Science.gov

Sample records for serine proteases analysis

  1. Identification and structural analysis of four serine proteases in a monotreme, the platypus, Ornithorhynchus anatinus.

    PubMed

    Poorafshar, M; Aveskogh, M; Munday, B; Hellman, L

    2000-11-01

    To study the emergence of the major subfamilies of serine proteases during vertebrate evolution, we present here the primary structure of four serine proteases expressed in the spleen of a monotreme, the platypus, Ornithorhynchus anatinus. Partial cDNA clones for four serine proteases were isolated by a PCR-based strategy. This strategy is based on the high level of sequence identity between various members of the large gene family of trypsin-related serine proteases, over two highly conserved regions, those of the histidine and the serine of the catalytic triad. The partial cDNA clones were used to isolate full-length or almost full-length cDNA clones for three of these proteases from a platypus spleen cDNA library. By phylogenetic analysis, these three clones were identified as being the platypus homologues of human coagulation factor X, neutrophil elastase, and a protease distantly related to the T-cell granzymes. The remaining partial clone was found to represent a close homologue of human complement factor D (adipsin). The isolation of these four clones shows that several of the major subfamilies of serine proteases had evolved as separate subfamilies long before the radiation of the major mammalian lineages of today, the monotremes, the marsupials, and the placental mammals. Upon comparison of the corresponding proteases of monotremes and eutherian mammals, the coagulation and complement proteases were shown to display a higher degree of conservation compared to the hematopoietic proteases N-elastase and the T-cell granzymes. This latter finding indicates a higher evolutionary pressure to maintain specific functions in the complement and coagulation enzymes compared to many of the hematopoietic serine proteases. PMID:11132153

  2. Serine proteases of parasitic helminths.

    PubMed

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-02-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  3. Serine Proteases of Parasitic Helminths

    PubMed Central

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-01-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  4. Cloning, expression and activity analysis of a novel fibrinolytic serine protease from Arenicola cristata

    NASA Astrophysics Data System (ADS)

    Zhao, Chunling; Ju, Jiyu

    2015-06-01

    The full-length cDNA of a protease gene from a marine annelid Arenicola cristata was amplified through rapid amplification of cDNA ends technique and sequenced. The size of the cDNA was 936 bp in length, including an open reading frame encoding a polypeptide of 270 amino acid residues. The deduced amino acid sequnce consisted of pro- and mature sequences. The protease belonged to the serine protease family because it contained the highly conserved sequence GDSGGP. This protease was novel as it showed a low amino acid sequence similarity (< 40%) to other serine proteases. The gene encoding the active form of A. cristata serine protease was cloned and expressed in E. coli. Purified recombinant protease in a supernatant could dissolve an artificial fibrin plate with plasminogen-rich fibrin, whereas the plasminogen-free fibrin showed no clear zone caused by hydrolysis. This result suggested that the recombinant protease showed an indirect fibrinolytic activity of dissolving fibrin, and was probably a plasminogen activator. A rat model with venous thrombosis was established to demonstrate that the recombinant protease could also hydrolyze blood clot in vivo. Therefore, this recombinant protease may be used as a thrombolytic agent for thrombosis treatment. To our knowledge, this study is the first of reporting the fibrinolytic serine protease gene in A. cristata.

  5. Microarray analysis reveals strategies of Tribolium castaneum larvae to compensate for cysteine and serine protease inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microarrays containing Tribolium castaneum whole-genome sequences were developed to study the transcriptome response of T. castaneum larvae to dietary protease inhibitors. In larvae fed diets containing 0.1% of the cysteine protease inhibitor E-64 alone or in combination with 5.0% of the serine pro...

  6. Comprehensive Analysis of a Vibrio parahaemolyticus Strain Extracellular Serine Protease VpSP37

    PubMed Central

    Bennici, Carmelo; Quatrini, Paola; Catania, Valentina; Mazzola, Salvatore; Ghersi, Giulio; Cuttitta, Angela

    2015-01-01

    Proteases play an important role in the field of tissue dissociation combined with regenerative medicine. During the years new sources of proteolytic enzymes have been studied including proteases from different marine organisms both eukaryotic and prokaryotic. Herein we have purified a secreted component of an isolate of Vibrio parahaemolyticus, with electrophoretic mobilities corresponding to 36 kDa, belonging to the serine proteases family. Sequencing of the N-terminus enabled the in silico identification of the whole primary structure consisting of 345 amino acid residues with a calculated molecular mass of 37.4 KDa. The purified enzyme, named VpSP37, contains a Serine protease domain between residues 35 and 276 and a canonical Trypsin/Chimotrypsin 3D structure. Functional assays were performed to evaluate protease activity of purified enzyme. Additionally the performance of VpSP37 was evaluated in tissue dissociations experiments and the use of such enzyme as a component of enzyme blend for tissue dissociation procedures is strongly recommended. PMID:26162075

  7. Neuroserpin, an axonally secreted serine protease inhibitor.

    PubMed Central

    Osterwalder, T; Contartese, J; Stoeckli, E T; Kuhn, T B; Sonderegger, P

    1996-01-01

    We have identified and chromatographically purified an axonally secreted glycoprotein of CNS and PNS neurons. Several peptides derived from it were microsequenced. Based on these sequences, a fragment of the corresponding cDNA was amplified and used as a probe to isolate a full length cDNA from a chicken brain cDNA library. Because the deduced amino acid sequence qualified the protein as a novel member of the serpin family of serine protease inhibitors, we called it neuroserpin. Analysis of the primary structural features further characterized neuroserpin as a heparin-independent, functional inhibitor of a trypsin-like serine protease. In situ hybridization revealed a predominantly neuronal expression during the late stages of neurogenesis and in the adult brain in regions which exhibit synaptic plasticity. Thus, neuroserpin might function as an axonally secreted regulator of the local extracellular proteolysis involved in the reorganization of the synaptic connectivity during development and synapse plasticity in the adult. Images PMID:8670795

  8. Cloning and analysis of a Trichinella pseudospiralis muscle larva secreted serine protease gene

    PubMed Central

    Cwiklinski, Krystyna; Meskill, Diana; Robinson, Mark W.; Pozio, E.; Appleton, Judith A.; Connolly, Bernadette

    2009-01-01

    Nematode parasites of the genus Trichinella are intracellular and distinct life cycle stages invade intestinal epithelial and skeletal muscle cells. Within the genus, Trichinella spiralis and Trichinella pseudospiralis exhibit species-specific differences with respect to host-parasite complex formation and host immune modulation. Parasite excretory-secretory (ES) proteins play important roles at the host-parasite interface and are thought to underpin these differences in biology. Serine proteases are among the most abundant group of T. spiralis ES proteins and multiple isoforms of the muscle larvae-specific TspSP-1 serine protease have been identified. Recently, a similar protein (TppSP-1) in T. pseudospiralis muscle larvae was identified. Here we report the cloning and characterisation of the full-length transcript of TppSP-1 and present comparative data between TspSP-1 and TppSP-1. PMID:19054614

  9. Cloning and analysis of a Trichinella pseudospiralis muscle larva secreted serine protease gene.

    PubMed

    Cwiklinski, Krystyna; Meskill, Diana; Robinson, Mark W; Pozio, Eduardo; Appleton, Judith A; Connolly, Bernadette

    2009-02-23

    Nematode parasites of the genus Trichinella are intracellular and distinct life cycle stages invade intestinal epithelial and skeletal muscle cells. Within the genus, Trichinella spiralis and Trichinella pseudospiralis exhibit species-specific differences with respect to host-parasite complex formation and host immune modulation. Parasite excretory-secretory (ES) proteins play important roles at the host-parasite interface and are thought to underpin these differences in biology. Serine proteases are among the most abundant group of T. spiralis ES proteins and multiple isoforms of the muscle larvae-specific TspSP-1 serine protease have been identified. Recently, a similar protein (TppSP-1) in T. pseudospiralis muscle larvae was identified. Here we report the cloning and characterisation of the full-length transcript of TppSP-1 and present comparative data between TspSP-1 and TppSP-1. PMID:19054614

  10. Serine protease variants encoded by Echis ocellatus venom gland cDNA: cloning and sequencing analysis.

    PubMed

    Hasson, S S; Mothana, R A; Sallam, T A; Al-balushi, M S; Rahman, M T; Al-Jabri, A A

    2010-01-01

    Envenoming by Echis saw-scaled viper is the leading cause of death and morbidity in Africa due to snake bite. Despite its medical importance, there have been few investigations into the toxin composition of the venom of this viper. Here, we report the cloning of cDNA sequences encoding four groups or isoforms of the haemostasis-disruptive Serine protease proteins (SPs) from the venom glands of Echis ocellatus. All these SP sequences encoded the cysteine residues scaffold that form the 6-disulphide bonds responsible for the characteristic tertiary structure of venom serine proteases. All the Echis ocellatus EoSP groups showed varying degrees of sequence similarity to published viper venom SPs. However, these groups also showed marked intercluster sequence conservation across them which were significantly different from that of previously published viper SPs. Because viper venom SPs exhibit a high degree of sequence similarity and yet exert profoundly different effects on the mammalian haemostatic system, no attempt was made to assign functionality to the new Echis ocellatus EoSPs on the basis of sequence alone. The extraordinary level of interspecific and intergeneric sequence conservation exhibited by the Echis ocellatus EoSPs and analogous serine proteases from other viper species leads us to speculate that antibodies to representative molecules should neutralise (that we will exploit, by epidermal DNA immunization) the biological function of this important group of venom toxins in vipers that are distributed throughout Africa, the Middle East, and the Indian subcontinent. PMID:20936075

  11. Molecular Genetic Analysis of Midgut Serine Proteases in Aedes aegypti Mosquitoes

    PubMed Central

    Isoe, Jun; Rascón, Alberto A.; Kunz, Susan; Miesfeld, Roger L.

    2009-01-01

    Digestion of blood meal proteins by midgut proteases provides anautogenous mosquitoes with the nutrients required to complete the gonotrophic cycle. Inhibition of protein digestion in the midgut of blood feeding mosquitoes could therefore provide a strategy for population control. Based on recent reports indicating that the mechanism and regulation of protein digestion in blood fed female Aedes aegypti mosquitoes is more complex than previously thought, we used a robust RNAi knockdown method to investigate the role of four highly expressed midgut serine proteases in blood meal metabolism. We show by Western blotting that the early phase trypsin protein (AaET) is maximally expressed at 3 h post blood meal (PBM), and that AaET is not required for the protein expression of three late phase serine proteases, AaLT (late trypsin), AaSPVI (5G1), and AaSPVII. Using the trypsin substrate analog BApNA to analyze in vitro enzyme activity in midgut extracts from single mosquitoes, we found that knockdown of AaSPVI expression caused a 77.6% decrease in late phase trypsin-like activity, whereas, knockdown of AaLT and AaSPVII expression had no significant effect on BApNA activity. In contrast, injection of AaLT, AaSPVI, and AaSPVII dsRNA inhibited degradation of endogenous serum albumin protein using an in vivo protease assay, as well as, significantly decreased egg production in both the first and second gonotrophic cycles (p<0.001). These results demonstrate that AaLT, AaSPVI, and AaSPVII all contribute to blood protein digestion and oocyte maturation, even though AaSPVI is the only abundant midgut late phase serine protease that appears to function as a classic trypsin enzyme. PMID:19883761

  12. Neutral serine proteases of neutrophils.

    PubMed

    Kettritz, Ralph

    2016-09-01

    Neutrophil serine proteases (NSPs) exercise tissue-degrading and microbial-killing effects. The spectrum of NSP-mediated functions grows continuously, not least because of methodological progress. Sensitive and specific FRET substrates were developed to study the proteolytic activity of each NSP member. Advanced biochemical methods are beginning to characterize common and specific NSP substrates. The resulting novel information indicates that NSPs contribute not only to genuine inflammatory neutrophil functions but also to autoimmunity, metabolic conditions, and cancer. Tight regulatory mechanisms control the proteolytic potential of NSPs. However, not all NSP functions depend on their enzymatic activity. Proteinase-3 (PR3) is somewhat unique among the NSPs for PR3 functions as an autoantigen. Patients with small-vessel vasculitis develop autoantibodies to PR3 that bind their target antigens on the neutrophil surface and trigger neutrophil activation. These activated cells subsequently contribute to vascular necrosis with life-threatening multiorgan failure. This article discusses various aspects of NSP biology and highlights translational aspects with strong clinical implications. PMID:27558338

  13. Analysis of the serine protease function of porcine factor I produced by liver cells for xenotransplantation.

    PubMed

    Nakahata, Kengo; Matsunami, Katsuyoshi; Kobayashi, Chizuko; Omori, Takeshi; Xu, Hengjie; Firdawes, Sabere; Fukuzawa, Masahiro; Miyagawa, Shuji

    2008-04-01

    The use of a bioartificial liver with pig liver cells in the treatment of fulminant hepatic failure has already begun as a clinical trial in several countries. Therefore, studies on plasma complement regulatory proteins of the pig are necessary, because the liver produces them. Complement factor I is a serine protease that cleaves C3b and C4b. The DNA sequences of factor I have been reported in many species, with the noted exception of pigs. In this study, porcine factor I was cloned and an open reading frame of 1794 base pairs were identified. The predicted amino acid sequence maintained a relatively high homology compared to those of other mammals, especially in the serine protease (SP) region. The cell membrane-bound forms of the porcine and the human SP domain of factor I were constructed. Amelioration of complement-mediated cell lysis by these molecules was then tested, using several kinds of sera and Chinese hamster ovary (CHO) cell transfectants. Both molecules had a suppressing effect on pig, human and dog complements, indicating little species-specificity. Further studies of other plasma complement regulatory proteins produced from pig liver cells will need to be considered as the primary feature of the pig bioartificial liver. PMID:18346635

  14. Cleavage Specificity Analysis of Six Type II Transmembrane Serine Proteases (TTSPs) Using PICS with Proteome-Derived Peptide Libraries

    PubMed Central

    Béliveau, François; Leduc, Richard; Overall, Christopher M.

    2014-01-01

    Background Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. Methodology/Principal Finding To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. Conclusions Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity. PMID:25211023

  15. Phosphoramidates as novel activity-based probes for serine proteases.

    PubMed

    Haedke, Ute R; Frommel, Sandra C; Hansen, Fabian; Hahne, Hannes; Kuster, Bernhard; Bogyo, Matthew; Verhelst, Steven H L

    2014-05-26

    Activity-based probes (ABPs) are small molecules that exclusively form covalent bonds with catalytically active enzymes. In the last decade, they have especially been used in functional proteomics studies of proteases. Here, we present phosphoramidate peptides as a novel type of ABP for serine proteases. These molecules can be made in a straightforward manner by standard Fmoc-based solid-phase peptide synthesis, allowing rapid diversification. The resulting ABPs covalently bind different serine proteases, depending on the amino acid recognition element adjacent to the reactive group. A reporter tag enables downstream gel-based analysis or LC-MS/MS-mediated identification of the targeted proteases. Overall, we believe that these readily accessible probes will provide new avenues for the functional study of serine proteases in complex proteomes. PMID:24817682

  16. Serine protease inhibitors of parasitic helminths.

    PubMed

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships. PMID:22310379

  17. Transcriptional analysis of an immune-responsive serine protease from Indian malarial vector, Anopheles culicifacies

    PubMed Central

    Rodrigues, Janneth; Agrawal, Neema; Sharma, Anil; Malhotra, Pawan; Adak, Tridibes; Chauhan, Virander S; Bhatnagar, Raj K

    2007-01-01

    Background The main vector for transmission of malaria in India is the Anopheles culicifacies mosquito species, a naturally selected subgroup of which is completely refractory (R) to transmission of the malaria parasite, Plasmodium vivax; Results Here, we report the molecular characterization of a serine protease (acsp30)-encoding gene from A. culicifacies, which was expressed in high abundance in the refractory strain compared to the susceptible (S) strain. The transcriptional upregulation of acsp30 upon Plasmodium challenge in the refractory strain coincided with ookinete invasion of mosquito midgut. Gene organization and primary sequence of acsp30 were identical in the R and S strains suggesting a divergent regulatory status of acsp30 in these strains. To examine this further, the upstream regulatory sequences of acsp30 were isolated, cloned and evaluated for the presence of promoter activity. The 702 bp upstream region of acsp30 from the two strains revealed sequence divergence. The promoter activity measured by luciferase-based reporter assay was shown to be 1.5-fold higher in the R strain than in the S. Gel shift experiments demonstrated a differential recruitment of nuclear proteins to upstream sequences of acsp30 as well as a difference in the composition of nuclear proteins in the two strains, both of which might contribute to the relative abundance of acsp30 in the R strain; Conclusion The specific upregulation of acsp30 in the R strain only in response to Plasmodium infection is suggestive of its role in contributing the refractory phenotype to the A. culicifacies mosquito population. PMID:17502004

  18. Analysis of binding properties and specificity through identification of the interface forming residues (IFR) for serine proteases in silico docked to different inhibitors

    PubMed Central

    2010-01-01

    Background Enzymes belonging to the same super family of proteins in general operate on variety of substrates and are inhibited by wide selection of inhibitors. In this work our main objective was to expand the scope of studies that consider only the catalytic and binding pocket amino acids while analyzing enzyme specificity and instead, include a wider category which we have named the Interface Forming Residues (IFR). We were motivated to identify those amino acids with decreased accessibility to solvent after docking of different types of inhibitors to sub classes of serine proteases and then create a table (matrix) of all amino acid positions at the interface as well as their respective occupancies. Our goal is to establish a platform for analysis of the relationship between IFR characteristics and binding properties/specificity for bi-molecular complexes. Results We propose a novel method for describing binding properties and delineating serine proteases specificity by compiling an exhaustive table of interface forming residues (IFR) for serine proteases and their inhibitors. Currently, the Protein Data Bank (PDB) does not contain all the data that our analysis would require. Therefore, an in silico approach was designed for building corresponding complexes The IFRs are obtained by "rigid body docking" among 70 structurally aligned, sequence wise non-redundant, serine protease structures with 3 inhibitors: bovine pancreatic trypsin inhibitor (BPTI), ecotine and ovomucoid third domain inhibitor. The table (matrix) of all amino acid positions at the interface and their respective occupancy is created. We also developed a new computational protocol for predicting IFRs for those complexes which were not deciphered experimentally so far, achieving accuracy of at least 0.97. Conclusions The serine proteases interfaces prefer polar (including glycine) residues (with some exceptions). Charged residues were found to be uniquely prevalent at the interfaces between the

  19. Granule Associated Serine Proteases of Hematopoietic Cells – An Analysis of Their Appearance and Diversification during Vertebrate Evolution

    PubMed Central

    Akula, Srinivas; Thorpe, Michael; Boinapally, Vamsi; Hellman, Lars

    2015-01-01

    Serine proteases are among the most abundant granule constituents of several hematopoietic cell lineages including mast cells, neutrophils, cytotoxic T cells and NK cells. These proteases are stored in their active form in the cytoplasmic granules and in mammals are encoded from four different chromosomal loci: the chymase locus, the met-ase locus, the T cell tryptase and the mast cell tryptase locus. In order to study their appearance during vertebrate evolution we have performed a bioinformatic analysis of related genes and gene loci from a large panel of metazoan animals from sea urchins to placental mammals for three of these loci: the chymase, met-ase and granzyme A/K loci. Genes related to mammalian granzymes A and K were the most well conserved and could be traced as far back to cartilaginous fish. Here, the granzyme A and K genes were found in essentially the same chromosomal location from sharks to humans. However in sharks, no genes clearly identifiable as members of the chymase or met-ase loci were found. A selection of these genes seemed to appear with bony fish, but sometimes in other loci. Genes related to mammalian met-ase locus genes were found in bony fish. Here, the most well conserved member was complement factor D. However, genes distantly related to the neutrophil proteases were also identified in this locus in several bony fish species, indicating that this locus is also old and appeared at the base of bony fish. In fish, a few of the chymase locus-related genes were found in a locus with bordering genes other than the mammalian chymase locus and some were found in the fish met-ase locus. This indicates that a convergent evolution rather than divergent evolution has resulted in chymase locus-related genes in bony fish. PMID:26569620

  20. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina

    PubMed Central

    2010-01-01

    Background Subtilisin-like serine proteases play an important role in pathogenic fungi during the penetration and colonization of their hosts. In this study, we perform an evolutionary analysis of the subtilisin-like serine protease genes of subphylum Pezizomycotina to find if there are similar pathogenic mechanisms among the pathogenic fungi with different life styles, which utilize subtilisin-like serine proteases as virulence factors. Within Pezizomycotina, nematode-trapping fungi are unique because they capture soil nematodes using specialized trapping devices. Increasing evidence suggests subtilisin-like serine proteases from nematode-trapping fungi are involved in the penetration and digestion of nematode cuticles. Here we also conduct positive selection analysis on the subtilisin-like serine protease genes from nematode-trapping fungi. Results Phylogenetic analysis of 189 subtilisin-like serine protease genes from Pezizomycotina suggests five strongly-supported monophyletic clades. The subtilisin-like serine protease genes previously identified or presumed as endocellular proteases were clustered into one clade and diverged the earliest in the phylogeny. In addition, the cuticle-degrading protease genes from entomopathogenic and nematode-parasitic fungi were clustered together, indicating that they might have overlapping pathogenic mechanisms against insects and nematodes. Our experimental bioassays supported this conclusion. Interestingly, although they both function as cuticle-degrading proteases, the subtilisin-like serine protease genes from nematode-trapping fungi and nematode-parasitic fungi were not grouped together in the phylogenetic tree. Our evolutionary analysis revealed evidence for positive selection on the subtilisin-like serine protease genes of the nematode-trapping fungi. Conclusions Our study provides new insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. Pezizomycotina subtilisins most likely evolved

  1. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    SciTech Connect

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-09-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: > Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. > Bt-VSP activates prothrombin. > Bt-VSP directly degrades fibrinogen into fibrin degradation products. > Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  2. Identification of folding intermediates of streblin, the most stable serine protease: biophysical analysis.

    PubMed

    Kumar, Reetesh; Tripathi, Pinki; de Moraes, Fabio Rogerio; Caruso, Icaro P; Jagannadham, Medicherla V

    2014-01-01

    Streblin, a serine proteinase from plant Streblus asper, has been used to investigate the conformational changes induced by pH, temperature, and chaotropes. The near/far UV circular dichroism activities under fluorescence emission spectroscopy and 8-aniline-1-naphthalene sulfonate (ANS) binding have been carried out to understand the unfolding of the protein in the presence of denaturants. Spectroscopic studies reveal that streblin belongs to the α+β class of proteins and exhibits stability towards chemical denaturants, guanidine hydrochloride (GuHCl). The pH-induced transition of this protein is noncooperative for transition phases between pH 0.5 and 2.5 (midpoint, 1.5) and pH 2.5 and 10.0 (midpoint, 6.5). At pH 1.0 or lower, the protein unfolds to form acid-unfolded state, and for pH 7.5 and above, protein turns into an alkaline denatured state characterized by the absence of ANS binding. At pH 2.0 (1 M GuHCl), streblin exists in a partially unfolded state with characteristics of a molten globule state. The protein is found to exhibit strong and predominant ANS binding. In total, six different intermediate states has been identified to show protein folding pathways. PMID:24108566

  3. Highly potent fibrinolytic serine protease from Streptomyces.

    PubMed

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-01

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. PMID:22112764

  4. Genome-wide identification and immune response analysis of serine protease inhibitor genes in the silkworm, Bombyx mori.

    PubMed

    Zhao, Ping; Dong, Zhaoming; Duan, Jun; Wang, Genhong; Wang, Lingyan; Li, Youshan; Xiang, Zhonghuai; Xia, Qingyou

    2012-01-01

    In most insect species, a variety of serine protease inhibitors (SPIs) have been found in multiple tissues, including integument, gonad, salivary gland, and hemolymph, and are required for preventing unwanted proteolysis. These SPIs belong to different families and have distinct inhibitory mechanisms. Herein, we predicted and characterized potential SPI genes based on the genome sequences of silkworm, Bombyx mori. As a result, a total of eighty SPI genes were identified in B. mori. These SPI genes contain 10 kinds of SPI domains, including serpin, Kunitz_BPTI, Kazal, TIL, amfpi, Bowman-Birk, Antistasin, WAP, Pacifastin, and alpha-macroglobulin. Sixty-three SPIs contain single SPI domain while the others have at least two inhibitor units. Some SPIs also contain non-inhibitor domains for protein-protein interactions, including EGF, ADAM_spacer, spondin_N, reeler, TSP_1 and other modules. Microarray analysis showed that fourteen SPI genes from lineage-specific TIL family and Group F of serpin family had enriched expression in the silk gland. The roles of SPIs in resisting pathogens were investigated in silkworms when they were infected by four pathogens. Microarray and qRT-PCR experiments revealed obvious up-regulation of 8, 4, 3 and 3 SPI genes after infection with Escherichia coli, Bacillus bombysepticus, Beauveria bassiana or B. mori nuclear polyhedrosis virus (BmNPV), respectively. On the contrary, 4, 11, 7 and 9 SPI genes were down-regulated after infection with E. coli, B. bombysepticus, B. bassiana or BmNPV, respectively. These results suggested that these SPI genes may be involved in resistance to pathogenic microorganisms. These findings may provide valuable information for further clarifying the roles of SPIs in the development, immune defence, and efficient synthesis of silk gland protein. PMID:22348050

  5. Serine protease autotransporters of enterobacteriaceae (SPATEs): biogenesis and function.

    PubMed

    Dautin, Nathalie

    2010-06-01

    Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) constitute a large family of proteases secreted by Escherichia coli and Shigella. SPATEs exhibit two distinct proteolytic activities. First, a C-terminal catalytic site triggers an intra-molecular cleavage that releases the N-terminal portion of these proteins in the extracellular medium. Second, the secreted N-terminal domains of SPATEs are themselves proteases; each contains a canonical serine-protease catalytic site. Some of these secreted proteases are toxins, eliciting various effects on mammalian cells. Here, we discuss the biogenesis of SPATEs and their function as toxins. PMID:22069633

  6. Cloning and heterologous expression of serine protease SL41 related to biocontrol in Trichoderma harzianum.

    PubMed

    Liu, Yan; Yang, Qian

    2013-01-01

    Serine proteases are highly conserved among fungi and considered to play a key role in different aspects of fungal biology. These proteases are involved in fungal growth and have been related to biocontrol processes. To assess the functional role of serine proteases from Trichoderma harzianum T88, an effective biocontrol agent, on inhibition of phytopathogenic fungi, a gene (SL41) encoding a serine protease was isolated by 5' and 3' RACE (rapid amplification of cDNA ends). Northern blot analysis indicated that SL41 was induced in response to cell walls of different fungi. This protease gene was expressed in Saccharomyces cerevisiae under the control of the galactose-inducible GAL1 promoter. After induction, the enzyme activity was culminated (16.2 units ml(-1)) at 60 h of cultivation. The optimal enzyme reaction temperature was 40°C and optimal pH was 10.5. Northern blot analysis indicated that the amount of the transcripts increased with the culture time in agreement with the measured enzyme activity. Antifungal activity of serine protease against five phytopathogens was investigated in vitro. It can inhibit the mycelial growth of phytopathogenic fungi and exerted broad spectrum antifungal activity against phytopathogenic fungi. This is the first time that the different regulation of serine protease in T. harzianum response to five phytopathogenic fungi was shown, the protease was functionally expressed in a heterologous host, and its antagonistic activity was evaluated in vitro. PMID:24060651

  7. Structural basis of substrate specificity in the serine proteases.

    PubMed Central

    Perona, J. J.; Craik, C. S.

    1995-01-01

    Structure-based mutational analysis of serine protease specificity has produced a large database of information useful in addressing biological function and in establishing a basis for targeted design efforts. Critical issues examined include the function of water molecules in providing strength and specificity of binding, the extent to which binding subsites are interdependent, and the roles of polypeptide chain flexibility and distal structural elements in contributing to specificity profiles. The studies also provide a foundation for exploring why specificity modification can be either straightforward or complex, depending on the particular system. PMID:7795518

  8. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    PubMed

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-01-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  9. Expression and characterization of Coprothermobacter proteolyticus alkaline serine protease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TECHNICAL ABSTRACT A putative protease gene (aprE) from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated the enzyme had...

  10. Covalent structure of human haptoglobin: a serine protease homolog.

    PubMed Central

    Kurosky, A; Barnett, D R; Lee, T H; Touchstone, B; Hay, R E; Arnott, M S; Bowman, B H; Fitch, W M

    1980-01-01

    The complete amino acid sequences and the disulfide arrangements of the two chains of human haptoglobin 1-1 were established. The alpha 1 and beta chains of haptoglobin contain 83 and 245 residues, respectively. Comparison of the primary structure of haptoglobin with that of the chymotrypsinogen family of serine proteases revealed a significant degree of chemical similarity. The probability was less than 10(-5) that the chemical similarity of the beta chain of haptoglobin to the proteases was due to chance. The amino acid sequence of the beta chain of haptoglobin is 29--33% identical to bovine trypsin, bovine chymotrypsin, porcine elastase, human thrombin, or human plasmin. Comparison of haptoglobin alpha 1 chain to activation peptide regions of the zymogens revealed an identity of 25% to the fifth "kringle" region of the activation peptide of plasminogen. The probability was less than 0.014 that this similarity was due to chance. These results strongly indicate haptoglobin to be a homolog of the chymotrypsinogen family of serine proteases. Alignment of the beta-chain sequence of haptoglobin to the serine proteases is remarkably consistent except for an insertion of 16 residues in the region corresponding to the methionyl loop of the serine proteases. The active-site residues typical of the serine proteases, histidine-57 and serine-195, are replaced in haptoglobin by lysine and alanine, respectively; however, aspartic acid-102 and the trypsin specificity, residue, aspartic acid-189, do occur in haptoglobin. Haptoglobin and the serine proteases represent a striking example of homologous proteins with different biological functions. PMID:6997877

  11. The emerging roles of serine protease cascades in the epidermis.

    PubMed

    Ovaere, Petra; Lippens, Saskia; Vandenabeele, Peter; Declercq, Wim

    2009-09-01

    It has become clear in recent years that serine proteases have an important role in epidermal homeostasis, and the signaling cascades are gradually being identified. For example, matriptase, prostasin and furin are implicated in a cascade that could activate ENaC, leading to epidermal barrier formation and hydration, probably in part through their involvement in filaggrin processing. Kallikreins can form a signaling cascade to coordinate corneocyte desquamation. Knowledge is also emerging about how endogenous inhibitors, calcium and pH control these cascades. It is becoming clear that some skin pathologies are associated with deregulated serine protease activity. Therefore, a deeper knowledge of the regulation of these serine protease cascades could form the basis for development of appropriate treatments for skin disorders such as Netherton syndrome. PMID:19726197

  12. Cloning and sequence analysis of partial genomic DNA coding for HtrA-type serine protease of Wolbachia from human lymphatic filarial parasite, Wuchereria bancrofti

    PubMed Central

    Dhamodharan, R; Hoti, SL; Sivapragasam, G; Das, MK

    2011-01-01

    Background: Periplasmic serine proteases of HtrA type of Wolbachia have been shown to play a role in the pathogenesis of filarial disease. Aims: This study was aimed to sequence Wb-HtrA serine protease and analyze its phylogenetic position by comparing with other filarial and non-filarial nematode homologs. Materials and Methods: Partial HtrA gene fragment was amplified from DNA isolated from periodic and sub-periodic Wuchereria bancrofti parasites collected from Pondicherry and Nicobar islands, respectively. The amplicons were sequenced, and sequence homology and phylogenetic relationship with other filarial and non-filarial nematodes were analyzed. Results: Partial orthologue of HtrA-type serine protease from Wolbachia of W. bancrofti was amplified, cloned and sequenced. The deduced amino acid sequence exhibited 87%, 81% and 74% identity with the homologous Wolbachia proteases identified from Brugia malayi, Onchocerca volvulus and Drosophila melanogaster, respectively. The Wb-HtrA has arthologues in several proteobacteria with very high homology and hence is highly conserved not only among Wolbachia of filarial parasites but also across proteobacteria. The phylogenetic tree constructed using Neighbor-Joining method showed two main clusters: cluster-I containing bacteria that dwell in diverse habitats such as soil, fresh and marine waters and plants and cluster-II comprising Anaplasma sp. and Erlichia, and Wolbachia endosymbionts of insects and nematodes, in distinct groups. Conclusions: HtrA-type serine protease from Wolbachia of W. bancrofti is highly conserved among filarial parasites. It will be of interest to know whether filarial Wolbachia HtrA type of serine protease might influence apoptosis and lymphatic epithelium, thereby playing a role in the filarial pathogenesis. Such information will be useful for identifying targets for the development of newer drugs for filariasis treatment, especially for preventing lymphatic pathology. PMID:23508470

  13. Molecular characteristic and expression analysis of collagenolytic serine protease from the Chinese mitten crab Eriocheir sinensis with defense response to Vibrio anguillarum challenge.

    PubMed

    Yang, Q Z; Yang, Z J; Zhang, Y; Li, X L; Zhang, W

    2014-01-01

    A novel collagenolytic serine protease (CLSP) was cloned from the hemocytes of the Chinese mitten crab Eriocheir sinensis (Es-CLSP). The full-length cDNA of Es-CLSP contains 990 nucleotides. It encodes a 270-amino acid-long peptide with the mature peptide containing 221 amino acids. It contains the conserved catalytic triad (H, D, and S). Similarity analysis shows that Es-CLSP shares high identity with CLSPs from the fiddler crab Uca pugilator. Es-CLSP mRNA expression in E. sinensis is a) tissue-related with the highest expression in hemocytes and widely distributed, b) highly responsive to Vibrio anguillarum challenge in hemocytes, and c) a different response to the intruding pathogens. The results of this study demonstrate the successful isolation of Es-CLSP and indicate that Es-CLSP is an immune-related gene, and show the possible role of CLSP in the invertebrate innate immune system. PMID:24841909

  14. Serine protease inhibitor A3 in atherosclerosis and aneurysm disease.

    PubMed

    Wågsäter, Dick; Johansson, Daniel; Fontaine, Vincent; Vorkapic, Emina; Bäcklund, Alexandra; Razuvaev, Anton; Mäyränpää, Mikko I; Hjerpe, Charlotta; Caidahl, Kenneth; Hamsten, Anders; Franco-Cereceda, Anders; Wilbertz, Johannes; Swedenborg, Jesper; Zhou, Xinghua; Eriksson, Per

    2012-08-01

    Remodeling of extracellular matrix (ECM) plays an important role in both atherosclerosis and aneurysm disease. Serine protease inhibitor A3 (serpinA3) is an inhibitor of several proteases such as elastase, cathepsin G and chymase derived from mast cells and neutrophils. In this study, we investigated the putative role of serpinA3 in atherosclerosis and aneurysm formation. SerpinA3 was expressed in endothelial cells and medial smooth muscle cells in human atherosclerotic lesions and a 14-fold increased expression of serpinA3n mRNA was found in lesions from Apoe-/- mice compared to lesion-free vessels. In contrast, decreased mRNA expression (-80%) of serpinA3 was found in biopsies of human abdominal aortic aneurysm (AAA) compared to non-dilated aortas. Overexpression of serpinA3n in transgenic mice did not influence the development of atherosclerosis or CaCl2-induced aneurysm formation. In situ zymography analysis showed that the transgenic mice had lower cathepsin G and elastase activity, and more elastin in the aortas compared to wild-type mice, which could indicate a more stable aortic phenotype. Differential vascular expression of serpinA3 is clearly associated with human atherosclerosis and AAA but serpinA3 had no major effect on experimentally induced atherosclerosis or AAA development in mouse. However, serpinA3 may be involved in a phenotypic stabilization of the aorta. PMID:22580763

  15. Partial amino acid sequence of human factor D:homology with serine proteases.

    PubMed Central

    Volanakis, J E; Bhown, A; Bennett, J C; Mole, J E

    1980-01-01

    Human factor D purified to homogeneity by a modified procedure was subjected to NH2-terminal amino acid sequence analysis by using a modified automated Beckman sequencer. We identified 48 of the first 57 NH2-terminal amino acids in a single sequencer run, using microgram quantities of factor D. The deduced amino acid sequence represents approximately 25% of the primary structure of factor D. This extended NH2-terminal amino acid sequence of factor D was compared to that of other trypsin-related serine proteases. By visual inspection, strong homologies (33--50% identity) were observed with all the serine proteases included in the comparison. Interestingly, factor D showed a higher degree of homology to serine proteases of pancreatic origin than to those of serum origin. Images PMID:6987665

  16. Classification scheme for the design of serine protease targeted compound libraries.

    PubMed

    Lang, Stanley A; Kozyukov, Andrey V; Balakin, Konstantin V; Skorenko, Andrey V; Ivashchenko, Andrey A; Savchuk, Nikolay P

    2002-11-01

    The development of a scoring scheme for the classification of molecules into serine protease (SP) actives and inactives is described. The method employed a set of pre-selected descriptors for encoding the molecular structures, and a trained neural network for classifying the molecules. The molecular requirements were profiled and validated by using available databases of SP- and non-SP-active agents [1,439 diverse SP-active molecules, and 5,131 diverse non-SP-active molecules from the Ensemble Database (Prous Science, 2002)] and Sensitivity Analysis. The method enables an efficient qualification or disqualification of a molecule as a potential serine protease ligand. It represents a useful tool for constraining the size of virtual libraries that will help accelerate the development of new serine protease active drugs. PMID:12825792

  17. Characterization of an extracellular serine protease of Leishmania (Leishmania) amazonensis.

    PubMed

    Silva-Lopez, R E; Coelho, M G Pinto; De Simone, S G

    2005-07-01

    A serine protease was purified 942-fold from culture supernatant of L. amazonensis promastigotes using (NH4)2SO4 precipitation followed by affinity chromatography on aprotinin-agarose and continuous elution electrophoresis by Prep Cell, yielding a total recovery of 61%. The molecular mass of the active enzyme estimated by SDS-PAGE under conditions of reduction was 56 kDa and 115 kDa under conditions of non-reduction, suggesting that the protease is a dimeric protein. Additionally, it was found to be a non-glycosylated enzyme, with a pI of 5.0. The optimal pH and temperature of the enzyme were 7.5 and 28 degrees C respectively, using alpha-N-rho-tosyl-L-arginine-methyl ester (L-TAME) as substrate. Assays of thermal stability indicated that 61% of the enzyme activity was preserved after 1 h of pre-treatment at 42 degrees C. Haemoglobin, bovine serum albumin (BSA), ovalbumin, fibrinogen, collagen, gelatin and peptide substrates containing arginine in an ester bond and amide substrates containing hydrophobic residues at the P1 site were hydrolysed by this extracellular protease. The insulin beta-chain was also hydrolysed by the enzyme and many peptidic bonds were susceptible to the protease action, and 4 of them (L11-V12, E3-A14, L15-Y16 and Y16-L17) were identified. Inhibition studies suggested that the enzyme belongs to the serine protease class inhibited by calcium and manganese and activated by zinc. These findings show that this enzyme of L. amazonensis is a novel serine protease, which differs from all known flagellate proteases characterized. PMID:16038400

  18. Serine Protease Catalysis: A Computational Study of Tetrahedral Intermediates and Inhibitory Adducts.

    PubMed

    Ngo, Phong D; Mansoorabadi, Steven O; Frey, Perry A

    2016-08-01

    Peptide boronic acids and peptidyl trifluoromethyl ketones (TFKs) inhibit serine proteases by forming monoanionic, tetrahedral adducts to serine in the active sites. Investigators regard these adducts as analogs of monoanionic, tetrahedral intermediates. Density functional theory (DFT) calculations and fractional charge analysis show that tetrahedral adducts of model peptidyl TFKs are structurally and electrostatically very similar to corresponding tetrahedral intermediates. In contrast, the DFT calculations show the structures and electrostatic properties of analogous peptide boronate adducts to be significantly different. The peptide boronates display highly electrostatically positive boron, with correspondingly negative ligands in the tetrahedra. In addition, the computed boron-oxygen and boron-carbon bond lengths in peptide boronates (which are identical or very similar to the corresponding bonds in a peptide boronate adduct of α-lytic protease determined by X-ray crystallography at subangstrom resolution) are significantly longer than the corresponding bond lengths in model tetrahedral intermediates. Since protease-peptidyl TFKs incorporate low-barrier hydrogen bonds (LBHBs) between an active site histidine and aspartate, while the protease-peptide boronates do not, these data complement the spectroscopic and chemical evidence for the participation of LBHBs in catalysis by serine proteases. Moreover, while the potency of these classes of inhibitors can be correlated to the structures of the peptide moieties, the present results indicate that the strength of their bonds to serine contribute significantly to their inhibitory properties. PMID:27387593

  19. Exploring a new serine protease from Cucumis sativus L.

    PubMed

    Nafeesa, Zohara; Shivalingu, B R; Vivek, H K; Priya, B S; Swamy, S Nanjunda

    2015-03-01

    Coagulation is an important physiological process in hemostasis which is activated by sequential action of proteases. This study aims to understand the involvement of aqueous fruit extract of Cucumis sativus L. (AqFEC) European burp less variety in blood coagulation cascade. AqFEC hydrolyzed casein in a dose-dependent manner. The presence of protease activity was further confirmed by casein zymography which revealed the possible presence of two high molecular weight protease(s). The proteolytic activity was inhibited only by phenyl methyl sulphonyl fluoride suggesting the presence of serine protease(s). In a dose-dependent manner, AqFEC also hydrolysed Aα and Bβ subunits of fibrinogen, whereas it failed to degrade the γ subunit of fibrinogen even at a concentration as high as 100 μg and incubation time up to 4 h. AqFEC reduced the clotting time of citrated plasma by 87.65%. The protease and fibrinogenolytic activity of AqFEC suggests its possible role in stopping the bleeding and ensuing wound healing process. PMID:25577345

  20. Molecular cloning and expression analysis of chymotrypsin-like serine protease from the redclaw crayfish (Cherax quadricarinatus): a possible role in the junior and adult innate immune systems.

