice with efficiencies similar to those of SpCas9. We also analyzed the base preference for ‘T’ at the 6th position of the SaCas9 PAM. Targeted mutagenesis efficiencies in target sequences with non-canonical PAMs (5′-NNGRRV-3′) were much lower than those with a canonical PAM (5′-NNGRRT-3′). The length of target sequence recognized by SaCas9 is one or two nucleotides longer than that recognized by SpCas9. Taken together, our results demonstrate that SaCas9 has higher sequence recognition capacity than SpCas9 and is useful for reducing off-target mutations in crop. PMID:27226350

  9. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9.

    PubMed

    Kaya, Hidetaka; Mikami, Masafumi; Endo, Akira; Endo, Masaki; Toki, Seiichi

    2016-01-01

    The CRISPR/Cas9 system is an efficient and convenient tool for genome editing in plants. Cas9 nuclease derived from Streptococcus pyogenes (Sp) is commonly used in this system. Recently, Staphylococcus aureus Cas9 (SaCas9)-mediated genome editing was reported in human cells and Arabidopsis. Because SaCas9 (1053 a.a.) is smaller than SpCas9 (1368 a.a.), SaCas9 could have substantial advantages for delivering and expressing Cas9 protein, especially using virus vectors. Since the protospacer adjacent motif (PAM) sequence of SaCas9 (5'-NNGRRT-3') differs from that of SpCas9 (5'-NGG-3'), the use of this alternative Cas9 nuclease could expand the selectivity at potential cleavage target sites of the CRISPR/Cas9 system. Here we show that SaCas9 can mutagenize target sequences in tobacco and rice with efficiencies similar to those of SpCas9. We also analyzed the base preference for 'T' at the 6th position of the SaCas9 PAM. Targeted mutagenesis efficiencies in target sequences with non-canonical PAMs (5'-NNGRRV-3') were much lower than those with a canonical PAM (5'-NNGRRT-3'). The length of target sequence recognized by SaCas9 is one or two nucleotides longer than that recognized by SpCas9. Taken together, our results demonstrate that SaCas9 has higher sequence recognition capacity than SpCas9 and is useful for reducing off-target mutations in crop. PMID:27226350

  10. A non-inheritable maternal Cas9-based multiple-gene editing system in mice

    PubMed Central

    Sakurai, Takayuki; Kamiyoshi, Akiko; Kawate, Hisaka; Mori, Chie; Watanabe, Satoshi; Tanaka, Megumu; Uetake, Ryuichi; Sato, Masahiro; Shindo, Takayuki

    2016-01-01

    The CRISPR/Cas9 system is capable of editing multiple genes through one-step zygote injection. The preexisting method is largely based on the co-injection of Cas9 DNA (or mRNA) and guide RNAs (gRNAs); however, it is unclear how many genes can be simultaneously edited by this method, and a reliable means to generate transgenic (Tg) animals with multiple gene editing has yet to be developed. Here, we employed non-inheritable maternal Cas9 (maCas9) protein derived from Tg mice with systemic Cas9 overexpression (Cas9 mice). The maCas9 protein in zygotes derived from mating or in vitro fertilization of Tg/+ oocytes and +/+ sperm could successfully edit the target genome. The efficiency of such maCas9-based genome editing was comparable to that of zygote microinjection–based genome editing widely used at present. Furthermore, we demonstrated a novel approach to create “Cas9 transgene-free” gene-modified mice using non-Tg (+/+) zygotes carrying maCas9. The maCas9 protein in mouse zygotes edited nine target loci simultaneously after injection with nine different gRNAs alone. Cas9 mouse-derived zygotes have the potential to facilitate the creation of genetically modified animals carrying the Cas9 transgene, enabling repeatable genome engineering and the production of Cas9 transgene-free mice. PMID:26817415

  11. A non-inheritable maternal Cas9-based multiple-gene editing system in mice.

    PubMed

    Sakurai, Takayuki; Kamiyoshi, Akiko; Kawate, Hisaka; Mori, Chie; Watanabe, Satoshi; Tanaka, Megumu; Uetake, Ryuichi; Sato, Masahiro; Shindo, Takayuki

    2016-01-01

    The CRISPR/Cas9 system is capable of editing multiple genes through one-step zygote injection. The preexisting method is largely based on the co-injection of Cas9 DNA (or mRNA) and guide RNAs (gRNAs); however, it is unclear how many genes can be simultaneously edited by this method, and a reliable means to generate transgenic (Tg) animals with multiple gene editing has yet to be developed. Here, we employed non-inheritable maternal Cas9 (maCas9) protein derived from Tg mice with systemic Cas9 overexpression (Cas9 mice). The maCas9 protein in zygotes derived from mating or in vitro fertilization of Tg/+ oocytes and +/+ sperm could successfully edit the target genome. The efficiency of such maCas9-based genome editing was comparable to that of zygote microinjection-based genome editing widely used at present. Furthermore, we demonstrated a novel approach to create "Cas9 transgene-free" gene-modified mice using non-Tg (+/+) zygotes carrying maCas9. The maCas9 protein in mouse zygotes edited nine target loci simultaneously after injection with nine different gRNAs alone. Cas9 mouse-derived zygotes have the potential to facilitate the creation of genetically modified animals carrying the Cas9 transgene, enabling repeatable genome engineering and the production of Cas9 transgene-free mice. PMID:26817415

  12. A Class Exercise: Studying the Eclipsing Binary Star RZ Cas Through Visual Observations

    NASA Astrophysics Data System (ADS)

    Balonek, T. J.; Davis, S. M.

    2000-05-01

    As part of the sophomore-junior level "Astronomical Techniques" course at Colgate University, students learn just how much science they can do with simple tools: a pair of binoculars, a clock, and pencil and paper. The students study the Algol type visual eclipsing binary star system RZ Cassiopeiae: observing and making a light curve for the primary minimum, determining the time of minimum using several techniques, calculating the binary star system's orbital period, and determining changes in the system's period over a thirty year interval by constructing an O-C curve. Through a series of preparatory exercises, the students learn how to read star maps and use the unaided eye, binoculars and telescopes to locate star fields and make visual magnitude measurements. By making multiple measurements of stars in the field of RZ Cas on several nights, the students determine the accuracy they can achieve in estimating the visual magnitude of a star -- typically 0.2 magnitude. (Some students even accidentally discover that one of the stars in the field is a variable star!) With this experience, the students use binoculars to observe the four hour primary eclipse of RZ Cas (magnitude 6.2 - 7.7), making magnitude measurements every five minutes. A light curve is then plotted. Several methods are used to determine the time of minimum, which is then converted to heliocentric Julian day. Using times of minima determined by former students (and the instructor) in previous years dating from 1968 to the present, the students determine the average period to a tenth of a second second. By constructing an O-C curve from the class's data and that obtained by the AAVSO, changes in the period of RZ Cas are noticeable -- possibly due to mass transfer in the system. It will be interesting for future classes to build on this knowledge using the primitive tools of our not so distant past.

  13. Biograph™ series.

    PubMed

    2005-01-01

    Medical imaging is one of the fastest growing areas in healthcare. Combined imaging systems are at the forefront of this growth, transforming the industry by uniting functional imaging such as PET, with diagnostic multi-slice CT, thus providing an anatomical map for accurate localization, diagnosis and, finally, treatment of diseases. Dedication and consistent innovation enables Siemens Medical Solutions to offer the Biograph™ PET/CT series. This imaging system offers a high technological standard in line with excellent image quality and speed for maximum patient comfort and increased diagnostic confidence for physicians. PMID:16395982

  14. Tuning CAS Application using AIMS: An Automated Instrumentation and Monitoring System

    NASA Technical Reports Server (NTRS)

    Mehra, P.; Sarukkai, S.; Schmidt, M.; Schulbach, C.; VanVoorst, B.; Yan, Jerry; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    To bring together NASA's scientists and engineers and their counterparts in industry, other government agencies, and academia working in the Computational AeroSciences (CAS) field. This workshop is part of the technology transfer plan of the High Performance Computing and Communications Program (HPCCP). Specific objectives of this Workshop are to: (1) communicate the goals and objectives of HPCCP in the area of CAS; (2) promote and disseminate CAS technology within the appropriate technical communities, including NASA, industry, academia, and other government labs; (3) help promote synergy among CAS scientists; and (4) permit feedback from peer researchers in issues pacing the CAS field in general and the HPCCP CAS program in particular.

  15. Spectroscopic studies of three Cepheids with high positive pulsation period increments: SZ Cas, BY Cas, and RU Sct

    NASA Astrophysics Data System (ADS)

    Usenko, I. A.; Klochkova, V. G.

    2015-07-01

    Three high-resolution spectra have been taken at different times with the 6-m SAO RAS telescope (LYNX and PFES spectrographs) for three Cepheids exhibiting high positive period increments: the small-amplitude (DCEPS) SZ Cas and BY Cas and the classical (DCEP) RU Sct. SZ Cas and RU Sct are members of the Galactic open clusters χ and h Per and Trump 35, respectively. Analysis of the spectra has shown that the interstellar Na I D1 and D2 lines in all objects are considerably stronger than the atmospheric ones and are redshifted in SZ Cas and BY Cas and blushifted in RU Sct. The core of the H α absorption line in BY Cas has an asymmetric knifelike shape, while RU Sct exhibits an intense emission in the blue wing of this line. Such phenomena are observed in long-period Cepheids and bright hypergiants with an extended envelope. In this case, the strong Mg Ib 5183.62 Å and Ba II 5853.67, 6141.713, and 6496.90 Å lines with low χlow in SZ Cas and RU Sct also show characteristic knifelike profiles with an asymmetry in the red region, while the Ba II 4934.095 Å line shows similar profiles in the blue one. The absorption lines of neutral atoms and singly ionized metals with different lowerlevel excitation potentials exhibit different degrees of asymmetry: from a pronounced one with secondary components in BY Cas (similar to those in the small-amplitude Cepheid BG Cru pulsating in the first overtone and having an envelope) to its insignificance or virtual absence in SZ Cas and RU Sct. Analysis of the secular changes in mean T eff determined from photometric color indices and spectra over the last 55 years for these stars has revealed periodic fluctuations of 200 K for SZ Cas and BY Cas and 500 K for RU Sct. For SZ Cas and RU Sct, T eff determined in some years from some color indices show much lower values, which together with the temperature fluctuations can be associated with mass loss and dust formation. Based on these facts, we hypothesize the existence of

  16. Pyo-pneumothorax tuberculeux: à propos de 18 cas

    PubMed Central

    Hicham, Souhi; Hanane, El Ouazzani; Hicham, Janah; Ismaïl, Rhorfi; Ahmed, Abid

    2016-01-01

    Le pyo-pneumothorax tuberculeux est une complication rare mais grave de la tuberculose pulmonaire évolutive. Nous rapportons une série de 18 cas de pyo-pneumothorax tuberculeux colligés au service de Pneumo-Phtisiologie de l'Hôpital Militaire d'Instruction Mohammed V de Rabat entre janvier 2005 et décembre 2009. Il s'agit de 15 hommes et 3 femmes d’âge moyen de 35 ans ±7 ans. 4 patients étaient diabétiques. Le tabagisme était retrouvé chez 9 cas. Le pyo-pneumothorax était du coté droit dans 13 cas. La radiographie thoracique avait montré des lésions cavitaires chez 15 patients et des lésions étendues et bilatérales chez 8 cas. La recherche de BK dans le liquide de tubage gastrique était positive chez 16 cas. Un drainage thoracique associé à un traitement antituberculeux selon le régime 2SRHZ/7RH et une kinésithérapie respiratoire ont été instaurés chez tous les cas. La durée moyenne de drainage pleural était de 4 semaines. Chez 3 cas on avait noté la persistance de la suppuration pleurale ayant nécessité une toilette pleurale sous thoracoscopie avec pleurectomie et exérèse pulmonaire limitée emportant la lésion parenchymateuse tuberculeuse et la persistance d'une volumineuse poche pleurale avec trouble ventilatoire restrictif ayant nécessité une décortication pleurale chirurgicale chez deux cas. L’évolution était favorable avec pachypleurite séquellaire minime chez le reste des cas. Le pyo-pneumothorax tuberculeux est une forme grave, qui est souvent en rapport avec une tuberculose cavitaire active. L’évolution est généralement trainante malgré le traitement antituberculeux et le drainage thoracique, d'où la nécessité d'un diagnostic et un traitement précoce de toute forme de tuberculose. PMID:27583090

  17. Repurposing CRISPR/Cas9 for in situ functional assays

    PubMed Central

    Malina, Abba; Mills, John R.; Cencic, Regina; Yan, Yifei; Fraser, James; Schippers, Laura M.; Paquet, Marilène; Dostie, Josée; Pelletier, Jerry

    2013-01-01

    RNAi combined with next-generation sequencing has proven to be a powerful and cost-effective genetic screening platform in mammalian cells. Still, this technology has its limitations and is incompatible with in situ mutagenesis screens on a genome-wide scale. Using p53 as a proof-of-principle target, we readapted the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR associated 9) genome-editing system to demonstrate the feasibility of this methodology for targeted gene disruption positive selection assays. By using novel “all-in-one” lentiviral and retroviral delivery vectors heterologously expressing both a codon-optimized Cas9 and its synthetic guide RNA (sgRNA), we show robust selection for the CRISPR-modified Trp53 locus following drug treatment. Furthermore, by linking Cas9 expression to GFP fluorescence, we use an “all-in-one” system to track disrupted Trp53 in chemoresistant lymphomas in the Eμ-myc mouse model. Deep sequencing analysis of the tumor-derived endogenous Cas9-modified Trp53 locus revealed a wide spectrum of mutants that were enriched with seemingly limited off-target effects. Taken together, these results establish Cas9 genome editing as a powerful and practical approach for positive in situ genetic screens. PMID:24298059

  18. SD-CAS: Spin Dynamics by Computer Algebra System.

    PubMed

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. PMID:20843716

  19. Measurement of Flux Density of Cas A at Low Frequencies

    NASA Astrophysics Data System (ADS)

    Patil, Ajinkya; Fisher, R.

    2012-01-01

    Cas A is used as a flux calibrator throughout the radio spectrum. Therefore it is important to know the spectral and secular variations in its flux density. Earlier observations by Scott et. al. (1969) and Baars et. al. (1972) suggested a secular decrease in flux density of Cas A at a rate of about 1% per year at all frequencies. However later observations by Erickson & Perley (1975) and Read (1977) indicated anomalously high flux from Cas A at 38 MHz. Also, these observations suggested that the original idea of faster decay of the flux density rate at low frequencies may be in error or that something more complex than simple decay is affecting the flux density at low frequencies. The source changes at 38 MHz still remains a mystery. We intend to present the results of follow up observations made from 1995 to 1998 with a three element interferometer in Green Bank operating in frequency range 30 to 120 MHz. We will discuss the problems at such low frequencies due to large beamwidth and unstable ionosphere. We will also discuss the strategies we have used so far to to find the flux density of Cas A by calculating the ratio of flux density of Cas A to that of Cyg A, assuming flux density of Cyg A to be constant. Above mentioned work was performed in summer student program sponsored by National Radio Astronomy Observatory.

  20. RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses.

    PubMed

    Baker, Oliver; Gupta, Ashish; Obst, Mandy; Zhang, Youming; Anastassiadis, Konstantinos; Fu, Jun; Stewart, A Francis

    2016-01-01

    A fluent method for gene targeting to establish protein tagged and ligand inducible conditional loss-of-function alleles is described. We couple new recombineering applications for one-step cloning of gRNA oligonucleotides and rapid generation of short-arm (~1 kb) targeting constructs with the power of Cas9-assisted targeting to establish protein tagged alleles in embryonic stem cells at high efficiency. RAC (Recombineering And Cas9)-tagging with Venus, BirM, APEX2 and the auxin degron is facilitated by a recombineering-ready plasmid series that permits the reuse of gene-specific reagents to insert different tags. Here we focus on protein tagging with the auxin degron because it is a ligand-regulated loss-of-function strategy that is rapid and reversible. Furthermore it includes the additional challenge of biallelic targeting. Despite high frequencies of monoallelic RAC-targeting, we found that simultaneous biallelic targeting benefits from long-arm (>4 kb) targeting constructs. Consequently an updated recombineering pipeline for fluent generation of long arm targeting constructs is also presented. PMID:27216209

  1. RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses

    PubMed Central

    Baker, Oliver; Gupta, Ashish; Obst, Mandy; Zhang, Youming; Anastassiadis, Konstantinos; Fu, Jun; Stewart, A. Francis

    2016-01-01

    A fluent method for gene targeting to establish protein tagged and ligand inducible conditional loss-of-function alleles is described. We couple new recombineering applications for one-step cloning of gRNA oligonucleotides and rapid generation of short-arm (~1 kb) targeting constructs with the power of Cas9-assisted targeting to establish protein tagged alleles in embryonic stem cells at high efficiency. RAC (Recombineering And Cas9)-tagging with Venus, BirM, APEX2 and the auxin degron is facilitated by a recombineering-ready plasmid series that permits the reuse of gene-specific reagents to insert different tags. Here we focus on protein tagging with the auxin degron because it is a ligand-regulated loss-of-function strategy that is rapid and reversible. Furthermore it includes the additional challenge of biallelic targeting. Despite high frequencies of monoallelic RAC-targeting, we found that simultaneous biallelic targeting benefits from long-arm (>4 kb) targeting constructs. Consequently an updated recombineering pipeline for fluent generation of long arm targeting constructs is also presented. PMID:27216209

  2. Displacement of p130Cas from focal adhesions links actomyosin contraction to cell migration.

    PubMed

    Machiyama, Hiroaki; Hirata, Hiroaki; Loh, Xia Kun; Kanchi, Madhu Mathi; Fujita, Hideaki; Tan, Song Hui; Kawauchi, Keiko; Sawada, Yasuhiro

    2014-08-15

    Cell adhesion complexes provide platforms where cell-generated forces are transmitted to the extracellular matrix (ECM). Tyrosine phosphorylation of focal adhesion proteins is crucial for cells to communicate with the extracellular environment. However, the mechanisms that transmit actin cytoskeletal motion to the extracellular environment to drive cell migration are poorly understood. We find that the movement of p130Cas (Cas, also known as BCAR1), a mechanosensor at focal adhesions, correlates with actin retrograde flow and depends upon actomyosin contraction and phosphorylation of the Cas substrate domain (CasSD). This indicates that CasSD phosphorylation underpins the physical link between Cas and the actin cytoskeleton. Fluorescence recovery after photobleaching (FRAP) experiments reveal that CasSD phosphorylation, as opposed to the association of Cas with Src, facilitates Cas displacement from adhesion complexes in migrating cells. Furthermore, the stabilization of Src-Cas binding and inhibition of myosin II, both of which sustain CasSD phosphorylation but mitigate Cas displacement from adhesion sites, retard cell migration. These results indicate that Cas promotes cell migration by linking actomyosin contractions to the adhesion complexes through a dynamic interaction with Src as well as through the phosphorylation-dependent association with the actin cytoskeleton. PMID:24928898

  3. GENOME EDITING IN HUMAN CELLS USING CRISPR/CAS NUCLEASES

    PubMed Central

    Wyvekens, Nicolas; Tsai, Shengdar; Joung, J. Keith

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been broadly adopted for highly efficient genome editing in a variety of model organisms and human cell types. Unlike previous genome editing technologies such as Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), the CRISPR/Cas technology does not require complex protein engineering and can be utilized by any researcher proficient in basic molecular biology and cell culture techniques. Here we describe protocols for design and cloning of vectors expressing single or multiplex gRNAs, for transient transfection of human cell lines, and for quantitation of mutation frequencies by T7 Endonuclease I assay. These protocols also include guidance for using two improvements that increase the specificity of CRISPR/Cas nucleases: truncated gRNAs and dimeric RNA-guided FokI nucleases. PMID:26423589

  4. CRISPR-Cas9: A Revolutionary Tool for Cancer Modelling

    PubMed Central

    Torres-Ruiz, Raul; Rodriguez-Perales, Sandra

    2015-01-01

    The cancer-modelling field is now experiencing a conversion with the recent emergence of the RNA-programmable CRISPR-Cas9 system, a flexible methodology to produce essentially any desired modification in the genome. Cancer is a multistep process that involves many genetic mutations and other genome rearrangements. Despite their importance, it is difficult to recapitulate the degree of genetic complexity found in patient tumors. The CRISPR-Cas9 system for genome editing has been proven as a robust technology that makes it possible to generate cellular and animal models that recapitulate those cooperative alterations rapidly and at low cost. In this review, we will discuss the innovative applications of the CRISPR-Cas9 system to generate new models, providing a new way to interrogate the development and progression of cancers. PMID:26389881

  5. DNA fragment editing of genomes by CRISPR/Cas9.

    PubMed

    Jinhuan, Li; Jia, Shou; Qiang, Wu

    2015-10-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system from bacteria and archaea emerged recently as a new powerful technology of genome editing in virtually any organism. Due to its simplicity and cost effectiveness, a revolutionary change of genetics has occurred. Here, we summarize the recent development of DNA fragment editing methods by CRISPR/Cas9 and describe targeted DNA fragment deletions, inversions, duplications, insertions, and translocations. The efficient method of DNA fragment editing provides a powerful tool for studying gene function, regulatory elements, tissue development, and disease progression. Finally, we discuss the prospects of CRISPR/Cas9 system and the potential applications of other types of CRISPR system. PMID:26496751

  6. CRISPR-Cas9: A Revolutionary Tool for Cancer Modelling.

    PubMed

    Torres-Ruiz, Raul; Rodriguez-Perales, Sandra

    2015-01-01

    The cancer-modelling field is now experiencing a conversion with the recent emergence of the RNA-programmable CRISPR-Cas9 system, a flexible methodology to produce essentially any desired modification in the genome. Cancer is a multistep process that involves many genetic mutations and other genome rearrangements. Despite their importance, it is difficult to recapitulate the degree of genetic complexity found in patient tumors. The CRISPR-Cas9 system for genome editing has been proven as a robust technology that makes it possible to generate cellular and animal models that recapitulate those cooperative alterations rapidly and at low cost. In this review, we will discuss the innovative applications of the CRISPR-Cas9 system to generate new models, providing a new way to interrogate the development and progression of cancers. PMID:26389881

  7. Applications of CRISPR-Cas systems in neuroscience

    PubMed Central

    Heidenreich, Matthias; Zhang, Feng

    2016-01-01

    Genome editing tools, and in particular those based on CRISPR-Cas systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in virtually any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR-Cas systems has the potential to advance both basic and translational neuroscience research. PMID:26656253

  8. High-throughput functional genomics using CRISPR-Cas9

    PubMed Central

    Shalem, Ophir; Sanjana, Neville E.; Zhang, Feng

    2015-01-01

    Forward genetic screens are powerful tools for the discovery and functional annotation of genetic elements. Recently, the RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas9 nuclease has been combined with genome-scale guide RNA libraries for unbiased, phenotypic screening. In this Review, we describe recent advances using Cas9 for genome-scale screens, including knockout approaches that inactivate genomic loci and strategies that modulate transcriptional activity. We discuss practical aspects of screen design, provide comparisons with RNA interference (RNAi) screening, and outline future applications and challenges. PMID:25854182

  9. Mouse Genome Editing using CRISPR/Cas System

    PubMed Central

    Harms, Donald W; Quadros, Rolen M; Seruggia, Davide; Ohtsuka, Masato; Takahashi, Gou

    2015-01-01

    The availability of techniques to create desired genetic mutations has enabled the laboratory mouse as an extensively used model organism in biomedical research including human genetics. A new addition to this existing technical repertoire is the CRISPR/Cas system. Specifically, this system allows editing of the mouse genome much faster than the previously used techniques and more importantly multiple mutations can be created in a single experiment. Here we provide protocols for preparation of CRISPR/Cas reagents and microinjection into one cell mouse embryos to create knockout or knock-in mouse models. PMID:25271839

  10. Les sarcomes des tissus mous: à propos de 33 cas

    PubMed Central

    Abdou, Jiddou; Elkabous, Mustapha; M'rabti, Hind; Errihani, Hassan

    2015-01-01

    L'objectif de cette étude est de rapporter les particularités épidémiologiques, cliniques, histologiques, thérapeutiques et évolutives des sarcomes des tissus mous à l'Institut National d'Oncologie et de définir les facteurs influençant la survie des patients. C'est une étude rétrospective de 33 cas de sarcome des tissus mous, colligés entre janvier 2008 et décembre 2010. Les critères d’éligibilité étaient un âge supérieur à 16 ans, une épreuve histologique d'un sarcome des tissus mous à l'exclusion des tumeurs stromales gastro-intestinales (GIST). Les items recueillis étaient: épidémiologiques, cliniques, histologiques, Radiologiques, et thérapeutiques. Des analyses univariées puis multivariées ont été réalisées à la recherche de facteurs influençant la survie à 2 ans. Il s'agit de 33 cas, 17 Hommes et 16 Femmes, l’âge moyen était de 43,21 ans (Extrêmes= 18-76 ans). La tumeur était localisée aux extrémités dans 24 cas (72,72%). Le type histologique prédominant était le Liposarcome dans 9 cas (27,27%). Le stade tumoral était localisé dans 25 cas (75,8%), métastatique dans 8 cas (24,2%). Vingt-cinq tumeurs ont été traitées chirurgicalement dont 21 cas (84%) de chirurgie conservatrice et 4 cas (16%) de chirurgie radicale. La radiothérapie a été réalisée chez 10 patients (30,3%). La chimiothérapie a été faite chez 20 patients. En analyse univariée les facteurs pronostiques étaient l’âge (p=0,03) et le stade tumoral (p=0,09). L’âge et le stade tumoral sont des facteurs pronostiques influençant la survie des sarcomes des tissus mous. PMID:27022434

  11. V845 Cas - ein RRab-Stern mit Blazhko-Effekt

    NASA Astrophysics Data System (ADS)

    Maintz, Gisela

    2015-02-01

    CCD observations of V845 Cas (RA= 23 26 15.02, DE= +57 23 55.5 (2000)) were obtained at my private observatory. For V845 Cas 13 maxima were gained, showing a light curve, that varies from epoch to epoch. The irregularity of the lightcurves of V845 Cas is due to the Blazhko effect. Revised elements are given as: V845 Cas Max = 2456221.3450 + 0.570845 * E.

  12. Functional annotation of native enhancers with a Cas9-histone demethylase fusion.

    PubMed

    Kearns, Nicola A; Pham, Hannah; Tabak, Barbara; Genga, Ryan M; Silverstein, Noah J; Garber, Manuel; Maehr, René

    2015-05-01

    Understanding of mammalian enhancers is limited by the lack of a technology to rapidly and thoroughly test the cell type-specific function. Here, we use a nuclease-deficient Cas9 (dCas9)-histone demethylase fusion to functionally characterize previously described and new enhancer elements for their roles in the embryonic stem cell state. Further, we distinguish the mechanism of action of dCas9-LSD1 at enhancers from previous dCas9-effectors. PMID:25775043

  13. Cas9 gRNA engineering for genome editing, activation and repression

    PubMed Central

    Kiani, Samira; Chavez, Alejandro; Tuttle, Marcelle; Hall, Richard N; Chari, Raj; Ter-Ovanesyan, Dmitry; Qian, Jason; Pruitt, Benjamin W; Beal, Jacob; Vora, Suhani; Buchthal, Joanna; Kowal, Emma J K; Ebrahimkhani, Mohammad R; Collins, James J; Weiss, Ron; Church, George

    2015-01-01

    We demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein. PMID:26344044

  14. Cas9 gRNA engineering for genome editing, activation and repression.

    PubMed

    Kiani, Samira; Chavez, Alejandro; Tuttle, Marcelle; Hall, Richard N; Chari, Raj; Ter-Ovanesyan, Dmitry; Qian, Jason; Pruitt, Benjamin W; Beal, Jacob; Vora, Suhani; Buchthal, Joanna; Kowal, Emma J K; Ebrahimkhani, Mohammad R; Collins, James J; Weiss, Ron; Church, George

    2015-11-01

    We demonstrate that by altering the length of Cas9-associated guide RNA (gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein. PMID:26344044

  15. The Cas6e ribonuclease is not required for interference and adaptation by the E. coli type I-E CRISPR-Cas system

    PubMed Central

    Semenova, Ekaterina; Kuznedelov, Konstantin; Datsenko, Kirill A.; Boudry, Pierre M.; Savitskaya, Ekaterina E.; Medvedeva, Sofia; Beloglazova, Natalia; Logacheva, Maria; Yakunin, Alexander F.; Severinov, Konstantin

    2015-01-01

    CRISPR-Cas are small RNA-based adaptive prokaryotic immunity systems protecting cells from foreign DNA or RNA. Type I CRISPR-Cas systems are composed of a multiprotein complex (Cascade) that, when bound to CRISPR RNA (crRNA), can recognize double-stranded DNA targets and recruit the Cas3 nuclease to destroy target-containing DNA. In the Escherichia coli type I-E CRISPR-Cas system, crRNAs are generated upon transcription of CRISPR arrays consisting of multiple palindromic repeats and intervening spacers through the function of Cas6e endoribonuclease, which cleaves at specific positions of repeat sequences of the CRISPR array transcript. Cas6e is also a component of Cascade. Here, we show that when mature unit-sized crRNAs are provided in a Cas6e-independent manner by transcription termination, the CRISPR-Cas system can function without Cas6e. The results should allow facile interrogation of various targets by type I-E CRISPR-Cas system in E. coli using unit-sized crRNAs generated by transcription. PMID:26013814

  16. CRISPR/Cas-Mediated Site-Specific Mutagenesis in Arabidopsis thaliana Using Cas9 Nucleases and Paired Nickases.

    PubMed

    Schiml, Simon; Fauser, Friedrich; Puchta, Holger

    2016-01-01

    The CRISPR/Cas system has recently become the most important tool for genome engineering due to its simple architecture that allows for rapidly changing the target sequence and its applicability to organisms throughout all kingdoms of life. The need for an easy-to-use and reliable nuclease is especially high in plant research, as precise genome modifications are almost impossible to achieve by Agrobacterium-mediated transformation and the regeneration of plants from protoplast cultures is very labor intensive. Here, we describe the application of the Cas9 nuclease to Arabidopsis thaliana for the induction of heritable targeted mutations, which may also be used for other plant species. To cover the concern for off-target activity, we also describe the generation of stable mutants using paired Cas9 nickases. PMID:27557689

  17. On the Integration of Computer Algebra Systems (CAS) by Canadian Mathematicians: Results of a National Survey

    ERIC Educational Resources Information Center

    Buteau, Chantal; Jarvis, Daniel H.; Lavicza, Zsolt

    2014-01-01

    In this article, we outline the findings of a Canadian survey study (N = 302) that focused on the extent of computer algebra systems (CAS)-based technology use in postsecondary mathematics instruction. Results suggest that a considerable number of Canadian mathematicians use CAS in research and teaching. CAS use in research was found to be the…

  18. After 16 Years of Publishing Standards, Do CAS Standards Make a Difference?

    ERIC Educational Resources Information Center

    Arminio, Jan; Gochenauer, Patty

    2004-01-01

    Using members of professional associations who are a part of the Council for the Advancement of Standards in Higher Education (CAS) consortia as a sample, this study investigated who uses CAS Standards, how and why they are used, and whether CAS Standards are associated with enhanced student learning. Using a quantitative analysis, this study…

  19. Creating Genome Modifications in C. elegans Using the CRISPR/Cas9 System.

    PubMed

    Calarco, John A; Friedland, Ari E

    2015-01-01

    The clustered, regularly interspaced, short, palindromic repeat (CRISPR)-associated (CAS) nuclease Cas9 has been used in many organisms to generate specific mutations and transgene insertions. Here we describe a method using the S. pyogenes Cas9 in C. elegans that provides a convenient and effective approach for making heritable changes to the worm genome. PMID:26423968

  20. 48 CFR 9904.412-64.1 - Transition Method for the CAS Pension Harmonization Rule.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CAS Pension Harmonization Rule. 9904.412-64.1 Section 9904.412-64.1 Federal Acquisition Regulations... Transition Method for the CAS Pension Harmonization Rule. Contractors or subcontractors that become subject... through 7 Notes (Note 1) Actuarial Accrued Liability $2,470,500 $14,225,000 2 CAS Actuarial Value...

  1. 48 CFR 9904.412-64.1 - Transition Method for the CAS Pension Harmonization Rule.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CAS Pension Harmonization Rule. 9904.412-64.1 Section 9904.412-64.1 Federal Acquisition Regulations... Transition Method for the CAS Pension Harmonization Rule. Contractors or subcontractors that become subject... through 7 Notes (Note 1) Actuarial Accrued Liability $2,470,500 $14,225,000 2 CAS Actuarial Value...

  2. 48 CFR 9904.412-60.1 - Illustrations-CAS Pension Harmonization Rule.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Illustrations-CAS Pension... AND COST ACCOUNTING STANDARDS COST ACCOUNTING STANDARDS 9904.412-60.1 Illustrations—CAS Pension... cost on or after the Applicability Date of the CAS Harmonization Rule. The illustrations present...

  3. 48 CFR 9904.412-60.1 - Illustrations-CAS Pension Harmonization Rule.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Illustrations-CAS Pension... AND COST ACCOUNTING STANDARDS COST ACCOUNTING STANDARDS 9904.412-60.1 Illustrations—CAS Pension... cost on or after the Applicability Date of the CAS Harmonization Rule. The illustrations present...

  4. 48 CFR 9904.412-60.1 - Illustrations-CAS Pension Harmonization Rule.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false Illustrations-CAS Pension... AND COST ACCOUNTING STANDARDS COST ACCOUNTING STANDARDS 9904.412-60.1 Illustrations—CAS Pension... cost on or after the Applicability Date of the CAS Harmonization Rule. The illustrations present...

  5. 48 CFR 9904.413-64.1 - Transition Method for the CAS Pension Harmonization Rule.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CAS Pension Harmonization Rule. 9904.413-64.1 Section 9904.413-64.1 Federal Acquisition Regulations... Transition Method for the CAS Pension Harmonization Rule. The transition method for the CAS Pension Harmonization Rule under this Standard shall be in accordance with 9904.412.64.1 Transition Method for...

  6. Mismatch Negativity Responses in Children with a Diagnosis of Childhood Apraxia of Speech (CAS)

    ERIC Educational Resources Information Center

    Froud, Karen; Khamis-Dakwar, Reem

    2012-01-01

    Purpose: To evaluate whether a hypothesis suggesting that apraxia of speech results from phonological overspecification could be relevant for childhood apraxia of speech (CAS). Method: High-density EEG was recorded from 5 children with CAS and 5 matched controls, ages 5-8 years, with and without CAS, as they listened to randomized sequences of CV…

  7. 48 CFR 9904.413-64.1 - Transition Method for the CAS Pension Harmonization Rule.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CAS Pension Harmonization Rule. 9904.413-64.1 Section 9904.413-64.1 Federal Acquisition Regulations... Transition Method for the CAS Pension Harmonization Rule. The transition method for the CAS Pension Harmonization Rule under this Standard shall be in accordance with 9904.412.64.1 Transition Method for...

  8. 48 CFR 9904.413-64.1 - Transition Method for the CAS Pension Harmonization Rule.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CAS Pension Harmonization Rule. 9904.413-64.1 Section 9904.413-64.1 Federal Acquisition Regulations... Transition Method for the CAS Pension Harmonization Rule. The transition method for the CAS Pension Harmonization Rule under this Standard shall be in accordance with 9904.412.64.1 Transition Method for...

  9. The Impact on Student Achievement of When CAS Technology Is Introduced

    ERIC Educational Resources Information Center

    Driver, David

    2012-01-01

    When a Computer Algebra System (CAS) is used as a pedagogical and functional tool in class and as a functional tool in exams, its effect on student achievement can be quite profound. The timing of when students are first introduced to a CAS has an impact on gains in student achievement. In this action research project, the CAS calculator was…

  10. 48 CFR 9904.412-64.1 - Transition Method for the CAS Pension Harmonization Rule.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CAS Pension Harmonization Rule. 9904.412-64.1 Section 9904.412-64.1 Federal Acquisition Regulations... Transition Method for the CAS Pension Harmonization Rule. Contractors or subcontractors that become subject... through 7 Notes (Note 1) Actuarial Accrued Liability $2,470,500 $14,225,000 2 CAS Actuarial Value...

  11. Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems.

    PubMed

    Briner, Alexandra E; Barrangou, Rodolphe

    2016-01-01

    CRISPR-Cas systems provide adaptive immunity in bacteria and archaea. Although there are two main classes of CRISPR-Cas systems defined by gene content, interfering RNA biogenesis, and effector proteins, Type II systems have recently been exploited on a broad scale to develop next-generation genetic engineering and genome-editing tools. Conveniently, Type II systems are streamlined and rely on a single protein, Cas9, and a guide RNA molecule, comprised of a CRISPR RNA (crRNA) and trans-acting CRISPR RNA (tracrRNA), to achieve effective and programmable nucleic acid targeting and cleavage. Currently, most commercially available Cas9-based genome-editing tools use the CRISPR-Cas system from Streptococcus pyogenes (SpyCas9), although many orthogonal Type II systems are available for diverse and multiplexable genome engineering applications. Here, we discuss the biological significance of Type II CRISPR-Cas elements, including the tracrRNA, crRNA, Cas9, and protospacer-adjacent motif (PAM), and look at the native function of these elements to understand how they can be engineered, enhanced, and optimized for genome editing applications. Additionally, we discuss the basis for orthogonal Cas9 and guide RNA systems that would allow researchers to concurrently use multiple Cas9-based systems for different purposes. Understanding the native function of endogenous Type II CRISPR-Cas systems can lead to new Cas9 tool development to expand the genetic manipulation toolbox. PMID:27371605

  12. The role of Cas8 in type I CRISPR interference

    PubMed Central

    Cass, Simon D.B.; Haas, Karina A.; Stoll, Britta; Alkhnbashi, Omer S.; Sharma, Kundan; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita; Bolt, Edward L.

    2015-01-01

    CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use ‘cascade’ [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5–Cas7–crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA. PMID:26182359

  13. The role of Cas8 in type I CRISPR interference.

    PubMed

    Cass, Simon D B; Haas, Karina A; Stoll, Britta; Alkhnbashi, Omer S; Sharma, Kundan; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita; Bolt, Edward L

    2015-01-01

    CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use 'cascade' [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5-Cas7-crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA. PMID:26182359

  14. Apport de l'imagerie dans le diagnostic des sacroiliites infectieuses : à propos de 19 cas

    PubMed Central

    Abid, Hanen; Chaabouni, Salim; Frikha, Faten; Toumi, Nozha; Souissi, Basma; Lahiani, Dorra; Bahloul, Zouhir; Ben Mahfoudh, Khaireddine

    2014-01-01

    Les sacro-iliites infectieuses méritent d’être mieux connues. Leur diagnostic est souvent retardé en raison d'une symptomatologie trompeuse et des diffcultés d'exploration de l'articulation sacro-iliaque. Notre travail est basé sur une étude rétrospective portant sur les cas de SII, recueillis sur une période comprise entre 1997 et 2008 dans notre centre universitaire Sfax-Tunisie. Le diagnostic de sacro-iliite était retenu en présence d'arguments cliniques et radiologiques d'atteinte sacroiliaque. Nous rapportons dix neuf cas de sacroiliites infectieuses (10 hommes et 9 femmes), avec un âge moyen de 32 ans. L'atteinte était unilatérale dans tous les cas. Les radiographies standard faites dans tous les cas ont été suggestives dans 14 cas et normales dans les autres cas. La TDM faite dans 13 cas a montré, un abcès des parties molles dans 8 cas et un séquestre osseux dans 2 cas. L'IRM réalisée dans 8 cas, a objectivé une infiltration des parties molles dans tous les cas et un abcès dans 3 cas. Le germe a été identifié dans 9 cas (3 cas de tuberculose, 3 cas de brucellose, 2 sacro-iliites à pyogène et un cas de candidose). Cette identification était faite par biopsie dans 3 cas, hémocultures dans 2 cas, prélèvement au niveau de la porte d'entrée dans 1 cas et sérodiagnostic dans 3 cas. Pour les autres cas, l'origine pyogène a été retenue sur des arguments cliniques et biologiques. L'imagerie joue un rôle primordial dans le diagnostic précoce et l'orientation étiologique d'une sacroiliite infectieuse. PMID:25120884

  15. Equivalent Expressions Using CAS and Paper-and-Pencil Techniques

    ERIC Educational Resources Information Center

    Fonger, Nicole L.

    2014-01-01

    How can the key concept of equivalent expressions be addressed so that students strengthen their representational fluency with symbols, graphs, and numbers? How can research inform the synergistic use of both paper-and-pencil analysis and computer algebra systems (CAS) in a classroom learning environment? These and other related questions have…

  16. Preparing Students to Take SOA/CAS Exam FM/2

    ERIC Educational Resources Information Center

    Marchand, Richard J.

    2014-01-01

    This paper provides suggestions for preparing students to take the actuarial examination on financial mathematics, SOA/CAS Exam FM/2. It is based on current practices employed at Slippery Rock University, a small public liberal arts university. Detailed descriptions of our Theory of Interest course and subsequent Exam FM/2 prep course are provided…

  17. Research Needed on the Use of CAS Standards and Guidelines.

    ERIC Educational Resources Information Center

    Creamer, Don G.

    2003-01-01

    This article suggests research projects that would extend the knowledge base about the use of Council for the Advancement of Standards in Higher Education (CAS) standards and guidelines in useful ways. Included are five research questions and specific research methodologies to guide researchers. (Contains 20 references.) (Author)

  18. Prospective Mathematics Teachers' Interactions with CAS-Based Textbook Elements

    ERIC Educational Resources Information Center

    Davis, Jon D.

