Science.gov

Sample records for serotonin uptake blockade

  1. Measuring the serotonin uptake site using (/sup 3/H)paroxetine--a new serotonin uptake inhibitor

    SciTech Connect

    Gleiter, C.H.; Nutt, D.J.

    1988-01-01

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand.

  2. Lung damage and pulmonary uptake of serotonin in intact dogs

    SciTech Connect

    Dawson, C.A.; Christensen, C.W.; Rickaby, D.A.; Linehan, J.H.; Johnston, M.R.

    1985-06-01

    The authors examined the influence of glass bead embolization and oleic acid, dextran, and imipramine infusion on the pulmonary uptake of trace doses of (/sup 3/H)serotonin and the extravascular volume accessible to (/sup 14/C)antipyrine in anesthetized dogs. Embolization and imipramine decreased serotonin uptake by 53 and 61%, respectively, but no change was observed with oleic acid or dextran infusion. The extravascular volume accessible to the antipyrine was reduced by 77% after embolization and increased by 177 and approximately 44% after oleic acid and dextran infusion, respectively. The results suggest that when the perfused endothelial surface is sufficiently reduced, as with embolization, the uptake of trace doses of serotonin will be depressed. In addition, decreases in serotonin uptake in response to imipramine in this study and in response to certain endothelial toxins in other studies suggest that serotonin uptake can reveal certain kinds of changes in endothelial function. However, the lack of a response to oleic acid-induced damage in the present study suggests that serotonin uptake is not sensitive to all forms of endothelial damage.

  3. Serotonin blockade delays learning performance in a cooperative fish.

    PubMed

    Soares, Marta C; Paula, José R; Bshary, Redouan

    2016-09-01

    Animals use learning and memorizing to gather information that will help them to make ecologically relevant decisions. Neuro-modulatory adjustments enable them to make associations between stimuli and appropriate behavior. A key candidate for the modulation of cooperative behavior is serotonin. Previous research has shown that modulation of the serotonergic system spontaneously affects the behavior of the cleaner wrasse Labroides dimidiatus during interactions with so-called 'client' reef fish. Here, we asked whether shifts in serotonin function affect the cleaners' associative learning abilities when faced with the task to distinguish two artificial clients that differ in their value as a food source. We found that the administration of serotonin 1A receptor antagonist significantly slowed learning speed in comparison with saline treated fish. As reduced serotonergic signaling typically enhances fear, we discuss the possibility that serotonin may affect how cleaners appraise, acquire information and respond to client-derived stimuli via manipulation of the perception of danger. PMID:27107861

  4. Antihistamine effect on synaptosomal uptake of serotonin, norepinephrine and dopamine

    NASA Technical Reports Server (NTRS)

    Brown, P. A.; Vernikos, J.

    1980-01-01

    A study on the effects of five H1 and H2 antihistamines on the synaptosomal uptake of serotonin (5HT), norepinephrine (NE), and dopamine (DA) is presented. Brain homogenates from female rats were incubated in Krebs-Ringer phosphate buffer solution in the presence of one of three radioactive neurotransmitters, and one of the five antihistamines. Low concentrations of pyrilamine competitively inhibited 5HT uptake, had little effect on NE uptake, and no effect on DA uptake. Promethazine, diphenhydramine, metiamide, and cimetidine had no effect on 5HT or DA uptake at the same concentration. Diphenhydramine had a small inhibitory effect on NE uptake. It is concluded that pyrilamine is a selective and potent competitive inhibitor of 5HT uptake at concentrations between .05 and .5 micromolars.

  5. Myocardial serotonin exchange: negligible uptake by capillary endothelium

    SciTech Connect

    Moffett, T.C.; Chan, I.S.; Bassingthwaighte, J.B.

    1988-03-01

    The extraction of serotonin from the blood during transorgan passage through the heart was studied using Langendorff-perfused rabbit hearts. Outflow dilution curves of /sup 131/I- or /sup 125/I-labeled albumin, (/sup 14/C)sucrose, and (3H)serotonin injected simultaneously into the inflow were fitted with an axially distributed blood-tissue exchange model to examine the extraction process. The model fits of the albumin and sucrose outflow dilution curves were used to define flow heterogeneity, intravascular dispersion, capillary permeability, and the volume of the interstitial space, which reduced the degrees of freedom in fitting the model to the serotonin curves. Serotonin extractions, measured against albumin, during single transcapillary passage, ranged from 24 to 64%. The ratio of the capillary permeability-surface area products for serotonin and sucrose, based on the maximum instantaneous extraction, was 1.37 +/- 0.2 (n = 18), very close to the predicted value of 1.39, the ratio of free diffusion coefficients calculated from the molecular weights. This result shows that the observed uptake of serotonin can be accounted for solely on the basis of diffusion between endothelial cells into the interstitial space. Thus it appears that the permeability of the luminal surface of the endothelial cell is negligible in comparison to diffusion through the clefts between endothelial cells. In 18 sets of dilution curves, with and without receptor and transport blockers or competitors (ketanserin, desipramine, imipramine, serotonin), the extractions and estimates of the capillary permeability-surface area product were not reduced, nor were the volumes of distribution. The apparent absence of transporters and receptors in rabbit myocardial capillary endothelium contrasts with their known abundance in the pulmonary vasculature.

  6. Anorectic activities of serotonin uptake inhibitors: correlation with their potencies at inhibiting serotonin uptake in vivo and /sup 3/H-mazindol binding in vitro

    SciTech Connect

    Angel, I.; Taranger, M.A.; Claustre, Y.; Scatton, B.; Langer, S.Z.

    1988-01-01

    The mechanism of anorectic action of several serotonin uptake inhibitors was investigated by comparing their anorectic potencies with several biochemical and pharmacological properties and in reference to the novel compound SL 81.0385. The anorectic effect of the potent serotonin uptake inhibitor SL 81.0385 was potentiated by pretreatment with 5-hydroxytryptophan and blocked by the serotonin receptor antagonist metergoline. A good correlation was obtained between the ED/sub 50/ values of anorectic action and the ED/sub 50/ values of serotonin uptake inhibition in vivo (but not in vitro) for several specific serotonin uptake inhibitors. Most of the drugs tested displaced (/sup 3/H)-mazindol from its binding to the anorectic recognition site in the hypothalamus, except the pro-drug zimelidine which was inactive. Excluding zimelidine, a good correlation was obtained between the affinities of these drugs for (/sup 3/H)-mazindol binding and their anorectic action indicating that their anorectic activity may be associated with an effect mediated through this site. Taken together these results suggest that the anorectic action of serotonin uptake inhibitors is directly associated to their ability to inhibit serotonin uptake and thus increasing the synaptic levels of serotonin. The interactions of these drugs with the anorectic recognition site labelled with (/sup 3/H)-mazindol is discussed in connection with the serotonergic regulation of carbohydrate intake.

  7. Characterization and regulation of (/sup 3/H)-serotonin uptake and release in rodent spinal

    SciTech Connect

    Stauderman, K.A.

    1986-01-01

    The uptake and release of (/sup 3/H)-serotonin were investigated in rat spinal cord synaptosomes. In the uptake experiments, sodium-dependent and sodium-independent (/sup 3/H)-serotonin accumulation processes were found. Sodium-dependent (/sup 3/H)-serotonin accumulation was: linear with sodium concentrations up to 180 mM; decreased by disruption of membrane integrity or ionic gradients; associated with purified synaptosomal fractions; and reduced after description of descending serotonergic neurons in the spinal cord. Of the uptake inhibitors tested, the most potent was fluoxetine (IC/sub 50/ 75 nM), followed by desipramine (IC/sub 50/ 430 nM) and nomifensine (IC/sub 50/ 950 nM). The sodium-independent (/sup 3/H)-serotonin accumulation process was insensitive to most treatments and probably represents nonspecific membrane binding. Thus, only sodium-dependent (/sup 3/H)-serotonin uptake represents the uptake process of serotonergic nerve terminals in rat spinal cord homogenates. In the release experiments, K/sup +/-induced release of previously accumulated (/sup 3/H)-serotonin was Ca/sup 2 +/-dependent, and originated from serotonergic synaptosomes. Exogenous serotonin and 5-methyoxy-N,N-dimethyltryptamine inhibited (/sup 3/H)-serotonin release in a concentration-dependent way. Of the antagonists tested, only methiothepin effectively blocked the effect of serotonin. These data support the existence of presynaptic serotonin autoreceptors on serotonergic nerve terminals in the rat spinal cord that act to inhibit a voltage and Ca/sup 2 +/-sensitive process linked to serotonin release. Alteration of spinai cord serotonergic function may therefore be possible by drugs acting on presynaptic serotonin autoreceptors in the spinal cord.

  8. A serotonergic system in veins: serotonin transporter-independent uptake.

    PubMed

    Linder, A Elizabeth; Ni, Wei; Szasz, Theodora; Burnett, Robert; Diaz, Jessica; Geddes, Timothy J; Kuhn, Donald M; Watts, Stephanie W

    2008-06-01

    We hypothesized that the 5-hydroxytryptamine (5-HT; serotonin) system is present and functional in veins. In vena cava (VC), the presence of the 5-HT synthesis rate-limiting enzyme tryptophan hydroxylase-1 mRNA and accumulation of the 5-HT synthesis intermediate 5-hydroxytryptophan after incubation with tryptophan supported the ability of veins to synthesize 5-HT. The presence of 5-HT and its metabolite 5-hydroxyindole acetic acid was measured by high-performance liquid chromatography in VC and jugular vein (JV), and it was compared with similarly sized arteries aorta (RA) and carotid (CA), respectively. In rats treated with the monoamine oxidase-A (MAO-A) inhibitor pargyline to prevent 5-HT metabolism, basal 5-HT levels were higher in veins than in arteries. 5-HT uptake was observed after exposure to exogenous 5-HT in all vessels. The presence of MAO-A and the 5-HT transporter (SERT) in VC was observed by immunohistochemistry and Western analysis. However, 5-HT uptake was not inhibited by the SERT inhibitors fluoxetine and/or fluvoxamine in VC and JV, as opposed to the inhibition in RA and CA. Moreover, studies performed in VC from mutant rats lacking SERT showed no differences in 5-HT uptake compared with VC from wild type. These data suggest the SERT is not functional under physiological conditions in veins. The differences in 5-HT handling between veins and arteries may represent alternative avenues for targeting the 5-HT system in the peripheral circulation for controlling vascular tone. PMID:18322152

  9. Ethanol intake and sup 3 H-serotonin uptake I: A study in Fawn-Hooded rats

    SciTech Connect

    Daoust, M.; Compagnon, P.; Legrand, E.; Boucly, P. )

    1991-01-01

    Ethanol intake and synaptosomal {sup 3}H-serotonin uptake were studied in male Fawn-Hooded and Sprague-Dawley rats. Fawn-Hooded rats consumed more alcohol and more water than Sprague-Dawley rats. Plasma alcohol levels of Sprague-Dawley rats were not detectable but were about 5 mg/dl in Fawn-Hooded rats. Ethanol intake increased the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex, but not in thalamus. In Fawn-Hooded rats, serotonin uptake (Vmax) was higher than in Sprague-Dawley rats cortex. Ethanol intake reduced the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex. In cortex, the carrier affinity for serotonin was increased in alcoholized Fawn-Hooded rats. These results indicate that synaptosomal {sup 3}H-serotonin uptake is affected by ethanol intake. In Fawn-Hooded rats, high ethanol consumption is associated with high serotonin uptake. In rats presenting high serotonin uptake, alcoholization reduces {sup 3}H-serotonin internalization in synaptosomes, indicating a specific sensitivity to alcohol intake of serotonin uptake system.