    PubMed

    Fang, Di-An; Huang, Xian-Ming; Zhang, Zhi-Qin; Xu, Dong-Po; Zhou, Yan-Feng; Zhang, Min-Ying; Liu, Kai; Duan, Jin-Rong; Shi, Wei-Gang

    2013-06-01

    A novel chymotrypsin-like serine protease (CLSP) was isolated from the hepatopancreas of the redclaw crayfish Cherax quadricarinatus (Cq-chy). The full-length cDNA of Cq-chy contains 951 nucleotides encodes a peptide of 270 amino acids. The mature peptide comprising 223 amino acids contains the conserved catalytic triad (H, D, and S). Similarity analysis showed that Cq-chy shares high identity with chymotrypsins from the fiddler crab; Uca pugilator. Cq-chy mRNA expression in C. quadricarinatus was shown to be: (a) tissue-related with the highest expression in the hepatotpancreas and widely distributed, (b) highly responsive in the hepatopancreas to White Spot Syndrome Virus (WSSV) challenge, and (c) differently regulated in immature and adult crayfish. In this study we successfully isolated Cq-chy. Our observations indicate that Cq-chy is differently involved in the immature and adult innate immune reactions, thus suggesting a role for CLSPs in the invertebrate innate immune system. PMID:23541770

  1. Studies on alkaline serine protease produced by Bacillus clausii GMBE 22.

    PubMed

    Kazan, Dilek; Bal, Hulya; Denizci, Aziz Akin; Ozturk, Nurcin Celik; Ozturk, Hasan Umit; Dilgimen, Aydan Salman; Ozturk, Dilek Coskuner; Erarslan, Altan

    2009-01-01

    An alkali tolerant Bacillus strain having extracellular serine alkaline protease activity was newly isolated from compost and identified as Bacillus clausii GMBE 22. An alkaline protease (AP22) was 4.66-fold purified in 51.5% yield from Bacillus clausii GMBE 22 by ethanol precipitation and DEAE-cellulose anion exchange chromatography. The purified enzyme was identified as serine protease by LC-ESI-MS analysis. Its complete inhibition by phenylmethanesulfonylfluoride (PMSF) also justified that it is a serine alkaline protease. The molecular weight of the enzyme is 25.4 kDa. Optimal temperature and pH values are 60 degrees C and 12.0, respectively. The enzyme showed highest specificity to N-Suc-Ala-Ala-Pro-Phe-pNA. The K(m) and k(cat) values for hydrolysis of this substrate are 0.347 mM and 1141 min(-1) respectively. The enzyme was affected by surface active agents to varying extents. The enzyme is stable for 2 h at 30 degrees C and pH 10.5. AP22 is also stable for 5 days over the pH range 9.0-11.0 at room temperature. AP22 has good pH stability compared with the alkaline proteases belonging to other strains of Bacillus clausii reported in the literature. PMID:19431045

  2. Purification, crystallization and preliminary X-ray analysis of human mannose-binding lectin-associated serine protease-1 (MASP-1) catalytic region

    PubMed Central

    Dobó, József; Harmat, Veronika; Sebestyén, Edina; Beinrohr, László; Závodszky, Péter; Gál, Péter

    2008-01-01

    MASP-1, a multidomain serine protease, is a component of the lectin pathway of complement. Its precise function is unknown, although it seems to enhance the complement-activating capacity of MASP-2, a related enzyme. MASP-1 has also been implicated as playing a role in blood coagulation. It is mostly found associated with mannose-binding lectin (MBL) and ficolins. Early attempts to crystallize MASP-1 failed because of the inhomogeneity of the purified material. MASP-1 was shown by acidic nondenaturing PAGE to be composed of differently charged species, which are most likely to be the products of deamidation occurring during the refolding procedure. Sequential cation-exchange and anion-exchange chromatography resulted in a homogeneous material, which was successfully crystallized. The best crystal diffracted to 2.55 Å resolution and belonged to space group P212121, with unit-cell parameters a = 68.4, b = 70.4, c = 121.4 Å. The crystal structure of MASP-1 may help in understanding the function of this mysterious serine protease. PMID:18765903

  3. Purification, crystallization and preliminary X-ray analysis of human mannose-binding lectin-associated serine protease-1 (MASP-1) catalytic region.

    PubMed

    Dobó, József; Harmat, Veronika; Sebestyén, Edina; Beinrohr, László; Závodszky, Péter; Gál, Péter

    2008-09-01

    MASP-1, a multidomain serine protease, is a component of the lectin pathway of complement. Its precise function is unknown, although it seems to enhance the complement-activating capacity of MASP-2, a related enzyme. MASP-1 has also been implicated as playing a role in blood coagulation. It is mostly found associated with mannose-binding lectin (MBL) and ficolins. Early attempts to crystallize MASP-1 failed because of the inhomogeneity of the purified material. MASP-1 was shown by acidic nondenaturing PAGE to be composed of differently charged species, which are most likely to be the products of deamidation occurring during the refolding procedure. Sequential cation-exchange and anion-exchange chromatography resulted in a homogeneous material, which was successfully crystallized. The best crystal diffracted to 2.55 A resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 68.4, b = 70.4, c = 121.4 A. The crystal structure of MASP-1 may help in understanding the function of this mysterious serine protease. PMID:18765903

  4. Breaking the low barrier hydrogen bond in a serine protease.

    PubMed Central

    Kidd, R. D.; Sears, P.; Huang, D. H.; Witte, K.; Wong, C. H.; Farber, G. K.

    1999-01-01

    The serine protease subtilisin BPN' is a useful catalyst for peptide synthesis when dissolved in high concentrations of a water-miscible organic co-solvent such as N,N-dimethylformamide (DMF). However, in 50% DMF, the k(cat) for amide hydrolysis is two orders of magnitude lower than in aqueous solution. Surprisingly, the k(cat) for ester hydrolysis is unchanged in 50% DMF. To explain this alteration in activity, the structure of subtilisin 8397+1 was determined in 20, 35, and 50% (v/v) DMF to 1.8 A resolution. In 50% DMF, the imidazole ring of His64, the central residue of the catalytic triad, has rotated approximately 180 degrees around the Cbeta-Cgamma bond. Two new water molecules in the active site stabilize the rotated conformation. This rotation places His64 in an unfavorable geometry to interact with the other members of the catalytic triad, Ser221 and Asp32. NMR experiments confirm that the characteristic resonance due to the low barrier hydrogen bond between the His64 and Asp32 is absent in 50% DMF. These experiments provide a clear structural basis for the change in activity of serine proteases in organic co-solvents. PMID:10048334

  5. Expression profiling and comparative analyses of seven midgut serine proteases from the yellow fever mosquito, Aedes aegypti

    PubMed Central

    Brackney, Doug E.; Isoe, Jun; Black, W.C.; Zamora, Jorge; Foy, Brian D.; Miesfeld, Roger L.; Olson, Ken E.

    2010-01-01

    Aedes aegypti utilizes blood for energy production, egg maturation and replenishment of maternal reserves. The principle midgut enzymes responsible for bloodmeal digestion are endoproteolytic serine-type proteases within the S1.A subfamily. While there are hundreds of serine protease-like genes in the A. aegypti genome, only five are known to be expressed in the midgut. We describe the cloning, sequencing and expression profiling of seven additional serine proteases and provide a genomic and phylogenetic assessment of these findings. Of the seven genes, four are constitutively expressed and three are transcriptionally induced upon blood feeding. The amount of transcriptional induction is strongly correlated among these genes. Alignments reveal that, in general, the conserved catalytic triad, active site and accessory catalytic residues are maintained in these genes and phylogenetic analysis shows that these genes fall within three distinct clades; trypsins, chymotrypsins and serine collagenases. Interestingly, a previously described trypsin consistently arose with other serine collagenases in phylogenetic analyses. These results suggest that multiple gene duplications have arisen within the S1.A subfamily of midgut serine proteases and/or that A. aegypti has evolved an array of proteases with a broad range of substrate specificities for rapid, efficient digestion of bloodmeals. PMID:20100490

  6. Biochemical characterization of a detergent-stable serine alkaline protease from Caldicoprobacter guelmensis.

    PubMed

    Bouacem, Khelifa; Bouanane-Darenfed, Amel; Laribi-Habchi, Hassiba; Elhoul, Mouna Ben; Hmida-Sayari, Aïda; Hacene, Hocine; Ollivier, Bernard; Fardeau, Marie-Laure; Jaouadi, Bassem; Bejar, Samir

    2015-11-01

    Caldicoprobacter guelmensis isolated from the hydrothermal hot spring of Guelma (Algeria) produced high amounts of extracellular thermostable serine alkaline protease (called SAPCG) (23,000U/mL). The latter was purified by ammonium sulphate precipitation, UNO Q-6 FPLC and Zorbex PSM 300 HPLC, and submitted to biochemical characterization assays. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer, with a molecular mass of 55,824.19Da. The 19 N-terminal residue sequence of SAPCG showed high homology with those of microbial proteases. The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggested its belonging to the serine protease family. It showed optimum protease activity at pH 10 and 70°C with casein as a substrate. The thermoactivity and thermostability of SAPCG were enhanced in the presence of 2mM Ca(2+). Its half-life times at 80 and 90°C were 180 and 60min, respectively. Interestingly, the SAPCG protease exhibited significant compatibility with iSiS and Persil, and wash performance analysis revealed that it could remove blood-stains effectively. Overall, SAPCG displayed a number of attractive properties that make it a promising candidate for future applications as an additive in detergent formulations. PMID:26261082

  7. Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues

    SciTech Connect

    Fischer, Katja; Langendorf, Christopher G.; Irving, James A.; Reynolds, Simone; Willis, Charlene; Beckham, Simone; Law, Ruby H.P.; Yang, Sundy; Bashtannyk-Puhalovich, Tanya A.; McGowan, Sheena; Whisstock, James C.; Pike, Robert N.; Kemp, David J.; Buckle, Ashley M.

    2009-08-07

    The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 {angstrom} and 2.0 {angstrom} resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical 'canonical' fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.

  8. Gene characterization of two digestive serine proteases in orange blossom wheat midge (Sitodiplosis mosellana)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two full length cDNA sequences, encoding digestive serine proteases (designated as SmPROT-1 and SmPROT-2), were recovered from the midgut of the wheat midge, Sitodiplosis mosellana in an ongoing EST project. The deduced amino acid sequences shared homology with digestive serine proteases from insect...

  9. Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2.

    PubMed

    Chen, Lei-Lei; Liu, Li-Jun; Shi, Mei; Song, Xiao-Yan; Zheng, Chang-Ying; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2009-10-01

    Trichoderma pseudokoningii SMF2 is a biocontrol fungus with inhibitory ability against phytopathogenic fungi. Here, a crude extract of strain SMF2 in a solid ferment exhibited strong nematicidal activity against Meloidogyne incognita, and a novel serine protease SprT with nematicidal activity was purified from the crude extract. Protease SprT has a molecular mass of 31 kDa, a pH optimum of 8.5, and a temperature optimum of 60-65 degrees C. It had good thermostability, and was stable in an alkaline environment. SprT could degrade bovine serum albumin, lysozyme, and gelatin, and its activity was enhanced by many metal ions. The cuticles of nematodes treated by protease SprT obviously crimpled. Purified protease SprT could kill juveniles of M. incognita and inhibit egg hatch, suggesting that it is involved in the nematicidal process of T. pseudokoningii SMF2. The full-length cDNA gene-encoding protease SprT was cloned by rapid amplification of cDNA ends. Sequence analysis showed that SprT is a monodomain subtilase containing 284 amino acid residues. It had higher identities and a closer relation to the nematicidal serine proteases (59-69%) from nematode parasitic fungi than to the serine proteases (<50%) from Trichoderma. Protease SprT represents the first well-characterized subtilase with nematicidal activity from Trichoderma. PMID:19702879

  10. Streptomyces serine protease (SAM-P20): recombinant production, characterization, and interaction with endogenous protease inhibitor.

    PubMed Central

    Taguchi, S; Suzuki, M; Kojima, S; Miura, K; Momose, H

    1995-01-01

    Previously, we isolated a candidate for an endogenous target enzyme(s) of the Streptomyces subtilisin inhibitor (SSI), termed SAM-P20, from a non-SSI-producing mutant strain (S. Taguchi, A. Odaka, Y. Watanabe, and H. Momose, Appl. Environ. Microbiol. 61:180-186, 1995). In this study, in order to investigate the detailed enzymatic properties of this protease, an overproduction system of recombinant SAM-P20 was established in Streptomyces coelicolor with the SSI gene promoter. The recombinant SAM-P20 was purified by salting out and by two successive ion-exchange chromatographies to give a homogeneous band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Partial peptide mapping and amino acid composition analysis revealed that the recombinant SAM-P20 was identical to natural SAM-P20. From the results for substrate specificity and inhibitor sensitivity, SAM-P20 could be categorized as a chymotrypsin-like protease with an arginine-cleavable activity, i.e., a serine protease with broad substrate specificity. For proteolytic activity, the optimal pH was 10.0 and the optimal temperature was shifted from 50 to 80 degrees C by the addition of 10 mM calcium ion. The strong stoichiometric inhibition of SAM-P20 activity by SSI dimer protein occurred in a subunit molar ratio of these two proteins of about 1, and an inhibitor constant of SSI toward SAM-P20 was estimated to be 8.0 x 10(-10) M. The complex formation of SAM-P20 and SSI was monitored by analytical gel filtration, and a complex composed of two molecules of SAM-P20 and one dimer molecule of SSI was detected, in addition to a complex of one molecule of SAM-P20 bound to one dimer molecule of SSI. The reactive site of SSI toward SAM-P20 was identified as Met-73-Val-74 by sequence analysis of the modified form of SSI, which was produced by the acidification of the complex of SSI and SAM-P20. This reactive site is the same that toward an exogenous target enzyme, subtilisin BPN'. PMID:7592444

  11. Subtilases: the superfamily of subtilisin-like serine proteases.

    PubMed Central

    Siezen, R. J.; Leunissen, J. A.

    1997-01-01

    Subtilases are members of the clan (or superfamily) of subtilisin-like serine proteases. Over 200 subtilases are presently known, more than 170 of which with their complete amino acid sequence. In this update of our previous overview (Siezen RJ, de Vos WM, Leunissen JAM, Dijkstra BW, 1991, Protein Eng 4:719-731), details of more than 100 new subtilases discovered in the past five years are summarized, and amino acid sequences of their catalytic domains are compared in a multiple sequence alignment. Based on sequence homology, a subdivision into six families is proposed. Highly conserved residues of the catalytic domain are identified, as are large or unusual deletions and insertions. Predictions have been updated for Ca(2+)-binding sites, disulfide bonds, and substrate specificity, based on both sequence alignment and three-dimensional homology modeling. PMID:9070434

  12. A Self-compartmentalizing Hexamer Serine Protease from Pyrococcus Horikoshii

    PubMed Central

    Menyhárd, Dóra K.; Kiss-Szemán, Anna; Tichy-Rács, Éva; Hornung, Balázs; Rádi, Krisztina; Szeltner, Zoltán; Domokos, Klarissza; Szamosi, Ilona; Náray-Szabó, Gábor; Polgár, László; Harmat, Veronika

    2013-01-01

    Oligopeptidases impose a size limitation on their substrates, the mechanism of which has long been under debate. Here we present the structure of a hexameric serine protease, an oligopeptidase from Pyrococcus horikoshii (PhAAP), revealing a complex, self-compartmentalized inner space, where substrates may access the monomer active sites passing through a double-gated “check-in” system, first passing through a pore on the hexamer surface and then turning to enter through an even smaller opening at the monomers' domain interface. This substrate screening strategy is unique within the family. We found that among oligopeptidases, a residue of the catalytic apparatus is positioned near an amylogenic β-edge, which needs to be protected to prevent aggregation, and we found that different oligopeptidases use different strategies to achieve such an end. We propose that self-assembly within the family results in characteristically different substrate selection mechanisms coupled to different multimerization states. PMID:23632025

  13. p38 MAPK regulates PKAα and CUB-serine protease in Amphibalanus amphitrite cyprids.

    PubMed

    Zhang, Gen; He, Li-Sheng; Him Wong, Yue; Xu, Ying; Zhang, Yu; Qian, Pei-Yuan

    2015-01-01

    The MKK3-p38 MAPK pathway has been reported to mediate larval settlement in Amphibalanus (=Balanus) amphitrite. To clarify the underlying molecular mechanism, we applied label-free proteomics to analyze changes in the proteome of cyprids treated with a p38 MAPK inhibitor. The results showed that the expression levels of 80 proteins were significantly modified (p < 0.05). These differentially expressed proteins were assigned to 15 functional groups according to the KOG database and 9 pathways were significantly enriched. Further analysis revealed that p38 MAPK might regulate the energy supply and metamorphosis. Two potential regulatory proteins, CUB-serine protease and PKAα, were both down-regulated in expression. CUB-serine protease localized to postaxial seta 2 and 3, as well as the 4 subterminal sensilla in the antennule. Importantly, it was co-localized with the neuron transmitter serotonin in the sections, suggesting that the CUB-serine protease was present in the neural system. PKAα was highly expressed during the cyprid and juvenile stages, and it was co-localized with phospho-p38 MAPK (pp38 MAPK) to the cement gland, suggesting that PKAα might have some functions in cement glands. Overall, p38 MAPK might regulate multiple functions in A. amphitrite cyprids, including the energy supply, metamorphosis, neural system and cement glands. PMID:26434953

  14. p38 MAPK regulates PKAα and CUB-serine protease in Amphibalanus amphitrite cyprids

    PubMed Central

    Zhang, Gen; He, Li-Sheng; Him Wong, Yue; Xu, Ying; Zhang, Yu; Qian, Pei-Yuan

    2015-01-01

    The MKK3-p38 MAPK pathway has been reported to mediate larval settlement in Amphibalanus (=Balanus) amphitrite. To clarify the underlying molecular mechanism, we applied label-free proteomics to analyze changes in the proteome of cyprids treated with a p38 MAPK inhibitor. The results showed that the expression levels of 80 proteins were significantly modified (p < 0.05). These differentially expressed proteins were assigned to 15 functional groups according to the KOG database and 9 pathways were significantly enriched. Further analysis revealed that p38 MAPK might regulate the energy supply and metamorphosis. Two potential regulatory proteins, CUB-serine protease and PKAα, were both down-regulated in expression. CUB-serine protease localized to postaxial seta 2 and 3, as well as the 4 subterminal sensilla in the antennule. Importantly, it was co-localized with the neuron transmitter serotonin in the sections, suggesting that the CUB-serine protease was present in the neural system. PKAα was highly expressed during the cyprid and juvenile stages, and it was co-localized with phospho-p38 MAPK (pp38 MAPK) to the cement gland, suggesting that PKAα might have some functions in cement glands. Overall, p38 MAPK might regulate multiple functions in A. amphitrite cyprids, including the energy supply, metamorphosis, neural system and cement glands. PMID:26434953

  15. 1H, 13C and 15N resonance assignments and secondary structure analysis of CmPI-II, a serine protease inhibitor isolated from marine snail Cenchritis muricatus.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Alonso-del-Rivero Antigua, Maday; Pires, José Ricardo

    2016-04-01

    A protease inhibitor (CmPI-II) (UNIPROT: IPK2_CENMR) from the marine mollusc Cenchritis muricatus, has been isolated and characterized. It is the first member of a new group (group 3) of non-classical Kazal-type inhibitors. CmPI-II is a tight-binding inhibitor of serine proteases: trypsin, human neutrophil elastase (HNE), subtilisin A and pancreatic elastase. This specificity is exceptional in the members of Kazal-type inhibitor family. Several models of three-dimensional structure of CmPI-II have been constructed by homology with other inhibitors of the family but its structure has not yet been solved experimentally. Here we report the (1)H, (15)N and (13)C chemical shift assignments of CmPI-II as basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified three β-strands β1: residues 14-19, β2: 23-35 and β3: 43-45 and one helix α1: 28-37 arranged in the sequential order β1-β2-α1-β3. These secondary structure elements suggest that CmPI-II adopts the typical scaffold of a Kazal-type inhibitor. PMID:26547437

  16. Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta.

    PubMed

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Zhang, Xiufeng; Wang, Yang; Zou, Zhen; Chen, Yunru; Blissard, Gary W; Kanost, Michael R; Jiang, Haobo

    2015-07-01

    Serine protease (SP) and serine protease homolog (SPH) genes in insects encode a large family of proteins involved in digestion, development, immunity, and other processes. While 68 digestive SPs and their close homologs are reported in a companion paper (Kuwar et al., in preparation), we have identified 125 other SPs/SPHs in Manduca sexta and studied their structure, evolution, and expression. Fifty-two of them contain cystine-stabilized structures for molecular recognition, including clip, LDLa, Sushi, Wonton, TSP, CUB, Frizzle, and SR domains. There are nineteen groups of genes evolved from relatively recent gene duplication and sequence divergence. Thirty-five SPs and seven SPHs contain 1, 2 or 5 clip domains. Multiple sequence alignment and molecular modeling of the 54 clip domains have revealed structural diversity of these regulatory modules. Sequence comparison with their homologs in Drosophila melanogaster, Anopheles gambiae and Tribolium castaneum allows us to classify them into five subfamilies: A are SPHs with 1 or 5 group-3 clip domains, B are SPs with 1 or 2 group-2 clip domains, C, D1 and D2 are SPs with a single clip domain in group-1a, 1b and 1c, respectively. We have classified into six categories the 125 expression profiles of SP-related proteins in fat body, brain, midgut, Malpighian tubule, testis, and ovary at different stages, suggesting that they participate in various physiological processes. Through RNA-Seq-based gene annotation and expression profiling, as well as intragenomic sequence comparisons, we have established a framework of information for future biochemical research of nondigestive SPs and SPHs in this model species. PMID:25530503

  17. Schistosome serine protease inhibitors: parasite defense or homeostasis?

    PubMed Central

    Lopez Quezada, Landys A.; McKerrow, James H.

    2016-01-01

    Serpins are a structurally conserved family of macromolecular inhibitors found in numerous biological systems. The completion and annotation of the genomes of Schistosoma mansoni and Schistosoma japonicum has enabled the identification by phylogenetic analysis of two major serpin clades. S. mansoni shows a greater multiplicity of serpin genes, perhaps reflecting adaptation to infection of a human host. Putative targets of schistosome serpins can be predicted from the sequence of the reactive center loop (RCL). Schistosome serpins may play important roles in both post-translational regulation of schistosome-derived proteases, as well as parasite defense mechanisms against the action of host proteases. PMID:21670886

  18. Adjustments of serine proteases of Daphnia pulex in response to temperature changes.

    PubMed

    Dölling, Ramona; Becker, Dörthe; Hawat, Susan; Koch, Marita; Schwarzenberger, Anke; Zeis, Bettina

    2016-01-01

    Elevated temperatures considerably challenge aquatic invertebrates, and enhanced energy metabolism and protein turnover require adjustments of digestion. In Daphnia, the serine proteases chymotrypsin and trypsin represent the major proteolytic enzymes. Daphnia pulex acclimated to different temperature conditions or subjected to acute heat stress showed increased expression level of serine proteases with rising temperatures. Transcripts of trypsin isoforms were always present in higher amounts than observed for chymotrypsin. Additionally, trypsin isoform transcripts were induced by elevated temperatures to a larger extent. Correspondingly, trypsin activity dominated in cold-acclimated animals. However, the enzymatic activity of chymotrypsin increased at elevated temperatures, whereas trypsin activity slightly decreased, resulting in a shift to dominating chymotrypsin activity in warm-acclimated animals. Zymograms revealed eight bands with proteolytic activity in the range of 20 to 86kDa. The single bands were assigned to trypsin or chymotrypsin activity applying specific inhibitors or from casein cleavage products identified by mass spectrometric analysis. The total amount of proteolytic activity was elevated with acclimation temperature increase and showed a transient decrease under acute heat stress. The contribution of the different isoforms to protein digestion indicated induction of chymotrypsin with increasing acclimation temperature. For trypsin, the share of one isoform decreased with elevated temperature, while another isoform was enhanced. Thus differential expression of serine proteases was observed in response to chronic and acute temperature changes. The observed phenotypic plasticity adjusts the set of active proteases to the altered needs of protein metabolism optimizing protein digestion for the temperature conditions experienced in the habitat. PMID:26773656

  19. Unconventional serine proteases: Variations on the catalytic Ser/His/Asp triad configuration

    PubMed Central

    Ekici, Özlem Doğan; Paetzel, Mark; Dalbey, Ross E.

    2008-01-01

    Serine proteases comprise nearly one-third of all known proteases identified to date and play crucial roles in a wide variety of cellular as well as extracellular functions, including the process of blood clotting, protein digestion, cell signaling, inflammation, and protein processing. Their hallmark is that they contain the so-called “classical” catalytic Ser/His/Asp triad. Although the classical serine proteases are the most widespread in nature, there exist a variety of “nonclassical” serine proteases where variations to the catalytic triad are observed. Such variations include the triads Ser/His/Glu, Ser/His/His, and Ser/Glu/Asp, and include the dyads Ser/Lys and Ser/His. Other variations are seen with certain serine and threonine peptidases of the Ntn hydrolase superfamily that carry out catalysis with a single active site residue. This work discusses the structure and function of these novel serine proteases and threonine proteases and how their catalytic machinery differs from the prototypic serine protease class. PMID:18824507

  20. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior.

    PubMed

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki

    2016-07-15

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628

  1. Leishmania donovani secretory serine protease alters macrophage inflammatory response via COX-2 mediated PGE-2 production.

    PubMed

    Das, Partha; De, Tripti; Chakraborti, Tapati

    2014-12-01

    Leishmania parasites determine the outcome of the infection by inducing inflammatory response that suppresses macrophage's activation. Defense against Leishmania is dependent on Th1 inflammatory response by turning off macrophages' microbicidal property by upregulation of COX-2, as well as immunosuppressive PGE-2 production. To understand the role of L. donovani secretory serine protease (pSP) in these phenomena, pSP was inhibited by its antibody and serine protease inhibitor, aprotinin. Western blot and TAME assay demonstrated that pSP antibody and aprotinin significantly inhibited protease activity in the live Leishmania cells and reduced infection index of L. donovani-infected macrophages. Additionally, ELISA and RT-PCR analysis showed that treatment with pSP antibody or aprotinin hold back COX-2-mediated immunosuppressive PGE-2 secretion with enhancement of Th1 cytokine like IL-12 expression. This was also supported in Griess test and NBT assay, where inhibition of pSP with its inhibitors elevated ROS and NO production. Overall, our study implies the pSP is involved in down-regulation of macrophage microbicidal activity by inducing host inflammatory responses in terms of COX-2-mediated PGE-2 release with diminished reactive oxygen species generation and thus suggests its importance as a novel drug target of visceral leishmaniasis. PMID:25823228

  2. High-level expression and characterization of two serine protease inhibitors from Trichinella spiralis.

    PubMed

    Zhang, Zhaoxia; Mao, Yixian; Li, Da; Zhang, Yvhan; Li, Wei; Jia, Honglin; Zheng, Jun; Li, Li; Lu, Yixin

    2016-03-30

    Serine protease inhibitors (SPIs) play important roles in tissue homeostasis, cell survival, development, and host defense. So far, SPIs have been identified from various organisms, such as animals, plants, bacteria, poxviruses, and parasites. In this study, two SPIs (Tsp03044 and TspAd5) were identified from the genome of Trichinella spiralis and expressed in Escherichia coli. Sequence analysis revealed that these two SPIs contained essential structural motifs, which were well conserved within the tumor-infiltrating lymphocytes (TIL) and serpin superfamily. Based on protease inhibition assays, the recombinant Tsp03044 showed inhibitory effects on trypsin, α-chymotrypsin, and pepsin, while the recombinant TspAd5 could effectively inhibit the activities of α-chymotrypsin and pepsin. Both these inhibitors showed activity between 28 and 48 °C. The expression levels of the two SPIs were also determined at different developmental stages of the parasite with real-time PCR. Our results indicate that Tsp03044 and TspAd5 are functional serine protease inhibitors. PMID:26921036

  3. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    PubMed Central

    2014-01-01

    Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes are found in P. falciparum, of which serine proteases are of particular interest due to their involvement in parasite-specific processes of egress and invasion. In P. falciparum, a number of serine proteases belonging to chymotrypsin, subtilisin, and rhomboid clans are found. This review focuses on the potential of P. falciparum serine proteases as antimalarial drug targets. PMID:24799897

  4. A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold.

    PubMed

    Rendón-Ramírez, Adela; Shukla, Manish; Oda, Masataka; Chakraborty, Sandeep; Minda, Renu; Dandekar, Abhaya M; Ásgeirsson, Bjarni; Goñi, Félix M; Rao, Basuthkar J

    2013-01-01

    Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues. PMID:23940667

  5. Extracellular proteolysis of apolipoprotein E (apoE) by secreted serine neuronal protease.

    PubMed

    Tamboli, Irfan Y; Heo, Dongeun; Rebeck, G William

    2014-01-01

    Under normal conditions, brain apolipoprotein E (apoE) is secreted and lipidated by astrocytes, then taken up by neurons via receptor mediated endocytosis. Free apoE is either degraded in intraneuronal lysosomal compartments or released. Here we identified a novel way by which apoE undergoes proteolysis in the extracellular space via a secreted neuronal protease. We show that apoE is cleaved in neuronal conditioned media by a secreted serine protease. This apoE cleavage was inhibited by PMSF and α1-antichymotrypsin, but not neuroserpin-1 or inhibitors of thrombin and cathepsin G, supporting its identity as a chymotrypsin like protease. In addition, apoE incubation with purified chymotrypsin produced a similar pattern of apoE fragments. Analysis of apoE fragments by mass spectrometry showed cleavages occurring at the C-terminal side of apoE tryptophan residues, further supporting our identification of cleavage by chymotrypsin like protease. Hippocampal neurons were more efficient in mediating this apoE cleavage than cortical neurons. Proteolysis of apoE4 generated higher levels of low molecular weight fragments compared to apoE3. Primary glial cultures released an inhibitor of this proteolytic activity. Together, these studies reveal novel mechanism by which apoE can be regulated and therefore could be useful in designing apoE directed AD therapeutic approaches. PMID:24675880

  6. Extracellular Proteolysis of Apolipoprotein E (apoE) by Secreted Serine Neuronal Protease

    PubMed Central

    Tamboli, Irfan Y.; Heo, Dongeun; Rebeck, G. William

    2014-01-01

    Under normal conditions, brain apolipoprotein E (apoE) is secreted and lipidated by astrocytes, then taken up by neurons via receptor mediated endocytosis. Free apoE is either degraded in intraneuronal lysosomal compartments or released. Here we identified a novel way by which apoE undergoes proteolysis in the extracellular space via a secreted neuronal protease. We show that apoE is cleaved in neuronal conditioned media by a secreted serine protease. This apoE cleavage was inhibited by PMSF and α1-antichymotrypsin, but not neuroserpin-1 or inhibitors of thrombin and cathepsin G, supporting its identity as a chymotrypsin like protease. In addition, apoE incubation with purified chymotrypsin produced a similar pattern of apoE fragments. Analysis of apoE fragments by mass spectrometry showed cleavages occuring at the C-terminal side of apoE tryptophan residues, further supporting our identification of cleavage by chymotrypsin like protease. Hippocampal neurons were more efficient in mediating this apoE cleavage than cortical neurons. Proteolysis of apoE4 generated higher levels of low molecular weight fragments compared to apoE3. Primary glial cultures released an inhibitor of this proteolytic activity. Together, these studies reveal novel mechanism by which apoE can be regulated and therefore could be useful in designing apoE directed AD therapeutic approaches. PMID:24675880

  7. Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases

    PubMed Central

    Lorkowski, Gerhard

    2012-01-01

    Research has confirmed that peptides and larger protein molecules pass through the mucosal barrier of the gastrointestinal tract. Orally administered serine and cysteine proteases of plant and animal origin also reach blood and lymph as intact, high molecular weight and physiologically active protein molecules. Their absorption may be supported by a self-enhanced paracellular transport mechanism resulting in sub-nanomolar concentration of transiently free protease molecules or, in a complex with anti-proteases, at higher concentrations. Data from pharmacokinetic investigations reveals dose linearity for maximum plasma levels of free proteases not unusual for body proteases and a high inter-individual variability. There is no interference with each other after oral administration of protease combinations, and absorption follows an unusual invasion and elimination kinetic due to slow velocity of absorption and a fast 100% protein binding to anti-proteases. Oral application of proteases leads to increased proteolytic serum activity and increased plasma concentrations of the corresponding anti-proteases. Their biological activity is determined by their proteolytic activity as free proteases on soluble peptides/proteins or cell surface receptors (e.g. protease activated receptors) and their activity in the complex formed with their specific and/or unspecific anti-proteases. The anti-protease-complexes, during immune reaction and injuries often loaded with different cytokines, are cleared from body fluids and tissue by receptor mediated endocytosis on hepatocytes and/or blood cells. Oral administration of enteric coated tablets containing proteolytic enzymes of plant and animal origin may be a safe method to stabilize, positively influence or enhance physiological and immunological processes during disease processes and in healthy consumers. PMID:22461953

  8. The serine protease inhibitor protease nexin-1 controls mammary cancer metastasis through LRP-1-mediated MMP-9 expression.