    2015-01-01

    This study investigated how a group of 10 prospective secondary mathematics teachers (PST) read, evaluated, and adapted a textbook lesson involving the symbolic manipulation capabilities of computer algebra systems (CASS). PST read the entire lesson and tended to focus on the organizing question at the beginning of the student lesson and the CAS-S…

  19. Does CAS Use Disadvantage Girls in VCE Mathematics?

    ERIC Educational Resources Information Center

    Forgasz, Helen; Tan, Hazel

    2010-01-01

    In 2009, four mathematics subjects were offered at the year 12 level in the Victorian Certificate of Education (VCE). The two subjects at the intermediate level--Mathematical Methods and Mathematical Methods CAS--run in parallel, that is, a student can be enrolled in only one or the other, the choice being made at the school level. The curricular…

  20. Targeted mutagenesis in chicken using CRISPR/Cas9 system.

    PubMed

    Oishi, Isao; Yoshii, Kyoko; Miyahara, Daichi; Kagami, Hiroshi; Tagami, Takahiro

    2016-01-01

    The CRISPR/Cas9 system is a simple and powerful tool for genome editing in various organisms including livestock animals. However, the system has not been applied to poultry because of the difficulty in accessing their zygotes. Here we report the implementation of CRISPR/Cas9-mediated gene targeting in chickens. Two egg white genes, ovalbumin and ovomucoid, were efficiently (>90%) mutagenized in cultured chicken primordial germ cells (PGCs) by transfection of circular plasmids encoding Cas9, a single guide RNA, and a gene encoding drug resistance, followed by transient antibiotic selection. We transplanted CRISPR-induced mutant-ovomucoid PGCs into recipient chicken embryos and established three germline chimeric roosters (G0). All of the roosters had donor-derived mutant-ovomucoid spermatozoa, and the two with a high transmission rate of donor-derived gametes produced heterozygous mutant ovomucoid chickens as about half of their donor-derived offspring in the next generation (G1). Furthermore, we generated ovomucoid homozygous mutant offspring (G2) by crossing the G1 mutant chickens. Taken together, these results demonstrate that the CRISPR/Cas9 system is a simple and effective gene-targeting method in chickens. PMID:27050479

  1. Problem Solving in Calculus with Symbolic Geometry and CAS

    ERIC Educational Resources Information Center

    Todd, Philip; Wiechmann, James

    2008-01-01

    Computer algebra systems (CAS) have been around for a number of years, as has dynamic geometry. Symbolic geometry software is new. It bears a superficial similarity to dynamic geometry software, but differs in that problems may be set up involving symbolic variables and constants, and measurements are given as symbolic expressions. Mathematical…

  2. CRISPR/Cas9-targeted mutagenesis in Caenorhabditis elegans.

    PubMed

    Waaijers, Selma; Portegijs, Vincent; Kerver, Jana; Lemmens, Bennie B L G; Tijsterman, Marcel; van den Heuvel, Sander; Boxem, Mike

    2013-11-01

    The generation of genetic mutants in Caenorhabditis elegans has long relied on the selection of mutations in large-scale screens. Directed mutagenesis of specific loci in the genome would greatly speed up analysis of gene function. Here, we adapt the CRISPR/Cas9 system to generate mutations at specific sites in the C. elegans genome. PMID:23979586

  3. CRISPR/Cas9 advances engineering of microbial cell factories.

    PubMed

    Jakočiūnas, Tadas; Jensen, Michael K; Keasling, Jay D

    2016-03-01

    One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing with special emphasis on their application for metabolic engineering of yeast and bacteria. Also, examples of how nuclease-deficient Cas9 has been applied for RNA-guided transcriptional regulation of target genes will be reviewed, as well as tools available for computer-aided design of guide-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering. PMID:26707540

  4. CRISPR-Cas9 genome editing in Drosophila

    PubMed Central

    Gratz, Scott J.; Rubinstein, C. Dustin; Harrison, Melissa M.; Wildonger, Jill; O’Connor-Giles, Kate M.

    2015-01-01

    The CRISPR-Cas9 system has transformed genome engineering of model organisms from possible to practical. CRISPR-Cas9 can be readily programmed to generate sequence-specific double-strand breaks that disrupt targeted loci when repaired by error-prone non-homologous end joining or to catalyze precise genome modification through homology-directed repair (HDR). Here we describe a streamlined approach for rapid and highly efficient engineering of the Drosophila genome via CRISPR-Cas9-mediated HDR. In this approach, transgenic flies expressing Cas9 are injected with plasmids to express guide RNAs (gRNAs) and positively marked donor templates. We detail target site selection; gRNA plasmid generation; donor template design and construction; and the generation, identification and molecular confirmation of engineered lines. We also present alternative approaches and highlight key considerations for experimental design. The approach outlined here can be used to rapidly and reliably generate a variety of engineered modifications, including genomic deletions and replacements, precise sequence edits, and incorporation of protein tags. PMID:26131852

  5. Indispensable Manual Calculation Skills in a CAS Environment.

    ERIC Educational Resources Information Center

    Herget, Wilfried; Heugl, Helmut; Kutzler, Bernhard; Lehmann, Eberhard

    Which manual calculation skills are still needed when students use graphic/symbolic calculators or computers with computer algebra systems (CAS)? What should students be able to do manually, i.e. just using paper and pencil? This text is the outcome of a two-day discussion on these questions, held by the four authors. Our answers and proposals are…

  6. Some Reflections on CAS Assisted Proofs of Theorems

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry

    2005-01-01

    A mathematician's work consists of proving theorems, calculating, and making mathematics understandable. An assistant for all three components is a Computer Algebra System. We describe and discuss various CAS-assisted processes for proving theorems, and discuss the constraints which can appear regarding efficiency, confidence in the result and…

  7. Technological Discourse on CAS-Based Operative Knowledge

    ERIC Educational Resources Information Center

    Mann, Giora; Dana-Picard, Thierry; Zehavi, Nurit

    2007-01-01

    This article begins with a comparison of two groups of teachers, working on the same tasks in Analytic Geometry. One group has only basic experience in CAS-assisted problem solving, and the other group has extensive experience. The comparison is discussed in terms of the interplay between reflection, operative knowledge and execution. The findings…

  8. Duchenne muscular dystrophy: CRISPR/Cas9 treatment.

    PubMed

    Mendell, Jerry R; Rodino-Klapac, Louise R

    2016-05-01

    A novel approach to gene correction by genome editing shows great promise as a treatment for Duchenne muscular dystrophy (DMD). CRISPR/Cas9 delivered by adeno-associated virus to a mouse model for DMD demonstrated improvement in function and histology. PMID:26926391

  9. New Insight in Mathematics by Live CAS Documents.

    ERIC Educational Resources Information Center

    Cnop, Ivan

    Traditional education in mathematics is mostly a matter of hindsight, and many mathematics texts offer little opportunity for students and learners to gain insight. This paper shows how experiments in CAS (computer algebra systems) can lead to new ways of handling problems, new conjectures, new visualizations, new proofs, new correspondences…

  10. Targeted mutagenesis in chicken using CRISPR/Cas9 system

    PubMed Central

    Oishi, Isao; Yoshii, Kyoko; Miyahara, Daichi; Kagami, Hiroshi; Tagami, Takahiro

    2016-01-01

    The CRISPR/Cas9 system is a simple and powerful tool for genome editing in various organisms including livestock animals. However, the system has not been applied to poultry because of the difficulty in accessing their zygotes. Here we report the implementation of CRISPR/Cas9-mediated gene targeting in chickens. Two egg white genes, ovalbumin and ovomucoid, were efficiently (>90%) mutagenized in cultured chicken primordial germ cells (PGCs) by transfection of circular plasmids encoding Cas9, a single guide RNA, and a gene encoding drug resistance, followed by transient antibiotic selection. We transplanted CRISPR-induced mutant-ovomucoid PGCs into recipient chicken embryos and established three germline chimeric roosters (G0). All of the roosters had donor-derived mutant-ovomucoid spermatozoa, and the two with a high transmission rate of donor-derived gametes produced heterozygous mutant ovomucoid chickens as about half of their donor-derived offspring in the next generation (G1). Furthermore, we generated ovomucoid homozygous mutant offspring (G2) by crossing the G1 mutant chickens. Taken together, these results demonstrate that the CRISPR/Cas9 system is a simple and effective gene-targeting method in chickens. PMID:27050479

  11. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.

    PubMed

    Burger, Alexa; Lindsay, Helen; Felker, Anastasia; Hess, Christopher; Anders, Carolin; Chiavacci, Elena; Zaugg, Jonas; Weber, Lukas M; Catena, Raul; Jinek, Martin; Robinson, Mark D; Mosimann, Christian

    2016-06-01

    CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo. PMID:27130213

  12. Genome Editing with CRISPR-Cas9: Can It Get Any Better?

    PubMed

    Haeussler, Maximilian; Concordet, Jean-Paul

    2016-05-20

    The CRISPR-Cas revolution is taking place in virtually all fields of life sciences. Harnessing DNA cleavage with the CRISPR-Cas9 system of Streptococcus pyogenes has proven to be extraordinarily simple and efficient, relying only on the design of a synthetic single guide RNA (sgRNA) and its co-expression with Cas9. Here, we review the progress in the design of sgRNA from the original dual RNA guide for S. pyogenes and Staphylococcus aureus Cas9 (SpCas9 and SaCas9). New assays for genome-wide identification of off-targets have provided important insights into the issue of cleavage specificity in vivo. At the same time, the on-target activity of thousands of guides has been determined. These data have led to numerous online tools that facilitate the selection of guide RNAs in target sequences. It appears that for most basic research applications, cleavage activity can be maximized and off-targets minimized by carefully choosing guide RNAs based on computational predictions. Moreover, recent studies of Cas proteins have further improved the flexibility and precision of the CRISPR-Cas toolkit for genome editing. Inspired by the crystal structure of the complex of sgRNA-SpCas9 bound to target DNA, several variants of SpCas9 have recently been engineered, either with novel protospacer adjacent motifs (PAMs) or with drastically reduced off-targets. Novel Cas9 and Cas9-like proteins called Cpf1 have also been characterized from other bacteria and will benefit from the insights obtained from SpCas9. Genome editing with CRISPR-Cas9 may also progress with better understanding and control of cellular DNA repair pathways activated after Cas9-induced DNA cleavage. PMID:27210042

  13. Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas [Review].

    PubMed

    Horii, Takuro; Hatada, Izuho

    2016-03-31

    Clustered regularly at interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nucleases, so-called CRISPR/Cas, was recently developed as an epoch-making genome engineering technology. This system only requires Cas9 nuclease and single-guide RNA complementary to a target locus. CRISPR/Cas enables the generation of knockout cells and animals in a single step. This system can also be used to generate multiple mutations and knockin in a single step, which is not possible using other methods. In this review, we provide an overview of genome editing by CRISPR/Cas in pluripotent stem cells and mice. PMID:26743444

  14. Mobile CRISPR/Cas-Mediated Bacteriophage Resistance in Lactococcus lactis

    PubMed Central

    Millen, Anne M.; Horvath, Philippe; Boyaval, Patrick; Romero, Dennis A.

    2012-01-01

    Lactococcus lactis is a biotechnological workhorse for food fermentations and potentially therapeutic products and is therefore widely consumed by humans. It is predominantly used as a starter microbe for fermented dairy products, and specialized strains have adapted from a plant environment through reductive evolution and horizontal gene transfer as evidenced by the association of adventitious traits with mobile elements. Specifically, L. lactis has armed itself with a myriad of plasmid-encoded bacteriophage defensive systems to protect against viral predation. This known arsenal had not included CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins), which forms a remarkable microbial immunity system against invading DNA. Although CRISPR/Cas systems are common in the genomes of closely related lactic acid bacteria (LAB), none was identified within the eight published lactococcal genomes. Furthermore, a PCR-based search of the common LAB CRISPR/Cas systems (Types I and II) in 383 industrial L. lactis strains proved unsuccessful. Here we describe a novel, Type III, self-transmissible, plasmid-encoded, phage-interfering CRISPR/Cas discovered in L. lactis. The native CRISPR spacers confer resistance based on sequence identity to corresponding lactococcal phage. The interference is directed at phages problematic to the dairy industry, indicative of a responsive system. Moreover, targeting could be modified by engineering the spacer content. The 62.8-kb plasmid was shown to be conjugally transferrable to various strains. Its mobility should facilitate dissemination within microbial communities and provide a readily applicable system to naturally introduce CRISPR/Cas to industrially relevant strains for enhanced phage resistance and prevention against acquisition of undesirable genes. PMID:23240053

  15. Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses.

    PubMed

    Wang, Dan; Mou, Haiwei; Li, Shaoyong; Li, Yingxiang; Hough, Soren; Tran, Karen; Li, Jia; Yin, Hao; Anderson, Daniel G; Sontheimer, Erik J; Weng, Zhiping; Gao, Guangping; Xue, Wen

    2015-07-01

    CRISPR/Cas9 derived from the bacterial adaptive immunity pathway is a powerful tool for genome editing, but the safety profiles of in vivo delivered Cas9 (including host immune responses to the bacterial Cas9 protein) have not been comprehensively investigated in model organisms. Nonalcoholic steatohepatitis (NASH) is a prevalent human liver disease characterized by excessive fat accumulation in the liver. In this study, we used adenovirus (Ad) vector to deliver a Streptococcus pyogenes-derived Cas9 system (SpCas9) targeting Pten, a gene involved in NASH and a negative regulator of the PI3K-AKT pathway, in mouse liver. We found that the Ad vector mediated efficient Pten gene editing even in the presence of typical Ad vector-associated immunotoxicity in the liver. Four months after vector infusion, mice receiving the Pten gene-editing Ad vector showed massive hepatomegaly and features of NASH, consistent with the phenotypes following Cre-loxP-induced Pten deficiency in mouse liver. We also detected induction of humoral immunity against SpCas9 and the potential presence of an SpCas9-specific cellular immune response. Our findings provide a strategy to model human liver diseases in mice and highlight the importance considering Cas9-specific immune responses in future translational studies involving in vivo delivery of CRISPR/Cas9. PMID:26086867

  16. Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR-Cas I-F systems.

    PubMed

    Almendros, Cristóbal; Guzmán, Noemí M; García-Martínez, Jesús; Mojica, Francisco J M

    2016-01-01

    Archaea and bacteria harbour clustered regularly interspaced short palindromic repeats (CRISPR) loci. These arrays encode RNA molecules (crRNA), each containing a sequence of a single repeat-intervening spacer. The crRNAs guide CRISPR-associated (Cas) proteins to cleave nucleic acids complementary to the crRNA spacer, thus interfering with targeted foreign elements. Notably, pre-existing spacers may trigger the acquisition of new spacers from the target molecule by means of a primed adaptation mechanism. Here, we show that naturally occurring orphan CRISPR arrays that contain spacers matching sequences of the cognate (absent) cas genes are able to elicit both primed adaptation and direct interference against genetic elements carrying those genes. Our findings show the existence of an anti-cas mechanism that prevents the transfer of a fully equipped CRISPR-Cas system. Hence, they suggest that CRISPR immunity may be undesired by particular prokaryotes, potentially because they could limit possibilities for gaining favourable sequences by lateral transfer. PMID:27573106

  17. Observation d'un minimum plat pour RZ Cas [Observation of a flat minimum of RZ Cas

    NASA Astrophysics Data System (ADS)

    Dumont, M.

    1995-07-01

    We observed a minimum of RZ Cas during the night 15/16 august 1991 with the 76 cm telescope of the Fungfraujoch Observatory. We found: Min = HJD 2,448,484.50062 and observed a flat minimum during 10 minutes.

  18. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.

    PubMed

    Hirano, Seiichi; Nishimasu, Hiroshi; Ishitani, Ryuichiro; Nureki, Osamu

    2016-03-17

    The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets bearing a PAM (protospacer adjacent motif) and complementarity to the guide RNA. A recent study showed that, whereas wild-type Streptococcus pyogenes Cas9 (SpCas9) recognizes the 5'-NGG-3' PAM, the engineered VQR, EQR, and VRER SpCas9 variants recognize the 5'-NGA-3', 5'-NGAG-3', and 5'-NGCG-3' PAMs, respectively, thus expanding the targetable sequences in Cas9-mediated genome editing applications. Here, we present the high-resolution crystal structures of the three SpCas9 variants in complexes with a single-guide RNA and its altered PAM-containing, partially double-stranded DNA targets. A structural comparison of the three SpCas9 variants with wild-type SpCas9 revealed that the multiple mutations synergistically induce an unexpected displacement in the phosphodiester backbone of the PAM duplex, thereby allowing the SpCas9 variants to directly recognize the altered PAM nucleotides. Our findings explain the altered PAM specificities of the SpCas9 variants and establish a framework for further rational engineering of CRISPR-Cas9. PMID:26990991

  19. Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Doudna, Jennifer A

    2016-03-18

    The application of the CRISPR-Cas9 system for genome engineering has revolutionized the ability to interrogate genomes of mammalian cells. Programming the Cas9 endonuclease to induce DNA breaks at specified sites is achieved by simply modifying the sequence of its cognate guide RNA. Although Cas9-mediated genome editing has been shown to be highly specific, cleavage events at off-target sites have also been reported. Minimizing, and eventually abolishing, unwanted off-target cleavage remains a major goal of the CRISPR-Cas9 technology before its implementation for therapeutic use. Recent efforts have turned to chemical biology and biophysical approaches to engineer inducible genome editing systems for controlling Cas9 activity at the transcriptional and protein levels. Here, we review recent advancements to modulate Cas9-mediated genome editing by engineering split-Cas9 constructs, inteins, small molecules, protein-based dimerizing domains, and light-inducible systems. PMID:26857072

  20. Nuclease Activity of Legionella pneumophila Cas2 Promotes Intracellular Infection of Amoebal Host Cells

    PubMed Central

    Gunderson, Felizza F.; Mallama, Celeste A.; Fairbairn, Stephanie G.

    2014-01-01

    Legionella pneumophila, the primary agent of Legionnaires' disease, flourishes in both natural and man-made environments by growing in a wide variety of aquatic amoebae. Recently, we determined that the Cas2 protein of L. pneumophila promotes intracellular infection of Acanthamoeba castellanii and Hartmannella vermiformis, the two amoebae most commonly linked to cases of disease. The Cas2 family of proteins is best known for its role in the bacterial and archeal clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) system that constitutes a form of adaptive immunity against phage and plasmid. However, the infection event mediated by L. pneumophila Cas2 appeared to be distinct from this function, because cas2 mutants exhibited infectivity defects in the absence of added phage or plasmid and since mutants lacking the CRISPR array or any one of the other cas genes were not impaired in infection ability. We now report that the Cas2 protein of L. pneumophila has both RNase and DNase activities, with the RNase activity being more pronounced. By characterizing a catalytically deficient version of Cas2, we determined that nuclease activity is critical for promoting infection of amoebae. Also, introduction of Cas2, but not its catalytic mutant form, into a strain of L. pneumophila that naturally lacks a CRISPR-Cas locus caused that strain to be 40- to 80-fold more infective for amoebae, unequivocally demonstrating that Cas2 facilitates the infection process independently of any other component encoded within the CRISPR-Cas locus. Finally, a cas2 mutant was impaired for infection of Willaertia magna but not Naegleria lovaniensis, suggesting that Cas2 promotes infection of most but not all amoebal hosts. PMID:25547789

  1. BCAR3/AND-34 can signal independent of complex formation with CAS family members or the presence of p130Cas

    PubMed Central

    Borre, Pierre Vanden; Near, Richard I.; Makkinje, Anthony; Mostoslavsky, Gustavo; Lerner, Adam

    2011-01-01

    BCAR3 binds to the carboxy-terminus of p130Cas, a focal adhesion adapter protein. Both BCAR3 and p130Cas have been linked to resistance to anti-estrogens in breast cancer, Rac activation and cell motility. Using R743A BCAR3, a point mutant that has lost the ability to bind p130Cas, we find that BCAR3-p130Cas complex formation is not required for BCAR3-mediated anti-estrogen resistance, Rac activation or discohesion of epithelial breast cancer cells. Complex formation was also not required for BCAR3-induced lamellipodia formation in BALB/c-3T3 fibroblasts but was required for optimal BCAR3-induced motility. Although both wildtype and R743A BCAR3 induced phosphorylation of p130Cas and the related adapter protein HEF1/NEDD9, chimeric NSP3:BCAR3 experiments demonstrate that such phosphorylation does not correlate with BCAR3-induced anti-estrogen resistance or lamellipodia formation. Wildtype but not R743A BCAR3 induced lamellipodia formation and augmented cell motility in p130Cas-/- murine embryonic fibroblasts (MEFs), suggesting that while p130Cas itself is not strictly required for these endpoints, complex formation with other CAS family members is, at least in cells lacking p130Cas. Overall, our work suggests that many, but not all, BCAR3-mediated signaling events in epithelial and mesenchymal cells are independent of p130Cas association. These studies also indicate that disruption of the BCAR3-p130Cas complex is unlikely to reverse BCAR3-mediated anti-estrogen resistance. PMID:21262352

  2. An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing.

    PubMed

    Gao, Xiuhua; Chen, Jilin; Dai, Xinhua; Zhang, Da; Zhao, Yunde

    2016-07-01

    Mutations generated by CRISPR/Cas9 in Arabidopsis (Arabidopsis thaliana) are often somatic and are rarely heritable. Isolation of mutations in Cas9-free Arabidopsis plants can ensure the stable transmission of the identified mutations to next generations, but the process is laborious and inefficient. Here, we present a simple visual screen for Cas9-free T2 seeds, allowing us to quickly obtain Cas9-free Arabidopsis mutants in the T2 generation. To demonstrate this in principle, we targeted two sites in the AUXIN-BINDING PROTEIN1 (ABP1) gene, whose function as a membrane-associated auxin receptor has been challenged recently. We obtained many T1 plants with detectable mutations near the target sites, but only a small fraction of T1 plants yielded Cas9-free abp1 mutations in the T2 generation. Moreover, the mutations did not segregate in Mendelian fashion in the T2 generation. However, mutations identified in the Cas9-free T2 plants were stably transmitted to the T3 generation following Mendelian genetics. To further simplify the screening procedure, we simultaneously targeted two sites in ABP1 to generate large deletions, which can be easily identified by PCR. We successfully generated two abp1 alleles that contained 1,141- and 711-bp deletions in the ABP1 gene. All of the Cas9-free abp1 alleles we generated were stable and heritable. The method described here allows for effectively isolating Cas9-free heritable CRISPR mutants in Arabidopsis. PMID:27208253

  3. An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing1[OPEN

    PubMed Central

    Gao, Xiuhua; Chen, Jilin; Dai, Xinhua; Zhang, Da

    2016-01-01

    Mutations generated by CRISPR/Cas9 in Arabidopsis (Arabidopsis thaliana) are often somatic and are rarely heritable. Isolation of mutations in Cas9-free Arabidopsis plants can ensure the stable transmission of the identified mutations to next generations, but the process is laborious and inefficient. Here, we present a simple visual screen for Cas9-free T2 seeds, allowing us to quickly obtain Cas9-free Arabidopsis mutants in the T2 generation. To demonstrate this in principle, we targeted two sites in the AUXIN-BINDING PROTEIN1 (ABP1) gene, whose function as a membrane-associated auxin receptor has been challenged recently. We obtained many T1 plants with detectable mutations near the target sites, but only a small fraction of T1 plants yielded Cas9-free abp1 mutations in the T2 generation. Moreover, the mutations did not segregate in Mendelian fashion in the T2 generation. However, mutations identified in the Cas9-free T2 plants were stably transmitted to the T3 generation following Mendelian genetics. To further simplify the screening procedure, we simultaneously targeted two sites in ABP1 to generate large deletions, which can be easily identified by PCR. We successfully generated two abp1 alleles that contained 1,141- and 711-bp deletions in the ABP1 gene. All of the Cas9-free abp1 alleles we generated were stable and heritable. The method described here allows for effectively isolating Cas9-free heritable CRISPR mutants in Arabidopsis. PMID:27208253

  4. Broadening Staphylococcus aureus Cas9 Targeting Range by Modifying PAM Recognition

    PubMed Central

    Kleinstiver, Benjamin P.; Prew, Michelle S.; Tsai, Shengdar Q.; Nguyen, Nhu T.; Topkar, Ved V.; Zheng, Zongli; Joung, J. Keith

    2015-01-01

    CRISPR-Cas9 nucleases are primarily guided by RNA-DNA interactions but also require Cas9-mediated recognition of a protospacer adjacent motif (PAM). While potentially advantageous for specificity, extended PAM sequences limit the targeting range of Cas9 orthologues for genome editing. One possible strategy to relieve this restriction is to relax specificities for certain positions within the PAM. Here we used molecular evolution to modify the NNGRRT PAM specificity of Staphylococcus aureus Cas9 (SaCas9). One variant we identified, referred to as KKH SaCas9, shows robust genome editing activities at endogenous human target sites with NNNRRT PAMs. Importantly, using GUIDE-seq, we show that both wild-type and KKH SaCas9 induce comparable numbers of off-target effects in human cells. KKH SaCas9 increased the targeting range of SaCas9 by nearly two- to four-fold. Our molecular evolution strategy does not require structural information and therefore should be applicable to a wide range of Cas9 orthologues. PMID:26524662

  5. Nucleosomes impede Cas9 access to DNA in vivo and in vitro.

    PubMed

    Horlbeck, Max A; Witkowsky, Lea B; Guglielmi, Benjamin; Replogle, Joseph M; Gilbert, Luke A; Villalta, Jacqueline E; Torigoe, Sharon E; Tjian, Robert; Weissman, Jonathan S

    2016-01-01

    The prokaryotic CRISPR (clustered regularly interspaced palindromic repeats)-associated protein, Cas9, has been widely adopted as a tool for editing, imaging, and regulating eukaryotic genomes. However, our understanding of how to select single-guide RNAs (sgRNAs) that mediate efficient Cas9 activity is incomplete, as we lack insight into how chromatin impacts Cas9 targeting. To address this gap, we analyzed large-scale genetic screens performed in human cell lines using either nuclease-active or nuclease-dead Cas9 (dCas9). We observed that highly active sgRNAs for Cas9 and dCas9 were found almost exclusively in regions of low nucleosome occupancy. In vitro experiments demonstrated that nucleosomes in fact directly impede Cas9 binding and cleavage, while chromatin remodeling can restore Cas9 access. Our results reveal a critical role of eukaryotic chromatin in dictating the targeting specificity of this transplanted bacterial enzyme, and provide rules for selecting Cas9 target sites distinct from and complementary to those based on sequence properties. PMID:26987018

  6. Nucleosomes impede Cas9 access to DNA in vivo and in vitro

    PubMed Central

    Horlbeck, Max A; Witkowsky, Lea B; Guglielmi, Benjamin; Replogle, Joseph M; Gilbert, Luke A; Villalta, Jacqueline E; Torigoe, Sharon E; Tjian, Robert; Weissman, Jonathan S

    2016-01-01

    The prokaryotic CRISPR (clustered regularly interspaced palindromic repeats)-associated protein, Cas9, has been widely adopted as a tool for editing, imaging, and regulating eukaryotic genomes. However, our understanding of how to select single-guide RNAs (sgRNAs) that mediate efficient Cas9 activity is incomplete, as we lack insight into how chromatin impacts Cas9 targeting. To address this gap, we analyzed large-scale genetic screens performed in human cell lines using either nuclease-active or nuclease-dead Cas9 (dCas9). We observed that highly active sgRNAs for Cas9 and dCas9 were found almost exclusively in regions of low nucleosome occupancy. In vitro experiments demonstrated that nucleosomes in fact directly impede Cas9 binding and cleavage, while chromatin remodeling can restore Cas9 access. Our results reveal a critical role of eukaryotic chromatin in dictating the targeting specificity of this transplanted bacterial enzyme, and provide rules for selecting Cas9 target sites distinct from and complementary to those based on sequence properties. DOI: http://dx.doi.org/10.7554/eLife.12677.001 PMID:26987018

  7. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii

    PubMed Central

    Shin, Sung-Eun; Lim, Jong-Min; Koh, Hyun Gi; Kim, Eun Kyung; Kang, Nam Kyu; Jeon, Seungjib; Kwon, Sohee; Shin, Won-Sub; Lee, Bongsoo; Hwangbo, Kwon; Kim, Jungeun; Ye, Sung Hyeok; Yun, Jae-Young; Seo, Hogyun; Oh, Hee-Mock; Kim, Kyung-Jin; Kim, Jin-Soo; Jeong, Won-Joong; Chang, Yong Keun; Jeong, Byeong-ryool

    2016-01-01

    Genome editing is crucial for genetic engineering of organisms for improved traits, particularly in microalgae due to the urgent necessity for the next generation biofuel production. The most advanced CRISPR/Cas9 system is simple, efficient and accurate in some organisms; however, it has proven extremely difficult in microalgae including the model alga Chlamydomonas. We solved this problem by delivering Cas9 ribonucleoproteins (RNPs) comprising the Cas9 protein and sgRNAs to avoid cytotoxicity and off-targeting associated with vector-driven expression of Cas9. We obtained CRISPR/Cas9-induced mutations at three loci including MAA7, CpSRP43 and ChlM, and targeted mutagenic efficiency was improved up to 100 fold compared to the first report of transgenic Cas9-induced mutagenesis. Interestingly, we found that unrelated vectors used for the selection purpose were predominantly integrated at the Cas9 cut site, indicative of NHEJ-mediated knock-in events. As expected with Cas9 RNPs, no off-targeting was found in one of the mutagenic screens. In conclusion, we improved the knockout efficiency by using Cas9 RNPs, which opens great opportunities not only for biological research but also industrial applications in Chlamydomonas and other microalgae. Findings of the NHEJ-mediated knock-in events will allow applications of the CRISPR/Cas9 system in microalgae, including “safe harboring” techniques shown in other organisms. PMID:27291619

  8. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii.

    PubMed

    Shin, Sung-Eun; Lim, Jong-Min; Koh, Hyun Gi; Kim, Eun Kyung; Kang, Nam Kyu; Jeon, Seungjib; Kwon, Sohee; Shin, Won-Sub; Lee, Bongsoo; Hwangbo, Kwon; Kim, Jungeun; Ye, Sung Hyeok; Yun, Jae-Young; Seo, Hogyun; Oh, Hee-Mock; Kim, Kyung-Jin; Kim, Jin-Soo; Jeong, Won-Joong; Chang, Yong Keun; Jeong, Byeong-Ryool

    2016-01-01

    Genome editing is crucial for genetic engineering of organisms for improved traits, particularly in microalgae due to the urgent necessity for the next generation biofuel production. The most advanced CRISPR/Cas9 system is simple, efficient and accurate in some organisms; however, it has proven extremely difficult in microalgae including the model alga Chlamydomonas. We solved this problem by delivering Cas9 ribonucleoproteins (RNPs) comprising the Cas9 protein and sgRNAs to avoid cytotoxicity and off-targeting associated with vector-driven expression of Cas9. We obtained CRISPR/Cas9-induced mutations at three loci including MAA7, CpSRP43 and ChlM, and targeted mutagenic efficiency was improved up to 100 fold compared to the first report of transgenic Cas9-induced mutagenesis. Interestingly, we found that unrelated vectors used for the selection purpose were predominantly integrated at the Cas9 cut site, indicative of NHEJ-mediated knock-in events. As expected with Cas9 RNPs, no off-targeting was found in one of the mutagenic screens. In conclusion, we improved the knockout efficiency by using Cas9 RNPs, which opens great opportunities not only for biological research but also industrial applications in Chlamydomonas and other microalgae. Findings of the NHEJ-mediated knock-in events will allow applications of the CRISPR/Cas9 system in microalgae, including "safe harboring" techniques shown in other organisms. PMID:27291619

  9. Force Sensing by Extension of the Src Family Kinase Substrate, p130Cas

    PubMed Central

    Sawada, Yasuhiro; Tamada, Masako; Dubin-Thaler, Benjamin J.; Cherniavskaya, Oksana; Sakai, Ryuichi; Tanaka, Sakae; Sheetz, Michael P.

    2009-01-01

    SUMMARY Physical force is implicated in many cell functions. However, the molecular mechanisms of force sensing are poorly understood. Here, we show that mechanical extension of p130Cas (Cas) in vitro and in vivo causes phosphorylation by Src family kinases with no apparent change in Src kinase activity and that Cas phosphorylation is involved in stretch-dependent activation of the small GTPase, Rap1. In vitro, we mechanically extended bacterially expressed Cas substrate domain (CasSD) and found a remarkable enhancement of phosphorylation by specific kinases. Using an antibody that recognized extended CasSD in vitro, Cas extension in intact cells was observed in the peripheral regions of spreading cells where higher traction forces are expected and phosphorylated Cas was detected, suggesting that the in vitro extension and phosphorylation of CasSD is relevant to physiological force transduction. Thus, Cas acts as a primary force-sensor through extension of the substrate domain, which primes it for phosphorylation. PMID:17129785

  10. Highly efficient targeted chromosome deletions using CRISPR/Cas9.

    PubMed

    He, Zuyong; Proudfoot, Chris; Mileham, Alan J; McLaren, David G; Whitelaw, C Bruce A; Lillico, Simon G

    2015-05-01

    The CRISPR/Cas9 system has emerged as an intriguing new technology for genome engineering. It utilizes the bacterial endonuclease Cas9 which, when delivered to eukaryotic cells in conjunction with a user-specified small guide RNA (gRNA), cleaves the chromosomal DNA at the target site. Here we show that concurrent delivery of gRNAs designed to target two different sites in a human chromosome introduce DNA double-strand breaks in the chromosome and give rise to targeted deletions of the intervening genomic segment. Predetermined genomic DNA segments ranging from several-hundred base pairs to 1 Mbp can be precisely deleted at frequencies of 1-10%, with no apparent correlation between the size of the deleted fragment and the deletion frequency. The high efficiency of this technique holds promise for large genomic deletions that could be useful in generation of cell and animal models with engineered chromosomes. PMID:25362885

  11. Energy biotechnology in the CRISPR-Cas9 era.

    PubMed

    Estrela, Raissa; Cate, Jamie Harrison Doudna

    2016-04-01

    The production of bioenergy from plant biomass previously relied on using microorganisms that rapidly and efficiently convert simple sugars into fuels and chemicals. However, to exploit the far more abundant carbon fixed in plant cell walls, future industrial production hosts will need to be engineered to leverage the most efficient biochemical pathways and most robust traits that can be found in nature. The CRISPR-Cas9 genome editing technology now enables writing the genome at will, which will allow biotechnology to become an 'information science.' This review covers recent advances in using CRISPR-Cas9 to engineer the genomes of a wide variety of organisms that could be use in the industrial production of biofuels and renewable chemicals. PMID:26874259

  12. Application of CRISPR/Cas9 Technology to HBV

    PubMed Central

    Lin, Guigao; Zhang, Kuo; Li, Jinming

    2015-01-01

    More than 240 million people around the world are chronically infected with hepatitis B virus (HBV). Nucleos(t)ide analogs and interferon are the only two families of drugs to treat HBV currently. However, none of these anti-virals directly target the stable nuclear covalently closed circular DNA (cccDNA), which acts as a transcription template for viral mRNA and pre-genomic RNA synthesis and secures virus persistence. Thus, the fact that only a small number of patients treated achieve sustained viral response (SVR) or cure, highlights the need for new therapies against HBV. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system can specifically target the conserved regions of the HBV genome. This results in robust viral suppression and provides a promising tool for eradicating the virus. In this review, we discuss the function and application of the CRISPR/Cas9 system as a novel therapy for HBV. PMID:26540039

  13. Chromosome engineering in zygotes with CRISPR/Cas9

    PubMed Central

    Boroviak, Katharina; Doe, Brendan; Banerjee, Ruby; Yang, Fengtang

    2016-01-01

    SUMMARY Deletions, duplications, and inversions of large genomic regions covering several genes are an important class of disease causing variants in humans. Modeling these structural variants in mice requires multistep processes in ES cells, which has limited their availability. Mutant mice containing small insertions, deletions, and single nucleotide polymorphisms can be reliably generated using CRISPR/Cas9 directly in mouse zygotes. Large structural variants can be generated using CRISPR/Cas9 in ES cells, but it has not been possible to generate these directly in zygotes. We now demonstrate the direct generation of deletions, duplications and inversions of up to one million base pairs by zygote injection. genesis 54:78–85, 2016. © 2016 The Authors. genesis Published by Wiley Periodicals, Inc. PMID:26742453

  14. Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit.

    PubMed

    Mougiakos, Ioannis; Bosma, Elleke F; de Vos, Willem M; van Kranenburg, Richard; van der Oost, John

    2016-07-01

    The increasing demand for environmentally friendly production processes of green chemicals and fuels has stimulated research in microbial metabolic engineering. CRISPR-Cas-based tools for genome editing and expression control have enabled fast, easy, and accurate strain development for established production platform organisms, such as Escherichia coli and Saccharomyces cerevisiae. However, the growing interest in alternative production hosts, for which genome editing options are generally limited, requires further developing such engineering tools. In this review, we discuss established and emerging CRISPR-Cas-based tools for genome editing and transcription control of model and non-model prokaryotes, and we analyse the possibilities for further improvement and expansion of these tools for next generation prokaryotic engineering. PMID:26944793

  15. Photometry of stars in the Cas OB5 Associations

    NASA Astrophysics Data System (ADS)

    Tanriver, Mehmet; Keskin, Ahmet

    2016-07-01

    OB associations are a grouping of very young associations, contain 10-100 very hot massive stars, spectral types O and B. Also, the OB associations contain low and intermediate mass stars, too. Association members are believed to form within the same small volume inside a giant molecular cloud. Once the surrounding dust and gas is blown away, the remaining stars become not tied up and begin to drift separately. It is believed that the majority of all stars in the Milky Way were formed in OB associations. O type stars are short-lived, and will be at an end as supernovae after roundly a million years. OB associations are generally only a few million years in age or less. In this study, the photometry of UU Cas and field star which been Cas OB5 association member was carried out. Light curves and color diagrams are given in the study.

  16. Analysis of estimation algorithms for CDTI and CAS applications

    NASA Technical Reports Server (NTRS)

    Goka, T.

    1985-01-01

    Estimation algorithms for Cockpit Display of Traffic Information (CDTI) and Collision Avoidance System (CAS) applications were analyzed and/or developed. The algorithms are based on actual or projected operational and performance characteristics of an Enhanced TCAS II traffic sensor developed by Bendix and the Federal Aviation Administration. Three algorithm areas are examined and discussed. These are horizontal x and y, range and altitude estimation algorithms. Raw estimation errors are quantified using Monte Carlo simulations developed for each application; the raw errors are then used to infer impacts on the CDTI and CAS applications. Applications of smoothing algorithms to CDTI problems are also discussed briefly. Technical conclusions are summarized based on the analysis of simulation results.

  17. Dissociation of CAS phase in the uppermost lower mantle

    NASA Astrophysics Data System (ADS)

    Ishibashi, Kazufusa; Hirose, Kei; Sata, Nagayoshi; Ohishi, Yasuo

    2008-05-01

    The high-pressure stability limit of calcium aluminosilicate (CAS) phase has been examined in its end-member CaAl4Si2O11 composition at 18 39 GPa and 1,670 2,300 K in a laser-heated diamond-anvil cell (LHDAC). The in-situ synchrotron X-ray diffraction measurements revealed that the CAS phase decomposes into three-phase assemblage of cubic Al-bearing CaSiO3 perovskite, Al2O3 corundum, and SiO2 stishovite above 30 GPa and 2,000 K with a positive pressure temperature slope. Present results have important implications for the subsolidus mineral assemblage of subducted sediment and the melting phase relation of basalt in the lower mantle.

  18. Plasmocytome costal solitaire: à propos d'un cas

    PubMed Central

    Razafimanjato, Narindra Njarasoa Mihaja; Ravoatrarilandy, Manjakaniaina; Rakotoarisoa, Andriamihaja Jean Claude; Hasiniatsy, Rodrigue; Hunald, Allen Francis; Rakototiana, Auberlin Felantsoa; Rafaramino, Florine; Rakotovao, Hanitrala Jean Louis

    2014-01-01

    Les auteurs rapportent un cas de plasmocytome solitaire particulière par leur localisation costale. Le diagnostic est basé sur la mise en évidence d'une tumeur localisée, constituée de cellules plasmocytaires monoclonales cytologiquement identiques à celles du myélome multiple, en l'absence d'autres signes en faveur d'une forme disséminée. Nous rapportons un cas de plasmocytome solitaire à localisation costale et nous discutons les aspects diagnostiques et thérapeutiques de cette affection potentiellement menacée dans son évolution par la transformation en myélome multiple. PMID:25419306

  19. Inactivation of Cancer Mutations Utilizing CRISPR/Cas9.

    PubMed

    Gebler, Christina; Lohoff, Tim; Paszkowski-Rogacz, Maciej; Mircetic, Jovan; Chakraborty, Debojyoti; Camgoz, Aylin; Hamann, Martin V; Theis, Mirko; Thiede, Christian; Buchholz, Frank

    2017-01-01

    Although whole-genome sequencing has uncovered a large number of mutations that drive tumorigenesis, functional ratification for most mutations remains sparse. Here, we present an approach to test functional relevance of tumor mutations employing CRISPR/Cas9. Combining comprehensive sgRNA design and an efficient reporter assay to nominate efficient and selective sgRNAs, we establish a pipeline to dissect roles of cancer mutations with potential applicability to personalized medicine and future therapeutic use. PMID:27576906

  20. Motions of alloying additions in the CAS steelmaking operations

    NASA Astrophysics Data System (ADS)

    Mazumdar, D.; Guthrie, R. I. L.

    1993-08-01

    Water model studies in a pilot scale ladle ( D = 1.12 m and L = 0.93 m) were carried out to investigate the subsurface motion of both buoyant and sinking additions during the CAS (com-position adjustment by sealed argon bubbling systems) alloy addition procedure in steelmaking. This technique involves placing a refractory baffle around a rising gas/liquid plume within a stirred ladle of steel. Alloy additions are then made by projecting them into the slag-free region of steel within the baffled region. It was found that such particles while moving through the upwelling two-phase plume region can experience a significant reduction in drag forces, causing buoyant particles to penetrate more deeply than anticipated for a homogeneous fluid. Therefore, considering reduced drag on particles penetrating the upwelling gas liquid plume region, predictions were made for the trajectories of spherical-shaped particles using Newton’s law of motion. Predictions were in very reasonable agreement with those measured. Incorporating the velocity fields in industrial size vessels already reported by the present authors, trajectories of spherical-shaped additions (diameter ˜ 80 mm) in a 150-ton ladle during CAS operations were then predicted. The industrial implications of such trajectories, together with the alloy’s dissolution and dispersion behavior, were also analyzed. Finally, advantages of the CAS alloy addition procedure over conventional methods, in terms of the recovery rates of buoyant additions, are discussed.

  1. Targeted mutagenesis using CRISPR/Cas system in medaka

    PubMed Central

    Ansai, Satoshi; Kinoshita, Masato

    2014-01-01

    ABSTRACT Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system-based RNA-guided endonuclease (RGEN) has recently emerged as a simple and efficient tool for targeted genome editing. In this study, we showed successful targeted mutagenesis using RGENs in medaka, Oryzias latipes. Somatic and heritable mutations were induced with high efficiency at the targeted genomic sequence on the DJ-1 gene in embryos that had been injected with the single guide RNA (sgRNA) transcribed by a T7 promoter and capped RNA encoding a Cas9 nuclease. The sgRNAs that were designed for the target genomic sequences without the 5′ end of GG required by the T7 promoter induced the targeted mutations. This suggests that the RGEN can target any sequence adjacent to an NGG protospacer adjacent motif (PAM) sequence, which occurs once every 8 bp. The off-target alterations at 2 genomic loci harboring double mismatches in the 18-bp targeting sequences were induced in the RGEN-injected embryos. However, we also found that the off-target effects could be reduced by lower dosages of sgRNA. Taken together, our results suggest that CRISPR/Cas-mediated RGENs may be an efficient and flexible tool for genome editing in medaka. PMID:24728957

  2. Embolie de liquide amniotique: à propos de deux cas

    PubMed Central

    Elbahraoui, Houda; Bouziane, Hanane; Elghanmi, Adil; Lakhdar, Amina; Elhanchi, Zaki; Ferhati, Driss

    2012-01-01

    L’embolie de liquide amniotique (ELA) est une complication imprévisible de l’accouchement, souvent fatale, associant un collapsus cardiovasculaire sévère, un syndrome de détresse respiratoire aiguë et une hémorragie avec coagulation intra vasculaire disséminée (CIVD). Dès l’évocation du diagnostic, la prise en charge doit être multidisciplinaire et intensive. ELA est responsable d’une mortalité maternelle et néonatale importante, son incidence est extrêmement variable selon les études et le taux de mortalité maternelle varie entre 26 et 86 % selon les études. Ces dix dernières années, le pronostic materno-fœtal semble en amélioration grâce aux progrès de prise en charge standardisée multidisciplinaire sur les lieux d’accouchement. Nous rapportons deux cas d’embolie de liquide amniotique. Le premier cas s’est manifesté au cours du travail et le deuxième cas est survenu dans les suites immédiates de l’accouchement. PMID:22655108

  3. CRISPR-Cas systems for genome editing, regulation and targeting

    PubMed Central

    Sander, Jeffry D.; Joung, J. Keith

    2014-01-01

    Targeted genome editing using engineered nucleases has rapidly transformed from a niche technology to a mainstream method used by many biological researchers. This widespread adoption has been largely fueled by the emergence of the clustered regularly interspaced short palindromic repeat (CRISPR) technology, an important new platform for generating RNA-guided nucleases (RGNs), such as Cas9, with customizable specificities. RGN-mediated genome editing is facile, rapid and has enabled the efficient modification of endogenous genes in a wide variety of biomedically important cell types and novel organisms that have traditionally been challenging to manipulate genetically. Furthermore, a modified version of the CRISPR-Cas9 system has been developed to recruit heterologous domains that can regulate endogenous gene expression or label specific genomic loci in living cells. Although the genome-wide specificities of CRISPR-Cas9 systems remain to be fully defined, the capabilities of these systems to perform targeted, highly efficient alterations of genome sequence and gene expression will undoubtedly transform biological research and spur the development of novel molecular therapeutics for human disease. PMID:24584096

  4. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein.