  10. Uptake of (/sup 3/H)serotonin into plasma membrane vesicles from mouse cerebral cortex

    SciTech Connect

    O'Reilly, C.A.; Reith, M.E.A.

    1988-05-05

    Preparations of plasma membrane vesicles were used as a tool to study the properties of the serotonin transporter in the central nervous system. The vesicles were obtained after hypotonic shock of synaptosomes purified from mouse cerebral cortex. Uptake of (/sup 3/H)serotonin had a Na/sup +/-dependent and Na/sup +/-independent component. The Na/sup +/-dependent uptake was inhibited by classical blockers of serotonin uptake and had a K/sub m/ of 63-180 nM, and a V/sub max/ of 0.1-0.3 pmol mg/sup -1/ s/sup -1/ at 77 mM Na/sup +/. The uptake required the presence of external Na/sup +/ and internal K/sup +/. Replacement of Cl/sup -/ by other anions (NO/sub 2//sup -/, S/sub 2/O/sub 3//sup 2 -/) reduced uptake appreciably. Gramicidin prevented uptake. Although valinomycin increased uptake somewhat, the membrane potential per se could not drive uptake because no uptake was observed when a membrane potential was generated by the SCN/sup -/ ion in the absence of internal K/sup +/ and with equal (Na/sup +/) inside and outside. The increase of uptake as a function of (Na/sup +/) indicated a K/sub m/ for Na/sup +/ of 118 mM and a Hill number of 2.0, suggesting a requirement of two sodium ions for serotonin transport. The present results are accommodated very well by the model developed for porcine platelet serotonin transport except for the number of sodium ions that are required for transport.

  11. Serotonin uptake in cerebral cortex cultures: imipramine-like inhibition by N-isopropyl-p-iodoamphetamine

    SciTech Connect

    de Jong, B.M.; Feenstra, M.G.; Ruijter, J.M.; van Royen, E.A.

    1989-03-01

    In cultured rat neocortex, uptake of (/sup 3/H)serotonin (5-HT) and the SPECT radiopharmaceutical N-isopropyl-p-(/sup 123/I)iodoamphetamine (IMP) was demonstrated after 4 and 14 days in vitro. Both imipramine and cold IMP inhibited (/sup 3/H)5-HT uptake. Uptake of (/sup 123/I)IMP was inhibited by imipramine but not by cold 5-HT. The similarity in the behaviors of IMP and imipramine indicates that uptake of IMP might be related to a serotonergic uptake system in a way that is similar to that in which imipramine is related to such a system.

  12. Platelet uptake of serotonin (5-HT) during ethanol withdrawal in male alcoholics

    SciTech Connect

    Neiman, J.; Beving, H.; Malmgren, R.

    1987-06-15

    Changes in the kinetic variables of the platelet serotonin uptake, Km and Vmax, were studied in 7 male alcoholics, admitted for detoxification and in sex- and age-matched volunteers. On admission the alcoholics had lower Km values than reference subjects (p less than 0.05). During detoxification the Km values normalized. Vmax was normal throughout the study in spite of the changes in platelet count. The results of the study suggest that the affinity of serotonin to its uptake receptor is transiently increased after a period of heavy drinking.

  13. Autoradiographic localization of /sup 3/H-paroxetine-labeled serotonin uptake sites in rat brain

    SciTech Connect

    De Souza, E.B.; Kuyatt, B.L.

    1987-01-01

    Paroxetine is a potent and selective inhibitor of serotonin uptake into neurons. Serotonin uptake sites have been identified, localized, and quantified in rat brain by autoradiography with 3H-paroxetine; 3H-paroxetine binding in slide-mounted sections of rat forebrain was of high affinity (KD = 10 pM) and the inhibition affinity constant (Ki) values of various drugs in competing 3H-paroxetine binding significantly correlated with their reported potencies in inhibiting synaptosomal serotonin uptake. Serotonin uptake sites labeled by 3H-paroxetine were highly concentrated in the dorsal and median raphe nuclei, central gray, superficial layer of the superior colliculus, lateral septal nucleus, paraventricular nucleus of the thalamus, and the islands of Calleja. High concentrations of 3H-paroxetine binding sites were found in brainstem areas containing dopamine (substantia nigra and ventral tegmental area) and norepinephrine (locus coeruleus) cell bodies. Moderate concentrations of 3H-paroxetine binding sites were present in laminae I and IV of the frontal parietal cortex, primary olfactory cortex, olfactory tubercle, regions of the basal ganglia, septum, amygdala, thalamus, hypothalamus, hippocampus, and some brainstem areas including the interpeduncular, trigeminal, and parabrachial nuclei. Lower densities of 3H-paroxetine binding sites were found in other regions of the neocortex and very low to nonsignificant levels of binding were present in white matter tracts and in the cerebellum. Lesioning of serotonin neurons with 3,4-methylenedioxyamphetamine caused large decreases in 3H-paroxetine binding. The autoradiographic distribution of 3H-paroxetine binding sites in rat brain corresponds extremely well to the distribution of serotonin terminals and cell bodies as well as with the pharmacological sites of action of serotonin.

  14. Effects of 2-substituted-4-phenylquinolines on uptake of serotonin and norepinephrine by isolated brain synaptosomes

    SciTech Connect

    Alhaider, A.A.; Lein, E.J.; Ransom, R.W.; Bolger, M.B.

    1987-03-02

    In this present communication, the in vitro inhibition of the uptake of (/sup 3/H)-L-norepinephrine ((/sup 3/H) NE) and (/sup 3/H)-Serotonin ((/sup 3/H) 5-HT) by eleven synthesized 2-substituted-4-phenylquionlines were studied using rate brain synaptosomal preparations. Compounds with an open side chain were relatively weak inhibitors of the synaptosomal uptake of (/sup 3/H) NE and (/sup 3/H) 5HT. Compounds having a distance of three atoms between the terminal basic nitrogen of the side chain and the quinoline ring were better inhibitors of serotonin uptake than those compounds having a four-atom distance. The replacement of the side chain with a piperazine ring produced compounds which were more potent and selective inhibitors of the uptake of either (/sup 3/H) 5-HT or (/sup 3/H) NE. Further structure-activity relationships are also discussed. 13 references, 1 table.

  15. Ethanol intake and sup 3 H-serotonin uptake II: A study in alcoholic patients using platelets sup 3 H-paroxetine binding

    SciTech Connect

    Daoust, M.; Boucly, P. ); Ernouf, D. ); Breton, P. ); Lhuintre, J.P.

    1991-01-01

    The kinetic parameters of {sup 3}H-paroxetine binding and {sup 3}H-serotonin uptake were studied in platelets of alcoholic patients. There was no difference between alcoholic and non alcoholic subjects in {sup 3}H-paroxetine binding. When binding and {sup 3}H-serotonin uptake were studied, in the same plasma of the same subjects, the Vmax of serotonin uptake was increased in alcoholics. The data confirm the involvement of serotonin uptake system in alcohol dependance and suggest that serotonin uptake and paroxetine binding sites may be regulated independently in this pathology.

  16. The Design, Synthesis and Structure-Activity Relationship of Mixed Serotonin, Norepinephrine and Dopamine Uptake Inhibitors

    NASA Astrophysics Data System (ADS)

    Chen, Zhengming; Yang, Ji; Skolnick, Phil

    The evolution of antidepressants over the past four decades has involved the replacement of drugs with a multiplicity of effects (e.g., TCAs) by those with selective actions (i.e., SSRIs). This strategy was employed to reduce the adverse effects of TCAs, largely by eliminating interactions with certain neurotransmitters or receptors. Although these more selective compounds may be better tolerated by patients, selective drugs, specifically SSRIs, are not superior to older drugs in treating depressed patients as measured by response and remission rates. It may be an advantage to increase synaptic levels of both serotonin and norepinephrine, as in the case of dual uptake inhibitors like duloxetine and venlafaxine. An important recent development has been the emergence of the triple-uptake inhibitors (TUIs/SNDRIs), which inhibit the uptake of the three neurotransmitters most closely linked to depression: serotonin, norepinephrine, and dopamine. Preclinical studies and clinical trials indicate that a drug inhibiting the reuptake of all three of these neurotransmitters could produce more rapid onset of action and greater efficacy than traditional antidepressants. This review will detail the medicinal chemistry involved in the design, synthesis and discovery of mixed serotonin, norepinephrine and dopamine transporter uptake inhibitors.

  17. Effect of serotonin transporter blockade on L-DOPA-induced dyskinesia in animal models of Parkinson's disease.

    PubMed

    Fidalgo, C; Ko, W K D; Tronci, E; Li, Q; Stancampiano, R; Chuan, Q; Bezard, E; Carta, M

    2015-07-01

    Serotonin transporter blockade with selective serotonin reuptake inhibitors (SSRIs) was recently shown to counteract L-DOPA-induced dyskinesia in 6-hydroxydopamine (6-OHDA)-lesioned rats. However, this effect has never been described in Parkinson's disease (PD) patients, despite that they often receive SSRIs for the treatment of depression. In the present study, we investigated the efficacy of the SSRI citalopram against dyskinesia in two experimental models of PD, the 6-OHDA-lesioned rat and 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)-treated macaque. First, we studied the acute and chronic effect of citalopram, given at different time points before L-DOPA, in L-DOPA-primed parkinsonian rats. Moreover, the acute effect of citalopram was also evaluated in dyskinetic MPTP-treated macaques. In L-DOPA-primed rats, a significant and long-lasting reduction of L-DOPA-induced dyskinesia (LID) was observed only when citalopram was given 30 min before L-DOPA, suggesting that the time of injection relative to L-DOPA is a key factor for the efficacy of the treatment. Interestingly, an acute challenge with the 5-HT1A/1B receptor agonist eltoprazine, given at the end of the chronic study, was equally effective in reducing LID in rats previously chronically treated with L-DOPA or L-DOPA plus citalopram, suggesting that no auto-receptor desensitization was induced by chronic citalopram treatment. In MPTP-treated macaques, citalopram produced a striking suppression of LID but at the expense of L-DOPA therapeutic efficacy, which represents a concern for possible clinical application. PMID:25907446

  18. Imipramine treatment differentially affects platelet /sup 3/H-imipramine binding and serotonin uptake in depressed patients

    SciTech Connect

    Suranyi-Cadotte, B.E.; Quirion, R.; Nair, N.P.V.; Lafaille, F.; Schwartz, G.