    PubMed

    Fayard, Bérengère; Bianchi, Fabrizio; Dey, Julien; Moreno, Eliza; Djaffer, Sabrina; Hynes, Nancy E; Monard, Denis

    2009-07-15

    Through their ability to degrade the extracellular matrix, proteases mediate cancer cell invasion and metastasis. Paradoxically, some serine protease inhibitors (serpins) are often overexpressed in human tumors. Using computational analysis, we found that the RNA level of protease nexin-1 (PN-1), a serpin that blocks numerous proteases activity, is significantly elevated in estrogen receptor-alpha-negative and in high-grade breast cancer. The in silico approach was complemented by mechanistic studies on two mammary cancer cell lines, the PN-1-negative 168FARN cells and the PN-1-positive 4T1 cells, both of which form primary mammary tumors, but only 4T1 tumors are able to metastasize to the lungs. We show that treatment of 168FARN cells with PN-1 stimulates extracellular signal-regulated kinase activation via low-density lipoprotein receptor-related protein-1 (LRP-1) binding, resulting in increased matrix metalloproteinase (MMP)-9 RNA, protein, and secreted activity. PN-1-silenced 4T1 cells express low MMP-9 levels. Moreover, injection of PN-1-silenced cells into mice did not affect 4T1 primary mammary tumor outgrowth; however, the tumors had impaired metastatic potential, which could be restored by reexpressing soluble MMP-9 in the PN-1-silenced 4T1 cells. Thus, using mammary tumor models, we describe a novel pathway whereby the serpin PN-1 by binding LRP-1 stimulates extracellular signal-regulated kinase signaling, MMP-9 expression, and metastatic spread of mammary tumors. Importantly, an analysis of 126 breast cancer patients revealed that those whose breast tumors had elevated PN-1 levels had a significantly higher probability to develop lung metastasis, but not metastasis to other sites, on relapse. These results suggest that PN-1 might become a prognostic marker in breast cancer. PMID:19584287

  9. Purification and partial characterization of a myofibril-bound serine protease from ostrich skeletal muscle.

    PubMed

    Tshidino, Shonisani C; Krause, Jason; Adebiyi, Abayomi P; Muramoto, Koji; Naudé, Ryno J

    2009-10-01

    A myofibril-bound serine protease (MBSP) was partially purified from ostrich (Struthio camelus) skeletal muscle. MBSP was dissociated from the myofibrillar fraction by ethylene glycol treatment at pH 8.5, followed by partial purification via Toyopearl Super Q 650 S and p-aminobenzamidine column chromatographies. Ostrich MBSP revealed a major protein band of approximately 21 kDa on SDS-PAGE, showing proteolytic activity after casein zymography. Optima pH and temperature of ostrich MBSP were 8 and 40 degrees C, respectively. Substrate specificity analysis revealed that the enzyme cleaved synthetic fluorogenic substrates at the carboxyl side of arginine residues. Kinetic parameters (K(m) and V(max) values) were calculated from Lineweaver-Burk plots. The kinetic characteristics of ostrich MBSP were compared to values obtained for commercial bovine trypsin in this study, as well as those obtained for MBSP from mouse and various fish species. The results suggest that ostrich MBSP is a tryptic-like serine protease. Ostrich MBSP exhibited low sequence identity to commercial bovine trypsin (44%), MBSP from lizard fish skeletal muscle (33%) and trypsinogen from ostrich pancreas (22%). PMID:19559097

  10. Transmembrane Protease Serine 4 Promotes Thyroid Cancer Proliferation via CREB Phosphorylation

    PubMed Central

    Guan, Hongyu; Liang, Weiwei; Liu, Juan; Wei, Guohong; Li, Hai; Xiu, Lingling; Xiao, Haipeng

    2015-01-01

    Background: Transmembrane protease serine 4 (TMPRSS4), one of the type II transmembrane serine proteases (TTSPs), is elevated in various cancers and is associated with multiple malignant phenotypes. However, the expression pattern and biologic significance of TMPRSS4 in thyroid cancer are largely unknown. In this study, we investigated the expression of TMPRSS4 in thyroid cancer and assessed the pro-proliferative role of TMPRSS4 in thyroid cancer. Methods: Immunohistochemistry and real-time reverse transcription-polymerase chain reaction (RT-PCR) assays were performed to assess the expression of TMPRSS4 in thyroid cancer. We evaluated in vitro cell proliferation using MTT, colony formation, anchorage-independent growth, flow cytometry analysis, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays. Western blot, real-time RT-PCR, and luciferase assays were conducted to reveal the underlying mechanisms. Results: TMPRSS4 is overexpressed in thyroid cancer and is associated with the grade of malignancy. Depletion of TMPRSS4 in thyroid cancer cells significantly suppressed proliferation. Moreover, the proliferation of thyroid cancer cells with TMPRSS4 overexpression was significantly enhanced. We also show that cyclic adenosine monophosphate response element-binding protein (CREB)-cyclin D1 signaling mediates, at least partially, the role of TMPRSS4 in thyroid cancer cell proliferation. Conclusions: TMPRSS4 is overexpressed in thyroid cancer and TMPRSS4-CREB signaling is needed to sustain thyroid cancer cell proliferation. PMID:25244400

  11. The DEG15 Serine Protease Cleaves Peroxisomal Targeting Signal 2-Containing Proteins in Arabidopsis1[OA

    PubMed Central

    Schuhmann, Holger; Huesgen, Pitter F.; Gietl, Christine; Adamska, Iwona

    2008-01-01

    Two distinct peroxisomal targeting signals (PTSs), the C-terminal PTS1 and the N-terminal PTS2, are defined. Processing of the PTS2 on protein import is conserved in higher eukaryotes. Recently, candidates for the responsible processing protease were identified from plants (DEG15) and mammals (TYSND1). We demonstrate that plants lacking DEG15 show an expressed phenotype potentially linked to reduced β-oxidation, indicating the impact of protein processing on peroxisomal functions in higher eukaryotes. Mutational analysis of Arabidopsis (Arabidopsis thaliana) DEG15 revealed that conserved histidine, aspartic acid, and serine residues are essential for the proteolytic activity of this enzyme in vitro. This indicates that DEG15 and related enzymes are trypsin-like serine endopeptidases. Deletion of a plant-specific stretch present in the protease domain diminished, but did not abolish, the proteolytic activity of DEG15 against the PTS2-containing glyoxysomal malate dehydrogenase. Fluorescence microscopy showed that a DEG15-green fluorescent protein fusion construct is targeted to peroxisomes in planta. In vivo studies with isolated homozygous deg15 knockout mutants and complemented mutant lines suggest that this enzyme mediates general processing of PTS2-containing proteins. PMID:18952862

  12. Characterization of a membrane-associated serine protease in Escherichia coli

    SciTech Connect

    Palmer, S.M.; St. John, A.C.

    1987-04-01

    Three membrane-associated proteolytic activities in Escherichia coli were resolved by DEAE-cellulose chromatography from detergent extracts of the total envelope fraction. On the basis of substrate specificity for the hydrolysis of chromogenic amino acid ester substrates, the first two eluting activities were determined previously to be protease V and protease IV, respectively. The third proteolytic activity eluting from the DEAE-cellulose column was further purified by affinity chromatography on benzamidine-Sepharose 6B. They termed this enzyme protease VI. Protease VI did not hydrolyze any of the chromogenic substrates used in the detection of protease IV and protease V. However, all three enzymes generated acid-soluble fragments from a mixture of E. coli membrane proteins which were biosynthetically labeled with radioactive amino acids. The activity of protease VI was sensitive to serine protease inhibitors. Using (/sup 3/H)diisopropylfluorophosphate as an active-site labeling reagent, they determined that protease VI has an apparent molecular weight of 43,000 in polyacrylamide gels. All three membrane-associated serine proteases were insensitive to inhibition by Ecotin, an endogenous, periplasmic inhibitor of trypsin.

  13. Characterization of a Kunitz-type serine protease inhibitor from Solanum tuberosum having lectin activity.

    PubMed

    Shah, Kunal R; Patel, Dhaval K; Pappachan, Anju; Prabha, C Ratna; Singh, Desh Deepak

    2016-02-01

    Plant lectins and protease inhibitors constitute a class of proteins which plays a crucial role in plant defense. In our continuing investigations on lectins from plants, we have isolated, purified and characterized a protein of about 20 kDa, named PotHg, showing hemagglutination activity from tubers of Indian potato, Solanum tuberosum. De novo sequencing and MS/MS analysis confirmed that the purified protein was a Kunitz-type serine protease inhibitor having two chains (15 kDa and 5 kDa). SDS and native PAGE analysis showed that the protein was glycosylated and was a heterodimer of about 15 and 5 kDa subunits. PotHg agglutinated rabbit erythrocytes with specific activity of 640 H.U./mg which was inhibited by complex sugars like fetuin. PotHg retained hemagglutination activity over a pH range 4-9 and up to 80°C. Mannose and galactose interacted with the PotHg with a dissociation constant (Kd) of 1.5×10(-3) M and 2.8×10(-3) M, respectively as determined through fluorescence studies. Fluorescence studies suggested the involvement of a tryptophan in sugar binding which was further confirmed through modification of tryptophan residues using N-bromosuccinimide. Circular dichroism (CD) studies showed that PotHg contains mostly β sheets (∼45%) and loops which is in line with previously characterized protease inhibitors and modeling studies. There are previous reports of Kunitz-type protease inhibitors showing lectin like activity from Peltophorum dubium and Labramia bojeri. This is the first report of a Kunitz-type protease inhibitor showing lectin like activity from a major crop plant and this makes PotHg an interesting candidate for further investigation. PMID:26645142

  14. Functional and Structural Characterization of Vibrio cholerae Extracellular Serine Protease B, VesB*

    PubMed Central

    Gadwal, Shilpa; Korotkov, Konstantin V.; Delarosa, Jaclyn R.; Hol, Wim G. J.; Sandkvist, Maria

    2014-01-01

    The chymotrypsin subfamily A of serine proteases consists primarily of eukaryotic proteases, including only a few proteases of bacterial origin. VesB, a newly identified serine protease that is secreted by the type II secretion system in Vibrio cholerae, belongs to this subfamily. VesB is likely produced as a zymogen because sequence alignment with trypsinogen identified a putative cleavage site for activation and a catalytic triad, His-Asp-Ser. Using synthetic peptides, VesB efficiently cleaved a trypsin substrate, but not chymotrypsin and elastase substrates. The reversible serine protease inhibitor, benzamidine, inhibited VesB and served as an immobilized ligand for VesB affinity purification, further indicating its relationship with trypsin-like enzymes. Consistent with this family of serine proteases, N-terminal sequencing implied that the propeptide is removed in the secreted form of VesB. Separate mutagenesis of the activation site and catalytic serine rendered VesB inactive, confirming the importance of these features for activity, but not for secretion. Similar to trypsin but, in contrast to thrombin and other coagulation factors, Na+ did not stimulate the activity of VesB, despite containing the Tyr250 signature. The crystal structure of catalytically inactive pro-VesB revealed that the protease domain is structurally similar to trypsinogen. The C-terminal domain of VesB was found to adopt an immunoglobulin (Ig)-fold that is structurally homologous to Ig-folds of other extracellular Vibrio proteins. Possible roles of the Ig-fold domain in stability, substrate specificity, cell surface association, and type II secretion of VesB, the first bacterial multidomain trypsin-like protease with known structure, are discussed. PMID:24459146

  15. Evidence for possible involvement of an elastolytic serine protease in aspergillosis.

    PubMed Central

    Kolattukudy, P E; Lee, J D; Rogers, L M; Zimmerman, P; Ceselski, S; Fox, B; Stein, B; Copelan, E A

    1993-01-01

    A number of isolates of Aspergillus fumigatus obtained from the hospital environment produced extracellular elastolytic activity. This activity was found to be catalyzed by a single 33-kDa protein which was purified and characterized to be a serine protease. A. fumigatus, when grown on the insoluble structural material obtained from murine and bovine lung, produced the same extracellular 33-kDa elastolytic protease, indicating that this enzyme is likely to be produced when the organism infects the lung. Polymerase chain reaction with an oligonucleotide primer based on the N-terminal amino acid sequence of the elastolytic enzyme yielded a cDNA which was cloned and sequenced. The active serine motif showed more similarity to subtilisin than to mammalian elastase. The amino acid sequence showed 80% identity to the alkaline protease from Aspergillus oryzae. Screening of hospital isolates of Aspergillus flavus showed great variation in the production of elastolytic activity and a much lower level of activity than that produced by A. fumigatus. The elastolytic protease from A. flavus was shown to be a serine protease susceptible to modification and inactivation by active serine and histidine-directed reagents. This protease cross-reacted with the antibodies prepared against the elastolytic protease from A. fumigatus. Immunogold localization of the elastolytic enzyme showed that A. fumigatus germinating and penetrating into the lungs of neutropenic mice secreted the elastolytic protease. An elastase-deficient mutant generated from a highly virulent isolate of A. fumigatus caused drastically reduced mortality when nasally introduced into the lung of neutropenic mice. All of the evidence suggests that extracellular elastolytic protease is a significant virulence factor in invasive aspergillosis. Images PMID:8500876

  16. The natural killer cell serine protease gene Lmet1 maps to mouse chromosome 10

    SciTech Connect

    Thia, K.Y.T.; Smyth, M.J.; Jenkins, N.A.; Gilbert, D.J.; Copeland, N.G.

    1995-01-01

    Cytotoxic lymphocytes play a key role in immune responses against viruses and tumors. Lymphocyte-mediated cytolysis by both cytotoxic T lymphocytes (CTL) and natural killer (NK) cells is often associated with the formation of membrane lesions on target cells caused by exocytosis of cytoplasmic granule serine proteases and a pore-forming protein, perforin. A variety of granzymes have been found to reside within the cytoplasmic granules of cytotoxic lymphocytes, but unlike perforin, isolated serine proteases are not intrinsically lytic. However, a role for serine proteases in cellular cytotoxicity has been supported by the ability of protease inhibitors to completely abrogate lymphocyte cytotoxicity, and the demonstration that serine proteases can initiate DNA fragmentation in target cells transfected or pretreated with a sublytic concentration of perforin. Granzymes cloned in human, mouse, and rat encode four granzyme activities and all are expressed in either T cells, their thymic precursors, and/or NK cells. In particular, a rat granzyme that cleaves after methionine residues, but not phenylalanine residues and its human equivalent, human Met-ase 1, are unique granzymes with restricted expression in CD3-NK cells. 24 refs., 2 figs.

  17. Crystal Structure of a Novel Viral Protease with a Serine/Lysine Catalytic Dyad Mechanism

    SciTech Connect

    Feldman,A.; Lee, J.; Delmas, B.; Paetzel, M.

    2006-01-01

    The blotched snakehead virus (BSNV), an aquatic birnavirus, encodes a polyprotein (NH2-pVP2-X-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease (VP4) to liberate itself and the viral proteins pVP2, X and VP3. The protein pVP2 is further processed by VP4 to give rise to the capsid protein VP2 and four structural peptides. We report here the crystal structure of a VP4 protease from BSNV, which displays a catalytic serine/lysine dyad in its active site. This is the first crystal structure of a birnavirus protease and the first crystal structure of a viral protease that utilizes a lysine general base in its catalytic mechanism. The topology of the VP4 substrate binding site is consistent with the enzymes substrate specificity and a nucleophilic attack from the si-face of the substrates scissile bond. Despite low levels of sequence identity, VP4 shows similarities in its active site to other characterized Ser/Lys proteases such as signal peptidase, LexA protease and Lon protease. Together, the structure of VP4 provides insights into the mechanism of a recently characterized clan of serine proteases that utilize a lysine general base and reveals the structure of potential targets for antiviral therapy, especially for other related and economically important viruses, such as infectious bursal disease virus in poultry and infectious pancreatic necrosis virus in aquaculture.

  18. Coupling of epithelial Na+ and Cl− channels by direct and indirect activation by serine proteases

    PubMed Central

    Gondzik, Veronika; Weber, Wolf Michael

    2012-01-01

    The mammalian collecting duct (CD) is continuously exposed to urinary proteases. The CD expresses an epithelial Na+ channel (ENaC) that is activated after cleavage by serine proteases. ENaC also exists at the plasma membrane in the uncleaved form, rendering activation by extracellular proteases an important mechanism for regulating Na+ transport. Many exogenous and a small number of endogenous extracellular serine proteases have been shown to activate the channel. Recently, kallikrein 1 (KLK1) was shown to increase γENaC cleavage in the native CD indicating a possible direct role of this endogenous protease in Na+ homeostasis. To explore this process, we examined the coordinated effect of this protease on Na+ and Cl− transport in a polarized renal epithelial cell line (Madin-Darby canine kidney). We also examined the role of native urinary proteases in this process. Short-circuit current (Isc) was used to measure transport of these ions. The Isc exhibited an ENaC-dependent Na+ component that was amiloride blockable and a cystic fibrosis transmembrane conductance regulator (CFTR)-dependent Cl− component that was blocked by inhibitor 172. Apical application of trypsin, an exogenous S1 serine protease, activated IENaC but was without effects on ICFTR. Subtilisin an exogenous S8 protease that mimics endogenous furin-type proteases activated both currents. A similar activation was also observed with KLK1 and native rat urinary proteases. Activation with urinary proteases occurred within minutes and at protease concentrations similar to those in the CD indicating physiological significance of this process. ENaC activation was irreversible and mediated by enhanced cleavage of γENaC. The activation of CFTR was indirect and likely dependent on activation of an endogenous apical membrane protease receptor. Collectively, these data demonstrate coordinated stimulation of separate Na+ and Cl− transport pathways in renal epithelia by extracellular luminal proteases. They

  19. The macromolecular assembly of pathogen-recognition receptors is impelled by serine proteases, via their complement control protein modules.

    PubMed

    Le Saux, Agnès; Ng, Patricia Miang Lon; Koh, Joanne Jing Yun; Low, Diana Hooi Ping; Leong, Geraldine E-Ling; Ho, Bow; Ding, Jeak Ling

    2008-03-28

    Although the innate immune response is triggered by the formation of a stable assembly of pathogen-recognition receptors (PRRs) onto the pathogens, the driving force that enables this PRR-PRR interaction is unknown. Here, we show that serine proteases, which are activated during infection, participate in associating with the PRRs. Inhibition of serine proteases gravely impairs the PRR assembly. Using yeast two-hybrid and pull-down methods, we found that two serine proteases in the horseshoe crab Carcinoscorpius rotundicauda are able to bind to the following three core members of PRRs: galactose-binding protein, Carcinolectin-5 and C-reactive protein. These two serine proteases are (1) Factor C, which activates the coagulation pathway, and (2) C2/Bf, a protein from the complement pathway. By systematic molecular dissection, we show that these serine proteases interact with the core "pathogen-recognition complex" via their complement control protein modules. PMID:18279891

  20. The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase.

    PubMed Central

    Eggers, Christopher T; Murray, Iain A; Delmar, Valerie A; Day, Anthony G; Craik, Charles S

    2004-01-01

    Ecotin is a dimeric periplasmic protein from Escherichia coli that has been shown to inhibit potently many trypsin-fold serine proteases of widely varying substrate specificity. To help elucidate the physiological function of ecotin, we examined the family of ecotin orthologues, which are present in a subset of Gram-negative bacteria. Phylogenetic analysis suggested that ecotin has an exogenous target, possibly neutrophil elastase. Recombinant protein was expressed and purified from E. coli, Yersinia pestis and Pseudomonas aeruginosa, all species that encounter the mammalian immune system, and also from the plant pathogen Pantoea citrea. Notably, the Pa. citrea variant inhibits neutrophil elastase 1000-fold less potently than the other orthologues. All four orthologues are dimeric proteins that potently inhibit (<10 pM) the pancreatic digestive proteases trypsin and chymotrypsin, while showing more variable inhibition (5 pM to 24 microM) of the blood proteases Factor Xa, thrombin and urokinase-type plasminogen activator. To test whether ecotin does, in fact, protect bacteria from neutrophil elastase, an ecotin-deficient strain was generated in E. coli. This strain is significantly more sensitive in cell-killing assays to human neutrophil elastase, which causes increased permeability of the outer membrane that persists even during renewed bacterial growth. Ecotin affects primarily the ability of E. coli to recover and grow following treatment with neutrophil elastase, rather than the actual rate of killing. This suggests that an important part of the antimicrobial mechanism of neutrophil elastase may be a periplasmic bacteriostatic effect of protease that has translocated across the damaged outer membrane. PMID:14705961

  1. Highly stable glycosylated serine protease from the medicinal plant Euphorbia milii.

    PubMed

    Yadav, Subhash C; Pande, Monu; Jagannadham, M V

    2006-07-01

    A serine protease, named as "Milin" was purified to homogeneity from the latex of Euphorbia milii, a medicinal plant of Euphorbiaceae family. The molecular mass (SDS-PAGE), optimum pH and temperature of the enzyme were 51kDa, pH 8.0 and 60 degrees C, respectively. Milin retains full proteolytic activity over a wide range of pH (5.5-12) and temperature (up to 65 degrees C) with casein and azoalbumin as substrates. The activity of milin is inhibited by serine proteases inhibitors like PMSF, APMSF and DFP, but not by any other protease inhibitors such as E-64 and PCMB. Like the other serine proteases from the genus Euphorbia, the activity of milin was not inhibited by the proteinaceous inhibitor soyabean trypsin inhibitor (SBTI) even at very high concentrations that is naturally present in plants. The specific extinction coefficient (epsilon(280 nm)(1%)), molar extinction coefficient (a(m)) and isoelectric point of the enzyme were found to be 29, 152,500 M(-1) cm(-1) and pH 7.2, respectively. The enzyme is a glycoprotein with detectable carbohydrate moiety (7-8%) in its constitution, which is essential for the activity. The numbers of tryptophan, tyrosine and cysteine residues in the sequence of milin were estimated chemically and are 23, 14 and 14, respectively. Of the 14-cysteine residues, 12 constituted 6-disulfide linkages while two are free cysteines. The N-terminal sequence (first 12 amino acid residues) was determined and does not match with any sequence of known plant serine proteases. Perturbation studies by temperature, pH and chaotropes of the enzyme also reveal its high stability as seen by CD, fluorescence and proteolytic activity. Thus, this serine protease may have potential applications in food industry. PMID:16839575

  2. Crystallization of a Nonclassical Kazal-type Carcinoscorpius Rotundicauda Serine Protease Inhibitor, CrSPI-1, Complexed with Subtilisin

    SciTech Connect

    Tulsidas, S.; Thangamani, S; Ho, B; Sivaraman, J; Ding, J

    2009-01-01

    Serine proteases play a major role in host-pathogen interactions. The innate immune system is known to respond to invading pathogens in a nonspecific manner. The serine protease cascade is an essential component of the innate immune system of the horseshoe crab. The serine protease inhibitor CrSPI isoform 1 (CrSPI-1), a unique nonclassical Kazal-type inhibitor of molecular weight 9.3 kDa, was identified from the hepatopancreas of the horseshoe crab Carcinoscorpius rotundicauda. It potently inhibits subtilisin and constitutes a powerful innate immune defence against invading microbes. Here, the cloning, expression, purification and cocrystallization of CrSPI-1 with subtilisin are reported. The crystals diffracted to 2.6 {angstrom}resolution and belonged to space group P2{sub 1}, with unit-cell parameters a = 73.8, b = 65.0, c = 111.9 {angstrom}, {beta} = 95.4. The Matthews coefficient (VM = 2.64 {angstrom}3 Da-1, corresponding to 53% solvent content) and analysis of the preliminary structure solution indicated the presence of one heterotrimer (1:2 ratio of CrSPI-1:subtilisin) and one free subtilisin molecule in the asymmetric unit.

  3. Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases

    PubMed Central

    2015-01-01

    Members of the same protease family show different substrate specificity, even if they share identical folds, depending on the physiological processes they are part of. Here, we investigate the key factors for subpocket and global specificity of factor Xa, elastase, and granzyme B which despite all being serine proteases and sharing the chymotrypsin-fold show distinct substrate specificity profiles. We determined subpocket interaction potentials with GRID for static X-ray structures and an in silico generated ensemble of conformations. Subpocket interaction potentials determined for static X-ray structures turned out to be insufficient to explain serine protease specificity for all subpockets. Therefore, we generated conformational ensembles using molecular dynamics simulations. We identified representative binding site conformations using distance-based hierarchical agglomerative clustering and determined subpocket interaction potentials for each representative conformation of the binding site. Considering the differences in subpocket interaction potentials for these representative conformations as well as their abundance allowed us to quantitatively explain subpocket specificity for the nonprime side for all three example proteases on a molecular level. The methods to identify key regions determining subpocket specificity introduced in this study are directly applicable to other serine proteases, and the results provide starting points for new strategies in rational drug design. PMID:26709959

  4. IrSPI, a tick serine protease inhibitor involved in tick feeding and Bartonella henselae infection.

    PubMed

    Liu, Xiang Ye; de la Fuente, Jose; Cote, Martine; Galindo, Ruth C; Moutailler, Sara; Vayssier-Taussat, Muriel; Bonnet, Sarah I

    2014-07-01

    Ixodes ricinus is the most widespread and abundant tick in Europe, frequently bites humans, and is the vector of several pathogens including those responsible for Lyme disease, Tick-Borne Encephalitis, anaplasmosis, babesiosis and bartonellosis. These tick-borne pathogens are transmitted to vertebrate hosts via tick saliva during blood feeding, and tick salivary gland (SG) factors are likely implicated in transmission. In order to identify such tick factors, we characterized the transcriptome of female I. ricinus SGs using next generation sequencing techniques, and compared transcriptomes between Bartonella henselae-infected and non-infected ticks. High-throughput sequencing of I. ricinus SG transcriptomes led to the generation of 24,539 isotigs. Among them, 829 and 517 transcripts were either significantly up- or down-regulated respectively, in response to bacterial infection. Searches based on sequence identity showed that among the differentially expressed transcripts, 161 transcripts corresponded to nine groups of previously annotated tick SG gene families, while the others corresponded to genes of unknown function. Expression patterns of five selected genes belonging to the BPTI/Kunitz family of serine protease inhibitors, the tick salivary peptide group 1 protein, the salp15 super-family, and the arthropod defensin family, were validated by qRT-PCR. IrSPI, a member of the BPTI/Kunitz family of serine protease inhibitors, showed the highest up-regulation in SGs in response to Bartonella infection. IrSPI silencing impaired tick feeding, as well as resulted in reduced bacterial load in tick SGs. This study provides a comprehensive analysis of I. ricinus SG transcriptome and contributes significant genomic information about this important disease vector. This in-depth knowledge will enable a better understanding of the molecular interactions between ticks and tick-borne pathogens, and identifies IrSPI, a candidate to study now in detail to estimate its

  5. The serine protease autotransporter Tsh contributes to the virulence of Edwardsiella tarda.

    PubMed

    Hu, Yong-Hua; Zhou, Hai-Zhen; Jin, Qian-Wen; Zhang, Jian

    2016-06-30

    The temperature-sensitive hemagglutinin (Tsh), identified as serine protease autotransporters of the Enterobacteriaceae (SPATEs) proteins, is an important virulence factor for avian-pathogenic Escherichia coli (APEC) and uropathogenic E. coli. However, little is known about the role of Tsh as a virulence factor in Edwardsiella tarda, a severe fish pathogen. In this study, we characterized the Tsh of E. tarda (named TshEt) and examined its function and vaccine potential. TshEt is composed of 1224 residues and has three functional domains typical for autotransporters. Quantitative real-time reverse transcriptase-PCR analysis showed that expression of tshEt was upregulated under conditions of high temperature, increased cell density, high pH, and iron starvation and during the infection of host cells. A markerless tsh in-frame mutant strain, TX01Δtsh, was constructed to determine whether TshEt participates in the pathogenicity of E. tarda, Compared to the wild type TX01, TX01Δtsh exhibited (i) retarded biofilm growth, (ii) decreased resistance against serum killing, (iii) impaired ability to block the host immune response, (iv) attenuated tissue and cellular infectivity. Introduction of a trans-expressed tsh gene restored the lost virulence of TX01Δtsh. The passenger domain of TshEt contains a putative serine protease (PepS) that exhibits apparent proteolytic activity when expressed in and purified from E. coli as a recombinant protein (rPepS). When used as a subunit vaccine to immunize Japanese flounder, rPepS was able to induce effective immune protection. This is the first study of Tsh in a fish pathogen, and the results suggest that TshEt exerts pleiotropic effects on the pathogenesis of E. tarda. PMID:27259829

  6. Design of a Selective Substrate and Activity Based Probe for Human Neutrophil Serine Protease 4.

    PubMed

    Kasperkiewicz, Paulina; Poreba, Marcin; Snipas, Scott J; Lin, S Jack; Kirchhofer, Daniel; Salvesen, Guy S; Drag, Marcin

    2015-01-01

    Human neutrophil serine protease 4 (NSP4), also known as PRSS57, is a recently discovered fourth member of the neutrophil serine proteases family. Although its biological function is not precisely defined, it is suggested to regulate neutrophil response and innate immune reactions. To create optimal substrates and visualization probes for NSP4 that distinguish it from other NSPs we have employed a Hybrid Combinatorial Substrate Library approach that utilizes natural and unnatural amino acids to explore protease subsite preferences. Library results were validated by synthesizing individual substrates, leading to the identification of an optimal substrate peptide. This substrate was converted to a covalent diphenyl phosphonate probe with an embedded biotin tag. This probe demonstrated high inhibitory activity and stringent specificity and may be suitable for visualizing NSP4 in the background of other NSPs. PMID:26172376

  7. The Effects of Midgut Serine Proteases on Dengue Virus Type 2 Infectivity of Aedes aegypti

    PubMed Central

    Brackney, Doug E.; Foy, Brian D.; Olson, Ken E.

    2009-01-01

    Dengue viruses (DENV) cause significant morbidity and mortality worldwide and are transmitted by the mosquito Aedes aegypti. Mosquitoes become infected after ingesting a viremic bloodmeal, and molecular mechanisms involved in bloodmeal digestion may affect the ability of DENV to infect the midgut. We used RNA interference (RNAi) to silence expression of four midgut serine proteases and assessed the effect of each RNAi phenotype on DENV-2 infectivity of Aedes aegypti. Silencing resulted in significant reductions in protease mRNA levels and correlated with a reduction in activity except in the case of late trypsin. RNA silencing of chymotrypsin, early and late trypsin had no effect on DENV-2 infectivity. However, silencing of 5G1 or the addition of soybean trypsin inhibitor to the infectious bloodmeals significantly increased midgut infection rates. These results suggest that some midgut serine proteases may actually limit DENV-2 infectivity of Ae. aegypti. PMID:18689635

  8. A potential Kazal-type serine protease inhibitor involves in kinetics of protease inhibition and bacteriostatic activity.

    PubMed

    Kumaresan, Venkatesh; Harikrishnan, Ramaswamy; Arockiaraj, Jesu

    2015-02-01

    Kazal-type serine protease inhibitor (KSPI) is a pancreatic secretary trypsin inhibitor which involves in various cellular component regulations including development and defense process. In this study, we have characterized a KSPI cDNA sequence of freshwater striped murrel fish Channa striatus (Cs) at molecular level. Cellular location analysis predicted that the CsKSPI was an extracellular protein. The domain analysis showed that the CsKSPI contains a Kazal domain at 47-103 along with its family signature between 61 and 83. Phylogenetically, CsKSPI is closely related to KSPI from Maylandia zebra and formed a sister group with mammals. The 2D structure of CsKSPI showed three α-helical regions which are connected with random coils, one helix at signal sequence and two at the Kazal domain region. The relative gene expression showed that the CsKSPI was highly expressed in gills and its expression was induced upon fungus (Aphanomyces invadans), bacteria (Aeromonas hydrophila) and poly I:C (a viral analogue) challenge. The CsKSPI recombinant protein was produced to characterize and study the CsKSPI gene specific functions. The recombinant CsKSPI strongly inhibited trypsin compared to other tested proteases. The results of the kinetic activity of CsKSPI against trypsin was V(max)s = 1.62 nmol/min, K(M)s = 0.21 mM and K(i)s = 15.37 nM. Moreover, the recombinant CsKSPI inhibited the growth of Gram-negative bacteria A. hydrophila at 20 μM and Gram-positive bacteria Bacillus subtilis at the MIC50 of 15 μM. Overall, the study indicated that the CsKSPI was a potential trypsin inhibitor which involves in antimicrobial activity. PMID:25433138

  9. Structural and Functional Characterization of Cleavage and Inactivation of Human Serine Protease Inhibitors by the Bacterial SPATE Protease EspPα from Enterohemorrhagic E. coli

    PubMed Central

    Weiss, André; Joerss, Hanna; Brockmeyer, Jens

    2014-01-01

    EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins) by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI), α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition. PMID:25347319

  10. Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli.

    PubMed

    Weiss, André; Joerss, Hanna; Brockmeyer, Jens

    2014-01-01

    EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins) by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI), α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition. PMID:25347319

  11. A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650.

    PubMed

    Ben Elhoul, Mouna; Zaraî Jaouadi, Nadia; Rekik, Hatem; Bejar, Wacim; Boulkour Touioui, Souraya; Hmidi, Maher; Badis, Abdelmalek; Bejar, Samir; Jaouadi, Bassem

    2015-08-01

    An alkaline proteinase (STAP) was produced from strain TN650 isolated from a Tunisian off-shore oil field and assigned as Streptomyces koyangensis strain TN650 based on physiological and biochemical properties and 16S rRNA gene sequencing. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer with a molecular mass of 45125.17-Da. The enzyme had an NH2-terminal sequence of TQSNPPSWGLDRIDQTTAFTKACSIKY, thus sharing high homology with those of Streptomyces proteases. The results showed that this protease was completely inhibited by phenylmethanesulfonyl fluoride (PMSF), diiodopropyl fluorophosphates (DFP), and partially inhibited by 5,5-dithio-bis-(2-nitro benzoic acid) (DTNB), which strongly suggested its belonging to the serine thiol protease family. Using casein as a substrate, the optimum pH and temperature values for protease activity were pH 10 and 70 °C, respectively. The protease was stable at pH 7-10 and 30-60 °C for 24 h. STAP exhibited high catalytic efficiency, significant detergent stability, and elevated organic solvent resistance compared to the SG-XIV proteases from S. griseus and KERAB from Streptomyces sp. AB1. The stap gene encoding STAP was isolated, and its DNA sequence was determined. These properties make STAP a potential candidate for future application in detergent formulations and non-aqueous peptide biocatalysis. PMID:26056991

  12. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    PubMed

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. PMID:27329566

  13. An evaluation of chromogenic substrates for characterization of serine protease produced by pathogenic Vibrio alginolyticus.

    PubMed

    Chen, F R; Liu, P C; Lee, K K

    1999-01-01

    Four chromogenic substrates for characterizing serine protease of Vibrio alginolyticus were evaluated. The protease activity of bacterial extracellular products, or the fractions of 33 kD protease purified by the AKTA purifier system with various columns, was completely inhibited by ethylenediamine tetra-acetic acid, ethylene glycol-bis(beta-amino-ethyl ether) N,N,N',N'-tetraacetic acid (EGTA), antipain and phenylmethylsulphonyl fluoride (PMSF) using water-soluble substrates (azoalbumin and azocasein). It was only completely inhibited by antipain and PMSF using water-insoluble substrates (azocoll and hide powder azure). The protease activity was not, or only partially, inhibited by 1,10-phenanthroline and sodium dodecyl sulphate (SDS) using all four substrates. Since chelating agents and 1,10-phenanthroline are commonly employed as inhibitors to identify metalloprotease, the two water-soluble substrates may not be appropriate for this purpose, except for using 1,10-phenanthroline as an inhibitor. Chelating agents may be still applicable as inhibitors using water-insoluble substrates and 1,10-phenanthroline is highly recommended in the characterization for metalloprotease to avoid confusion. In the present study, the 33 kD protease was further confirmed as an SDS-resistant serine protease and not a metalloprotease. PMID:10413876

  14. Protoporphyrins Enhance Oligomerization and Enzymatic Activity of HtrA1 Serine Protease

    PubMed Central

    Jo, Hakryul; Patterson, Victoria; Stoessel, Sean; Kuan, Chia-Yi; Hoh, Josephine

    2014-01-01

    High temperature requirement protein A1 (HtrA1), a secreted serine protease of the HtrA family, is associated with a multitude of human diseases. However, the exact functions of HtrA1 in these diseases remain poorly understood. We seek to unravel the mechanisms of HtrA1 by elucidating its interactions with chemical or biological modulators. To this end, we screened a small molecule library of 500 bioactive compounds to identify those that alter the formation of extracellular HtrA1 complexes in the cell culture medium. An initial characterization of two novel hits from this screen showed that protoporphyrin IX (PPP-IX), a precursor in the heme biosynthetic pathway, and its metalloporphyrin (MPP) derivatives fostered the oligomerization of HtrA1 by binding to the protease domain. As a result of the interaction with MPPs, the proteolytic activity of HtrA1 against Fibulin-5, a specific HtrA1 substrate in age-related macular degeneration (AMD), was increased. This physical interaction could be abolished by the missense mutations of HtrA1 found in patients with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Furthermore, knockdown of HtrA1 attenuated apoptosis induced by PPP-IX. These results suggest that PPP-IX, or its derivatives, and HtrA1 may function as co-factors whereby porphyrins enhance oligomerization and the protease activity of HtrA1, while active HtrA1 elevates the pro-apoptotic actions of porphyrin derivatives. Further analysis of this interplay may shed insights into the pathogenesis of diseases such as AMD, CARASIL and protoporphyria, as well as effective therapeutic development. PMID:25506911

  15. Identification and characterization of alkaline serine protease from goat skin surface metagenome.

    PubMed

    Pushpam, Paul Lavanya; Rajesh, Thangamani; Gunasekaran, Paramasamy

    2011-01-01

    Metagenomic DNA isolated from goat skin surface was used to construct plasmid DNA library in Escherichia coli DH10B. Recombinant clones were screened for functional protease activity on skim milk agar plates. Upon screening 70,000 clones, a clone carrying recombinant plasmid pSP1 exhibited protease activity. In vitro transposon mutagenesis and sequencing of the insert DNA in this clone revealed an ORF of 1890 bp encoding a protein with 630 amino acids which showed significant sequence homology to the peptidase S8 and S53 subtilisin kexin sedolisin of Shewanella sp. This ORF was cloned in pET30b and expressed in E. coli BL21 (DE3). Although the cloned Alkaline Serine protease (AS-protease) was overexpressed, it was inactive as a result of forming inclusion bodies. After solubilisation, the protease was purified using Ni-NTA chromatography and then refolded properly to retain protease activity. The purified AS-protease with a molecular mass of ~63 kDa required a divalent cation (Co2+ or Mn2+) for its improved activity. The pH and temperature optima for this protease were 10.5 and 42°C respectively. PMID:21906326

  16. Identification and characterization of alkaline serine protease from goat skin surface metagenome

    PubMed Central

    2011-01-01

    Metagenomic DNA isolated from goat skin surface was used to construct plasmid DNA library in Escherichia coli DH10B. Recombinant clones were screened for functional protease activity on skim milk agar plates. Upon screening 70,000 clones, a clone carrying recombinant plasmid pSP1 exhibited protease activity. In vitro transposon mutagenesis and sequencing of the insert DNA in this clone revealed an ORF of 1890 bp encoding a protein with 630 amino acids which showed significant sequence homology to the peptidase S8 and S53 subtilisin kexin sedolisin of Shewanella sp. This ORF was cloned in pET30b and expressed in E. coli BL21 (DE3). Although the cloned Alkaline Serine protease (AS-protease) was overexpressed, it was inactive as a result of forming inclusion bodies. After solubilisation, the protease was purified using Ni-NTA chromatography and then refolded properly to retain protease activity. The purified AS-protease with a molecular mass of ~63 kDa required a divalent cation (Co2+ or Mn2+) for its improved activity. The pH and temperature optima for this protease were 10.5 and 42°C respectively. PMID:21906326

  17. Mirolase, a novel subtilisin-like serine protease from the periodontopathogen Tannerella forsythia

    PubMed Central

    Ksiazek, Miroslaw; Karim, Abdulkarim Y.; Bryzek, Danuta; Enghild, Jan J.; Thøgersen, Ida B.; Koziel, Joanna; Potempa, Jan

    2015-01-01

    The genome of Tannerella forsythia, an etiologic factor of chronic periodontitis, contains several genes encoding putative proteases. Here, we characterized a subtilisin-like serine protease of T. forsythia referred to as mirolase. Recombinant full-length latent promirolase (85 kDa, without its signal peptide) processed itself through sequential autoproteolytic cleavages into a mature enzyme of 40 kDa. Mirolase latency was driven by the N-terminal prodomain (NTP). In stark contrast to almost all known subtilases, the cleaved NTP remained non-covalently associated with mirolase, inhibiting its proteolytic, but not amidolytic, activity. Full activity was observed only after the NTP was gradually, and fully, degraded. Both activity and processing was absolutely dependent on calcium ions, which were also essential for enzyme stability. As a consequence, both serine protease inhibitors and calcium ions chelators inhibited mirolase activity. Activity assays using an array of chromogenic substrates revealed that mirolase specificity is driven not only by the substrate-binding subsite S1, but also by other subsites. Taken together mirolase is a calcium-dependent serine protease of the S8 family with the unique mechanism of activation that may contribute to T. forsythia pathogenicity by degradation of fibrinogen, hemoglobin and the antimicrobial peptide LL-37. PMID:25391881

  18. Characterization of a serine protease-mediated cell death program activated in human leukemia cells

    SciTech Connect

    O'Connell, A.R.; Holohan, C.; Torriglia, A.; Lee, B.F.; Stenson-Cox, C. . E-mail: catherine.stenson@nuigalway.ie

    2006-01-01

    Tightly controlled proteolysis is a defining feature of apoptosis and caspases are critical in this regard. Significant roles for non-caspase proteases in cell death have been highlighted. Staurosporine causes a rapid induction of apoptosis in virtually all mammalian cell types. Numerous studies demonstrate that staurosporine can activate cell death under caspase-inhibiting circumstances. The aim of this study was to investigate the proteolytic mechanisms responsible for cell death under these conditions. To that end, we show that inhibitors of serine proteases can delay cell death in one such system. Furthermore, through profiling of proteolytic activation, we demonstrate, for the first time, that staurosporine activates a chymotrypsin-like serine protease-dependent cell death in HL-60 cells independently, but in parallel with the caspase controlled systems. Features of the serine protease-mediated system include cell shrinkage and apoptotic morphology, regulation of caspase-3, altered nuclear morphology, generation of an endonuclease and DNA degradation. We also demonstrate a staurosporine-induced activation of a putative 16 kDa chymotrypsin-like protein during apoptosis.