    PubMed

    Silas, Sukrit; Mohr, Georg; Sidote, David J; Markham, Laura M; Sanchez-Amat, Antonio; Bhaya, Devaki; Lambowitz, Alan M; Fire, Andrew Z

    2016-02-26

    CRISPR systems mediate adaptive immunity in diverse prokaryotes. CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new threats in type I and II CRISPR systems by the acquisition of short segments of DNA (spacers) from invasive elements. In several type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT). In the marine bacterium Marinomonas mediterranea (MMB-1), we showed that a RT-Cas1 fusion protein enables the acquisition of RNA spacers in vivo in a RT-dependent manner. In vitro, the MMB-1 RT-Cas1 and Cas2 proteins catalyze the ligation of RNA segments into the CRISPR array, which is followed by reverse transcription. These observations outline a host-mediated mechanism for reverse information flow from RNA to DNA. PMID:26917774

  5. Evidence for the widespread distribution of CRISPR-Cas system in the Phylum Cyanobacteria

    PubMed Central

    Cai, Fei; Axen, Seth D.; Kerfeld, Cheryl A.

    2013-01-01

    Members of the phylum Cyanobacteria inhabit ecologically diverse environments. However, the CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR associated genes), an extremely adaptable defense system, has not been surveyed in this phylum. We analyzed 126 cyanobacterial genomes and, surprisingly, found CRISPR-Cas in the majority except the marine subclade (Synechococcus and Prochlorococcus), in which cyanophages are a known force shaping their evolution. Multiple observations of CRISPR loci in the absence of cas1/cas2 genes may represent an early stage of losing a CRISPR-Cas locus. Our findings reveal the widespread distribution of their role in the phylum Cyanobacteria and provide a first step to systematically understanding CRISPR-Cas systems in cyanobacteria. PMID:23628889

  6. Transcriptional Regulation with CRISPR/Cas9 Effectors in Mammalian Cells.

    PubMed

    Pham, Hannah; Kearns, Nicola A; Maehr, René

    2016-01-01

    CRISPR/Cas9-based regulation of gene expression provides the scientific community with a new high-throughput tool to dissect the role of genes in molecular processes and cellular functions. Single-guide RNAs allow for recruitment of a nuclease-dead Cas9 protein and transcriptional Cas9-effector fusion proteins to specific genomic loci, thereby modulating gene expression. We describe the application of a CRISPR-Cas9 effector system from Streptococcus pyogenes for transcriptional regulation in mammalian cells resulting in activation or repression of transcription. We present methods for appropriate target site selection, sgRNA design, and delivery of dCas9 and dCas9-effector system components into cells through lentiviral transgenesis to modulate transcription. PMID:26463376

  7. Generation of an Oocyte-Specific Cas9 Transgenic Mouse for Genome Editing

    PubMed Central

    Zhang, Linlin; Zhou, Jiankui; Han, Jinxiong; Hu, Bian; Hou, Ningning; Shi, Yun; Huang, Xingxu

    2016-01-01

    The CRISPR/Cas9 system has been developed as an easy-handle and multiplexable approach for engineering eukaryotic genomes by zygote microinjection of Cas9 and sgRNA, while preparing Cas9 for microinjection is laborious and introducing inconsistency into the experiment. Here, we describe a modified strategy for gene targeting through using oocyte-specific Cas9 transgenic mouse. With this mouse line, we successfully achieve precise gene targeting by injection of sgRNAs only into one-cell-stage embryos. Through comprehensive analysis, we also show allele complexity and off-target mutagenesis induced by this strategy is obviously lower than Cas9 mRNA/sgRNA injection. Thus, injection of sgRNAs into oocyte-specific Cas9 transgenic mouse embryo provides a convenient, efficient and reliable approach for mouse genome editing. PMID:27119535

  8. Long-term monitoring of orbital modulation and secondary-star irradiation in Nova Cas 1995 (V723 Cas)

    NASA Astrophysics Data System (ADS)

    Ochner, P.; Moschini, F.; Munari, U.; Frigo, A.

    2015-11-01

    We present optical spectroscopy collected at seven epochs and BVRCIC photometry obtained at 1227 epochs of nova V723 Cas, covering the time interval between 2007 and 2015. The mean magnitude during this period, stable at ˜3 mag brighter than in quiescence, and the continuous presence of strong [Fe X] and other high-ionization emission lines, indicates that the nuclear burning at the surface of the white dwarf is continuing 20 years past the initial outburst. The light curve shows a large amplitude (2 mag) orbital modulation, which is governed by the visibility of the irradiated side of the secondary star. Our observations do not confirm the reported increase with time of the orbital period of V723 Cas, a period of P=16.638 383 ± 0.000 025 h satisfying equally well all available observations in all bands. Our observations also do not confirm the presence of an additional periodicity around P=15.2397 h from which V723 Cas was classified as an intermediate-polar system.

  9. Introduction of p130cas signaling complex formation upon integrin-mediated cell adhesion: a role for Src family kinases.

    PubMed Central

    Vuori, K; Hirai, H; Aizawa, S; Ruoslahti, E

    1996-01-01

    Integrin-mediated cell adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation of intracellular proteins. Among these are the focal adhesion proteins p130cas (Cas) and focal adhesion kinase (FAK). Here we identify the kinase(s) mediating integrin-induced Cas phosphorylation and characterize protein-protein interactions mediated by phosphorylated Cas. We found that expression of a constitutively active FAK in fibroblasts results in a consecutive tyrosine phosphorylation of Cas. This effect required the autophosphorylation site of FAK, which is a binding site for Src family kinases. Integrin-mediated phosphorylation of Cas was not, however, compromised in fibroblasts lacking FAK. In contrast, adhesion-induced tyrosine phosphorylation of Cas was reduced in cells lacking Src, whereas enhanced phosphorylation of Cas was observed Csk- cells, in which Src kinases are activated. These results suggest that Src kinases are responsible for the integrin-mediated tyrosine phosphorylation of Cas. FAK seems not to be necessary for phosphorylation of Cas, but when autophosphorylated, FAK may recruit Src family kinases to phosphorylate Cas. Cas was found to form complexes with Src homology 2 (SH2) domain-containing signaling molecules, such as the SH2/SH3 adapter protein Crk, following integrin-induced tyrosine phosphorylation. Guanine nucleotide exchange factors C3G and Sos were found in the Cas-Crk complex upon integrin ligand binding. These observations suggest that Cas serves as a docking protein and may transduce signals to downstream signaling pathways following integrin-mediated cell adhesion. PMID:8649368

  10. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus.

    PubMed

    Steinert, Jeannette; Schiml, Simon; Fauser, Friedrich; Puchta, Holger

    2015-12-01

    The application of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system of Streptococcus pyogenes (SpCas9) is currently revolutionizing genome engineering in plants. However, synthetic plant biology will require more complex manipulations of genomes and transcriptomes. The simultaneous addressing of different specific genomic sites with independent enzyme activities within the same cell is a key to this issue. Such approaches can be achieved by the adaptation of additional bacterial orthologues of the CRISPR/Cas system for use in plant cells. Here, we show that codon-optimised Cas9 orthologues from Streptococcus thermophilus (St1Cas9) and Staphylococcus aureus (SaCas9) can both be used to induce error-prone non-homologous end-joining-mediated targeted mutagenesis in the model plant Arabidopsis thaliana at frequencies at least comparable to those that have previously been reported for the S. pyogenes CRISPR/Cas system. Stable inheritance of the induced targeted mutations of the ADH1 gene was demonstrated for both St1Cas9- and SaCas9-based systems at high frequencies. We were also able to demonstrate that the SaCas9 and SpCas9 proteins enhance homologous recombination via the induction of double-strand breaks only in the presence of their species-specific single guide (sg) RNAs. These proteins are not prone to inter-species interference with heterologous sgRNA expression constructs. Thus, the CRISPR/Cas systems of S. pyogenes and S. aureus should be appropriate for simultaneously addressing different sequence motifs with different enzyme activities in the same plant cell. PMID:26576927

  11. Functional annotation of native enhancers with a Cas9 -histone demethylase fusion

    PubMed Central

    Tabak, Barbara; Genga, Ryan M; Silverstein, Noah J; Garber, Manuel; Maehr, René

    2015-01-01

    Understanding of mammalian enhancer function is limited by the lack of a technology to rapidly and thoroughly test their cell type-specific function. Here, we use a nuclease-deficient (d)Cas9 histone demethylase fusion to functionally characterize previously described and novel enhancer elements for their roles in the embryonic stem cell state. Further, we distinguish the mechanism of action of dCas9-LSD1 at enhancers from previous dCas9-effectors. PMID:25775043

  12. Efficient Production of Gene-Modified Mice using Staphylococcus aureus Cas9

    PubMed Central

    Zhang, Xiya; Liang, Puping; Ding, Chenhui; Zhang, Zhen; Zhou, Jianwen; Xie, Xiaowei; Huang, Rui; Sun, Ying; Sun, Hongwei; Zhang, Jinran; Xu, Yanwen; Songyang, Zhou; Huang, Junjiu

    2016-01-01

    The CRISPR/Cas system is an efficient genome-editing tool to modify genes in mouse zygotes. However, only the Streptococcus pyogenes Cas9 (SpCas9) has been systematically tested for generating gene-modified mice. The protospacer adjacent motif (PAM, 5′-NGG-3′) recognized by SpCas9 limits the number of potential target sites for this system. Staphylococcus aureus Cas9 (SaCas9), with its smaller size and unique PAM (5′-NNGRRT-3′) preferences, presents an alternative for genome editing in zygotes. Here, we showed that SaCas9 could efficiently and specifically edit the X-linked gene Slx2 and the autosomal gene Zp1 in mouse zygotes. SaCas9-mediated disruption of the tyrosinase (Tyr) gene led to C57BL/6J mice with mosaic coat color. Furthermore, multiplex targeting proved efficient multiple genes disruption when we co-injected gRNAs targeting Slx2, Zp1, and Tyr together with SaCas9 mRNA. We were also able to insert a Flag tag at the C-terminus of histone H1c, when a Flag-encoding single-stranded DNA oligo was co-introduced into mouse zygotes with SaCas9 mRNA and the gRNA. These results indicate that SaCas9 can specifically cleave the target gene locus, leading to successful gene knock-out and precise knock-in in mouse zygotes, and highlight the potential of using SaCas9 for genome editing in preimplantation embryos and producing gene-modified animal models. PMID:27586692

  13. Prediction and Validation of Native and Engineered Cas9 Guide Sequences.

    PubMed

    Briner, Alexandra E; Henriksen, Emily D; Barrangou, Rodolphe

    2016-01-01

    Cas9-based technologies rely on native elements of Type II CRISPR-Cas bacterial immune systems, including the trans-activating CRISPR RNA (tracrRNA), CRISPR RNA (crRNA), Cas9 protein, and protospacer-adjacent motif (PAM). The tracrRNA and crRNA form an RNA duplex that guides the Cas9 endonuclease to complementary nucleic acid sequences. Mechanistically, Cas9 initiates interactions by binding to the target PAM sequence and interrogating the target DNA in a 3'-to-5' manner. Complementarity between the guide RNA and the target DNA is key. In natural systems, precise cleavage occurs when the target DNA sequence contains a PAM flanking a sequence homologous to the crRNA spacer sequence. Currently, the majority of commercial Cas9-based genome-editing tools are derived from the Type II CRISPR-Cas system of Streptococcus pyogenes However, a diverse set of Type II CRISPR-Cas systems exist in nature that are potentially valuable for genome engineering applications. Exploitation of these systems requires prediction and validation of both native and engineered dual and single guide RNAs to drive Cas9 functionality. Here, we discuss how to identify the elements of these immune systems to develop next-generation Cas9-based genome-editing tools. We first discuss how to predict tracrRNA sequences and suggest a method for designing single guide RNAs containing only critical structural modules. We then outline how to predict the PAM sequence, which is crucial for determining potential targets for Cas9. Finally, validation of the system elements through transcriptome analysis and interference assays is essential for developing next-generation Cas9-based genome-editing tools. PMID:27371591

  14. Modified RNAs in CRISPR/Cas9: An Old Trick Works Again.

    PubMed

    Latorre, Alfonso; Latorre, Ana; Somoza, Álvaro

    2016-03-01

    Old tricks, new dog: CRISPR/Cas9 is a powerful tool for gene editing that requires an endonuclease (Cas9) and RNA strands. It has been shown that chemical modification of the RNA structures, an approach that has been used to improve the efficiency of RNA interference, can also be applied to enhance the activity of CRISPR/Cas9 and reduce its off-target effects. PMID:26880106

  15. Efficient Production of Gene-Modified Mice using Staphylococcus aureus Cas9.

    PubMed

    Zhang, Xiya; Liang, Puping; Ding, Chenhui; Zhang, Zhen; Zhou, Jianwen; Xie, Xiaowei; Huang, Rui; Sun, Ying; Sun, Hongwei; Zhang, Jinran; Xu, Yanwen; Songyang, Zhou; Huang, Junjiu

    2016-01-01

    The CRISPR/Cas system is an efficient genome-editing tool to modify genes in mouse zygotes. However, only the Streptococcus pyogenes Cas9 (SpCas9) has been systematically tested for generating gene-modified mice. The protospacer adjacent motif (PAM, 5'-NGG-3') recognized by SpCas9 limits the number of potential target sites for this system. Staphylococcus aureus Cas9 (SaCas9), with its smaller size and unique PAM (5'-NNGRRT-3') preferences, presents an alternative for genome editing in zygotes. Here, we showed that SaCas9 could efficiently and specifically edit the X-linked gene Slx2 and the autosomal gene Zp1 in mouse zygotes. SaCas9-mediated disruption of the tyrosinase (Tyr) gene led to C57BL/6J mice with mosaic coat color. Furthermore, multiplex targeting proved efficient multiple genes disruption when we co-injected gRNAs targeting Slx2, Zp1, and Tyr together with SaCas9 mRNA. We were also able to insert a Flag tag at the C-terminus of histone H1c, when a Flag-encoding single-stranded DNA oligo was co-introduced into mouse zygotes with SaCas9 mRNA and the gRNA. These results indicate that SaCas9 can specifically cleave the target gene locus, leading to successful gene knock-out and precise knock-in in mouse zygotes, and highlight the potential of using SaCas9 for genome editing in preimplantation embryos and producing gene-modified animal models. PMID:27586692

  16. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium

    PubMed Central

    Pyne, Michael E.; Bruder, Mark R.; Moo-Young, Murray; Chung, Duane A.; Chou, C. Perry

    2016-01-01

    Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium. PMID:27157668

  17. Generating Mouse Models Using CRISPR-Cas9-Mediated Genome Editing.

    PubMed

    Qin, Wenning; Kutny, Peter M; Maser, Richard S; Dion, Stephanie L; Lamont, Jeffrey D; Zhang, Yingfan; Perry, Greggory A; Wang, Haoyi

    2016-01-01

    The CRISPR-Cas9 system in bacteria and archaea has recently been exploited for genome editing in various model organisms, including mice. The CRISPR-Cas9 reagents can be delivered directly into the mouse zygote to derive a mutant animal carrying targeted genetic modifications. The major components of the system include the guide RNA, which provides target specificity, the Cas9 nuclease that creates the DNA double-strand break, and the donor oligonucleotide or plasmid carrying the intended mutation flanked by sequences homologous to the target site. Here we describe the general considerations and experimental protocols for creating genetically modified mice using the CRISPR-Cas9 system. PMID:26928663

  18. Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system

    PubMed Central

    Gleditzsch, Daniel; Müller-Esparza, Hanna; Pausch, Patrick; Sharma, Kundan; Dwarakanath, Srivatsa; Urlaub, Henning; Bange, Gert; Randau, Lennart

    2016-01-01

    Shewanella putrefaciens CN-32 contains a single Type I-Fv CRISPR-Cas system which confers adaptive immunity against bacteriophage infection. Three Cas proteins (Cas6f, Cas7fv, Cas5fv) and mature CRISPR RNAs were shown to be required for the assembly of an interference complex termed Cascade. The Cas protein-CRISPR RNA interaction sites within this complex were identified via mass spectrometry. Additional Cas proteins, commonly described as large and small subunits, that are present in all other investigated Cascade structures, were not detected. We introduced this minimal Type I system in Escherichia coli and show that it provides heterologous protection against lambda phage. The absence of a large subunit suggests that the length of the crRNA might not be fixed and recombinant Cascade complexes with drastically shortened and elongated crRNAs were engineered. Size-exclusion chromatography and small-angle X-ray scattering analyses revealed that the number of Cas7fv backbone subunits is adjusted in these shortened and extended Cascade variants. Larger Cascade complexes can still confer immunity against lambda phage infection in E. coli. Minimized Type I CRISPR-Cas systems expand our understanding of the evolution of Cascade assembly and diversity. Their adjustable crRNA length opens the possibility for customizing target DNA specificity. PMID:27216815

  19. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.

    PubMed

    Bondy-Denomy, Joseph; Garcia, Bianca; Strum, Scott; Du, Mingjian; Rollins, MaryClare F; Hidalgo-Reyes, Yurima; Wiedenheft, Blake; Maxwell, Karen L; Davidson, Alan R

    2015-10-01

    The battle for survival between bacteria and the viruses that infect them (phages) has led to the evolution of many bacterial defence systems and phage-encoded antagonists of these systems. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated (cas) genes comprise an adaptive immune system that is one of the most widespread means by which bacteria defend themselves against phages. We identified the first examples of proteins produced by phages that inhibit a CRISPR-Cas system. Here we performed biochemical and in vivo investigations of three of these anti-CRISPR proteins, and show that each inhibits CRISPR-Cas activity through a distinct mechanism. Two block the DNA-binding activity of the CRISPR-Cas complex, yet do this by interacting with different protein subunits, and using steric or non-steric modes of inhibition. The third anti-CRISPR protein operates by binding to the Cas3 helicase-nuclease and preventing its recruitment to the DNA-bound CRISPR-Cas complex. In vivo, this anti-CRISPR can convert the CRISPR-Cas system into a transcriptional repressor, providing the first example-to our knowledge-of modulation of CRISPR-Cas activity by a protein interactor. The diverse sequences and mechanisms of action of these anti-CRISPR proteins imply an independent evolution, and foreshadow the existence of other means by which proteins may alter CRISPR-Cas function. PMID:26416740

  20. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.

    PubMed

    Pyne, Michael E; Bruder, Mark R; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2016-01-01

    Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium. PMID:27157668

  1. Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system.

    PubMed

    Gleditzsch, Daniel; Müller-Esparza, Hanna; Pausch, Patrick; Sharma, Kundan; Dwarakanath, Srivatsa; Urlaub, Henning; Bange, Gert; Randau, Lennart

    2016-07-01

    Shewanella putrefaciens CN-32 contains a single Type I-Fv CRISPR-Cas system which confers adaptive immunity against bacteriophage infection. Three Cas proteins (Cas6f, Cas7fv, Cas5fv) and mature CRISPR RNAs were shown to be required for the assembly of an interference complex termed Cascade. The Cas protein-CRISPR RNA interaction sites within this complex were identified via mass spectrometry. Additional Cas proteins, commonly described as large and small subunits, that are present in all other investigated Cascade structures, were not detected. We introduced this minimal Type I system in Escherichia coli and show that it provides heterologous protection against lambda phage. The absence of a large subunit suggests that the length of the crRNA might not be fixed and recombinant Cascade complexes with drastically shortened and elongated crRNAs were engineered. Size-exclusion chromatography and small-angle X-ray scattering analyses revealed that the number of Cas7fv backbone subunits is adjusted in these shortened and extended Cascade variants. Larger Cascade complexes can still confer immunity against lambda phage infection in E. coli Minimized Type I CRISPR-Cas systems expand our understanding of the evolution of Cascade assembly and diversity. Their adjustable crRNA length opens the possibility for customizing target DNA specificity. PMID:27216815

  2. Development of an intein-mediated split–Cas9 system for gene therapy

    PubMed Central

    Truong, Dong-Jiunn Jeffery; Kühner, Karin; Kühn, Ralf; Werfel, Stanislas; Engelhardt, Stefan; Wurst, Wolfgang; Ortiz, Oskar

    2015-01-01

    Using CRISPR/Cas9, it is possible to target virtually any gene in any organism. A major limitation to its application in gene therapy is the size of Cas9 (>4 kb), impeding its efficient delivery via recombinant adeno-associated virus (rAAV). Therefore, we developed a split–Cas9 system, bypassing the packaging limit using split-inteins. Each Cas9 half was fused to the corresponding split-intein moiety and, only upon co-expression, the intein-mediated trans-splicing occurs and the full Cas9 protein is reconstituted. We demonstrated that the nuclease activity of our split-intein system is comparable to wild-type Cas9, shown by a genome-integrated surrogate reporter and by targeting three different endogenous genes. An analogously designed split-Cas9D10A nickase version showed similar activity as Cas9D10A. Moreover, we showed that the double nick strategy increased the homologous directed recombination (HDR). In addition, we explored the possibility of delivering the repair template accommodated on the same dual-plasmid system, by transient transfection, showing an efficient HDR. Most importantly, we revealed for the first time that intein-mediated split–Cas9 can be packaged, delivered and its nuclease activity reconstituted efficiently, in cells via rAAV. PMID:26082496

  3. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems.

    PubMed

    Jiang, Wenyan; Marraffini, Luciano A

    2015-01-01

    Prokaryotic CRISPR-Cas loci encode proteins that function as an adaptive immune system against infectious viruses and plasmids. Immunity is mediated by Cas nucleases and small RNA guides, which specify a cleavage site within the genome of the invader. In type II CRISPR-Cas systems, the RNA-guided Cas9 nuclease cleaves the DNA. Cas9 can be reprogrammed to create double-strand DNA breaks in the genomes of a variety of organisms, from bacteria to human cells. Repair of Cas9 lesions by homologous recombination or nonhomologous end joining mechanisms can lead to the introduction of specific nucleotide substitutions or indel mutations, respectively. Furthermore, a nuclease-null Cas9 has been developed to regulate endogenous gene expression and to label genomic loci in living cells. Targeted genome editing and gene regulation mediated by Cas9 are easy to program, scale, and multiplex, allowing researchers to decipher the causal link between genetic and phenotypic variation. In this review, we describe the most notable applications of Cas9 in basic biology, translational medicine, synthetic biology, biotechnology, and other fields. PMID:26209264

  4. Development of an intein-mediated split-Cas9 system for gene therapy.

    PubMed

    Truong, Dong-Jiunn Jeffery; Kühner, Karin; Kühn, Ralf; Werfel, Stanislas; Engelhardt, Stefan; Wurst, Wolfgang; Ortiz, Oskar

    2015-07-27

    Using CRISPR/Cas9, it is possible to target virtually any gene in any organism. A major limitation to its application in gene therapy is the size of Cas9 (>4 kb), impeding its efficient delivery via recombinant adeno-associated virus (rAAV). Therefore, we developed a split-Cas9 system, bypassing the packaging limit using split-inteins. Each Cas9 half was fused to the corresponding split-intein moiety and, only upon co-expression, the intein-mediated trans-splicing occurs and the full Cas9 protein is reconstituted. We demonstrated that the nuclease activity of our split-intein system is comparable to wild-type Cas9, shown by a genome-integrated surrogate reporter and by targeting three different endogenous genes. An analogously designed split-Cas9D10A nickase version showed similar activity as Cas9D10A. Moreover, we showed that the double nick strategy increased the homologous directed recombination (HDR). In addition, we explored the possibility of delivering the repair template accommodated on the same dual-plasmid system, by transient transfection, showing an efficient HDR. Most importantly, we revealed for the first time that intein-mediated split-Cas9 can be packaged, delivered and its nuclease activity reconstituted efficiently, in cells via rAAV. PMID:26082496

  5. Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.

    PubMed

    Zhang, Dandan; Li, Zhenxiang; Li, Jian-Feng

    2016-05-20

    The CRISPR/Cas technology is emerging as a revolutionary genome editing tool in diverse organisms including plants, and has quickly evolved into a suite of versatile tools for sequence-specific gene manipulations beyond genome editing. Here, we review the most recent applications of the CRISPR/Cas toolkit in plants and also discuss key factors for improving CRISPR/Cas performance and strategies for reducing the off-target effects. Novel technical breakthroughs in mammalian research regarding the CRISPR/Cas toolkit will also be incorporated into this review in hope to stimulate prospective users from the plant research community to fully explore the potential of these technologies. PMID:27165865

  6. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system.

    PubMed

    Sinkunas, Tomas; Gasiunas, Giedrius; Fremaux, Christophe; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2011-04-01

    Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli, Cas3 is essential for crRNA-guided interference with virus proliferation. Cas3 contains N-terminal HD phosphohydrolase and C-terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single-stranded DNA (ssDNA)-stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP-independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation-of-function mutants (ATPase(+)/nuclease(-) and ATPase(-)/nuclease(+)) were obtained by site-directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade-crRNA complex targeting foreign DNA. PMID:21343909

  7. Cas5d protein processes pre-crRNA and assembles into a Cascade-like interference complex in Subtype I-C/Dvulg CRISPR-Cas system

    PubMed Central

    Nam, Ki Hyun; Haitjema, Charles; Liu, Xueqi; Ding, Fran; Wang, Hongwei; DeLisa, Matthew P.; Ke, Ailong

    2012-01-01

    SUMMARY Clustered regularly interspaced short palindromic repeats (CRISPRs), together with an operon of CRISPR-associated (Cas) proteins, form an RNA-based prokaryotic immune system against exogenous genetic elements. Cas5 family proteins are found in several Type I CRISPR-Cas systems. Here we report the molecular function of Subtype I-C/Dvulg Cas5d from B. halodurans. We show that Cas5d cleaves pre-crRNA into unit length by recognizing both the hairpin structure and the 3′ single stranded sequence in the CRISPR repeat region. Cas5d structure reveals a ferredoxin domain-based architecture and a catalytic triad formed by Y46, K116 and H117 residues. We further show that after pre-crRNA processing, Cas5d assembles with crRNA, Csd1, and Csd2 proteins to form a multi-subunit interference complex similar to E. coli Cascade (CRISPR-associated complex for antiviral defense) in architecture. Our results suggest that formation of a crRNA-presenting Cascade-like complex is likely a common theme among Type I CRISPR subtypes. PMID:22841292

  8. CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme.

    PubMed

    Michno, Jean-Michel; Wang, Xiaobo; Liu, Junqi; Curtin, Shaun J; Kono, Thomas Jy; Stupar, Robert M

    2015-10-01

    The CRISPR/Cas9 system is rapidly becoming the reagent of choice for targeted mutagenesis and gene editing in crop species. There are currently intense research efforts in the crop sciences to identify efficient CRISPR/Cas9 platforms to carry out targeted mutagenesis and gene editing projects. These efforts typically result in the incremental tweaking of various platform components including the identification of crop-specific promoters and terminators for optimal expression of the Cas9 enzyme and identification of promoters for expression of the CRISPR guide RNA. In this report, we demonstrate the development of an online web tool for fast identification of CRISPR/Cas9 target loci within soybean gene models, and generic DNA sequences. The web-tool described in this work can quickly identify a high number of potential CRISPR/Cas9 target sites, including restriction enzyme sites that can facilitate the detection of new mutations. In conjunction with the web tool, a soybean codon-optimized CRISPR/Cas9 platform was designed to direct double-stranded breaks to the targeted loci in hairy root transformed cells. The modified Cas9 enzyme was shown to successfully mutate target genes in somatic cells of 2 legume species, soybean and Medicago truncatula. These new tools may help facilitate targeted mutagenesis in legume and other plant species. PMID:26479970

  9. Cas5d Protein Processes Pre-crRNA and Assembles into a Cascade-like Interference Complex in Subtype I-C/Dvulg CRISPR-Cas System

    SciTech Connect

    Nam, Ki Hyun; Haitjema, Charles; Liu, Xueqi; Ding, Fran; Wang, Hongwei; DeLisa, Matthew P.; Ke, Ailong

    2012-10-10

    Clustered regularly interspaced short palindromic repeats (CRISPRs), together with an operon of CRISPR-associated (Cas) proteins, form an RNA-based prokaryotic immune system against exogenous genetic elements. Cas5 family proteins are found in several type I CRISPR-Cas systems. Here, we report the molecular function of subtype I-C/Dvulg Cas5d from Bacillus halodurans. We show that Cas5d cleaves pre-crRNA into unit length by recognizing both the hairpin structure and the 3 single stranded sequence in the CRISPR repeat region. Cas5d structure reveals a ferredoxin domain-based architecture and a catalytic triad formed by Y46, K116, and H117 residues. We further show that after pre-crRNA processing, Cas5d assembles with crRNA, Csd1, and Csd2 proteins to form a multi-sub-unit interference complex similar to Escherichia coli Cascade (CRISPR-associated complex for antiviral defense) in architecture. Our results suggest that formation of a crRNA-presenting Cascade-like complex is likely a common theme among type I CRISPR subtypes.

  10. Étude de la variation spatio-temporelle des paramètres physico-chimiques caractérisant la qualité des eaux d'une lagune côtière et ses zonations écologiques : cas de Moulay Bousselham, Maroc

    NASA Astrophysics Data System (ADS)

    Labbardi, Hanane; Ettahiri, Omar; Lazar, Said; Massik, Zakia; El Antri, Said

    2005-04-01

    Our interest is related to the hydrological characteristics of the Moulay Bousselham lagoon. Water samples were taken monthly from July 2001 to June 2002 in 15 stations distributed along the lagoon. The various measured hydrological parameters (temperature, salinity, suspended matter, chlorophyll a) showed significant monthly variations ( p<0.001), whereas spatially among all sampled stations, only the salinity showed significant variations. The variability analysis approached by the analysis of the normalized principal components combined with discriminate analysis showed very small inter-stations variability. Its percentage is 11% and 9% of the total variance during high and low tide, respectively. To cite this article: H. Labbardi et al., C. R. Geoscience 337 (2005).

  11. Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background

    PubMed Central

    Tu, Qisheng; Pi, Min; Karsenty, Gerard; Simpson, Leigh; Liu, Shiguang; Quarles, L. Darryl

    2003-01-01

    To understand the role of the calcium-sensing receptor (CasR) in the skeleton, we used a genetic approach to ablate parathyroid glands and remove the confounding effects of elevated parathyroid hormone (PTH) in CasR-deficient mice. CasR deficiency was transferred onto the glial cells missing 2–deficient (Gcm2-deficient) background by intercrossing CasR- and Gcm2-deficient mice. Superimposed Gcm2 deficiency rescued the perinatal lethality in CasR-deficient mice in association with ablation of the parathyroid glands and correction of the severe hyperparathyroidism. In addition, the double homozygous CasR- and Gcm2-deficient mice demonstrated healing of the abnormal mineralization of cartilage and bone associated with CasR deficiency, indicating that rickets and osteomalacia in CasR-deficient mice are not due to an independent function of CasR in bone and cartilage but to the effect of severe hyperparathyroidism in the neonate. Analysis of the skeleton of 6-week-old homozygous CasR- and Gcm2-deficient mice also failed to identify any essential, nonredundant role for CasR in regulating chondrogenesis or osteogenesis, but further studies are needed to establish the function of CasR in the skeleton. In contrast, concomitant Gcm2 and CasR deficiency failed to rescue the hypocalciuria in CasR-deficient mice, consistent with direct regulation of urinary calcium excretion by CasR in the kidney. Double Gcm2- and CasR-deficient mice provide an important model for evaluating the extraparathyroid functions of CasR. PMID:12671052

  12. Myosin IIA Modulates T Cell Receptor Transport and CasL Phosphorylation during Early Immunological Synapse Formation

    PubMed Central

    Yu, Yan; Fay, Nicole C.; Smoligovets, Alexander A.; Wu, Hung-Jen; Groves, Jay T.

    2012-01-01

    Activation of T cell receptor (TCR) by antigens occurs in concert with an elaborate multi-scale spatial reorganization of proteins at the immunological synapse, the junction between a T cell and an antigen-presenting cell (APC). The directed movement of molecules, which intrinsically requires physical forces, is known to modulate biochemical signaling. It remains unclear, however, if mechanical forces exert any direct influence on the signaling cascades. We use T cells from AND transgenic mice expressing TCRs specific to the moth cytochrome c 88–103 peptide, and replace the APC with a synthetic supported lipid membrane. Through a series of high spatiotemporal molecular tracking studies in live T cells, we demonstrate that the molecular motor, non-muscle myosin IIA, transiently drives TCR transport during the first one to two minutes of immunological synapse formation. Myosin inhibition reduces calcium influx and colocalization of active ZAP-70 (zeta-chain associated protein kinase 70) with TCR, revealing an influence on signaling activity. More tellingly, its inhibition also significantly reduces phosphorylation of the mechanosensing protein CasL (Crk-associated substrate the lymphocyte type), raising the possibility of a direct mechanical mechanism of signal modulation involving CasL. PMID:22347397

  13. Utilization of the CRISPR/Cas9 system for the efficient production of mutant mice using crRNA/tracrRNA with Cas9 nickase and FokI-dCas9.

    PubMed

    Terao, Miho; Tamano, Moe; Hara, Satoshi; Kato, Tomoko; Kinoshita, Masato; Takada, Shuji

    2016-07-29

    The CRISPR/Cas9 system is a powerful genome editing tool for the production of genetically modified animals. To produce mutant mice, chimeric single-guide RNA (sgRNA) is cloned in a plasmid vector and a mixture of sgRNA and Cas9 are microinjected into the fertilized eggs. An issue associated with gene manipulation using the CRISPR/Cas9 system is that there can be off-target effects. To simplify the production of mutant mice with low risks of off-target effects caused by the CRISPR/Cas9 system, we demonstrated that genetically modified mice can be efficiently obtained using chemically synthesized CRISPR RNA (crRNA), trans-activating crRNA (tracrRNA), and modified Cas9s, such as the nickase version and FokI-fused catalytically inactive Cas9, by microinjection into fertilized eggs. Using this method, it is no longer necessary to clone sgRNA into a plasmid vector, and this enables high-throughput production of mutant mice. PMID:26972821

  14. Utilization of the CRISPR/Cas9 system for the efficient production of mutant mice using crRNA/tracrRNA with Cas9 nickase and FokI-dCas9

    PubMed Central

    Terao, Miho; Tamano, Moe; Hara, Satoshi; Kato, Tomoko; Kinoshita, Masato; Takada, Shuji

    2016-01-01

    The CRISPR/Cas9 system is a powerful genome editing tool for the production of genetically modified animals. To produce mutant mice, chimeric single-guide RNA (sgRNA) is cloned in a plasmid vector and a mixture of sgRNA and Cas9 are microinjected into the fertilized eggs. An issue associated with gene manipulation using the CRISPR/Cas9 system is that there can be off-target effects. To simplify the production of mutant mice with low risks of off-target effects caused by the CRISPR/Cas9 system, we demonstrated that genetically modified mice can be efficiently obtained using chemically synthesized CRISPR RNA (crRNA), trans-activating crRNA (tracrRNA), and modified Cas9s, such as the nickase version and FokI-fused catalytically inactive Cas9, by microinjection into fertilized eggs. Using this method, it is no longer necessary to clone sgRNA into a plasmid vector, and this enables high-throughput production of mutant mice. PMID:26972821

  15. Spectroscopic studies of the small-amplitude Cepheid SU Cas

    NASA Astrophysics Data System (ADS)

    Usenko, I. A.; Klochkova, V. G.; Tavolzhanskaya, N. S.

    2013-09-01

    A new set of 16 high-resolution spectra for the small-amplitude Cepheid SU Cas obtained in 2007-2009 has allowed us to determine its atmospheric parameters ( T eff = 6345 ± 30 K, log g = 2.40, V t = 3.25 km s-1) and to measure its radial velocities. The latter were added to the general list of radial velocities (375 estimates) obtained in the last 90 years. Using a frequency analysis, we have refined the pulsation and orbital periods of the Cepheid. Apart from the well-known fundamental pulsation period [Figure not available: see fulltext.], we have detected a possible secondary period of [Figure not available: see fulltext.]. Their ratio of 0.96 suggests the existence of nonradial pulsations in the Cepheid's atmosphere. Based on photoelectric photometry in the last 60 years, we have shown that the effective temperature undergoes cyclic secular changes of ±200 K with an unknown period. The mean effective temperature T eff = 6395 ± 52 K estimated from photometric data agrees well with our estimate from spectroscopic data. The variations of the mean color index, effective temperature, and γ-velocity (in 90 years of observations) point to a possible orbital motion of the well-known hot companion with the most probable periods of [Figure not available: see fulltext.], [Figure not available: see fulltext.], and [Figure not available: see fulltext.]. The elemental abundances in the atmosphere of SU Cas confirm the conclusion that this Cepheid is a typical yellow supergiant after the first dredge-up. Our T eff estimate gives a radius of 32 R ⊙ and a distance of 455 pc for it, which is inconsistent with its membership in the open cluster Alessi 95. The question about the pulsation mode of SU Cas still remains open.

  16. Textilome abdominal, à propos d'un cas

    PubMed Central

    Erguibi, Driss; Hassan, Robleh; Ajbal, Mohamed; Kadiri, Bouchaib

    2015-01-01

    Le textilome, également appelé gossybipomas, est une complication postopératoire très rare. Il peut s'agir d'un corps étranger composé de compresse(s) ou champ(s) chirurgicaux oubliés au niveau d'un foyer opératoire. Ils sont plus souvent asymptomatiques, et difficile à diagnostiquer. En particulier, les cas chroniques ne présentent pas de signes cliniques et radiologiques spécifiques pour le diagnostic différentiel. L'anamnèse est donc indispensable pour le diagnostic vu que les signes cliniques ne sont pas concluants. Le cliché d'abdomen sans préparation est peu contributif, l’échographie est fiable. La tomodensitométrie permet un diagnostic topographique précis, mais ce n'est pas toujours le cas. Certaines équipes proposent des explorations par IRM. Nous rapportons un cas de textilome intra abdominal, chez une patiente de 31 ans opérée il y a 8 ans pour grossesse extra-utérine, chez qui la TDM abdomino-pelvienne a évoqué un kyste hydatique péritonéale sans localisation du foie. Traitée par extrait d'un petit champ de 25x15cm et adhérant au sigmoïde. Le but de ce travail est de mettre en évidence le problème de diagnostic de cette pathologie et l'importance de la laparotomie exploratrice. PMID:26523184

  17. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails. PMID:23439366

  18. Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density.

    PubMed

    Xie, Can; Zhang, Rongxue; Qu, Yueting; Miao, Zhenyan; Zhang, Yunqin; Shen, Xiaoye; Wang, Tao; Dong, Jiangli

    2012-07-01

    • Dehydrins are a type of late embryogenesis abundant protein. Some dehydrins are involved in the response to various abiotic stresses. Accumulation of dehydrins enhances the drought, cold and salt tolerances of transgenic plants, although the underlying mechanism is unclear. MtCAS31 (Medicago Truncatula cold-acclimation specific protein 31) is a Y(2)K(4)-type dehydrin that was isolated from Medicago truncatula. • We analyzed the subcellular and histochemical localization of MtCAS31, and the expression patterns of MtCAS31 under different stresses. Transgenic Arabidopsis that overexpressed MtCAS31 was used to determine the function of MtCAS31. A yeast two-hybrid assay was used to screen potential proteins that could interact with MtCAS31. The interaction was confirmed by bimolecular fluorescence complementation (BiFC) assay. • After a 3-h drought treatment, the expression of MtCAS31 significantly increased 600-fold. MtCAS31 overexpression dramatically reduced stomatal density and markedly enhanced the drought tolerance of transgenic Arabidopsis. MtCAS31 could interact with AtICE1 (inducer of CBF expression 1) and the AtICE1 homologous protein Mt7g083900.1, which was identified from Medicago truncatula both in vitro and in vivo. • Our findings demonstrate that a dehydrin induces decreased stomatal density. Most importantly, the interaction of MtCAS31 with AtICE1 plays a role in stomatal development. We hypothesize that the interaction of MtCAS31 and AtICE1 caused the decrease in stomatal density to enhance the drought resistance of transgenic Arabidopsis. PMID:22510066

  19. Eruptive star V1180 Cas now in outburst

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; Arkharov, A. A.; Efimova, N.; Kopatskaya, E. N.; Larionov, V. M.; Di Paola, A.; Giannini, T.; Li Causi, G.; Lorenzetti, D.; Vitali, F.

    2013-09-01

    In the framework of our optical/near-IR EXor monitoring program dubbed EXORCISM (EXOR optiCal Infrared Systematic Monitoring - Antoniucci et al. PPVI), we have been observing since two months the variable star V1180 Cas, associated with the dark cloud Lynds 1340. This source has been originally recognized as a young eruptive object by Kun et al. (2011, ApJ 733, L8), who observed a powerful outburst (5-6 mag in the Ic band) in the period 2005-2008.