    1985-02-25

    Uptake of serotonin and /sup 3/H-imipramine binding in platelets of depressed patients were investigated simultaneously with changes in clinical state. Both V/sub max/ for serotonin uptake and B/sub max/ for /sup 3/H-imipramine binding were significantly lower in unmedicated depressed patients with respect to normal subjects. Successful treatment with imipramine led to a significant increase in B/sub max/ for /sup 3/H-imipramine binding, without significant change in V/sub max/ for serotonin uptake. B/sub max/ values increased to the normal range following complete, rather than partial clinical improvement. These data indicate that successful antidepressant treatment may increase the density of /sup 3/H-imipramine binding sites on platelets by a process which is independent of the uptake of serotonin. 29 references, 1 table.

  19. Unfaithful neurotransmitter transporters: Focus on serotonin uptake and implications for antidepressant efficacy

    PubMed Central

    Daws, Lynette C.

    2009-01-01

    Biogenic amine transporters for serotonin, norepinephrine and dopamine (SERT, NET and DAT respectively), are the key players terminating transmission of these amines in the central nervous system by their high-affinity uptake. They are also major targets for many antidepressant drugs. Interestingly however, drugs targeted to a specific transporter do not appear to be as clinically efficacious as those that block two or all three of these transporters. A growing body of literature, reviewed here, supports the idea that promiscuity among these transporters (the uptake of multiple amines in addition to their “native” transmitter) may account for improved therapeutic effects of dual and triple uptake blockers. However, even these drugs do not provide effective treatment outcomes for all individuals. An emerging literature suggests that “non-traditional” transporters such as organic cation transporters (OCT) and the plasma membrane monoamine transporter (PMAT) may contribute to the less than hoped for efficacy of currently prescribed uptake inhibitors. OCT and PMAT are capable of clearing biogenic amines from extracellular fluid and may serve to buffer the effects of frontline antidepressants, such as selective serotonin reuptake inhibitors. In addition, polymorphisms that occur in the genes encoding the transporters can lead to variation in transporter expression and function (e.g. the serotonin transporter linked polymorphic region; 5-HTTLPR) and can have profound effects on treatment outcome. This may be accounted for, in part, by compensatory adaptations in other transporters. This review synthesizes the existing literature, focusing on serotonin to illustrate and revive a model for the rationale design of improved antidepressants. PMID:19022290

  20. Differential Blockade of CRF-evoked Behaviors by Depletion of Norepinephrine and Serotonin in Rats

    PubMed Central

    Howard, Owen; Carr, Gregory V.; Hill, Tiffany E.; Valentino, Rita J.; Lucki, Irwin

    2009-01-01

    Rationale Central administration of corticotropin-releasing factor (CRF) elicits a specific pattern of behavioral responses resembling a stress-like state, and is anxiogenic in rodent models of anxiety. Objectives Specific behaviors evoked by the administration of CRF were measured. The roles of CRF receptor subtypes and that of serotonergic and noradrenergic systems in mediating these responses were studied. Methods Burying, grooming and head shakes were quantified in rats following intracerebroventricular administration of CRF and urocortin II and after pretreatment with antagonists. The role of forebrain norepinephrine in the behavioral responses to CRF (0.3 μg) was examined following pretreatment with the neurotoxin DSP-4 and that of serotonin after depletion using systemic administration of para-chlorophenylalanine (p-CPA). Results CRF at 0.3 and 3.0 μg caused robust increases in burying, grooming and head shakes, but urocortin II was ineffective. Pretreatment with either antalarmin or propranolol significantly attenuated the CRF-evoked behaviors. Destruction of forebrain NE pathways blocked spontaneous burying behavior elicited by CRF and conditioned burying directed towards an electrified shock probe. In contrast, depletion of 5-HT selectively attenuated CRF-evoked grooming. Conclusions Overt behavioral responses produced by CRF, burying, grooming, and head shakes, appeared to be mediated through the CRF1 receptor. Spontaneous burying behavior evoked by CRF or conditioned burying directed towards a shock probe were disrupted by lesion of the dorsal noradrenergic bundle and may represent anxiety-like behavior caused by CRF activation of the LC. In contrast, CRF-evoked increases in grooming were dependent on serotonin. PMID:18516596

  1. Studies of serotonin uptake and serotonin/sub 1A/ receptor using photoaffinity probes

    SciTech Connect

    Lee, J.D.

    1986-01-01

    The serotonergic system in the central nervous system (CNS) has been implicated in many physiological functions. The objectives of this study are: (1) to develop a new photoaffinity probe that can be used to identify the protein associated with the substrate binding site of the 5-HT uptake carrier, (2) to investigate the existence of different conformational states of the 5-HT carrier, (3) to solubilize the 5-HT/sub 1a/ receptor proteins from bovine hippocampus, and (4) to identify the 5-HT/sub 1a/ receptor proteins using a new photoaffinity probe, i.e., 1-(2-(4-aminophenyl)ethyl)4-(3-trifluoromethylphenyl)piperazine ((/sup 3/H)p-azido-PAPP), with high affinity for 5-HT/sub 1a/ receptor.

  2. Impaired Brain Dopamine and Serotonin Release and Uptake in Wistar Rats Following Treatment with Carboplatin.

    PubMed

    Kaplan, Sam V; Limbocker, Ryan A; Gehringer, Rachel C; Divis, Jenny L; Osterhaus, Gregory L; Newby, Maxwell D; Sofis, Michael J; Jarmolowicz, David P; Newman, Brooke D; Mathews, Tiffany A; Johnson, Michael A

    2016-06-15

    Chemotherapy-induced cognitive impairment, known also as "chemobrain", is a medical complication of cancer treatment that is characterized by a general decline in cognition affecting visual and verbal memory, attention, complex problem solving skills, and motor function. It is estimated that one-third of patients who undergo chemotherapy treatment will experience cognitive impairment. Alterations in the release and uptake of dopamine and serotonin, central nervous system neurotransmitters that play important roles in cognition, could potentially contribute to impaired intellectual performance in those impacted by chemobrain. To investigate how chemotherapy treatment affects these systems, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used to measure dopamine and serotonin release and uptake in coronal brain slices containing the striatum and dorsal raphe nucleus, respectively. Measurements were taken from rats treated weekly with selected doses of carboplatin and from control rats treated with saline. Modeling the stimulated dopamine release plots revealed an impairment of dopamine release per stimulus pulse (80% of saline control at 5 mg/kg and 58% at 20 mg/kg) after 4 weeks of carboplatin treatment. Moreover, Vmax, the maximum uptake rate of dopamine, was also decreased (55% of saline control at 5 mg/kg and 57% at 20 mg/kg). Nevertheless, overall dopamine content, measured in striatal brain lysates by high performance liquid chromatography, and reserve pool dopamine, measured by FSCV after pharmacological manipulation, did not significantly change, suggesting that chemotherapy treatment selectively impairs the dopamine release and uptake processes. Similarly, serotonin release upon electrical stimulation was impaired (45% of saline control at 20 mg/kg). Measurements of spatial learning discrimination were taken throughout the treatment period and carboplatin was found to alter cognition. These studies support the need for additional

  3. Impaired Brain Dopamine and Serotonin Release and Uptake in Wistar Rats Following Treatment with Carboplatin

    PubMed Central

    2016-01-01

    Chemotherapy-induced cognitive impairment, known also as “chemobrain”, is a medical complication of cancer treatment that is characterized by a general decline in cognition affecting visual and verbal memory, attention, complex problem solving skills, and motor function. It is estimated that one-third of patients who undergo chemotherapy treatment will experience cognitive impairment. Alterations in the release and uptake of dopamine and serotonin, central nervous system neurotransmitters that play important roles in cognition, could potentially contribute to impaired intellectual performance in those impacted by chemobrain. To investigate how chemotherapy treatment affects these systems, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used to measure dopamine and serotonin release and uptake in coronal brain slices containing the striatum and dorsal raphe nucleus, respectively. Measurements were taken from rats treated weekly with selected doses of carboplatin and from control rats treated with saline. Modeling the stimulated dopamine release plots revealed an impairment of dopamine release per stimulus pulse (80% of saline control at 5 mg/kg and 58% at 20 mg/kg) after 4 weeks of carboplatin treatment. Moreover, Vmax, the maximum uptake rate of dopamine, was also decreased (55% of saline control at 5 mg/kg and 57% at 20 mg/kg). Nevertheless, overall dopamine content, measured in striatal brain lysates by high performance liquid chromatography, and reserve pool dopamine, measured by FSCV after pharmacological manipulation, did not significantly change, suggesting that chemotherapy treatment selectively impairs the dopamine release and uptake processes. Similarly, serotonin release upon electrical stimulation was impaired (45% of saline control at 20 mg/kg). Measurements of spatial learning discrimination were taken throughout the treatment period and carboplatin was found to alter cognition. These studies support the need for additional

  4. Different components of /sup 3/H-imipramine binding in rat brain membranes: relation to serotonin uptake sites

    SciTech Connect

    Gobbi, M.; Taddei, C.; Mennini, T.

    1988-01-01

    In the present paper, the authors confirm and extend previous studies showing heterogeneous /sup 3/H-imipramine (/sup 3/H-IMI) binding sites. Inhibition curves of various drugs (serotonin, imipramine, desmethyl-imipramine, d-fenfluramine, d-norfenfluramine and indalpine, a potent serotonin uptake inhibitor) obtained using 2 nM /sup 3/H-IMI and in presence of 120 mM NaCl, confirmed the presence of at least three /sup 3/H-IMI binding sites: two of these were serotonin-insensitive while the third one was selectively inhibited by serotonin and indalpine with nanomolar affinities. Moreover this last component was found to be selectively modulated by chronic imipramine treatment thus suggesting a close relation to serontonin uptake mechanism. These data indicate that the use of a more selective inhibitors of the serotonin-sensitive component (like indalpine or serotonin itself) to define non specific /sup 3/H-IMI, may be of help in understanding its relation with serotonin uptake system. 22 references, 2 figures, 2 tables.