  19. Purification and characterization of a serine alkaline protease from Bacillus clausii GMBAE 42.

    PubMed

    Kazan, Dilek; Denizci, Aziz Akin; Oner, Mine N Kerimak; Erarslan, Altan

    2005-08-01

    An extracellular serine alkaline protease of Bacillus clausii GMBAE 42 was produced in protein-rich medium in shake-flask cultures for 3 days at pH 10.5 and 37 degrees C. Highest alkaline protease activity was observed in the late stationary phase of cell cultivation. The enzyme was purified 16-fold from culture filtrate by DEAE-cellulose chromatography followed by (NH(4))(2)SO(4) precipitation, with a yield of 58%. SDS-PAGE analysis revealed the molecular weight of the enzyme to be 26.50 kDa. The optimum temperature for enzyme activity was 60 degrees C; however, it is shifted to 70 degrees C after addition of 5 mM Ca(2+) ions. The enzyme was stable between 30 and 40 degrees C for 2 h at pH 10.5; only 14% activity loss was observed at 50 degrees C. The optimal pH of the enzyme was 11.3. The enzyme was also stable in the pH 9.0--12.2 range for 24 h at 30 degrees C; however, activity losses of 38% and 76% were observed at pH values of 12.7 and 13.0, respectively. The activation energy of Hammarsten casein hydrolysis by the purified enzyme was 10.59 kcal mol(-1) (44.30 kJ mol(-1)). The enzyme was stable in the presence of the 1% (w/v) Tween-20, Tween-40,Tween-60, Tween-80, and 0.2% (w/v) SDS for 1 h at 30 degrees C and pH 10.5. Only 10% activity loss was observed with 1% sodium perborate under the same conditions. The enzyme was not inhibited by iodoacetate, ethylacetimidate, phenylglyoxal, iodoacetimidate, n-ethylmaleimidate, n-bromosuccinimide, diethylpyrocarbonate or n-ethyl-5-phenyl-iso-xazolium-3'-sulfonate. Its complete inhibition by phenylmethanesulfonylfluoride and relatively high k (cat) value for N-Suc-Ala-Ala-Pro-Phe-pNA hydrolysis indicates that the enzyme is a chymotrypsin-like serine protease. K (m) and k (cat) values were estimated at 0.655 microM N-Suc-Ala-Ala-Pro-Phe-pNA and 4.21 x 10(3) min(-1), respectively. PMID:15988584

  20. Alternaria-derived serine protease activity drives IL-33–mediated asthma exacerbations

    PubMed Central

    Snelgrove, Robert J.; Gregory, Lisa G.; Peiró, Teresa; Akthar, Samia; Campbell, Gaynor A.; Walker, Simone A.; Lloyd, Clare M.

    2014-01-01

    Background The fungal allergen Alternaria alternata is implicated in severe asthma and rapid onset life-threatening exacerbations of disease. However, the mechanisms that underlie this severe pathogenicity remain unclear. Objective We sought to investigate the mechanism whereby Alternaria was capable of initiating severe, rapid onset allergic inflammation. Methods IL-33 levels were quantified in wild-type and ST2−/− mice that lacked the IL-33 receptor given inhaled house dust mite, cat dander, or Alternaria, and the effect of inhibiting allergen-specific protease activities on IL-33 levels was assessed. An exacerbation model of allergic airway disease was established whereby mice were sensitized with house dust mite before subsequently being challenged with Alternaria (with or without serine protease activity), and inflammation, remodeling, and lung function assessed 24 hours later. Results Alternaria, but not other common aeroallergens, possessed intrinsic serine protease activity that elicited the rapid release of IL-33 into the airways of mice through a mechanism that was dependent upon the activation of protease activated receptor-2 and adenosine triphosphate signaling. The unique capacity of Alternaria to drive this early IL-33 release resulted in a greater pulmonary inflammation by 24 hours after challenge relative to the common aeroallergen house dust mite. Furthermore, this Alternaria serine protease–IL-33 axis triggered a rapid, augmented inflammation, mucus release, and loss of lung function in our exacerbation model. Conclusion Alternaria-specific serine protease activity causes rapid IL-33 release, which underlies the development of a robust TH2 inflammation and exacerbation of allergic airway disease. PMID:24636086

  1. In vitro anti-leishmanial efficacy of potato tuber extract (PTEx): leishmanial serine protease(s) as putative target.

    PubMed

    Paik, Dibyendu; Das, Partha; De, Tripti; Chakraborti, Tapati

    2014-11-01

    Leishmaniasis, a neglected tropical disease (NTD) causes major health problems in the tropical and subtropical world. Most of the antileishmanial modern therapies with different formulations of pentavalent antimonials, Miltefosine, Amphotericin B etc. are not satisfactory in recent times due to high toxicity to the host and present rising strain resistance issues. So there is an urgent need to develop new, safe and cost-effective drugs against leishmaniasis. In this regard, bioactive phytocomponents may lead to the discovery of new medicines with appropriate efficiency. The prominent roles played by Leishmania proteases in the virulence of this parasite make them very promising targets for the development of current therapeutics of leishmaniasis. As part of a search for novel drugs, we have evaluated in vitro anti-leishmanial activity of serine protease inhibitor rich fraction (PTEx) obtained from potato tuber. The extract (PTEx) was prepared by sodium bisulfite fractionation and inhibitors were identified by reverse zymography. Inhibition study of PTEx in gelatin-zymogram and spectrophotometric assay using BApNA and BTpNA as substrate reveal its strong inhibitory activity against trypsin as well as serine proteases present in cell lysate of Leishmania donovani infective strain. The in vitro MTT based colorimetric assay as well as ex vivo L. donovani infected macrophages showed reduced parasite viability and intracellular parasite load with IC50 = 312.5 ± 0.1 μg/ml and IC50 82.3 ± 0.2 μg/ml of PTEx respectively in a concentration dependent manner. This anti-leishmanial effect was also preceded by PTEx induced acute formation of ROS and prolonged NO generation. The PTEx has no significant cytotoxic effect on host macrophages. So taken together, these findings indicate that PTEx has promising leishmanicidal effect and thus this study provides a new perspective of natural serine protease inhibitor from potato tuber on the development of new drug against

  2. The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung.

    PubMed

    Twigg, Matthew S; Brockbank, Simon; Lowry, Philip; FitzGerald, S Peter; Taggart, Clifford; Weldon, Sinéad

    2015-01-01

    Cystic fibrosis (CF) lung disease is an inherited condition with an incidence rate of approximately 1 in 2500 new born babies. CF is characterized as chronic infection of the lung which leads to inflammation of the airway. Sputum from CF patients contains elevated levels of neutrophils and subsequently elevated levels of neutrophil serine proteases. In a healthy individual these proteases aid in the phagocytic process by degrading microbial peptides and are kept in homeostatic balance by cognate antiproteases. Due to the heavy neutrophil burden associated with CF the high concentration of neutrophil derived proteases overwhelms cognate antiproteases. The general effects of this protease/antiprotease imbalance are impaired mucus clearance, increased and self-perpetuating inflammation, and impaired immune responses and tissue. To restore this balance antiproteases have been suggested as potential therapeutics or therapeutic targets. As such a number of both endogenous and synthetic antiproteases have been trialed with mixed success as therapeutics for CF lung disease. PMID:26185359

  3. The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung

    PubMed Central

    Twigg, Matthew S.; Brockbank, Simon; Lowry, Philip; FitzGerald, S. Peter; Taggart, Clifford; Weldon, Sinéad

    2015-01-01

    Cystic fibrosis (CF) lung disease is an inherited condition with an incidence rate of approximately 1 in 2500 new born babies. CF is characterized as chronic infection of the lung which leads to inflammation of the airway. Sputum from CF patients contains elevated levels of neutrophils and subsequently elevated levels of neutrophil serine proteases. In a healthy individual these proteases aid in the phagocytic process by degrading microbial peptides and are kept in homeostatic balance by cognate antiproteases. Due to the heavy neutrophil burden associated with CF the high concentration of neutrophil derived proteases overwhelms cognate antiproteases. The general effects of this protease/antiprotease imbalance are impaired mucus clearance, increased and self-perpetuating inflammation, and impaired immune responses and tissue. To restore this balance antiproteases have been suggested as potential therapeutics or therapeutic targets. As such a number of both endogenous and synthetic antiproteases have been trialed with mixed success as therapeutics for CF lung disease. PMID:26185359

  4. Insights into the serine protease mechanism from atomic resolution structures of trypsin reaction intermediates

    PubMed Central

    Radisky, Evette S.; Lee, Justin M.; Lu, Chia-Jung Karen; Koshland, Daniel E.

    2006-01-01

    Atomic resolution structures of trypsin acyl-enzymes and a tetrahedral intermediate analog, along with previously solved structures representing the Michaelis complex, are used to reconstruct events in the catalytic cycle of this classic serine protease. Structural comparisons provide insight into active site adjustments involved in catalysis. Subtle motions of the catalytic serine and histidine residues coordinated with translation of the substrate reaction center are seen to favor the forward progress of the acylation reaction. The structures also clarify the attack trajectory of the hydrolytic water in the deacylation reaction. PMID:16636277

  5. Design and synthesis of a series of serine derivatives as small molecule inhibitors of the SARS coronavirus 3CL protease.

    PubMed

    Konno, Hiroyuki; Wakabayashi, Masaki; Takanuma, Daiki; Saito, Yota; Akaji, Kenichi

    2016-03-15

    Synthesis of serine derivatives having the essential functional groups for the inhibitor of SARS 3CL protease and evaluation of their inhibitory activities using SARS 3CL R188I mutant protease are described. The lead compounds, functionalized serine derivatives, were designed based on the tetrapeptide aldehyde and Bai's cinnamoly inhibitor, and additionally performed with simulation on GOLD softwear. Structure activity relationship studies of the candidate compounds were given reasonable inhibitors ent-3 and ent-7k against SARS 3CL R188I mutant protease. These inhibitors showed protease selectivity and no cytotoxicity. PMID:26879854

  6. The pro-coagulant fibrinogenolytic serine protease isoenzymes purified from Daboia russelii russelii venom coagulate the blood through factor V activation: role of glycosylation on enzymatic activity.

    PubMed

    Mukherjee, Ashis K

    2014-01-01

    Proteases from Russell's viper venom (RVV) induce a variety of toxic effects in victim. Therefore, four new RVV protease isoenzymes of molecular mass 32901.044 Da, 333631.179 Da, 333571.472 Da, and 34594.776 Da, were characterized in this study. The first 10 N-terminal residues of these serine protease isoenzymes showed significant sequence homology with N-terminal sequences of snake venom thrombin-like and factor V-activating serine proteases, which was reconfirmed by peptide mass fingerprinting analysis. These proteases were found to be different from previously reported factor V activators isolated from snake venoms. These proteases showed significantly different fibrinogenolytic, BAEE-esterase and plasma clotting activities but no fibrinolytic, TAME-esterase or amidolytic activity against the chromogenic substrate for trypsin, thrombin, plasmin and factor Xa. Their Km and Vmax values towards fibrinogen were determined in the range of 6.6 to 10.5 µM and 111.0 to 125.5 units/mg protein, respectively. On the basis of fibrinogen degradation pattern, they may be classified as A/B serine proteases isolated from snake venom. These proteases contain ∼ 42% to 44% of N-linked carbohydrates by mass whereas partially deglycosylated enzymes showed significantly less catalytic activity as compared to native enzymes. In vitro these protease isoenzymes induce blood coagulation through factor V activation, whereas in vivo they provoke dose-dependent defibrinogenation and anticoagulant activity in the mouse model. At a dose of 5 mg/kg, none of these protease isoenzymes were found to be lethal in mice or house geckos, suggesting therapeutic application of these anticoagulant peptides for the prevention of thrombosis. PMID:24520323

  7. A novel organic solvent- and detergent-stable serine alkaline protease from Trametes cingulata strain CTM10101.

    PubMed

    Omrane Benmrad, Maroua; Moujehed, Emna; Ben Elhoul, Mouna; Zaraî Jaouadi, Nadia; Mechri, Sondes; Rekik, Hatem; Kourdali, Sidali; El Hattab, Mohamed; Badis, Abdelmalek; Sayadi, Sami; Bejar, Samir; Jaouadi, Bassem

    2016-10-01

    A protease-producing fungus was isolated from an alkaline wastewater of chemical industries and identified as Trametes cingulata strain CTM10101 on the basis of the ITS rDNA gene-sequencing. It was observed that the fungus strongly produce extracellular protease grown at 30°C in potato-dextrose-broth (PDB) optimized media (13500U/ml). The pure serine protease isolated by Trametes cingulata (designated SPTC) was purified by ammonium sulfate precipitation-dialysis followed by heat-treatment and UNO S-1 FPLC cation-exchange chromatography. The chemical characterization carried on include phisico-chemical determination and spectroscopie analysis. The MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 31405.16-Da. The enzyme had an NH2-terminal sequence of ALTTQTEAPWALGTVSHKGQAST, thus sharing high homology with those of fungal-proteases. The optimum pH and temperature values of its proteolytic activity were pH 9 and 60°C, respectively, and its half-life times at 60 and 70°C were 9 and 5-h, respectively. It was completely inhibited by PMSF and DFP, which strongly suggested its belonging to the serine protease family. Compared to Flavourzyme(®)500L from Aspergillus oryzae and Thermolysin typeX from Geobacillus stearothermophilus, SPTC displayed higher levels of hydrolysis, substrate specificity, and catalytic efficiency as well as elevated organic solvent tolerance and considerable detergent stability. Finally, SPTC could potentially be used in peptide synthesis and detergent formulations. PMID:27296442

  8. The Occurrence of Type S1A Serine Proteases in Sponge and Jellyfish

    NASA Technical Reports Server (NTRS)

    Rojas, Ana; Doolittle, Russell F.

    2003-01-01

    Although serine proteases are found in all kinds of cellular organisms and many viruses, the classic "chymotrypsin family" (Group S1A by th e 1998 Barrett nomenclature) has an unusual phylogenetic distribution , being especially common in animals, entirely absent from plants and protists, and rare among fungi. The distribution in Bacteria is larg ely restricted to the genus Streptomyces, although a few isolated occ urrences in other bacteria have been reported. The family may be enti rely absent from Archaea. Although more than a thousand sequences have been reported for enzymes of this type from animals, none of them ha ve been from early diverging phyla like Porifera or Cnidaria, We now report the existence of Group SlA serine proteases in a sponge (phylu m Porifera) and a jellyfish (phylum Cnidaria), making it safe to conc lude that all animal groups possess these enzymes.

  9. Inhibition of kallikrein-related peptidases by the serine protease inhibitor of Kazal-type 6.

    PubMed

    Kantyka, Tomasz; Fischer, Jan; Wu, Zhihong; Declercq, Wim; Reiss, Karina; Schröder, Jens-Michael; Meyer-Hoffert, Ulf

    2011-06-01

    Kallikrein-related peptidases (KLKs) are a group of serine proteases, expressed in several tissues. Their activity is regulated by inhibitors including members of the serine protease of Kazal-type (SPINK) family. Recently, we discovered that SPINK6 is expressed in human skin and inhibits KLK5, KLK7, KLK14 but not KLK8. In this study we tested whether SPINK6 inhibits other members of the KLK family and caspase-14. Using chromogenic substrates, SPINK6 exhibited inhibitory activity against KLK12 and KLK13 with K(i) around 1nM, KLK4 with K(i)=27.3nM, KLK6 with K(i)=140nM, caspase-14 with a K(i) approximating 1μM and no activity against KLK1, KLK3 and KLK11. Taken together, SPINK6 is a potent inhibitor of distinct KLKs members. PMID:21439340

  10. Structure of haptoglobin heavy chain and other serine protease homologs by comparative model building

    SciTech Connect

    Grer, J.

    1980-10-01

    Proteins often occur in families whose structure is closely similar, even though the proteins may come from widely different sources and have quite distinct functions. It would be useful to be able to construct the three-dimensional structure of these proteins from the known structure of one or more of them without having to solve the structure of each protein ab initio. We have been using comparative model building to derive the structure of an unusual protein of the trypsin-like serine protease family. We have recently extended this comparison to include other serine protease homologs for which a primary structure is available. To generate structures for the different members of the serine protease family, it is necessary to extract the common structural features of the molecule. Fortunately, three independently determined protein structures are available: schymotrypsin, trypsin, and elastase. These three structures were compared in detail and the structurally conserved regions in all three, mainly the BETA-sheet and the ..cap alpha..-helix, were identified. The variable portions occur in the loops on the surface of the molecule. By using these structures, the primary sequences of these three proteins were aligned. From this alignment, it is clear that sequence homology between the proteins occurs mainly in the structurally conserved regions of the molecule, while the variable portions show very little sequence homology.

  11. Expression and partial biochemical characterization of a recombinant serine protease from Bothrops pauloensis snake venom.

    PubMed

    Isabel, Thais F; Costa, Guilherme Nunes Moreira; Pacheco, Isabela B; Barbosa, Luana G; Santos-Junior, Célio D; Fonseca, Fernando P P; Boldrini França, Johara; Henrique-Silva, Flávio; Yoneyama, Kelly A G; Rodrigues, Renata S; Rodrigues, Veridiana de Melo

    2016-06-01

    Snake venom serine proteases (SVSPs) are enzymes capable of interfering at several points of hemostasis. Some serine proteases present thrombin-like activity, which makes them targets for the development of therapeutics agents in the treatment of many hemostatic disorders. In this study, a recombinant thrombin-like serine protease, denominated rBpSP-II, was obtained from cDNA of the Bothrops pauloensis venom gland and was characterized enzymatically and biochemically. The enzyme rBpSP-II showed clotting activity on bovine plasma and proteolytic activity on fibrinogen, cleaving exclusively the Aα chain. The evaluation of rBpSP-II activity on chromogenic substrates demonstrated thrombin-like activity of the enzyme due to its capacity to hydrolyze the thrombin substrate. These characteristics make rBpSP-II an attractive molecule for additional studies. Further research is needed to verify whether rBpSP-II can serve as a template for the synthesis of therapeutic agents to treat hemostatic disorders. PMID:26965926

  12. Cleavage and activation of human factor IX by serine proteases

    SciTech Connect

    Enfield, D.L.; Thompson, A.R.

    1984-10-01

    Human factor IX circulates as a single-chain glycoprotein. Upon activation in vitro, it is cleaved into disulfide-linked light and heavy chains and an activation peptide. After reduction of activated /sup 125/I-factor IX, the heavy and light chains are readily identified by gel electrophoresis. A direct, immunoradiometric assay for factor IXa was developed to assess activation of factor IX for proteases that cleaved it. The assay utilized radiolabeled antithrombin III with heparin to identify the active site and antibodies to distinguish factor IX. After cleavage of factor IX by factor XIa, factor VIIa-tissue thromboplastin complex, or the factor X-activating enzyme from Russell's viper venom, antithrombin III bound readily to factor IXa. Cleavage of /sup 125/I-factor IX by trypsin, chymotrypsin, and granulocyte elastase in the presence of calcium yielded major polypeptide fragments of the sizes of the factor XIa-generated light and heavy chains. When the immunoradiometric assay was used to assess trypsin-cleaved factor IX, the product bound antithrombin III, but not maximally. After digesting with insolubilized trypsin, clotting activity confirmed activation. In evaluating activation of factor IX, physical evidence of activation cleavages does not necessarily correlate with generation of an active site.

  13. A cyclic peptidic serine protease inhibitor: increasing affinity by increasing peptide flexibility.

    PubMed

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang; Paaske, Berit; Kromann-Hansen, Tobias; Jensen, Jan K; Sørensen, Hans Peter; Liu, Zhuo; Nielsen, Jakob T; Christensen, Anni; Hosseini, Masood; Sørensen, Kasper K; Nielsen, Niels Christian; Jensen, Knud J; Huang, Mingdong; Andreasen, Peter A

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on changes in both P1 - S1 and exosite interactions. Site-directed mutagenesis showed that exosite interactions, while still supporting high affinity binding, differed substantially between different uPA variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9 of the peptide, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden. PMID:25545505

  14. Molecular characterization of serine protease inhibitor isoform 3, SmSPI, from Schistosoma mansoni.

    PubMed

    Pakchotanon, Pattarakul; Molee, Patamaporn; Nuamtanong, Supaporn; Limpanont, Yanin; Chusongsang, Phiraphol; Limsomboon, Jareemate; Chusongsang, Yupa; Maneewatchararangsri, Santi; Chaisri, Urai; Adisakwattana, Poom

    2016-08-01

    Serine protease inhibitors, known as serpins, are pleiotropic regulators of endogenous and exogenous proteases, and molecule transporters. They have been documented in animals, plants, fungi, bacteria, and viruses; here, we characterize a serpin from the trematode platyhelminth Schistosoma mansoni. At least eight serpins have been found in the genome of S. mansoni, but only two have characterized molecular properties and functions. Here, the function of S. mansoni serpin isoform 3 (SmSPI) was analyzed, using both computational and molecular biological approaches. Phylogenetic analysis showed that SmSPI was closely related to Schistosoma haematobium serpin and Schistosoma japonicum serpin B10. Structure determined in silico confirmed that SmSPI belonged to the serpin superfamily, containing nine α-helices, three β-sheets, and a reactive central loop. SmSPI was highly expressed in schistosomules, predominantly in the head gland, and in adult male and female with intensive accumulation on the spines, which suggests that it may have a role in facilitating intradermal and intravenous survival. Recombinant SmSPI was overexpressed in Escherichia coli; the recombinant protein was of the same size (46 kDa) as the native protein. Immunological analysis suggested that mice infected with S. mansoni responded to rSmSPI at 8 weeks postinfection (wpi) but not earlier. The inhibitory activity of rSmSPI was specific to chymotrypsin but not trypsin, neutrophil elastase, and porcine pancreatic elastase. Elucidating the biological and physiological functions of SmSPI as well as other serpins will lead to further understanding of host-parasite interaction machinery that may provide novel strategies to prevent and control schistosomiasis in the future. PMID:27083187

  15. Purification, characterization and identification of a senescence related serine protease in dark-induced senescent wheat leaves.

    PubMed

    Wang, Renxian; Liu, Shaowei; Wang, Jin; Dong, Qiang; Xu, Langlai; Rui, Qi

    2013-11-01

    Senescence-related proteases play important roles in leaf senescence by regulating protein degradation and nutrient recycling. A 98.9kDa senescence-related protease EP3 in wheat leaves was purified by ammonium sulfate precipitation, Q-Sepharose fast flow anion exchange chromatography and gel slicing after gel electrophoresis. Due to its relatively high thermal stability, its protease activity did not decrease after incubation at 40°C for 1-h. EP3 protease was suggested to be a metal-dependent serine protease, because its activity was inhibited by serine protease inhibitors PMSF and AEBSF and metal related protease inhibitor EGTA. It was identified as a subtilisin-like serine protease of the S8A family based on data from both mass spectrometry and the cloned cDNA sequence. Therefore, these data suggest that a serine protease of the S8A subfamily with specific biochemical properties is involved in senescence-associated protein degradation. PMID:23910959

  16. Met-ase: Cloning and distinct chromosomal location of a serine protease preferentially expressed in human natural killer cells

    SciTech Connect

    Smyth, M.J.; Trapani, J.A. ); Sayers, T.J.; Wiltrout, T. ); Powers, J.C. )

    1993-12-01

    A cDNA clone encoding a human NK serine protease was obtained by screening a [lambda]-gt10 library from the Lopez NK leukemia with the rat natural killer Met-ase (RNK-Met-1) cDNA clone. In Northern blot analysis human Met-ase (Hu-Met-1) cDNA hybridized with a 0.9-kb mRNA in two human NK leukemia cell lines, unstimulated human PBMC, and untreated purified CD3[sup [minus

  17. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex.

    PubMed

    Siritapetawee, Jaruwan; Thumanu, Kanjana; Sojikul, Punchapat; Thammasirirak, Sompong

    2012-07-01

    A protease was isolated and purified from Artocarpus heterophyllus (jackfruit) latex and designated as a 48-kDa antimicrobial protease (AMP48) in a previous publication. In this work, the enzyme was characterized for more biochemical and medicinal properties. Enzyme activity of AMP48 was strongly inhibited by phenylmethanesulfonyl fluoride and soybean trypsin inhibitor, indicating that the enzyme was a plant serine protease. The N-terminal amino acid sequences (A-Q-E-G-G-K-D-D-D-G-G) of AMP48 had no sequence similarity matches with any sequence databases of BLAST search and other plant serine protease. The secondary structure of this enzyme was composed of high α-helix (51%) and low β-sheet (9%). AMP48 had fibrinogenolytic activity with maximal activity between 55 and 60°C at pH 8. The enzyme efficiently hydrolyzed α followed by partially hydrolyzed β and γ subunits of human fibrinogen. In addition, the fibrinolytic activity was observed through the degradation products by SDS-PAGE and emphasized its activity by monitoring the alteration of secondary structure of fibrin clot after enzyme digestion using ATR-FTIR spectroscopy. This study presented the potential role to use AMP48 as antithrombotic for treatment thromboembolic disorders such as strokes, pulmonary emboli and deep vein thrombosis. PMID:22579962

  18. Purification and characterization of a serine protease (CESP) from mature coconut endosperm

    PubMed Central

    Panicker, Leelamma M; Usha, Rajamma; Roy, Samir; Mandal, Chhabinath

    2009-01-01

    Background In plants, proteases execute an important role in the overall process of protein turnover during seed development, germination and senescence. The limited knowledge on the proteolytic machinery that operates during seed development in coconut (Cocos nucifera L.) prompted us to search for proteases in the coconut endosperm. Findings We have identified and purified a coconut endosperm protease (CESP) to apparent homogeneity. CESP is a single polypeptide enzyme of approximate molecular mass of 68 kDa and possesses pH optimum of 8.5 for the hydrolysis of BAPNA. Studies relating to substrate specificity and pattern of inhibition by various protease inhibitors indicated that CESP is a serine protease with cleavage specificity to peptide bonds after arginine. Purified CESP was often autolysed to two polypeptides of 41.6 kDa (CESP1) and 26.7 kDa (CESP2) and is confirmed by immunochemistry. We have shown the expression of CESP in all varieties of coconut and in all stages of coconut endosperm development with maximum amount in fully matured coconut. Conclusion Since the involvement of proteases in the processing of pre-proteins and maintenance of intracellular protein levels in seeds are well known, we suspect this CESP might play an important role in the coconut endosperm development. However this need to be confirmed using further studies. PMID:19426537

  19. Purification and characterization of organic solvent stable serine alkaline protease from newly isolated Bacillus circulans M34.

    PubMed

    Sari, Esma; Loğoğlu, Elif; Öktemer, Atilla

    2015-09-01

    A protease from newly isolated Bacillus circulans M34 was purified by Q-Sepharose anion exchange chromatography and Sepharose-bacitracin affinity chromatography followed by (NH4)2SO4 precipitation. The molecular mass of the purified enzyme was determined using SDS-PAGE. The optimum pH and temperature for protease activity were 11 and 50°C, respectively. The effect of various metal ions on protease activity was investigated. Alkaline protease from Bacillus circulans M34 wase activated by Zn(2+), Cu(2+) and Co(2+) up to 31%. The purified protease was found to be stable in the organic solvents, surfactants and oxidizing agent. The substrate specificity of purified protease was investigated towards different substrates. The protease was almost completely inhibited by the serine protease inhibitor phenylmethanesulfonyl fluoride. The kinetic parameters of the purified protease, maximum rate (Vmax) and Michaelis constant (Km), were determined using a Lineweaver-Burk plot. PMID:25677873

  20. Serine Protease-mediated Host Invasion by the Parasitic Nematode Steinernema carpocapsae*

    PubMed Central

    Toubarro, Duarte; Lucena-Robles, Miguel; Nascimento, Gisela; Santos, Romana; Montiel, Rafael; Veríssimo, Paula; Pires, Euclides; Faro, Carlos; Coelho, Ana V.; Simões, Nelson

    2010-01-01

    Steinernema carpocapsae is an insect parasitic nematode used in biological control, which infects insects penetrating by mouth and anus and invading the hemocoelium through the midgut wall. Invasion has been described as a key factor in nematode virulence and suggested to be mediated by proteases. A serine protease cDNA from the parasitic stage was sequenced (sc-sp-1); the recombinant protein was produced in an Escherichia coli system, and a native protein was purified from the secreted products. Both proteins were confirmed by mass spectrometry to be encoded by the sc-sp-1 gene. Sc-SP-1 has a pI of 8.7, a molecular mass of 27.3 kDa, a catalytic efficiency of 22.2 × 104 s−1 m−1 against N-succinyl-Ala-Ala-Pro-Phe-pNA, and is inhibited by chymostatin (IC 0.07) and PMSF (IC 0.73). Sc-SP-1 belongs to the chymotrypsin family, based on sequence and biochemical analysis. Only the nematode parasitic stage expressed sc-sp-1. These nematodes in the midgut lumen, prepared to invade the insect hemocoelium, expressed higher levels than those already in the hemocoelium. Moreover, parasitic nematode sense insect peritrophic membrane and hemolymph more quickly than they do other tissues, which initiates sc-sp-1 expression. Ex vivo, Sc-SP-1 was able to bind to insect midgut epithelium and to cause cell detachment from basal lamina. In vitro, Sc-SP-1 formed holes in an artificial membrane model (Matrigel), whereas Sc-SP-1 treated with PMSF did not, very likely because it hydrolyzes matrix glycoproteins. These findings highlight the S. carpocapsae-invasive process that is a key step in the parasitism thus opening new perspectives for improving nematode virulence to use in biological control. PMID:20656686

  1. Integrated innate mechanisms involved in airway allergic inflammation to the serine protease subtilisin.

    PubMed

    Florsheim, Esther; Yu, Shuang; Bragatto, Ivan; Faustino, Lucas; Gomes, Eliane; Ramos, Rodrigo N; Barbuto, José Alexandre M; Medzhitov, Ruslan; Russo, Momtchilo

    2015-05-15

    Proteases are recognized environmental allergens, but little is known about the mechanisms responsible for sensing enzyme activity and initiating the development of allergic inflammation. Because usage of the serine protease subtilisin in the detergent industry resulted in an outbreak of occupational asthma in workers, we sought to develop an experimental model of allergic lung inflammation to subtilisin and to determine the immunological mechanisms involved in type 2 responses. By using a mouse model of allergic airway disease, we have defined in this study that s.c. or intranasal sensitization followed by airway challenge to subtilisin induces prototypic allergic lung inflammation, characterized by airway eosinophilia, type 2 cytokine release, mucus production, high levels of serum IgE, and airway reactivity. These allergic responses were dependent on subtilisin protease activity, protease-activated receptor-2, IL-33R ST2, and MyD88 signaling. Also, subtilisin stimulated the expression of the proallergic cytokines IL-1α, IL-33, thymic stromal lymphopoietin, and the growth factor amphiregulin in a human bronchial epithelial cell line. Notably, acute administration of subtilisin into the airways increased lung IL-5-producing type 2 innate lymphoid cells, which required protease-activated receptor-2 expression. Finally, subtilisin activity acted as a Th2 adjuvant to an unrelated airborne Ag-promoting allergic inflammation to inhaled OVA. Therefore, we established a murine model of occupational asthma to a serine protease and characterized the main molecular pathways involved in allergic sensitization to subtilisin that potentially contribute to initiate allergic airway disease. PMID:25876764

  2. Biopotency of serine protease inhibitors from cowpea (Vigna unguiculata) seeds on digestive proteases and the development of Spodoptera littoralis (Boisduval).

    PubMed

    Abd El-latif, Ashraf Oukasha

    2015-05-01

    Serine protease inhibitors (PIs) have been described in many plant species and are universal throughout the plant kingdom, where trypsin inhibitors is the most common type. In the present study, trypsin and chymotrypsin inhibitory activity was detected in the seed flour extracts of 13 selected cultivars/accessions of cowpea. Two cowpea cultivars, Cream7 and Buff, were found to have higher trypsin and chymotrypsin inhibitory potential compared to other tested cultivars for which they have been selected for further purification studies using ammonium sulfate fractionation and DEAE-Sephadex A-25 column. Cream7-purified proteins showed two bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) corresponding to molecular mass of 17.10 and 14.90 kDa, while the purified protein from Buff cultivar showed a single band corresponding mass of 16.50 kDa. The purified inhibitors were stable at temperature below 60°C and were active at wide range of pH from 2 to 12. The kinetic analysis revealed noncompetitive type of inhibition for both inhibitors against both enzymes. The inhibitor constant (Ki ) values suggested high affinity between inhibitors and enzymes. Purified inhibitors were found to have deep and negative effects on the mean larval weight, larval mortality, pupation, and mean pupal weight of Spodoptera littoralis, where Buff PI was more effective than Cream7 PI. It may be concluded that cowpea PI gene(s) could be potential insect control protein for future studies in developing insect-resistant transgenic plants. PMID:25524889

  3. Mutation in promoter region of a serine protease inhibitor confers Perkinsus marinus resistance in the eastern oyster (Crassostrea virginica).

    PubMed

    He, Yan; Yu, Haiyang; Bao, Zhenmin; Zhang, Quanqi; Guo, Ximing

    2012-08-01

    Protease inhibitors from the host may inhibit proteases from invading pathogens and confer resistance. We have previously shown that a single-nucleotide polymorphism (SNP198C) in a serine protease inhibitor gene (cvSI-1) is associated with Perkinsus marinus resistance in the eastern oyster. As SNP198 is synonymous, we studied whether its linkage to polymorphism at the promoter region could explain the resistance. A 631 bp fragment of the promoter region was cloned by genome-walking and resequenced, revealing 22 SNPs and 3 insertion/deletions (indels). A 25 bp indel at position -404 was genotyped along with SNP198 for association analysis using before- and after-mortality samples. After mortalities that were primarily caused by P. marinus, the frequency of deletion allele at -404indel increased by 15.6% (p = 0.0437), while that of SNP198C increased by only 3.4% (p = 0.5756). The resistance alleles at the two loci were coupled in 79.6% of the oysters. Oysters with the deletion allele at -404indel showed significant (p = 0.0189) up-regulation of cvSI-1 expression under P. marinus challenge. Our results suggest that mutation at the promoter region causes increased transcription of cvSI-1, which in turn confers P. marinus resistance in the eastern oyster likely through inhibiting pathogenic proteases from the parasite. PMID:22683517

  4. Human prostate-specific antigen: structural and functional similarity with serine proteases.

    PubMed Central

    Watt, K W; Lee, P J; M'Timkulu, T; Chan, W P; Loor, R

    1986-01-01

    The complete amino acid sequence of the prostate-specific antigen (PA) from human seminal plasma has been determined from analyses of the peptides generated by cyanogen bromide, hydroxylamine, endoproteinases Arg-C and Lys-C. The single polypeptide chain of PA contains 240-amino acid residues and has a calculated Mr of 26,496. An N-linked carbohydrate side chain is predicted at asparagine-45, and O-linked carbohydrate side chains are possibly attached to serine-69, threonine-70, and serine-71. The primary structure of PA shows a high degree of sequence homology with other serine proteases of the kallikrein family. The active site residues of histidine, aspartic acid, and serine comprising the charge-relay system of typical serine proteases were found in similar positions in PA (histidine-41, aspartic acid-96, and serine-192). At pH 7.8, PA hydrolyzed insulin A and B chains, recombinant interleukin 2, and--to a lesser extent--gelatin, myoglobin, ovalbumin, and fibrinogen. The cleavage sites of these proteins by PA were chemically analyzed as the alpha-carboxyl side of some hydrophobic residues, tyrosine, leucine, valine, and phenylalanine, and of basic residues histidine, lysine, and arginine. The chymotrypsin-like activity of PA exhibited with the chromogenic substrate N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanine p-nitroanilide yielded a specific activity of 9.21 microM per min per mg of PA and Km and kcat values of 15.3 mM and 0.075s-1, respectively. "Trypsin-like" activity of PA was also detected with N alpha-benzoyl-DL-arginine p-nitroanilide and gave a specific activity of 1.98 microM per min per mg of PA. Protease inhibitors such as phenylmethylsulfonyl fluoride, diisopropyl fluorophosphate, L-1-tosylamido-2-phenylethyl chloromethyl ketone, aprotinin, leupeptin, soybean trypsin inhibitor as well as Zn2+ and spermidine were effective inhibitors of PA enzymatic activity. PMID:2422647

  5. Modifying the substrate specificity of Carcinoscorpius rotundicauda serine protease inhibitor domain 1 to target thrombin.

    PubMed

    Giri, Pankaj Kumar; Tang, Xuhua; Thangamani, Saravanan; Shenoy, Rajesh T; Ding, Jeak Ling; Swaminathan, Kunchithapadam; Sivaraman, J

    2010-01-01

    Protease inhibitors play a decisive role in maintaining homeostasis and eliciting antimicrobial activities. Invertebrates like the horseshoe crab have developed unique modalities with serine protease inhibitors to detect and respond to microbial and host proteases. Two isoforms of an immunomodulatory two-domain Kazal-like serine protease inhibitor, CrSPI-1 and CrSPI-2, have been recently identified in the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. Full length and domain 2 of CrSPI-1 display powerful inhibitory activities against subtilisin. However, the structure and function of CrSPI-1 domain-1 (D1) remain unknown. Here, we report the crystal structure of CrSPI-1-D1 refined up to 2.0 Å resolution. Despite the close structural homology of CrSPI-1-D1 to rhodniin-D1 (a known thrombin inhibitor), the CrSPI-1-D1 does not inhibit thrombin. This prompted us to modify the selectivity of CrSPI-1-D1 specifically towards thrombin. We illustrate the use of structural information of CrSPI-1-D1 to modify this domain into a potent thrombin inhibitor with IC(50) of 26.3 nM. In addition, these studies demonstrate that, besides the rigid conformation of the reactive site loop of the inhibitor, the sequence is the most important determinant of the specificity of the inhibitor. This study will lead to the significant application to modify a multi-domain inhibitor protein to target several proteases. PMID:21188150

  6. Modifying the Substrate Specificity of Carcinoscorpius rotundicauda Serine Protease Inhibitor Domain 1 to Target Thrombin

    PubMed Central

    Giri, Pankaj Kumar; Tang, Xuhua; Thangamani, Saravanan; Shenoy, Rajesh T.; Ding, Jeak Ling; Swaminathan, Kunchithapadam; Sivaraman, J.