  20. Meeting report: GARNet/OpenPlant CRISPR-Cas workshop.

    PubMed

    Parry, Geraint; Patron, Nicola; Bastow, Ruth; Matthewman, Colette

    2016-01-01

    Targeted genome engineering has been described as a "game-changing technology" for fields as diverse as human genetics and plant biotechnology. One technique used for precise gene editing utilises the CRISPR-Cas system and is an effective method for genetic engineering in a wide variety of plants. However, many researchers remain unaware of both the technical challenges that emerge when using this technique or of its potential benefits. Therefore in September 2015, GARNet and OpenPlant organized a two-day workshop at the John Innes Centre that provided both background information and hands-on training for this important technology. PMID:26823675

  1. Tuberculose orbitaire: à propos d'un cas

    PubMed Central

    Khrifi, Zineb; Abdellaoui, Meriem; Alaoui, Abdellah; Benatiya, Idriss Andaloussi; Tahri, Hicham

    2014-01-01

    La tuberculose sévit à l’état endémique au Maroc, l'atteinte orbitaire est rare et peut se faire par voie hématogène ou par contigüité à partir d'un foyer de voisinage. Nous rapportons le cas d'une patiente de 42 ans qui présente une exophtalmie droite dont l'enquête étiologique révèle une tuberculose orbitaire. PMID:25018814

  2. SSFinder: high throughput CRISPR-Cas target sites prediction tool.

    PubMed

    Upadhyay, Santosh Kumar; Sharma, Shailesh

    2014-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system facilitates targeted genome editing in organisms. Despite high demand of this system, finding a reliable tool for the determination of specific target sites in large genomic data remained challenging. Here, we report SSFinder, a python script to perform high throughput detection of specific target sites in large nucleotide datasets. The SSFinder is a user-friendly tool, compatible with Windows, Mac OS, and Linux operating systems, and freely available online. PMID:25089276

  3. CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella).

    PubMed

    Huang, Yuping; Chen, Yazhou; Zeng, Baosheng; Wang, Yajun; James, Anthony A; Gurr, Geoff M; Yang, Guang; Lin, Xijian; Huang, Yongping; You, Minsheng

    2016-08-01

    The diamondback moth, Plutella xylostella (L.), is a worldwide agricultural pest that has developed resistance to multiple classes of insecticides. Genetics-based approaches show promise as alternative pest management approaches but require functional studies to identify suitable gene targets. Here we use the CRISPR/Cas9 system to target a gene, abdominal-A, which has an important role in determining the identity and functionality of abdominal segments. We report that P. xylostella abdominal-A (Pxabd-A) has two structurally-similar splice isoforms (A and B) that differ only in the length of exon II, with 15 additional nucleotides in isoform A. Pxabd-A transcripts were detected in all developmental stages, and particularly in pupae and adults. CRISPR/Cas9-based mutagenesis of Pxabd-A exon I produced 91% chimeric mutants following injection of 448 eggs. Phenotypes with abnormal prolegs and malformed segments were visible in hatched larvae and unhatched embryos, and various defects were inherited by the next generation (G1). Genotyping of mutants demonstrated several mutations at the Pxabd-A genomic locus. The results indicate that a series of insertions and deletions were induced in the Pxabd-A locus, not only in G0 survivors but also in G1 individuals, and this provides a foundation for genome editing. Our study demonstrates the utility of the CRISPR/Cas9 system for targeting genes in an agricultural pest and therefore provides a foundation the development of novel pest management tools. PMID:27318252

  4. Degeneration of a CRISPR/Cas system and its regulatory target during the evolution of a pathogen

    PubMed Central

    Sampson, Timothy R; Weiss, David S

    2013-01-01

    CRISPR/Cas systems are bacterial RNA-guided endonuclease machineries that target foreign nucleic acids. Recently, we demonstrated that the Cas protein Cas9 controls gene expression and virulence in Francisella novicida by altering the stability of the mRNA for an immunostimulatory bacterial lipoprotein (BLP). Genomic analyses, however, revealed that Francisella species with increased virulence harbor degenerated CRISPR/Cas systems. We hypothesize that CRISPR/Cas degeneration removed a barrier against genome alterations, which resulted in enhanced virulence. Importantly, the BLP locus was also lost; likely a necessary adaptation in the absence of Cas9-mediated repression. CRISPR/Cas systems likely play regulatory roles in numerous bacteria, and these data suggest additional genomic changes may be required to maintain fitness after CRISPR/Cas loss in such bacteria, having important evolutionary implications. PMID:24100224

  5. Computational Neural Modeling of Speech Motor Control in Childhood Apraxia of Speech (CAS)

    ERIC Educational Resources Information Center

    Terband, Hayo; Maassen, Ben; Guenther, Frank H.; Brumberg, Jonathan

    2009-01-01

    Purpose: Childhood apraxia of speech (CAS) has been associated with a wide variety of diagnostic descriptions and has been shown to involve different symptoms during successive stages of development. In the present study, the authors attempted to associate the symptoms of CAS in a particular developmental stage with particular…

  6. Phonological Awareness and Early Reading Development in Childhood Apraxia of Speech (CAS)

    ERIC Educational Resources Information Center

    McNeill, B. C.; Gillon, G. T.; Dodd, B.

    2009-01-01

    Background: Childhood apraxia of speech (CAS) is associated with phonological awareness, reading, and spelling deficits. Comparing literacy skills in CAS with other developmental speech disorders is critical for understanding the complexity of the disorder. Aims: This study compared the phonological awareness and reading development of children…

  7. CRISPR-Cas systems: new players in gene regulation and bacterial physiology

    PubMed Central

    Sampson, Timothy R.; Weiss, David S.

    2014-01-01

    CRISPR-Cas systems are bacterial defenses against foreign nucleic acids derived from bacteriophages, plasmids or other sources. These systems are targeted in an RNA-dependent, sequence-specific manner, and are also adaptive, providing protection against previously encountered foreign elements. In addition to their canonical function in defense against foreign nucleic acid, their roles in various aspects of bacterial physiology are now being uncovered. We recently revealed a role for a Cas9-based Type II CRISPR-Cas system in the control of endogenous gene expression, a novel form of prokaryotic gene regulation. Cas9 functions in association with two small RNAs to target and alter the stability of an endogenous transcript encoding a bacterial lipoprotein (BLP). Since BLPs are recognized by the host innate immune protein Toll-like Receptor 2 (TLR2), CRISPR-Cas-mediated repression of BLP expression facilitates evasion of TLR2 by the intracellular bacterial pathogen Francisella novicida, and is essential for its virulence. Here we describe the Cas9 regulatory system in detail, as well as data on its role in controlling virulence traits of Neisseria meningitidis and Campylobacter jejuni. We also discuss potential roles of CRISPR-Cas systems in the response to envelope stress and other aspects of bacterial physiology. Since ~45% of bacteria and ~83% of Archaea encode these machineries, the newly appreciated regulatory functions of CRISPR-Cas systems are likely to play broad roles in controlling the pathogenesis and physiology of diverse prokaryotes. PMID:24772391

  8. Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium

    PubMed Central

    Briner, Alexandra E.; Lugli, Gabriele Andrea; Milani, Christian; Duranti, Sabrina; Turroni, Francesca; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco; Barrangou, Rodolphe

    2015-01-01

    CRISPR-Cas systems constitute adaptive immune systems for antiviral defense in bacteria. We investigated the occurrence and diversity of CRISPR-Cas systems in 48 Bifidobacterium genomes to gain insights into the diversity and co-evolution of CRISPR-Cas systems within the genus and investigate CRISPR spacer content. We identified the elements necessary for the successful targeting and inference of foreign DNA in select Type II CRISPR-Cas systems, including the tracrRNA and target PAM sequence. Bifidobacterium species have a very high frequency of CRISPR-Cas occurrence (77%, 37 of 48). We found that many Bifidobacterium species have unusually large and diverse CRISPR-Cas systems that contain spacer sequences showing homology to foreign genetic elements like prophages. A large number of CRISPR spacers in bifidobacteria show perfect homology to prophage sequences harbored in the chromosomes of other species of Bifidobacterium, including some spacers that self-target the chromosome. A correlation was observed between strains that lacked CRISPR-Cas systems and the number of times prophages in that chromosome were targeted by other CRISPR spacers. The presence of prophage-targeting CRISPR spacers and prophage content may shed light on evolutionary processes and strain divergence. Finally, elements of Type II CRISPR-Cas systems, including the tracrRNA and crRNAs, set the stage for the development of genome editing and genetic engineering tools. PMID:26230606

  9. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa

    PubMed Central

    van Belkum, Alex; Soriaga, Leah B.; LaFave, Matthew C.; Akella, Srividya; Veyrieras, Jean-Baptiste; Barbu, E. Magda; Shortridge, Dee; Blanc, Bernadette; Hannum, Gregory; Zambardi, Gilles; Miller, Kristofer; Enright, Mark C.; Mugnier, Nathalie; Brami, Daniel; Schicklin, Stéphane; Felderman, Martina; Schwartz, Ariel S.; Richardson, Toby H.; Peterson, Todd C.; Hubby, Bolyn

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. PMID:26604259

  10. Targeted heritable mutation and gene conversion by Cas9-CRISPR in Caenorhabditis elegans.

    PubMed

    Katic, Iskra; Großhans, Helge

    2013-11-01

    We have achieved targeted heritable genome modification in Caenorhabditis elegans by injecting mRNA of the nuclease Cas9 and Cas9 guide RNAs. This system rapidly creates precise genomic changes, including knockouts and transgene-instructed gene conversion. PMID:23979578

  11. Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas.

    PubMed

    Chiu, Hui; Schwartz, Hillel T; Antoshechkin, Igor; Sternberg, Paul W

    2013-11-01

    CRISPR-Cas is an efficient method for genome editing in organisms from bacteria to human cells. We describe a transgene-free method for CRISPR-Cas-mediated cleavage in nematodes, enabling RNA-homology-targeted deletions that cause loss of gene function; analysis of whole-genome sequencing indicates that the nuclease activity is highly specific. PMID:23979577

  12. Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System.

    PubMed

    Redding, Sy; Sternberg, Samuel H; Marshall, Myles; Gibb, Bryan; Bhat, Prashant; Guegler, Chantal K; Wiedenheft, Blake; Doudna, Jennifer A; Greene, Eric C

    2015-11-01

    CRISPR-Cas adaptive immune systems protect bacteria and archaea against foreign genetic elements. In Escherichia coli, Cascade (CRISPR-associated complex for antiviral defense) is an RNA-guided surveillance complex that binds foreign DNA and recruits Cas3, a trans-acting nuclease helicase for target degradation. Here, we use single-molecule imaging to visualize Cascade and Cas3 binding to foreign DNA targets. Our analysis reveals two distinct pathways dictated by the presence or absence of a protospacer-adjacent motif (PAM). Binding to a protospacer flanked by a PAM recruits a nuclease-active Cas3 for degradation of short single-stranded regions of target DNA, whereas PAM mutations elicit an alternative pathway that recruits a nuclease-inactive Cas3 through a mechanism that is dependent on the Cas1 and Cas2 proteins. These findings explain how target recognition by Cascade can elicit distinct outcomes and support a model for acquisition of new spacer sequences through a mechanism involving processive, ATP-dependent Cas3 translocation along foreign DNA. PMID:26522594

  13. Lentivirus pre-packed with Cas9 protein for safer gene editing.

    PubMed

    Choi, J G; Dang, Y; Abraham, S; Ma, H; Zhang, J; Guo, H; Cai, Y; Mikkelsen, J G; Wu, H; Shankar, P; Manjunath, N

    2016-07-01

    The CRISPR/Cas9 system provides an easy way to edit specific site/s in the genome and thus offers tremendous opportunity for human gene therapy for a wide range of diseases. However, one major concern is off-target effects, particularly with long-term expression of Cas9 nuclease when traditional expression methods such as via plasmid/viral vectors are used. To overcome this limitation, we pre-packaged Cas9 protein (Cas9P LV) in lentiviral particles for transient exposure and showed its effectiveness for gene disruption in cells, including primary T cells expressing specific single guide RNAs (sgRNAs). We then constructed an 'all in one virus' to express sgRNAs in association with pre-packaged Cas9 protein (sgRNA/Cas9P LV). We successfully edited CCR5 in TZM-bl cells by this approach. Using an sgRNA-targeting HIV long terminal repeat, we also were able to disrupt HIV provirus in the J-LAT model of viral latency. Moreover, we also found that pre-packaging Cas9 protein in LV particle reduced off-target editing of chromosome 4:-29134166 locus by CCR5 sgRNA, compared with continued expression from the vector. These results show that sgRNA/Cas9P LV can be used as a safer approach for human gene therapy applications. PMID:27052803

  14. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Simplified Cost Comparison and Direct Conversion of CAs C Appendix C to Part 169a National Defense Department of Defense OFFICE OF THE SECRETARY OF... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  15. Students' Use of CAS Calculators--Effects on the Trustworthiness and Fairness of Mathematics Assessments

    ERIC Educational Resources Information Center

    Pantzare, Anna Lind

    2012-01-01

    Calculators with computer algebra systems (CAS) are powerful tools when working with equations and algebraic expressions in mathematics. When calculators are allowed to be used during assessments but are not available or provided to every student, they may cause bias. The CAS calculators may also have an impact on the trustworthiness of results.…

  16. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Simplified Cost Comparison and Direct Conversion of CAs C Appendix C to Part 169a National Defense Department of Defense OFFICE OF THE SECRETARY OF... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  17. 76 FR 79545 - Cost Accounting Standards: Change to the CAS Applicability Threshold for the Inflation Adjustment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... request for comment (76 FR 40817) for the purpose of revising the Cost Accounting Standards (CAS... Acquisition Regulations Council on August 30, 2010 (at 75 FR 53129). By revising the CAS applicability... Council (Councils) published a final rule in the Federal Register on August 30, 2010 (75 FR...

  18. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Simplified Cost Comparison and Direct Conversion of CAs C Appendix C to Part 169a National Defense Department of Defense OFFICE OF THE SECRETARY OF... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  19. Attitude and CAS Use in Senior Secondary Mathematics: A Case Study of Seven Year 11 Students

    ERIC Educational Resources Information Center

    Cameron, Scott; Ball, Lynda

    2014-01-01

    This paper investigates the possible influence of attitude on seven Year 11 students' use of a Computer Algebra System (CAS) during a class activity where students could choose to use CAS or pen-and-paper in solving a range of problems. Investigation of anxiety, confidence, liking and usefulness through a survey and interview revealed that these…

  20. 76 FR 40817 - Cost Accounting Standards: Change to the CAS Applicability Threshold for the Inflation Adjustment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... Council on August 30, 2010 (at 75 FR 53129). By revising the CAS applicability threshold so that it... (Councils) published a final rule in the Federal Register on August 30, 2010 (75 FR 53129) amending the FAR... to the CAS Applicability Threshold for the Inflation Adjustment to the Truth in Negotiations...

  1. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Simplified Cost Comparison and Direct Conversion of CAs C Appendix C to Part 169a National Defense Department of Defense OFFICE OF THE SECRETARY OF... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  2. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Simplified Cost Comparison and Direct Conversion of CAs C Appendix C to Part 169a National Defense Department of Defense OFFICE OF THE SECRETARY OF... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  3. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9.

    PubMed

    Yoder, Kristine E; Bundschuh, Ralf

    2016-01-01

    CRISPR/Cas9 genome editing has been proposed as a therapeutic treatment for HIV-1 infection. CRISPR/Cas9 induced double strand breaks (DSBs) targeted to the integrated viral genome have been shown to decrease production of progeny virus. Unfortunately HIV-1 evolves rapidly and may readily produce CRISPR/Cas9 resistant strains. Here we used next-generation sequencing to characterize HIV-1 strains that developed resistance to six different CRISPR/Cas9 guide RNAs (gRNAs). Reverse transcriptase (RT) derived base substitution mutations were commonly found at sites encoding unpaired bases of RNA stem-loop structures. In addition to RT mutations, insertion and/or deletion (indel) mutations were common. Indels localized to the CRISPR/Cas9 cleavage site were major contributors to CRISPR gRNA resistance. While most indels at non-coding regions were a single base pair, 3 base pair indels were observed when a coding region of HIV-1 was targeted. The DSB repair event may preserve the HIV-1 reading frame, while destroying CRISPR gRNA homology. HIV-1 may be successfully edited by CRISPR/Cas9, but the virus remains competent for replication and resistant to further CRISPR/Cas9 targeting at that site. These observations strongly suggest that host DSB repair at CRISPR/Cas9 cleavage sites is a novel and important pathway that may contribute to HIV-1 therapeutic resistance. PMID:27404981

  4. Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

    PubMed Central

    Aouida, Mustapha; Eid, Ayman; Ali, Zahir; Cradick, Thomas; Lee, Ciaran; Deshmukh, Harshavardhan; Atef, Ahmed; AbuSamra, Dina; Gadhoum, Samah Zeineb; Merzaban, Jasmeen; Bao, Gang; Mahfouz, Magdy

    2015-01-01

    The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells. PMID:26225561

  5. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice.

    PubMed

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2015-08-01

    The CRISPR/Cas9 system is an efficient tool used for genome editing in a variety of organisms. Despite several recent reports of successful targeted mutagenesis using the CRISPR/Cas9 system in plants, in each case the target gene of interest, the Cas9 expression system and guide-RNA (gRNA) used, and the tissues used for transformation and subsequent mutagenesis differed, hence the reported frequencies of targeted mutagenesis cannot be compared directly. Here, we evaluated mutation frequency in rice using different Cas9 and/or gRNA expression cassettes under standardized experimental conditions. We introduced Cas9 and gRNA expression cassettes separately or sequentially into rice calli, and assessed the frequency of mutagenesis at the same endogenous targeted sequences. Mutation frequencies differed significantly depending on the Cas9 expression cassette used. In addition, a gRNA driven by the OsU6 promoter was superior to one driven by the OsU3 promoter. Using an all-in-one expression vector harboring the best combined Cas9/gRNA expression cassette resulted in a much improved frequency of targeted mutagenesis in rice calli, and bi-allelic mutant plants were produced in the T0 generation. The approach presented here could be adapted to optimize the construction of Cas9/gRNA cassettes for genome editing in a variety of plants. PMID:26188471

  6. Cas3p Belongs to a Seven-Member Family of Capsule Structure Designer Proteins

    PubMed Central

    Moyrand, Frédérique; Chang, Yun C.; Himmelreich, Uwe; Kwon-Chung, Kyung J.; Janbon, Guilhem

    2004-01-01

    The polysaccharide capsule is the main virulence factor of the basidiomycetous yeast Cryptococcus neoformans. Four genes (CAP10, CAP59, CAP60, and CAP64) essential for capsule formation have been previously identified, although their roles in the biosynthetic pathway remain unclear. A genetic and bioinformatics approach allowed the identification of six CAP64-homologous genes, named CAS3, CAS31, CAS32, CAS33, CAS34, and CAS35, in the C. neoformans genome. This gene family is apparently specific in a subclass of the basidiomycete fungi. Single as well as double deletions of these genes in all possible combinations demonstrated that none of the CAP64-homologous genes were essential for capsule formation, although the cas35Δ strains displayed a hypocapsular phenotype. The chemical structure of the glucuronomannan (GXM) produced by the CAS family deletants revealed that these genes determined the position and the linkage of the xylose and/or O-acetyl residues on the mannose backbone. Hence, these genes are all involved in assembly of the GXM structure in C. neoformans. PMID:15590825

  7. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9.

    PubMed

    Anders, Carolin; Bargsten, Katja; Jinek, Martin

    2016-03-17

    The RNA-guided endonuclease Cas9 from Streptococcus pyogenes (SpCas9) forms the core of a powerful genome editing technology. DNA cleavage by SpCas9 is dependent on the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) in the target DNA, restricting the choice of targetable sequences. To address this limitation, artificial SpCas9 variants with altered PAM specificities have recently been developed. Here we report crystal structures of the VQR, EQR, and VRER SpCas9 variants bound to target DNAs containing their preferred PAM sequences. The structures reveal that the non-canonical PAMs are recognized by an induced fit mechanism. Besides mediating sequence-specific base recognition, the amino acid substitutions introduced in the SpCas9 variants facilitate conformational remodeling of the PAM region of the bound DNA. Guided by the structural data, we engineered a SpCas9 variant that specifically recognizes NAAG PAMs. Taken together, these studies inform further development of Cas9-based genome editing tools. PMID:26990992

  8. An Undergraduate Laboratory Class Using CRISPR/Cas9 Technology to Mutate Drosophila Genes

    ERIC Educational Resources Information Center

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L.; Chechenova, Maria B.; Guerin, Paul; Cripps, Richard M.

    2016-01-01

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using…

  9. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9

    PubMed Central

    Yoder, Kristine E.; Bundschuh, Ralf

    2016-01-01

    CRISPR/Cas9 genome editing has been proposed as a therapeutic treatment for HIV-1 infection. CRISPR/Cas9 induced double strand breaks (DSBs) targeted to the integrated viral genome have been shown to decrease production of progeny virus. Unfortunately HIV-1 evolves rapidly and may readily produce CRISPR/Cas9 resistant strains. Here we used next-generation sequencing to characterize HIV-1 strains that developed resistance to six different CRISPR/Cas9 guide RNAs (gRNAs). Reverse transcriptase (RT) derived base substitution mutations were commonly found at sites encoding unpaired bases of RNA stem-loop structures. In addition to RT mutations, insertion and/or deletion (indel) mutations were common. Indels localized to the CRISPR/Cas9 cleavage site were major contributors to CRISPR gRNA resistance. While most indels at non-coding regions were a single base pair, 3 base pair indels were observed when a coding region of HIV-1 was targeted. The DSB repair event may preserve the HIV-1 reading frame, while destroying CRISPR gRNA homology. HIV-1 may be successfully edited by CRISPR/Cas9, but the virus remains competent for replication and resistant to further CRISPR/Cas9 targeting at that site. These observations strongly suggest that host DSB repair at CRISPR/Cas9 cleavage sites is a novel and important pathway that may contribute to HIV-1 therapeutic resistance. PMID:27404981

  10. Photometric analysis of the overcontact binary CW Cas

    SciTech Connect

    Wang, J. J.; Qian, S. B.; He, J. J.; Li, L. J.; Zhao, E. G.

    2014-11-01

    New CCD photometric observations of overcontact binary CW Cas were carried out in 2004 and 2011. In particular, the light curve obtained in 2004 shows a remarkable O'Connell effect. Compared with light curves in different observing seasons, variations were found. These variations can be explained by dark spot activities on the surface of at least one component. Using the Wilson-Devinney code with a spot model, we find that the photometric solutions confirm CW Cas is a shallow W-subtype overcontact binary with a spotted massive component. Our new determined times of minimum light together with the others published in the literature were analyzed to find a change of orbital period. From the O – C curves, the period of the system shows a cyclic period change (P {sub 3} = 69.9 yr, A {sub 3} = 0.03196 days) superposed on the linear increase. The cyclic variation, if explained as the light-travel time effect, reveals the presence of a tertiary companion.

  11. Photometric Analysis of the Overcontact Binary CW Cas

    NASA Astrophysics Data System (ADS)

    Wang, J. J.; Qian, S. B.; He, J. J.; Li, L. J.; Zhao, E. G.

    2014-11-01

    New CCD photometric observations of overcontact binary CW Cas were carried out in 2004 and 2011. In particular, the light curve obtained in 2004 shows a remarkable O'Connell effect. Compared with light curves in different observing seasons, variations were found. These variations can be explained by dark spot activities on the surface of at least one component. Using the Wilson-Devinney code with a spot model, we find that the photometric solutions confirm CW Cas is a shallow W-subtype overcontact binary with a spotted massive component. Our new determined times of minimum light together with the others published in the literature were analyzed to find a change of orbital period. From the O - C curves, the period of the system shows a cyclic period change (P 3 = 69.9 yr, A 3 = 0.03196 days) superposed on the linear increase. The cyclic variation, if explained as the light-travel time effect, reveals the presence of a tertiary companion.

  12. CAS-NETL-PNNL CEP Program Final Report

    SciTech Connect

    King, David L.; Spies, Kurt A.; Rainbolt, James E.; Zhang, Keling

    2014-03-31

    This collaborative joint research project is in the area of advanced gasification and conversion, within the CAS-NETL-PNNL Memorandum of Understanding. The goal is the development and testing of an integrated warm syngas cleanup process. This effort is focused on an advanced, integrated system for capture and removal of alkali, sulfur, PH3, AsH3, chloride, and CO2, leading to a future process demonstration at a CAS gasification facility. Syngas produced by gasification can be used for production of fuels (Fischer-Tropsch, SNG, mixed alcohols), chemicals (MeOH, NH3), and hydrogen for fuel cells and IGCC. To employ this syngas, especially for synthesis reactions, contained impurities must be removed to sub-ppmv levels [1]. Commercially available approaches to remove contaminant species suffer from inefficiencies, employing solvents at ambient or lower temperature along with backup sacrificial sorbents, whereas syngas utilization occurs at higher temperatures. The efficiency and economics syngas utilization can be significantly improved if all the contaminants and CO2 are removed at temperatures higher than the chemical synthesis reaction temperatures (> 250 °C) [2].

  13. Maladie de Haglund: à propos de trois cas

    PubMed Central

    Adigo, Amégninou Mawuko Yao; Gnakadja, Néille Gbèssi; Dellanh, Yaovi Yanick; Adambounou, Kokou; Djagnikpo, Oni; Agoda-Kousséma, Lama Kegdigoma; Adoko, Abikou Léon; Adjénou, Komlanvi Victor

    2015-01-01

    La maladie de Haglund est une pathologie relativement sous évaluée. Elle est liée à un conflit calcanéo-achilléen. Nous rapportons les cas de patients âgés de 40, 42 et 37 ans, révélés par des œdèmes douloureux de la cheville. Le diagnostic a été confirmé à la radiographie standard de la cheville en charge et à l’échographie chez tous les patients. Un seul patient avait bénéficié d'une exploration IRM. Le traitement, initialement médical dans tous les cas, s'est soldé par une chirurgie de résection de l'angle postéro-supérieur du calcanéum chez un patient. L’évolution a été favorable chez tous les patients. PMID:26664538

  14. An X-ray flare from 47 Cas

    SciTech Connect

    Pandey, Jeewan C.; Karmakar, Subhajeet

    2015-02-01

    Using XMM-Newton observations, we investigate properties of a flare from the very active but poorly known stellar system 47 Cas. The luminosity at the peak of the flare is found to be 3.54 × 10{sup 30} erg s{sup −1}, which is ∼2 times higher than that at a quiescent state. The quiescent state corona of 47 Cas can be represented by two temperature plasma: 3.7 and 11.0 MK. The time-resolved X-ray spectroscopy of the flare show the variable nature of the temperature, the emission measure, and the abundance. The maximum temperature during the flare is derived as 72.8 MK. We infer the length of a flaring loop to be 3.3 × 10{sup 10} cm using a hydrodynamic loop model. Using the RGS spectra, the density during the flare is estimated as 4.0 × 10{sup 10} cm{sup −3}. The loop scaling laws are also applied when deriving physical parameters of the flaring plasma.

  15. In Vivo Protein Interactions and Complex Formation in the Pectobacterium atrosepticum Subtype I-F CRISPR/Cas System

    PubMed Central

    Richter, Corinna; Gristwood, Tamzin; Clulow, James S.; Fineran, Peter C.

    2012-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated proteins (Cas; CRISPR associated) are a bacterial defense mechanism against extra-chromosomal elements. CRISPR/Cas systems are distinct from other known defense mechanisms insofar as they provide acquired and heritable immunity. Resistance is accomplished in multiple stages in which the Cas proteins provide the enzymatic machinery. Importantly, subtype-specific proteins have been shown to form complexes in combination with small RNAs, which enable sequence-specific targeting of foreign nucleic acids. We used Pectobacterium atrosepticum, a plant pathogen that causes soft-rot and blackleg disease in potato, to investigate protein-protein interactions and complex formation in the subtype I-F CRISPR/Cas system. The P. atrosepticum CRISPR/Cas system encodes six proteins: Cas1, Cas3, and the four subtype specific proteins Csy1, Csy2, Csy3 and Cas6f (Csy4). Using co-purification followed by mass spectrometry as well as directed co-immunoprecipitation we have demonstrated complex formation by the Csy1-3 and Cas6f proteins, and determined details about the architecture of that complex. Cas3 was also shown to co-purify all four subtype-specific proteins, consistent with its role in targeting. Furthermore, our results show that the subtype I-F Cas1 and Cas3 (a Cas2-Cas3 hybrid) proteins interact, suggesting a protein complex for adaptation and a role for subtype I-F Cas3 proteins in both the adaptation and interference steps of the CRISPR/Cas mechanism. PMID:23226499

  16. Development and Applications of CRISPR-Cas9 for Genome Engineering

    PubMed Central

    Hsu, Patrick D.; Lander, Eric S.; Zhang, Feng

    2015-01-01

    Recent advances in genome engineering technologies based on the CRISPR-associated RNA-guided endonuclease Cas9 are enabling the systematic interrogation of mammalian genome function. Analogous to the search function in modern word processors, Cas9 can be guided to specific locations within complex genomes by a short RNA search string. Using this system, DNA sequences within the endogenous genome and their functional outputs are now easily edited or modulated in virtually any organism of choice. Cas9-mediated genetic perturbation is simple and scalable, empowering researchers to elucidate the functional organization of the genome at the systems level and establish causal linkages between genetic variations and biological phenotypes. In this Review, we describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions. Derived from a remarkable microbial defense system, Cas9 is driving innovative applications from basic biology to biotechnology and medicine. PMID:24906146

  17. Efficient CRISPR/Cas9-Mediated Genome Editing in Mice by Zygote Electroporation of Nuclease.

    PubMed

    Qin, Wenning; Dion, Stephanie L; Kutny, Peter M; Zhang, Yingfan; Cheng, Albert W; Jillette, Nathaniel L; Malhotra, Ankit; Geurts, Aron M; Chen, Yi-Guang; Wang, Haoyi

    2015-06-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system is an adaptive immune system in bacteria and archaea that has recently been exploited for genome engineering. Mutant mice can be generated in one step through direct delivery of the CRISPR/Cas9 components into a mouse zygote. Although the technology is robust, delivery remains a bottleneck, as it involves manual injection of the components into the pronuclei or the cytoplasm of mouse zygotes, which is technically demanding and inherently low throughput. To overcome this limitation, we employed electroporation as a means to deliver the CRISPR/Cas9 components, including Cas9 messenger RNA, single-guide RNA, and donor oligonucleotide, into mouse zygotes and recovered live mice with targeted nonhomologous end joining and homology-directed repair mutations with high efficiency. Our results demonstrate that mice carrying CRISPR/Cas9-mediated targeted mutations can be obtained with high efficiency by zygote electroporation. PMID:25819794

  18. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.

    PubMed

    Hendel, Ayal; Bak, Rasmus O; Clark, Joseph T; Kennedy, Andrew B; Ryan, Daniel E; Roy, Subhadeep; Steinfeld, Israel; Lunstad, Benjamin D; Kaiser, Robert J; Wilkens, Alec B; Bacchetta, Rosa; Tsalenko, Anya; Dellinger, Douglas; Bruhn, Laurakay; Porteus, Matthew H

    2015-09-01

    CRISPR-Cas-mediated genome editing relies on guide RNAs that direct site-specific DNA cleavage facilitated by the Cas endonuclease. Here we report that chemical alterations to synthesized single guide RNAs (sgRNAs) enhance genome editing efficiency in human primary T cells and CD34(+) hematopoietic stem and progenitor cells. Co-delivering chemically modified sgRNAs with Cas9 mRNA or protein is an efficient RNA- or ribonucleoprotein (RNP)-based delivery method for the CRISPR-Cas system, without the toxicity associated with DNA delivery. This approach is a simple and effective way to streamline the development of genome editing with the potential to accelerate a wide array of biotechnological and therapeutic applications of the CRISPR-Cas technology. PMID:26121415

  19. Mouse genome engineering using CRISPR-Cas9 for study of immune function

    PubMed Central

    Pelletier, Stephane; Gingras, Sebastien; Green, Douglas R.

    2016-01-01

    Clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated (Cas9) technology has proven a formidable addition to our armory of approaches for genomic editing. Derived from pathways in archaea and bacteria that mediate the resistance to exogenous genomic material, the CRISPR-Cas9 system utilizes a short single guide RNA (sgRNA) to direct the endonuclease Cas9 to virtually anywhere in the genome. Upon targeting, Cas9 generates DNA double strand breaks (DSBs) and facilitates the repair or insertion of mutations, insertion of recombinase recognition sites or large DNA elements. Here, we discuss the practical advantages of the CRISPR-Cas9 system over conventional and other nuclease-based targeting technologies and provide suggestions for the use of this technology to address immunological questions. PMID:25607456

  20. Targeting cellular mRNAs translation by CRISPR-Cas9

    PubMed Central

    Liu, Yuchen; Chen, Zhicong; He, Anbang; Zhan, Yonghao; Li, Jianfa; Liu, Li; Wu, Hanwei; Zhuang, Chengle; Lin, Junhao; Zhang, Qiaoxia; Huang, Weiren

    2016-01-01

    Recently CRISPR-Cas9 system has been reported to be capable of targeting a viral RNA, and this phenomenon thus raises an interesting question of whether Cas9 can also influence translation of cellular mRNAs. Here, we show that both natural and catalytically dead Cas9 can repress mRNA translation of cellular genes, and that only the first 14 nt in the 5′ end of sgRNA is essential for this process. CRISPR-Cas9 can suppress the protein expression of an unintended target gene without affecting its DNA sequence and causes unexpected phenotypic changes. Using the designed RNA aptamer-ligand complexes which physically obstruct translation machinery, we indicate that roadblock mechanism is responsible for this phenomenon. Our work suggests that studies on Cas9 should avoid the potential off-target effects by detecting the alteration of genes at both the DNA and protein levels. PMID:27405721

  1. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems.

    PubMed

    Mohanraju, Prarthana; Makarova, Kira S; Zetsche, Bernd; Zhang, Feng; Koonin, Eugene V; van der Oost, John

    2016-08-01

    Adaptive immunity had been long thought of as an exclusive feature of animals. However, the discovery of the CRISPR-Cas defense system, present in almost half of prokaryotic genomes, proves otherwise. Because of the everlasting parasite-host arms race, CRISPR-Cas has rapidly evolved through horizontal transfer of complete loci or individual modules, resulting in extreme structural and functional diversity. CRISPR-Cas systems are divided into two distinct classes that each consist of three types and multiple subtypes. We discuss recent advances in CRISPR-Cas research that reveal elaborate molecular mechanisms and provide for a plausible scenario of CRISPR-Cas evolution. We also briefly describe the latest developments of a wide range of CRISPR-based applications. PMID:27493190

  2. Cas-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cas9

    PubMed Central

    Park, Jeongbin; Kim, Jin-Soo; Bae, Sangsu

    2016-01-01

    Motivation: CRISPR-derived RNA guided endonucleases (RGENs) have been widely used for both gene knockout and knock-in at the level of single or multiple genes. RGENs are now available for forward genetic screens at genome scale, but single guide RNA (sgRNA) selection at this scale is difficult. Results: We develop an online tool, Cas-Database, a genome-wide gRNA library design tool for Cas9 nucleases from Streptococcus pyogenes (SpCas9). With an easy-to-use web interface, Cas-Database allows users to select optimal target sequences simply by changing the filtering conditions. Furthermore, it provides a powerful way to select multiple optimal target sequences from thousands of genes at once for the creation of a genome-wide library. Cas-Database also provides a web application programming interface (web API) for advanced bioinformatics users. Availability and implementation: Free access at http://www.rgenome.net/cas-database/. Contact: sangsubae@hanyang.ac.kr or jskim01@snu.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153724

  3. 41 CFR 102-33.95 - What is the process for budgeting to acquire commercial aviation services (CAS)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... budgeting to acquire commercial aviation services (CAS)? 102-33.95 Section 102-33.95 Public Contracts and... budgeting to acquire commercial aviation services (CAS)? Except for leases and lease-purchases, for which... fund your commercial aviation services (CAS) hires out of your agency's operating budget....

  4. 32 CFR 169a.13 - CAs involving forty-five or fewer DoD civilian employees.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false CAs involving forty-five or fewer DoD civilian... DEFENSE CONTRACTING COMMERCIAL ACTIVITIES PROGRAM PROCEDURES Procedures § 169a.13 CAs involving forty-five... Appendix C to this part, CAs involving 11 to 45 DoD civilian employees may be competed based on...

  5. 41 CFR 102-33.95 - What is the process for budgeting to acquire commercial aviation services (CAS)?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... budgeting to acquire commercial aviation services (CAS)? 102-33.95 Section 102-33.95 Public Contracts and... budgeting to acquire commercial aviation services (CAS)? Except for leases and lease-purchases, for which... fund your commercial aviation services (CAS) hires out of your agency's operating budget....

  6. 41 CFR 102-33.95 - What is the process for budgeting to acquire commercial aviation services (CAS)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... budgeting to acquire commercial aviation services (CAS)? 102-33.95 Section 102-33.95 Public Contracts and... budgeting to acquire commercial aviation services (CAS)? Except for leases and lease-purchases, for which... fund your commercial aviation services (CAS) hires out of your agency's operating budget....

  7. 32 CFR 169a.13 - CAs involving forty-five or fewer DoD civilian employees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false CAs involving forty-five or fewer DoD civilian... DEFENSE CONTRACTING COMMERCIAL ACTIVITIES PROGRAM PROCEDURES Procedures § 169a.13 CAs involving forty-five... Appendix C to this part, CAs involving 11 to 45 DoD civilian employees may be competed based on...

  8. 32 CFR 169a.13 - CAs involving forty-five or fewer DoD civilian employees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false CAs involving forty-five or fewer DoD civilian... DEFENSE CONTRACTING COMMERCIAL ACTIVITIES PROGRAM PROCEDURES Procedures § 169a.13 CAs involving forty-five... Appendix C to this part, CAs involving 11 to 45 DoD civilian employees may be competed based on...

  9. 41 CFR 102-33.95 - What is the process for budgeting to acquire commercial aviation services (CAS)?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... budgeting to acquire commercial aviation services (CAS)? 102-33.95 Section 102-33.95 Public Contracts and... budgeting to acquire commercial aviation services (CAS)? Except for leases and lease-purchases, for which... fund your commercial aviation services (CAS) hires out of your agency's operating budget....

  10. 41 CFR 102-33.95 - What is the process for budgeting to acquire commercial aviation services (CAS)?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... budgeting to acquire commercial aviation services (CAS)? 102-33.95 Section 102-33.95 Public Contracts and... budgeting to acquire commercial aviation services (CAS)? Except for leases and lease-purchases, for which... fund your commercial aviation services (CAS) hires out of your agency's operating budget....

  11. 32 CFR 169a.13 - CAs involving forty-five or fewer DoD civilian employees.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false CAs involving forty-five or fewer DoD civilian... DEFENSE CONTRACTING COMMERCIAL ACTIVITIES PROGRAM PROCEDURES Procedures § 169a.13 CAs involving forty-five... Appendix C to this part, CAs involving 11 to 45 DoD civilian employees may be competed based on...

  12. 32 CFR 169a.13 - CAs involving forty-five or fewer DoD civilian employees.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false CAs involving forty-five or fewer DoD civilian... DEFENSE CONTRACTING COMMERCIAL ACTIVITIES PROGRAM PROCEDURES Procedures § 169a.13 CAs involving forty-five... Appendix C to this part, CAs involving 11 to 45 DoD civilian employees may be competed based on...

  13. ISC, a Novel Group of Bacterial and Archaeal DNA Transposons That Encode Cas9 Homologs

    PubMed Central

    Kapitonov, Vladimir V.; Makarova, Kira S.

    2015-01-01

    ABSTRACT Bacterial genomes encode numerous homologs of Cas9, the effector protein of the type II CRISPR-Cas systems. The homology region includes the arginine-rich helix and the HNH nuclease domain that is inserted into the RuvC-like nuclease domain. These genes, however, are not linked to cas genes or CRISPR. Here, we show that Cas9 homologs represent a distinct group of nonautonomous transposons, which we denote ISC (insertion sequences Cas9-like). We identify many diverse families of full-length ISC transposons and demonstrate that their terminal sequences (particularly 3′ termini) are similar to those of IS605 superfamily transposons that are mobilized by the Y1 tyrosine transposase encoded by the TnpA gene and often also encode the TnpB protein containing the RuvC-like endonuclease domain. The terminal regions of the ISC and IS605 transposons contain palindromic structures that are likely recognized by the Y1 transposase. The transposons from these two groups are inserted either exactly in the middle or upstream of specific 4-bp target sites, without target site duplication. We also identify autonomous ISC transposons that encode TnpA-like Y1 transposases. Thus, the nonautonomous ISC transposons could be mobilized in trans either by Y1 transposases of other, autonomous ISC transposons or by Y1 transposases of the more abundant IS605 transposons. These findings imply an evolutionary scenario in which the ISC transposons evolved from IS605 family transposons, possibly via insertion of a mobile group II intron encoding the HNH domain, and Cas9 subsequently evolved via immobilization of an ISC transposon. IMPORTANCE Cas9 endonucleases, the effectors of type II CRISPR-Cas systems, represent the new generation of genome-engineering tools. Here, we describe in detail a novel family of transposable elements that encode the likely ancestors of Cas9 and outline the evolutionary scenario connecting different varieties of these transposons and Cas9. PMID:26712934

  14. Unification and Infinite Series

    ERIC Educational Resources Information Center

    Leyendekkers, J. V.; Shannon, A. G.

    2008-01-01

    Some infinite series are analysed on the basis of the hypergeometric function and integer structure and modular rings. The resulting generalized functions are compared with differentiation of the "mother" series. (Contains 1 table.)

  15. Silencing of p130Cas in Ovarian Carcinoma: A Novel Mechanism for Tumor Cell Death

    PubMed Central

    Nick, Alpa M.; Stone, Rebecca L.; Armaiz-Pena, Guillermo; Ozpolat, Bulent; Tekedereli, Ibrahim; Graybill, Whitney S.; Landen, Charles N.; Villares, Gabriel; Vivas-Mejia, Pablo; Bottsford-Miller, Justin; Kim, Hye Sun; Lee, Ju-Seog; Kim, Soo Mi; Baggerly, Keith A.; Ram, Prahlad T.; Deavers, Michael T.; Coleman, Robert L.; Lopez-Berestein, Gabriel

    2011-01-01

    Background We investigated the clinical and biological significance of p130cas, an important cell signaling molecule, in ovarian carcinoma. Methods Expression of p130cas in ovarian tumors, as assessed by immunohistochemistry, was associated with tumor characteristics and patient survival. The effects of p130cas gene silencing with small interfering RNAs incorporated into neutral nanoliposomes (siRNA-DOPC), alone and in combination with docetaxel, on in vivo tumor growth and on tumor cell proliferation (proliferating cell nuclear antigen) and apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling) were examined in mice bearing orthotopic taxane-sensitive (HeyA8 and SKOV3ip1) or taxane-resistant (HeyA8-MDR) ovarian tumors (n = 10 per group). To determine the specific mechanisms by which p130cas gene silencing abrogates tumor growth, we measured cell viability (MTT assay), apoptosis (fluorescence-activated cell sorting), autophagy (immunoblotting, fluorescence, and transmission electron microscopy), and cell signaling (immunoblotting) in vitro. All statistical tests were two-sided. Results Of 91 ovarian cancer specimens, 70 (76%) had high p130cas expression; and 21 (24%) had low p130cas expression. High p130cas expression was associated with advanced tumor stage (P < .001) and higher residual disease (>1 cm) following primary cytoreduction surgery (P = .007) and inversely associated with overall survival and progression-free survival (median overall survival: high p130cas expression vs low expression, 2.14 vs 9.1 years, difference = 6.96 years, 95% confidence interval = 1.69 to 9.48 years, P < .001; median progression-free survival: high p130cas expression vs low expression, 1.04 vs 2.13 years, difference = 1.09 years, 95% confidence interval = 0.47 to 2.60 years, P = .01). In mice bearing orthotopically implanted HeyA8 or SKOV3ip1 ovarian tumors, treatment with p130cas siRNA-DOPC in combination with docetaxel chemotherapy resulted in the greatest

  16. Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes.