  5. Serotonin Uptake Is Largely Mediated by Platelets versus Lymphocytes in Peripheral Blood Cells

    PubMed Central

    2012-01-01

    The serotonin transporter (SERT), a primary target for many antidepressants, is expressed in the brain and also in peripheral blood cells. Although platelet SERT function is well accepted, lymphocyte SERT function has not been definitively characterized. Due to their small size, platelets often are found in peripheral blood mononuclear cell preparations aimed at isolating lymphocytes, monocytes, and macrophages. The presence of different cells makes it difficult to assign SERT expression and function to specific cell types. Here, we use flow cytometry and IDT307, a monoamine transporter substrate that fluoresces after uptake into cells, to investigate SERT function in lymphocyte and platelet populations independently, as well as simultaneously without prior isolation. We find that murine lymphocytes exhibit temperature-dependent IDT307 transport but uptake is independent of SERT. Lack of measurable SERT function in lymphocytes was corroborated by chronoamperometry using serotonin as a substrate. When we examined rhesus and human mixed blood cell populations, we found that platelets, and not lymphocytes, were primary contributors to SERT function. Overall, these findings indicate that lymphocyte SERT function is minimal. Moreover, flow cytometry, in conjunction with the fluorescent transporter substrate IDT307, can be widely applied to investigate SERT in platelets from populations of clinical significance. PMID:23336055

  6. Vascular reactivity, 5-HT uptake, and blood pressure in the serotonin transporter knockout rat.

    PubMed

    Linder, A Elizabeth; Diaz, Jessica; Ni, Wei; Szasz, Theo; Burnett, Robert; Watts, Stephanie W

    2008-04-01

    The handling of serotonin [5-hydroxytryptamine (5-HT)] depends on the serotonin transporter (SERT). A SERT knockout (KO) rat is a useful model to test the hypothesis that SERT is the primary mechanism for arterial 5-HT uptake and to investigate the impact of SERT removal on blood pressure. Wild-type (WT) and KO rats were used to measure 5-HT content (plasma, raphe, aorta, carotid, and mesenteric artery), aortic isometric contraction, and blood pressure. HPLC supported the lack of circulating 5-HT in plasma (ng/ml plasma, WT, 310 +/- 96; and KO, 1.0 +/- 0.5; P < 0.05). Immunohistochemistry and Western blot analyses validated the presence of the SERT protein in the WT rats and a lesser expression in the KO rat. The aorta isolated from KO rats had a normal contraction to phenylephrine and norepinephrine and a normal relaxation to the endothelium-dependent agonist acetylcholine compared with the aorta from WT. In contrast, the potency of 5-HT was increased in the aorta from KO rats compared with WT rats [-log EC(50) (M); WT, 5.71 +/- 0.08; and KO, 6.7 +/- 0.18] and maximum contraction was reduced [%phenylephrine (10 muM) contraction, WT, 113 +/- 6%; and KO, 52 +/- 12%]. 5-HT uptake was reduced but not abolished in arteries of the KO compared with the WT rats. Diurnal mean arterial blood pressure, heart rate, and locomotor activity level of the KO rats were similar to the WT rats. These data suggest that there are other mechanisms of 5-HT uptake in the arteries of the rat and that although the absence of circulating 5-HT and/or SERT function sensitizes arteries to 5-HT, SERT dysfunction does not impair normal blood pressure. PMID:18263707

  7. Modeling serotonin uptake in the lung shows endothelial transporters dominate over cleft permeation

    PubMed Central

    Bassingthwaighte, James B.

    2013-01-01

    A four-region (capillary plasma, endothelium, interstitial fluid, cell) multipath model was configured to describe the kinetics of blood-tissue exchange for small solutes in the lung, accounting for regional flow heterogeneity, permeation of cell membranes and through interendothelial clefts, and intracellular reactions. Serotonin uptake data from the Multiple indicator dilution “bolus sweep” experiments of Rickaby and coworkers (Rickaby DA, Linehan JH, Bronikowski TA, Dawson CA. J Appl Physiol 51: 405–414, 1981; Rickaby DA, Dawson CA, and Linehan JH. J Appl Physiol 56: 1170–1177, 1984) and Malcorps et al. (Malcorps CM, Dawson CA, Linehan JH, Bronikowski TA, Rickaby DA, Herman AG, Will JA. J Appl Physiol 57: 720–730, 1984) were analyzed to distinguish facilitated transport into the endothelial cells (EC) and the inhibition of tracer transport by nontracer serotonin in the bolus of injectate from the free uninhibited permeation through the clefts into the interstitial fluid space. The permeability-surface area products (PS) for serotonin via the inter-EC clefts were ∼0.3 ml·g−1·min−1, low compared with the transporter-mediated maximum PS of 13 ml·g−1·min−1 (with Km = ∼0.3 μM and Vmax = ∼4 nmol·g−1·min−1). The estimates of serotonin PS values for EC transporters from their multiple data sets were similar and were influenced only modestly by accounting for the cleft permeability in parallel. The cleft PS estimates in these Ringer-perfused lungs are less than half of those for anesthetized dogs (Yipintsoi T. Circ Res 39: 523–531, 1976) with normal hematocrits, but are compatible with passive noncarrier-mediated transport observed later in the same laboratory (Dawson CA, Linehan JH, Rickaby DA, Bronikowski TA. Ann Biomed Eng 15: 217–227, 1987; Peeters FAM, Bronikowski TA, Dawson CA, Linehan JH, Bult H, Herman AG. J Appl Physiol 66: 2328–2337, 1989) The identification and quantitation of the cleft pathway conductance from these

  8. Effects of calcium antagonists on isolated bovine cerebral arteries: inhibition of constriction and calcium-45 uptake induced by potassium or serotonin

    SciTech Connect

    Wendling, W.W.; Harakal, C.

    1987-05-01

    The purpose of this study was to determine the mechanisms by which organic calcium channel blockers inhibit cerebral vasoconstriction. Isolated bovine middle cerebral arteries were cut into rings to measure contractility or into strips to measure radioactive calcium (/sup 45/Ca) influx and efflux. Calcium channel blockers (10(-5) M verapamil or 3.3 X 10(-7) M nifedipine) and calcium-deficient solutions all produced near-maximal inhibition of both potassium- and serotonin-induced constriction. In calcium-deficient solutions containing potassium or serotonin, verapamil and nifedipine each blocked subsequent calcium-induced constriction in a competitive manner. Potassium and serotonin significantly increased /sup 45/Ca uptake into cerebral artery strips during 5 minutes of /sup 45/Ca loading; for potassium /sup 45/Ca uptake increased from 62 to 188 nmol/g, and for serotonin from 65 to 102 nmol/g. Verapamil or nifedipine had no effect on basal /sup 45/Ca uptake but significantly blocked the increase in /sup 45/Ca uptake induced by potassium or serotonin. Potassium, and to a lesser extent serotonin, each induced a brief increase in the rate of /sup 45/Ca efflux into calcium-deficient solutions. Verapamil or nifedipine had no effect on basal or potassium-stimulated /sup 45/Ca efflux. The results demonstrate that verapamil and nifedipine block /sup 45/Ca uptake through both potential-operated (potassium) and receptor-operated (serotonin) channels in bovine middle cerebral arteries.

  9. Selective labeling of serotonin uptake sites in rat brain by (/sup 3/H)citalopram contrasted to labeling of multiple sites by (/sup 3/H)imipramine

    SciTech Connect

    D'Amato, R.J.; Largent, B.L.; Snowman, A.M.; Snyder, S.H.

    1987-07-01

    Citalopram is a potent and selective inhibitor of neuronal serotonin uptake. In rat brain membranes (/sup 3/H)citalopram demonstrates saturable and reversible binding with a KD of 0.8 nM and a maximal number of binding sites (Bmax) of 570 fmol/mg of protein. The drug specificity for (/sup 3/H)citalopram binding and synaptosomal serotonin uptake are closely correlated. Inhibition of (/sup 3/H)citalopram binding by both serotonin and imipramine is consistent with a competitive interaction in both equilibrium and kinetic analyses. The autoradiographic pattern of (/sup 3/H)citalopram binding sites closely resembles the distribution of serotonin. By contrast, detailed equilibrium-saturation analysis of (/sup 3/H)imipramine binding reveals two binding components, i.e., high affinity (KD = 9 nM, Bmax = 420 fmol/mg of protein) and low affinity (KD = 553 nM, Bmax = 8560 fmol/mg of protein) sites. Specific (/sup 3/H)imipramine binding, defined as the binding inhibited by 100 microM desipramine, is displaced only partially by serotonin. Various studies reveal that the serotonin-sensitive portion of binding corresponds to the high affinity sites of (/sup 3/H)imipramine binding whereas the serotonin-insensitive binding corresponds to the low affinity sites. Lesioning of serotonin neurons with p-chloroamphetamine causes a large decrease in (/sup 3/H)citalopram and serotonin-sensitive (/sup 3/H)imipramine binding with only a small effect on serotonin-insensitive (/sup 3/H)imipramine binding. The dissociation rate of (/sup 3/H)imipramine or (/sup 3/H)citalopram is not altered by citalopram, imipramine or serotonin up to concentrations of 10 microM. The regional distribution of serotonin sensitive (/sup 3/H)imipramine high affinity binding sites closely resembles that of (/sup 3/H)citalopram binding.

  10. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    PubMed

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner. PMID:27125304

  11. Serotonin uptake, storage, and synthesis in an immortalized committed cell line derived from mouse teratocarcinoma.

    PubMed Central

    Buc-Caron, M H; Launay, J M; Lamblin, D; Kellermann, O

    1990-01-01

    We report the isolation and characterization of a serotoninergic cell line, 1C11, derived from a mouse teratocarcinoma. The clone 1C11 was immortalized through the expression of the simian virus 40 oncogenes. 1C11 presents two states: an immature epithelial-like state (1C11 precursor) and a more differentiated state (1C11). After induction by dibutyryl cyclic AMP and cyclohexanecarboxylic acid, almost 100% of 1C11 cells continue to divide and have acquired a neural-like phenotype. 1C11* cells coexpress several neural markers, such as synaptophysin (the membrane constituent of synaptic vesicles), the neuropeptide [Met5]enkephalin, and the neurotransmitter serotonin. 1C11* cells store endogenous serotonin and are able to synthesize serotonin from L-tryptophan and to catabolize it by monoamine oxidase B. Moreover, the cells take up serotonin by a carrier-mediated mechanism very similar to that of serotoninergic neurons. The expression of the simian virus 40 oncogenes, which promoted immortalization, does not therefore prevent further differentiation. This inducible cell line constitutes a valuable model for cellular and molecular studies concerning the physiology and the pharmacological modulation of the serotoninergic phenotype. Images PMID:2155426

  12. Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate behavior at the serotonin uptake transporter and the vesicle monoamine transporter.