    2010-01-01

    Protease inhibitors play a decisive role in maintaining homeostasis and eliciting antimicrobial activities. Invertebrates like the horseshoe crab have developed unique modalities with serine protease inhibitors to detect and respond to microbial and host proteases. Two isoforms of an immunomodulatory two-domain Kazal-like serine protease inhibitor, CrSPI-1 and CrSPI-2, have been recently identified in the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. Full length and domain 2 of CrSPI-1 display powerful inhibitory activities against subtilisin. However, the structure and function of CrSPI-1 domain-1 (D1) remain unknown. Here, we report the crystal structure of CrSPI-1-D1 refined up to 2.0 Å resolution. Despite the close structural homology of CrSPI-1-D1 to rhodniin-D1 (a known thrombin inhibitor), the CrSPI-1-D1 does not inhibit thrombin. This prompted us to modify the selectivity of CrSPI-1-D1 specifically towards thrombin. We illustrate the use of structural information of CrSPI-1-D1 to modify this domain into a potent thrombin inhibitor with IC50 of 26.3 nM. In addition, these studies demonstrate that, besides the rigid conformation of the reactive site loop of the inhibitor, the sequence is the most important determinant of the specificity of the inhibitor. This study will lead to the significant application to modify a multi-domain inhibitor protein to target several proteases. PMID:21188150

  7. Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases

    PubMed Central

    Gaillard, Erol A.; Kota, Pradeep; Gentzsch, Martina; Dokholyan, Nikolay V.; Stutts, M. Jackson

    2010-01-01

    Mammalian airways are protected from infection by a thin film of airway surface liquid (ASL) which covers airway epithelial surfaces and acts as a lubricant to keep mucus from adhering to the epithelial surface. Precise regulation of ASL volume is essential for efficient mucus clearance and too great a reduction in ASL volume causes mucus dehydration and mucus stasis which contributes to chronic airway infection. The epithelial Na+ channel (ENaC) is the rate-limiting step that governs Na+ absorption in the airways. Recent in vitro and in vivo data have demonstrated that ENaC is a critical determinant of ASL volume and hence mucus clearance. ENaC must be cleaved by either intracellular furin-type proteases or extracellular serine proteases to be active and conduct Na+, and this process can be inhibited by protease inhibitors. ENaC can be regulated by multiple pathways, and once proteolytically cleaved ENaC may then be inhibited by intracellular second messengers such as cAMP and PIP2. In the airways, however, regulation of ENaC by proteases seems to be the predominant mode of regulation since knockdown of either endogenous serine proteases such as prostasin, or inhibitors of ENaC proteolysis such as SPLUNC1, has large effects on ENaC activity in airway epithelia. In this review, we shall discuss how ENaC is proteolytically cleaved, how this process can regulate ASL volume, and how its failure to operate correctly may contribute to chronic airway disease. PMID:20401730

  8. Amino acid sequence alignment of bacterial and mammalian pancreatic serine proteases based on topological equivalences.

    PubMed

    James, M N; Delbaere, L T; Brayer, G D

    1978-06-01

    The three-dimensional structures of the bacterial serine proteases SGPA, SGPB, and alpha-lytic protease have been compared with those of the pancreatic enzymes alpha-chymotrypsin and elastase. This comparison shows that approximately 60% (55-64%) of the alpha-carbon atom positions of the bacterial serine proteases are topologically equivalent to the alpha-carbon atom positions of the pancreatic enzymes. The corresponding value for a comparison of the bacterial enzymes among themselves is approximately 84%. The results of these topological comparisons have been used to deduce an experimentally sound sequence alignment for these several enzymes. This alignment shows that there is extensive tertiary structural homology among the bacteria and pancreatic enzymes without significant primary sequence identity (less than 21%). The acquisition of a zymogen function by the pancreatic enzymes is accompanied by two major changes to the bacterial enzymes' architecture: an insertion of 9 residues to increase the length of the N-terminal loop, and one of 12 residues to a loop near the activation salt bridge. In addition, in these two enzyme families, the methionine loop (residues 164-182) adopts very different comformations which are associated with their altered substrate specificities. PMID:96920

  9. Portulaca oleracea L. as a Prospective Candidate Inhibitor of Hepatitis C Virus NS3 Serine Protease.

    PubMed

    Noreen, Sobia; Hussain, Ishtiaq; Tariq, Muhammad Ilyas; Ijaz, Bushra; Iqbal, Shahid; Qamar-ul-Zaman; Ashfaq, Usman Ali; Husnain, Tayyab

    2015-06-01

    Hepatitis C virus (HCV) infection is a worldwide health problem affecting about 300 million individuals. HCV causes chronic liver disease, liver cirrhosis, hepatocellular carcinoma, and death. Many side effects are associated with the current treatment options. Natural products that can be used as anti-HCV drugs are thus of considerable potential significance. NS3 serine protease (NS3-SP) is a target for the screening of antiviral activity against HCV. The present work explores plants with anti-HCV potential, isolating possible lead compounds. Ten plants, used for medicinal purposes against different infections in rural areas of Pakistan, were collected. The cellular toxicity effects of methanolic extracts of the plants on the viability of Huh-7 cells were studied through the Trypan blue dye exclusion method. Following this, the anti-HCV potential of phytoextracts was assessed by infecting liver cells with HCV-3a-infected serum inoculum. Only the methanolic extract of Portulaca oleracea L. (PO) exhibited more than 70% inhibition. Four fractions were obtained through bioassay-guided extraction of PO. Subsequent inhibition of all organic extract fractions against NS3 serine protease was checked to track the specific target in the virus. The results showed that the PO methanolic crude and ethyl acetate extract specifically abridged the HCV NS3 protease expression in a dose-dependent fashion. Hence, PO extract and its constituents either alone or with interferon could offer a future option to treat chronic HCV. PMID:25871297

  10. Serine protease inhibitors block priming of monocytes for enhanced release of superoxide.

    PubMed Central

    Megyeri, P; Pabst, K M; Pabst, M J

    1995-01-01

    Monocytes freshly isolated from human blood produced large amounts of superoxide when triggered by phorbol ester. After monocytes were cultured for 18-24 hr in endotoxin-free, non-adherent conditions, they produced low amounts of superoxide. Addition of lipopolysaccharide (LPS), interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), or platelet-activating factor (PAF) at the beginning of culture 'primed' the monocytes, causing them to maintain a high superoxide response for at least 96 hr. Also, in response to LPS, monocytes secreted TNF-alpha. The ability of LPS, IFN-gamma, TNF-alpha or PAF to maintain the high superoxide response was blocked by addition of inhibitors of serine proteases, either 4-(2-aminoethyl)-benzenesulphonyl fluoride (AEBSF) or 3,4-dichloroisocoumarin. AEBSF was most effective at 200 microns, and required 6 hr for maximum effect. AEBSF did not affect phorbol-triggered superoxide release by unprimed monocytes. AEBSF did not affect cell viability, nor did it interfere with the TNF-alpha secretion in response to LPS. An analogue of AEBSF that lacked ability to inhibit proteases did not affect monocyte responses. 3,4-Dichloroisocoumarin blocked priming at a low concentration, 1 microM. We conclude that activity of a monocyte serine protease is required to maintain the high superoxide response in monocytes primed with LPS, IFN-gamma, TNF-alpha, or PAF. PMID:8567031

  11. Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors.

    PubMed

    Stapels, Daphne A C; Ramyar, Kasra X; Bischoff, Markus; von Köckritz-Blickwede, Maren; Milder, Fin J; Ruyken, Maartje; Eisenbeis, Janina; McWhorter, William J; Herrmann, Mathias; van Kessel, Kok P M; Geisbrecht, Brian V; Rooijakkers, Suzan H M

    2014-09-01

    Neutrophils are indispensable for clearing infections with the prominent human pathogen Staphylococcus aureus. Here, we report that S. aureus secretes a family of proteins that potently inhibits the activity of neutrophil serine proteases (NSPs): neutrophil elastase (NE), proteinase 3, and cathepsin G. The NSPs, but not related serine proteases, are specifically blocked by the extracellular adherence protein (Eap) and the functionally orphan Eap homologs EapH1 and EapH2, with inhibitory-constant values in the low-nanomolar range. Eap proteins are together essential for NSP inhibition by S. aureus in vitro and promote staphylococcal infection in vivo. The crystal structure of the EapH1/NE complex showed that Eap molecules constitute a unique class of noncovalent protease inhibitors that occlude the catalytic cleft of NSPs. These findings increase our insights into the complex pathogenesis of S. aureus infections and create opportunities to design novel treatment strategies for inflammatory conditions related to excessive NSP activity. PMID:25161283

  12. Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors

    PubMed Central

    Stapels, Daphne A. C.; Ramyar, Kasra X.; Bischoff, Markus; von Köckritz-Blickwede, Maren; Milder, Fin J.; Ruyken, Maartje; Eisenbeis, Janina; McWhorter, William J.; Herrmann, Mathias; van Kessel, Kok P. M.; Geisbrecht, Brian V.; Rooijakkers, Suzan H. M.

    2014-01-01

    Neutrophils are indispensable for clearing infections with the prominent human pathogen Staphylococcus aureus. Here, we report that S. aureus secretes a family of proteins that potently inhibits the activity of neutrophil serine proteases (NSPs): neutrophil elastase (NE), proteinase 3, and cathepsin G. The NSPs, but not related serine proteases, are specifically blocked by the extracellular adherence protein (Eap) and the functionally orphan Eap homologs EapH1 and EapH2, with inhibitory-constant values in the low-nanomolar range. Eap proteins are together essential for NSP inhibition by S. aureus in vitro and promote staphylococcal infection in vivo. The crystal structure of the EapH1/NE complex showed that Eap molecules constitute a unique class of noncovalent protease inhibitors that occlude the catalytic cleft of NSPs. These findings increase our insights into the complex pathogenesis of S. aureus infections and create opportunities to design novel treatment strategies for inflammatory conditions related to excessive NSP activity. PMID:25161283

  13. Intestinal Protease-Activated Receptor-2 and Fecal Serine Protease Activity are Increased in Canine Inflammatory Bowel Disease and May Contribute to Intestinal Cytokine Expression

    PubMed Central

    MAEDA, Shingo; OHNO, Koichi; UCHIDA, Kazuyuki; IGARASHI, Hirotaka; GOTO-KOSHINO, Yuko; FUJINO, Yasuhito; TSUJIMOTO, Hajime

    2014-01-01

    ABSTRACT Serine proteases elicit cellular responses via protease-activated receptor-2 (PAR-2) which is known to regulate inflammation and the immune response. Although the gastrointestinal tract is exposed to large amounts of proteolytic enzymes, the role of PAR-2 in canine inflammatory bowel disease (IBD) remains unclear. The objective of this study was to investigate the effects of PAR-2 activation on inflammatory cytokine/chemokine gene expression in canine intestine and the expression of intestinal PAR-2 and fecal serine protease activity in dogs with IBD. Duodenal biopsies from healthy dogs were cultured and treated ex vivo with trypsin or PAR-2 agonist peptide, and inflammatory cytokine/chemokine gene expression in the tissues was then quantified by real-time PCR. PAR-2 mRNA and protein expression levels in the duodenal mucosa were examined by real-time PCR and immunohistochemistry, respectively. Fecal serine protease activity was determined by azocasein assay. In ex vivo-cultured duodenum, trypsin and PAR-2 agonist peptide induced significant up-regulation of mRNA expression levels of interleukin-1 β (IL-1β), IL-8, mucosae-associated epithelial chemokine (MEC) and fractalkine, and this up-regulation was inhibited by a serine protease inhibitor. Duodenal PAR-2 mRNA and protein expression levels were higher in dogs with IBD than in healthy control dogs. Fecal serine protease activity was significantly elevated in dogs with IBD, and the level of activity correlated positively with the clinical severity score. These results suggest that PAR-2 may contribute to the pathogenesis of canine IBD by inducing expression of inflammatory mediators in response to luminal serine proteases. PMID:24829081

  14. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease

    SciTech Connect

    Gershenfeld, H.K.; Hershberger, R.J.; Shows, T.B.; Weissman, I.L.

    1988-02-01

    A cDNA clone encoding a human T cell- and natural killer cell-specific serine protease was obtained by screening a phage lambdagt10 cDNA library from phytohemagglutinin-stimulated human peripheral blood lymphocytes with the mouse Hanukah factor cDNA clone. In an RNA blot-hybridization analysis, this human Hanukah factor cDNA hybridized with a 1.3-kilobase band in allogeneic-stimulated cytotoxic T cells and the Jurkat cell line, but this transcript was not detectable in normal muscle, liver, tonsil, or thymus. By dot-blot hybridization, this cDNA hybridized with RNA from three cytolytic T-cell clones and three noncytolytic T-cell clones grown in vitro as well as with purified CD16/sup +/ natural killer cells and CD3/sup +/, CD16/sup -/ T-cell large granular lymphocytes from peripheral blood lymphocytes (CD = cluster designation). The nucleotide sequence of this cDNA clone encodes a predicted serine protease of 262 amino acids. The active enzyme is 71% and 77% similar to the mouse sequence at the amino acid and DNA level, respectively. The human and mouse sequences conserve the active site residues of serine proteases--the trypsin-specific Asp-189 and all 10 cysteine residues. The gene for the human Hanukah factor serine protease is located on human chromosome 5. The authors propose that this trypsin-like serine protease may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells.

  15. Vioserpin, a serine protease inhibitor from Gloeobacter violaceus possibly regulated by heparin.

    PubMed

    Oliveira, Jocélia P C; Salazar, Natália; Zani, Marcelo B; de Souza, Lucas R; Passos, Silvia G; Sant'Ana, Aquiles M; de Andrade, Regiane A; Marcili, Arlei; Sperança, Marcia A; Puzer, Luciano

    2016-08-01

    Serine peptidase inhibitor (serpin) is the name given to the superfamily of proteins with wide range of biological functions, and that the main feature is the inhibition of serine proteases. Here we describe the inhibitory characterization of a serpin from Gloeobacter violaceus that we named vioserpin. The serpin presented a high specificity to inhibit trypsin-like enzymes with a rapid inhibition rate constant (2.1 × 10(6) M(-1) s(-1)). We also demonstrated that the inhibitory activity of the vioserpin is influenced by the concentration of heparin, and this finding may throw a new light on understanding the molecular evolution of serpins. PMID:27157268

  16. A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival.

    PubMed

    Kugadas, Abirami; Lamont, Elise A; Bannantine, John P; Shoyama, Fernanda M; Brenner, Evan; Janagama, Harish K; Sreevatsan, Srinand

    2016-01-01

    The ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although, studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophages and MAC-T cells that coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc(2) 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increased bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5) conditions, compared to the parent strain. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted. PMID:27597934

  17. Human mast cell tryptase: Multiple cDNAs and genes reveal a multigene serine protease family

    SciTech Connect

    Vanderslice, P.; Ballinger, S.M., Tam, E.K.; Goldstein, S.M.; Craik, C.S.; Caughey, G.H. )

    1990-05-01

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the {approx}1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5{prime} regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family.

  18. A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival

    PubMed Central

    Kugadas, Abirami; Lamont, Elise A.; Bannantine, John P.; Shoyama, Fernanda M.; Brenner, Evan; Janagama, Harish K.; Sreevatsan, Srinand

    2016-01-01

    The ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although, studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophages and MAC-T cells that coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc2 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increased bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5) conditions, compared to the parent strain. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted. PMID:27597934

  19. BbrzSP-32, the first serine protease isolated from Bothrops brazili venom: Purification and characterization.

    PubMed

    Zaqueo, Kayena D; Kayano, Anderson M; Domingos, Thaisa F S; Moura, Laura A; Fuly, André L; da Silva, Saulo L; Acosta, Gerardo; Oliveira, Eliandre; Albericio, Fernando; Zanchi, Fernando B; Zuliani, Juliana P; Calderon, Leonardo A; Stábeli, Rodrigo G; Soares, Andreimar M

    2016-05-01

    Snake venom toxins are related not only in detention, death and the promotion of initial digestion of prey but also due to their different biochemical, structural and pharmacological effects they can result in new drugs. Among these toxins snake venom serine proteases (SVSPs) should be highlighted because they are responsible for inducing changes in physiological functions such as blood coagulation, fibrinolysis, and platelet aggregation. This article presents the first serine protease (SP) isolated from Bothrops brazili: BbrzSP-32. The new SP showed 36 kDa of relative molecular mass and its absolute mass was confirmed by mass spectrometry as 32,520 Da. It presents 79.48% identity when compared to other SVSPs and was able to degrade the α-chain of fibrinogen, in in vitro models, because of this it is considered a SVTLE-A. It showed dose-dependent activity in the process of degradation of fibrin networks demonstrating greater specificity for this activity when compared to its thrombolytic action. BbrzSP-32 demonstrated proteolytic activity on gelatin and chromogenic substrates for serine proteases and thrombin-like enzymes (S-2288 and S-2238 respectively), besides having coagulant activity on human plasma. After pre-incubation with PMSF and benzamidine the coagulant and proteolytic activities on the S-2288 and S-2238 substrates were reduced. BbrzSP-32 shows stability against pH and temperature variations, demonstrating optimum activity between 30 and 40 °C and in the pH range 7.5 to 8.5. A new SP with potential biotechnological application was isolated. PMID:26827743

  20. Evaluation of cytotoxic and anti-tumor activity of partially purified serine protease isolate from the Indian earthworm Pheretima posthuma

    PubMed Central

    Verma, Mahendra Kumar; Xavier, Francies; Verma, Yogendra Kumar; Sobha, Kota

    2013-01-01

    Objective To isolate, partially purify and evaluate the cytotoxic and antitumor activity of a serine protease from the chosen Indian earthworm Pheretima posthuma. Methods Whole animal extract was prepared and purified its protein constituents by size and charge based chromatographic separation techniques using Sephadex G-50 and DEAE-Cellulose resin respectively. Average molecular weight of the protein isolate was determined and analyzed for its cytotoxic property against Vero cells in different dilutions (1: 20 and 1: 40) and anti-tumor activity by MTT assay (a colorimetric assay) using breast cancer cell line MCF-7, with tamoxifen as standard. Results One of the protein constituents after purification was characterized as serine protease by Caseinolytic plate diffusion assay. Average molecular weight of this purified isolate was determined, by SDS-PAGE analysis with standard protein ladder, as of 15 kDa. The performed tests suggested that the 15kDa fraction has potent cytotoxic activity and satisfactory antitumor activity as well in vitro. Conclusions Exact molecular mechanism of the cytotoxic and antitumor activities is yet to be explored and currently we are working on ultra-purification and biophysical characterization of this fraction. Further investigation into the mechanism(s) of cytotoxic and antitumor activities at molecular level would be useful in treatment of various classes of cancer and viral infections in future.

  1. Serine protease EpiP from Staphylococcus epidermidis catalyzes the processing of the epidermin precursor peptide.

    PubMed Central

    Geissler, S; Götz, F; Kupke, T

    1996-01-01

    The function of serine protease EpiP in epidermin biosynthesis was investigated. Epidermin is synthesized as a 52-amino-acid precursor peptide, EpiA, which is posttranslationally modified and processed to the mature 22-amino-acid peptide antibiotic. epiP was expressed in Staphylococcus carnosus with xylose-regulated expression vector pCX15. The cleavage of the unmodified EpiA precursor peptide to leader peptide and proepidermin by EpiP-containing culture filtrates of S. carnosus (pCX15epiP) was followed by reversed-phase chromatography and subsequent electrospray mass spectrometry. PMID:8550430

  2. Viscoelastic properties of pressure overload hypertrophied myocardium: effect of serine protease treatment

    NASA Technical Reports Server (NTRS)

    Stroud, Jason D.; Baicu, Catalin F.; Barnes, Mary A.; Spinale, Francis G.; Zile, Michael R.

    2002-01-01

    To determine whether and to what extent one component of the extracellular matrix, fibrillar collagen, contributes causally to abnormalities in viscoelasticity, collagen was acutely degraded by activation of endogenous matrix metalloproteinases (MMPs) with the serine protease plasmin. Papillary muscles were isolated from normal cats and cats with right ventricular pressure overload hypertrophy (POH) induced by pulmonary artery banding. Plasmin treatment caused MMP activation, collagen degradation, decreased the elastic stiffness constant, and decreased the viscosity constant in both normal and POH muscles. Thus, whereas many mechanisms may contribute to the abnormalities in myocardial viscoelasticity in the POH myocardium, changes in fibrillar collagen appear to play a predominant role.

  3. Synthesis and biochemical evaluation of triazole/tetrazole-containing sulfonamides against thrombin and related serine proteases

    PubMed Central

    Siles, Rogelio; Kawasaki, Yuko; Ross, Patrick; Freire, Ernesto

    2011-01-01

    A small library of 25 triazole/tetrazole-based sulfonamides have been synthesized and further evaluated for their inhibitory activity against thrombin, trypsin, tryptase and chymase. In general, the triazole-based sulfonamides inhibited thrombin more efficiently than the tetrazole counterparts. Particularly, compound 26 showed strong thrombin inhibition (Ki =880 nM) and significant selectivity against other human related serine proteases like trypsin (Ki =729 µM). Thrombin binding affinity of the same compound was determined by ITC and demonstrated that the binding of this new triazole-based scaffold is enthalpically driven, making it a good candidate for further development. PMID:21807511

  4. Interactions of Streptomyces serine-protease inhibitors with Streptomyces griseus metalloendopeptidase II.

    PubMed

    Kajiwara, K; Fujita, A; Tsuyuki, H; Kumazaki, T; Ishii, S

    1991-09-01

    Streptomyces griseus metalloendopeptidase II (SGMPII) was shown to form tight complexes with several Streptomyces protein inhibitors which had been believed to be specific to serine proteases, such as Streptomyces subtilisin inhibitor (SSI), plasminostreptin (PS), and alkaline protease inhibitor-2c' (API-2c'), as well as with Streptomyces metalloprotease inhibitor (SMPI). The dissociation constants of complexes between SGMPII and these inhibitors were successfully determined by using a novel fluorogenic bimane-peptide substrate. The values ranged from nM to pM. The results of studies by gel chromatographic and enzymatic analyses indicated that SGMPII is liberated from the complex with SSI by the addition of subtilisin BPN'. SGMPII and subtilisin BPN' proved, therefore, to interact with SSI in a competitive manner, despite the difference in the chemical nature of their active sites. PMID:1769961

  5. Type II transmembrane serine proteases as potential targets for cancer therapy.

    PubMed

    Murray, Andrew S; Varela, Fausto A; List, Karin

    2016-09-01

    Carcinogenesis is accompanied by increased protein and activity levels of extracellular cell-surface proteases that are capable of modifying the tumor microenvironment by directly cleaving the extracellular matrix, as well as activating growth factors and proinflammatory mediators involved in proliferation and invasion of cancer cells, and recruitment of inflammatory cells. These complex processes ultimately potentiate neoplastic progression leading to local tumor cell invasion, entry into the vasculature, and metastasis to distal sites. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression. In this review the knowledge collected over the past two decades about the molecular mechanisms underlying the pro-cancerous properties of selected TTSPs will be summarized. Furthermore, we will discuss how these insights may facilitate the translation into clinical settings in the future by specifically targeting TTSPs as part of novel cancer treatment regimens. PMID:27078673

  6. Crystal versus solution structures of enzymes: NMR spectroscopy of a crystalline serine protease.

    PubMed

    Smith, S O; Farr-Jones, S; Griffin, R G; Bachovchin, W W

    1989-05-26

    The hydrogen-bonding status of His57 in the catalytic triad (Asp-His-Ser) of serine protease has important mechanistic implications for this class of enzymes. Recent nitrogen-15 nuclear magnetic resonance (NMR) studies of alpha-lytic protease find His57 and Ser195 to be strongly hydrogen-bonded, a result that conflicts with the corresponding crystallographic studies, thereby suggesting that the crystal and solution structures may differ. This discrepancy is addressed and resolved in a nitrogen-15 NMR study of the enzyme in the crystalline state. The results show that the His-Ser and Asp-His interactions are identical in crystals and solutions, but that in crystals His57 titrates with a pKa of 7.9, nearly one pKa unit higher than in solution. This elevated pKa accounts for the absence of the His-Ser hydrogen bond in previous x-ray studies. PMID:2499045

  7. Type II transmembrane serine proteases as potential targets for cancer therapy

    PubMed Central

    Murray, Andrew S.; Varela, Fausto A.

    2016-01-01

    Carcinogenesis is accompanied by increased protein and activity levels of extracellular cell-surface proteases that are capable of modifying the tumor micro-environment by directly cleaving the extracellular matrix, as well as activating growth factors and proinflammatory mediators involved in proliferation and invasion of cancer cells, and recruitment of inflammatory cells. These complex processes ultimately potentiate neoplastic progression leading to local tumor cell invasion, entry into the vasculature, and metastasis to distal sites. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression. In this review the knowledge collected over the past two decades about the molecular mechanisms underlying the pro-cancerous properties of selected TTSPs will be summarized. Furthermore, we will discuss how these insights may facilitate the translation into clinical settings in the future by specifically targeting TTSPs as part of novel cancer treatment regimens. PMID:27078673

  8. Characterization of a new oxidant-stable serine protease isolated by functional metagenomics.

    PubMed

    Biver, Sophie; Portetelle, Daniel; Vandenbol, Micheline

    2013-01-01

    A novel serine protease gene, SBcas3.3, was identified by functional screening of a forest-soil metagenomic library on agar plates supplemented with AZCL-casein. Overproduction in Escherichia coli revealed that the enzyme is produced as a 770-amino-acid precursor which is processed to a mature protease of ~55 kDa. The latter was purified by affinity chromatography for characterization with the azocasein substrate. The enzyme proved to be an alkaline protease showing maximal activity between pH 9 and 10 and at 50°C. Treatment with the chelating agent ethylenediaminetetraacetic acid irreversibly denatured the protease, whose stability was found to depend strictly on calcium ions. The enzyme appeared relatively resistant to denaturing and reducing agents, and its activity was enhanced in the presence of 10 ml/l nonionic detergent (Tween 20, Tween 80, or Triton X-100). Moreover, SBcas3.3 displayed oxidant stability, a feature particularly sought in the detergent and bleaching industries. SBcas3.3 was activated by hydrogen peroxide at concentrations up to 10 g/l and it still retained 30% of activity in 50 g/l H2O2. PMID:24024096

  9. Broad Spectrum Activity of a Lectin-Like Bacterial Serine Protease Family on Human Leukocytes

    PubMed Central

    Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E.; Ruiz-Perez, Fernando

    2014-01-01

    The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283

  10. Broad spectrum activity of a lectin-like bacterial serine protease family on human leukocytes.

    PubMed

    Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E; Ruiz-Perez, Fernando

    2014-01-01

    The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283

  11. Effect of pH and temperature on stability and kinetics of novel extracellular serine alkaline protease (70 kDa).

    PubMed

    Bhunia, Biswanath; Basak, Bikram; Mandal, Tamal; Bhattacharya, Pinaki; Dey, Apurba

    2013-03-01

    A novel extracellular serine protease (70 kDa by SDS-PAGE) was purified and characterized. This enzyme retained more than 93% of its initial activity after preincubation for 30 min at 37 °C in the presence of 25% (v/v) tested organic solvents and showed feather degradation activity. The purified enzyme was deactivated at various combinations of pH and temperature to examine the interactive effect of them on enzyme activity. The deactivation process was modeled as first-order kinetics and the deactivation rate constant (k(d)) was found to be minimum at pH 9 and 37 °C. The kinetic analysis of enzyme over a range of pH values indicated two pK values at 6.21 and at 10.92. The lower pK value was likely due to the catalytic histidine in the free enzyme and higher pK value likely reflected deprotonation of the proline moiety of the substrate but ionization of the active site serine is another possibility. Inhibition kinetic showed that enzyme is serine protease because enzyme was competitively inhibited by antipain and aprotinin as these compounds are known to be competitive inhibitors of serine protease. The organic solvent, thermal and pH tolerances of enzyme suggested that it may have potential for use as a biocatalyst in industry. PMID:23219732

  12. A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats.

    PubMed

    Rautengarten, Carsten; Usadel, Björn; Neumetzler, Lutz; Hartmann, Jürgen; Büssis, Dirk; Altmann, Thomas

    2008-05-01

    During Arabidopsis seed development large quantities of mucilage, composed of pectins, are deposited into the apoplast underneath the outer wall of the seed coat. Upon imbibition of mature seeds, the stored mucilage expands through hydration and breaks the outer cell wall that encapsulates the whole seed. Mutant seeds carrying loss-of-function alleles of AtSBT1.7 that encodes one of 56 Arabidopsis thaliana subtilisin-like serine proteases (subtilases) do not release mucilage upon hydration. Microscopic analysis of the mutant seed coat revealed no visible structural differences compared with wild-type seeds. Weakening of the outer primary wall using cation chelators triggered mucilage release from the seed coats of mutants. However, in contrast to mature wild-type seeds, the mutant's outer cell walls did not rupture at the radial walls of the seed coat epidermal cells, but instead opened at the chalazal end of the seed, and were released in one piece. In atsbt1.7, the total rhamnose and galacturonic acid contents, representing the backbone of mucilage, remained unchanged compared with wild-type seeds. Thus, extrusion and solubility, but not the initial deposition of mucilage, are affected in atsbt1.7 mutants. AtSBT1.7 is localized in the developing seed coat, indicating a role in testa development or maturation. The altered mode of rupture of the outer seed coat wall and mucilage release indicate that AtSBT1.7 triggers the accumulation, and/or activation, of cell wall modifying enzymes necessary either for the loosening of the outer primary cell wall, or to facilitate swelling of the mucilage, as indicated by elevated pectin methylesterase activity in developing atsbt1.7 mutant seeds. PMID:18266922

  13. Design of Specific Serine Protease Inhibitors Based on a Versatile Peptide Scaffold: Conversion of a Urokinase Inhibitor to a Plasma Kallikrein Inhibitor.

    PubMed

    Xu, Peng; Xu, Mingming; Jiang, Longguang; Yang, Qinglan; Luo, Zhipu; Dauter, Zbigniew; Huang, Mingdong; Andreasen, Peter A

    2015-11-25

    All serine proteases hydrolyze peptide bonds by the same basic mechanism and have very similar active sites, in spite of the fact that individual proteases have different physiological functions. We here report a strategy for designing high-affinity and high-specificity serine protease inhibitors using a versatile peptide scaffold, a 10-mer peptide, mupain-1 (CPAYSRYLDC). Mupain-1 was previously reported as a specific inhibitor of murine urokinase-type plasminogen activator (Ki = 0.55 μM) without measurable affinity to plasma kallikrein (Ki > 1000 μM). On the basis of a structure-based rational design, we substituted five residues of mupain-1 and converted it to a potent plasma kallikrein inhibitor (Ki = 0.014 μM). X-ray crystal structure analysis showed that the new peptide was able to adapt a new set of enzyme surface interactions by a slightly changed backbone conformation. Thus, with an appropriate re-engineering, mupain-1 can be redesigned to specific inhibitors of other serine proteases. PMID:26536069

  14. Chlamydia Serine Protease Inhibitor, targeting HtrA, as a New Treatment for Koala Chlamydia infection.

    PubMed

    Lawrence, Amba; Fraser, Tamieka; Gillett, Amber; Tyndall, Joel D A; Timms, Peter; Polkinghorne, Adam; Huston, Wilhelmina M

    2016-01-01

    The koala, an iconic marsupial native to Australia, is a threatened species in many parts of the country. One major factor in the decline is disease caused by infection with Chlamydia. Current therapeutic strategies to treat chlamydiosis in the koala are limited. This study examines the effectiveness of an inhibitor, JO146, which targets the HtrA serine protease for treatment of C. pecorum and C. pneumoniae in vitro and ex vivo with the aim of developing a novel therapeutic for koala Chlamydia infections. Clinical isolates from koalas were examined for their susceptibility to JO146. In vitro studies demonstrated that treatment with JO146 during the mid-replicative phase of C. pecorum or C. pneumoniae infections resulted in a significant loss of infectious progeny. Ex vivo primary koala tissue cultures were used to demonstrate the efficacy of JO146 and the non-toxic nature of this compound on peripheral blood mononuclear cells and primary cell lines established from koala tissues collected at necropsy. Our results suggest that inhibition of the serine protease HtrA could be a novel treatment strategy for chlamydiosis in koalas. PMID:27530689

  15. Chlamydia Serine Protease Inhibitor, targeting HtrA, as a New Treatment for Koala Chlamydia infection

    PubMed Central

    Lawrence, Amba; Fraser, Tamieka; Gillett, Amber; Tyndall, Joel D. A.; Timms, Peter; Polkinghorne, Adam; Huston, Wilhelmina M.

    2016-01-01

    The koala, an iconic marsupial native to Australia, is a threatened species in many parts of the country. One major factor in the decline is disease caused by infection with Chlamydia. Current therapeutic strategies to treat chlamydiosis in the koala are limited. This study examines the effectiveness of an inhibitor, JO146, which targets the HtrA serine protease for treatment of C. pecorum and C. pneumoniae in vitro and ex vivo with the aim of developing a novel therapeutic for koala Chlamydia infections. Clinical isolates from koalas were examined for their susceptibility to JO146. In vitro studies demonstrated that treatment with JO146 during the mid-replicative phase of C. pecorum or C. pneumoniae infections resulted in a significant loss of infectious progeny. Ex vivo primary koala tissue cultures were used to demonstrate the efficacy of JO146 and the non-toxic nature of this compound on peripheral blood mononuclear cells and primary cell lines established from koala tissues collected at necropsy. Our results suggest that inhibition of the serine protease HtrA could be a novel treatment strategy for chlamydiosis in koalas. PMID:27530689

  16. Structural insights into serine protease inhibition by a marine invertebrate BPTI Kunitz-type inhibitor.

    PubMed

    García-Fernández, Rossana; Pons, Tirso; Perbandt, Markus; Valiente, Pedro A; Talavera, Ariel; González-González, Yamile; Rehders, Dirk; Chávez, María A; Betzel, Christian; Redecke, Lars

    2012-11-01

    Proteins isolated from marine invertebrates are frequently characterized by exceptional structural and functional properties. ShPI-1, a BPTI Kunitz-type inhibitor from the Caribbean Sea anemone Stichodactyla helianthus, displays activity not only against serine-, but also against cysteine-, and aspartate proteases. As an initial step to evaluate the molecular basis of its activities, we describe the crystallographic structure of ShPI-1 in complex with the serine protease bovine pancreatic trypsin at 1.7Å resolution. The overall structure and the important enzyme-inhibitor interactions of this first invertebrate BPTI-like Kunitz-type inhibitor:trypsin complex remained largely conserved compared to mammalian BPTI-Kunitz inhibitor complexes. However, a prominent stabilizing role within the interface was attributed to arginine at position P3. Binding free-energy calculations indicated a 10-fold decrease for the inhibitor affinity against trypsin, if the P3 residue of ShPI-1 is mutated to alanine. Together with the increased role of Arg(11) at P3 position, slightly reduced interactions at the prime side (Pn') of the primary binding loop and at the secondary binding loop of ShPI-1 were detected. In addition, the structure provides important information for site directed mutagenesis to further optimize the activity of rShPI-1A for biotechnological applications. PMID:22975140

  17. A Novel Serine Protease Secreted by Medicinal Maggots Enhances Plasminogen Activator-Induced Fibrinolysis

    PubMed Central

    van der Plas, Mariena J. A.; Andersen, Anders S.; Nazir, Sheresma; van Tilburg, Nico H.; Oestergaard, Peter R.; Krogfelt, Karen A.; van Dissel, Jaap T.; Hensbergen, Paul J.

    2014-01-01

    Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As haemostatic processes play an important role in wound healing, this study focused on the effects of maggot secretions on coagulation and fibrinolysis. The results showed that maggot secretions enhance plasminogen activator-induced formation of plasmin and fibrinolysis in a dose- and time-dependent manner. By contrast, coagulation was not affected by secretions. Biochemical studies indicated that a novel serine protease within secretions, designated Sericase, cleaved plasminogen to several fragments. Recombinant Sericase degraded plasminogen leading amongst others to the formation of the mini-plasminogen like fragment Val454-plasminogen. In addition, the presence of a non-proteolytic cofactor in secretions was discovered, which plays a role in the enhancement of plasminogen activator-induced fibrinolysis by Sericase. We conclude from our in vitro studies that the novel serine protease Sericase, with the aid of a non-proteolytic cofactor, enhances plasminogen activator-induced fibrinolysis. PMID:24647546

  18. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement.

    PubMed

    Homa, Joanna; Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  19. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement

    PubMed Central

    Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  20. Tryptogalinin Is a Tick Kunitz Serine Protease Inhibitor with a Unique Intrinsic Disorder

    PubMed Central

    Valdés, James J.; Schwarz, Alexandra; Cabeza de Vaca, Israel; Calvo, Eric; Pedra, Joao H. F.