    PubMed

    Fine, Eli J; Appleton, Caleb M; White, Douglas E; Brown, Matthew T; Deshmukh, Harshavardhan; Kemp, Melissa L; Bao, Gang

    2015-01-01

    CRISPR/Cas9 systems have been used in a wide variety of biological studies; however, the large size of CRISPR/Cas9 presents challenges in packaging it within adeno-associated viruses (AAVs) for clinical applications. We identified a two-cassette system expressing pieces of the S. pyogenes Cas9 (SpCas9) protein which splice together in cellula to form a functional protein capable of site-specific DNA cleavage. With specific CRISPR guide strands, we demonstrated the efficacy of this system in cleaving the HBB and CCR5 genes in human HEK-293T cells as a single Cas9 and as a pair of Cas9 nickases. The trans-spliced SpCas9 (tsSpCas9) displayed ~35% of the nuclease activity compared with the wild-type SpCas9 (wtSpCas9) at standard transfection doses, but had substantially decreased activity at lower dosing levels. The greatly reduced open reading frame length of the tsSpCas9 relative to wtSpCas9 potentially allows for more complex and longer genetic elements to be packaged into an AAV vector including tissue-specific promoters, multiplexed guide RNA expression, and effector domain fusions to SpCas9. For unknown reasons, the tsSpCas9 system did not work in all cell types tested. The use of protein trans-splicing may help facilitate exciting new avenues of research and therapeutic applications through AAV-based delivery of CRISPR/Cas9 systems. PMID:26126518

  17. Méthotrexate et psoriasis: à propos de 46 cas

    PubMed Central

    Inani, Kawtar; Meziane, Mariame; Mernissi, Fatimazahra

    2014-01-01

    Le psoriasis est une maladie inflammatoire chronique, son traitement peut être local ou général. Le méthotrexate (MTX) est parmi les traitements systémiques du psoriasis modéré à sévère. Le but de notre étude est d’évaluer la place du MTX dans le traitement du psoriasis dans notre contexte marocain. C'est une étude rétrospective menée au service de dermatologie du CHU HASSAN II FES de 2010 à 2013. 46 patients ont répondus aux critères d'inclusions. Il s'agissait de patients de sexe masculin dans 58,7% des cas, de sujets âgés entre 18 et 45 ans dans 45,7% des cas. Le psoriasis vulgaire était la forme la plus répondue (76,1%), 56,5% avaient une surface corporelle(SC) atteinte comprise entre 25 et 50%, L’évolution était marquée par une rémission complète dans 50% des cas. Le MTX a été utilisé depuis plus de 40 ans dans le traitement du psoriasis modéré à sévère. Dans notre série le recours au MTX était nécessaire et ceci après échec d'autres thérapeutiques. Son efficacité a été constatée chez 50% des patients, avec peu d'effets secondaires. Le MTX est une molécule de référence dans le traitement du psoriasis modéré à sévère, avec un meilleur rapport coût/bénéfice/risque. PMID:25709742

  18. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.

    PubMed

    Ma, Xingliang; Zhu, Qinlong; Chen, Yuanling; Liu, Yao-Guang

    2016-07-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein9 (Cas9) genome editing system (CRISPR/Cas9) is adapted from the prokaryotic type II adaptive immunity system. The CRISPR/Cas9 tool surpasses other programmable nucleases, such as ZFNs and TALENs, for its simplicity and high efficiency. Various plant-specific CRISPR/Cas9 vector systems have been established for adaption of this technology to many plant species. In this review, we present an overview of current advances on applications of this technology in plants, emphasizing general considerations for establishment of CRISPR/Cas9 vector platforms, strategies for multiplex editing, methods for analyzing the induced mutations, factors affecting editing efficiency and specificity, and features of the induced mutations and applications of the CRISPR/Cas9 system in plants. In addition, we provide a perspective on the challenges of CRISPR/Cas9 technology and its significance for basic plant research and crop genetic improvement. PMID:27108381

  19. Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome.

    PubMed

    Müller, Maximilian; Lee, Ciaran M; Gasiunas, Giedrius; Davis, Timothy H; Cradick, Thomas J; Siksnys, Virginijus; Bao, Gang; Cathomen, Toni; Mussolino, Claudio

    2016-03-01

    RNA-guided nucleases (RGNs) based on the type II CRISPR-Cas9 system of Streptococcus pyogenes (Sp) have been widely used for genome editing in experimental models. However, the nontrivial level of off-target activity reported in several human cells may hamper clinical translation. RGN specificity depends on both the guide RNA (gRNA) and the protospacer adjacent motif (PAM) recognized by the Cas9 protein. We hypothesized that more stringent PAM requirements reduce the occurrence of off-target mutagenesis. To test this postulation, we generated RGNs based on two Streptococcus thermophilus (St) Cas9 proteins, which recognize longer PAMs, and performed a side-by-side comparison of the three RGN systems targeted to matching sites in two endogenous human loci, PRKDC and CARD11. Our results demonstrate that in samples with comparable on-target cleavage activities, significantly lower off-target mutagenesis was detected using St-based RGNs as compared to the standard Sp-RGNs. Moreover, similarly to SpCas9, the StCas9 proteins accepted truncated gRNAs, suggesting that the specificities of St-based RGNs can be further improved. In conclusion, our results show that Cas9 proteins with longer or more restrictive PAM requirements provide a safe alternative to SpCas9-based RGNs and hence a valuable option for future human gene therapy applications. PMID:26658966

  20. A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion

    PubMed Central

    Sampson, Timothy R.; Napier, Brooke A.; Schroeder, Max R.; Louwen, Rogier; Zhao, Jinshi; Chin, Chui-Yoke; Ratner, Hannah K.; Llewellyn, Anna C.; Jones, Crystal L.; Laroui, Hamed; Merlin, Didier; Zhou, Pei; Endtz, Hubert P.; Weiss, David S.

    2014-01-01

    Clustered, regularly interspaced, short palindromic repeats–CRISPR associated (CRISPR-Cas) systems defend bacteria against foreign nucleic acids, such as during bacteriophage infection and transformation, processes which cause envelope stress. It is unclear if these machineries enhance membrane integrity to combat this stress. Here, we show that the Cas9-dependent CRISPR-Cas system of the intracellular bacterial pathogen Francisella novicida is involved in enhancing envelope integrity through the regulation of a bacterial lipoprotein. This action ultimately provides increased resistance to numerous membrane stressors, including antibiotics. We further find that this previously unappreciated function of Cas9 is critical during infection, as it promotes evasion of the host innate immune absent in melanoma 2/apoptosis associated speck-like protein containing a CARD (AIM2/ASC) inflammasome. Interestingly, the attenuation of the cas9 mutant is complemented only in mice lacking both the AIM2/ASC inflammasome and the bacterial lipoprotein sensor Toll-like receptor 2, but not in single knockout mice, demonstrating that Cas9 is essential for evasion of both pathways. These data represent a paradigm shift in our understanding of the function of CRISPR-Cas systems as regulators of bacterial physiology and provide a framework with which to investigate the roles of these systems in myriad bacteria, including pathogens and commensals. PMID:25024199

  1. Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri.

    PubMed

    Sanozky-Dawes, Rosemary; Selle, Kurt; O'Flaherty, Sarah; Klaenhammer, Todd; Barrangou, Rodolphe

    2015-09-01

    Bacteria encode clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated genes (cas), which collectively form an RNA-guided adaptive immune system against invasive genetic elements. In silico surveys have revealed that lactic acid bacteria harbour a prolific and diverse set of CRISPR-Cas systems. Thus, the natural evolutionary role of CRISPR-Cas systems may be investigated in these ecologically, industrially, scientifically and medically important microbes. In this study, 17 Lactobacillus gasseri strains were investigated and 6 harboured a type II-A CRISPR-Cas system, with considerable diversity in array size and spacer content. Several of the spacers showed similarity to phage and plasmid sequences, which are typical targets of CRISPR-Cas immune systems. Aligning the protospacers facilitated inference of the protospacer adjacent motif sequence, determined to be 5'-NTAA-3' flanking the 3' end of the protospacer. The system in L. gasseri JV-V03 and NCK 1342 interfered with transforming plasmids containing sequences matching the most recently acquired CRISPR spacers in each strain. We report the distribution and function of a native type II-A CRISPR-Cas system in the commensal species L. gasseri. Collectively, these results open avenues for applications for bacteriophage protection and genome modification in L. gasseri, and contribute to the fundamental understanding of CRISPR-Cas systems in bacteria. PMID:26297561

  2. CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo

    PubMed Central

    Moreno-Mateos, Miguel A.; Vejnar, Charles E.; Beaudoin, Jean-Denis; Fernandez, Juan P.; Mis, Emily K.; Khokha, Mustafa K.; Giraldez, Antonio J.

    2015-01-01

    CRISPR/Cas9 technology provides a powerful system for genome engineering. However, variable activity across different single guide RNAs (sgRNAs) remains a significant limitation. We have analyzed the molecular features that influence sgRNA stability, activity and loading into Cas9 in vivo. We observe that guanine enrichment and adenine depletion increase sgRNA stability and activity, while loading, nucleosome positioning and Cas9 off-target binding are not major determinants. We additionally identified truncated and 5′ mismatch-containing sgRNAs as efficient alternatives to canonical sgRNAs. Based on these results, we created a predictive sgRNA-scoring algorithm (CRISPRscan.org) that effectively captures the sequence features affecting Cas9/sgRNA activity in vivo. Finally, we show that targeting Cas9 to the germ line using a Cas9-nanos-3′-UTR fusion can generate maternal-zygotic mutants, increase viability and reduce somatic mutations. Together, these results provide novel insights into the determinants that influence Cas9 activity and a framework to identify highly efficient sgRNAs for genome targeting in vivo. PMID:26322839

  3. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9

    PubMed Central

    Sternberg, Samuel H.; Redding, Sy; Jinek, Martin; Greene, Eric C.; Doudna, Jennifer A.

    2014-01-01

    The CRISPR-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA:DNA base-pairing to target foreign DNA in bacteria. Cas9:guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9:RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9:RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9:RNA. DNA strand separation and RNA:DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 employs PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate dsDNA scission. PMID:24476820

  4. Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch.

    PubMed

    Oakes, Benjamin L; Nadler, Dana C; Flamholz, Avi; Fellmann, Christof; Staahl, Brett T; Doudna, Jennifer A; Savage, David F

    2016-06-01

    The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated protein Cas9 from Streptococcus pyogenes is an RNA-guided DNA endonuclease with widespread utility for genome modification. However, the structural constraints limiting the engineering of Cas9 have not been determined. Here we experimentally profile Cas9 using randomized insertional mutagenesis and delineate hotspots in the structure capable of tolerating insertions of a PDZ domain without disruption of the enzyme's binding and cleavage functions. Orthogonal domains or combinations of domains can be inserted into the identified sites with minimal functional consequence. To illustrate the utility of the identified sites, we construct an allosterically regulated Cas9 by insertion of the estrogen receptor-α ligand-binding domain. This protein showed robust, ligand-dependent activation in prokaryotic and eukaryotic cells, establishing a versatile one-component system for inducible and reversible Cas9 activation. Thus, domain insertion profiling facilitates the rapid generation of new Cas9 functionalities and provides useful data for future engineering of Cas9. PMID:27136077

  5. Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders.

    PubMed

    Shigeta, Mitsuki; Sakane, Yuto; Iida, Midori; Suzuki, Miyuki; Kashiwagi, Keiko; Kashiwagi, Akihiko; Fujii, Satoshi; Yamamoto, Takashi; Suzuki, Ken-Ichi T

    2016-07-01

    Recent advances in genome editing using programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system, have facilitated reverse genetics in Xenopus tropicalis. To establish a practical workflow for analyzing genes of interest using CRISPR-Cas9, we examined various experimental procedures and conditions. We first compared the efficiency of gene disruption between Cas9 protein and mRNA injection by analyzing genotype and phenotype frequency, and toxicity. Injection of X. tropicalis embryos with Cas9 mRNA resulted in high gene-disrupting efficiency comparable with that produced by Cas9 protein injection. To exactly evaluate the somatic mutation rates of on-target sites, amplicon sequencing and restriction fragment length polymorphism analysis using a restriction enzyme or recombinant Cas9 were performed. Mutation rates of two target genes (slc45a2 and ltk) required for pigmentation were estimated to be over 90% by both methods in animals exhibiting severe phenotypes, suggesting that targeted somatic mutations were biallelically introduced in almost all somatic cells of founder animals. Using a heteroduplex mobility assay, we also showed that off-target mutations were induced at a low rate. Based on our results, we propose a CRISPR-Cas9-mediated gene disruption workflow for a rapid and efficient analysis of gene function using X. tropicalis founders. PMID:27219625

  6. Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition

    PubMed Central

    Rollie, Clare; Schneider, Stefanie; Brinkmann, Anna Sophie; Bolt, Edward L; White, Malcolm F

    2015-01-01

    The adaptive prokaryotic immune system CRISPR-Cas provides RNA-mediated protection from invading genetic elements. The fundamental basis of the system is the ability to capture small pieces of foreign DNA for incorporation into the genome at the CRISPR locus, a process known as Adaptation, which is dependent on the Cas1 and Cas2 proteins. We demonstrate that Cas1 catalyses an efficient trans-esterification reaction on branched DNA substrates, which represents the reverse- or disintegration reaction. Cas1 from both Escherichia coli and Sulfolobus solfataricus display sequence specific activity, with a clear preference for the nucleotides flanking the integration site at the leader-repeat 1 boundary of the CRISPR locus. Cas2 is not required for this activity and does not influence the specificity. This suggests that the inherent sequence specificity of Cas1 is a major determinant of the adaptation process. DOI: http://dx.doi.org/10.7554/eLife.08716.001 PMID:26284603

  7. The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells.

    PubMed

    Lee, Ciaran M; Cradick, Thomas J; Bao, Gang

    2016-03-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system from Streptococcus pyogenes (Spy) has been successfully adapted for RNA-guided genome editing in a wide range of organisms. However, numerous reports have indicated that Spy CRISPR-Cas9 systems may have significant off-target cleavage of genomic DNA sequences differing from the intended on-target site. Here, we report the performance of the Neisseria meningitidis (Nme) CRISPR-Cas9 system that requires a longer protospacer-adjacent motif for site-specific cleavage, and present a comparison between the Spy and Nme CRISPR-Cas9 systems targeting the same protospacer sequence. The results with the native crRNA and tracrRNA as well as a chimeric single guide RNA for the Nme CRISPR-Cas9 system were also compared. Our results suggest that, compared with the Spy system, the Nme CRISPR-Cas9 system has similar or lower on-target cleavage activity but a reduced overall off-target effect on a genomic level when sites containing three or fewer mismatches are considered. Thus, the Nme CRISPR-Cas9 system may represent a safer alternative for precision genome engineering applications. PMID:26782639

  8. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants.

    PubMed

    Osakabe, Yuriko; Watanabe, Takahito; Sugano, Shigeo S; Ueta, Risa; Ishihara, Ryosuke; Shinozaki, Kazuo; Osakabe, Keishi

    2016-01-01

    Genome editing using the CRISPR/Cas9 system can be used to modify plant genomes, however, improvements in specificity and applicability are still needed in order for the editing technique to be useful in various plant species. Here, using genome editing mediated by a truncated gRNA (tru-gRNA)/Cas9 combination, we generated new alleles for OST2, a proton pump in Arabidopsis, with no off-target effects. By following expression of Cas9 and the tru-gRNAs, newly generated mutations in CRIPSR/Cas9 transgenic plants were detected with high average mutation rates of up to 32.8% and no off-target effects using constitutive promoter. Reducing nuclear localization signals in Cas9 decreased the mutation rate. In contrast, tru-gRNA Cas9 cassettes driven by meristematic- and reproductive-tissue-specific promoters increased the heritable mutation rate in Arabidopsis, showing that high expression in the germ line can produce bi-allelic mutations. Finally, the new mutant alleles obtained for OST2 exhibited altered stomatal closing in response to environmental conditions. These results suggest further applications in molecular breeding to improve plant function using optimized plant CRISPR/Cas9 systems. PMID:27226176

  9. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9

    NASA Astrophysics Data System (ADS)

    Sternberg, Samuel H.; Redding, Sy; Jinek, Martin; Greene, Eric C.; Doudna, Jennifer A.

    2014-03-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  10. Knowledge-based discovery for designing CRISPR-CAS systems against invading mobilomes in thermophiles.

    PubMed

    Chellapandi, P; Ranjani, J

    2015-09-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) are direct features of the prokaryotic genomes involved in resistance to their bacterial viruses and phages. Herein, we have identified CRISPR loci together with CRISPR-associated sequences (CAS) genes to reveal their immunity against genome invaders in the thermophilic archaea and bacteria. Genomic survey of this study implied that genomic distribution of CRISPR-CAS systems was varied from strain to strain, which was determined by the degree of invading mobiloms. Direct repeats found to be equal in some extent in many thermopiles, but their spacers were differed in each strain. Phylogenetic analyses of CAS superfamily revealed that genes cmr, csh, csx11, HD domain, devR were belonged to the subtypes of cas gene family. The members in cas gene family of thermophiles were functionally diverged within closely related genomes and may contribute to develop several defense strategies. Nevertheless, genome dynamics, geological variation and host defense mechanism were contributed to share their molecular functions across the thermophiles. A thermophilic archaean, Thermococcus gammotolerans and thermophilic bacteria, Petrotoga mobilis and Thermotoga lettingae have shown superoperons-like appearance to cluster cas genes, which were typically evolved for their defense pathways. A cmr operon was identified with a specific promoter in a thermophilic archaean, Caldivirga maquilingensis. Overall, we concluded that knowledge-based genomic survey and phylogeny-based functional assignment have suggested for designing a reliable genetic regulatory circuit naturally from CRISPR-CAS systems, acquired defense pathways, to thermophiles in future synthetic biology. PMID:26279704

  11. Highly Specific Epigenome Editing by CRISPR/Cas9 Repressors for Silencing of Distal Regulatory Elements

    PubMed Central

    Thakore, Pratiksha I.; D’Ippolito, Anthony M; Song, Lingyun; Safi, Alexias; Shivakumar, Nishkala K.; Kabadi, Ami M.; Reddy, Timothy E.; Crawford, Gregory E.; Gersbach, Charles A.

    2015-01-01

    Epigenome editing with the CRISPR/Cas9 platform is a promising technology to modulate gene expression to direct cell phenotype and to dissect the causal epigenetic mechanisms of gene regulation. Fusions of the nuclease-inactive dCas9 to the KRAB repressor (dCas9-KRAB) can silence target gene expression, but the genome-wide specificity and the extent of heterochromatin formation catalyzed by dCas9-KRAB is not known. We targeted dCas9-KRAB to the HS2 enhancer, a distal regulatory element that orchestrates expression of multiple globin genes. Genome-wide analyses demonstrated that localization of dCas9-KRAB to HS2 specifically induced H3K9 tri-methylation (H3K9me3) at the enhancer and reduced the chromatin accessibility of both the enhancer and its promoter targets. Targeted epigenetic modification of HS2 silenced the expression of multiple globin genes, with minimal off-target changes in gene expression. These results demonstrate that repression mediated by dCas9-KRAB is sufficiently specific to disrupt the activity of individual enhancers via local modification of the epigenome. PMID:26501517

  12. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants

    PubMed Central

    Osakabe, Yuriko; Watanabe, Takahito; Sugano, Shigeo S; Ueta, Risa; Ishihara, Ryosuke; Shinozaki, Kazuo; Osakabe, Keishi

    2016-01-01

    Genome editing using the CRISPR/Cas9 system can be used to modify plant genomes, however, improvements in specificity and applicability are still needed in order for the editing technique to be useful in various plant species. Here, using genome editing mediated by a truncated gRNA (tru-gRNA)/Cas9 combination, we generated new alleles for OST2, a proton pump in Arabidopsis, with no off-target effects. By following expression of Cas9 and the tru-gRNAs, newly generated mutations in CRIPSR/Cas9 transgenic plants were detected with high average mutation rates of up to 32.8% and no off-target effects using constitutive promoter. Reducing nuclear localization signals in Cas9 decreased the mutation rate. In contrast, tru-gRNA Cas9 cassettes driven by meristematic- and reproductive-tissue-specific promoters increased the heritable mutation rate in Arabidopsis, showing that high expression in the germ line can produce bi-allelic mutations. Finally, the new mutant alleles obtained for OST2 exhibited altered stomatal closing in response to environmental conditions. These results suggest further applications in molecular breeding to improve plant function using optimized plant CRISPR/Cas9 systems. PMID:27226176

  13. The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Bao, Gang

    2016-01-01

    The clustered regularly-interspaced short palindromic repeats (CRISPR)—CRISPR-associated (Cas) system from Streptococcus pyogenes (Spy) has been successfully adapted for RNA-guided genome editing in a wide range of organisms. However, numerous reports have indicated that Spy CRISPR-Cas9 systems may have significant off-target cleavage of genomic DNA sequences differing from the intended on-target site. Here, we report the performance of the Neisseria meningitidis (Nme) CRISPR-Cas9 system that requires a longer protospacer-adjacent motif for site-specific cleavage, and present a comparison between the Spy and Nme CRISPR-Cas9 systems targeting the same protospacer sequence. The results with the native crRNA and tracrRNA as well as a chimeric single guide RNA for the Nme CRISPR-Cas9 system were also compared. Our results suggest that, compared with the Spy system, the Nme CRISPR-Cas9 system has similar or lower on-target cleavage activity but a reduced overall off-target effect on a genomic level when sites containing three or fewer mismatches are considered. Thus, the Nme CRISPR-Cas9 system may represent a safer alternative for precision genome engineering applications. PMID:26782639

  14. Research on animal laser varicose treatment in CIOMP, CAS

    NASA Astrophysics Data System (ADS)

    Zhang, Laiming; Li, Dianjun; Lu, Qipeng; Yang, Guilong; Guo, Jin

    2007-05-01

    The work on laser varicose treatment carried out in CIOMP, CAS cooperating with The First Clinical Hospital, Jilin University is summarized. Dozens of animal experiments adopting dog and rabbit samples are made in a long time of several years. Different lasers are used, including long pulse frequency-doubled Nd:YAG(532nm) and semiconductor laser(808nm). Dozens of animal experiments show that laser has good efficacy to occlude the vein vessels. It has precise adjustability and relatively short treatment time only needing outpatient office setting with high cost and effect rate; It provides minimal invasion, often under local anesthesia and intravenous sedation thereby eliminating the need for general anesthesia, greatly shortens postoperative recovery term, and it is highly safe with no side effects and no serious complications.

  15. CRISPR-Cas9 enables conditional mutagenesis of challenging loci

    PubMed Central

    Schick, Joel A.; Seisenberger, Claudia; Beig, Joachim; Bürger, Antje; Iyer, Vivek; Maier, Viola; Perera, Sajith; Rosen, Barry; Skarnes, William C.; Wurst, Wolfgang

    2016-01-01

    The International Knockout Mouse Consortium (IKMC) has produced a genome-wide collection of 15,000 isogenic targeting vectors for conditional mutagenesis in C57BL/6N mice. Although most of the vectors have been used successfully in murine embryonic stem (ES) cells, there remain a set of nearly two thousand genes that have failed to target even after several attempts. Recent attention has turned to the use of new genome editing technology for the generation of mutant alleles in mice. Here, we demonstrate how Cas9-assisted targeting can be combined with the IKMC targeting vector resource to generate conditional alleles in genes that have previously eluded targeting using conventional methods. PMID:27580957

  16. Cas9-Mediated Genome Engineering in Drosophila melanogaster.

    PubMed

    Housden, Benjamin E; Perrimon, Norbert

    2016-01-01

    The recent development of the CRISPR-Cas9 system for genome engineering has revolutionized our ability to modify the endogenous DNA sequence of many organisms, including Drosophila This system allows alteration of DNA sequences in situ with single base-pair precision and is now being used for a wide variety of applications. To use the CRISPR system effectively, various design parameters must be considered, including single guide RNA target site selection and identification of successful editing events. Here, we review recent advances in CRISPR methodology in Drosophila and introduce protocols for some of the more difficult aspects of CRISPR implementation: designing and generating CRISPR reagents and detecting indel mutations by high-resolution melt analysis. PMID:27587786

  17. CRISPR-Cas9 enables conditional mutagenesis of challenging loci.

    PubMed

    Schick, Joel A; Seisenberger, Claudia; Beig, Joachim; Bürger, Antje; Iyer, Vivek; Maier, Viola; Perera, Sajith; Rosen, Barry; Skarnes, William C; Wurst, Wolfgang

    2016-01-01

    The International Knockout Mouse Consortium (IKMC) has produced a genome-wide collection of 15,000 isogenic targeting vectors for conditional mutagenesis in C57BL/6N mice. Although most of the vectors have been used successfully in murine embryonic stem (ES) cells, there remain a set of nearly two thousand genes that have failed to target even after several attempts. Recent attention has turned to the use of new genome editing technology for the generation of mutant alleles in mice. Here, we demonstrate how Cas9-assisted targeting can be combined with the IKMC targeting vector resource to generate conditional alleles in genes that have previously eluded targeting using conventional methods. PMID:27580957

  18. Interstellar and ejecta dust in the cas a supernova remnant

    SciTech Connect

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jeonghee; Hwang, Una

    2014-05-01

    Infrared continuum observations provide a means of investigating the physical composition of the dust in the ejecta and swept up medium of the Cas A supernova remnant (SNR). Using low-resolution Spitzer IRS spectra (5-35 μm), and broad-band Herschel PACS imaging (70, 100, and 160 μm), we identify characteristic dust spectra, associated with ejecta layers that underwent distinct nuclear burning histories. The most luminous spectrum exhibits strong emission features at ∼9 and 21 μm and is closely associated with ejecta knots with strong Ar emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low Mg to Si ratios. Another dust spectrum is associated with ejecta having strong Ne emission lines. It has no indication of any silicate features and is best fit by Al{sub 2}O{sub 3} dust. A third characteristic dust spectrum shows features that are best matched by magnesium silicates with a relatively high Mg to Si ratio. This dust is primarily associated with the X-ray-emitting shocked ejecta, but it is also evident in regions where shocked interstellar or circumstellar material is expected. However, the identification of dust composition is not unique, and each spectrum includes an additional featureless dust component of unknown composition. Colder dust of indeterminate composition is associated with emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. Most of the dust mass in Cas A is associated with this unidentified cold component, which is ≲ 0.1 M {sub ☉}. The mass of warmer dust is only ∼0.04 M {sub ☉}.

  19. Spatio-temporal Spectral Variability in Cas A

    NASA Astrophysics Data System (ADS)

    Nambiar, Yamini; Kashyap, V.; Patnaude, D.

    2014-01-01

    We have analyzed Chandra archival data of Cas A Supernova Remnant to identify regions with large spectral abnormalities and variability over the last decade. We use 8 ACIS-S observations spanning the years 2000 to 2012. We compute spectral hardness ratios in the soft/medium and medium/hard CSC bands over spatial scales corresponding to binning by 4, 8, 16, 32, and 64. We reduce the data and apply the latest calibration using the CIAO tool chandra_repro. We account for exposure variations using exposure maps and compute photon fluxes using the CIAO tool fluximage. We then renormalize the color light curves at each pixel and flag large departures from the norm by comparing with the observed spread in the renormalized color light curves. This allows regions with different intrinsic spectral properties to be compared. We flag deviations of >3σ from the renormalized mean at each epoch, and combine all such pixels to form a map of interesting regions in the remnant. We also identify pixels which have intrinsically abnormal hardness ratios at each epoch. We show that there exist many sites on Cas A where abnormal variations in the spectrum exist. Specifically, we find that many of the identified regions coincide with prominent features of the SNR, such as the edge of the remnant, the central compact object, and numerous knots. In addition, we find various other locations 1000) where there is indication of an atypical spectral signature. The full region lists, along with analysis scripts and the figures and tables shown in this poster, are stored on the Harvard Dataverse Network, at http://dx.doi.org/10.7910/DVN1/22634 YN thanks ABRHS and Young Einsteins Science Club for support and guidance. VK and DP acknowledge support during this project from the Chandra X-Ray Center.

  20. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila.

    PubMed

    Port, Fillip; Chen, Hui-Min; Lee, Tzumin; Bullock, Simon L

    2014-07-22

    The type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system has emerged recently as a powerful method to manipulate the genomes of various organisms. Here, we report a toolbox for high-efficiency genome engineering of Drosophila melanogaster consisting of transgenic Cas9 lines and versatile guide RNA (gRNA) expression plasmids. Systematic evaluation reveals Cas9 lines with ubiquitous or germ-line-restricted patterns of activity. We also demonstrate differential activity of the same gRNA expressed from different U6 snRNA promoters, with the previously untested U6:3 promoter giving the most potent effect. An appropriate combination of Cas9 and gRNA allows targeting of essential and nonessential genes with transmission rates ranging from 25-100%. We also demonstrate that our optimized CRISPR/Cas tools can be used for offset nicking-based mutagenesis. Furthermore, in combination with oligonucleotide or long double-stranded donor templates, our reagents allow precise genome editing by homology-directed repair with rates that make selection markers unnecessary. Last, we demonstrate a novel application of CRISPR/Cas-mediated technology in revealing loss-of-function phenotypes in somatic cells following efficient biallelic targeting by Cas9 expressed in a ubiquitous or tissue-restricted manner. Our CRISPR/Cas tools will facilitate the rapid evaluation of mutant phenotypes of specific genes and the precise modification of the genome with single-nucleotide precision. Our results also pave the way for high-throughput genetic screening with CRISPR/Cas. PMID:25002478

  1. The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications.

    PubMed

    Hickman, Alison B; Dyda, Fred

    2015-12-15

    Many archaea and bacteria have an adaptive immune system known as CRISPR which allows them to recognize and destroy foreign nucleic acid that they have previously encountered. Two CRISPR-associated proteins, Cas1 and Cas2, are required for the acquisition step of adaptation, in which fragments of foreign DNA are incorporated into the host CRISPR locus. Cas1 genes have also been found scattered in several archaeal and bacterial genomes, unassociated with CRISPR loci or other cas proteins. Rather, they are flanked by nearly identical inverted repeats and enclosed within direct repeats, suggesting that these genetic regions might be mobile elements ('casposons'). To investigate this possibility, we have characterized the in vitro activities of the putative Cas1 transposase ('casposase') from Aciduliprofundum boonei. The purified Cas1 casposase can integrate both short oligonucleotides with inverted repeat sequences and a 2.8 kb excised mini-casposon into target DNA. Casposon integration occurs without target specificity and generates 14-15 basepair target site duplications, consistent with those found in casposon host genomes. Thus, Cas1 casposases carry out similar biochemical reactions as the CRISPR Cas1-Cas2 complex but with opposite substrate specificities: casposases integrate specific sequences into random target sites, whereas CRISPR Cas1-Cas2 integrates essentially random sequences into a specific site in the CRISPR locus. PMID:26573596

  2. Physical, antioxidant and structural characterization of blend films based on hsian-tsao gum (HG) and casein (CAS).

    PubMed

    Yang, Hui; Wen, Xiao Long; Guo, Shan Guang; Chen, Ming Tsao; Jiang, Ai Min; Lai, Lih-Shiuh

    2015-12-10

    The effects of hsian-tsao gum (HG) addition on the physical properties, antioxidant activities and structure of casein (CAS) film have been investigated. It has been observed that HG addition provided CAS film with better mechanical properties and resistant to moisture, stronger barrier properties against light and higher antioxidant activities than pure CAS film. Fourier transformation infrared (FTIR) data indicated that hydrogen bonding interactions and Maillard reactions occurred between CAS and HG, giving rise to a more compact structure than CAS film. The results of X-ray diffraction and differential scanning calorimetry (DSC) indicated that CAS and HG were compatible, and addition of HG destroyed the original crystalline domains of CAS film, and the blend films exhibited higher glass transition temperatures than CAS film. Moreover, nuclear magnetic resonance (NMR) analysis showed that HG addition significantly changed the mobility of water molecule in CAS film. Especially, ratio of the high mobility water of CAS/HG films significantly decreased as compared to CAS film. PMID:26428119

  3. The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications

    PubMed Central

    Hickman, Alison B.; Dyda, Fred

    2015-01-01

    Many archaea and bacteria have an adaptive immune system known as CRISPR which allows them to recognize and destroy foreign nucleic acid that they have previously encountered. Two CRISPR-associated proteins, Cas1 and Cas2, are required for the acquisition step of adaptation, in which fragments of foreign DNA are incorporated into the host CRISPR locus. Cas1 genes have also been found scattered in several archaeal and bacterial genomes, unassociated with CRISPR loci or other cas proteins. Rather, they are flanked by nearly identical inverted repeats and enclosed within direct repeats, suggesting that these genetic regions might be mobile elements (‘casposons’). To investigate this possibility, we have characterized the in vitro activities of the putative Cas1 transposase (‘casposase’) from Aciduliprofundum boonei. The purified Cas1 casposase can integrate both short oligonucleotides with inverted repeat sequences and a 2.8 kb excised mini-casposon into target DNA. Casposon integration occurs without target specificity and generates 14–15 basepair target site duplications, consistent with those found in casposon host genomes. Thus, Cas1 casposases carry out similar biochemical reactions as the CRISPR Cas1-Cas2 complex but with opposite substrate specificities: casposases integrate specific sequences into random target sites, whereas CRISPR Cas1-Cas2 integrates essentially random sequences into a specific site in the CRISPR locus. PMID:26573596

  4. Motor-based intervention protocols in treatment of childhood apraxia of speech (CAS)

    PubMed Central

    Maas, Edwin; Gildersleeve-Neumann, Christina; Jakielski, Kathy J.; Stoeckel, Ruth

    2014-01-01

    This paper reviews current trends in treatment for childhood apraxia of speech (CAS), with a particular emphasis on motor-based intervention protocols. The paper first briefly discusses how CAS fits into the typology of speech sound disorders, followed by a discussion of the potential relevance of principles derived from the motor learning literature for CAS treatment. Next, different motor-based treatment protocols are reviewed, along with their evidence base. The paper concludes with a summary and discussion of future research needs. PMID:25313348

  5. Applying CRISPR-Cas9 tools to identify and characterize transcriptional enhancers.

    PubMed

    Lopes, Rui; Korkmaz, Gozde; Agami, Reuven

    2016-09-01

    The development of the CRISPR-Cas9 system triggered a revolution in the field of genome engineering. Initially, the use of this system was focused on the study of protein-coding genes but, recently, a number of CRISPR-Cas9-based tools have been developed to study non-coding transcriptional regulatory elements. These technological advances offer unprecedented opportunities for elucidating the functions of enhancers in their endogenous context. Here, we discuss the application, current limitations and future development of CRISPR-Cas9 systems to identify and characterize enhancer elements in a high-throughput manner. PMID:27381243

  6. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants.

    PubMed

    Ji, Xiang; Zhang, Huawei; Zhang, Yi; Wang, Yanpeng; Gao, Caixia

    2015-01-01

    CRISPR-Cas (clustered, regularly interspaced short palindromic repeats-CRISPR-associated proteins) is an adaptive immune system in many archaea and bacteria that cleaves foreign DNA on the basis of sequence complementarity. Here, using the geminivirus, beet severe curly top virus (BSCTV), transient assays performed in Nicotiana benthamiana demonstrate that the sgRNA-Cas9 constructs inhibit virus accumulation and introduce mutations at the target sequences. Further, transgenic Arabidopsis and N. benthamiana plants overexpressing sgRNA-Cas9 are highly resistant to virus infection. PMID:27251395

  7. Structural and dynamic views of the CRISPR-Cas system at the single-molecule level.

    PubMed

    Lee, Seung Hwan; Bae, Sangsu

    2016-04-01

    The CRISPR-Cas system has emerged as a fascinating and important genome editing tool. It is now widely used in biology, biotechnology, and biomedical research in both academic and industrial settings. To improve the specificity and efficiency of Cas nucleases and to extend the applications of these systems for other areas of research, an understanding of their precise working mechanisms is crucial. In this review, we summarize current studies on the molecular structures and dynamic functions of type I and type II Cas nucleases, with a focus on target DNA searching and cleavage processes as revealed by single-molecule observations. [BMB Reports 2016; 49(4): 201-207]. PMID:26923305

  8. PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing

    PubMed Central

    Malina, Abba; Cameron, Christopher J. F.; Robert, Francis; Blanchette, Mathieu; Dostie, Josée; Pelletier, Jerry

    2015-01-01

    In CRISPR-Cas9 genome editing, the underlying principles for selecting guide RNA (gRNA) sequences that would ensure for efficient target site modification remain poorly understood. Here we show that target sites harbouring multiple protospacer adjacent motifs (PAMs) are refractory to Cas9-mediated repair in situ. Thus we refine which substrates should be avoided in gRNA design, implicating PAM density as a novel sequence-specific feature that inhibits in vivo Cas9-driven DNA modification. PMID:26644285

  9. Exciting prospects for precise engineering of Caenorhabditis elegans genomes with CRISPR/Cas9.

    PubMed

    Frøkjær-Jensen, Christian

    2013-11-01

    With remarkable speed, the CRISPR-Cas9 nuclease has become the genome-editing tool of choice for essentially all genetically tractable organisms. Targeting specific DNA sequences is conceptually simple because the Cas9 nuclease can be guided by a single, short RNA (sgRNA) to introduce double-strand DNA breaks (DSBs) at precise locations. Here I contrast and highlight protocols recently developed by eight different research groups, six of which are published in GENETICS, to modify the Caenorhabditis elegans genome using CRISPR/Cas9. This reverse engineering tool levels the playing field for experimental geneticists. PMID:24190921

  10. Structural and dynamic views of the CRISPR-Cas system at the single-molecule level

    PubMed Central

    Lee, Seung Hwan; Bae, Sangsu

    2016-01-01

    The CRISPR-Cas system has emerged as a fascinating and important genome editing tool. It is now widely used in biology, biotechnology, and biomedical research in both academic and industrial settings. To improve the specificity and efficiency of Cas nucleases and to extend the applications of these systems for other areas of research, an understanding of their precise working mechanisms is crucial. In this review, we summarize current studies on the molecular structures and dynamic functions of type I and type II Cas nucleases, with a focus on target DNA searching and cleavage processes as revealed by single-molecule observations. [BMB Reports 2016; 49(4): 201-207] PMID:26923305

  11. Using CRISPR/Cas to study gene function and model disease in vivo.

    PubMed

    Tschaharganeh, Darjus F; Lowe, Scott W; Garippa, Ralph J; Livshits, Geulah

    2016-09-01

    The recent discovery of the CRISPR/Cas system and repurposing of this technology to edit a variety of different genomes have revolutionized an array of scientific fields, from genetics and translational research, to agriculture and bioproduction. In particular, the prospect of rapid and precise genome editing in laboratory animals by CRISPR/Cas has generated an immense interest in the scientific community. Here we review current in vivo applications of CRISPR/Cas and how this technology can improve our knowledge of gene function and our understanding of biological processes in animal models. PMID:27149548

  12. [The application of CRISPR/Cas9 genome editing technology in cancer research].

    PubMed

    Wang, Dayong; Ma, Ning; Hui, Yang; Gao, Xu

    2016-01-01

    The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease) genome editing technology has become more and more popular in gene editing because of its simple design and easy operation. Using the CRISPR/Cas9 system, researchers can perform site-directed genome modification at the base level. Moreover, it has been widely used in genome editing in multiple species and related cancer research. In this review, we summarize the application of the CRISPR/Cas9 system in cancer research based on the latest research progresses as well as our understanding of cancer research and genome editing techniques. PMID:26787518

  13. Series Transmission Line Transformer

    DOEpatents

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  14. Fourier Series Operating Package

    NASA Technical Reports Server (NTRS)

    Charnow, Milton L.

    1961-01-01

    This report presents a computer program for multiplying, adding, differentiating, integrating, "barring" and scalarly multiplying "literal" Fourier series as such, and for extracting the coefficients of specified terms.

  15. Efficient gene knockout in goats using CRISPR/Cas9 system.

    PubMed

    Ni, Wei; Qiao, Jun; Hu, Shengwei; Zhao, Xinxia; Regouski, Misha; Yang, Min; Polejaeva, Irina A; Chen, Chuangfu

    2014-01-01

    The CRISPR/Cas9 system has been adapted as an efficient genome editing tool in laboratory animals such as mice, rats, zebrafish and pigs. Here, we report that CRISPR/Cas9 mediated approach can efficiently induce monoallelic and biallelic gene knockout in goat primary fibroblasts. Four genes were disrupted simultaneously in goat fibroblasts by CRISPR/Cas9-mediated genome editing. The single-gene knockout fibroblasts were successfully used for somatic cell nuclear transfer (SCNT) and resulted in live-born goats harboring biallelic mutations. The CRISPR/Cas9 system represents a highly effective and facile platform for targeted editing of large animal genomes, which can be broadly applied to both biomedical and agricultural applications. PMID:25188313

  16. Genome editing in Ustilago maydis using the CRISPR-Cas system.

    PubMed

    Schuster, Mariana; Schweizer, Gabriel; Reissmann, Stefanie; Kahmann, Regine

    2016-04-01

    This communication describes the establishment of the type II bacterial CRISPR-Cas9 system to efficiently disrupt target genes in the fungal maize pathogen Ustilago maydis. A single step transformation of a self-replicating plasmid constitutively expressing the U. maydis codon-optimized cas9 gene and a suitable sgRNA under control of the U. maydis U6 snRNA promoter was sufficient to induce genome editing. On average 70% of the progeny of a single transformant were disrupted within the respective b gene. Without selection the self-replicating plasmid was lost rapidly allowing transient expression of the CRISPR-Cas9 system to minimize potential long-term negative effects of Cas9. This technology will be an important advance for the simultaneous disruption of functionally redundant genes and gene families to investigate their contribution to virulence of U. maydis. PMID:26365384

  17. CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) for Near-Perfect Selective Transformation

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Greenberg, Daniel T.; Takahashi, Jack R.; Thompson, Kirsten A.; Maheshwari, Akshay J.; Kent, Ryan E.; McCutcheon, Griffin; Shih, Joseph D.; Calvet, Charles; Devlin, Tyler D.; Ju, Tina; Kunin, Daniel; Lieberman, Erica; Nguyen, Thai; Tran, Forrest; Xiang, Daniel; Fujishima, Kosuke

    2015-01-01

    The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.

  18. Comparison of Printed Bibliographic Descriptions Distributed by BIOSIS, CAS, and Ei

    ERIC Educational Resources Information Center

    Larson, Julian R.; And Others

    1976-01-01

    Printed bibliographic descriptions of journal articles cited by BioSciences Information Service of Biological Abstracts (BIOSIS), Chemical Abstracts Service (CAS), and Engineering Index (Ei) were compared to identify similarities and differences in form, format, and data content. (Author)

  19. Surveying the Delivery Methods of CRISPR/Cas9 for ex vivo Mammalian Cell Engineering.

    PubMed

    Kelton, William J; Pesch, Theresa; Matile, Stefan; Reddy, Sai T

    2016-01-01

    The simplicity of the CRISPR/Cas9 technology has been transformative in making targeted genome editing accessible for laboratories around the world. However, due to the sheer volume of literature generated in the past five years, determining the best format and delivery method of CRISPR/Cas9 components can be challenging. Here, we provide a brief overview of the progress that has been made in the ex vivo genome editing of mammalian cells and summarize the key advances made for improving efficiency and delivery of CRISPR/Cas9 in DNA, RNA, and protein form. In particular, we highlight the delivery of Cas9 components to human cells for advanced genome editing applications such as large gene insertion. PMID:27363374

  20. [Research progress in the third-generation genomic editing technology - CRISPR/Cas9].