    PubMed

    Cozzi, Nicholas V; Gopalakrishnan, Anupama; Anderson, Lyndsey L; Feih, Joel T; Shulgin, Alexander T; Daley, Paul F; Ruoho, Arnold E

    2009-12-01

    N,N-dimethyltryptamine (DMT) is a potent plant hallucinogen that has also been found in human tissues. When ingested, DMT and related N,N-dialkyltryptamines produce an intense hallucinogenic state. Behavioral effects are mediated through various neurochemical mechanisms including activity at sigma-1 and serotonin receptors, modification of monoamine uptake and release, and competition for metabolic enzymes. To further clarify the pharmacology of hallucinogenic tryptamines, we synthesized DMT, N-methyl-N-isopropyltryptamine (MIPT), N,N-dipropyltryptamine (DPT), and N,N-diisopropyltryptamine. We then tested the abilities of these N,N-dialkyltryptamines to inhibit [(3)H]5-HT uptake via the plasma membrane serotonin transporter (SERT) in human platelets and via the vesicle monoamine transporter (VMAT2) in Sf9 cells expressing the rat VMAT2. The tryptamines were also tested as inhibitors of [(3)H]paroxetine binding to the SERT and [(3)H]dihydrotetrabenazine binding to VMAT2. Our results show that DMT, MIPT, DPT, and DIPT inhibit [(3)H]5-HT transport at the SERT with K ( I ) values of 4.00 +/- 0.70, 8.88 +/- 4.7, 0.594 +/- 0.12, and 2.32 +/- 0.46 microM, respectively. At VMAT2, the tryptamines inhibited [(3)H]5-HT transport with K ( I ) values of 93 +/- 6.8, 20 +/- 4.3, 19 +/- 2.3, and 19 +/- 3.1 muM, respectively. On the other hand, the tryptamines were very poor inhibitors of [(3)H]paroxetine binding to SERT and of [(3)H]dihydrotetrabenazine binding to VMAT2, resulting in high binding-to-uptake ratios. High binding-to-uptake ratios support the hypothesis that the tryptamines are transporter substrates, not uptake blockers, at both SERT and VMAT2, and also indicate that there are separate substrate and inhibitor binding sites within these transporters. The transporters may allow the accumulation of tryptamines within neurons to reach relatively high levels for sigma-1 receptor activation and to function as releasable transmitters. PMID:19756361

  13. The effect of prolonged simvastatin application on serotonin uptake, membrane microviscosity and behavioral changes in the animal model.

    PubMed

    Vevera, Jan; Valeš, Karel; Fišar, Zdeněk; Hroudová, Jana; Singh, Namrata; Stuchlík, Aleš; Kačer, Petr; Nekovářová, Tereza

    2016-05-01

    Simvastatin and other statins (HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors) are extensively used in clinical practices and are very effective in decreasing serum low-density lipoprotein cholesterol. However, their effect on cholesterol synthesis in central nervous system and its behavioral consequences have not been fully understood yet. We have studied selected biologic traits potentially affected by statin treatment - serotonin (5-HT) uptake in platelets, membrane microviscosity in erythrocytes, cholesterol level in the brain (amygdala; hippocampus and prefrontal cortex), as well as behavioral changes in an elevated plus maze and open field test in male Long-Evans rats, which were treated by simvastatin (30mg/kg per day) for 2 or 4weeks. We demonstrated: 1) a decrease in both serotonin transporter (SERT) activity and membrane microviscosity after treatment with simvastatin, 2) lower cholesterol content in all tested brain regions in animals from the simvastatin treated group, and 3) longer time spent in the open arms and a higher number of entrances to the closed arms in the elevated plus maze by animals from the simvastatin group compared to animals from the control group, but no differences in behavior in the open field test. Taken together, our results confirmed complex alterations, including behavioral changes, after the cholesterol lowering treatment. Furthermore, we discuss the possibility that the behavioral changes, traditionally interpreted as an anxiolytic effect, may be interpreted as increased impulsivity. We also confirmed that such behavioral changes may be attributed to changes in serotonergic neurotransmission. PMID:26917054

  14. Activation and blockade of serotonin7 receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxydopamine-induced Parkinson's disease rat model.

    PubMed

    Zhang, Q J; Du, C X; Tan, H H; Zhang, L; Li, L B; Zhang, J; Niu, X L; Liu, J

    2015-12-17

    The role of serotonin7 (5-HT7) receptors in the regulation of depression is poorly understood, particularly in Parkinson's disease-associated depression. Here we examined whether 5-HT7 receptors in the prelimbic (PrL) sub-region of the ventral medial prefrontal cortex (mPFC) involve in the regulation of depressive-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. The lesion induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-PrL injection of 5-HT7 receptor agonist AS19 (0.5, 1 and 2 μg/rat) increased sucrose consumption, and decreased immobility time in sham-operated and the lesioned rats, indicating the induction of antidepressant-like effects. Further, intra-PrL injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6 μg/rat) decreased sucrose consumption, and increased immobility time, indicating the induction of depressive-like responses. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of AS19 (2 μg/rat) increased dopamine, 5-hydroxytryptamine (5-HT) and noradrenaline (NA) levels in the mPFC, habenula and ventral hippocampus (vHip) in sham-operated and the lesioned rats; whereas SB269970 (6 μg/rat) decreased 5-HT levels in the habenula and vHip, and the levels of NA in the mPFC, habenula and vHip in the two groups of rats. The results suggest that 5-HT7 receptors in the PrL play an important role in the regulation of these behaviors, which attribute to changes in monoamine levels in the limbic and limbic-related brain regions after activation and blockade of 5-HT7 receptors. PMID:26470809

  15. Crucial interactions between selective serotonin uptake inhibitors and sigma-1 receptor in heart failure.

    PubMed

    Bhuiyan, Md Shenuarin; Tagashira, Hideaki; Fukunaga, Kohji

    2013-01-01

    Depression is associated with a substantial increase in the risk of developing heart failure and is independently associated with increased cardiovascular morbidity and mortality. Inversely, cardiovascular disease can lead to severe depression. Thus, therapy with selective serotonin reuptake inhibitors (SSRIs) is strongly recommended to reduce cardiovascular disease-induced morbidity and mortality. However, molecular mechanisms to support evidence-based SSRI treatment of cardiovascular disease have not been elucidated. We recently found very high expression of the sigma-1 receptor, an orphan receptor, in rat heart tissue and defined the cardiac sigma-1 receptor as a direct SSRI target in eliciting cardioprotection in both pressure overload (PO)induced and transverse aortic constriction (TAC)-induced myocardial hypertrophy models in rodents. Our findings suggest that SSRIs such as fluvoxamine protect against PO- and TAC-induced cardiac dysfunction by upregulating sigma-1 receptor expression and stimulating sigma-1 receptor-mediated Akt-eNOS signaling. Here, we discuss the association of depression and cardiovascular diseases, the protective mechanism of SSRIs in heart failure patients, and the pathophysiological relevance of sigma-1 receptors to progression of heart failure. These findings should promote development of clinical therapeutics targeting the sigma-1 receptor in cardiovascular diseases. PMID:23428811

  16. Human platelet dense granules: Improved isolation preliminary characterization of ( sup 3 H)-serotonin uptake and tetrabanazine-displaceable ( sup 3 H)-ketanserin binding

    SciTech Connect

    Chatterjee, D.; Anderson, G.M.; Chakraborty, M.; Cohen, D.J. )

    1990-01-01

    An improved method for the isolation of human platelet dense granules was developed. A good yield of highly enriched dense granules was obtained after mild sonication and Percoll gradient centrifugation. The method has facilitated characterization of the granule, permitting the first report of K{sub m} and V{sub max} values for ({sup 3}H)-serotonin uptake, as well as the first determination of K{sub d} and B{sub max} values for tetrabenazine-displaceable ({sup 3}H)-ketanserin binding, in the human platelet dense granule. The rates and affinities of ({sup 3}H)-serotonin uptake were similar to those previously reported for porcine dense granules. Tetrabenazine-displaceable ({sup 3}H)-ketanserin binding was observed with a K{sub d} similar to, and a B{sub max} approximately 10-fold lower than, that previously seen in bovine chromaffin granules.

  17. Vesicular uptake blockade generates the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde in PC12 cells: relevance to the pathogenesis of Parkinson's disease.

    PubMed

    Goldstein, David S; Sullivan, Patti; Cooney, Adele; Jinsmaa, Yunden; Sullivan, Rachel; Gross, Daniel J; Holmes, Courtney; Kopin, Irwin J; Sharabi, Yehonatan

    2012-12-01

    Parkinson's disease entails profound loss of nigrostriatal dopaminergic terminals, decreased vesicular uptake of intraneuronal catecholamines, and relatively increased putamen tissue concentrations of the toxic dopamine metabolite, 3,4-dihydroxyphenylacetaldehyde (DOPAL). The objective of this study was to test whether vesicular uptake blockade augments endogenous DOPAL production. We also examined whether intracellular DOPAL contributes to apoptosis and, as α-synuclein oligomers may be pathogenetic in Parkinson's disease, oligomerizes α-synuclein. Catechols were assayed in PC12 cells after reserpine to block vesicular uptake, with or without inhibition of enzymes metabolizing DOPAL-daidzein for aldehyde dehydrogenase and AL1576 for aldehyde reductase. Vesicular uptake was quantified by a method based on 6F- or (13) C-dopamine incubation; DOPAL toxicity by apoptosis responses to exogenous dopamine, with or without daidzein+AL1576; and DOPAL--induced synuclein oligomerization by synuclein dimer production during DOPA incubation, with or without inhibition of L-aromatic-amino-acid decarboxylase or monoamine oxidase. Reserpine inhibited vesicular uptake by 95-97% and rapidly increased cell DOPAL content (p = 0.0008). Daidzein+AL1576 augmented DOPAL responses to reserpine (p = 0.004). Intracellular DOPAL contributed to dopamine-evoked apoptosis and DOPA-evoked synuclein dimerization. The findings fit with the 'catecholaldehyde hypothesis,' according to which decreased vesicular sequestration of cytosolic catecholamines and impaired catecholaldehyde detoxification contribute to the catecholaminergic denervation that characterizes Parkinson's disease. PMID:22906103

  18. Blockade of uptake for dopamine, but not norepinephrine or 5-HT, increases selection of high effort instrumental activity: Implications for treatment of effort-related motivational symptoms in psychopathology.