    2013-01-01

    Background A salivary proteome-transcriptome project on the hard tick Ixodes scapularis revealed that Kunitz peptides are the most abundant salivary proteins. Ticks use Kunitz peptides (among other salivary proteins) to combat host defense mechanisms and to obtain a blood meal. Most of these Kunitz peptides, however, remain functionally uncharacterized, thus limiting our knowledge about their biochemical interactions. Results We discovered an unusual cysteine motif in a Kunitz peptide. This peptide inhibits several serine proteases with high affinity and was named tryptogalinin due to its high affinity for β-tryptase. Compared with other functionally described peptides from the Acari subclass, we showed that tryptogalinin is phylogenetically related to a Kunitz peptide from Rhipicephalus appendiculatus, also reported to have a high affinity for β-tryptase. Using homology-based modeling (and other protein prediction programs) we were able to model and explain the multifaceted function of tryptogalinin. The N-terminus of the modeled tryptogalinin is detached from the rest of the peptide and exhibits intrinsic disorder allowing an increased flexibility for its high affinity with its inhibiting partners (i.e., serine proteases). Conclusions By incorporating experimental and computational methods our data not only describes the function of a Kunitz peptide from Ixodes scapularis, but also allows us to hypothesize about the molecular basis of this function at the atomic level. PMID:23658744

  1. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria

    PubMed Central

    Hershey, David M.; Ren, Xuefeng; Melnyk, Ryan A.; Browne, Patrick J.; Ozyamak, Ertan; Jones, Stephanie R.; Chang, Michelle C. Y.; Hurley, James H.; Komeili, Arash

    2016-01-01

    Many living organisms transform inorganic atoms into highly ordered crystalline materials. An elegant example of such biomineralization processes is the production of nano-scale magnetic crystals in magnetotactic bacteria. Previous studies implicated the involvement of two putative serine proteases, MamE and MamO, during the early stages of magnetite formation in Magnetospirillum magneticum AMB-1. Here, using genetic analysis and X-ray crystallography, we show that MamO has a degenerate active site, rendering it incapable of protease activity. Instead, MamO promotes magnetosome formation through two genetically distinct, noncatalytic activities: activation of MamE-dependent proteolysis of biomineralization factors and direct binding to transition metal ions. By solving the structure of the protease domain bound to a metal ion, we identify a surface-exposed di-histidine motif in MamO that contributes to metal binding and show that it is required to initiate biomineralization in vivo. Finally, we find that pseudoproteases are widespread in magnetotactic bacteria and that they have evolved independently in three separate taxa. Our results highlight the versatility of protein scaffolds in accommodating new biochemical activities and provide unprecedented insight into the earliest stages of biomineralization. PMID:26981620

  2. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria

    DOE PAGESBeta

    Hershey, David M.; Ren, Xuefeng; Melnyk, Ryan A.; Browne, Patrick J.; Ozyamak, Ertan; Jones, Stephanie R.; Chang, Michelle C. Y.; Hurley, James H.; Komeili, Arash

    2016-03-16

    Many living organisms transform inorganic atoms into highly ordered crystalline materials. An elegant example of such biomineralization processes is the production of nano-scale magnetic crystals in magnetotactic bacteria. Previous studies have implicated the involvement of two putative serine proteases, MamE and MamO, during the early stages of magnetite formation in Magnetospirillum magneticum AMB-1. Here, using genetic analysis and X-ray crystallography, we show that MamO has a degenerate active site, rendering it incapable of protease activity. Instead, MamO promotes magnetosome formation through two genetically distinct, noncatalytic activities: activation of MamE-dependent proteolysis of biomineralization factors and direct binding to transition metal ions.more » By solving the structure of the protease domain bound to a metal ion, we identify a surface-exposed di-histidine motif in MamO that contributes to metal binding and show that it is required to initiate biomineralization in vivo. Finally, we find that pseudoproteases are widespread in magnetotactic bacteria and that they have evolved independently in three separate taxa. In conclusion, our results highlight the versatility of protein scaffolds in accommodating new biochemical activities and provide unprecedented insight into the earliest stages of biomineralization.« less

  3. Abrogation of IFN-γ mediated epithelial barrier disruption by serine protease inhibition

    PubMed Central

    Willemsen, LEM; Hoetjes, JP; Van Deventer, SJH; Van Tol, EAF

    2005-01-01

    The intestinal barrier function is often impaired in a variety of diseases including chronic inflammatory bowel disease. Increased intestinal permeability during episodes of active disease correlates with destruction or rearrangement of the tight junction protein complex. IFN-γ has been widely studied for its effect on barrier function and tight junction structures but its mode of action remains unclear. Since the claudin family of tight junction proteins is proposed to be involved in barrier maintenance we studied the effect of IFN-γ on claudin expression in relation to epithelial barrier function. Cycloheximide and protease inhibitors were used to study mechanisms of IFN-γ mediated barrier disruption. Intestinal epithelial cells were exposed to IFN-γ and permeability was evaluated by horse radish peroxidase (HRP) and 4 kD FITC-dextran fluxes. Occludin and claudin-1, -2, -3, and -4 tight junction protein expression was determined by Western blotting. Occludin and claudin-2 protein expression was dramatically reduced after IFN-γ exposure, which correlated with increased permeability for HRP and FITC-dextran. Interestingly, cleavage of claudin-2 was observed after incubation with IFN-γ. Serine protease inhibitor AEBSF completely abrogated IFN-γ mediated barrier disruption which was associated with preservation of claudin-2 expression. Moreover, IFN-γ induced loss of barrier integrity was found to affect claudin-2 and occludin expression through different mechanisms. Since inhibition of serine protease activity abrogates IFN-γ mediated barrier disruption this may be an important target for therapeutic intervention. PMID:16232214

  4. Midgut serine proteases and alternative host plant utilization in Pieris brassicae L.

    PubMed Central

    Kumar, Rakesh; Bhardwaj, Usha; Kumar, Pawan; Mazumdar-Leighton, Sudeshna

    2015-01-01

    Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of the world. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolum majus L., of the family Tropaeolaceae). Proteolytic digestion was studied in larvae feeding on multiple hosts. Fourth instars were collected from cauliflower fields before transfer onto detached, aerial tissues of selected host plants in the lab. Variable levels of midgut proteases were detected in larvae fed on different hosts using protein substrates (casein and recombinant RBCL cloned from cauliflower) and diagnostic, synthetic substrates. Qualitative changes in midgut trypsin activities and quantitative changes in midgut chymotrypsin activities were implicated in physiological adaptation of larvae transferred to T. majus. Midgut proteolytic activities were inhibited to different extents by serine protease inhibitors, including putative trypsin inhibitors isolated from herbivore-attacked and herbivore-free leaves of cauliflower (CfTI) and T. majus (TpTI). Transfer of larvae to T. majus significantly influenced feeding parameters but not necessarily when transferred to different tissues of the same host. Results obtained are relevant for devising sustainable pest management strategies, including transgenic approaches using genes encoding plant protease inhibitors. PMID:25873901

  5. Collagenolytic activity related to metalloproteases (and serine proteases) in the fish parasite Hysterothylacium aduncum (Nematoda: Anisakidae).

    PubMed

    Malagón, David; Adroher, Francisco Javier; Díaz-López, Manuel; Benítez, Rocío

    2010-06-11

    Proteases play a vital role in both the life cycle of parasites and the parasite-host relationship and are considered important virulence factors. In the present study, the presence of proteases with collagenolytic activity was investigated in the fish nematode Hysterothylacium aduncum during in vitro development. Collagenolytic activity was found in all studied developmental stages of the nematode (third [L3] and fourth [L4] larval stages and adults). In L3, the activity was maximum at pH 6.5 and, in the other stages, at 7.0. Pepsin is known to favour in vitro development of the worm, but, in this study, collagenolytic activity was shown to be significantly greater when no pepsin was added to the culture medium (at pH 6.5, p = 0.011). At pH 7.0, most activity was observed in the immature adult, after the final moult, suggesting that the collagenolytic activity may be involved in remodelling of the cuticle and in sexual maturity. On the other hand, at pH 6.5, activity may be related to tissue migration by L3 within the host. Using specific inhibitors, it was demonstrated that most of the collagenolytic activity detected in all the developmental stages was due to metalloproteases (40 to 100%), although serine proteases were also detected in L4 and adults (10 to 30%). PMID:20662369

  6. Purification and characterization of thermostable serine proteases encoded by the genes ttha0099 and ttha01320 from Thermus thermophilus HB8.

    PubMed

    Li, Hui; Sun, Yajie; Jiao, Xue; Wang, Honglin; Zhu, Hu

    2016-07-01

    As an important class of proteases, serine proteases are required to show high activity under diverse conditions, especially at high temperatures. In the current study, two serine proteases SP348 and SP404 were analyzed by different bioinformatics tools. Both proteins are comprised of a trypsin domain and a PDZ domain, and belong to the trypsin family of proteases. The proteins were successfully expressed with Trx-tags as soluble proteins in the specialized Escherichia coli Rosetta-gami B(DE3)pLysS strain. A simple three-step purification protocol involving heat treatment, Ni-NTA purification and gel filtration was adopted to purify SP404. The molecular weight of recombinant SP404 was about 64 kDa. According to the circular dichroism spectroscopy analysis, SP404 is thermostable at 70 °C with alpha-helix, beta-sheet and random coil contents of about 8, 22 and 70 %, respectively. Our findings may broaden the range of microorganism-derived proteases and have a wide potential for industrial and fundamental studies. PMID:27215206

  7. The impact of ingested potato type II inhibitors on the production of the major serine proteases in the gut of Helicoverpa armigera.

    PubMed

    Stevens, J A; Dunse, K M; Guarino, R F; Barbeta, B L; Evans, S C; West, J A; Anderson, M A

    2013-02-01

    The flowers of the ornamental tobacco produce high levels of a series of 6 kDa serine protease inhibitors (NaPIs) that are effective inhibitors of trypsins and chymotrypsins from lepidopteran species. These inhibitors have a negative impact on the growth and development of lepidopteran larvae and have a potential role in plant protection. Here we investigate the effect of NaPIs on the activity and levels of serine proteases in the gut of Helicoverpa armigera larvae and explore the adaptive mechanisms larvae employ to overcome the negative effects of NaPIs in the diet. Polyclonal antibodies were raised against a Helicoverpa punctigera trypsin that is a target for NaPIs and two H. punctigera chymotrypsins; one that is resistant and one that is susceptible to inhibition by NaPIs. The antibodies were used to optimize procedures for extraction of proteases for immunoblot analysis and to assess the effect of NaPIs on the relative levels of the proteases in the gut and frass. We discovered that consumption of NaPIs did not lead to over-production of trypsins or chymotrypsins but did result in excessive loss of proteases to the frass. PMID:23247047

  8. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction.

    PubMed

    Ronaghan, Natalie J; Shang, Judie; Iablokov, Vadim; Zaheer, Raza; Colarusso, Pina; Turner, Jerrold R; MacNaughton, Wallace K

    2016-09-01

    Barrier dysfunction is a characteristic of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Understanding how the tight junction is modified to maintain barrier function may provide avenues for treatment of IBD. We have previously shown that the apical addition of serine proteases to intestinal epithelial cell lines causes a rapid and sustained increase in transepithelial electrical resistance (TER), but the mechanisms are unknown. We hypothesized that serine proteases increase barrier function through trafficking and insertion of tight junction proteins into the membrane, and this could enhance recovery of a disrupted monolayer after calcium switch or cytokine treatment. In the canine epithelial cell line, SCBN, we showed that matriptase, an endogenous serine protease, could potently increase TER. Using detergent solubility-based cell fractionation, we found that neither trypsin nor matriptase treatment changed levels of tight junction proteins at the membrane. In a fast calcium switch assay, serine proteases did not enhance the rate of recovery of the junction. In addition, serine proteases could not reverse barrier disruption induced by IFNγ and TNFα. We knocked down occludin in our cells using siRNA and found this prevented the serine protease-induced increase in TER. Using fluorescence recovery after photobleaching (FRAP), we found serine proteases induce a greater mobile fraction of occludin in the membrane. These data suggest that a functional tight junction is needed for serine proteases to have an effect on TER, and that occludin is a crucial tight junction protein in this mechanism. PMID:27492333

  9. Chikungunya nsP2 protease is not a papain-like cysteine protease and the catalytic dyad cysteine is interchangeable with a proximal serine.

    PubMed

    Saisawang, Chonticha; Saitornuang, Sawanan; Sillapee, Pornpan; Ubol, Sukathida; Smith, Duncan R; Ketterman, Albert J

    2015-01-01

    Chikungunya virus is the pathogenic alphavirus that causes chikungunya fever in humans. In the last decade millions of cases have been reported around the world from Africa to Asia to the Americas. The alphavirus nsP2 protein is multifunctional and is considered to be pivotal to viral replication, as the nsP2 protease activity is critical for proteolytic processing of the viral polyprotein during replication. Classically the alphavirus nsP2 protease is thought to be papain-like with the enzyme reaction proceeding through a cysteine/histidine catalytic dyad. We performed structure-function studies on the chikungunya nsP2 protease and show that the enzyme is not papain-like. Characterization of the catalytic dyad cysteine residue enabled us to identify a nearby serine that is catalytically interchangeable with the dyad cysteine residue. The enzyme retains activity upon alanine replacement of either residue but a replacement of both cysteine and serine residues results in no detectable activity. Protein dynamics appears to allow the use of either the cysteine or the serine residue in catalysis. This switchable dyad residue has not been previously reported for alphavirus nsP2 proteases and would have a major impact on the nsP2 protease as an anti-viral target. PMID:26597768

  10. The Kunitz-Type Protein ShPI-1 Inhibits Serine Proteases and Voltage-Gated Potassium Channels

    PubMed Central

    García-Fernández, Rossana; Peigneur, Steve; Pons, Tirso; Alvarez, Carlos; González, Lidice; Chávez, María A.; Tytgat, Jan

    2016-01-01

    The bovine pancreatic trypsin inhibitor (BPTI)-Kunitz-type protein ShPI-1 (UniProt: P31713) is the major protease inhibitor from the sea anemone Stichodactyla helianthus. This molecule is used in biotechnology and has biomedical potential related to its anti-parasitic effect. A pseudo wild-type variant, rShPI-1A, with additional residues at the N- and C-terminal, has a similar three-dimensional structure and comparable trypsin inhibition strength. Further insights into the structure-function relationship of rShPI-1A are required in order to obtain a better understanding of the mechanism of action of this sea anemone peptide. Using enzyme kinetics, we now investigated its activity against other serine proteases. Considering previous reports of bifunctional Kunitz-type proteins from anemones, we also studied the effect of rShPI-1A on voltage-gated potassium (Kv) channels. rShPI-1A binds Kv1.1, Kv1.2, and Kv1.6 channels with IC50 values in the nM range. Hence, ShPI-1 is the first member of the sea anemone type 2 potassium channel toxins family with tight-binding potency against several proteases and different Kv1 channels. In depth sequence analysis and structural comparison of ShPI-1 with similar protease inhibitors and Kv channel toxins showed apparent non-sequence conservation for known key residues. However, we detected two subtle patterns of coordinated amino acid substitutions flanking the conserved cysteine residues at the N- and C-terminal ends. PMID:27089366

  11. The Kunitz-Type Protein ShPI-1 Inhibits Serine Proteases and Voltage-Gated Potassium Channels.

    PubMed

    García-Fernández, Rossana; Peigneur, Steve; Pons, Tirso; Alvarez, Carlos; González, Lidice; Chávez, María A; Tytgat, Jan

    2016-04-01

    The bovine pancreatic trypsin inhibitor (BPTI)-Kunitz-type protein ShPI-1 (UniProt: P31713) is the major protease inhibitor from the sea anemone Stichodactyla helianthus. This molecule is used in biotechnology and has biomedical potential related to its anti-parasitic effect. A pseudo wild-type variant, rShPI-1A, with additional residues at the N- and C-terminal, has a similar three-dimensional structure and comparable trypsin inhibition strength. Further insights into the structure-function relationship of rShPI-1A are required in order to obtain a better understanding of the mechanism of action of this sea anemone peptide. Using enzyme kinetics, we now investigated its activity against other serine proteases. Considering previous reports of bifunctional Kunitz-type proteins from anemones, we also studied the effect of rShPI-1A on voltage-gated potassium (Kv) channels. rShPI-1A binds Kv1.1, Kv1.2, and Kv1.6 channels with IC50 values in the nM range. Hence, ShPI-1 is the first member of the sea anemone type 2 potassium channel toxins family with tight-binding potency against several proteases and different Kv1 channels. In depth sequence analysis and structural comparison of ShPI-1 with similar protease inhibitors and Kv channel toxins showed apparent non-sequence conservation for known key residues. However, we detected two subtle patterns of coordinated amino acid substitutions flanking the conserved cysteine residues at the N- and C-terminal ends. PMID:27089366

  12. Purification and biochemical characterization of two detergent-stable serine alkaline proteases from Streptomyces sp. strain AH4.

    PubMed

    Touioui, Souraya Boulkour; Jaouadi, Nadia Zaraî; Boudjella, Hadjira; Ferradji, Fatma Zohra; Belhoul, Mouna; Rekik, Hatem; Badis, Abdelmalek; Bejar, Samir; Jaouadi, Bassem

    2015-07-01

    Streptomyces sp. strain AH4 exhibited a high ability to produce two extracellular proteases when cultured on a yeast malt-extract (ISP2)-casein-based medium. Pure proteins were obtained after heat treatment (30 min at 70 °C) and ammonium sulphate fractionation (30-60 %), followed by size exclusion HPLC column. Matrix assisted laser desorption ionization-time of flight mass spectrometry analysis revealed that the purified enzymes (named SAPS-P1 and SAPS-P2) were monomers with molecular masses of 36,417.13 and 21,099.10 Da, respectively. Their identified N-terminal amino acid displayed high homologies with those of Streptomyces proteases. While SAPS-P1 was optimally active at pH 12.0 and 70 °C, SAPS-P2 showed optimum activity at pH 10.0 and 60 °C. Both enzymes were completely stable within a wide range of temperature (45-75 °C) and pH (8.0-11.5). They were noted to be completely inhibited by phenylmethanesulfonyl fluoride and diisopropyl fluorophosphates, which confirmed their belonging to the serine proteases family. Compared to SAPS-P2, SAPS-P1 showed high thermostability and excellent stability towards bleaching, denaturing, and oxidizing agents. Both enzymes displayed marked stability and compatibility with a wide range of commercial laundry detergents and significant catalytic efficiencies compared to Subtilisin Carlsberg and Protease SG-XIV. Overall, the results indicated that SAPS-P1 and SAPS-P2 can be considered as potential promising candidates for future application as bioadditives in detergent formulations. PMID:26002109

  13. Characterisation of a secretory serine protease inhibitor (SjB6) from Schistosoma japonicum

    PubMed Central

    2014-01-01

    Background Proteins belonging to the serine protease inhibitor (serpin) superfamily play essential physiological roles in many organisms. In pathogens, serpins are thought to have evolved specifically to limit host immune responses by interfering with the host immune-stimulatory signals. Serpins are less well characterised in parasitic helminths, although some are thought to be involved in mechanisms associated with host immune modulation. In this study, we cloned and partially characterised a secretory serpin from Schistosoma japonicum termed SjB6, these findings provide the basis for possible functional roles. Methods SjB6 gene was identified through database mining of our previously published microarray data, cloned and detailed sequence and structural analysis and comparative modelling carried out using various bioinformatics and proteomics tools. Gene transcriptional profiling was determined by real-time PCR and the expression of native protein determined by immunoblotting. An immunological profile of the recombinant protein produced in insect cells was determined by ELISA. Results SjB6 contains an open reading frame of 1160 base pairs that encodes a protein of 387 amino acid residues. Detailed sequence analysis, comparative modelling and structural-based alignment revealed that SjB6 contains the essential structural motifs and consensus secondary structures typical of inhibitory serpins. The presence of an N-terminal signal sequence indicated that SjB6 is a secretory protein. Real-time data indicated that SjB6 is expressed exclusively in the intra-mammalian stage of the parasite life cycle with its highest expression levels in the egg stage (p < 0.0001). The native protein is approximately 60 kDa in size and recombinant SjB6 (rSjB6) was recognised strongly by sera from rats experimentally infected with S. japonicum. Conclusions The significantly high expression of SjB6 in schistosome eggs, when compared to other life cycle stages, suggests a possible

  14. Degradation of the disease-associated prion protein by a serine protease from lichens

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J.C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.

    2011-01-01

    The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  15. Degradation of the disease-associated prion protein by a serine protease from lichens

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J. C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  16. Degradation of the disease-associated prion protein by a serine protease from lichens.

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J. C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  17. Degradation of the Disease-Associated Prion Protein by a Serine Protease from Lichens

    PubMed Central

    Johnson, Christopher J.; Bennett, James P.; Biro, Steven M.; Duque-Velasquez, Juan Camilo; Rodriguez, Cynthia M.; Bessen, Richard A.; Rocke, Tonie E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted. PMID:21589935

  18. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans.

    PubMed

    Pannkuk, Evan L; Risch, Thomas S; Savary, Brett J

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction. PMID:25785714

  19. Isolation and Identification of an Extracellular Subtilisin-Like Serine Protease Secreted by the Bat Pathogen Pseudogymnoascus destructans

    PubMed Central

    Pannkuk, Evan L.; Risch, Thomas S.; Savary, Brett J.

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction. PMID:25785714

  20. Bumblebee venom serine protease increases fungal insecticidal virulence by inducing insect melanization.

    PubMed

    Kim, Jae Su; Choi, Jae Young; Lee, Joo Hyun; Park, Jong Bin; Fu, Zhenli; Liu, Qin; Tao, Xueying; Jin, Byung Rae; Skinner, Margaret; Parker, Bruce L; Je, Yeon Ho

    2013-01-01

    Insect-killing (entomopathogenic) fungi have high potential for controlling agriculturally harmful pests. However, their pathogenicity is slow, and this is one reason for their poor acceptance as a fungal insecticide. The expression of bumblebee, Bombus ignitus, venom serine protease (VSP) by Beauveria bassiana (ERL1170) induced melanization of yellow spotted longicorn beetles (Psacothea hilaris) as an over-reactive immune response, and caused substantially earlier mortality in beet armyworm (Spodopetra exigua) larvae when compared to the wild type. No fungal outgrowth or sporulation was observed on the melanized insects, thus suggesting a self-restriction of the dispersal of the genetically modified fungus in the environment. The research is the first use of a multi-functional bumblebee VSP to significantly increase the speed of fungal pathogenicity, while minimizing the dispersal of the fungal transformant in the environment. PMID:23626832

  1. A low-barrier hydrogen bond in the catalytic triad of serine proteases? Theory versus experiment.

    PubMed

    Ash, E L; Sudmeier, J L; De Fabo, E C; Bachovchin, W W

    1997-11-01

    Cleland and Kreevoy recently advanced the idea that a special type of hydrogen bond (H-bond), termed a low-barrier hydrogen bond (LBHB), may account for the "missing" transition state stabilization underlying the catalytic power of many enzymes, and Frey et al. have proposed that the H-bond between aspartic acid 102 and histidine 57 in the catalytic triad of serine proteases is an example of a catalytically important LBHB. Experimental facts are here considered regarding the aspartic acid-histidine and cis-urocanic H-bonds that are inconsistent with fundamental tenets of the LBHB hypothesis. The inconsistencies between theory and experiment in these paradigm systems cast doubt on the existence of LBHBs, as currently defined, within enzyme active sites. PMID:9353195

  2. Perturbation response scanning specifies key regions in subtilisin serine protease for both function and stability.

    PubMed

    Abdizadeh, Haleh; Guven, Gokce; Atilgan, Ali Rana; Atilgan, Canan

    2015-12-01

    Can one infer the amino acids of the enzymes that are responsible for the stability or the level of the catalytic activity by computationally experimenting on the inhibited enzyme in the enzyme-inhibitor complex? In this article, we answer this question positively both by designing molecular dynamics simulations and by devising coarse-grained methodologies on the subtilisin serine protease. Both methodologies are based on the cross-correlations of the fluctuations of the residues, obtained either by monitoring the trajectories from the simulation or by constructing the inverse Laplacian of the elastic network model, of the complex. A perturbation scanning is applied to the complex using these correlations. The results indicate that the two methods almost point out the same regions on the flexible of the enzyme. These regions are: (i) 50-61, (ii) 155-164 and (iii) 192-194, all of which are designated to be important by experimental studies in the literature. PMID:25643757

  3. Bumblebee Venom Serine Protease Increases Fungal Insecticidal Virulence by Inducing Insect Melanization

    PubMed Central

    Kim, Jae Su; Choi, Jae Young; Lee, Joo Hyun; Park, Jong Bin; Fu, Zhenli; Liu, Qin; Tao, Xueying; Jin, Byung Rae; Skinner, Margaret; Parker, Bruce L.; Je, Yeon Ho

    2013-01-01

    Insect-killing (entomopathogenic) fungi have high potential for controlling agriculturally harmful pests. However, their pathogenicity is slow, and this is one reason for their poor acceptance as a fungal insecticide. The expression of bumblebee, Bombus ignitus, venom serine protease (VSP) by Beauveria bassiana (ERL1170) induced melanization of yellow spotted longicorn beetles (Psacothea hilaris) as an over-reactive immune response, and caused substantially earlier mortality in beet armyworm (Spodopetra exigua) larvae when compared to the wild type. No fungal outgrowth or sporulation was observed on the melanized insects, thus suggesting a self-restriction of the dispersal of the genetically modified fungus in the environment. The research is the first use of a multi-functional bumblebee VSP to significantly increase the speed of fungal pathogenicity, while minimizing the dispersal of the fungal transformant in the environment. PMID:23626832

  4. A self-compartmentalizing hexamer serine protease from Pyrococcus horikoshii: substrate selection achieved through multimerization.

    PubMed

    Menyhárd, Dóra K; Kiss-Szemán, Anna; Tichy-Rács, Éva; Hornung, Balázs; Rádi, Krisztina; Szeltner, Zoltán; Domokos, Klarissza; Szamosi, Ilona; Náray-Szabó, Gábor; Polgár, László; Harmat, Veronika

    2013-06-14

    Oligopeptidases impose a size limitation on their substrates, the mechanism of which has long been under debate. Here we present the structure of a hexameric serine protease, an oligopeptidase from Pyrococcus horikoshii (PhAAP), revealing a complex, self-compartmentalized inner space, where substrates may access the monomer active sites passing through a double-gated "check-in" system, first passing through a pore on the hexamer surface and then turning to enter through an even smaller opening at the monomers' domain interface. This substrate screening strategy is unique within the family. We found that among oligopeptidases, a residue of the catalytic apparatus is positioned near an amylogenic β-edge, which needs to be protected to prevent aggregation, and we found that different oligopeptidases use different strategies to achieve such an end. We propose that self-assembly within the family results in characteristically different substrate selection mechanisms coupled to different multimerization states. PMID:23632025

  5. Purification and partial characterization of an elastolytic serine protease of Prevotella intermedia.

    PubMed Central

    Shibata, Y; Fujimura, S; Nakamura, T

    1993-01-01

    Elastolytic strains of Prevotella intermedia were isolated from pus samples of adult periodontal lesions. Elastase was found to associate with envelope, and it could be solubilized with guanidine-HCl. The enzyme was purified to homogeneity by sequential procedures including ion-exchange chromatography, gel filtration, and hydrophobic interaction chromatography. This elastase was a serine protease, and its mass was 31 kDa. It hydrolyzed elastin powder, but collagen and azodye-conjugated proteins were not degraded by this enzyme. Both synthetic substrates for human pancreatic (glutaryl-L-alanyl-L-alanyl-L-prolyl-L-leucine p-nitroanilide) and leukocyte elastase (methoxy succinyl-L-alanyl-alanyl-L-prolyl-L-valine p-nitroanilide) were hydrolyzed. Images PMID:8357246

  6. Short report: high prevalence of serine protease autotransporter cytotoxins among strains of enteroaggregative Escherichia coli.

    PubMed

    Boisen, Nadia; Ruiz-Perez, Fernando; Scheutz, Flemming; Krogfelt, Karen A; Nataro, James P

    2009-02-01

    Enteroaggregative Escherichia coli (EAEC) pathogenesis is thought to comprise intestinal colonization followed by the release of enterotoxins and cytotoxins. Here, we use a polymerase chain reaction (PCR) to determine the prevalence of 10 genes encoding serine protease autotransporter toxins (SPATEs) in a collection of clinical EAEC isolates. Eighty-six percent of EAEC strains harbored genes encoding one or more class I cytotoxic SPATE proteins (Pet, Sat, EspP, or SigA). Two Class II, non-cytotoxic, SPATE genes were found among EAEC strains: pic and sepA, each originally described in Shigella flexneri 2a. Using a multiplex PCR for five SPATE genes (pet, sat, sigA, pic, and sepA), we found that most of the Shigella isolates also harbored more than one SPATE, whereas members of most other E. coli pathotypes rarely harbored a cytotoxic SPATE gene. SPATEs may be relevant to the pathogenesis of both EAEC and Shigella spp. PMID:19190229

  7. Cordysobin, a novel alkaline serine protease with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Cordyceps sobolifera.

    PubMed

    Wang, Shou-Xian; Liu, Yu; Zhang, Guo-Qing; Zhao, Shuang; Xu, Feng; Geng, Xiao-Li; Wang, He-Xiang

    2012-01-01

    A novel serine protease, designated as cordysobin, was purified from dried fruiting bodies of the mushroom Cordyceps sobolifera. The isolation procedure utilized ion exchange chromatography on DEAE-cellulose and SP-Sepharose followed by gel filtration on Superdex 75. The protease did not adsorb on DEAE-cellulose but bound to SP-Sepharose. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the protease resolved as a single band with an apparent molecular mass of 31 kDa. Its optimal pH was 10.0, and the optimal temperature was 65°C. The protease displayed a K(m) value of 0.41 μM and 13.44 μM·min⁻¹ using Suc-Leu-Leu-Val-Tyr-MCA as substrate at pH 10.0 and 37°C. Protease activity was enhanced by the Fe²⁺ ion at low concentration range of 1.25-10 mM and was strongly inhibited by Hg²⁺ up to 1.25 mM. The protease was strongly inhibited by chymostatin and phenylmethylsulfonyl fluoride (PMSF), suggesting that it is a serine protease. It manifested significant inhibitory activity toward HIV-1 reverse transcriptase (RT) with an IC₅₀ value of 8.2×10⁻³ μM, which is the highest anti-HIV-1 RT activity of reported mushroom proteins. PMID:22014786

  8. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway.

    PubMed

    Reynolds, Simone L; Pike, Robert N; Mika, Angela; Blom, Anna M; Hofmann, Andreas; Wijeyewickrema, Lakshmi C; Kemp, Dave; Fischer, Katja

    2014-05-01

    Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss) thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL) and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs) and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics. PMID:24854034

  9. Targeting the membrane-anchored serine protease testisin with a novel engineered anthrax toxin prodrug to kill tumor cells and reduce tumor burden

    PubMed Central

    Martin, Erik W.; Buzza, Marguerite S.; Driesbaugh, Kathryn H.; Liu, Shihui; Fortenberry, Yolanda M.; Leppla, Stephen H.; Antalis, Toni M.

    2015-01-01

    The membrane-anchored serine proteases are a unique group of trypsin-like serine proteases that are tethered to the cell surface via transmembrane domains or glycosyl-phosphatidylinositol-anchors. Overexpressed in tumors, with pro-tumorigenic properties, they are attractive targets for protease-activated prodrug-like anti-tumor therapies. Here, we sought to engineer anthrax toxin protective antigen (PrAg), which is proteolytically activated on the cell surface by the proprotein convertase furin to instead be activated by tumor cell-expressed membrane-anchored serine proteases to function as a tumoricidal agent. PrAg's native activation sequence was mutated to a sequence derived from protein C inhibitor (PCI) that can be cleaved by membrane-anchored serine proteases, to generate the mutant protein PrAg-PCIS. PrAg-PCIS was resistant to furin cleavage in vitro, yet cytotoxic to multiple human tumor cell lines when combined with FP59, a chimeric anthrax toxin lethal factor-Pseudomonas exotoxin fusion protein. Molecular analyses showed that PrAg-PCIS can be cleaved in vitro by several serine proteases including the membrane-anchored serine protease testisin, and mediates increased killing of testisin-expressing tumor cells. Treatment with PrAg-PCIS also potently attenuated the growth of testisin-expressing xenograft tumors in mice. The data indicates PrAg can be engineered to target tumor cell-expressed membrane-anchored serine proteases to function as a potent tumoricidal agent. PMID:26392335

  10. Development of Trypsin-Like Serine Protease Inhibitors as Therapeutic Agents: Opportunities, Challenges, and their Unique Structure-Based Rationales.

    PubMed

    Liang, Guyan; Bowen, J Phillip

    2016-01-01

    There has been a revolution in the development of effective, small-molecule anticoagulants and antiplatelet agents. Numerous trypsin-like serine proteases have been under active pursuit as therapeutic targets. Important examples include thrombin, factor VIIa, factor Xa, and β-tryptase with indications ranging from thrombosis and inflammation to asthma and chronic obstructive pulmonary disease (COPD). Trypsin-like serine proteases exhibit a highly similar tertiary folding pattern, especially for the region near the substrate binding pocket that includes the conserved catalytic triad consisting of histidine 57, aspartic acid 102, and serine 195. A rich collection of X-ray structures for many trypsin-like serine proteases is available, which greatly facilitated the optimization of small organic inhibitors as therapeutic agents. The present review surveyed those inhibitors disclosed in peer-reviewed scientific journals and patent publications with a special focus on structural features and protein-inhibitor interactions that implicated the inhibitor optimization process. The role played by the residue 190 of trypsin-like serine proteases is critical. While many inhibitors without a basic group have progressed into the clinic for ones with alanine 190, the task for those with serine 190 remains extremely challenging, if not impossible. In addition to warfarin, heparin, and low molecular weight heparins (LMWHs), treatment options have expanded with the development and approval of the new oral anticoagulants (NOACs). The NOACs are superior to vitamin K antagonists in terms of rapid onset, pharmacokinetics, drug/food interactions, and regular coagulation monitoring; but one serious drawback is the lack of an effective antidote at this time. Apixaban (Eliquis), rivaroxaban (Xarelto), and edoxaban (Savaysa) are the new Xa inhibitors that have been recently approved by the U.S. FDA and are in current clinical practice. These drugs bind to the active site of factor Xa (f

  11. Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors

    PubMed Central

    Obbard, Darren J; Welch, John J; Little, Tom J

    2009-01-01

    Background Mosquitoes of the Anopheles gambiae species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect Plasmodium development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution. Methods Three serine protease inhibitors have previously been identified as candidate immune system genes mediating mosquito-Plasmodium interaction, and serine protease inhibitors have been identified as hot-spots of adaptive evolution in other taxa. Population-genetic tests for selection, including a recent multi-gene extension of the McDonald-Kreitman test, were applied to 16 serine protease inhibitors and 16 other genes sampled from the An. gambiae species complex in both East and West Africa. Results Serine protease inhibitors were found to show a marginally significant trend towards higher levels of amino acid diversity than other genes, and display extensive genetic structuring associated with the 2La chromosomal inversion. However, although serpins are candidate targets for strong parasite-mediated selection, no evidence was found for rapid adaptive evolution in these genes. Conclusion It is well known that phylogenetic and population history in the An. gambiae complex can present special problems for the application of standard population-genetic tests for selection, and this may explain the failure of this study to detect selection acting on serine protease inhibitors. The pitfalls of uncritically applying these tests in this species complex are highlighted, and the future prospects for detecting selection acting on the An. gambiae genome are discussed. PMID:19497100

  12. Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it's role in pathogenicity

    USGS Publications Warehouse

    Redman, R.S.; Rodriguez, R.J.

    2002-01-01

    Extracellular enzymes play an important role in the pathogenicity and virulence of phytopathogenic fungi. Several isolates of Colletotrichum coccodes, causal agent of anthracnose on tomato, were screened to determine the relationship between protease activity and virulence. A direct relationship was observed between extracellular protease activity and the induction of disease symptoms of fruit and mortality in plants. Isolate Cc155 exhibited the highest protease activity after five days of growth in protease induction medium and produced an extracellular serine protease (sp78) that was 78 kDa, auto-degradative, glucose repressible, and non-glycosylated. To determine the role of sp78 in pathogenicity, a uv-induced extracellular protease deficient mutant (np155) was generated from the wildtype isolate Cc155. Np155 maintained growth rates comparable to Cc155 and produced wildtype levels of extracellular cellulase but did not produce extracellular protease. Unlike Cc155, np155 caused no disease symptoms on tomato fruit and 0% mortality on tomato seedlings. These results suggest that extracellular protease activity is required for pathogenicity and virulence of C. coccodes, and that the elimination of protease activity transforms a virulent pathogen to a non-pathogenic endophyte.

  13. Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it's role in pathogenicity

    USGS Publications Warehouse

    Redman, Regina S.; Rodriguez, Rusty J.

    2002-01-01

    Extracellular enzymes play an important role in the pathogenicity and virulence of phytopathogenic fungi. Several isolates of Colletotrichum coccodes causal agent of anthracnose on tomato, were screened to determine the relationship between protease activity and virulence. A direct relationship was observed between extracellular protease activity and the induction of disease symptoms of fruit and mortality in plants. Isolate Cc155 exhibited the highest protease activity after five days of growth in protease induction medium and produced an extracellular serine protease (sp78) that was 78 kDa, auto-degradative, glucose repressible, and non-glycosylated. To determine the role of sp78 in pathogenicity, a UV-induced extracellular protease deficient mutant (np155) was generated from the wildtype isolate Cc155. Np155 maintained growth rates comparable to Cc155 and produced wildtype levels of extracellular cellulase but did not produce extracellular protease. Unlike Cc155, np155 caused no disease symptoms on tomato fruit and 0% mortality on tomato seedlings. These results suggest that extracellular protease activity is required for pathogenicity and virulence of C. coccodes and that the elimination of protease activity transforms a virulent pathogen to a non-pathogenic endophyte.

  14. Serine and cysteine protease-like genes in the genome of a gall midge and their interactions with host plant genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For plant-feeding insects, digestive proteases are targets for engineering protease inhibitors for pest control. In this study, we identified 105 putative serine- and cysteine-protease genes from Hessian fly genome. Among the genes, 31 encode putative trypsins, 18 encode putative chymotrypsins, se...

  15. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin

    PubMed Central

    Brunati, Martina; Perucca, Simone; Han, Ling; Cattaneo, Angela; Consolato, Francesco; Andolfo, Annapaola; Schaeffer, Céline; Olinger, Eric; Peng, Jianhao; Santambrogio, Sara; Perrier, Romain; Li, Shuo; Bokhove, Marcel; Bachi, Angela; Hummler, Edith; Devuyst, Olivier; Wu, Qingyu; Jovine, Luca; Rampoldi, Luca

    2015-01-01

    Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family, including several extracellular proteins, as egg coat proteins and inner ear tectorins. DOI: http://dx.doi.org/10.7554/eLife.08887.001 PMID:26673890

  16. The Structural Basis of [beta]-Peptide-Specific Cleavage by the Serine Protease Cyanophycinase

    SciTech Connect

    Law, Adrienne M.; Lai, Sandy W.S.; Tavares, John; Kimber, Matthew S.

    2010-10-01

    Cyanophycin, or poly-L-Asp-multi-L-Arg, is a non-ribosomally synthesized peptidic polymer that is used for nitrogen storage by cyanobacteria and other select eubacteria. Upon synthesis, it self-associates to form insoluble granules, the degradation of which is uniquely catalyzed by a carboxy-terminal-specific protease, cyanophycinase. We have determined the structure of cyanophycinase from the freshwater cyanobacterium Synechocystis sp. PCC6803 at 1.5-{angstrom} resolution, showing that the structure is dimeric, with individual protomers resembling aspartyl dipeptidase. Kinetic characterization of the enzyme demonstrates that the enzyme displays Michaelis-Menten kinetics with a k{sub cat} of 16.5 s{sup -1} and a k{sub cat}/K{sub M} of 7.5 x 10{sup -6} M{sup -1} s{sup -1}. Site-directed mutagenesis experiments confirm that cyanophycinase is a serine protease and that Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183, which form a conserved pocket adjacent to the catalytic Ser132, are functionally critical residues. Modeling indicates that cyanophycinase binds the {beta}-Asp-Arg dipeptide residue immediately N-terminal to the scissile bond in an extended conformation in this pocket, primarily recognizing this penultimate {beta}-Asp-Arg residue of the polymeric chain. Because binding and catalysis depend on substrate features unique to {beta}-linked aspartyl peptides, cyanophycinase is able to act within the cytosol without non-specific cleavage events disrupting essential cellular processes.

  17. Staphylococcus aureus protects its immune-evasion proteins against degradation by neutrophil serine proteases.

    PubMed

    Stapels, D A C; Kuipers, A; von Köckritz-Blickwede, M; Ruyken, M; Tromp, A T; Horsburgh, M J; de Haas, C J C; van Strijp, J A G; van Kessel, K P M; Rooijakkers, S H M

    2016-04-01

    Neutrophils store large quantities of neutrophil serine proteases (NSPs) that contribute, via multiple mechanisms, to antibacterial immune defences. Even though neutrophils are indispensable in fighting Staphylococcus aureus infections, the importance of NSPs in anti-staphylococcal defence is yet unknown. However, the fact that S. aureus produces three highly specific inhibitors for NSPs [the extracellular adherence proteins (EAPs) Eap, EapH1 and EapH2], suggests that these proteases are important for host defences against this bacterium. In this study we demonstrate that NSPs can inactivate secreted virulence factors of S. aureus and that EAP proteins function to prevent this degradation. Specifically, we find that a large group of S. aureus immune-evasion proteins is vulnerable to proteolytic inactivation by NSPs. In most cases, NSP cleavage leads to functional inactivation of virulence proteins. Interestingly, proteins with similar immune-escape functions appeared to have differential cleavage sensitivity towards NSPs. Using targeted mutagenesis and complementation analyses in S. aureus, we demonstrate that all EAP proteins can protect other virulence factors from NSP degradation in complex bacterial supernatants. These findings show that NSPs inactivate S. aureus virulence factors. Moreover, the protection by EAP proteins can explain why this antibacterial function of NSPs was masked in previous studies. Furthermore, our results indicate that therapeutic inactivation of EAP proteins can help to restore the natural host immune defences against S. aureus. PMID:26418545

  18. Host Generated siRNAs Attenuate Expression of Serine Protease Gene in Myzus persicae

    PubMed Central

    Bhatia, Varnika; Bhattacharya, Ramcharan; Uniyal, Prem L.; Singh, Rajendra; Niranjan, Rampal S.