    PubMed

    Zhou, Yalan; Zong, Yanan; Kong, Xiangdong

    2016-10-01

    CRISPR/Cas9 technology originated from type II CRISPR/Cas system, which is widely found in bacteria and equips them with acquired immunity against viruses and plasmids. CRISPR-associated protein Cas9 is a RNA-guided endonuclease, which can efficiently introduce double-strand breaks at specific sites and activate homologous recombination and/or non-homologous end joining mechanism for the repair of impaired DNA. Features such as easy-to-use, cost-effectiveness, multiple targeting ability have made it the third-generation genomic engineering tool following ZFNs and TALENs. Here the history of discovery and molecular mechanism of the CRISPR/Cas9 technology are reviewed. The rapid advance in its various applications, especially for the treatment of human genetic disorders, as well as some concomitant problems are discussed. PMID:27577230

  1. Genome Editing in Escherichia coli with Cas9 and synthetic CRISPRs

    SciTech Connect

    Peng, Ze; Richardson, Sarah; Robinson, David; Deutsch, Samuel; Cheng, Jan-Fang

    2014-03-14

    Recently, the Cas9-CRISPR system has proven to be a useful tool for genome editing in eukaryotes, which repair the double stranded breaks made by Cas9 with non-homologous end joining or homologous recombination. Escherichia coli lacks non-homologous end joining and has a very low homologous recombination rate, effectively rendering targeted Cas9 activity lethal. We have developed a heat curable, serializable, plasmid based system for selectionless Cas9 editing in arbitrary E. coli strains that uses synthetic CRISPRs for targeting and -red to effect repairs of double stranded breaks. We have demonstrated insertions, substitutions, and multi-target deletions with our system, which we have tested in several strains.

  2. CRISPR-Cas9 Can Inhibit HIV-1 Replication but NHEJ Repair Facilitates Virus Escape

    PubMed Central

    Wang, Gang; Zhao, Na; Berkhout, Ben; Das, Atze T

    2016-01-01

    Several recent studies demonstrated that the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 can be used for guide RNA (gRNA)-directed, sequence-specific cleavage of HIV proviral DNA in infected cells. We here demonstrate profound inhibition of HIV-1 replication by harnessing T cells with Cas9 and antiviral gRNAs. However, the virus rapidly and consistently escaped from this inhibition. Sequencing of the HIV-1 escape variants revealed nucleotide insertions, deletions, and substitutions around the Cas9/gRNA cleavage site that are typical for DNA repair by the nonhomologous end-joining pathway. We thus demonstrate the potency of CRISPR-Cas9 as an antiviral approach, but any therapeutic strategy should consider the viral escape implications. PMID:26796669

  3. [Application Progress of CRISPR/Cas9 System for Gene Editing in Tumor Research].

    PubMed

    Liu, Chao; Li, Zhiwei; Zhang, Yanqiao

    2015-09-20

    TCRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-associated nuclease 9) gene editing system is a new type of gene editing technology developed based on the immune mechanism of archaea resisting the invasion of exogenous nucleic acid. Compared with traditional gene editing system, CRISPR/Cas9 system is more efficient, easier operating, and less cytotoxic. Currently, CRISPR/Cas9 gene editing technology has been applied to many aspects of cancer research, including research on cancer genes, constructing animal tumor models, screening tumor resistance-associated and phenotypic-related genes and cancer gene therapy. In this review, the application of the CRISPR/Cas9 system in tumor research were introduced. PMID:26383982

  4. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference

    PubMed Central

    Barrangou, Rodolphe; Birmingham, Amanda; Wiemann, Stefan; Beijersbergen, Roderick L.; Hornung, Veit; Smith, Anja van Brabant

    2015-01-01

    The discovery that the machinery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 bacterial immune system can be re-purposed to easily create deletions, insertions and replacements in the mammalian genome has revolutionized the field of genome engineering and re-invigorated the field of gene therapy. Many parallels have been drawn between the newly discovered CRISPR-Cas9 system and the RNA interference (RNAi) pathway in terms of their utility for understanding and interrogating gene function in mammalian cells. Given this similarity, the CRISPR-Cas9 field stands to benefit immensely from lessons learned during the development of RNAi technology. We examine how the history of RNAi can inform today's challenges in CRISPR-Cas9 genome engineering such as efficiency, specificity, high-throughput screening and delivery for in vivo and therapeutic applications. PMID:25800748

  5. Exploiting CRISPR-Cas immune systems for genome editing in bacteria.

    PubMed

    Barrangou, Rodolphe; van Pijkeren, Jan-Peter

    2016-02-01

    The CRISPR-Cas immune system is a DNA-encoded, RNA-mediated, DNA-targeting defense mechanism, which provides sequence-specific targeting of DNA. This molecular machinery can be engineered into the sgRNA:Cas9 technology, for programmable cleavage of DNA. Following the genesis of double-stranded DNA breaks, the DNA repair machinery generates mutations at the cleavage site using various pathways. This technology has revolutionized eukaryotic genome editing, and we are at the cusp of full exploitation in bacteria. Here, we discuss the potential of CRISPR-based technologies for use in bacteria, and highlight the application of single stranded DNA recombineering combined with CRISPR-Cas selection to edit the genome of a probiotic organism. We envision that CRISPR-Cas technologies will play a key role in the development of next-generation industrial bacteria. PMID:26629846

  6. CRISPR/Cas9: Implications for Modeling and Therapy of Neurodegenerative Diseases

    PubMed Central

    Yang, Weili; Tu, Zhuchi; Sun, Qiang; Li, Xiao-Jiang

    2016-01-01

    CRISPR/Cas9 is now used widely to genetically modify the genomes of various species. The ability of CRISPR/Cas9 to delete DNA sequences and correct DNA mutations opens up a new avenue to treat genetic diseases that are caused by DNA mutations. In this review, we describe the advantages of using CRISPR/Cas9 to engineer genomic DNAs in animal embryos, as well as in specific regions or cell types in the brain. We also discuss how to apply CRISPR/Cas9 to establish animal models of neurodegenerative diseases, such as Parkinson’s and Huntington’s disease (HD), and to treat these disorders that are caused by genetic mutations. PMID:27199655

  7. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation

    PubMed Central

    Dominguez, Antonia A.; Lim, Wendell A.; Qi, Lei S.

    2016-01-01

    The bacterial CRISPR–Cas9 system has emerged as a multifunctional platform for sequence-specific regulation of gene expression. This Review describes the development of technologies based on nuclease-deactivated Cas9, termed dCas9, for RNA-guided genomic transcription regulation, both by repression through CRISPR interference (CRISPRi) and by activation through CRISPR activation (CRISPRa). We highlight different uses in diverse organisms, including bacterial and eukaryotic cells, and summarize current applications of harnessing CRISPR–dCas9 for multiplexed, inducible gene regulation, genome-wide screens and cell fate engineering. We also provide a perspective on future developments of the technology and its applications in biomedical research and clinical studies. PMID:26670017

  8. A Powerful CRISPR/Cas9-Based Method for Targeted Transcriptional Activation.

    PubMed

    Katayama, Shota; Moriguchi, Tetsuo; Ohtsu, Naoki; Kondo, Toru

    2016-05-23

    Targeted transcriptional activation of endogenous genes is important for understanding physiological transcriptional networks, synthesizing genetic circuits, and inducing cellular phenotype changes. The CRISPR/Cas9 system has great potential to achieve this purpose, however, it has not yet been successfully used to efficiently activate endogenous genes and induce changes in cellular phenotype. A powerful method for transcriptional activation by using CRISPR/Cas9 was developed. Replacement of a methylated promoter with an unmethylated one by CRISPR/Cas9 was sufficient to activate the expression of the neural cell gene OLIG2 and the embryonic stem cell gene NANOG in HEK293T cells. Moreover, CRISPR/Cas9-based OLIG2 activation induced the embryonic carcinoma cell line NTERA-2 to express the neuronal marker βIII-tubulin. PMID:27079176

  9. Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9.

    PubMed

    Stolfi, Alberto; Gandhi, Shashank; Salek, Farhana; Christiaen, Lionel

    2014-11-01

    The CRISPR/Cas9 system has ushered in a new era of targeted genetic manipulations. Here, we report the use of CRISPR/Cas9 to induce double-stranded breaks in the genome of the sea squirt Ciona intestinalis. We use electroporation to deliver CRISPR/Cas9 components for tissue-specific disruption of the Ebf (Collier/Olf/EBF) gene in hundreds of synchronized Ciona embryos. Phenotyping of transfected embryos in the 'F0' generation revealed that endogenous Ebf function is required for specification of Islet-expressing motor ganglion neurons and atrial siphon muscles. We demonstrate that CRISPR/Cas9 is sufficiently effective and specific to generate large numbers of embryos carrying mutations in a targeted gene of interest, which should allow for rapid screening of gene function in Ciona. PMID:25336740

  10. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation.

    PubMed

    Dominguez, Antonia A; Lim, Wendell A; Qi, Lei S

    2016-01-01

    The bacterial CRISPR-Cas9 system has emerged as a multifunctional platform for sequence-specific regulation of gene expression. This Review describes the development of technologies based on nuclease-deactivated Cas9, termed dCas9, for RNA-guided genomic transcription regulation, both by repression through CRISPR interference (CRISPRi) and by activation through CRISPR activation (CRISPRa). We highlight different uses in diverse organisms, including bacterial and eukaryotic cells, and summarize current applications of harnessing CRISPR-dCas9 for multiplexed, inducible gene regulation, genome-wide screens and cell fate engineering. We also provide a perspective on future developments of the technology and its applications in biomedical research and clinical studies. PMID:26670017

  11. Lower GI Series

    MedlinePlus

    ... GI series can help diagnose the cause of • abdominal pain • bleeding from the anus • changes in bowel habits • ... GI series should seek immediate medical attention: • severe abdominal pain • bloody bowel movements or bleeding from the anus • ...

  12. Fourier Series Optimization Opportunity

    ERIC Educational Resources Information Center

    Winkel, Brian

    2008-01-01

    This note discusses the introduction of Fourier series as an immediate application of optimization of a function of more than one variable. Specifically, it is shown how the study of Fourier series can be motivated to enrich a multivariable calculus class. This is done through discovery learning and use of technology wherein students build the…

  13. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins.

    PubMed

    Schumann, Kathrin; Lin, Steven; Boyer, Eric; Simeonov, Dimitre R; Subramaniam, Meena; Gate, Rachel E; Haliburton, Genevieve E; Ye, Chun J; Bluestone, Jeffrey A; Doudna, Jennifer A; Marson, Alexander

    2015-08-18

    T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently "knock out" genes and "knock in" targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4(+) T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs). Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ∼40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 (PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ∼20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells. PMID:26216948

  14. Incidence of Type II CRISPR1-Cas Systems in Enterococcus Is Species-Dependent

    PubMed Central

    Lyons, Casandra; Raustad, Nicole; Bustos, Mario A.; Shiaris, Michael

    2015-01-01

    CRISPR-Cas systems, which obstruct both viral infection and incorporation of mobile genetic elements by horizontal transfer, are a specific immune response common to prokaryotes. Antiviral protection by CRISPR-Cas comes at a cost, as horizontally-acquired genes may increase fitness and provide rapid adaptation to habitat change. To date, investigations into the prevalence of CRISPR have primarily focused on pathogenic and clinical bacteria, while less is known about CRISPR dynamics in commensal and environmental species. We designed PCR primers and coupled these with DNA sequencing of products to detect and characterize the presence of cas1, a universal CRISPR-associated gene and proxy for the Type II CRISPR1-Cas system, in environmental and non-clinical Enterococcus isolates. CRISPR1-cas1 was detected in approximately 33% of the 275 strains examined, and differences in CRISPR1 carriage between species was significant. Incidence of cas1 in E. hirae was 73%, nearly three times that of E. faecalis (23.6%) and 10 times more frequent than in E. durans (7.1%). Also, this is the first report of CRISPR1 presence in E. durans, as well as in the plant-associated species E. casseliflavus and E. sulfureus. Significant differences in CRISPR1-cas1 incidence among Enterococcus species support the hypothesis that there is a tradeoff between protection and adaptability. The differences in the habitats of enterococcal species may exert varying selective pressure that results in a species-dependent distribution of CRISPR-Cas systems. PMID:26600384

  15. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species.

    PubMed

    Pawluk, April; Staals, Raymond H J; Taylor, Corinda; Watson, Bridget N J; Saha, Senjuti; Fineran, Peter C; Maxwell, Karen L; Davidson, Alan R

    2016-01-01

    CRISPR-Cas systems provide sequence-specific adaptive immunity against foreign nucleic acids(1,2). They are present in approximately half of all sequenced prokaryotes(3) and are expected to constitute a major barrier to horizontal gene transfer. We previously described nine distinct families of proteins encoded in Pseudomonas phage genomes that inhibit CRISPR-Cas function(4,5). We have developed a bioinformatic approach that enabled us to discover additional anti-CRISPR proteins encoded in phages and other mobile genetic elements of diverse bacterial species. We show that five previously undiscovered families of anti-CRISPRs inhibit the type I-F CRISPR-Cas systems of both Pseudomonas aeruginosa and Pectobacterium atrosepticum, and a dual specificity anti-CRISPR inactivates both type I-F and I-E CRISPR-Cas systems. Mirroring the distribution of the CRISPR-Cas systems they inactivate, these anti-CRISPRs were found in species distributed broadly across the phylum Proteobacteria. Importantly, anti-CRISPRs originating from species with divergent type I-F CRISPR-Cas systems were able to inhibit the two systems we tested, highlighting their broad specificity. These results suggest that all type I-F CRISPR-Cas systems are vulnerable to inhibition by anti-CRISPRs. Given the widespread occurrence and promiscuous activity of the anti-CRISPRs described here, we propose that anti-CRISPRs play an influential role in facilitating the movement of DNA between prokaryotes by breaching the barrier imposed by CRISPR-Cas systems. PMID:27573108

  16. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins

    PubMed Central

    Schumann, Kathrin; Lin, Steven; Boyer, Eric; Simeonov, Dimitre R.; Subramaniam, Meena; Gate, Rachel E.; Haliburton, Genevieve E.; Ye, Chun J.; Bluestone, Jeffrey A.; Doudna, Jennifer A.; Marson, Alexander

    2015-01-01

    T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently “knock out” genes and “knock in” targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4+ T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs). Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ∼40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 (PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ∼20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells. PMID:26216948

  17. 78 FR 40665 - Cost Accounting Standards: CAS 413 Pension Adjustments for Extraordinary Events

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ...The Office of Federal Procurement Policy (OFPP), Cost Accounting Standards (CAS) Board, is conducting fact-finding for the development of a Staff Discussion Paper (SDP) on CAS 413 Pension Adjustments for Extraordinary Events. This is the first step in a four- step process that may result in a final rule. As part of these efforts, the public is invited to attend two public meetings that are......

  18. Expression of OsCAS (Calcium-Sensing Receptor) in an Arabidopsis Mutant Increases Drought Tolerance

    PubMed Central

    Wei, Rongrong; Liu, Yang

    2015-01-01

    The calcium-sensing receptor (CaS), which is localized in the chloroplasts, is a crucial regulator of extracellular calcium-induced stomatal closure in Arabidopsis. It has homologs in Oryza sativa and other plants. These sequences all have a rhodanese-like protein domain, which has been demonstrated to be associated with specific stress conditions. In this study, we cloned the Oryza sativa calcium-sensing receptor gene (OsCAS) and demonstrated that OsCAS could sense an increase of extracellular Ca2+ concentration and mediate an increase in cytosolic Ca2+ concentration. The OsCAS gene was transformed into an Arabidopsis CaS knockout mutant (Salk) and overexpressed in the transgenic plants. OsCAS promoted stomatal closure. We screened homozygous transgenic Arabidopsis plants and determined physiological indices such as the oxidative damage biomarker malondialdehyde (MDA), relative membrane permeability (RMP), proline content, and chlorophyll fluorescence parameters, after 21 days of drought treatment. Our results revealed lower RMP and MDA contents and a higher Proline content in transgenic Arabidopsis plants after drought stress, whereas the opposite was observed in Salk plants. With respect to chlorophyll fluorescence, the electron transport rate and effective PSII quantum yield decreased in all lines under drought stress; however, in the transgenic plants these two parameters changed fewer and were higher than those in wild-type and Salk plants. The quantum yield of regulated energy dissipation and nonregulated energy dissipation in PSII were higher in Salk plants, whereas these values were lower in the transgenic plants than in the wild type under drought stress. The above results suggest that the transgenic plants showed better resistance to drought stress by decreasing damage to the cell membrane, increasing the amount of osmoprotectants, and maintaining a relatively high photosynthetic capacity. In conclusion, OsCAS is an extracellular calcium-sensing receptor

  19. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity

    PubMed Central

    Garrett, Roger A.; Shah, Shiraz A.; Erdmann, Susanne; Liu, Guannan; Mousaei, Marzieh; León-Sobrino, Carlos; Peng, Wenfang; Gudbergsdottir, Soley; Deng, Ling; Vestergaard, Gisle; Peng, Xu; She, Qunxin

    2015-01-01

    The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed. PMID:25764276

  20. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins

    DOE PAGESBeta

    Schumann, Kathrin; Lin, Steven; Boyer, Eric; Simeonov, Dimitre R.; Subramaniam, Meena; Gate, Rachel E.; Haliburton, Genevieve E.; Ye, Chun J.; Bluestone, Jeffrey A.; Doudna, Jennifer A.; et al

    2015-07-27

    T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently “knock out” genes and “knock in” targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4+ T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs). Cas9more » RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ~40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 (PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ~20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells.« less

  1. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.

    PubMed

    Du, Hongyang; Zeng, Xuanrui; Zhao, Meng; Cui, Xiaopei; Wang, Qing; Yang, Hui; Cheng, Hao; Yu, Deyue

    2016-01-10

    Gene targeting (GT) is of great significance for advancing basic plant research and crop improvement. Both TALENs (transcription activator-like effectors nucleases) and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) systems have been developed for genome editing in eukaryotes, including crop plants. In this work, we present the comparative analysis of these two technologies for two soybean genome editing targets, GmPDS11 and GmPDS18. We found GT in soybean hairy roots with a single targeting efficiency range of 17.5-21.1% by TALENs, 11.7-18.1% by CRISPR/Cas9 using the AtU6-26 promoter, and 43.4-48.1% by CRISPR/Cas9 using the GmU6-16g-1 promoter, suggesting that the CRISPR/Cas9 using the GmU6-16g-1 promoter is probably a much more efficient tool compared to the other technologies. Similarly, our double mutation GT efficiency experiment with these three technologies displayed a targeting efficiency of 6.25% by TALENs, 12.5% by CRISPR/Cas9 using the AtU6-26 promoter, and 43.4-48.1% by CRISPR/Cas9 using the GmU6-16g-1 promoter, suggesting that CRISPR/Cas9 is still a better choice for simultaneous editing of multiple homoeoalleles. Furthermore, we observed albino and dwarf buds (PDS knock-out) by soybean transformation in cotyledon nodes. Our results demonstrated that both TALENs and CRISPR/Cas9 systems are powerful tools for soybean genome editing. PMID:26603121

  2. Tuberculome de Bouchut dans la tuberculose multi focale: à propos de quatre cas

    PubMed Central

    Janah, Hicham; Alami, Ahmed; Souhi, Hicham; Zegmout, Adil; Naji-Amrani, Hicham; Raoufi, Mohamed; Elouazzani, Hanane; Rhorfi, Ismail Abderrahmani; Abid, Ahmed

    2014-01-01

    La tuberculose multifocale a connu un regain de fréquence avec la pandémie du SIDA, elle s'observe encore chez des sujets non infectés par le VIH surtout dans les pays en voie de développement notamment au Maroc. Nous rapportons quatre observations de tuberculose multifocale chez trois patients immunocompétents et un patient immunodéprimé. Quatre patients ont bénéficié d'un bilan phtisiologique, biologique, sérologique(HIV), radiologique et d'angiographie à la fluorescéine pour suspicion de tuberculose multifocale. Il s'agit de trois hommes et une femme, d’âge moyen de 44 ans, trois patients sont immunocompétents et un patient séropositif. La tuberculose intéressait trois localisations chez les quatre patients: pulmonaire dans quatre cas, ophtalmique dans quatre cas, digestive dans un cas, urinaire dans un cas, cérébrale dans un cas et un cas d'atteinte de la moelle osseuse. L'atteinte ophtalmologique est représentée par des nodules choroïdiens de Bouchut dans quatre cas et un nodule papillaire de Bouchut dans un cas; aucun des ces patients ne présentait une uvéite granulomateuse. Nos malades ont reçu un traitement anti-tuberculeux d'une durée de neuf mois avec une bonne évolution clinique, biologique, radiologique et angiographique. Au Maroc, la tuberculose continue à surprendre aussi bien par son extension touchant le sujet débilité et le sujet immunocompétent, que par ses présentations diverses y compris l'atteinte oculaire qu'elle faut rechercher par un examen ophtalmologique soigneux et systématique. PMID:25478047

  3. A CRISPR/Cas9 system adapted for gene editing in marine algae

    PubMed Central

    Nymark, Marianne; Sharma, Amit Kumar; Sparstad, Torfinn; Bones, Atle M.; Winge, Per

    2016-01-01

    Here we report that the CRISPR/Cas9 technology can be used to efficiently generate stable targeted gene mutations in microalgae, using the marine diatom Phaeodactylum tricornutum as a model species. Our vector design opens for rapid and easy adaption of the construct to the target chosen. To screen for CRISPR/Cas9 mutants we employed high resolution melting based PCR assays, mutants were confirmed by sequencing and further validated by functional analyses. PMID:27108533

  4. A CRISPR/Cas9 system adapted for gene editing in marine algae.

    PubMed

    Nymark, Marianne; Sharma, Amit Kumar; Sparstad, Torfinn; Bones, Atle M; Winge, Per

    2016-01-01

    Here we report that the CRISPR/Cas9 technology can be used to efficiently generate stable targeted gene mutations in microalgae, using the marine diatom Phaeodactylum tricornutum as a model species. Our vector design opens for rapid and easy adaption of the construct to the target chosen. To screen for CRISPR/Cas9 mutants we employed high resolution melting based PCR assays, mutants were confirmed by sequencing and further validated by functional analyses. PMID:27108533

  5. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.

    PubMed

    Laughery, Marian F; Hunter, Tierra; Brown, Alexander; Hoopes, James; Ostbye, Travis; Shumaker, Taven; Wyrick, John J

    2015-12-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology is an important tool for genome editing because the Cas9 endonuclease can induce targeted DNA double-strand breaks. Targeting of the DNA break is typically controlled by a single-guide RNA (sgRNA), a chimeric RNA containing a structural segment important for Cas9 binding and a 20mer guide sequence that hybridizes to the genomic DNA target. Previous studies have demonstrated that CRISPR-Cas9 technology can be used for efficient, marker-free genome editing in Saccharomyces cerevisiae. However, introducing the 20mer guide sequence into yeast sgRNA expression vectors often requires cloning procedures that are complex, time-consuming and/or expensive. To simplify this process, we have developed a new sgRNA expression cassette with internal restriction enzyme sites that permit rapid, directional cloning of 20mer guide sequences. Here we describe a flexible set of vectors based on this design for cloning and expressing sgRNAs (and Cas9) in yeast using different selectable markers. We anticipate that the Cas9-sgRNA expression vector with the URA3 selectable marker (pML104) will be particularly useful for genome editing in yeast, since the Cas9 machinery can be easily removed by counter-selection using 5-fluoro-orotic acid (5-FOA) following successful genome editing. The availability of new vectors that simplify and streamline the technical steps required for guide sequence cloning should help accelerate the use of CRISPR-Cas9 technology in yeast genome editing. PMID:26305040

  6. Expression of OsCAS (Calcium-Sensing Receptor) in an Arabidopsis Mutant Increases Drought Tolerance.

    PubMed

    Zhao, Xin; Xu, Mengmeng; Wei, Rongrong; Liu, Yang

    2015-01-01

    The calcium-sensing receptor (CaS), which is localized in the chloroplasts, is a crucial regulator of extracellular calcium-induced stomatal closure in Arabidopsis. It has homologs in Oryza sativa and other plants. These sequences all have a rhodanese-like protein domain, which has been demonstrated to be associated with specific stress conditions. In this study, we cloned the Oryza sativa calcium-sensing receptor gene (OsCAS) and demonstrated that OsCAS could sense an increase of extracellular Ca2+ concentration and mediate an increase in cytosolic Ca2+ concentration. The OsCAS gene was transformed into an Arabidopsis CaS knockout mutant (Salk) and overexpressed in the transgenic plants. OsCAS promoted stomatal closure. We screened homozygous transgenic Arabidopsis plants and determined physiological indices such as the oxidative damage biomarker malondialdehyde (MDA), relative membrane permeability (RMP), proline content, and chlorophyll fluorescence parameters, after 21 days of drought treatment. Our results revealed lower RMP and MDA contents and a higher Proline content in transgenic Arabidopsis plants after drought stress, whereas the opposite was observed in Salk plants. With respect to chlorophyll fluorescence, the electron transport rate and effective PSII quantum yield decreased in all lines under drought stress; however, in the transgenic plants these two parameters changed fewer and were higher than those in wild-type and Salk plants. The quantum yield of regulated energy dissipation and nonregulated energy dissipation in PSII were higher in Salk plants, whereas these values were lower in the transgenic plants than in the wild type under drought stress. The above results suggest that the transgenic plants showed better resistance to drought stress by decreasing damage to the cell membrane, increasing the amount of osmoprotectants, and maintaining a relatively high photosynthetic capacity. In conclusion, OsCAS is an extracellular calcium-sensing receptor

  7. CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies.

    PubMed

    Wen, Wan-Shun; Yuan, Zhi-Min; Ma, Shi-Jie; Xu, Jiang; Yuan, Dong-Tang

    2016-03-15

    The RNA-guided nuclease CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) and its variants such as nickase Cas9, dead Cas9, guide RNA scaffolds and RNA-targeting Cas9 are convenient and versatile platforms for site-specific genome editing and epigenome modulation. They are easy-to-use, simple-to-design and capable of targeting multiple loci simultaneously. Given that cancer develops from cumulative genetic and epigenetic alterations, CRISPR-Cas9 and its variants (hereafter referred to as CRISPR-Cas9 systems) hold extensive application potentials in cancer modeling and therapy. To date, they have already been applied to model oncogenic mutations in cell lines (e.g., Choi and Meyerson, Nat Commun 2014;5:3728) and in adult animals (e.g., Xue et al., Nature 2014;514:380-4), as well as to combat cancer by disabling oncogenic viruses (e.g., Hu et al., Biomed Res Int 2014;2014:612823) or by manipulating cancer genome (e.g., Liu et al., Nat Commun 2014;5:5393). Given the importance of epigenome and transcriptome in tumourigenesis, manipulation of cancer epigenome and transcriptome for cancer modeling and therapy is a promising area in the future. Whereas (epi)genetic modifications of cancer microenvironment with CRISPR-Cas9 systems for therapeutic purposes represent another promising area in cancer research. Herein, we introduce the functions and mechanisms of CRISPR-Cas9 systems in genome editing and epigenome modulation, retrospect their applications in cancer modelling and therapy, discuss limitations and possible solutions and propose future directions, in hope of providing concise and enlightening information for readers interested in this area. PMID:26044706

  8. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins

    SciTech Connect

    Schumann, Kathrin; Lin, Steven; Boyer, Eric; Simeonov, Dimitre R.; Subramaniam, Meena; Gate, Rachel E.; Haliburton, Genevieve E.; Ye, Chun J.; Bluestone, Jeffrey A.; Doudna, Jennifer A.; Marson, Alexander

    2015-07-27

    T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently “knock out” genes and “knock in” targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4+ T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs). Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ~40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 (PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ~20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells.

  9. SERI Wind Energy Program

    SciTech Connect

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  10. Association between tensin 1 and p130Cas at focal adhesions links actin inward flux to cell migration

    PubMed Central

    Zhao, Zhihai; Tan, Song Hui; Machiyama, Hiroaki; Kawauchi, Keiko; Araki, Keigo; Hirata, Hiroaki; Sawada, Yasuhiro

    2016-01-01

    ABSTRACT Cell migration is a highly dynamic process that plays pivotal roles in both physiological and pathological processes. We have previously reported that p130Cas supports cell migration through the binding to Src as well as phosphorylation-dependent association with actin retrograde flow at focal adhesions. However, it remains elusive how phosphorylated Cas interacts with actin cytoskeletons. We observe that the actin-binding protein, tensin 1, co-localizes with Cas, but not with its phosphorylation-defective mutant, at focal adhesions in leading regions of migrating cells. While a truncation mutant of tensin 1 that lacks the phosphotyrosine-binding PTB and SH2 domains (tensin 1-SH2PTB) poorly co-localizes or co-immunoprecitates with Cas, bacterially expressed recombinant tensin 1-SH2PTB protein binds to Cas in vitro in a Cas phosphorylation-dependent manner. Furthermore, exogenous expression of tensin 1-SH2PTB, which is devoid of the actin-interacting motifs, interferes with the Cas-driven cell migration, slows down the inward flux of Cas molecules, and impedes the displacement of Cas molecules from focal adhesions. Taken together, our results show that tensin 1 links inwardly moving actin cytoskeletons to phosphorylated Cas at focal adhesions, thereby driving cell migration. PMID:27029899

  11. Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci

    PubMed Central

    Chen, Baohui; Hu, Jeffrey; Almeida, Ricardo; Liu, Harrison; Balakrishnan, Sanjeev; Covill-Cooke, Christian; Lim, Wendell A.; Huang, Bo

    2016-01-01

    In order to elucidate the functional organization of the genome, it is vital to directly visualize the interactions between genomic elements in living cells. For this purpose, we engineered the Cas9 protein from Staphylococcus aureus (SaCas9) for the imaging of endogenous genomic loci, which showed a similar robustness and efficiency as previously reported for Streptococcus pyogenes Cas9 (SpCas9). Imaging readouts allowed us to characterize the DNA-binding activity of SaCas9 and to optimize its sgRNA scaffold. Combining SaCas9 and SpCas9, we demonstrated two-color CRISPR imaging with the capability to resolve genomic loci spaced by <300 kb. Combinatorial color-mixing further enabled us to code multiple genomic elements in the same cell. Our results highlight the potential of combining SpCas9 and SaCas9 for multiplexed CRISPR-Cas9 applications, such as imaging and genome engineering. PMID:26740581

  12. Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci.

    PubMed

    Chen, Baohui; Hu, Jeffrey; Almeida, Ricardo; Liu, Harrison; Balakrishnan, Sanjeev; Covill-Cooke, Christian; Lim, Wendell A; Huang, Bo

    2016-05-01

    In order to elucidate the functional organization of the genome, it is vital to directly visualize the interactions between genomic elements in living cells. For this purpose, we engineered the Cas9 protein from Staphylococcus aureus (SaCas9) for the imaging of endogenous genomic loci, which showed a similar robustness and efficiency as previously reported for Streptococcus pyogenes Cas9 (SpCas9). Imaging readouts allowed us to characterize the DNA-binding activity of SaCas9 and to optimize its sgRNA scaffold. Combining SaCas9 and SpCas9, we demonstrated two-color CRISPR imaging with the capability to resolve genomic loci spaced by <300 kb. Combinatorial color-mixing further enabled us to code multiple genomic elements in the same cell. Our results highlight the potential of combining SpCas9 and SaCas9 for multiplexed CRISPR-Cas9 applications, such as imaging and genome engineering. PMID:26740581

  13. A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Gene Regulation.

    PubMed

    Farasat, Iman; Salis, Howard M

    2016-01-01

    The ability to precisely modify genomes and regulate specific genes will greatly accelerate several medical and engineering applications. The CRISPR/Cas9 (Type II) system binds and cuts DNA using guide RNAs, though the variables that control its on-target and off-target activity remain poorly characterized. Here, we develop and parameterize a system-wide biophysical model of Cas9-based genome editing and gene regulation to predict how changing guide RNA sequences, DNA superhelical densities, Cas9 and crRNA expression levels, organisms and growth conditions, and experimental conditions collectively control the dynamics of dCas9-based binding and Cas9-based cleavage at all DNA sites with both canonical and non-canonical PAMs. We combine statistical thermodynamics and kinetics to model Cas9:crRNA complex formation, diffusion, site selection, reversible R-loop formation, and cleavage, using large amounts of structural, biochemical, expression, and next-generation sequencing data to determine kinetic parameters and develop free energy models. Our results identify DNA supercoiling as a novel mechanism controlling Cas9 binding. Using the model, we predict Cas9 off-target binding frequencies across the lambdaphage and human genomes, and explain why Cas9's off-target activity can be so high. With this improved understanding, we propose several rules for designing experiments for minimizing off-target activity. We also discuss the implications for engineering dCas9-based genetic circuits. PMID:26824432

  14. A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Gene Regulation

    PubMed Central

    Farasat, Iman; Salis, Howard M.

    2016-01-01

    The ability to precisely modify genomes and regulate specific genes will greatly accelerate several medical and engineering applications. The CRISPR/Cas9 (Type II) system binds and cuts DNA using guide RNAs, though the variables that control its on-target and off-target activity remain poorly characterized. Here, we develop and parameterize a system-wide biophysical model of Cas9-based genome editing and gene regulation to predict how changing guide RNA sequences, DNA superhelical densities, Cas9 and crRNA expression levels, organisms and growth conditions, and experimental conditions collectively control the dynamics of dCas9-based binding and Cas9-based cleavage at all DNA sites with both canonical and non-canonical PAMs. We combine statistical thermodynamics and kinetics to model Cas9:crRNA complex formation, diffusion, site selection, reversible R-loop formation, and cleavage, using large amounts of structural, biochemical, expression, and next-generation sequencing data to determine kinetic parameters and develop free energy models. Our results identify DNA supercoiling as a novel mechanism controlling Cas9 binding. Using the model, we predict Cas9 off-target binding frequencies across the lambdaphage and human genomes, and explain why Cas9’s off-target activity can be so high. With this improved understanding, we propose several rules for designing experiments for minimizing off-target activity. We also discuss the implications for engineering dCas9-based genetic circuits. PMID:26824432

  15. Leiomyosarcome de la langue: à propos d'un cas

    PubMed Central

    El jahd, Lahcen; Barhmi, Ismail; Tazi, Nabil; Rouadi, Sami; Abada, Reda; Roubal, Mohammed; janah, Abdelaziz; Mahtar, Mohammed

    2015-01-01

    Le léiomyosarcome primitif de la langue est une tumeur rare qui se développe aux dépens des fibres musculaires lisses. Le diagnostic est souvent difficile, fondé sur des caractéristiques immuno-histologiques particulières. L'objectif de ce travail est de décrire le profil épidémiologique, clinique, thérapeutique et évolutif du léiomyosarcome à travers un cas et une revue de la littérature. Nous rapportons le cas d'un homme âgé de 26 ans, sans antécédents pathologique particuliers, consultant pour une tuméfaction de la langue mobile évoluant depuis 2 ans. Une biopsie de la masse a été réalisée. L’étude anatomopathologique et immunohistochimique a confirmé le diagnostic d'un léiomyosarcome de la langue. L'IRM de la langue a objectivé un processus lesionnel intéressant la portion mobile et antérieur de la langue. Une exérèse de la masse a été réalisée. L'examen histologique a montré la présence d'un large néoplasme de 6 cm compatible à un léiomyosarcome peu différencié de la langue, de garde II selon la Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC). Une radiothérapie externe sur la cavité buccale avec une dose de 65 Gy a été réalisée. Le patient a présenté 2 mois après la fin du traitement une adénopathie latéro-cervicale haute gauche (territoire II), il a bénéficié d'un curage ganglionnaire fonctionnel intéressant les territoires I, II et III puis réadressé en radiothérapie. Le léiomyosarcome de la langue est très rare surtout chez le sujet jeune. La chirurgie et la radiothérapie sont les armes thérapeutiques majeures. Le pronostic est très mauvais, Les facteurs les plus importants sont les marges d'exérèse et le grade. PMID:26600908

  16. Consequences of Cas9 cleavage in the chromosome of Escherichia coli

    PubMed Central

    Cui, Lun; Bikard, David

    2016-01-01

    The RNA-guided Cas9 nuclease from CRISPR-Cas systems has emerged as a powerful biotechnological tool. The specificity of Cas9 can be reprogrammed to cleave desired sequences in a cell's chromosome simply by changing the sequence of a small guide RNA. Unlike in most eukaryotes, Cas9 cleavage in the chromosome of bacteria has been reported to kill the cell. However, the mechanism of cell death remains to be investigated. Bacteria mainly rely on homologous recombination (HR) with sister chromosomes to repair double strand breaks. Here, we show that the simultaneous cleavage of all copies of the Escherichia coli chromosome at the same position cannot be repaired, leading to cell death. However, inefficient cleavage can be tolerated through continuous repair by the HR pathway. In order to kill cells reliably, HR can be blocked using the Mu phage Gam protein. Finally, the introduction of the non-homologous end joining (NHEJ) pathway from Mycobacterium tuberculosis was not able to rescue the cells from Cas9-mediated killing, but did introduce small deletions at a low frequency. This work provides a better understanding of the consequences of Cas9 cleavage in bacterial chromosomes which will be instrumental in the development of future CRISPR tools. PMID:27060147

  17. NASA Controller Acceptability Study 1(CAS-1) Experiment Description and Initial Observations

    NASA Technical Reports Server (NTRS)

    Chamberlain, James P.; Consiglio, Maria C.; Comstock, James R., Jr.; Ghatas, Rania W.; Munoz, Cesar

    2015-01-01

    This paper describes the Controller Acceptability Study 1 (CAS-1) experiment that was conducted by NASA Langley Research Center personnel from January through March 2014 and presents partial CAS-1 results. CAS-1 employed 14 air traffic controller volunteers as research subjects to assess the viability of simulated future unmanned aircraft systems (UAS) operating alongside manned aircraft in moderate-density, moderate-complexity Class E airspace. These simulated UAS were equipped with a prototype pilot-in-the-loop (PITL) Detect and Avoid (DAA) system, specifically the Self-Separation (SS) function of such a system based on Stratway+ software to replace the see-and-avoid capabilities of manned aircraft pilots. A quantitative CAS-1 objective was to determine horizontal miss distance (HMD) values for SS encounters that were most acceptable to air traffic controllers, specifically HMD values that were assessed as neither unsafely small nor disruptively large. HMD values between 0.5 and 3.0 nautical miles (nmi) were assessed for a wide array of encounter geometries between UAS and manned aircraft. The paper includes brief introductory material about DAA systems and their SS functions, followed by descriptions of the CAS-1 simulation environment, prototype PITL SS capability, and experiment design, and concludes with presentation and discussion of partial CAS-1 data and results.

  18. In Vitro CRISPR/Cas9 System for Efficient Targeted DNA Editing

    PubMed Central

    Liu, Yunkun; Tao, Weixin; Wen, Shishi; Li, Zhengyuan; Yang, Anna; Deng, Zixin

    2015-01-01

    ABSTRACT The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, an RNA-guided nuclease for specific genome editing in vivo, has been adopted in a wide variety of organisms. In contrast, the in vitro application of the CRISPR/Cas9 system has rarely been reported. We present here a highly efficient in vitro CRISPR/Cas9-mediated editing (ICE) system that allows specific refactoring of biosynthetic gene clusters in Streptomyces bacteria and other large DNA fragments. Cleavage by Cas9 of circular pUC18 DNA was investigated here as a simple model, revealing that the 3′→5′ exonuclease activity of Cas9 generates errors with 5 to 14 nucleotides (nt) randomly missing at the editing joint. T4 DNA polymerase was then used to repair the Cas9-generated sticky ends, giving substantial improvement in editing accuracy. Plasmid pYH285 and cosmid 10A3, harboring a complete biosynthetic gene cluster for the antibiotics RK-682 and holomycin, respectively, were subjected to the ICE system to delete the rkD and homE genes in frame. Specific insertion of the ampicillin resistance gene (bla) into pYH285 was also successfully performed. These results reveal the ICE system to be a rapid, seamless, and highly efficient way to edit DNA fragments, and a powerful new tool for investigating and engineering biosynthetic gene clusters. PMID:26556277

  19. CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura.

    PubMed

    Bi, Hong-Lun; Xu, Jun; Tan, An-Jiang; Huang, Yong-Ping

    2016-06-01

    Custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system provide attractive genome editing tools for insect functional genetics. The targeted gene mutagenesis mediated by the CRISPR/Cas9 system has been achieved in several insect orders including Diptera, Lepidoptera and Coleoptera. However, little success has been reported in agricultural pests due to the lack of genomic information and embryonic microinjection techniques in these insect species. Here we report that the CRISPR/Cas9 system induced efficient gene mutagenesis in an important Lepidopteran pest Spodoptera litura. We targeted the S. litura Abdominal-A (Slabd-A) gene which is an important embryonic development gene and plays a significant role in determining the identities of the abdominal segments of insects. Direct injection of Cas9 messenger RNA and Slabd-A-specific single guide RNA (sgRNA) into S. litura embryos successfully induced the typical abd-A deficient phenotype, which shows anomalous segmentation and ectopic pigmentation during the larval stage. A polymerase chain reaction-based analysis revealed that the Cas9/sgRNA complex effectively induced a targeted mutagenesis in S. litura. These results demonstrate that the CRISPR/Cas9 system is a powerful tool for genome manipulation in Lepidopteran pests such as S. litura. PMID:27061764

  20. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation

    PubMed Central

    Huo, Yanwu; Nam, Ki Hyun; Ding, Fang; Lee, Heejin; Wu, Lijie; Xiao, Yibei; Farchione, F. Daniel; Zhou, Sharleen; Rajashankar, Raj; Kurinov, Igor; Zhang, Rongguang; Ke, Ailong

    2014-01-01

    CRISPR drives prokaryotic adaptation to invasive nucleic acids such as phages and plasmids using an RNA-mediated interference mechanism. Interference in Type I CRISPR-Cas systems requires a targeting Cascade complex and a degradation machine Cas3, which contains both nuclease and helicase activities. Here we report the crystal structures of Cas3 bound to ss-DNA substrate and show that it is an obligated 3′-to-5′ ss-DNase preferentially accepting substrate directly from the helicase moiety. Conserved residues in the HD-type nuclease coordinate two irons for ss-DNA cleavage. ATP coordination and conformational flexibility are revealed for the SF2-type helicase moiety. Cas3 is specifically guided towards Cascade-bound target DNA with a correct PAM sequence, through physical interactions to both the non-target substrate strand and the CasA protein. The cascade of recognition events ensures a well-controlled DNA targeting and degradation of alien DNA by Cascade and Cas3. PMID:25132177

  1. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector.