    PubMed

    Yohn, Samantha E; Errante, Emily E; Rosenbloom-Snow, Aaron; Somerville, Matthew; Rowland, Margaret; Tokarski, Kristin; Zafar, Nadia; Correa, Merce; Salamone, John D

    2016-10-01

    Deficits in behavioral activation, exertion of effort, and other psychomotor/motivational symptoms are frequently seen in people with depression and other disorders. Depressed people show a decision bias towards selection of low effort activities, and animal tests of effort-related decision making are being used as models of motivational dysfunctions seen in psychopathology. The present studies investigated the ability of drugs that block dopamine transport (DAT), norepinephrine transport (NET), and serotonin transport (SERT) to modulate work output in rats responding on a test of effort-related decision making (i.e., a progressive ratio (PROG)/chow feeding choice task). With this task, rats choose between working for a preferred food (high carbohydrate pellets) by lever pressing on a PROG schedule vs. obtaining a less preferred lab chow that is freely available in the chamber. The present studies focused on the effects of the selective DAT inhibitor GBR12909, the selective SERT inhibitor fluoxetine, and the selective NET inhibitors desipramine and atomoxetine. Acute and repeated administration of GBR12909 shifted choice behavior, increasing measures of PROG lever pressing but decreasing chow intake. In contrast, fluoxetine, desipramine and atomoxetine failed to increase lever pressing output, and actually decreased it at higher doses. In the behaviorally effective dose range, GBR12909 elevated extracellular dopamine levels in accumbens core as measured by microdialysis, but fluoxetine, desipramine and atomoxetine decreased extracellular dopamine. Thus, blockade of DAT increases selection of the high effort instrumental activity, while inhibition of SERT or NET does not. These results have implications for the use of monoamine uptake inhibitors for the treatment of effort-related psychiatric symptoms in humans. PMID:27329556

  19. Selective Serotonin Re-uptake Inhibitors (SSRIs) Induced Weight Changes: A Dose and Duration Dependent Study on Albino Rats

    PubMed Central

    Jethani, S.L.; Rohatgi, R.K.; Kalra, Juhi

    2016-01-01

    Introduction Selective Serotonin Re-uptake Inhibitors (SSRIs) are the most significant and safe drugs among the antidepressants. Fluoxetine is the prototype drug of SSRIs. Various clinical studies showed that SSRI causes change in body weight in patients. This study was conducted to know the extent of weight change with different doses for different durations. Aim The aim of this study was to find out whether fluoxetine causes weight gain or weight loss, and to deduce the comparative weight change after intraperitoneal injection of fluoxetine for different duration and doses. Materials and Methods Present study was conducted on 72 adult (36 males and 36 females) albino rats, in 3 phases of 2 weeks, 4 weeks and 12 weeks duration. Each phase consisted of 24 (12 males and 12 females) albino rats. These 24 rats were further randomly subdivided into 4 Groups of 6 albino rats each (3 males & 3 females). Group 1(Control) received normal saline (vehicle). Rest 18 rats of each phase were experimental rats, of Group 2, Group 3 and Group 4 (6 rats each). Group 2, group 3 and group 4 experimental rats received 10mg/kg, 20 mg/kg and 40mg/kg of intraperitoneal injection of fluoxetine respectively. All rats were weighed on each day for growth monitoring. Data was subjected to statistical analysis (Mean, standard deviation and Student’s t-Test). Results All experimental group rats which received fluoxetine showed decrease of body weight. Rats which received high doses of fluoxetine could not tolerate the drug for more than two weeks and died due to excessive body weight loss, loose stools and muscle twitching. Conclusion Present study conclude that SSRIs can cause weight change in the form of decrease of body weight. This property of SSRIs can be used clinically by prescribing these drugs to obese psychiatric patient without any fear of withdrawal of drug. PMID:27134853

  20. 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of (/sup 3/H)paroxetine-labeled serotonin uptake sites

    SciTech Connect

    Battaglia, G.; Yeh, S.Y.; O'Hearn, E.; Molliver, M.E.; Kuhar, M.J.; De Souza, E.B.

    1987-09-01

    This study examines the effects of repeated systemic administration (20 mg/kg s.c., twice daily for 4 days) of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on levels of brain monoamines, their metabolites and on the density of monoamine uptake sites in various regions of rat brain. Marked reductions (30-60%) in the concentration of 5-hydroxyindoleacetic acid were observed in cerebral cortex, hippocampus, striatum, hypothalamus and midbrain at 2 weeks after a 4-day treatment regimen of MDMA or MDA; less consistent reductions in serotonin (5-HT) content were observed in these brain regions. In addition, both MDMA and MDA caused comparable and substantial reductions (50-75%) in the density of (/sup 3/H)paroxetine-labeled 5-HT uptake sites in all brain regions examined. In contrast, neither MDMA nor MDA caused any widespread or long-term changes in the content of the catecholaminergic markers (i.e., norepinephrine, dopamine, 3,4 dihydroxyphenylacetic acid and homovanillic acid) or in the number of (/sup 3/H)mazindol-labeled norepinephrine or dopamine uptake sites in the brain regions examined. These data demonstrate that MDMA and MDA cause long-lasting neurotoxic effects with respect to both the functional and structural integrity of serotonergic neurons in brain. Furthermore, our measurement of reductions in the density of 5-HT uptake sites provides a means for quantification of the neurodegenerative effects of MDMA and MDA on presynaptic 5-HT terminals.

  1. Environmental risk assessment for the serotonin re-uptake inhibitor fluoxetine: Case study using the European risk assessment framework.

    PubMed

    Oakes, Ken D; Coors, Anja; Escher, Beate I; Fenner, Kathrin; Garric, Jeanne; Gust, Marion; Knacker, Thomas; Küster, Anette; Kussatz, Carola; Metcalfe, Chris D; Monteiro, Sara; Moon, Thomas W; Mennigen, Jan A; Parrott, Joanne; Péry, Alexandre R R; Ramil, Maria; Roennefahrt, Ines; Tarazona, José V; Sánchez-Argüello, Paloma; Ternes, Thomas A; Trudeau, Vance L; Boucard, Tatiana; Van Der Kraak, Glen J; Servos, Mark R

    2010-07-01

    The serotonin re-uptake inhibitor fluoxetine was selected for an environmental risk assessment, using the most recent European guideline (EMEA 2006) within the European Union (EU)-funded Environmental Risk Assessment of Pharmaceuticals (ERAPharm) project due to its environmental persistence, acute toxicity to nontarget organisms, and unique pharmacokinetics associated with a readily ionizable compound. As a widely prescribed psychotropic drug, fluoxetine is frequently detected in surface waters adjacent to urban areas because municipal wastewater effluents are the primary route of entry to aquatic environments. In Phase I of the assessment, the initial predicted environmental concentration of fluoxetine in surface water (initial PEC(SW)) reached or exceeded the action limit of 10 ng/L, when using both a default market penetration factor and prescription data for Sweden, Germany, and the United Kingdom. Consequently, a Phase II risk assessment was conducted in which green algae were identified as the most sensitive species with a NOEC of <0.6 microg/L. From this value, a predicted no effect concentration for surface waters (PNEC(SW)) of 0.012 microg/L was derived. The PEC/PNEC ratio was above the trigger value of 1 in worst-case exposure scenarios indicating a potential risk to the aquatic compartment. Similarly, risks of fluoxetine for sediment-dwelling organisms could not be excluded. No risk assessment was conducted for the terrestrial compartment due to a lack of data on effects of fluoxetine on soil organisms. The need for a separate risk assessment for the main metabolite of fluoxetine, norfluoxetine, was not conducted because of a lack of fate and effect studies. Based on published data, fluoxetine and norfluoxetine appeared to have a low to moderate bioaccumulation potential, which should be confirmed in formal studies according to OECD guidelines. Exposure assessments for fluoxetine according to the current framework rely heavily on K(OC) and K(OW) values

  2. 5-HT(2C) serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice.

    PubMed

    Busceti, Carla Letizia; Di Pietro, Paola; Riozzi, Barbara; Traficante, Anna; Biagioni, Francesca; Nisticò, Robert; Fornai, Francesco; Battaglia, Giuseppe; Nicoletti, Ferdinando; Bruno, Valeria

    2015-09-01

    Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors. PMID:26145279

  3. A molecular recognizing system of serotonin in rat fetal axonal growth cones: uptake and high affinity binding.

    PubMed

    Mercado, R; Hernández, J

    1992-09-18

    Axonal growth cone particles (AGCP) isolated from prenatal and postnatal rat brain had different high-affinity 5-HT uptake characteristics. In postnatal AGCP the uptake behaves as in the adult rat brain, while in the prenatal AGCP the uptake characteristics seem to be in a transitional stage. Also in prenatal AGCP we observed specific, high-affinity 5-HT binding sites. These results support the idea of an important role for 5-HT during axogenesis. PMID:1424085

  4. Acute and chronic treatment with selective serotonin uptake inhibitors in mice: effects on nociceptive sensitivity and response to 5-methoxy-N,N-dimethyltryptamine.

    PubMed

    Eide, P K; Hole, K

    1988-03-01

    The tail-flick and increasing temperature hot-plate tests were employed to study the effects of acute or chronic treatment with zimelidine, alaproclate or chlorimipramine on nociception and response to 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) in mice. A single dose of the serotonin (5-HT) uptake inhibitors produced antinociception in the hot-plate test but not in the tail-flick test. After chronic administration, reduced tail-flick latencies were demonstrated 24, 48, 72 and 144 h after withdrawal of zimelidine treatment, 48 h after withdrawal of alaproclate and 48 and 96 h after withdrawal of chlorimipramine treatment. The hot-plate response temperatures were slightly lowered after chronic zimelidine treatment but not after treatment with alaproclate or chlorimipramine. The response to 5-MeODMT was not altered by a single dose of the 5-HT uptake inhibitors, however, after withdrawal of chronic treatment this response was increased in the tail-flick test but not in the hot-plate test. It was concluded that acute and chronic treatment with 5-HT uptake inhibitors modulate nociception differently, and that chronic treatment induces supersensitivity of spinal postsynaptic 5-HT receptors. Different modulation of different 5-HT receptor subpopulations by these compounds may possibly contribute to the test-dependent results. PMID:2966334

  5. [C-11]{beta}CNT: A new monoamine uptake ligand for studying serotonin and dopamine transporter sites in the living brain with PET

    SciTech Connect

    Mulholland, G.K.; Zheng, Q.H.; Zhou, F.C.