    2012-01-01

    Background Sap sucking hemipteran aphids damage diverse crop species. Although delivery of ds-RNA or siRNA through microinjection/feeding has been demonstrated, the efficacy of host-mediated delivery of aphid-specific dsRNA in developing aphid resistance has been far from being elucidated. Methodology/Principal Findings Transgenic Arabidopsis expressing ds-RNA of Myzus persicae serine protease (MySP) was developed that triggered the generation of corresponding siRNAs amenable for delivery to the feeding aphids. M. persicae when fed on the transgenic plants for different time intervals under controlled growth conditions resulted in a significant attenuation of the expression of MySP and a commensurate decline in gut protease activity. Although the survivability of these aphids was not affected, there was a noticeable decline in their fecundity resulting in a significant reduction in parthenogenetic population. Conclusions/Significance The study highlighted the feasibility of developing host based RNAi-mediated resistance against hemipteran pest aphids. PMID:23071558

  19. A serine protease zymogen in insect plasma. Purification and activation by microbial cell wall components.

    PubMed

    Katsumi, Y; Kihara, H; Ochiai, M; Ashida, M

    1995-03-15

    A protease zymogen present in the plasma fraction of the hemolymph of silkworm, Bombyx mori, was purified to homogeneity as judged by SDS/PAGE and IEF/PAGE. An activating system for the zymogen was also isolated from the plasma fraction and was shown to be triggered by zymosan (yeast cell wall polysaccharide containing beta-1,3-glucan) or peptidoglycan. Using this system, the purified zymogen was activated and the active enzyme was purified to homogeneity. The physiological function of the zymogen or its active form is not yet known, but the active form was shown to have narrower substrate specificity than trypsin. Among 33 peptide derivatives examined, Boc-Gln-Arg-Arg-NH-Mec and Boc-Val-Pro-Arg-NH-Mec (Boc = tert-butoxycarbonyl, NH-Mec = 4-methylcoumaryl-7-amide) were the best and the second best substrates, respectively. The purified zymogen was determined to be a 39-kDa protein consisting of a single polypeptide. The active form of the zymogen was labeled with [3H]diisopropylfluorophosphate and was completely inactivated by (p-amidinophenyl)methanesulfonyl fluoride. The molecular mass of the [3H]-labeled enzyme was determined to be 38 kDa in SDS/PAGE under reducing conditions. These results indicate that the 39-kDa protein purified in the present study is a zymogen of a serine-type protease and that the activation of the zymogen occurs by limited proteolysis. PMID:7737188

  20. The Malarial Serine Protease SUB1 Plays an Essential Role in Parasite Liver Stage Development

    PubMed Central

    Suarez, Catherine; Volkmann, Katrin; Gomes, Ana Rita; Billker, Oliver; Blackman, Michael J.

    2013-01-01

    Transmission of the malaria parasite to its vertebrate host involves an obligatory exoerythrocytic stage in which extensive asexual replication of the parasite takes place in infected hepatocytes. The resulting liver schizont undergoes segmentation to produce thousands of daughter merozoites. These are released to initiate the blood stage life cycle, which causes all the pathology associated with the disease. Whilst elements of liver stage merozoite biology are similar to those in the much better-studied blood stage merozoites, little is known of the molecular players involved in liver stage merozoite production. To facilitate the study of liver stage biology we developed a strategy for the rapid production of complex conditional alleles by recombinase mediated engineering in Escherichia coli, which we used in combination with existing Plasmodium berghei deleter lines expressing Flp recombinase to study subtilisin-like protease 1 (SUB1), a conserved Plasmodium serine protease previously implicated in blood stage merozoite maturation and egress. We demonstrate that SUB1 is not required for the early stages of intrahepatic growth, but is essential for complete development of the liver stage schizont and for production of hepatic merozoites. Our results indicate that inhibitors of SUB1 could be used in prophylactic approaches to control or block the clinically silent pre-erythrocytic stage of the malaria parasite life cycle. PMID:24348254

  1. Extracellular production of a Serratia marcescens serine protease in Escherichia coli.

    PubMed

    Ohnishi, Y; Horinouchi, S

    1996-10-01

    The Serratia marcescens serine protease (SSP) is one of the extracellular enzymes secreted from this Gram-negative bacterium. When the ssp gene, which encodes a SSP precursor (preproSSP) composed of a typical NH2-terminal signal peptide, a mature enzyme domain, and a large COOH-terminal pro-region, is expressed in Escherichia coli, the mature protease is excreted through the outer membrane into the medium. The COOH-terminal pro-region, which is integrated into the outer membrane, provides the essential function for the export of the mature protein across the outer membrane. This is a very simple pathway, in contrast to the general secretory pathway exemplified by the secretion of a pullulanase from Klebsiella oxytoca, in which many separately encoded accessory proteins are required for the transport through the outer membrane. Moreover, the NH2-terminal region of 71 amino acid residues of the COOH-terminal pro-sequence plays an essential role, as an "intramolecular chaperone," in the folding of the mature enzyme in the medium. In addition to ssp, the S. marcescens strain contains two ssp homologues encoding proteins similar to SSP in amino acid sequence and size, but with no protease activity. Characterization of the homologue proteins and chimeric proteins between the homologues and SSP, all of which are produced in E. coli, has shown that they are membrane proteins that are localized in the outer membrane in the same manner as for SSP. By use of the COOH-terminal domain of SSP, pseudoazurin was exported to the cell surface of E. coli, which proves the usefulness of the SSP secretory system in the export of foreign proteins across the outer membrane. PMID:8987650

  2. Characterization of a juvenile hormone-regulated chymotrypsin-like serine protease gene in Aedes aegypti mosquito

    PubMed Central

    Bian, Guowu; Raikhel, Alexander S; Zhu, Jinsong

    2008-01-01

    After female mosquitoes ingest blood from vertebrate hosts, exopeptidases and endopeptidases are required for digesting blood proteins in the midgut into amino acids, which female mosquitoes use to build yolk proteins. These proteases are not always present in the midgut, and their diverse expression patterns suggest that production of these enzymes is highly regulated in order to meet specific physiological demands at various stages. Here we report identification of a serine-type protease, JHA15, in the yellow fever mosquito Aedes aegypti. This protein shares high sequence homology with chymotrypsins, and indeed exhibits specific chymotrypsin enzymatic activity. The JHA15 gene is expressed primarily in the midgut of adult female mosquitoes. Our results indicate that its transcription is activated by juvenile hormone in the newly emerged female adults. Although its mRNA profile is similar to that of the early trypsin gene, we found that JHA15 proteins were readily detected in the midgut epithelium cells of both non-blood-fed and blood-fed mosquitoes. Analysis of polysomal RNA further substantiated that synthesis of JHA15 occurs before and shortly after blood feeding. Knocking down expression of JHA15 resulted in no evident phenotypic changes, implying that functional redundancy exists among those proteolytic enzymes. PMID:18207080

  3. Collagenolytic serine protease PC and trypsin PC from king crab Paralithodes camtschaticus: cDNA cloning and primary structure of the enzymes

    PubMed Central

    Rudenskaya, Galina N; Kislitsin, Yuri A; Rebrikov, Denis V

    2004-01-01

    Background In this paper, we describe cDNA cloning of a new anionic trypsin and a collagenolytic serine protease from king crab Paralithodes camtschaticus and the elucidation of their primary structures. Constructing the phylogenetic tree of these enzymes was undertaken in order to prove the evolutionary relationship between them. Results The mature trypsin PC and collagenolytic protease PC contain 237 (Mcalc 24.8 kDa) and 226 amino acid residues (Mcalc 23.5 kDa), respectively. Alignments of their amino acid sequences revealed a high degree of the trypsin PC identity to the trypsin from Penaeus vannamei (approximately 70%) and of the collagenolytic protease PC identity to the collagenase from fiddler crab Uca pugilator (76%). The phylogenetic tree of these enzymes was constructed. Conclusions Primary structures of the two mature enzymes from P. camtschaticus were obtained and compared with those of other proteolytic proteins, including some enzymes from brachyurans. A phylogenetic analysis was also carried out. These comparisons revealed that brachyurins are closely related to their vertebrate and bacterial congeners, occupy an intermediate position between them, and their study significantly contributes to the understanding of the evolution and function of serine proteases. PMID:14731305

  4. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple.

    PubMed

    Banani, Houda; Spadaro, Davide; Zhang, Dianpeng; Matic, Slavica; Garibaldi, Angelo; Gullino, Maria Lodovica

    2014-07-16

    The yeast-like fungus Aureobasidium pullulans PL5 is a microbial antagonist against postharvest pathogens of fruits. The strain is able to produce hydrolases, including glucanases, chitinases and proteases. The alkaline serine protease gene ALP5 from A. pullulans was cloned, inserted into the vector pPIC9 to construct pPIC9/ALP5, and then expressed in Pichia pastoris strain KM71. ALP5 had a molecular mass of 42.9kDa after 5days growth with 1% methanol induction at 28°C. The recombinant protease expressed in P. pastoris showed its highest activity under alkaline conditions (at pH10) and a temperature of 50°C. The antifungal activity of the recombinant protease was investigated against Penicillium expansum, Botrytis cinerea, Monilinia fructicola and Alternaria alternata in vitro and on apple. The recombinant protease reduced significantly the spore germination and the germ tube length of the tested pathogens in PDB medium. The highest level of protease efficacy was observed against M. fructicola and B. cinerea, whereas a lower efficacy was observed against P. expansum and A. alternata indicating a possible effect of the pathogen cell wall composition on the proteolytic activity of the recombinant protease. The presence of protease was able to cause the swelling of the hyphae of B. cinerea, under an optical microscope. The recombinant protease expressed in P. pastoris was more active against the pathogens in vitro than the same enzyme expressed in E. coli in previous studies. The efficacy of ALP5 was also evaluated against the pathogens in vivo on cv Golden Delicious apples. The protease was more efficient in controlling M. fructicola, B. cinerea and P. expansum than A. alternata. However, the extent of the activity was dependent on the enzyme concentration and the length of fruit storage. This study demonstrated the capacity of the alkaline serine protease to keep its enzymatic activity for some days in the unfavorable environment of the fruit wounds. The alkaline

  5. Improving production of extracellular proteases by random mutagenesis and biochemical characterization of a serine protease in Bacillus subtilis S1-4.

    PubMed

    Wang, X C; Zhao, H Y; Liu, G; Cheng, X J; Feng, H

    2016-01-01

    The feather is a valuable by-product with a huge annual yield produced by the poultry industry. Degradation of feathers by microorganisms is a prerequisite to utilize this insoluble protein resource. To improve the degrading efficiency of feathers, mutagenesis of the bacterium Bacillus subtilis S1-4 was performed. By combining ultraviolet irradiation and N-methyl-N'-nitro-N-nitrosoguanidine treatment for mutagenesis, a high protease-producing mutant (UMU4) of B. subtilis S1-4 was selected, which exhibited 2.5-fold higher extracellular caseinolytic activity than did the wild-type strain. UMU4 degraded chicken feathers more efficiently, particularly for the release of soluble proteins from the feathers, compared to the wild-type strain. Furthermore, an extracellular protease with a molecular weight of 45 kDa, as determined by SDS-PAGE, was purified from UMU4. Biochemical characterization indicated that the caseinolytic activity of the protease was largely inhibited by phenylmethanesulfonyl fluoride, suggesting that the purified enzyme is a serine protease. This protease was highly active over a wide range of pHs (6.0 to 12.0) and temperatures (50° to 75°C) with an optimal pH and temperature of 8.0 and 65°C, respectively. The purified enzyme exhibited good thermostability with a 72.2 min half-life of thermal denaturation at 60°C. In addition, this protease was not sensitive to heavy metal ions, surfactants, or oxidative reagents. In conclusion, strain improvement for protease production can serve as an alternative strategy to promote feather degradation. The UMU4 mutant of B. subtilis and its serine protease could be potentially used in various industries. PMID:27323184

  6. Amblyomma americanum tick saliva serine protease inhibitor 6 is a cross-class inhibitor of serine proteases and papain-like cysteine proteases that delays plasma clotting and inhibits platelet aggregation

    PubMed Central

    Mulenga, A.; Kim, T.; Ibelli, A. M. G.

    2013-01-01

    We previously demonstrated that Amblyomma americanum tick serine protease inhibitor 6 (AamS6) was secreted into the host during tick feeding and that both its mRNA and protein were ubiquitously and highly expressed during the first 3 days of tick feeding. This study demonstrates that AamS6 is a cross-class inhibitor of both serine- and papain-like cysteine proteases that has apparent antihaemostatic functions. Consistent with the typical inhibitory serpin characteristics, enzyme kinetics analyses revealed that Pichia pastoris-expressed recombinant (r) AamS6 reduced initial velocities of substrate hydrolysis (V0) and/or maximum enzyme velocity (Vmax) of trypsin, chymotrypsin, elastase, chymase, and papain in a dose–response manner. We speculate that rAamS6 inhibited plasmin in a temporary fashion in that while rAamS6 reduced V0 of plasmin by up to ~53%, it had no effect on Vmax. Our data also suggest that rAmS6 has minimal or no apparent effect on V0 or Vmax of thrombin, factor Xa, and kallikrein. We speculate that AamS6 is apparently involved in facilitating blood meal feeding in that various amounts of rAamS6 reduced platelet aggregation by up to ~47% and delayed plasma clotting time in the recalcification time assay by up to ~210 s. AamS6 is most likely not involved with the tick’s evasion of the host’s complement defense mechanism, in that rAamS6 did not interfere with the complement activation pathway. Findings in this study are discussed in the context of expanding our understanding of tick proteins that control bloodmeal feeding and hence tick-borne disease transmission by ticks. PMID:23521000

  7. Enzyme:substrate hydrogen bond shortening during the acylation phase of serine protease catalysis.

    PubMed

    Fodor, Krisztián; Harmat, Veronika; Neutze, Richard; Szilágyi, László; Gráf, László; Katona, Gergely

    2006-02-21

    Atomic resolution (serine protease intermediate structures revealed that the strength of the hydrogen bonds between the enzyme and the substrate changed during catalysis. The well-conserved hydrogen bonds of antiparallel beta-sheet between the enzyme and the substrate become significantly shorter in the transition from a Michaelis complex analogue (Pontastacus leptodactylus (narrow-fingered crayfish) trypsin (CFT) in complex with Schistocerca gregaria (desert locust) trypsin inhibitor (SGTI) at 1.2 A resolution) to an acyl-enzyme intermediate (N-acetyl-Asn-Pro-Ile acyl-enzyme intermediate of porcine pancreatic elastase at 0.95 A resolution) presumably synchronously with the nucleophilic attack on the carbonyl carbon atom of the scissile peptide bond. This is interpreted as an active mechanism that utilizes the energy released from the stronger hydrogen bonds to overcome the energetic barrier of the nucleophilic attack by the hydroxyl group of the catalytic serine. In the CFT:SGTI complex this hydrogen bond shortening may be hindered by the 27I-32I disulfide bridge and Asn-15I of SGTI. The position of the catalytic histidine changes slightly as it adapts to the different nucleophilic attacker during the transition from the Michaelis complex to the acyl-enzyme state, and simultaneously its interaction with Asp-102 and Ser-214 becomes stronger. The oxyanion hole hydrogen bonds provide additional stabilization for acyl-ester bond in the acyl-enzyme than for scissile peptide bond of the Michaelis complex. Significant deviation from planarity is not observed in the reactive bonds of either the Michaelis complex or the acyl-enzyme. In the Michaelis complex the electron distribution of the carbonyl bond is distorted toward the oxygen atom compared to other peptide bonds in the structure, which indicates the polarization effect of the oxyanion hole. PMID:16475800

  8. Association of frailty with the serine protease HtrA1 in older adults.

    PubMed

    Lorenzi, Maria; Lorenzi, Teresa; Marzetti, Emanuele; Landi, Francesco; Vetrano, Davide L; Settanni, Silvana; Antocicco, Manuela; Bonassi, Stefano; Valdiglesias, Vanessa; Bernabei, Roberto; Onder, Graziano

    2016-08-01

    Frailty is a geriatric syndrome characterized by multi system dysregulation. It has been suggested that chronic inflammation may be involved in the pathogenesis of frailty. No study so far has identified accurate, specific and sensitive molecular biomarkers for frailty. High-temperature requirement serine protease A1 (HtrA1) is a secreted multidomain serine protease implicated in the inhibition of signaling of active transforming growth factor-β (TGF-β)1, a cytokine which has an important anti-inflammation role. The aim of the present study was to investigate the association of circulating levels of HtrA1 with frailty in a sample of older adults. The study was performed in 120 older adults aged >65years and admitted to a geriatric outpatient clinic. The frailty status of participants was assessed by both the Fried's criteria (physical frailty, PF) and a modified Rockwood's frailty index (FI). Plasma HtrA1 concentration was measured using commercial ELISA kit. Frailty was identified in 61/120 participants (50.8%) using PF, and in 60/118 subjects (50.8%) using FI. Plasma levels of HtrA1 were significantly higher in individuals classified as frail according to PF (75.9ng/mL, 95% CI 67.4-85.6) as compared with non-frail participants (48.4ng/mL, 95% CI 42.5-54.6, p<0.001). A significant association was also observed between frailty, assessed by FI, and HtrA1 levels (72.2ng/mL, 95% CI 63.4-82.3, vs. 50.4ng/mL, 95% CI 44.3-58.0, p<0.001). These associations were confirmed after adjusting for potential confounders. This study demonstrates for the first time the association of plasma levels of HtrA1 with frailty status. Future investigations are needed to validate the potential value of HtrA1 as possible biomarker for frailty. PMID:27058767

  9. Serine proteases SP1 and SP13 mediate the melanization response of Asian corn borer, Ostrinia furnacalis, against entomopathogenic fungus Beauveria bassiana.

    PubMed

    Chu, Yuan; Liu, Yang; Shen, Dongxu; Hong, Fang; Wang, Guirong; An, Chunju

    2015-06-01

    Exposure to entomopathogenic fungi is one approach for insect pest control. Little is known about the immune interactions between fungus and its insect host. Melanization is a prominent immune response in insects in defending against pathogens such as bacteria and fungi. Clip domain serine proteases in insect plasma have been implicated in the activation of prophenoloxidase, a key enzyme in the melanization. The relationship between host melanization and the infection by a fungus needs to be established. We report here that the injection of entomopathogenic fungus Beauveria bassiana induced both melanin synthesis and phenoloxidase activity in its host insect, the Asian corn borer, Ostrinia furnacalis (Guenée). qRT-PCR analysis showed several distinct patterns of expression of 13 clip-domain serine proteases in response to the challenge of fungi, with seven increased, two decreased, and four unchanged. Of special interest among these clip-domain serine protease genes are SP1 and SP13, the orthologs of Manduca sexta HP6 and PAP1 which are involved in the prophenoloxidase activation pathway. Recombinant O. furnacalis SP1 was found to activate proSP13 and induce the phenoloxidase activity in corn borer plasma. Additionally, SP13 was determined to directly cleave prophenoloxidase and therefore act as the prophenoloxidase activating protease. Our work thus reveals a biochemical mechanism in the melanization in corn borer associated with the challenge by B. bassiana injection. These insights could provide valuable information for better understanding the immune responses of Asian corn borer against B. bassiana. PMID:25900291

  10. Structural Insight into Serine Protease Rv3671c that Protects M. tuberculosis from Oxidative and Acidic Stress

    SciTech Connect

    Biswas, Tapan; Small, Jennifer; Vandal, Omar; Odaira, Toshiko; Deng, Haiteng; Ehrt, Sabine; Tsodikov, Oleg V.

    2010-11-15

    Rv3671c, a putative serine protease, is crucial for persistence of Mycobacterium tuberculosis in the hostile environment of the phagosome. We show that Rv3671c is required for M. tuberculosis resistance to oxidative stress in addition to its role in protection from acidification. Structural and biochemical analyses demonstrate that the periplasmic domain of Rv3671c is a functional serine protease of the chymotrypsin family and, remarkably, that its activity increases on oxidation. High-resolution crystal structures of this protease in an active strained state and in an inactive relaxed state reveal that a solvent-exposed disulfide bond controls the protease activity by constraining two distant regions of Rv3671c and stabilizing it in the catalytically active conformation. In vitro biochemical studies confirm that activation of the protease in an oxidative environment is dependent on this reversible disulfide bond. These results suggest that the disulfide bond modulates activity of Rv3671c depending on the oxidative environment in vivo.

  11. Structural insight into serine protease Rv3671c that protects M. tuberculosis from oxidative and acidic stress

    PubMed Central

    Biswas, Tapan; Small, Jennifer; Vandal, Omar; Odaira, Toshiko; Deng, Haiteng; Ehrt, Sabine; Tsodikov, Oleg V.

    2010-01-01

    Summary Rv3671c, a putative serine protease, is crucial for persistence of M. tuberculosis in the hostile environment of the phagosome. We show that Rv3671c is required for M. tuberculosis resistance to oxidative stress in addition to its role in protection from acidification. Structural and biochemical analyses demonstrate that the periplasmic domain of Rv3671c is a functional serine protease of the chymotrypsin family and, remarkably, that its activity increases upon oxidation. High-resolution crystal structures of this protease in an active strained state and in an inactive relaxed state reveal that a solvent-exposed disulfide bond controls the protease activity by constraining two distant regions of Rv3671c and stabilizing it in the catalytically active conformation. In vitro biochemical studies confirm that activation of the protease in an oxidative environment is dependent on this reversible disulfide bond. These results suggest that the disulfide bond modulates activity of Rv3671c depending on the oxidative environment in vivo. PMID:20947023

  12. A novel locust (Schistocerca gregaria) serine protease inhibitor with a high affinity for neutrophil elastase

    PubMed Central

    Brillard-Bourdet, Michèle; Hamdaoui, Ahmed; Hajjar, Eric; Boudier, Christian; Reuter, Nathalie; Ehret-Sabatier, Laurence; Bieth, Joseph G.; Gauthier, Francis

    2006-01-01

    We have purified to homogeneity two forms of a new serine protease inhibitor specific for elastase/chymotrypsin from the ovary gland of the desert locust Schistocerca gregaria. This protein, greglin, has 83 amino acid residues and bears putative phosphorylation sites. Amino acid sequence alignments revealed no homology with pacifastin insect inhibitors and only a distant relationship with Kazal-type inhibitors. This was confirmed by computer-based structural studies. The most closely related homologue is a putative gene product from Ciona intestinalis with which it shares 38% sequence homology. Greglin is a fast-acting and tight binding inhibitor of human neutrophil elastase (kass=1.2×107 M−1·s−1, Ki=3.6 nM) and subtilisin. It also binds neutrophil cathepsin G, pancreatic elastase and chymotrypsin with a lower affinity (26 nM≤Ki≤153 nM), but does not inhibit neutrophil protease 3 or pancreatic trypsin. The capacity of greglin to inhibit neutrophil elastase was not significantly affected by exposure to acetonitrile, high temperature (90 °C), low or high pH (2.5–11.0), N-chlorosuccinimide-mediated oxidation or the proteolytic enzymes trypsin, papain and pseudolysin from Pseudomonas aeruginosa. Greglin efficiently inhibits the neutrophil elastase activity of sputum supernatants from cystic fibrosis patients. Its biological function in the locust ovary gland is currently unknown, but its physicochemical properties suggest that it can be used as a template to design a new generation of highly resistant elastase inhibitors for treating inflammatory diseases. PMID:16839309

  13. Patterns of neutrophil serine protease-dependent cleavage of surfactant protein D in inflammatory lung disease.

    PubMed

    Cooley, Jessica; McDonald, Barbara; Accurso, Frank J; Crouch, Erika C; Remold-O'Donnell, Eileen

    2008-04-01

    The manuscript presents definitive studies of surfactant protein D (SP-D) in the context of inflammatory lung fluids. The extent of SP-D depletion in bronchoalveolar lavage fluid (BALF) of children affected with cystic fibrosis (CF) is demonstrated to correlate best with the presence of the active neutrophil serine protease (NSP) elastase. Novel C-terminal SP-D fragments of 27 kDa and 11 kDa were identified in patient lavage fluid in addition to the previously described N-terminal, 35-kDa fragment by the use of isoelectrofocusing, modified blotting conditions, and region-specific antibodies. SP-D cleavage sites were identified. In vitro treatment of recombinant human SP-D dodecamers with NSPs replicated the fragmentation, but unexpectedly, the pattern of SP-D fragments generated by NSPs was dependent on calcium concentration. Whereas the 35- and 11-kDa fragments were generated when incubations were performed in low calcium (200 microM CaCl(2)), incubations in physiological calcium (2 mM) with higher amounts of elastase or proteinase-3 generated C-terminal 27, 21, and 14 kDa fragments, representing cleavage within the collagen and neck regions. Studies in which recombinant SP-D cleavage by individual NSPs was quantitatively evaluated under low and high calcium conditions showed that the most potent NSP for cleaving SP-D is elastase, followed by proteinase-3, followed by cathepsin G. These relative potency findings were considered in the context of other studies that showed that active NSPs in CF BALF are in the order: elastase, followed by cathepsin G, followed by proteinase-3. The findings support a pre-eminent role for neutrophil elastase as the critical protease responsible for SP-D depletion in inflammatory lung disease. PMID:18211966

  14. Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts.

    PubMed

    Neveu, Julie; Regeard, Christophe; DuBow, Michael S

    2011-08-01

    The screening of environmental DNA metagenome libraries for functional activities can provide an important source of new molecules and enzymes. In this study, we identified 17 potential protease-producing clones from two metagenomic libraries derived from samples of surface sand from the Gobi and Death Valley deserts. Two of the proteases, DV1 and M30, were purified and biochemically examined. These two proteases displayed a molecular mass of 41.5 kDa and 45.7 kDa, respectively, on SDS polyacrylamide gels. Alignments with known protease sequences showed less than 55% amino acid sequence identity. These two serine proteases appear to belong to the subtilisin (S8A) family and displayed several unique biochemical properties. Protease DV1 had an optimum pH of 8 and an optimal activity at 55°C, while protease M30 had an optimum pH >11 and optimal activity at 40°C. The properties of these enzymes make them potentially useful for biotechnological applications and again demonstrate that metagenomic approaches can be useful, especially when coupled with the study of novel environments such as deserts. PMID:21494865

  15. Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens.

    PubMed

    Zhang, Dianpeng; Spadaro, Davide; Valente, Silvia; Garibaldi, Angelo; Gullino, Maria Lodovica

    2012-02-15

    An alkaline protease gene was amplified from genomic DNA and cDNA of the antagonistic yeast-like fungus Aureobasidium pullulans PL5, a biocontrol agent effective against Monilinia laxa on stone fruit and Botrytis cinerea and Penicillium expansum on pome fruits. An open reading frame of 1248 bp encoding a 415-amino acid (aa) protein with a calculated molecular weight (M(r)) of 42.9 kDa and an isoelectric point (pI) of 4.5 was characterized. The cDNAALP5 gene had an 18-amino acid signal peptide, one N-gylcosylation, one histidine active site, and one serine active site. The ALP5 gene with a M(r) of 1351 bp contained two introns. One intron was of 54 bp, while the other was of 50 bp. Protein BLAST and phylogenetic tree analysis of the deduced amino sequences from the cDNAALP5 gene showed that the encoded protein had 100% homology to a protease enzyme (ALP2) of a sea strain of A. pullulans, suggesting that the protein ALP5 was an alkaline serine protease. Expression of ALP5 in Escherichia coli BL21 (DE3), followed by identification with Western-blotting, purification with Ni-NTA and analysis of enzymatic activity, yielded an homogeneous recombinant ALP5 which hydrolysed the substrate casein and inhibited the mycelial growth of the pathogens. At its optimal pH of 10.0 and reaction temperature of 50°C, the recombinant protease exhibited the highest activity towards the substrate casein, though the highest stability was at lower temperatures and pH between 7.0 and 9.0. This study provided the direct evidence that extracellular proteases secreted by the antagonist A. pullulans PL5 played a role in the biocontrol activities against some postharvest pathogens of apple and peach. PMID:22225984

  16. Further theoretical insight into the reaction mechanism of the hepatitis C NS3/NS4A serine protease

    NASA Astrophysics Data System (ADS)

    Martínez-González, José Ángel; Rodríguez, Alex; Puyuelo, María Pilar; González, Miguel; Martínez, Rodrigo

    2015-01-01

    The main reactions of the hepatitis C virus NS3/NS4A serine protease are studied using the second-order Møller-Plesset ab initio method and rather large basis sets to correct the previously reported AM1/CHARMM22 potential energy surfaces. The reaction efficiencies measured for the different substrates are explained in terms of the tetrahedral intermediate formation step (the rate-limiting process). The energies of the barrier and the corresponding intermediate are so close that the possibility of a concerted mechanism is open (especially for the NS5A/5B substrate). This is in contrast to the suggested general reaction mechanism of serine proteases, where a two-step mechanism is postulated.

  17. Bioinformatic analyses of male and female Amblyomma americanum tick expressed serine protease inhibitors (serpins)

    PubMed Central

    Porter, Lindsay; Radulovic, Zeljko; Kim, Tae; Braz, Gloria R. C.; Da Silva Vaz, Itabajara; Mulenga, Albert

    2014-01-01

    Serine protease inhibitors (serpins) are a diverse family of proteins that is conserved across taxa. The diversity of Amblyomma americanum serpins (AAS) is far more complex than previously thought as revealed by discovery of 57 and 33 AAS transcripts that are respectively expressed in male and female A. americanum ticks, with 30 found in both. While distinct reproductively, both male and female metastriate ticks, such as A. americanum, require a blood meal. Thus, 30 AAS sequences found in both male and female ticks could play important role(s) in regulating tick feeding and thus represent attractive candidates for anti-tick vaccine development. Of significant interest, 19 AAS sequences expressed in male and female ticks are also part of the 48 AAS sequences expressed in fed female tick salivary glands or midguts; two organs through which the tick interacts with host blood and immune response factors. Considered the most important domain for serpin function, the reactive center loop (RCL) is further characterized by a single ‘P1’ site amino acid residue, which is central to determining the protease regulated by the serpin. In this study, a diversity of 17 different P1 site amino acid residues were predicted, suggesting that A. americanum serpins potentially regulate a large number of proteolytic pathways. Our data also indicate that some serpins in this study could regulate target protease common to all tick species, in that more than 40% of AAS show 58–97% inter-species amino acid conservation. Of significance, 24% of AAS showed 62–100% inter-species conservation within the functional RCL domain, with 10 RCLs showing ≥90–100% conservation. In vertebrates, serpins with basic residues at the P1 site regulate key host defense pathways, which the tick must evade to feed successfully. Interestingly, we found that AAS sequences with basic or polar uncharged residues at the putative P1 site are more likely to be conserved across tick species. Another notable

  18. Novel Potent Hepatitis C Virus NS3 Serine Protease Inhibitors Derived from Proline-Based Macrocycles

    SciTech Connect

    Chen, Kevin X.; Njoroge, F. George; Arasappan, Ashok; Venkatraman, Srikanth; Vibulbhan, Bancha; Yang, Weiying; Parekh, Tejal N.; Pichardo, John; Prongay, Andrew; Cheng, Kuo-Chi; Butkiewicz, Nancy; Yao, Nanhua; Madison, Vincent; Girijavallabhan, Viyyoor

    2008-06-30

    The hepatitis C virus (HCV) NS3 protease is essential for viral replication. It has been a target of choice for intensive drug discovery research. On the basis of an active pentapeptide inhibitor, 1, we envisioned that macrocyclization from the P2 proline to P3 capping could enhance binding to the backbone Ala156 residue and the S4 pocket. Thus, a number of P2 proline-based macrocyclic {alpha}-ketoamide inhibitors were prepared and investigated in an HCV NS3 serine protease continuous assay (K*{sub i}). The biological activity varied substantially depending on factors such as the ring size, number of amino acid residues, number of methyl substituents, type of heteroatom in the linker, P3 residue, and configuration at the proline C-4 center. The pentapeptide inhibitors were very potent, with the C-terminal acids and amides being the most active ones (24, K*{sub i} = 8 nM). The tetrapeptides and tripeptides were less potent. Sixteen- and seventeen-membered macrocyclic compounds were equally potent, while fifteen-membered analogues were slightly less active. gem-Dimethyl substituents at the linker improved the potency of all inhibitors (the best compound was 45, K*{sub i} = 6 nM). The combination of tert-leucine at P3 and dimethyl substituents at the linker in compound 47 realized a selectivity of 307 against human neutrophil elastase. Compound 45 had an IC{sub 50} of 130 nM in a cellular replicon assay, while IC{sub 50} for 24 was 400 nM. Several compounds had excellent subcutaneous AUC and bioavailability in rats. Although tripeptide compound 40 was 97% orally bioavailable, larger pentapeptides generally had low oral bioavailability. The X-ray crystal structure of compounds 24 and 45 bound to the protease demonstrated the close interaction of the macrocycle with the Ala156 methyl group and S4 pocket. The strategy of macrocyclization has been proved to be successful in improving potency (>20-fold greater than that of 1) and in structural depeptization.

  19. A Spider-Derived Kunitz-Type Serine Protease Inhibitor That Acts as a Plasmin Inhibitor and an Elastase Inhibitor

    PubMed Central

    Wan, Hu; Lee, Kwang Sik; Kim, Bo Yeon; Zou, Feng Ming; Yoon, Hyung Joo; Je, Yeon Ho; Li, Jianhong; Jin, Byung Rae

    2013-01-01

    Kunitz-type serine protease inhibitors are involved in various physiological processes, such as ion channel blocking, blood coagulation, fibrinolysis, and inflammation. While spider-derived Kunitz-type proteins show activity in trypsin or chymotrypsin inhibition and K+ channel blocking, no additional role for these proteins has been elucidated. In this study, we identified the first spider (Araneus ventricosus) Kunitz-type serine protease inhibitor (AvKTI) that acts as a plasmin inhibitor and an elastase inhibitor. AvKTI possesses a Kunitz domain consisting of a 57-amino-acid mature peptide that displays features consistent with Kunitz-type inhibitors, including six conserved cysteine residues and a P1 lysine residue. Recombinant AvKTI, expressed in baculovirus-infected insect cells, showed a dual inhibitory activity against trypsin (Ki 7.34 nM) and chymotrypsin (Ki 37.75 nM), defining a role for AvKTI as a spider-derived Kunitz-type serine protease inhibitor. Additionally, AvKTI showed no detectable inhibitory effects on factor Xa, thrombin, or tissue plasminogen activator; however, AvKTI inhibited plasmin (Ki 4.89 nM) and neutrophil elastase (Ki 169.07 nM), indicating that it acts as an antifibrinolytic factor and an antielastolytic factor. These findings constitute molecular evidence that AvKTI acts as a plasmin inhibitor and an elastase inhibitor and also provide a novel view of the functions of a spider-derived Kunitz-type serine protease inhibitor. PMID:23308198

  20. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K.