    PubMed

    Kabadi, Ami M; Ousterout, David G; Hilton, Isaac B; Gersbach, Charles A

    2014-10-29

    Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engineering by delivering a single Cas9 enzyme and two or more single guide RNAs (sgRNAs) targeted to distinct genomic sites. This approach can be used to simultaneously create multiple DNA breaks or to target multiple transcriptional activators to a single promoter for synergistic enhancement of gene induction. To address the need for uniform and sustained delivery of multiplex CRISPR/Cas9-based genome engineering tools, we developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA is efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. This delivery system will be significant to enabling the potential of CRISPR/Cas9-based multiplex genome engineering in diverse cell types. PMID:25122746

  2. The impact of CRISPR repeat sequence on structures of a Cas6 protein-RNA complex

    SciTech Connect

    Wang, Ruiying; Zheng, Han; Preamplume, Gan; Shao, Yaming; Li, Hong

    2012-03-15

    The repeat-associated mysterious proteins (RAMPs) comprise the most abundant family of proteins involved in prokaryotic immunity against invading genetic elements conferred by the clustered regularly interspaced short palindromic repeat (CRISPR) system. Cas6 is one of the first characterized RAMP proteins and is a key enzyme required for CRISPR RNA maturation. Despite a strong structural homology with other RAMP proteins that bind hairpin RNA, Cas6 distinctly recognizes single-stranded RNA. Previous structural and biochemical studies show that Cas6 captures the 5' end while cleaving the 3' end of the CRISPR RNA. Here, we describe three structures and complementary biochemical analysis of a noncatalytic Cas6 homolog from Pyrococcus horikoshii bound to CRISPR repeat RNA of different sequences. Our study confirms the specificity of the Cas6 protein for single-stranded RNA and further reveals the importance of the bases at Positions 5-7 in Cas6-RNA interactions. Substitutions of these bases result in structural changes in the protein-RNA complex including its oligomerization state.

  3. A Non-Stem-Loop CRISPR RNA Is Processed by Dual Binding Cas6.

    PubMed

    Shao, Yaming; Richter, Hagen; Sun, Shengfang; Sharma, Kundan; Urlaub, Henning; Randau, Lennart; Li, Hong

    2016-04-01

    A subclass of recently discovered CRISPR repeat RNA in bacteria contains minimally recognizable structural features that facilitate an unknown mechanism of recognition and processing by the Cas6 family of endoribonucleases. Cocrystal structures of Cas6 from Methanococcus maripaludis (MmCas6b) bound with its repeat RNA revealed a dual site binding structure and a cleavage site conformation poised for phosphodiester bond breakage. Two non-interacting MmCas6b bind to two separate AAYAA motifs within the same repeat, one distal and one adjacent to the cleavage site. This bound structure potentially competes with a stable but non-productive RNA structure. At the cleavage site, MmCas6b supplies a base pair mimic to stabilize a short 2 base pair stem immediately upstream of the scissile phosphate. Complementary biochemical analyses support the dual-AAYAA binding model and a critical role of the protein-RNA base pair mimic. Our results reveal a previously unknown method of processing non-stem-loop CRISPR RNA by Cas6. PMID:26996962

  4. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9.

    PubMed

    Ceasar, S Antony; Rajan, Vinothkumar; Prykhozhij, Sergey V; Berman, Jason N; Ignacimuthu, S

    2016-09-01

    The clustered, regularly interspaced, short palindromic repeat (CRISPR) and CRISPR associated protein 9 (Cas9) system discovered as an adaptive immunity mechanism in prokaryotes has emerged as the most popular tool for the precise alterations of the genomes of diverse species. CRISPR/Cas9 system has taken the world of genome editing by storm in recent years. Its popularity as a tool for altering genomes is due to the ability of Cas9 protein to cause double-stranded breaks in DNA after binding with short guide RNA molecules, which can be produced with dramatically less effort and expense than required for production of transcription-activator like effector nucleases (TALEN) and zinc-finger nucleases (ZFN). This system has been exploited in many species from prokaryotes to higher animals including human cells as evidenced by the literature showing increasing sophistication and ease of CRISPR/Cas9 as well as increasing species variety where it is applicable. This technology is poised to solve several complex molecular biology problems faced in life science research including cancer research. In this review, we highlight the recent advancements in CRISPR/Cas9 system in editing genomes of prokaryotes, fungi, plants and animals and provide details on software tools available for convenient design of CRISPR/Cas9 targeting plasmids. We also discuss the future prospects of this advanced molecular technology. PMID:27350235

  5. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots.

    PubMed

    Cai, Yupeng; Chen, Li; Liu, Xiujie; Sun, Shi; Wu, Cunxiang; Jiang, Bingjun; Han, Tianfu; Hou, Wensheng

    2015-01-01

    As a new technology for gene editing, the CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) system has been rapidly and widely used for genome engineering in various organisms. In the present study, we successfully applied type II CRISPR/Cas9 system to generate and estimate genome editing in the desired target genes in soybean (Glycine max (L.) Merrill.). The single-guide RNA (sgRNA) and Cas9 cassettes were assembled on one vector to improve transformation efficiency, and we designed a sgRNA that targeted a transgene (bar) and six sgRNAs that targeted different sites of two endogenous soybean genes (GmFEI2 and GmSHR). The targeted DNA mutations were detected in soybean hairy roots. The results demonstrated that this customized CRISPR/Cas9 system shared the same efficiency for both endogenous and exogenous genes in soybean hairy roots. We also performed experiments to detect the potential of CRISPR/Cas9 system to simultaneously edit two endogenous soybean genes using only one customized sgRNA. Overall, generating and detecting the CRISPR/Cas9-mediated genome modifications in target genes of soybean hairy roots could rapidly assess the efficiency of each target loci. The target sites with higher efficiencies can be used for regular soybean transformation. Furthermore, this method provides a powerful tool for root-specific functional genomics studies in soybean. PMID:26284791

  6. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes

    SciTech Connect

    Carte, Jason; Wang, Ruiying; Li, Hong; Terns, Rebecca M.; Terns, Michael P.

    2010-11-09

    An RNA-based gene silencing pathway that protects bacteria and archaea from viruses and other genome invaders is hypothesized to arise from guide RNAs encoded by CRISPR loci and proteins encoded by the cas genes. CRISPR loci contain multiple short invader-derived sequences separated by short repeats. The presence of virus-specific sequences within CRISPR loci of prokaryotic genomes confers resistance against corresponding viruses. The CRISPR loci are transcribed as long RNAs that must be processed to smaller guide RNAs. Here we identified Pyrococcus furiosus Cas6 as a novel endoribonuclease that cleaves CRISPR RNAs within the repeat sequences to release individual invader targeting RNAs. Cas6 interacts with a specific sequence motif in the 5{prime} region of the CRISPR repeat element and cleaves at a defined site within the 3{prime} region of the repeat. The 1.8 angstrom crystal structure of the enzyme reveals two ferredoxin-like folds that are also found in other RNA-binding proteins. The predicted active site of the enzyme is similar to that of tRNA splicing endonucleases, and concordantly, Cas6 activity is metal-independent. cas6 is one of the most widely distributed CRISPR-associated genes. Our findings indicate that Cas6 functions in the generation of CRISPR-derived guide RNAs in numerous bacteria and archaea.

  7. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells.

    PubMed

    Dong, Zhan-Qi; Chen, Ting-Ting; Zhang, Jun; Hu, Nan; Cao, Ming-Ya; Dong, Fei-Fan; Jiang, Ya-Ming; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2016-06-01

    Although current antiviral strategies can inhibit baculovirus infection and decrease viral DNA replication to a certain extent, novel tools are required for specific and accurate elimination of baculovirus genomes from infected insects. Using the newly developed clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology, we disrupted a viral genome in infected insect cells in vitro as a defense against viral infection. We optimized the CRISPR/Cas9 system to edit foreign and viral genome in insect cells. Using Bombyx mori nucleopolyhedrovirus (BmNPV) as a model, we found that the CRISPR/Cas9 system was capable of cleaving the replication key factor ie-1 in BmNPV thus effectively inhibiting virus proliferation. Furthermore, we constructed a virus-inducible CRISPR/Cas9 editing system, which minimized the probability of off-target effects and was rapidly activated after viral infection. This is the first report describing the application of the CRISPR/Cas9 system in insect antiviral research. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells provides insights to produce virus-resistant transgenic strains for future. PMID:26979473

  8. Consequences of Cas9 cleavage in the chromosome of Escherichia coli.

    PubMed

    Cui, Lun; Bikard, David

    2016-05-19

    The RNA-guided Cas9 nuclease from CRISPR-Cas systems has emerged as a powerful biotechnological tool. The specificity of Cas9 can be reprogrammed to cleave desired sequences in a cell's chromosome simply by changing the sequence of a small guide RNA. Unlike in most eukaryotes, Cas9 cleavage in the chromosome of bacteria has been reported to kill the cell. However, the mechanism of cell death remains to be investigated. Bacteria mainly rely on homologous recombination (HR) with sister chromosomes to repair double strand breaks. Here, we show that the simultaneous cleavage of all copies of the Escherichia coli chromosome at the same position cannot be repaired, leading to cell death. However, inefficient cleavage can be tolerated through continuous repair by the HR pathway. In order to kill cells reliably, HR can be blocked using the Mu phage Gam protein. Finally, the introduction of the non-homologous end joining (NHEJ) pathway from Mycobacterium tuberculosis was not able to rescue the cells from Cas9-mediated killing, but did introduce small deletions at a low frequency. This work provides a better understanding of the consequences of Cas9 cleavage in bacterial chromosomes which will be instrumental in the development of future CRISPR tools. PMID:27060147

  9. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.

    PubMed

    Xue, Hui-Ying; Ji, Li-Juan; Gao, Ai-Mei; Liu, Ping; He, Jing-Dong; Lu, Xiao-Jie

    2016-02-01

    CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) systems have emerged as versatile and convenient (epi)genome editing tools and have become an important player in medical genetic research. CRISPR-Cas9 and its variants such as catalytically inactivated Cas9 (dead Cas9, dCas9) and scaffold-incorporating single guide sgRNA (scRNA) have been applied in various genomic screen studies. CRISPR screens enable high-throughput interrogation of gene functions in health and diseases. Compared with conventional RNAi screens, CRISPR screens incur less off-target effects and are more versatile in that they can be used in multiple formats such as knockout, knockdown and activation screens, and can target coding and non-coding regions throughout the genome. This powerful screen platform holds the potential of revolutionising functional genomic studies in the near future. Herein, we introduce the mechanisms of (epi)genome editing mediated by CRISPR-Cas9 and its variants, introduce the procedures and applications of CRISPR screen in functional genomics, compare it with conventional screen tools and at last discuss current challenges and opportunities and propose future directions. PMID:26673779

  10. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9.

    PubMed

    Zhu, Jinjie; Song, Ning; Sun, Silong; Yang, Weilong; Zhao, Haiming; Song, Weibin; Lai, Jinsheng

    2016-01-20

    CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) is an adaptive immune system in bacteria and archaea to defend against invasion from foreign DNA fragments. Recently, it has been developed as a powerful targeted genome editing tool for a wide variety of species. However, its application in maize has only been tested with transiently expressed somatic cells or with a limited number of stable transgenic T0 plants. The exact efficiency and specificity of the CRISPR/Cas system in the highly complex maize genome has not been documented yet. Here we report an extensive study of the well-studied type II CRISPR-Cas9 system for targeted genome editing in maize, with the codon-optimized Cas9 protein and the short non-coding guide RNA generated through a functional maize U6 snRNA promoter. Targeted gene mutagenesis was detected for 90 loci by maize protoplast assay, with an average cleavage efficiency of 10.67%. Stable knockout transformants for maize phytoene synthase gene (PSY1) were obtained. Mutations occurred in germ cells can be stably inherited to the next generation. Moreover, no off-target effect was detected at the computationally predicted putative off-target loci. No significant difference between the transcriptomes of the Cas9 expressed and non-expressed lines was detected. Our results confirmed that the CRISPR-Cas9 could be successfully applied as a robust targeted genome editing system in maize. PMID:26842991

  11. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system.

    PubMed

    Gao, Shuliang; Tong, Yangyang; Wen, Zhiqiang; Zhu, Li; Ge, Mei; Chen, Daijie; Jiang, Yu; Yang, Sheng

    2016-08-01

    Yarrowia lipolytica is categorized as a generally recognized as safe (GRAS) organism and is a heavily documented, unconventional yeast that has been widely incorporated into multiple industrial fields to produce valuable biochemicals. This study describes the construction of a CRISPR-Cas9 system for genome editing in Y. lipolytica using a single plasmid (pCAS1yl or pCAS2yl) to transport Cas9 and relevant guide RNA expression cassettes, with or without donor DNA, to target genes. Two Cas9 target genes, TRP1 and PEX10, were repaired by non-homologous end-joining (NHEJ) or homologous recombination, with maximal efficiencies in Y. lipolytica of 85.6 % for the wild-type strain and 94.1 % for the ku70/ku80 double-deficient strain, within 4 days. Simultaneous double and triple multigene editing was achieved with pCAS1yl by NHEJ, with efficiencies of 36.7 or 19.3 %, respectively, and the pCASyl system was successfully expanded to different Y. lipolytica breeding strains. This timesaving method will enable and improve synthetic biology, metabolic engineering and functional genomic studies of Y. lipolytica. PMID:27349768

  12. Progress of application and off-target effects of CRISPR/Cas9.

    PubMed

    Wu, Zheng; Feng, Gu

    2015-10-01

    The clustered regulatory interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) system mediates genome editing and is revolutionizing genetic researches. Scientists are able to manipulate the gene of interest from any organism with CRISPR/Cas9. Compared with zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) technologies, the CRISPR/Cas9 technology provides an easy and efficient approach to manipulate the genome. In this system, sgRNA (Single guide RNA), a short RNA matching the targeted DNA fragment, guides the CRISPR/Cas9 to interrogate the genome. Because sgRNA can tolerate certain mismatches to the DNA targets and thereby promote undesired off-target mutagenesis, the key limit of this technology is off-target effects. To eliminate the off-target effects, different strategies have been adopted. In this review, we summarize the application of CRISPR/Cas9 and different strategies for addressing off-target effects. PMID:26496752

  13. Syndrome de compression traumatique: à propos d'un cas

    PubMed Central

    Boukatta, Brahim; El Bouazzaoui, Abderrahim; Houari, Nawfal; Jiber, Hamid; Sbai, Hicham; Kanjaa, Nabil

    2014-01-01

    Le crush syndrome correspond à l'ensemble des manifestations systémiques secondaire à une destruction des fibres musculaires striées. Il survient le plus souvent dans le cadre d'accidents graves tels que les catastrophes, accidents de travail et accidents de la voie publique. Il est responsable d'une hypovolémie, état de choc, hyperkaliémie, hypocalcémie, acidose métabolique et d'insuffisance rénale aigue. Le succès du traitement dépend largement de la rapidité de la prise en charge. Les principaux objectifs thérapeutiques sont la correction de l'hypovolémie, traitement de l'hyperkaliémie, l'alcalinisation et la prévention de l'insuffisance rénale. L'utilisation de garrots compressifs doit être réservée au seul contrôle d'hémorragies importantes. Dans cet article, nous rapportons le cas d'un jeune patient de 20 ans ayant présenté un crush syndrome à la suite d'un accident de la voie publique. L’évolution était favorable, mais une amputation du membre écrasé était nécessaire. PMID:25848457

  14. CAS CERN Accelerator School 5th General Accelerator Physics Course

    NASA Astrophysics Data System (ADS)

    Turner, S.

    1994-01-01

    The fifth CERN Accelerator School (CAS) basic course on General Accelerator Physics was given at the University of Jyvaeskylae, Finland, from 7 to 18 September 1992. Its syllabus was based on the previous similar courses held at Gif-sur-Yvette in 1984, Aarhus 1986, Salamanca 1988 and Juelich 1990, and whose proceedings were published as CERN Reports 85-19, 87-10, 89-05 and 91-04, respectively. However, certain topics were treated in a different way, improved or extended, while new subjects were introduced. As far as the proceedings of this school are concerned the opportunity was taken not only to include the lectures presented but also to select and revise the most appropriate chapters from the previous similar schools. In this way the present volumes constitute a rather complete introduction to all aspects of the design and construction of particle accelerators, including optics, emittance, luminosity, longitudinal and transverse beam dynamics, insertions, chromaticity, transfer lines, resonances, accelerating structures, tune shifts, coasting beams, lifetime, synchrotron radiation, radiation damping, beam-beam effects, diagnostics, cooling, ion and positron sources, RF and vacuum systems, injection and extraction, conventional, permanent and superconducting magnets, cyclotrons, RF linear accelerators, microtrons, as well as applications of particle accelerators (including therapy) and the history of accelerators. See hints under the relevant topics.

  15. Piezoelectric deformable mirror technologies for astronomy at IOE, CAS

    NASA Astrophysics Data System (ADS)

    Guan, Chunlin; Fan, Xinlong; Zhang, Xiaojun; Zhou, Hong; Mu, Jinbo; Xue, Lixia; Wei, Kai; Xian, Hao; Rao, Changhui; Zhang, Yudong; Ling, Ning

    2014-07-01

    Institute of Optics & Electronics (IOE), Chinese Academy of Sciences (CAS) has more than 30 years' experience on piezoelectric deformable mirror (DM) technologies research and developing since early 1980s. Several DMs of IOE have been used in many different application systems. A brief history of piezoelectric DMs development in IOE and several recently achievements, and the main characters, performance and test results of the DMs for astronomy will be presented in this paper. 1) High-order DM. DM prototype with 913-element for 4m telescope has been fabricated and tested in laboratory. 2) Adaptive Secondary Mirror (ASM). A 73-element ASM prototype with 12 microns stroke for 1.8m telescope has been fabricated. It will be installed onto the 1.8m telescope with a compact adaptive optics (AO) system. 3) Small spacing DM. A 6mm spacing 127-element DM based on the same construction with the High-order DM has been used in AO system of 1m New Vacuum Solar Telescope (NVST) in Yunnan Observatories. Higher density (3mm spacing) DM based on a novel construction has being developed. In 2012, the novel DM prototype with 100-element was fabricated and tested carefully in laboratory. Beside, a 6mm spacing 151-element DM based on the novel construction has being fabricated for the solar AO system.

  16. Interface degradation in CAS/Nicalon during elevated temperature aging

    SciTech Connect

    Plucknett, K.P.; Cain, R.L.; Lewis, M.H.

    1995-03-01

    A CaO-Al{sub 2}O{sub 3}-SiO{sub 2} (CAS)/Nicalon glass-ceramic matrix composite has been subjected to elevated temperature oxidation heat-treatments between 375 and 1200{degrees}C, for up to 100 hours. Micro- and macro-mechanical properties have been determined by fiber push-down, using a mechanical properties microprobe, and flexure testing, respectively. Aging between 450 and 800{degrees}C results in significant property degradation, with reduced bending modulus and flexure strength, increased fiber sliding stress, and a transition to a purely brittle failure mode. Aging degradation is due to oxidative removal of the carbon interlayer, with the subsequent formation of a silica bond between fiber and matrix. At higher temperatures, carbon is retained due to the formation of a protective silica plug at exposed fiber ends, with the subsequent retention of composite properties. Short duration pre-treatment schedules, at 1000 or 1100{degrees}C, were developed to prevent intermediate temperature property degradation.

  17. On Cas A, Cassini, Comets, and King Charles

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Balestrieri, Riccardo; Ohtsuka, Yasuyo

    2013-03-01

    We re-examine the long-standing problem of the date of the Cassiopeia A supernova (SN), in view of recent claims that it might be the 1630 'noon-star' seen at the birth of King Charles II. We do not support this identification, based on the expected brightness of a Type-IIb SN (too faint to be seen in daylight), the extrapolated motion of the ejecta (inconsistent with a date earlier than 1650), the lack of any scientific follow-up observations, the lack of any mention of it in Asian archives. The origin of the 1630 noon-star event (if real) remains a mystery; there was a bright comet in 1630 June but no evidence to determine whether or not it was visible in daylight. Instead, we present French reports about a fourth-magnitude star discovered by Cassini in Cassiopeia in or shortly before 1671, which was not seen before or since. The brightness is consistent with what we expect for the Cas A SN; the date is consistent with the extrapolated motion of the ejecta. We argue that this source could be the long-sought SN.

  18. Engineering Translational Activators with CRISPR-Cas System.

    PubMed

    Du, Pei; Miao, Chensi; Lou, Qiuli; Wang, Zefeng; Lou, Chunbo

    2016-01-15

    RNA parts often serve as critical components in genetic engineering. Here we report a design of translational activators which is composed of an RNA endoribonuclease (Csy4) and two exchangeable RNA modules. Csy4, a member of Cas endoribonuclease, cleaves at a specific recognition site; this cleavage releases a cis-repressive RNA module (crRNA) from the masked ribosome binding site (RBS), which subsequently allows the downstream translation initiation. Unlike small RNA as a translational activator, the endoribonuclease-based activator is able to efficiently unfold the perfect RBS-crRNA pairing. As an exchangeable module, the crRNA-RBS duplex was forwardly and reversely engineered to modulate the dynamic range of translational activity. We further showed that Csy4 and its recognition site, together as a module, can also be replaced by orthogonal endoribonuclease-recognition site homologues. These modularly structured, high-performance translational activators would endow the programming of gene expression in the translation level with higher feasibility. PMID:26414660

  19. CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals.

    PubMed

    Jinwei, Zhou; Qipin, Xu; Jing, Yao; Shumin, Yu; Suizhong, Cao

    2015-10-01

    CRISPR/Cas system, which uses CRISPR RNAs (crRNAs) to guide Cas nuclease to silence invading nucleic acids, is self-defense system against exogenous virus or plasmid in bacteria and archaea. Through molecular modification, the typeⅡCRISPR/Cas system has become a highly efficient site-directed genome editing technique, which is simpler than zinc-finger nucleases (ZFNs) and transcription activator like effector nucleases (TALENs) and easier to be designed and applied. In this review, we summarize the evolutionary history of CRISPR/Cas9 system, the working principle and modification process of type Ⅱ CRISPR/Cas and its application in animal genome modification. We also analyze the existing problems and improvement program of the CRISPR/Cas9 system as well as its application prospect combined with successful cases, which may provide innovative perspectives on improving animal traits and establishing animal models of human diseases. PMID:26496753

  20. Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference

    SciTech Connect

    Beloglazova, Natalia; Petit, Pierre; Flick, Robert; Brown, Greg; Savchenko, Alexei; Yakunin, Alexander F.

    2012-03-15

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and Cas proteins represent an adaptive microbial immunity system against viruses and plasmids. Cas3 proteins have been proposed to play a key role in the CRISPR mechanism through the direct cleavage of invasive DNA. Here, we show that the Cas3 HD domain protein MJ0384 from Methanocaldococcus jannaschii cleaves endonucleolytically and exonucleolytically (3'-5') single-stranded DNAs and RNAs, as well as 3'-flaps, splayed arms, and R-loops. The degradation of branched DNA substrates by MJ0384 is stimulated by the Cas3 helicase MJ0383 and ATP. The crystal structure of MJ0384 revealed the active site with two bound metal cations and together with site-directed mutagenesis suggested a catalytic mechanism. Our studies suggest that the Cas3 HD nucleases working together with the Cas3 helicases can completely degrade invasive DNAs through the combination of endo- and exonuclease activities.

  1. Time Series Explorer

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas

    The key, central objectives of the proposed Time Series Explorer project are to develop an organized collection of software tools for analysis of time series data in current and future NASA astrophysics data archives, and to make the tools available in two ways: as a library (the Time Series Toolbox) that individual science users can use to write their own data analysis pipelines, and as an application (the Time Series Automaton) providing an accessible, data-ready interface to many Toolbox algorithms, facilitating rapid exploration and automatic processing of time series databases. A number of time series analysis methods will be implemented, including techniques that range from standard ones to state-of-the-art developments by the proposers and others. Most of the algorithms will be able to handle time series data subject to real-world problems such as data gaps, sampling that is otherwise irregular, asynchronous sampling (in multi-wavelength settings), and data with non-Gaussian measurement errors. The proposed research responds to the ADAP element supporting the development of tools for mining the vast reservoir of information residing in NASA databases. The tools that will be provided to the community of astronomers studying variability of astronomical objects (from nearby stars and extrasolar planets, through galactic and extragalactic sources) will revolutionize the quality of timing analyses that can be carried out, and greatly enhance the scientific throughput of all NASA astrophysics missions past, present, and future. The Automaton will let scientists explore time series - individual records or large data bases -- with the most informative and useful analysis methods available, without having to develop the tools themselves or understand the computational details. Both elements, the Toolbox and the Automaton, will enable deep but efficient exploratory time series data analysis, which is why we have named the project the Time Series Explorer. Science

  2. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein.

    PubMed

    Ma, Yuanwu; Chen, Wei; Zhang, Xu; Yu, Lei; Dong, Wei; Pan, Shuo; Gao, Shan; Huang, Xingxu; Zhang, Lianfeng

    2016-07-01

    Precise modifications such as site mutation, codon replacement, insertion or precise targeted deletion are needed for studies of accurate gene function. The CRISPR/Cas9 system has been proved as a powerful tool to generate gene knockout and knockin animals. But the homologous recombination (HR)-directed precise genetic modification mediated by CRISPR/Cas9 is relatively lower compared with nonhomologous end-joining (NHEJ) pathway and extremely expected to be improved. Here, in this study 2 strategies were used to increase the precise genetic modification in rats. Scr7, a DNA ligase IV inhibitor, first identified as an anti-cancer compound, and considered as a potential NHEJ inhibitor, was used to increase the HR-mediated precise genetic modification. Meanwhile, the Cas9 protein instead of mRNA was used to save the mRNA to protein translation step to improve the precise modification efficiency. The Fabp2 and Dbndd1 loci were selected to knockin Cre and CreER(T2), respectively. Our result showed that both Scr7 and Cas9 protein can increase the precise modification. PMID:27163284

  3. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells.

    PubMed

    Deng, Wulan; Shi, Xinghua; Tjian, Robert; Lionnet, Timothée; Singer, Robert H

    2015-09-22

    Direct visualization of genomic loci in the 3D nucleus is important for understanding the spatial organization of the genome and its association with gene expression. Various DNA FISH methods have been developed in the past decades, all involving denaturing dsDNA and hybridizing fluorescent nucleic acid probes. Here we report a novel approach that uses in vitro constituted nuclease-deficient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated caspase 9 (Cas9) complexes as probes to label sequence-specific genomic loci fluorescently without global DNA denaturation (Cas9-mediated fluorescence in situ hybridization, CASFISH). Using fluorescently labeled nuclease-deficient Cas9 (dCas9) protein assembled with various single-guide RNA (sgRNA), we demonstrated rapid and robust labeling of repetitive DNA elements in pericentromere, centromere, G-rich telomere, and coding gene loci. Assembling dCas9 with an array of sgRNAs tiling arbitrary target loci, we were able to visualize nonrepetitive genomic sequences. The dCas9/sgRNA binary complex is stable and binds its target DNA with high affinity, allowing sequential or simultaneous probing of multiple targets. CASFISH assays using differently colored dCas9/sgRNA complexes allow multicolor labeling of target loci in cells. In addition, the CASFISH assay is remarkably rapid under optimal conditions and is applicable for detection in primary tissue sections. This rapid, robust, less disruptive, and cost-effective technology adds a valuable tool for basic research and genetic diagnosis. PMID:26324940

  4. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells

    PubMed Central

    Deng, Wulan; Shi, Xinghua; Tjian, Robert; Lionnet, Timothée; Singer, Robert H.

    2015-01-01

    Direct visualization of genomic loci in the 3D nucleus is important for understanding the spatial organization of the genome and its association with gene expression. Various DNA FISH methods have been developed in the past decades, all involving denaturing dsDNA and hybridizing fluorescent nucleic acid probes. Here we report a novel approach that uses in vitro constituted nuclease-deficient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated caspase 9 (Cas9) complexes as probes to label sequence-specific genomic loci fluorescently without global DNA denaturation (Cas9-mediated fluorescence in situ hybridization, CASFISH). Using fluorescently labeled nuclease-deficient Cas9 (dCas9) protein assembled with various single-guide RNA (sgRNA), we demonstrated rapid and robust labeling of repetitive DNA elements in pericentromere, centromere, G-rich telomere, and coding gene loci. Assembling dCas9 with an array of sgRNAs tiling arbitrary target loci, we were able to visualize nonrepetitive genomic sequences. The dCas9/sgRNA binary complex is stable and binds its target DNA with high affinity, allowing sequential or simultaneous probing of multiple targets. CASFISH assays using differently colored dCas9/sgRNA complexes allow multicolor labeling of target loci in cells. In addition, the CASFISH assay is remarkably rapid under optimal conditions and is applicable for detection in primary tissue sections. This rapid, robust, less disruptive, and cost-effective technology adds a valuable tool for basic research and genetic diagnosis. PMID:26324940

  5. The CRISPR-Cas system - from bacterial immunity to genome engineering.

    PubMed

    Czarnek, Maria; Bereta, Joanna

    2016-01-01

    Precise and efficient genome modifications present a great value in attempts to comprehend the roles of particular genes and other genetic elements in biological processes as well as in various pathologies. In recent years novel methods of genome modification known as genome editing, which utilize so called "programmable" nucleases, came into use. A true revolution in genome editing has been brought about by the introduction of the CRISP-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) system, in which one of such nucleases, i.e. Cas9, plays a major role. This system is based on the elements of the bacterial and archaeal mechanism responsible for acquired immunity against phage infections and transfer of foreign genetic material. Microorganisms incorporate fragments of foreign DNA into CRISPR loci present in their genomes, which enables fast recognition and elimination of future infections. There are several types of CRISPR-Cas systems among prokaryotes but only elements of CRISPR type II are employed in genome engineering. CRISPR-Cas type II utilizes small RNA molecules (crRNA and tracrRNA) to precisely direct the effector nuclease - Cas9 - to a specific site in the genome, i.e. to the sequence complementary to crRNA. Cas9 may be used to: (i) introduce stable changes into genomes e.g. in the process of generation of knock-out and knock-in animals and cell lines, (ii) activate or silence the expression of a gene of interest, and (iii) visualize specific sites in genomes of living cells. The CRISPR-Cas-based tools have been successfully employed for generation of animal and cell models of a number of diseases, e.g. specific types of cancer. In the future, the genome editing by programmable nucleases may find wide application in medicine e.g. in the therapies of certain diseases of genetic origin and in the therapy of HIV-infected patients. PMID:27594566

  6. Marqueurs chromosomiques: à propos d'un cas

    PubMed Central

    Samri, Imane; Bouguenouch, Laila; Hamdaoui, Hasna; El Otmani, Ihsan; El Omairi, Nissrine; Chaouki, Sana; Hida, Moustapha; Ouldim, Karim

    2013-01-01

    Les marqueurs chromosomiques peuvent être définis comme des petits chromosomes de structure anormale présents en addition aux 46 chromosomes humains connus. C'est un groupe hétérogène d'anomalies de structure chromosomique pouvant être avec ou sans conséquence phénotypique. Plusieurs tentatives sont réalisées afin de retrouver une corrélation génotype-phénotype lors de la présence d'un marqueur chromosomique. L'identification du marqueur, son origine et sa structure suit une stratégie bien codifiée actuellement allant d'abord de l'orientation clinique suivie des techniques de cytogénétique conventionnelle (caryotype métaphasique standard, bandes C, NOR) et de cytogénétique moléculaire (M-FISH, CGH, CGH array) puis une détection par des techniques plus ciblées (painting, sondes locus spécifique). Cet ensemble permet une meilleure analyse et correspondance clinico-génétique. Nous rapportons le cas d'un nourrisson présentant une dysmorphie faciale avec un retard psychomoteur dont l'analyse cytogénétique a révélé la présence d'un marqueur chromosomique avec un caryotype métaphasique 47,XX,+mar. A travers cette observation, nous mettons en valeur le rôle de la cytogénétique conventionnelle et moléculaire dans le diagnostic des syndromes dysmorphiques permettant une meilleure prise en charge du patient et un conseil génétique adéquat pour sa famille PMID:24244790

  7. Gas and Dust Layers from Cas A's Explosive Nucleosynthesis

    SciTech Connect

    Rudnick, Lawrence

    2008-05-21

    Our group has developed a new picture of the structure of Cas A's explosion using 5-40 micron images and spectra from the Spitzer Space Telescope. In this picture, two roughly spherical shocks (forward and reverse) were initially set up by the outer layers of the exploding star. Deeper layers were ejected in a highly flattened structure with large protrusions in the plane of the flattening; some of these are visible as jets. As these aspherical deeper layers encounter the reverse shock at different locations, they become visible across the electromagnetic spectrum, with different nucleosynthesis layers visible in different directions. In the infrared, we see the gas lines of Ar, Ne, O, Si, S, and Fe at different locations, along with higher ionization states of the same elements visible in the optical and X-ray parts of the spectrum. These different nucleosynthesis layers appear to have formed characteristic types of dust, the deep layers producing dust rich in silicates, while dust from the upper layers is dominated by Al{sub 2}O{sub 3} and carbon grains. In addition, we see circumstellar dust heated by its encounter with the forward shock. We estimate the total dust mass currently visible that was formed in the explosion to be {approx}0.02-0.05 M{sub {center_dot}}. Rough extrapolations of these measurements to SNe in high redshift galaxies may be able to account for the lower limit of their observed dust masses. There is a large amount of gas, and presumably dust, that is currently not visible at any wavelength, including both the cooled post-reverse-shock ejecta and the material which has not yet encountered the reverse shock, where some select infrared emission is apparent.

  8. On Sums of Numerical Series and Fourier Series

    ERIC Educational Resources Information Center

    Pavao, H. Germano; de Oliveira, E. Capelas

    2008-01-01

    We discuss a class of trigonometric functions whose corresponding Fourier series, on a conveniently chosen interval, can be used to calculate several numerical series. Particular cases are presented and two recent results involving numerical series are recovered. (Contains 1 note.)

  9. Les tumeurs conjonctives cutanées: à propos de 121 cas

    PubMed Central

    Hazmiri, Fatima Ezzahra; Fakhri, Anas; Rais, Hanane; Akhdari, Nadia; Amal, Said; Belaabidia, Badia

    2014-01-01

    Les tumeurs conjonctives cutanées sont des tumeurs dermiques et/ou hypodermiques relativement fréquentes. Elles sont dominées par les tumeurs bénignes. A travers une série de 121 cas, nous avons étudié le profil épidémiologique, anatomopathologique et évolutif de ces tumeurs. C'est une étude rétrospective réalisée au service d'anatomie pathologique du CHU Mohammed VI de Marrakech entre 2004 et 2012. Il s'agit de 121 patients. La moyenne d’âge était de 36 ans (1-80ans). Le sex-ratio H/F était de 1,12. La tumeur avait un aspect nodulaire dans 90% des cas. Le membre inférieur était la localisation la plus fréquente (30,5%). L’étude anatomopathologique a porté sur un matériel biopsique dans 100% des cas. Soixante-neuf pour cent de ces tumeurs étaient bénignes. Elles étaient représentées essentiellement par les tumeurs vasculaires, suivies par les tumeurs fibreuses et fibro-histiocytaires. Trente et un pour cent des tumeurs étaient malignes. Il s'agissait essentiellement de tumeurs fibreuses et fibro-histiocytaires, suivies de tumeurs vasculaires. L’étude immunohistochimique était réalisée dans 2cas. Le traitement chirurgical était entrepris dans 73% des cas. L’évolution était précisée dans 19% des cas avec une évolution favorable dans 13% des cas. Un cas de décès et 2 cas de récidive étaient notés. Les tumeurs conjonctives cutanées bénignes sont de bon pronostic, mais posent un problème majeur de nosologie et de classification. D'autre part, la prise en charge diagnostique et thérapeutique ainsi que l’évaluation pronostique des sarcomes cutanés restent difficiles. PMID:25379113

  10. NSP-Cas protein structures reveal a promiscuous interaction module in cell signaling

    SciTech Connect

    Mace, P.D.; Robinson, H.; Wallez, Y.; Dobaczewska, M. K.; Lee, J. J.; Pasquale, E. B.; Riedl, S. J.

    2011-12-01

    Members of the novel SH2-containing protein (NSP) and Crk-associated substrate (Cas) protein families form multidomain signaling platforms that mediate cell migration and invasion through a collection of distinct signaling motifs. Members of each family interact via their respective C-terminal domains, but the mechanism of this association has remained enigmatic. Here we present the crystal structures of the C-terminal domain from the NSP protein BCAR3 and the complex of NSP3 with p130Cas. BCAR3 adopts the Cdc25-homology fold of Ras GTPase exchange factors, but it has a 'closed' conformation incapable of enzymatic activity. The structure of the NSP3-p130Cas complex reveals that this closed conformation is instrumental for interaction of NSP proteins with a focal adhesion-targeting domain present in Cas proteins. This enzyme-to-adaptor conversion enables high-affinity, yet promiscuous, interactions between NSP and Cas proteins and represents an unprecedented mechanistic paradigm linking cellular signaling networks.

  11. A modified CAS-CI approach for an efficient calculation of magnetic exchange coupling constants

    NASA Astrophysics Data System (ADS)

    Fink, Karin; Staemmler, Volker

    2013-09-01

    A modification of the conventional wavefunction-based CAS-CI method for the calculation of magnetic exchange coupling constants J in small molecules and transition metal complexes is presented. In general, CAS-CI approaches yield much too small values for J since the energies of the important charge transfer configurations are calculated with the ground state orbitals and are therefore much too high. In the present approach we improve these energies by accounting for the relaxation of the orbitals in the charge transfer configurations. The necessary relaxation energies R can be obtained in separate calculations using mononuclear or binuclear model systems. The method is applied to a few examples, small molecules, binuclear transition metal complexes, and bulk NiO. It allows to obtaining fairly reliable estimates for J at costs that are not higher than those of conventional CAS-CI calculations. Therefore, extended and very time-consuming perturbation theory (PT2), configuration interaction (CI), or coupled cluster (CC) schemes on top of the CAS-CI calculation can be avoided and the modified CAS-CI (MCAS-CI) approach can be applied to rather large systems.

  12. Orthogonal Modular Gene Repression in Escherichia coli Using Engineered CRISPR/Cas9.

    PubMed

    Didovyk, Andriy; Borek, Bartłomiej; Hasty, Jeff; Tsimring, Lev

    2016-01-15

    The progress in development of synthetic gene circuits has been hindered by the limited repertoire of available transcription factors. Recently, it has been greatly expanded using the CRISPR/Cas9 system. However, this system is limited by its imperfect DNA sequence specificity, leading to potential crosstalk with host genome or circuit components. Furthermore, CRISPR/Cas9-mediated gene regulation is context dependent, affecting the modularity of Cas9-based transcription factors. In this paper we address the problems of specificity and modularity by developing a computational approach for selecting Cas9/gRNA transcription factor/promoter pairs that are maximally orthogonal to each other as well as to the host genome and synthetic circuit components. We validate the method by designing and experimentally testing four orthogonal promoter/repressor pairs in the context of a strong promoter PL from phage lambda. We demonstrate that these promoters can be interfaced by constructing double and triple inverter circuits. To address the problem of modularity we propose and experimentally validate a scheme to predictably incorporate orthogonal CRISPR/Cas9 regulation into a large class of natural promoters. PMID:26390083

  13. Pseudorabies virus can escape from CRISPR-Cas9-mediated inhibition.

    PubMed

    Peng, Zhiyuan; Ouyang, Ting; Pang, Daxin; Ma, Teng; Chen, Xinrong; Guo, Ning; Chen, Fuwang; Yuan, Lin; Ouyang, Hongsheng; Ren, Linzhu

    2016-09-01

    The CRISPR-Cas9 system is a newly developed genome-engineering tool used to inhibit virus infection by targeting the conserved regions of the viral genomic DNA. In the present study, we constructed a cell line stably expressing Cas9 endonuclease and sgRNA targeting the conserved UL30 gene of pseudorabies virus (PRV). During the PRV infection, the CRISPR-Cas9 system was efficient in cleaving the UL30 gene in each passage. However, deletions and insertions occurred at low passages, while substitutions were frequently observed at high passages. Furthermore, copy numbers and virus titers of PRV were significantly increased in a passage-dependent manner, indicating that viral genomic replication and assembly were more effective at the high passages than at low passages. These results demonstrated that PRV could escape from CRISPR-Cas9-mediated inhibition. Therefore, whether the CRISPR-Cas9 system is suitable for antiviral application should be considered and carefully verified. PMID:27507009

  14. Friendly Fire: Biological Functions and Consequences of Chromosomal Targeting by CRISPR-Cas Systems.

    PubMed

    Heussler, Gary E; O'Toole, George A

    2016-05-15

    Clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) systems in bacteria and archaea target foreign elements, such as bacteriophages and conjugative plasmids, through the incorporation of short sequences (termed spacers) from the foreign element into the CRISPR array, thereby allowing sequence-specific targeting of the invader. Thus, CRISPR-Cas systems are typically considered a microbial adaptive immune system. While many of these incorporated spacers match targets on bacteriophages and plasmids, a noticeable number are derived from chromosomal DNA. While usually lethal to the self-targeting bacteria, in certain circumstances, these self-targeting spacers can have profound effects in regard to microbial biology, including functions beyond adaptive immunity. In this minireview, we discuss recent studies that focus on the functions and consequences of CRISPR-Cas self-targeting, including reshaping of the host population, group behavior modification, and the potential applications of CRISPR-Cas self-targeting as a tool in microbial biotechnology. Understanding the effects of CRISPR-Cas self-targeting is vital to fully understanding the spectrum of function of these systems. PMID:26929301

  15. Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems.

    PubMed

    Leenay, Ryan T; Maksimchuk, Kenneth R; Slotkowski, Rebecca A; Agrawal, Roma N; Gomaa, Ahmed A; Briner, Alexandra E; Barrangou, Rodolphe; Beisel, Chase L

    2016-04-01

    CRISPR-Cas adaptive immune systems in prokaryotes boast a diversity of protein families and mechanisms of action, where most systems rely on protospacer-adjacent motifs (PAMs) for DNA target recognition. Here, we developed an in vivo, positive, and tunable screen termed PAM-SCANR (PAM screen achieved by NOT-gate repression) to elucidate functional PAMs as well as an interactive visualization scheme termed the PAM wheel to convey individual PAM sequences and their activities. PAM-SCANR and the PAM wheel identified known functional PAMs while revealing complex sequence-activity landscapes for the Bacillus halodurans I-C (Cascade), Escherichia coli I-E (Cascade), Streptococcus thermophilus II-A CRISPR1 (Cas9), and Francisella novicida V-A (Cpf1) systems. The PAM wheel was also readily applicable to existing high-throughput screens and garnered insights into SpyCas9 and SauCas9 PAM diversity. These tools offer powerful means of elucidating and visualizing functional PAMs toward accelerating our ability to understand and exploit the multitude of CRISPR-Cas systems in nature. PMID:27041224

  16. Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation.