    1996-05-01

    There is considerable interest in measuring serotonin (5HT) and dopamine (DA) function in the human brain. Altered levels of 5HT and DA are recognized in drug abuse, neurotoxicities, psychiatric disorders, and neurodegenerative conditions including Alzheimer`s and Parkinson`s disease. Several phenyltropane analogs of cocaine bind tightly to both DA and 5HT uptake proteins. We have made a new agent from this class called {beta}CNT, 2{beta}-carboxymethyl-3{beta}-(2-naphthyl)-tropane, the isosteric O-for-CH{sub 2} analog of a compound reported to have among the highest measured affinities for DA and 5HT transporters and studied its in vivo brain distributions in animals for the first time. Optically pure {beta}CNT was made from cocaine, and labeled at the O-methyl position by esterification of {beta}CNT-acid with [C-11]CH{sub 3}OTfl under conditions similar to Wilson`s. HPLC-purified (99+%) final products (15-50% eob yield from CO{sub 2}, 40 min synth) had specific activities 0.1-1.2 Ci/{mu}mol at the time of injection. Preliminary [C-11]{beta}{beta}CNT rodent distribution showed very high brain uptake (3% ID at 60 min) and localization (striat: fr cort: hypo: cer: blood, 11: 5: 4: 1: 06). {beta}CNT-PET studies in juvenile pigs (5-20 mCi, 20-35 kg) found rapid brain uptake, and prominent retention (85 min) in midbrain, anterior brainstem and striatum, followed by cortex and olfactory bulb. Paroxetine pretreatment (5HT uptake blocker, 2mg/kg), diminished retention in most brain areas; nomifensine (DA/NE uptake blocker, 6 mg/kg) reduced striatum selectively. Direct comparisons of [C-11]{beta}CNT with other PET transporter radioligands {beta}CFT, {beta}CIT, and {beta}CTT (RTI-32) in the same pig found {beta}CNT had highest overall brain uptake among the agents. These initial results suggest {beta}CNT has favorable properties for imaging both 5HT and DA transporters in vivo, and further evaluation of its potential as a human PET agent is warranted.

  6. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Velasquez, Daniela; Da Rocha, Juliana T; Neto, José S S; Nogueira, Cristina W

    2016-03-15

    Depression is a disorder with symptoms manifested at the psychological, behavioral and physiological levels. Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects induced by this additive have been demonstrated in experimental animals and humans, including functional and behavioral alterations. The aim of this study was to investigate the possible antidepressant-like effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, in the depressive-like behavior induced by MSG in rats. Male and female newborn Wistar rats were divided in control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4g/kg/day) from the 1st to 5th postnatal day. At 60th day of life, animals received (PhSe)2 (10mg/kg, intragastrically) 25min before spontaneous locomotor and forced swimming tests (FST). The cerebral cortices of rats were removed to determine [(3)H] serotonin (5-HT) uptake and Na(+), K(+)-ATPase activity. A single administration of (PhSe)2 was effective against locomotor hyperactivity caused by MSG in rats. (PhSe)2 treatment protected against the increase in the immobility time and a decrease in the latency for the first episode of immobility in the FST induced by MSG. Furthermore, (PhSe)2 reduced the [(3)H] 5-HT uptake and restored Na(+), K(+)-ATPase activity altered by MSG. In the present study a single administration of (PhSe)2 elicited an antidepressant-like effect and decrease the synaptosomal [(3)H] 5-HT uptake and an increase in the Na(+), K(+)-ATPase activity in MSG-treated rats. PMID:26738966

  7. A neurobiological perspective on attachment problems in sexual offenders and the role of selective serotonin re-uptake inhibitors in the treatment of such problems.

    PubMed

    Beech, Anthony R; Mitchell, Ian J

    2005-02-01

    This paper describes what is currently known about attachment from the development, social-cognitive and biological literatures and outlines the impact on organisms given adverse development experiences that can have an effect upon attachment formation in childhood across these three literatures. We then describe the effects that 'insecure' attachment styles arising in childhood can affect brain chemistry and brain function and subsequently adult social/romantic relationships. In the paper, we note that a number of sexual offenders report adverse childhood experiences and that they possess attachment styles that, taken together, make it likely that they will either seek out intimate attachments in ways where they will have sex with children, perhaps confusing sex with intimacy or in aggressive ways as particularly happens with men who sexually assault adult women. The last section of the paper describes chemical treatment for sexual offenders, focusing on the use of selective serotonin re-uptake inhibitors (SSRIs). We note evidence for the role of SSRIs in promoting more social/affiliative behaviors and speculate on the effects that SSRIs have in the treatment of sexual offenders by targeting areas of the social brain. Here, we would argue that it would be useful to carry out treatment where there is a combination of SSRI treatment (to promote more prosocial feelings and behaviors) in conjunction with therapy that typically addresses thoughts and behaviors, i.e., cognitive-behavioral therapy/schema-focused therapy. PMID:15642645

  8. Fluoxetine, a selective inhibitor of serotonin uptake, potentiates morphine analgesia without altering its discriminative stimulus properties or affinity for opioid receptors

    SciTech Connect

    Hynes, M.D.; Lochner, M.A.; Bemis, K.G.; Hymson, D.L.

    1985-06-17

    The analgesic effect of morphine in the rat tail jerk assay was enhanced by the serotonin uptake inhibitor, fluoxetine. Tail jerk latency was not affected by fluoxetine alone. Morphine's affinity for opioid receptors labeled in vitro with /sup 3/H-naloxone or /sup 3/H-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin was not altered by fluoxetine, which has no affinity for these sites at concentrations as high as 1000 nM. In rats trained to discriminate morphine from saline, fluoxetine at doses of 5 or 10 mg/kg were recognized as saline. Increasing the fluoxetine dose to 20 mg/kg did not result in generalization to either saline or morphine. The dose response curve for morphine generalization was not significantly altered by fluoxetine doses of 5 or 10 mg/kg. Those rats treated with the combination of morphine and 20 mg/kg of fluoxetine did not exhibit saline or morphine appropriate responding. Fluoxetine potentiates the analgesic properties of morphine without enhancing its affinity for opioid receptors or its discriminative stimulus properties. 30 references, 2 figures, 2 tables.

  9. Effects of different anticoagulants on human platelet size distribution and serotonin (5-HT) induced shape change and uptake kinetics.

    PubMed

    Malmgren, R; Beving, H; Olsson, P

    1985-06-15

    The effect of collecting blood with disodium ethylene diamine tetraacetate (EDTA), citrate (NAC) or acid sodium citrate-dextrose (ACD) as anticoagulants on platelet count and size distribution was investigated. No difference between the three preparations regarding platelet count was found in whole blood. Preparation of platelet-rich plasma (PRP) significantly reduced the platelet count in NAC-PRP (p less than 0.01) to a value of 288 X 10(9)/l compared to those of 365 X 10(9)/l and 368 X 10(9)/l in EDTA and ACD blood respectively. A significant shift in the platelet size in EDTA-PRP towards larger cell volumes was observed. There were no differences in the size distribution pattern between NAC-PRP and ACD-PRP in spite of the differences in platelet count. Platelet 5-HT uptake kinetics in EDTA-PRP showed a 50 per cent reduction in both Km and Vmax compared to that in ACD-PRP. The study shows that the receptor mediating 5-HT induced shape change has a direct opposite pH dependence than that of the 5-HT carrier. Interference of receptor-mediated responses in 5-HT uptake studies in human platelets is clearly minimized at a lowered pH. The finding is probably of importance in disorders associated with platelet hyperaggregability. PMID:3927509

  10. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors

    PubMed Central

    Qi, Yi-xiang; Huang, Jia; Li, Meng-qi; Wu, Ya-su; Xia, Ren-ying; Ye, Gong-yin

    2016-01-01

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. DOI: http://dx.doi.org/10.7554/eLife.12241.001 PMID:26974346

  11. Selective Serotonin-norepinephrine Re-uptake Inhibition Limits Renovas-cular-hypertension Induced Cognitive Impairment, Endothelial Dysfunction, and Oxidative Stress Injury.

    PubMed

    Singh, Prabhat; Sharma, Bhupesh

    2016-01-01

    Hypertension has been reported to induce cognitive decline and dementia of vascular origin. Serotonin- norepinephrine reuptake transporters take part in the control of inflammation, cognitive functions, motivational acts and deterioration of neurons. This study was carried out to examine the effect of venlafaxine; a specific serotonin-norepinephrine reuptake inhibitor (SNRI), in two-kidney-one-clip-2K1C (renovascular hypertension) provoked vascular dementia (VaD) in albino rats. 2K1C technique was performed to provoke renovascular-hypertension in adult male albino Wistar rats. Learning and memory were assessed by using the elevated plus maze and Morris water maze. Mean arterial blood pressure- MABP, as well as endothelial function, were assessed by means of BIOPAC system. Serum nitrosative stress (nitrite/ nitrate), aortic superoxide anion, brain oxidative stress, inflammation, cholinergic dysfunction and brain damage (2,3,5-triphenylterazolium chloride staining) were also assessed. 2K1C has increased MABP, endothelial dysfunction as well as learning and memory impairments. 2K1C method has increased serum nitrosative stress (reduced nitrite/nitrate level), oxidative stress (increased brain thiobarbituric acid reactive species and aortic superoxide anion content along with decreased levels of brain superoxide dismutase, glutathione, and catalase), brain inflammation (increased myeloperoxidase), cholinergic dysfunction (increased acetylcholinesterase activity) and brain damage. Treatment with venlafaxine considerably attenuated renovascular-hypertension induced cognition impairment, endothelial dysfunction, serum nitrosative stress, brain and aortic oxidative stress, cholinergic function, inflammation as well as cerebral damage. The finding of this study indicates that specific modulation of the serotonin-norepinephrine transporter perhaps regarded as potential interventions for the management of renovascular hypertension provoked VaD. PMID:26915517

  12. Residual Neuromuscular Blockade.

    PubMed

    Plummer-Roberts, Anna L; Trost, Christina; Collins, Shawn; Hewer, Ian

    2016-02-01

    This article provides an update on residual neuromuscular blockade for nurse anesthetists. The neuromuscular junction, pharmacology for producing and reversing neuromuscular blockade, monitoring sites and methods, and patient implications relating to incomplete reversal of neuromuscular blockade are reviewed. Overall recommendations include using multiple settings when employing a peripheral nerve stimulator for monitoring return of neuromuscular function and administering pharmacologic reversal when the train-of-four ratio is below 0.9. PMID:26939390

  13. Kinetics of 3H-serotonin uptake by platelets in infantile autism and developmental language disorder (including five pairs of twins)

    SciTech Connect

    Katsui, T.; Okuda, M.; Usuda, S.; Koizumi, T.

    1986-03-01

    The kinetics of 5-HT uptake by platelets was studied in cases of infantile autism and developmental language disorder (DLD) and normal subjects. Two patients of the autism group were twins, and the seven patients of the DLD group were members of four pairs of twins. The Vmax values (means +/- SD) for autism and DLD were 6.46 +/- .90 pmol 5-HT/10(7) cells/min and 4.85 +/- 1.50 pmol 5-HT/10(7) cells/min, respectively. These values were both significantly higher than that of 2.25 +/- .97 pmole 5-HT/10(7) cells/min for normal children. The Km values of the three groups were not significantly different. Data on the five pairs of twins examined suggested that the elevated Vmax of 5-HT uptake by platelets was determined genetically.