    PubMed

    Sang, Peng; Yang, Qiong; Du, Xing; Yang, Nan; Yang, Li-Quan; Ji, Xing-Lai; Fu, Yun-Xin; Meng, Zhao-Hui; Liu, Shu-Qun

    2016-01-01

    To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD) simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K) have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy landscapes (FELs) at the high solvent temperatures exhibit a more rugged surface, broader spanning range, and higher minimum free energy level than do those at the low solvent temperatures. Comparison between the dynamic hydrogen bond (HB) numbers reveals that the high solvent temperatures intensify the competitive HB interactions between water molecules and protein surface atoms, and this in turn exacerbates the competitive HB interactions between protein internal atoms, thus enhancing the conformational flexibility and facilitating the collective motions of the protein. A refined FEL model was proposed to explain the role of the solvent mobility in facilitating the cascade amplification of microscopic motions of atoms and atomic groups into the global collective motions of the protein. PMID:26907253

  1. Enzyme promiscuity in earthworm serine protease: substrate versatility and therapeutic potential.

    PubMed

    Verma, Mahendra Kumar; Pulicherla, K K

    2016-04-01

    Enzymes are the most versatile molecules in the biological world. These amazing molecules play an integral role in the regulation of various metabolic pathways and physiology subsequently. Promiscuity of an enzyme is the capacity to catalyze additional biochemical reactions besides their native one. Catalytic promiscuity has shown great impact in enzyme engineering for commercial enzyme and therapeutics with natural or engineered catalytic promiscuity. The earthworm serine protease (ESP) is a classic example of enzyme promiscuity and studied for its therapeutic potential over the last few decades. The ESP was reported for several therapeutic properties and fibrinolytic activity has been much explored. ESP, a complex enzyme exists as several isoforms of molecular weight ranging from 14 to 33 kDa. The fibrinolytic capacity of the enzyme has been studied in different species of earthworm and molecular mechanism is quite different from conventional thrombolytics. Cytotoxic and anti-tumor activities of ESP were evaluated using several cancer cell lines. Enzyme had shown tremendous scope in fighting against plant viruses and microbes. ESP is also reported for anti-inflammatory activity and anti-oxidant property. Apart from these, recently, ESP is reported for DNase activity. The daunting challenge for researchers is to understand the molecular mechanism for such diverse properties and possibility of enzyme promiscuity. This review emphasizes molecular mechanism of ESP governing various biochemical reactions. Further, the concept of enzyme promiscuity in ESP towards development of novel enzyme based drugs has been reviewed in this study. PMID:26739820

  2. Building a Molecular Trap for a Serine Protease from Aptamer and Peptide Modules.

    PubMed

    Dupont, Daniel M; Bjerregaard, Nils; Verpaalen, Ben; Andreasen, Peter A; Jensen, Jan K

    2016-04-20

    In drug development, molecular intervention strategies are usually based on interference with a single protein function, such as enzyme activity or receptor binding. However, in many cases, protein drug targets are multifunctional, with several molecular functions contributing to their pathophysiological actions. Aptamers and peptides are interesting synthetic building blocks for the design of multivalent molecules capable of modulating multiple functions of a target protein. Here, we report a molecular trap with the ability to interfere with the activation, catalytic activity, receptor binding, etc. of the serine protease urokinase-type plasminogen activator (uPA) by a rational combination of two RNA aptamers and a peptide with different inhibitory properties. The assembly of these artificial inhibitors into one molecule enhanced the inhibitory activity between 10- and 10,000-fold toward several functions of uPA. The study highlights the potential of multivalent designs and illustrates how they can easily be constructed from aptamers and peptides using nucleic acid engineering, chemical synthesis, and bioconjugation chemistry. By aptamer to aptamer and aptamer to peptide conjugation, we created, to the best of our knowledge, the first trivalent molecule which combines three artificial inhibitors binding to three different sites in a protein target. We hypothesize that by simultaneously preventing all of the functional interactions and activities of the target protein, this approach may represent an alternative to siRNA technology for a functional knockout. PMID:26926041

  3. Prevalence, Biogenesis, and Functionality of the Serine Protease Autotransporter EspP

    PubMed Central

    Weiss, André; Brockmeyer, Jens

    2012-01-01

    Enterohemorrhagic E. coli (EHEC) causes severe diseases in humans worldwide. One of its virulence factors is EspP, which belongs to the serine protease autotransporters of Enterobacteriaceae (SPATE) family. In this review we recapitulate the current data on prevalence, biogenesis, structural properties and functionality. EspP has been used to investigate mechanistic details of autotransport, and recent studies indicate that this transport mechanism is not autonomous but rather dependent on additional factors. Currently, five subtypes have been identified (EspPα-EspPε), with EspPα being associated with highly virulent EHEC serotypes and isolates from patients with severe disease. EspPα has been shown to degrade major proteins of the complement cascade, namely C3 and C5 and probably interferes with hemostasis by cleavage of coagulation factor V. Furthermore, EspPα is believed to contribute to biofilm formation perhaps by polymerization to rope-like structures. Together with the proteolytic activity, EspPα might ameliorate host colonization and interfere with host response. PMID:23274272

  4. The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli.

    PubMed

    Abreu, Afonso G; Abe, Cecilia M; Nunes, Kamila O; Moraes, Claudia T P; Chavez-Dueñas, Lucia; Navarro-Garcia, Fernando; Barbosa, Angela S; Piazza, Roxane M F; Elias, Waldir P

    2016-01-01

    Autotransporter proteins (AT) are associated with bacterial virulence attributes. Originally identified in enteroaggregative Escherichia coli (EAEC), Shigella flexneri 2a and uropathogenic E. coli, the serine protease Pic is one of these AT. We have previously detected one atypical enteropathogenic E. coli strain (BA589) carrying the pic gene. In the present study, we characterized the biological activities of Pic produced by BA589 both in vitro and in vivo. Contrarily to other Pic-producers bacteria, pic in BA589 is located on a high molecular weight plasmid. PicBA589 was able to agglutinate rabbit erythrocytes, cleave mucin and degrade complement system molecules. BA589 was able to colonize mice intestines, and an intense mucus production was observed. The BA589Δpic mutant lost the capacity to colonize as well as the above-mentioned in vitro activities. Thus, Pic represents an additional virulence factor in aEPEC strain BA589, associated with adherence, colonization and evasion from the innate immune system. PMID:26963626

  5. Alcaligenes faecalis ZD02, a Novel Nematicidal Bacterium with an Extracellular Serine Protease Virulence Factor.

    PubMed

    Ju, Shouyong; Lin, Jian; Zheng, Jinshui; Wang, Shaoying; Zhou, Hongying; Sun, Ming

    2016-01-01

    Root knot nematodes (RKNs) are the world's most damaging plant-parasitic nematodes (PPNs), and they can infect almost all crops. At present, harmful chemical nematicides are applied to control RKNs. Using microbial nematicides has been proposed as a better management strategy than chemical control. In this study, we describe a novel nematicidal bacterium named Alcaligenes faecalis ZD02. A. faecalis ZD02 was isolated from Caenorhabditis elegans cadavers and has nematostatic and nematicidal activity, as confirmed by C. elegans growth assay and life span assay. In addition, A. faecalis ZD02 fermentation broth showed toxicity against C. elegans and Meloidogyne incognita. To identify the nematicidal virulence factor, the genome of strain ZD02 was sequenced. By comparing all of the predicted proteins of strain ZD02 to reported nematicidal virulence factors, we determined that an extracellular serine protease (Esp) has potential to be a nematicidal virulence factor, which was confirmed by bioassay on C. elegans and M. incognita. Using C. elegans as the target model, we found that both A. faecalis ZD02 and the virulence factor Esp can damage the intestines of C. elegans. The discovery that A. faecalis ZD02 has nematicidal activity provides a novel bacterial resource for the control of RKNs. PMID:26826227

  6. Mammary serine protease inhibitor and CD138 immunohistochemical expression in ovarian serous and clear cell carcinomas.

    PubMed

    Hasby, Eiman Adel

    2016-04-01

    This study aims to investigate the immunohistochemical expression of mammary serine protease inhibitor (maspin) and CD138 in primary ovarian high-grade serous carcinomas (HGSC) as compared to low-grade serous carcinomas (LGSC) and clear cell carcinomas and investigate if the studied markers have a correlation to International Federation of Gynaecology and Obstetrics (FIGO) stage, Ki67 proliferation index, and to each other. Maspin cellular location varied significantly between studied groups with only nuclear expression seen in 46.7 % of LGSC group, mixed nuclear and cytoplasmic in 13.3, 28.6, and 20 % of LGSC, HGSC, and clear cell carcinoma, respectively, and was only cytoplasmic in 26.7, 71.4, and 80 % of LGSC, HGSC, and clear cell carcinoma, respectively. Mean maspin and CD138 counts were significantly higher in HGSC and clear cell carcinoma compared to LGSC. Both maspin and CD138 scores varied significantly between studied groups and were positively correlated with adverse prognostic factors in studied carcinomas including FIGO stage and Ki67 proliferation index. Besides, both maspin and CD138 had significant correlation to each other. These findings suggest that epithelial cytoplasmic expression of maspin and CD138 may have a significant role in tumorigenesis in ovarian high-grade serous carcinomas and clear cell carcinomas; these markers may regulate tumor cell proliferation, and their significant correlation to each other may suggest that CD138 probably induces maspin expression to protect tumor growth factors from being lysed by proteolytic enzymes. PMID:26526579

  7. Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome.

    PubMed

    Hachem, Jean-Pierre; Wagberg, Fredrik; Schmuth, Matthias; Crumrine, Debra; Lissens, Willy; Jayakumar, Arumugam; Houben, Evi; Mauro, Theodora M; Leonardsson, Göran; Brattsand, Maria; Egelrud, Torbjorn; Roseeuw, Diane; Clayman, Gary L; Feingold, Kenneth R; Williams, Mary L; Elias, Peter M

    2006-07-01

    Mutations in the SPINK5 gene encoding the serine protease (SP) inhibitor, lymphoepithelial-Kazal-type 5 inhibitor (LEKTI), cause Netherton syndrome (NS), a life-threatening disease, owing to proteolysis of the stratum corneum (SC). We assessed here the basis for phenotypic variations in nine patients with "mild", "moderate", and "severe" NS. The magnitude of SP activation correlated with both the barrier defect and clinical severity, and inversely with residual LEKTI expression. LEKTI co-localizes within the SC with kallikreins 5 and 7 and inhibits both SP. The permeability barrier abnormality in NS was further linked to SC thinning and proteolysis of two lipid hydrolases (beta-glucocerebrosidase and acidic sphingomyelinase), with resultant disorganization of extracellular lamellar membranes. SC attenuation correlated with phenotype-dependent, SP activation, and loss of corneodesmosomes, owing to desmoglein (DSG)1 and desmocollin (DSC)1 degradation. Although excess SP activity extended into the nucleated layers in NS, degrading desmosomal mid-line structures with loss of DSG1/DSC1, the integrity of the nucleated epidermis appears to be maintained by compensatory upregulation of DSG3/DSC3. Maintenance of sufficient permeability barrier function for survival correlated with a compensatory acceleration of lamellar body secretion, providing a partial permeability barrier in NS. These studies provide a mechanistic basis for phenotypic variations in NS, and describe compensatory mechanisms that permit survival of NS patients in the face of unrelenting SP attack. PMID:16601670

  8. Identification of a serine protease inhibitor homologue in Bird's Nest by an integrated proteomics approach.

    PubMed

    Ou, K; Seow, T K; Liang, R C; Lee, B W; Goh, D L; Chua, K Y; Chung, M C

    2001-10-01

    For centuries, the edible nests of Collocalia spp. ("Bird's Nests") have been used as a Chinese delicacy that had been claimed to be an effective health-giving tonic. However, clinical studies indicated that in Singapore, Bird's Nest is the most common cause of food-induced anaphylaxis in children, which could lead to potentially life-threatening allergenic reactions. The purpose of this study was to characterize the major allergens in Bird's Nest by using the combined technologies of two-dimensional gel electrophoresis (2-DE), immunochemistry, N-terminal protein sequencing, and mass spectrometry. Results from the immunostaining of the Western blots of the Bird's Nest 2-DE separated proteins with the sera from allergic patients indicated the presence of a major allergen of 66 kDa. Initial searches of the matrix assisted laser desorption/ionization--time of flight--mass spectrometry (MALDI-TOF-MS) tryptic peptide masses of the allergen in the SWISS-PROT and NCBI nonredundant databases revealed that this protein was novel. Based on the partial protein sequence information obtained from N-terminal microsequencing and nanoelectrospray-tandem MS, the 66 kDa immunoreactive allergen was found to be homologous to ovoinhibitor, a Kazal-type serine protease inhibitor, which is one of the dominant allergens found in chicken egg white. PMID:11669547

  9. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K

    PubMed Central

    Sang, Peng; Yang, Qiong; Du, Xing; Yang, Nan; Yang, Li-Quan; Ji, Xing-Lai; Fu, Yun-Xin; Meng, Zhao-Hui; Liu, Shu-Qun

    2016-01-01

    To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD) simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K) have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy landscapes (FELs) at the high solvent temperatures exhibit a more rugged surface, broader spanning range, and higher minimum free energy level than do those at the low solvent temperatures. Comparison between the dynamic hydrogen bond (HB) numbers reveals that the high solvent temperatures intensify the competitive HB interactions between water molecules and protein surface atoms, and this in turn exacerbates the competitive HB interactions between protein internal atoms, thus enhancing the conformational flexibility and facilitating the collective motions of the protein. A refined FEL model was proposed to explain the role of the solvent mobility in facilitating the cascade amplification of microscopic motions of atoms and atomic groups into the global collective motions of the protein. PMID:26907253

  10. Water miscible mono alcohols' effect on the proteolytic performance of Bacillus clausii serine alkaline protease.

    PubMed

    Duman, Yonca Avci; Kazan, Dilek; Denizci, Aziz Akin; Erarslan, Altan

    2014-01-01

    In this study, our investigations showed that the increasing concentrations of all examined mono alcohols caused a decrease in the Vm, kcat and kcat/Km values of Bacillus clausii GMBE 42 serine alkaline protease for casein hydrolysis. However, the Km value of the enzyme remained almost the same, which was an indicator of non-competitive inhibition. Whereas inhibition by methanol was partial non-competitive, inhibition by the rest of the alcohols tested was simple non-competitive. The inhibition constants (KI) were in the range of 1.32-3.10 M, and the order of the inhibitory effect was 1-propanol>2-propanol>methanol>ethanol. The ΔG(≠) and ΔG(≠)E-T values of the enzyme increased at increasing concentrations of all alcohols examined, but the ΔG(≠)ES value of the enzyme remained almost the same. The constant Km and ΔG(≠)ES values in the presence and absence of mono alcohols indicated the existence of different binding sites for mono alcohols and casein on enzyme the molecule. The kcat of the enzyme decreased linearly by increasing log P and decreasing dielectric constant (D) values, but the ΔG(≠) and ΔG(≠)E-T values of the enzyme increased by increasing log P and decreasing D values of the reaction medium containing mono alcohols. PMID:24092453

  11. Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81.

    PubMed

    Dunne, C; Moënne-Loccoz, Y; de Bruijn, F J; O'Gara, F

    2000-08-01

    Stenotrophomonas maltophilia W81 can protect sugar beet against PYTHIUM:-mediated damping-off disease through the production of an extracellular protease. Here, the proteolytic enzyme of W81 was purified by anion-exchange chromatography and characterized as a serine protease. The purified enzyme was fungicidal against PYTHIUM: ultimum in vitro. Its synthesis was inducible by casein in W81, and mutagenesis of this strain using the luciferase (luxAB) reporter transposon Tn5-764cd resulted in the isolation of two mutant derivatives (W81M3 and W81M4) capable of producing significantly increased levels of extracellular protease in the presence of casein. Strain W81M4 also exhibited increased chitinolytic activity. The luxAB fusions in strains W81M3 and W81M4 were highly expressed in the absence of casein but not in its presence, suggesting that the corresponding loci were involved in down-regulating extracellular protease production. Extracellular protease production in the W81 wild-type strain and protease overproduction in mutants W81M3 and W81M4 were also induced in the presence of the autoclaved fungal mycelium. In soil microcosms naturally infested by PYTHIUM: spp., inoculation of sugar beet seeds with W81M3 or W81M4 resulted in improved biocontrol of PYTHIUM:-mediated damping-off disease compared with W81, and the level of protection achieved was equivalent to that conferred by chemical fungicides. The wild-type W81 and its mutant derivatives did not differ in rhizosphere colonization. Therefore, the improved biocontrol ability of W81M3 and W81M4 resulted from their capacity to overproduce extracellular serine protease. PMID:10931911

  12. Structural Insights into the Protease-like Antigen Plasmodium falciparum SERA5 and Its Noncanonical Active-Site Serine

    SciTech Connect

    Hodder, Anthony N.; Malby, Robyn L.; Clarke, Oliver B.; Fairlie, W. Douglas; Colman, Peter M.; Crabb, Brendan S.; Smith, Brian J.

    2009-08-28

    The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putative nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S{sub 2} specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.

  13. Single chain antibody fragment with serine protease inhibitory property capable of neutralizing toxicity of Trimeresurus mucrosquamatus venom.

    PubMed

    Lee, Yu-Ching; Chen, Wang-Chuan; Liang, Meng-Huei; Lee, Chi-Hsin; Tsai, Keng-Chang; Chiang, Jen-Ron; Chiang, Liao-Chun; Chen, Chi-Ching; Chang, Chang-Yu; Lee, Ching-Hsiao; Leu, Sy-Jye; Yang, Yi-Yuan

    2015-05-01

    Trimeresurus mucrosquamatus (TM) is one of majorities of snake envenomation with necrotic and hemorrhagic toxin in Taiwan. In this study, chickens were used as an alternative animal model for immunization with TM venom. Using phage display technology to process four rounds of panning, selected single chain variable fragments (scFv) could specifically recognize TM venom proteins, which were later identified as a group of homogeneous venom serine protease. The specific scFv antibodies showed various inhibitory effects on sheep RBC lysis induced by TM venom using an indirect hemolytic assay in vitro. In addition, the survival times of mice were extended to certain degrees when treated with these scFv antibodies individually or in a combination. To elucidate the inhibitory mechanism, we used molecular modeling to build up the serine protease structure to simulate the possible interactions with scFv antibodies. The results suggested that the CDR-loop of the scFv antibodies (3S10 or 4S1) might bind at the 99-loop of venom serine protease so as to affect substrate access due to the partial collapse of the subsite S2 and the partial movement of the subsite S4. It is hoped these chicken-derived antibodies could be applied to develop diagnostic and therapeutic agents against snakebites. PMID:25769957

  14. Isolation and Biochemical Characterization of a New Thrombin-Like Serine Protease from Bothrops pirajai Snake Venom

    PubMed Central

    Zaqueo, Kayena D.; Kayano, Anderson M.; Simões-Silva, Rodrigo; Moreira-Dill, Leandro S.; Fernandes, Carla F. C.; Fuly, André L.; Maltarollo, Vinícius G.; Honório, Kathia M.; da Silva, Saulo L.; Acosta, Gerardo; Caballol, Maria Antonia O.; de Oliveira, Eliandre; Albericio, Fernando; Calderon, Leonardo A.; Soares, Andreimar M.; Stábeli, Rodrigo G.

    2014-01-01

    This paper presents a novel serine protease (SP) isolated from Bothrops pirajai, a venomous snake found solely in Brazil that belongs to the Viperidae family. The identified SP, named BpirSP-39, was isolated by three chromatographic steps (size exclusion, bioaffinity, and reverse phase chromatographies). The molecular mass of BpirSP-39 was estimated by SDS-PAGE and confirmed by mass spectrometry (39,408.32 Da). The protein was able to form fibrin networks, which was not observed in the presence of serine protease inhibitors, such as phenylmethylsulfonyl fluoride (PMSF). Furthermore, BpirSP-39 presented considerable thermal stability and was apparently able to activate factor XIII of the blood coagulation cascade, unlike most serine proteases. BpirSP-39 was capable of hydrolyzing different chromogenic substrates tested (S-2222, S-2302, and S-2238) while Cu2+ significantly diminished BspirSP-39 activity on the three tested substrates. The enzyme promoted platelet aggregation and also exhibited fibrinogenolytic, fibrinolytic, gelatinolytic, and amidolytic activities. The multiple alignment showed high sequence similarity to other thrombin-like enzymes from snake venoms. These results allow us to conclude that a new SP was isolated from Bothrops pirajai snake venom. PMID:24719874

  15. A true autoactivating enzyme. Structural insight into mannose-binding lectin-associated serine protease-2 activations.

    PubMed

    Gál, Péter; Harmat, Veronika; Kocsis, Andrea; Bián, Tünde; Barna, László; Ambrus, Géza; Végh, Barbara; Balczer, Júlia; Sim, Robert B; Náray-Szabó, Gábor; Závodszky, Péter

    2005-09-30

    Few reports have described in detail a true autoactivation process, where no extrinsic cleavage factors are required to initiate the autoactivation of a zymogen. Herein, we provide structural and mechanistic insight into the autoactivation of a multidomain serine protease: mannose-binding lectin-associated serine protease-2 (MASP-2), the first enzymatic component in the lectin pathway of complement activation. We characterized the proenzyme form of a MASP-2 catalytic fragment encompassing its C-terminal three domains and solved its crystal structure at 2.4 A resolution. Surprisingly, zymogen MASP-2 is capable of cleaving its natural substrate C4, with an efficiency about 10% that of active MASP-2. Comparison of the zymogen and active structures of MASP-2 reveals that, in addition to the activation domain, other loops of the serine protease domain undergo significant conformational changes. This additional flexibility could play a key role in the transition of zymogen MASP-2 into a proteolytically active form. Based on the three-dimensional structures of proenzyme and active MASP-2 catalytic fragments, we present model for the active zymogen MASP-2 complex and propose a mechanism for the autoactivation process. PMID:16040602

  16. Purification, biochemical and functional characterization of miliin, a new thiol-dependent serine protease isolated from the latex of Euphorbia milii.

    PubMed

    Moro, L P; Murakami, M T; Cabral, H; Vidotto, A; Tajara, E H; Arni, R K; Juliano, L; Bonilla-Rodriguez, G O

    2008-01-01

    Miliin, a new thiol-dependent serine protease purified from the latex of Euphorbia milii possesses a molecular weight of 79 kDa, an isoelectric point of 4.3 and is optimally active at 60 degrees C in the pH range of and 7.5-11.0. Activity tests indicate that milliin is a thiol-dependent serine protease. PMID:18782069

  17. Identification, purification and characterization of a novel collagenolytic serine protease from fig (Ficus carica var. Brown Turkey) latex.

    PubMed

    Raskovic, Brankica; Bozovic, Olga; Prodanovic, Radivoje; Niketic, Vesna; Polovic, Natalija

    2014-12-01

    A novel collagenolytic serine protease was identified and then purified (along with ficin) to apparent homogeneity from the latex of fig (Ficus carica, var. Brown Turkey) by two step chromatographic procedure using gel and covalent chromatography. The enzyme is a monomeric protein of molecular mass of 41 ± 9 kDa as estimated by analytical gel filtration chromatography. It is an acidic protein with a pI value of approximately 5 and optimal activity at pH 8.0-8.5 and temperature 60°C. The enzymatic activity was strongly inhibited by PMSF and Pefabloc SC, indicating that the enzyme is a serine protease. The enzyme showed specificity towards gelatin and collagen (215 GDU/mg and 24.8 CDU/mg, respectively) and non-specific protease activity (0.18 U/mg against casein). The enzyme was stable and retained full activity over a broad range of pH and temperature. The fig latex collagenolytic protease is potentially useful as a non-microbial enzyme with collagenolytic activity for various applications in the fields of biochemistry, biotechnology and medicine. PMID:24982021

  18. Isolation and characterization of a new serine protease with thrombin-like activity (TLBm) from the venom of the snake Bothrops marajoensis.

    PubMed

    Vilca-Quispe, Augusto; Ponce-Soto, Luis Alberto; Winck, Flavia Vischi; Marangoni, Sergio

    2010-04-01

    The thrombin-like serine protease TLBm from Bothrops marajoensis was isolated in one chromatographic step in reverse phase HPLC. Its molecular mass was 33239.95 Da, as based on the determined primary structure and confirmed experimentally by MALDI-TOF mass spectrometry (33332.5 Da) and it contains 12 half-cysteine residues. This TLBm exhibited high specificity for BArhoNA, Michaelis-Menten behavior with K(m) 2.3x10(-1)M and the V(max) 0.52x10(-1) nmoles rho-NA/lt/min for this substrate. TLBm also showed ability to coagulate bovine fibrinogen and was inhibited by soybean trypsin inhibitor, EDTA and S(Dm) from the serum of the species Didelphis marsupialis. The primary structure of TLBm showed the presence of His(45), Asp(103) and Ser(228) residues in the corresponding positions of the catalytic triad established in the serine proteases and Ser(228) are inhibited by phenylmethylsulfonyl fluoride (PMSF). Amino acid analysis showed a high content of Asp, Glu, Gly, Ser, Ala and Pro as well as 12 half-cysteine residues and calculated pI of 6.47; TLBm presented 285 amino acid residues. In this work, we investigated the ability of TLBm to degrade fibrinogen and we observed that it is able to cause alpha- and beta-chain cleavage. Enzymatic as well as the platelet aggregation activities were strongly inhibited when incubated with PMSF, a specific inhibitor of serine protease. Also, TLBm induced platelet aggregation in washed and platelet-rich plasma, and in both cases, PMSF inhibited its activity. PMID:19931298

  19. Serine Protease Inhibitors as Good Predictors of Meat Tenderness: Which Are They and What Are Their Functions?

    PubMed

    Boudida, Yasmine; Gagaoua, Mohammed; Becila, Samira; Picard, Brigitte; Boudjellal, Abdelghani; Herrera-Mendez, Carlos H; Sentandreu, Miguel; Ouali, Ahmed

    2016-04-25

    Since years, serine proteases and their inhibitors were an enigma to meat scientists. They were indeed considered to be extracellular and to play no role in postmortem muscle proteolysis. In the 1990's, we observed that protease inhibitors levels in muscles are a better predictor of meat tenderness than their target enzymes. From a practical point of view, we therefore choose to look for serine protease inhibitors rather than their target enzymes, i.e. serine proteases and the purpose of this report was to overview the findings obtained. Fractionation of a muscle crude extract by gel filtration revealed three major trypsin inhibitory fractions designed as F1 (Mr:50-70 kDa), F2 (Mr:40-60 kDa) and F3 (Mr:10-15kD) which were analyzed separately. Besides antithrombin III, an heparin dependent thrombin inhibitor, F1 and F2 comprised a large set of closely related trypsin inhibitors encoded by at least 8 genes bovSERPINA3-1 to A3-8 and able to inhibit also strongly initiator and effector caspases. They all belong to the serpin superfamily, known to form covalent complexes with their target enzymes, were located within muscle cells and found in all tissues and fluids examined irrespective of the animal species. Potential biological functions in living and postmortem muscle were proposed for all of them. In contrast to F1 and F2 which have been more extensively investigated only preliminary findings were provided for F3. Taken together, these results tend to ascertain the onset of apoptosis in postmortem muscle. However, the exact mechanisms driving the cell towards apoptosis and how apoptosis, an energy dependent process, can be completed postmortem remain still unclear. PMID:25085261

  20. The Serine Protease Autotransporter Pic Modulates Citrobacter rodentium Pathogenesis and Its Innate Recognition by the Host.

    PubMed

    Bhullar, Kirandeep; Zarepour, Maryam; Yu, Hongbing; Yang, Hong; Croxen, Matthew; Stahl, Martin; Finlay, B Brett; Turvey, Stuart E; Vallance, Bruce A

    2015-07-01

    Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed "protein involved in colonization," or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system. PMID:25895966

  1. Transcriptional activation of the human cytotoxic serine protease gene CSP-B in T lymphocytes.

    PubMed Central

    Hanson, R D; Ley, T J

    1990-01-01

    The cytotoxic serine protease B (CSP-B) gene is activated during cytotoxic T-lymphocyte maturation. In this report, we demonstrate that the PEER T-cell line (bearing gamma/delta T-cell receptors) accumulates CSP-B mRNA following exposure to 12-O-tetradecanoylphorbol-13-acetate (TPA) and N6-2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (bt2cAMP) because of transcriptional activation of the CSP-B gene. TPA and bt2cAMP act synergistically to induce CSP-B expression, since neither agent alone causes activation of CSP-B transcription or mRNA accumulation. Chromatin upstream from the CSP-B gene is resistant to DNase I digestion in untreated PEER cells, but becomes sensitive following TPA-bt2cAMP treatment. Upon activation of PEER cells, a DNase I-hypersensitive site forms upstream from the CSP-B gene within a region that is highly conserved in the mouse. Transient transfection of CSP-B promoter constructs identified two regulatory regions in the CSP-B 5'-flanking sequence, located at positions -609 to -202 and positions -202 to -80. The region from -615 to -63 is sufficient to activate a heterologous promoter in activated PEER cells, but activation is orientation specific, suggesting that this region behaves as an upstream promoter element rather than a classical enhancer. Consensus AP-1, AP-2, and cAMP response elements are found upstream from the CSP-B gene (as are several T-cell-specific consensus elements), but the roles of these elements in CSP-B gene activation have yet to be determined. Images PMID:2233710

  2. Novel role of the serine protease inhibitor elafin in gluten-related disorders

    PubMed Central

    Galipeau, Heather J.; Wiepjes, Michelle; Motta, Jean-Paul; Schulz, Jessica D.; Jury, Jennifer; Natividad, Jane M.; Pinto-Sanchez, Ines; Sinclair, Daniel; Rousset, Perrine; Martin-Rosique, Rebeca; Bermudez-Humaran, Luis; Leroux, Jean Christophe; Murray, Joseph; Smecuol, Edgardo; Bai, Julio C.; Vergnolle, Nathalie; Langella, Philippe; Verdu, Elena F

    2014-01-01

    Objectives Elafin, an endogenous serine protease inhibitor, modulates colonic inflammation. We investigated the role of elafin in celiac disease (CD) using human small intestinal tissues and in vitro assays of gliadin deamidation. We also investigated potential beneficial effects of elafin in a mouse model of gluten sensitivity. Methods Epithelial elafin expression in the small intestine of patients with active CD, treated CD and controls without CD was determined by immunofluorescence. Interaction of elafin with human tissue transglutaminase-2 (TG-2) was investigated in vitro. The 33-mer peptide, a highly immunogenic gliadin peptide, was incubated with TG-2 and elafin at different concentrations. The degree of deamidation of the 33-mer peptide was analyzed by liquid chromatography-mass spectrometry. Elafin was delivered to the intestine of gluten-sensitive mice using a recombinant Lactococcus lactis vector. Small intestinal barrier function, inflammation, proteolytic activity, and zonula occludens-1 (ZO-1) expression were assessed. Results Elafin expression in the small intestinal epithelium was lower in patients with active CD compared to control patients. In vitro, elafin significantly slowed the kinetics of the deamidation of the 33-mer peptide to its more immunogenic form. Treatment of gluten-sensitive mice with elafin delivered by the L. lactis vector normalized inflammation, improved permeability and maintained ZO-1 expression. Conclusions The decreased elafin expression in small intestine of patients with active CD, the reduction of 33-mer peptide deamidation by elafin, coupled to the barrier enhancing and anti-inflammatory effects observed in gluten sensitive mice, suggest this molecule may have pathophysiological and therapeutic importance in gluten-related disorders. PMID:24710505

  3. The Serine Protease Autotransporter Pic Modulates Citrobacter rodentium Pathogenesis and Its Innate Recognition by the Host

    PubMed Central

    Bhullar, Kirandeep; Zarepour, Maryam; Yu, Hongbing; Yang, Hong; Croxen, Matthew; Stahl, Martin; Finlay, B. Brett; Turvey, Stuart E.

    2015-01-01

    Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed “protein involved in colonization,” or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system. PMID:25895966

  4. Acid stability of the kinetically stable alkaline serine protease possessing polyproline II fold.

    PubMed

    Rohamare, Sonali; Javdekar, Vaishali; Dalal, Sayli; Nareddy, Pavan Kumar; Swamy, Musti J; Gaikwad, Sushama M

    2015-02-01

    The kinetically stable alkaline serine protease from Nocardiopsis sp.; NprotI, possessing polyproline II fold (PPII) was characterized for its pH stability using proteolytic assay, fluorescence and Circular Dichroism (CD) spectroscopy, and Differential Scanning Calorimetry (DSC). NprotI was found to be functionally stable when incubated at pH 1.0, even after 24 h, while after incubation at pH 10.0, drastic loss in the activity was observed. The enzyme showed enhanced activity after incubation at pH 1.0 and 3.0, at higher temperature (50-60 °C). NprotI maintained the overall PPII fold in broad pH range as seen using far UV CD spectroscopy. The PPII fold of NprotI incubated at pH 1.0 remained fairly intact up to 70 °C. Based on the isodichroic point and Tm values revealed by secondary structural transitions, different modes of thermal denaturation at pH 1.0, 5.0 and 10.0 were observed. DSC studies of NprotI incubated at acidic pH (pH 1.0-5.0) showed Tm values in the range of 74-76 °C while significant decrease in Tm (63.8 °C) was observed at pH 10.0. NprotI could be chemically denatured at pH 5.0 (stability pH) only with guanidine thiocynate. NprotI can be classified as type III protein among the three acid denatured states. Acid tolerant and thermostable NprotI can serve as a potential candidate for biotechnological applications. PMID:25576306

  5. Serpin-serine protease binding kinetics: alpha 2-antiplasmin as a model inhibitor.

    PubMed

    Longstaff, C; Gaffney, P J

    1991-01-29

    We have examined in detail the kinetics of binding of the serpin alpha 2-antiplasmin to the serine proteases alpha-chymotrypsin and plasmin. These represent model systems for serpin binding. We find, in contrast to earlier published results with alpha 2-antiplasmin and plasmin, that binding is reversible, and slow binding kinetics can be observed, under appropriate conditions. Binding follows a two-step process with both enzymes, with the formation of an initial loose complex which then proceeds to a tightly bound complex. In the absence of lysine and analogues, equilibrium between alpha 2-antiplasmin and plasmin is achieved rapidly, with an overall inhibition constant (Ki') of 0.3 pM. In the presence of tranexamic acid or 6-aminohexanoic acid, lysine analogues that mimic the effects of fibrin, plasmin binding kinetics are changed such that equilibrium is reached slowly following a lag phase after mixing of enzyme and inhibitor. The Ki' is also affected, rising to 2 pM in the presence of 6-aminohexanoic acid concentrations above 15 mM. Thus extrapolation to the in vivo situation indicates that complex formation in the presence of fibrin will be delayed, allowing a burst of enzyme activity following plasmin generation, but a tight, pseudoirreversible complex will result eventually. Chymotrypsin is more weakly inhibited by alpha 2-antiplasmin, exhibiting an overall Ki' of 0.1 nM, after two-stage complex formation. The inhibition constant for the initial loose complex (Ki) is very similar for both enzymes. The difference in binding strength between the two enzymes is accounted for by the dissociation rate constant of the second step of complex formation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1703440

  6. Biodegradation of a keratin waste and the concomitant production of detergent stable serine proteases from Paecilomyces lilacinus.

    PubMed

    Cavello, I A; Cavalitto, S F; Hours, R A

    2012-07-01

    Paecilomyces lilacinus (LPS 876) efficiently degraded keratin in chicken feather during submerged cultivation producing extracellular proteases. Characterization of crude protease activity was done including its compatibility in commercial detergents. Optimum pH and temperature were 10.0 and 60 °C, respectively. Protease activity was enhanced by Ca²⁺ but was strongly inhibited by PMSF and by Hg²⁺ suggesting the presence of thiol-dependent serine proteases. The crude protease showed extreme stability toward non-ionic (Tween 20, Tween 85, and Triton X-100) and anionic (SDS) surfactants, and relative stability toward oxidizing agent (H₂O₂ and sodium perborate). In addition, it showed excellent stability and compatibility with various solid and liquid commercial detergents from 30 to 50 °C. The enzyme preparation retained more than 95% of its initial activity with solid detergents (Ariel™ and Drive™) and 97% of its original activity with a liquid detergent (Ace™) after pre-incubation at 40 °C. The protective effect of polyols (propylene glycol, PEG 4000, and glycerol) on the heat inactivation was also examined and the best results were obtained with glycerol from 50 to 60 °C. Considering its promising properties, P. lilacinus enzymatic preparation may be considered as a candidate for use in biotechnological processes (i.e., as detergent additive) and in the processing of keratinous wastes. PMID:22447221

  7. Reversal of mitochondrial defects with CSB-dependent serine protease inhibitors in patient cells of the progeroid Cockayne syndrome

    PubMed Central

    Chatre, Laurent; Biard, Denis S. F.; Sarasin, Alain; Ricchetti, Miria

    2015-01-01

    UV-sensitive syndrome (UVSS) and Cockayne syndrome (CS) are human disorders caused by CSA or CSB gene mutations; both conditions cause defective transcription-coupled repair and photosensitivity. Patients with CS also display neurological and developmental abnormalities and dramatic premature aging, and their cells are hypersensitive to oxidative stress. We report CSA/CSB-dependent depletion of the mitochondrial DNA polymerase-γ catalytic subunit (POLG1), due to HTRA3 serine protease accumulation in CS, but not in UVsS or control fibroblasts. Inhibition of serine proteases restored physiological POLG1 levels in either CS fibroblasts and in CSB-silenced cells. Moreover, patient-derived CS cells displayed greater nitroso-redox imbalance than UVSS cells. Scavengers of reactive oxygen species and peroxynitrite normalized HTRA3 and POLG1 levels in CS cells, and notably, increased mitochondrial oxidative phosphorylation, which was altered in CS cells. These data reveal critical deregulation of proteases potentially linked to progeroid phenotypes in CS, and our results suggest rescue strategies as a therapeutic option. PMID:26038566

  8. Purification and biochemical properties of SDS-stable low molecular weight alkaline serine protease from Citrullus colocynthis.

    PubMed

    Khan, Muhammad Bashir; Khan, Hidayatullah; Shah, Muhammad Usman; Khan, Sanaullah

    2016-01-01

    A low molecular weight serine protease from seeds of Citrullus colocynthis was purified to electrophoretic homogeneity with high level of catalytic efficiency (22,945 M(-1) S(-1)). The enzyme was a monomer with molecular mass of 25 kDa estimated by SDS-PAGE. The enzyme was highly active over a pH range of 6.5-9.0 and temperature range of 20-80 °C, with maximum activity at pH 7.5 and at 50 °C. The K(m) and K(cat) were 73 μg/mL and 67/s, respectively. The enzyme was strongly inhibited by PMSF, moderately by soybean trypsin inhibitor, indicating that the enzyme was a serine protease. The enzyme retained 86 and 73% of its activity in the presence of urea and DTT, respectively, and its activity was slightly enhanced in the presence of anionic detergent (SDS). Thus, the enzyme is a novel SDS-stable protease with high catalytic efficiency over wide ranges of pH and temperature which is commercially promising for various industrial applications. PMID:26942486

  9. Identification and characterization of two novel types of non-clip domain serine proteases (PtSP and PtSPH1) from cDNA haemocytes library of swimming crab Portunus trituberculatus.

    PubMed

    Li, Qianqian; Cui, Zhaoxia; Liu, Yuan; Wang, Shuangyan; Song, Chengwen

    2012-05-01

    In our previous studies, five serine proteases containing clip domain were characterized from the swimming crab Portunus trituberculatus. To further investigate the characterization and function of serine proteases, one serine protease (PtSP) and one serine protease homolog (PtSPH1) without clip domain were identified from haemocytes cDNA library in this paper. They both possessed an SP or SP-like domain at the C-terminal. In contrast to PtSP, absence of Ser catalytic residue resulted in the loss of serine protease activity of PtSPH1. Phylogenetic analysis suggested either SPs or SPHs might not have a single origin in gene evolution. Six introns presented in PtSP genomic DNA with one uncommon splice site (GG) was discovered at exon 1/intron 1 boundary region. Four introns with common splice sites were found in PtSPH1 genomic DNA. RT-PCR results showed that PtSP mRNA was mainly distributed in haemocytes, gill and eyestalk, whereas PtSPH1 transcript was mainly expressed in stomach. PtSP showed slight increase during the first 48 h compared to control groups except 8 h point after Micrococcus luteus challenge. However, significant up-regulation was observed in the expression level of PtSPH1 challenged by Gram-negative bacteria Vibrio alginolyticus, Gram-positive bacteria M. luteus and fungi Pichia pastoris during the first 48 h. It indicates that PtSPH1 might be more sensitive to microorganism challenges compared with PtSP. PMID:22289714

  10. Role of Serine Proteases in the Regulation of Interleukin-877 during the Development of Bronchopulmonary Dysplasia in Preterm Ventilated Infants

    PubMed Central

    Chakraborty, Mallinath; McGreal, Eamon P.; Williams, Andrew; Davies, Philip L.; Powell, Wendy; Abdulla, Salima; Voitenok, Nikolai N.; Hogwood, John; Gray, Elaine; Spiller, Brad; Chambers, Rachel C.; Kotecha, Sailesh

    2014-01-01

    Rationale The chemokine interleukin-8 is implicated in the development of bronchopulmonary dysplasia in preterm infants. The 77-amino acid isoform of interleukin-8 (interleukin-877) is a less potent chemoattractant than other shorter isoforms. Although interleukin-877 is abundant in the preterm circulation, its regulation in the preterm lung is unknown. Objectives To study expression and processing of pulmonary interleukin-877 in preterm infants who did and did not develop bronchopulmonary dysplasia. Methods Total interleukin-8 and interleukin-877 were measured in bronchoalveolar lavage fluid from preterm infants by immunoassay. Neutrophil serine proteases were used to assess processing. Neutrophil chemotaxis assays and degranulation of neutrophil matrix metalloproteinase-9 were used to assess interleukin-8 function. Main Results Peak total interleukin-8 and interleukin-877 concentrations were increased in infants who developed bronchopulmonary dysplasia compared to those who did not. Shorter forms of interleukin-8 predominated in the preterm lung (96.3% No-bronchopulmonary dysplasia vs 97.1% bronchopulmonary dysplasia, p>0.05). Preterm bronchoalveolar lavage fluid significantly converted exogenously added interleukin-877 to shorter isoforms (p<0.001). Conversion was greater in bronchopulmonary dysplasia infants (p<0.05). This conversion was inhibited by α-1 antitrypsin and antithrombin III (p<0.01). Purified neutrophil serine proteases efficiently converted interleukin-877 to shorter isoforms in a time- and dose-dependent fashion; shorter interleukin-8 isoforms were primarily responsible for neutrophil chemotaxis (p<0.001). Conversion by proteinase-3 resulted in significantly increased interleukin-8 activity in vitro (p<0.01). Conclusions Shorter, potent, isoforms interleukin-8 predominate in the preterm lung, and are increased in infants developing bronchopulmonary dysplasia, due to conversion of interleukin-877 by neutrophil serine proteases and thrombin