    PubMed

    Künne, Tim; Kieper, Sebastian N; Bannenberg, Jasper W; Vogel, Anne I M; Miellet, Willem R; Klein, Misha; Depken, Martin; Suarez-Diez, Maria; Brouns, Stan J J

    2016-09-01

    Prokaryotes use a mechanism called priming to update their CRISPR immunological memory to rapidly counter revisiting, mutated viruses, and plasmids. Here we have determined how new spacers are produced and selected for integration into the CRISPR array during priming. We show that Cas3 couples CRISPR interference to adaptation by producing DNA breakdown products that fuel the spacer integration process in a two-step, PAM-associated manner. The helicase-nuclease Cas3 pre-processes target DNA into fragments of about 30-100 nt enriched for thymine-stretches in their 3' ends. The Cas1-2 complex further processes these fragments and integrates them sequence-specifically into CRISPR repeats by coupling of a 3' cytosine of the fragment. Our results highlight that the selection of PAM-compliant spacers during priming is enhanced by the combined sequence specificities of Cas3 and the Cas1-2 complex, leading to an increased propensity of integrating functional CTT-containing spacers. PMID:27546790

  17. Overcoming doxorubicin resistance of cancer cells by Cas9-mediated gene disruption

    PubMed Central

    Ha, Jong Seong; Byun, Juyoung; Ahn, Dae-Ro

    2016-01-01

    In this study, Cas9 system was employed to down-regulate mdr1 gene for overcoming multidrug resistance of cancer cells. Disruption of the MDR1 gene was achieved by delivery of the Cas9-sgRNA plasmid or the Cas9-sgRNA ribonucleoprotein complex using a conventional gene transfection agent and protein transduction domain (PTD). Doxorubicin showed considerable cytotoxicity to the drug-resistant breast cancer cells pre-treated with the RNA-guided endonuclease (RGEN) systems, whereas virtually non-toxic to the untreated cells. The potency of drug was enhanced in the cells treated with the protein-RNA complex as well as in those treated with plasmids, suggesting that mutation of the mdr1 gene by intracellular delivery of Cas9-sgRNA complex using proper protein delivery platforms could recover the drug susceptibility. Therefore, Cas9-mediated disruption of the drug resistance-related gene can be considered as a promising way to overcome multidrug resistance in cancer cells. PMID:26961701

  18. Optimization of Genome Engineering Approaches with the CRISPR/Cas9 System

    PubMed Central

    Li, Kai; Wang, Gang; Andersen, Troels; Zhou, Pingzhu; Pu, William T.

    2014-01-01

    Designer nucleases such as TALENS and Cas9 have opened new opportunities to scarlessly edit the mammalian genome. Here we explored several parameters that influence Cas9-mediated scarless genome editing efficiency in murine embryonic stem cells. Optimization of transfection conditions and enriching for transfected cells are critical for efficiently recovering modified clones. Paired gRNAs and wild-type Cas9 efficiently create programmed deletions, which facilitate identification of targeted clones, while paired gRNAs and the Cas9D10A nickase generated smaller targeted indels with lower chance of off-target mutagenesis. Genome editing is also useful for programmed introduction of exogenous DNA sequences at a target locus. Increasing the length of the homology arms of the homology-directed repair template strongly enhanced targeting efficiency, while increasing the length of the DNA insert reduced it. Together our data provide guidance on optimal design of scarless gene knockout, modification, or knock-in experiments using Cas9 nuclease. PMID:25166277

  19. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs.

    PubMed

    Yin, Linlin; Maddison, Lisette A; Li, Mingyu; Kara, Nergis; LaFave, Matthew C; Varshney, Gaurav K; Burgess, Shawn M; Patton, James G; Chen, Wenbiao

    2015-06-01

    Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward. PMID:25855067

  20. The application of CRISPR-Cas9 genome editing in Caenorhabditis elegans.

    PubMed

    Xu, Suhong

    2015-08-20

    Genome editing using the Cas9 endonuclease of Streptococcus pyogenes has demonstrated unparalleled efficacy and facility for modifying genomes in a wide variety of organisms. Caenorhabditis elegans is one of the most convenient multicellular organisms for genetic analysis, and the application of this novel genome editing technique to this organism promises to revolutionize analysis of gene function in the future. CRISPR-Cas9 has been successfully used to generate imprecise insertions and deletions via non-homologous end-joining mechanisms and to create precise mutations by homology-directed repair from donor templates. Key variables are the methods used to deliver the Cas9 endonuclease and the efficiency of the single guide RNAs. CRISPR-Cas9-mediated editing appears to be highly specific in C. elegans, with no reported off-target effects. In this review, I briefly summarize recent progress in CRISPR-Cas9-based genome editing in C. elegans, highlighting technical improvements in mutagenesis and mutation detection, and discuss potential future applications of this technique. PMID:26336798

  1. The application of CRISPR-Cas9 genome editing in Caenorhabditis elegans

    PubMed Central

    Xu, Suhong

    2015-01-01

    Genome editing using the Cas9 endonuclease of Streptococcus pyogenes has demonstrated unparalleled efficacy and facility for modifying genomes in a wide variety of organisms. Caenorhabditis elegans is one of the most convenient multicellular organisms for genetic analysis, and application of this novel genome editing technique to this organism promises to revolutionize analysis of gene function in the future. CRISPR-Cas9 has been successfully used to generate imprecise insertions and deletions via non-homologous end-joining mechanisms and to create precise mutations by homology-directed repair from donor templates. Key variables are the methods by which the Cas9 endonuclease is delivered and the efficiency of the single guide RNAs. CRISPR-Cas9 mediated editing appears to be highly specific in C. elegans, with no reported off-target effects. This review briefly summarizes recent progress in CRISPR-Cas9 based genome editing in C. elegans, highlighting technical improvements in mutagenesis and mutation detection, and discussing potential future applications of this technique. PMID:26336798

  2. Protospacer Adjacent Motif (PAM)-Distal Sequences Engage CRISPR Cas9 DNA Target Cleavage

    PubMed Central

    Ethier, Sylvain; Schmeing, T. Martin; Dostie, Josée; Pelletier, Jerry

    2014-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)-associated enzyme Cas9 is an RNA-guided nuclease that has been widely adapted for genome editing in eukaryotic cells. However, the in vivo target specificity of Cas9 is poorly understood and most studies rely on in silico predictions to define the potential off-target editing spectrum. Using chromatin immunoprecipitation followed by sequencing (ChIP-seq), we delineate the genome-wide binding panorama of catalytically inactive Cas9 directed by two different single guide (sg) RNAs targeting the Trp53 locus. Cas9:sgRNA complexes are able to load onto multiple sites with short seed regions adjacent to 5′NGG3′ protospacer adjacent motifs (PAM). Yet among 43 ChIP-seq sites harboring seed regions analyzed for mutational status, we find editing only at the intended on-target locus and one off-target site. In vitro analysis of target site recognition revealed that interactions between the 5′ end of the guide and PAM-distal target sequences are necessary to efficiently engage Cas9 nucleolytic activity, providing an explanation for why off-target editing is significantly lower than expected from ChIP-seq data. PMID:25275497

  3. A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation.

    PubMed

    Lowder, Levi G; Zhang, Dengwei; Baltes, Nicholas J; Paul, Joseph W; Tang, Xu; Zheng, Xuelian; Voytas, Daniel F; Hsieh, Tzung-Fu; Zhang, Yong; Qi, Yiping

    2015-10-01

    The relative ease, speed, and biological scope of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Protein9 (Cas9)-based reagents for genomic manipulations are revolutionizing virtually all areas of molecular biosciences, including functional genomics, genetics, applied biomedical research, and agricultural biotechnology. In plant systems, however, a number of hurdles currently exist that limit this technology from reaching its full potential. For example, significant plant molecular biology expertise and effort is still required to generate functional expression constructs that allow simultaneous editing, and especially transcriptional regulation, of multiple different genomic loci or multiplexing, which is a significant advantage of CRISPR/Cas9 versus other genome-editing systems. To streamline and facilitate rapid and wide-scale use of CRISPR/Cas9-based technologies for plant research, we developed and implemented a comprehensive molecular toolbox for multifaceted CRISPR/Cas9 applications in plants. This toolbox provides researchers with a protocol and reagents to quickly and efficiently assemble functional CRISPR/Cas9 transfer DNA constructs for monocots and dicots using Golden Gate and Gateway cloning methods. It comes with a full suite of capabilities, including multiplexed gene editing and transcriptional activation or repression of plant endogenous genes. We report the functionality and effectiveness of this toolbox in model plants such as tobacco (Nicotiana benthamiana), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa), demonstrating its utility for basic and applied plant research. PMID:26297141

  4. Reducing CAS-SDCI space. Using selected spaces in configuration interaction calculations in an efficient way.

    PubMed

    Pitarch-Ruiz, José; Sánchez-Marín, José; Maynau, Daniel

    2002-09-01

    A new method is presented, which allows an important reduction of the size of some Configuration Interaction (CI) matrices. Starting from a Complete Active Space (CAS), the numerous configurations that have a small weight in the CAS wave function are eliminated. When excited configurations (e.g., singly and doubly excited) are added to the reference space, the resulting MR-SDCI space is reduced in the same proportion as compared with the full CAS-SDCI. A set of active orbitals is chosen, but some selection of the most relevant excitations is performed because not all the possible excitations act as SDCI generators. Thanks to a new addressing technique, the computational time is drastically reduced, because the new addressing of the selected active space is as efficient as the addressing of the CAS. The presentation of the method is followed by two test calculations on the N(2) and HCCH molecules. For the N(2) the FCI results are taken as a benchmark reference. The outer valence ionization potentials of HCCH are compared to the experimental values. Both examples allow to test the accuracy of the MR-SDCI compared to that of the corresponding CAS-SDCI, despite the noticeable reduction of the CI space. The algorithm is suitable for the dressing techniques that allow for the correction of the size-extensivity error. The corrected results are also shown and discussed. PMID:12116385

  5. A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation1[OPEN

    PubMed Central

    Lowder, Levi G.; Zhang, Dengwei; Baltes, Nicholas J.; Paul, Joseph W.; Tang, Xu; Zheng, Xuelian; Voytas, Daniel F.; Hsieh, Tzung-Fu; Zhang, Yong; Qi, Yiping

    2015-01-01

    The relative ease, speed, and biological scope of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Protein9 (Cas9)-based reagents for genomic manipulations are revolutionizing virtually all areas of molecular biosciences, including functional genomics, genetics, applied biomedical research, and agricultural biotechnology. In plant systems, however, a number of hurdles currently exist that limit this technology from reaching its full potential. For example, significant plant molecular biology expertise and effort is still required to generate functional expression constructs that allow simultaneous editing, and especially transcriptional regulation, of multiple different genomic loci or multiplexing, which is a significant advantage of CRISPR/Cas9 versus other genome-editing systems. To streamline and facilitate rapid and wide-scale use of CRISPR/Cas9-based technologies for plant research, we developed and implemented a comprehensive molecular toolbox for multifaceted CRISPR/Cas9 applications in plants. This toolbox provides researchers with a protocol and reagents to quickly and efficiently assemble functional CRISPR/Cas9 transfer DNA constructs for monocots and dicots using Golden Gate and Gateway cloning methods. It comes with a full suite of capabilities, including multiplexed gene editing and transcriptional activation or repression of plant endogenous genes. We report the functionality and effectiveness of this toolbox in model plants such as tobacco (Nicotiana benthamiana), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa), demonstrating its utility for basic and applied plant research. PMID:26297141

  6. Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation.

    PubMed

    Braun, Christian J; Bruno, Peter M; Horlbeck, Max A; Gilbert, Luke A; Weissman, Jonathan S; Hemann, Michael T

    2016-07-01

    Targeted transcriptional regulation is a powerful tool to study genetic mediators of cellular behavior. Here, we show that catalytically dead Cas9 (dCas9) targeted to genomic regions upstream or downstream of the transcription start site allows for specific and sustainable gene-expression level alterations in tumor cells in vitro and in syngeneic immune-competent mouse models. We used this approach for a high-coverage pooled gene-activation screen in vivo and discovered previously unidentified modulators of tumor growth and therapeutic response. Moreover, by using dCas9 linked to an activation domain, we can either enhance or suppress target gene expression simply by changing the genetic location of dCas9 binding relative to the transcription start site. We demonstrate that these directed changes in gene-transcription levels occur with minimal off-target effects. Our findings highlight the use of dCas9-mediated transcriptional regulation as a versatile tool to reproducibly interrogate tumor phenotypes in vivo. PMID:27325776

  7. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system

    PubMed Central

    Liu, Rui; Chen, Ling; Jiang, Yanping; Zhou, Zhihua; Zou, Gen

    2015-01-01

    Filamentous fungi have wide applications in biotechnology. The CRISPR/Cas9 system is a powerful genome-editing method that facilitates genetic alterations of genomes in a variety of organisms. However, a genome-editing approach has not been reported in filamentous fungi. Here, we demonstrated the establishment of a CRISPR/Cas9 system in the filamentous fungus Trichoderma reesei by specific codon optimization and in vitro RNA transcription. It was shown that the CRISPR/Cas9 system was controllable and conditional through inducible Cas9 expression. This system generated site-specific mutations in target genes through efficient homologous recombination, even using short homology arms. This system also provided an applicable and promising approach to targeting multiple genes simultaneously. Our results illustrate that the CRISPR/Cas9 system is a powerful genome-manipulating tool for T. reesei and most likely for other filamentous fungal species, which may accelerate studies on functional genomics and strain improvement in these filamentous fungi.

  8. Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae.

    PubMed

    Hao, Huanhuan; Wang, Xiaofei; Jia, Haiyan; Yu, Miao; Zhang, Xiaoyu; Tang, Hui; Zhang, Liping

    2016-09-15

    Large chromosomal modifications have been performed in natural and laboratory evolution studies and hold tremendous potential for use in foundational research, medicine, and biotechnology applications. Recently, the type II bacterial Clustered Regularly Interspaced Short Palindromic Repeat and CRISPR-associated (CRISPR/Cas9) system has emerged as a powerful tool for genome editing in various organisms. In this study, we applied the CRISPR/Cas9 system to preform large fragment deletions in Saccharomyces cerevisiae and compared the performance activity to that of a traditional method that uses the Latour system. Here we report in S. Cerevisiae the CRIPR/Cas9 system has been used to delete fragments exceeding 30 kb. The use of the CRISPR/Cas9 system for generating chromosomal segment excision showed some potential advantages over the Latour system. All the results indicated that CRISPR/Cas9 system was a rapid, efficient, low-cost, and versatile method for genome editing and that it can be applied in further studies in the fields of biology, agriculture, and medicine. PMID:27402178

  9. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting

    PubMed Central

    Goldberg, Gregory W.; Jiang, Wenyan; Bikard, David; Marraffini, Luciano A.

    2014-01-01

    A fundamental feature of immune systems is the ability to distinguish pathogenic from self and commensal elements, and to attack the former but tolerate the latter1. Prokaryotic CRISPR-Cas immune systems defend against phage infection using Cas nucleases and small RNA guides that specify one or more target sites for cleavage of the viral genome2,3. Temperate phages are viruses that can integrate into the bacterial chromosome, and they can carry genes that provide a fitness advantage to the lysogenic host4,5. However, CRISPR-Cas targeting that relies strictly on DNA sequence recognition provides indiscriminate immunity to both lytic and lysogenic infection by temperate phages6—compromising the genetic stability of these potentially beneficial elements altogether. Here we show that the Staphylococcus epidermidis CRISPR-Cas system can prevent lytic infection but tolerate lysogenization by temperate phages. Conditional tolerance is achieved through transcription-dependent DNA targeting, and ensures that targeting is resumed upon induction of the prophage lytic cycle. Our results provide evidence for the functional divergence of CRISPR-Cas systems and highlight the importance of targeting mechanism diversity. In addition, they extend the concept of ‘tolerance to non-self’ to the prokaryotic branch of adaptive immunity. PMID:25174707

  10. Mullite+CAS Bond Coat for Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Opila, Elizabeth J.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Current environmental barrier coatings (EBCs) for silicon-based ceramics consist of a bond coat and a top coat. Mullite bond coat modified by adding low CTE glass ceramics, such as BSAS (xBaO.1xSrO.Al2O3.2SiO2) or CAS (CaO.Al2O3.2SiO2), was developed in the NASA Enabling Propulsion Materials (EPM) Program. EBCs based on mullite+CAS bond coat were characterized using high steam thermal cycling test and high steam isothermal thermogravemitry (TGA) at 1225 C - 13,000 C. The Mullite+CAS bond coat showed far superior durability compared to mullite bond coat, due to enhanced crack resistance. A BSAS top coat provided further improved durability compared to EBCs with a yttria-stabilized zirconia (YSZ) top coat. Still further improvement in the durability was achieved by adding a silicon bond coat between the mullite and the substrate. However, the silicon/mullite+CAS/BSAS EBC showed inferior long-term durability compared to the current state-of-the art EBC (silicon/mullite+BSAS/BSAS EBC), presumably due to the higher CAS-silica chemical reactivity.

  11. Highly Improved Gene Targeting by Germline-Specific Cas9 Expression in Drosophila

    PubMed Central

    Kondo, Shu; Ueda, Ryu

    2013-01-01

    We report a simple yet extremely efficient platform for systematic gene targeting by the RNA-guided endonuclease Cas9 in Drosophila. The system comprises two transgenic strains: one expressing Cas9 protein from the germline-specific nanos promoter and the other ubiquitously expressing a custom guide RNA (gRNA) that targets a unique site in the genome. The two strains are crossed to form an active Cas9–gRNA complex specifically in germ cells, which cleaves and mutates the target site. We demonstrate rapid generation of mutants in seven neuropeptide and two microRNA genes in which no mutants have been described. Founder animals stably expressing Cas9–gRNA transmitted germline mutations to an average of 60% of their progeny, a dramatic improvement in efficiency over the previous methods based on transient Cas9 expression. Simultaneous cleavage of two sites by co-expression of two gRNAs efficiently induced internal deletion with frequencies of 4.3–23%. Our method is readily scalable to high-throughput gene targeting, thereby accelerating comprehensive functional annotation of the Drosophila genome. PMID:24002648

  12. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation.

    PubMed

    Han, Xin; Liu, Zongbin; Jo, Myeong Chan; Zhang, Kai; Li, Ying; Zeng, Zihua; Li, Nan; Zu, Youli; Qin, Lidong

    2015-08-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) nuclease system represents an efficient tool for genome editing and gene function analysis. It consists of two components: single-guide RNA (sgRNA) and the enzyme Cas9. Typical sgRNA and Cas9 intracellular delivery techniques are limited by their reliance on cell type and exogenous materials as well as their toxic effects on cells (for example, electroporation). We introduce and optimize a microfluidic membrane deformation method to deliver sgRNA and Cas9 into different cell types and achieve successful genome editing. This approach uses rapid cell mechanical deformation to generate transient membrane holes to enable delivery of biomaterials in the medium. We achieved high delivery efficiency of different macromolecules into different cell types, including hard-to-transfect lymphoma cells and embryonic stem cells, while maintaining high cell viability. With the advantages of broad applicability across different cell types, particularly hard-to-transfect cells, and flexibility of application, this method could potentially enable new avenues of biomedical research and gene targeting therapy such as mutation correction of disease genes through combination of the CRISPR-Cas9-mediated knockin system. PMID:26601238

  13. Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors.

    PubMed

    Li, Ling; He, Zhi-Yao; Wei, Xia-Wei; Gao, Guang-Ping; Wei, Yu-Quan

    2015-07-01

    CRISPR/Cas9 genome editing platforms are widely applied as powerful tools in basic research and potential therapeutics for genome regulation. The appropriate alternative of delivery system is critical if genome editing systems are to be effectively performed in the targeted cells or organisms. To date, the in vivo delivery of the Cas9 system remains challenging. Both physical methods and viral vectors are adopted in the delivery of the Cas9-based gene editing platform. However, physical methods are more applicable for in vitro delivery, while viral vectors are generally concerned with safety issues, limited packing capacities, and so on. With the robust development of nonviral drug delivery systems, lipid- or polymer-based nanocarriers might be potent vectors for the delivery of CRISPR/Cas9 systems. In this review, we look back at the delivery approaches that have been used for the delivery of the Cas9 system and outline the recent development of nonviral vectors that might be potential carriers for the genome editing platform in the future. The efforts in optimizing cationic nanocarriers with structural modification are described and promising nonviral vectors under clinical investigations are highlighted. PMID:26176432

  14. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9.

    PubMed

    Carroll, Kelli J; Makarewich, Catherine A; McAnally, John; Anderson, Douglas M; Zentilin, Lorena; Liu, Ning; Giacca, Mauro; Bassel-Duby, Rhonda; Olson, Eric N

    2016-01-12

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart. PMID:26719419

  15. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales.

    PubMed

    Gophna, Uri; Kristensen, David M; Wolf, Yuri I; Popa, Ovidiu; Drevet, Christine; Koonin, Eugene V

    2015-09-01

    The CRISPR (clustered, regularly, interspaced, short, palindromic repeats)-Cas (CRISPR-associated genes) systems of archaea and bacteria provide adaptive immunity against viruses and other selfish elements and are believed to curtail horizontal gene transfer (HGT). Limiting acquisition of new genetic material could be one of the sources of the fitness cost of CRISPR-Cas maintenance and one of the causes of the patchy distribution of CRISPR-Cas among bacteria, and across environments. We sought to test the hypothesis that the activity of CRISPR-Cas in microbes is negatively correlated with the extent of recent HGT. Using three independent measures of HGT, we found no significant dependence between the length of CRISPR arrays, which reflects the activity of the immune system, and the estimated number of recent HGT events. In contrast, we observed a significant negative dependence between the estimated extent of HGT and growth temperature of microbes, which could be explained by the lower genetic diversity in hotter environments. We hypothesize that the relevant events in the evolution of resistance to mobile elements and proclivity for HGT, to which CRISPR-Cas systems seem to substantially contribute, occur on the population scale rather than on the timescale of species evolution. PMID:25710183

  16. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system.

    PubMed

    Xie, Kabin; Minkenberg, Bastian; Yang, Yinong

    2015-03-17

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system is being harnessed as a powerful tool for genome engineering in basic research, molecular therapy, and crop improvement. This system uses a small guide RNA (gRNA) to direct Cas9 endonuclease to a specific DNA site; thus, its targeting capability is largely constrained by the gRNA-expressing device. In this study, we developed a general strategy to produce numerous gRNAs from a single polycistronic gene. The endogenous tRNA-processing system, which precisely cleaves both ends of the tRNA precursor, was engineered as a simple and robust platform to boost the targeting and multiplex editing capability of the CRISPR/Cas9 system. We demonstrated that synthetic genes with tandemly arrayed tRNA-gRNA architecture were efficiently and precisely processed into gRNAs with desired 5' targeting sequences in vivo, which directed Cas9 to edit multiple chromosomal targets. Using this strategy, multiplex genome editing and chromosomal-fragment deletion were readily achieved in stable transgenic rice plants with a high efficiency (up to 100%). Because tRNA and its processing system are virtually conserved in all living organisms, this method could be broadly used to boost the targeting capability and editing efficiency of CRISPR/Cas9 toolkits. PMID:25733849

  17. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system

    PubMed Central

    Xie, Kabin; Minkenberg, Bastian

    2015-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system is being harnessed as a powerful tool for genome engineering in basic research, molecular therapy, and crop improvement. This system uses a small guide RNA (gRNA) to direct Cas9 endonuclease to a specific DNA site; thus, its targeting capability is largely constrained by the gRNA-expressing device. In this study, we developed a general strategy to produce numerous gRNAs from a single polycistronic gene. The endogenous tRNA-processing system, which precisely cleaves both ends of the tRNA precursor, was engineered as a simple and robust platform to boost the targeting and multiplex editing capability of the CRISPR/Cas9 system. We demonstrated that synthetic genes with tandemly arrayed tRNA–gRNA architecture were efficiently and precisely processed into gRNAs with desired 5′ targeting sequences in vivo, which directed Cas9 to edit multiple chromosomal targets. Using this strategy, multiplex genome editing and chromosomal-fragment deletion were readily achieved in stable transgenic rice plants with a high efficiency (up to 100%). Because tRNA and its processing system are virtually conserved in all living organisms, this method could be broadly used to boost the targeting capability and editing efficiency of CRISPR/Cas9 toolkits. PMID:25733849

  18. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting.

    PubMed

    Goldberg, Gregory W; Jiang, Wenyan; Bikard, David; Marraffini, Luciano A

    2014-10-30

    A fundamental feature of immune systems is the ability to distinguish pathogenic from self and commensal elements, and to attack the former but tolerate the latter. Prokaryotic CRISPR-Cas immune systems defend against phage infection by using Cas nucleases and small RNA guides that specify one or more target sites for cleavage of the viral genome. Temperate phages include viruses that can integrate into the bacterial chromosome, and they can carry genes that provide a fitness advantage to the lysogenic host. However, CRISPR-Cas targeting that relies strictly on DNA sequence recognition provides indiscriminate immunity both to lytic and lysogenic infection by temperate phages-compromising the genetic stability of these potentially beneficial elements altogether. Here we show that the Staphylococcus epidermidis CRISPR-Cas system can prevent lytic infection but tolerate lysogenization by temperate phages. Conditional tolerance is achieved through transcription-dependent DNA targeting, and ensures that targeting is resumed upon induction of the prophage lytic cycle. Our results provide evidence for the functional divergence of CRISPR-Cas systems and highlight the importance of targeting mechanism diversity. In addition, they extend the concept of 'tolerance to non-self' to the prokaryotic branch of adaptive immunity. PMID:25174707

  19. No evidence of inhibition of horizontal gene transfer by CRISPR–Cas on evolutionary timescales

    PubMed Central

    Gophna, Uri; Kristensen, David M; Wolf, Yuri I; Popa, Ovidiu; Drevet, Christine; Koonin, Eugene V

    2015-01-01

    The CRISPR (clustered, regularly, interspaced, short, palindromic repeats)–Cas (CRISPR-associated genes) systems of archaea and bacteria provide adaptive immunity against viruses and other selfish elements and are believed to curtail horizontal gene transfer (HGT). Limiting acquisition of new genetic material could be one of the sources of the fitness cost of CRISPR–Cas maintenance and one of the causes of the patchy distribution of CRISPR–Cas among bacteria, and across environments. We sought to test the hypothesis that the activity of CRISPR–Cas in microbes is negatively correlated with the extent of recent HGT. Using three independent measures of HGT, we found no significant dependence between the length of CRISPR arrays, which reflects the activity of the immune system, and the estimated number of recent HGT events. In contrast, we observed a significant negative dependence between the estimated extent of HGT and growth temperature of microbes, which could be explained by the lower genetic diversity in hotter environments. We hypothesize that the relevant events in the evolution of resistance to mobile elements and proclivity for HGT, to which CRISPR–Cas systems seem to substantially contribute, occur on the population scale rather than on the timescale of species evolution. PMID:25710183

  20. CRISPR-Cas9 nuclear dynamics and target recognition in living cells.

    PubMed

    Ma, Hanhui; Tu, Li-Chun; Naseri, Ardalan; Huisman, Maximiliaan; Zhang, Shaojie; Grunwald, David; Pederson, Thoru

    2016-08-29

    The bacterial CRISPR-Cas9 system has been repurposed for genome engineering, transcription modulation, and chromosome imaging in eukaryotic cells. However, the nuclear dynamics of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) guide RNAs and target interrogation are not well defined in living cells. Here, we deployed a dual-color CRISPR system to directly measure the stability of both Cas9 and guide RNA. We found that Cas9 is essential for guide RNA stability and that the nuclear Cas9-guide RNA complex levels limit the targeting efficiency. Fluorescence recovery after photobleaching measurements revealed that single mismatches in the guide RNA seed sequence reduce the target residence time from >3 h to as low as <2 min in a nucleotide identity- and position-dependent manner. We further show that the duration of target residence correlates with cleavage activity. These results reveal that CRISPR discriminates between genuine versus mismatched targets for genome editing via radical alterations in residence time. PMID:27551060

  1. Extending the Alternating Series Test

    ERIC Educational Resources Information Center

    Katsuura, Hidefumi

    2012-01-01

    Alternating series have the simplest of sign patterns. What about series with more complicated patterns? By inspecting the alternating series test closely, we find a theorem that applies to more complicated sign patterns, and beyond.

  2. Anchoring the Distance Scale via X-Ray/Infrared Data for Cepheid Clusters: SU Cas

    NASA Astrophysics Data System (ADS)

    Majaess, D.; Turner, D. G.; Gallo, L.; Gieren, W.; Bonatto, C.; Lane, D. J.; Balam, D.; Berdnikov, L.

    2012-07-01

    New X-ray (XMM-Newton) and JHKs (Observatoire du Mont-Mégantic) observations for members of the star cluster Alessi 95, which Turner et al. discovered hosts the classical Cepheid SU Cas, were used in tandem with UCAC3 (proper motion) and Two Micron All Sky Survey observations to determine precise cluster parameters: E(J - H) = 0.08 ± 0.02 and d = 405 ± 15 pc. The ensuing consensus among cluster, pulsation, and trigonometric distances (d=414+/- 5(\\sigma _{\\bar{x}}) +/- 10 (\\sigma) pc) places SU Cas in a select group of nearby fundamental Cepheid calibrators (δ Cep, ζ Gem). High-resolution X-ray observations may be employed to expand that sample as the data proved pertinent for identifying numerous stars associated with SU Cas. Acquiring X-ray observations of additional fields may foster efforts to refine Cepheid calibrations used to constrain H 0.

  3. [Application of CRISPR-Cas9 genome editing for constructing animal models of human diseases].

    PubMed

    Ou, Zhanhui; Sun, Xiaofang

    2016-08-10

    The CRISPR-Cas9 system is a new targeted nuclease for genome editing, which can directly introduce modifications at the targeted genomic locus. The system utilizes a short single guide RNA (sgRNA) to direct the endonuclease Cas9 in the genome. Upon targeting, Cas9 can generate DNA double-strand breaks (DSBs). As such DSBs are repaired by non-homologous end joining (NHEJ) or homology directed repair (HDR), therefore facilitates introduction of random or specific mutations, repair of endogenous mutations, or insertion of DNA elements. The system has been successfully used to generate gene targeted cell lines including those of human, animals and plants. This article reviews recent advances made in this rapidly evolving technique for the generation of animal models for human diseases. PMID:27455021

  4. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research.

    PubMed

    Liu, Degao; Hu, Rongbin; Palla, Kaitlin J; Tuskan, Gerald A; Yang, Xiaohan

    2016-04-01

    Genome editing with site-specific nucleases has become a powerful tool for functional characterization of plant genes and genetic improvement of agricultural crops. Among the various site-specific nuclease-based technologies available for genome editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems have shown the greatest potential for rapid and efficient editing of genomes in plant species. This article reviews the current status of application of CRISPR/Cas9 to plant genomics research, with a focus on loss-of-function and gain-of-function analysis of individual genes in the context of perennial plants and the potential application of CRISPR/Cas9 to perturbation of gene expression, and identification and analysis of gene modules as part of an accelerated domestication and synthetic biology effort. PMID:26896588

  5. ANCHORING THE DISTANCE SCALE VIA X-RAY/INFRARED DATA FOR CEPHEID CLUSTERS: SU Cas

    SciTech Connect

    Majaess, D.; Turner, D. G.; Gallo, L.; Lane, D. J.; Gieren, W.; Bonatto, C.; Balam, D.; Berdnikov, L.

    2012-07-10

    New X-ray (XMM-Newton) and JHK{sub s} (Observatoire du Mont-Megantic) observations for members of the star cluster Alessi 95, which Turner et al. discovered hosts the classical Cepheid SU Cas, were used in tandem with UCAC3 (proper motion) and Two Micron All Sky Survey observations to determine precise cluster parameters: E(J - H) = 0.08 {+-} 0.02 and d = 405 {+-} 15 pc. The ensuing consensus among cluster, pulsation, and trigonometric distances (d=414{+-}5({sigma}{sub x}-bar){+-}10 ({sigma}) pc) places SU Cas in a select group of nearby fundamental Cepheid calibrators ({delta} Cep, {zeta} Gem). High-resolution X-ray observations may be employed to expand that sample as the data proved pertinent for identifying numerous stars associated with SU Cas. Acquiring X-ray observations of additional fields may foster efforts to refine Cepheid calibrations used to constrain H{sub 0}.

  6. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements.

    PubMed

    Karvelis, Tautvydas; Gasiunas, Giedrius; Young, Joshua; Bigelyte, Greta; Silanskas, Arunas; Cigan, Mark; Siksnys, Virginijus

    2015-01-01

    To expand the repertoire of Cas9s available for genome targeting, we present a new in vitro method for the simultaneous examination of guide RNA and protospacer adjacent motif (PAM) requirements. The method relies on the in vitro cleavage of plasmid libraries containing a randomized PAM as a function of Cas9-guide RNA complex concentration. Using this method, we accurately reproduce the canonical PAM preferences for Streptococcus pyogenes, Streptococcus thermophilus CRISPR3 (Sth3), and CRISPR1 (Sth1). Additionally, PAM and sgRNA solutions for a novel Cas9 protein from Brevibacillus laterosporus are provided by the assay and are demonstrated to support functional activity in vitro and in plants. PMID:26585795

  7. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering

    PubMed Central

    Zhang, Xiao-Hui; Tee, Louis Y; Wang, Xiao-Gang; Huang, Qun-Shan; Yang, Shi-Hua

    2015-01-01

    CRISPR/Cas9 is a versatile genome-editing technology that is widely used for studying the functionality of genetic elements, creating genetically modified organisms as well as preclinical research of genetic disorders. However, the high frequency of off-target activity (≥50%)—RGEN (RNA-guided endonuclease)-induced mutations at sites other than the intended on-target site—is one major concern, especially for therapeutic and clinical applications. Here, we review the basic mechanisms underlying off-target cutting in the CRISPR/Cas9 system, methods for detecting off-target mutations, and strategies for minimizing off-target cleavage. The improvement off-target specificity in the CRISPR/Cas9 system will provide solid genotype–phenotype correlations, and thus enable faithful interpretation of genome-editing data, which will certainly facilitate the basic and clinical application of this technology. PMID:26575098

  8. CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast.

    PubMed

    Walter, Jessica M; Chandran, Sunil S; Horwitz, Andrew A

    2016-12-01

    Demands on the industrial and academic yeast strain engineer have increased significantly in the era of synthetic biology. Installing complex biosynthetic pathways and combining point mutations are tedious and time-consuming using traditional methods. With multiplex engineering tools, these tasks can be completed in a single step, typically achieving up to sixfold compression in strain engineering timelines. To capitalize on this potential, a variety of yeast CRISPR-Cas methods have been developed, differing largely in how the guide RNA (gRNA) reagents that direct the Cas9 nuclease are delivered. However, in nearly all reported protocols, the time savings of multiplexing is offset by multiple days of cloning to prepare the required reagents. Here, we discuss the advantages and opportunities of CRISPR-Cas-assisted multiplexing (CAM), a same-day, cloning-free method for multi-locus engineering in yeast. J. Cell. Physiol. 231: 2563-2569, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991244

  9. Evolution of an archaeal virus nucleocapsid protein from the CRISPR-associated Cas4 nuclease.

    PubMed

    Krupovic, Mart; Cvirkaite-Krupovic, Virginija; Prangishvili, David; Koonin, Eugene V

    2015-01-01

    Many proteins of viruses infecting hyperthermophilic Crenarchaeota have no detectable homologs in current databases, hampering our understanding of viral evolution. We used sensitive database search methods and structural modeling to show that a nucleocapsid protein (TP1) of Thermoproteus tenax virus 1 (TTV1) is a derivative of the Cas4 nuclease, a component of the CRISPR-Cas adaptive immunity system that is encoded also by several archaeal viruses. In TTV1, the Cas4 gene was split into two, with the N-terminal portion becoming TP1, and lost some of the catalytic amino acid residues, apparently resulting in the inactivation of the nuclease. To our knowledge, this is the first described case of exaptation of an enzyme for a virus capsid protein function. PMID:26514828

  10. Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9.

    PubMed

    Chakrapani, Vemulawada; Patra, Swagat Kumar; Panda, Rudra Prasanna; Rasal, Kiran Dashrath; Jayasankar, Pallipuram; Barman, Hirak Kumar

    2016-08-01

    Recent advances in gene editing techniques have not been exploited in farmed fishes. We established a gene targeting technique, using the CRISPR/Cas9 system in Labeo rohita, a farmed carp (known as rohu). We demonstrated that donor DNA was integrated via homologous recombination (HR) at the site of targeted double-stranded nicks created by CRISPR/Cas9 nuclease. This resulted in the successful disruption of rohu Toll-like receptor 22 (TLR22) gene, involved in innate immunity and exclusively present in teleost fishes and amphibians. The null mutant, thus, generated lacked TLR22 mRNA expression. Altogether, this is the first evidence that the CRISPR/Cas9 system is a highly efficient tool for targeted gene disruption via HR in teleosts for generating model large-bodied farmed fishes. PMID:27079451

  11. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems.

    PubMed

    Burstein, David; Sun, Christine L; Brown, Christopher T; Sharon, Itai; Anantharaman, Karthik; Probst, Alexander J; Thomas, Brian C; Banfield, Jillian F

    2016-01-01

    Current understanding of microorganism-virus interactions, which shape the evolution and functioning of Earth's ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation-independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. We correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides. PMID:26837824

  12. Tandem repeat knockout utilizing the CRISPR/Cas9 system in human cells.

    PubMed

    Lv, Qingyan; Lai, Liangxue; Yuan, Lin; Song, Yuning; Sui, Tingting; Li, Zhanjun

    2016-05-15

    Tandem repeats have been shown to cause human genetic diseases and contribute significantly to genome variation and instability. Although multi-sgRNAs mediated CRISPR/Cas9 system have used to generate regional deletions previously, in this study we explored a method of generating regional deletions of tandem repeats by taking advantage of the off-target effects of CRISPR/Cas9 in 293FT cells. Our results revealed that generation of large-fragment deletions of tandem repeats located in the MAGEL2 and XIST gene was possible. In summary, we have demonstrated that large-fragment deletions of tandem repeats can be achieved using a sgRNA-directed CRISPR/Cas9 system, facilitating the functional study of tandem repeats in future studies. PMID:26873114

  13. The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans.

    PubMed

    Li, Wei; Ou, Guangshuo

    2016-04-01

    Forward and reverse genetic approaches have been well developed in the nematode Caenorhabditis elegans; however, efficient genetic tools to generate conditional gene mutations are still in high demand. Recently, the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR-Cas9) system for genome modification has provided an additional tool for C. elegans researchers to achieve simple and efficient conditional targeted mutagenesis. Here, we review recent advances in the somatic expression of Cas9 endonuclease for conditional gene editing. We present some practical considerations for improving the efficiency and reducing the off-target effects of somatic CRISPR-Cas9 and highlight a strategy to analyze somatic mutation at single-cell resolution. Finally, we outline future applications and consider challenges for this emerging genome editing platform that will need to be addressed in the future. PMID:26934570

  14. Exploiting the CRISPR/Cas9 PAM Constraint for Single-Nucleotide Resolution Interventions

    PubMed Central

    Li, Yi; Mendiratta, Saurabh; Ehrhardt, Kristina; Kashyap, Neha; White, Michael A.; Bleris, Leonidas

    2016-01-01

    CRISPR/Cas9 is an enabling RNA-guided technology for genome targeting and engineering. An acute DNA binding constraint of the Cas9 protein is the Protospacer Adjacent Motif (PAM). Here we demonstrate that the PAM requirement can be exploited to specifically target single-nucleotide heterozygous mutations while exerting no aberrant effects on the wild-type alleles. Specifically, we target the heterozygous G13A activating mutation of KRAS in colorectal cancer cells and we show reversal of drug resistance to a MEK small-molecule inhibitor. Our study introduces a new paradigm in genome editing and therapeutic targeting via the use of gRNA to guide Cas9 to a desired protospacer adjacent motif. PMID:26788852

  15. CRISPR/Cas9-Mediated Genome Editing of Mouse Small Intestinal Organoids.

    PubMed

    Schwank, Gerald; Clevers, Hans

    2016-01-01

    The CRISPR/Cas9 system is an RNA-guided genome-editing tool that has been recently developed based on the bacterial CRISPR-Cas immune defense system. Due to its versatility and simplicity, it rapidly became the method of choice for genome editing in various biological systems, including mammalian cells. Here we describe a protocol for CRISPR/Cas9-mediated genome editing in murine small intestinal organoids, a culture system in which somatic stem cells are maintained by self-renewal, while giving rise to all major cell types of the intestinal epithelium. This protocol allows the study of gene function in intestinal epithelial homeostasis and pathophysiology and can be extended to epithelial organoids derived from other internal mouse and human organs. PMID:27246017

  16. Transgene-free genome editing by germline injection of CRISPR/Cas RNA.

    PubMed

    Schwartz, Hillel T; Sternberg, Paul W

    2014-01-01

    Genome modification by CRISPR/Cas offers its users the ability to target endogenous sites in the genome for cleavage and for engineering precise genomic changes using template-directed repair, all with unprecedented ease and flexibility of targeting. As such, CRISPR/Cas is just part of a set of recently developed and rapidly improving tools that offer great potential for researchers to functionally access the genomes of organisms that have not previously been extensively used in a laboratory setting. We describe in detail protocols for using CRISPR/Cas to target genes of experimental organisms, in a manner that does not require transformation to obtain transgenic lines and that should be readily applicable to a wide range of previously little-studied species. PMID:25398352

  17. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    PubMed Central

    Burstein, David; Sun, Christine L.; Brown, Christopher T.; Sharon, Itai; Anantharaman, Karthik; Probst, Alexander J.; Thomas, Brian C.; Banfield, Jillian F.

    2016-01-01

    Current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth's ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation-independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. We correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides. PMID:26837824

  18. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins.

    PubMed

    Baek, Kwangryul; Kim, Duk Hyoung; Jeong, Jooyeon; Sim, Sang Jun; Melis, Anastasios; Kim, Jin-Soo; Jin, EonSeon; Bae, Sangsu

    2016-01-01

    Microalgae are versatile organisms capable of converting CO2, H2O, and sunlight into fuel and chemicals for domestic and industrial consumption. Thus, genetic modifications of microalgae for enhancing photosynthetic productivity, and biomass and bio-products generation are crucial for both academic and industrial applications. However, targeted mutagenesis in microalgae with CRISPR-Cas9 is limited. Here we report, a one-step transformation of Chlamydomonas reinhardtii by the DNA-free CRISPR-Cas9 method rather than plasmids that encode Cas9 and guide RNAs. Outcome was the sequential CpFTSY and ZEP two-gene knockout and the generation of a strain constitutively producing zeaxanthin and showing improved photosynthetic productivity. PMID:27466170

  19. Delivery and Specificity of CRISPR-Cas9 Genome Editing Technologies for Human Gene Therapy.

    PubMed

    Gori, Jennifer L; Hsu, Patrick D; Maeder, Morgan L; Shen, Shen; Welstead, G Grant; Bumcrot, David

    2015-07-01

    Genome editing using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated 9 (Cas9) technology is revolutionizing the study of gene function and likely will give rise to an entire new class of therapeutics for a wide range of diseases. Achieving this goal requires not only characterization of the technology for efficacy and specificity but also optimization of its delivery to the target cells for each disease indication. In this review we survey the various methods by which the CRISPR-Cas9 components have been delivered to cells and highlight some of the more clinically relevant approaches. Additionally, we discuss the methods available for assessing the specificity of Cas9 editing; an important safety consideration for development of the technology. PMID:26068008

  20. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery.

    PubMed

    Bolukbasi, Mehmet Fatih; Gupta, Ankit; Wolfe, Scot A

    2016-01-01

    The simplicity of site-specific genome targeting by type II clustered, regularly interspaced, short palindromic repeat (CRISPR)-Cas9 nucleases, along with their robust activity profile, has changed the landscape of genome editing. These favorable properties have made the CRISPR-Cas9 system the technology of choice for sequence-specific modifications in vertebrate systems. For many applications, whether the focus is on basic science investigations or therapeutic efficacy, activity and precision are important considerations when one is choosing a nuclease platform, target site and delivery method. Here we review recent methods for increasing the activity and accuracy of Cas9 and assessing the extent of off-target cleavage events. PMID:26716561