  14. Serotonin dependent masking of hippocampal sharp wave ripples.

    PubMed

    ul Haq, Rizwan; Anderson, Marlene L; Hollnagel, Jan-Oliver; Worschech, Franziska; Sherkheli, Muhammad Azahr; Behrens, Christoph J; Heinemann, Uwe

    2016-02-01

    Sharp wave ripples (SPW-Rs) are thought to play an important role in memory consolidation. By rapid replay of previously stored information during slow wave sleep and consummatory behavior, they result from the formation of neural ensembles during a learning period. Serotonin (5-HT), suggested to be able to modify SPW-Rs, can affect many neurons simultaneously by volume transmission and alter network functions in an orchestrated fashion. In acute slices from dorsal hippocampus, SPW-Rs can be induced by repeated high frequency stimulation that induces long-lasting LTP. We used this model to study SPW-R appearance and modulation by 5-HT. Although stimulation in presence of 5-HT permitted LTP induction, SPW-Rs were "masked"--but appeared after 5-HT wash-out. This SPW-R masking was dose dependent with 100 nM 5-HT being sufficient--if the 5-HT re-uptake inhibitor citalopram was present. Fenfluramine, a serotonin releaser, could also mask SPW-Rs. Masking was due to 5-HT1A and 5-HT2A/C receptor activation. Neither membrane potential nor membrane conductance changes in pyramidal cells caused SPW-R blockade since both remained unaffected by combining 5-HT and citalopram. Moreover, 10 and 30 μM 5-HT mediated SPW-R masking preceded neuronal hyperpolarization and involved reduced presynaptic transmitter release. 5-HT, as well as a 5-HT1A agonist, augmented paired pulse facilitation and affected the coefficient of variance. Spontaneous SPW-Rs in mice hippocampal slices were also masked by 5-HT and fenfluramine. While neuronal ensembles can acquire long lasting LTP during higher 5-HT levels, lower 5-HT levels enable neural ensembles to replay previously stored information and thereby permit memory consolidation memory. PMID:26409781

  15. Generation of serotonin neurons from human pluripotent stem cells

    PubMed Central

    Lu, Jianfeng; Zhong, Xuefei; Liu, Huisheng; Hao, Ling; Huang, Cindy Tzu-Ling; Sherafat, Mohammad Amin; Jones, Jeffrey; Ayala, Melvin; Li, Lingjun; Zhang, Su-Chun

    2016-01-01

    Serotonin neurons located in the raphe nucleus of the hindbrain have crucial roles in regulating brain functions and have been implicated in various psychiatric disorders. Yet functional human serotonin neurons are not available for in vitro studies. Through manipulation of the WNT pathway, we demonstrate efficient differentiation of human pluripotent stem cells (hPSCs) to cells resembling central serotonin neurons, primarily those located in the rhombomeric segments 2–3 of the rostral raphe, which participate in high-order brain functions. The serotonin neurons express a series of molecules essential for serotonergic development, including tryptophan hydroxylase 2, exhibit typical electrophysiological properties and release serotonin in an activity-dependent manner. When treated with the FDA-approved drugs tramadol and escitalopram oxalate, they release or uptake serotonin in a dose- and time-dependent manner, suggesting the utility of these cells for the evaluation of drug candidates. PMID:26655496

  16. Serotonin Syndrome in Pregnancy.

    PubMed

    Roth, Cheryl K; Hering, Sandra L; Campos, Stephanie

    2015-01-01

    Millions of people take selective serotonin reuptake inhibitors (SSRIs) for depression and anxiety, so nurses and other clinicians need to be aware of the potential for serotonin toxicity and serotonin syndrome. These conditions can occur when women taking SSRIs are given additional medications in the labor and birth or postpartum settings. Symptoms can have an acute onset and can include delirium, fever and hypertension. Understanding the mechanism and symptoms of serotonin syndrome can lead to timely treatment of this unusual condition. PMID:26264799

  17. Effects of methiothepin on changes in brain serotonin release induced by repeated administration of high doses of anorectic serotoninergic drugs

    NASA Technical Reports Server (NTRS)

    Gardier, A. M.; Kaakkola, S.; Erfurth, A.; Wurtman, R. J.

    1992-01-01

    We previously observed, using in vivo microdialysis, that the potassium-evoked release of frontocortical serotonin (5-HT) is suppressed after rats receive high doses (30 mg/kg, i.p., daily for 3 days) of fluoxetine, a selective blocker of 5-HT reuptake. We now describe similar impairments in 5-HT release after repeated administration of two other 5-HT uptake blockers, zimelidine and sertraline (both at 20 mg/kg, i.p. for 3 days) as well as after dexfenfluramine (7.5 mg/kg, i.p. daily for 3 days), a drug which both releases 5-HT and blocks its reuptake. Doses of these indirect serotonin agonists were about 4-6 times the drug's ED50 in producing anorexia, a serotonin-related behavior. In addition, methiothepin (20 microM), a non-selective receptor antagonist, locally perfused through the dialysis probe 24 h after the last drug injection, enhanced K(+)-evoked release of 5-HT at serotoninergic nerve terminals markedly in control rats and slightly in rats treated with high doses of dexfenfluramine or fluoxetine. On the other hand, pretreatment with methiothepin (10 mg/kg, i.p.) one hour before each of the daily doses of fluoxetine or dexfenfluramine given for 3 days, totally prevented the decrease in basal and K(+)-evoked release of 5-HT. Finally, when methiothepin was injected systemically the day before the first of 3 daily injections of dexfenfluramine, it partially attenuated the long-term depletion of brain 5-HT and 5-HIAA levels induced by repeated administration of high doses of dexfenfluramine. These data suggest that drugs which bring about the prolonged blockade of 5-HT reuptake - such as dexfenfluramine and fluoxetine - can, by causing prolonged increases in intrasynaptic 5-HT levels as measured by in vivo microdialysis, produce receptor-mediated long-term changes in the processes controlling serotonin levels and dynamics.

  18. Noninvasive measurement of lung carbon-11-serotonin extraction in man

    SciTech Connect

    Coates, G.; Firnau, G.; Meyer, G.J.; Gratz, K.F. )

    1991-04-01

    The fraction of serotonin extracted on a single passage through the lungs is being used as an early indicator of lung endothelial damage but the existing techniques require multiple arterial blood samples. We have developed a noninvasive technique to measure lung serotonin uptake in man. We utilized the double indicator diffusion principle, a positron camera, {sup 11}C-serotonin as the substrate, and {sup 11}CO-erythrocytes as the vascular marker. From regions of interest around each lung, we recorded time-activity curves in 0.5-sec frames for 30 sec after a bolus injection of first the vascular marker {sup 11}CO-erythrocytes and 10 min later {sup 11}C-serotonin. A second uptake measurement was made after imipramine 25-35 mg was infused intravenously. In three normal volunteers, the single-pass uptake of {sup 11}C-serotonin was 63.9% +/- 3.6%. This decreased in all subjects to a mean of 53.6% +/- 1.4% after imipramine. The rate of lung washout of {sup 11}C was also significantly prolonged after imipramine. This noninvasive technique can be used to measure lung serotonin uptake to detect early changes in a variety of conditions that alter the integrity of the pulmonary endothelium.

  19. Giant Coulomb blockade magnetoresistance

    SciTech Connect

    Zhang, Xiaoguang; Wen, Z. C.; Wei, H. X.; Han, Prof. X. F.

    2010-01-01

    We show that the Coulomb blockade voltage can be made to depend strongly on the electron spin in a thin magnetic granular layer inserted in the middle of an insulating layer of a tunnel junction. This strong spin dependence is predicted from the spin-dependent inter-granular conductance through any of the following effects within the granular layer, giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), colossal magnetoresistance (CMR), or GMR through a polymer spacer. The resulting Coulomb blockade magnetoresistance (CBMR) ratio can exceed the magnetoresistance ratio of the granular layer itself by orders of magnitude. Unlike other magenetoresistance effects, the CBMR effect does not require magnetic electrodes.

  20. Mifepristone modulates serotonin transporter function

    PubMed Central

    Li, Chaokun; Shan, Linlin; Li, Xinjuan; Wei, Linyu; Li, Dongliang

    2014-01-01

    Regulating serotonin expression can be used to treat psychotic depression. Mifepristone, a glucocorticoid receptor antagonist, is an effective candidate for psychotic depression treatment. However, the underlying mechanism related to serotonin transporter expression is poorly understood. In this study, we cloned the human brain serotonin transporter into Xenopus oocytes, to establish an in vitro expression system. Two-electrode voltage clamp recordings were used to detect serotonin transporter activity. Our results show that mifepristone attenuates serotonin transporter activity by directly inhibiting the serotonin transporter, and suggests that the serotonin transporter is a pharmacological target of mifepristone for the treatment of psychotic depression. PMID:25206868

  1. Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: organic cation transporter 3, the smoking gun.

    PubMed

    Baganz, Nicole; Horton, Rebecca; Martin, Kathryn; Holmes, Andrew; Daws, Lynette C

    2010-11-10

    Activation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with increased extracellular serotonin (5-HT) in limbic brain regions. The mechanism through which this occurs remains unclear. One way could be via HPA axis-dependent impairment of serotonin transporter (SERT) function, the high-affinity uptake mechanism for 5-HT. Consistent with this idea, we found that 5-HT clearance rate in hippocampus was dramatically reduced in mice exposed to repeated swim, a stimulus known to activate the HPA axis. However, this phenomenon also occurred in mice lacking SERT, ruling out SERT as a mechanism. The organic cation transporter 3 (OCT3) is emerging as an important regulator of brain 5-HT. Moreover, corticosterone, which is released upon HPA axis activation, blocks 5-HT uptake by OCT3. Repeated swim produced a persistent elevation in plasma corticosterone, and, consistent with prolonged blockade by corticosterone, we found that OCT3 expression and function were reduced in these mice. Importantly, this effect of repeated swim to reduce 5-HT clearance rate was corticosterone dependent, as evidenced by its absence in adrenalectomized mice, in which plasma corticosterone levels were essentially undetectable. Behaviorally, mice subjected to repeated swim spent less time immobile in the tail suspension test than control mice, but responded similarly to SERT- and norepinephrine transporter-selective antidepressants. Together, these results show that reduced 5-HT clearance following HPA axis activation is likely mediated, at least in part, by the corticosterone-sensitive OCT3, and that drugs developed to selectively target OCT3 (unlike corticosterone) may be candidates for the development of novel antidepressant medications. PMID:21068324

  2. Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin + high-dose Ara-C: a phase 1 study

    PubMed Central

    Banker, Deborah E.; Stirewalt, Derek; Shen, Danny; Lemker, Elizabeth; Verstovsek, Srdan; Estrov, Zeev; Faderl, Stefan; Cortes, Jorge; Beran, Miloslav; Jackson, C. Ellen; Chen, Wenjing; Estey, Elihu; Appelbaum, Frederick R.

    2007-01-01

    Following exposure to cytotoxic agents, acute myeloid leukemia (AML) blasts elevate cellular cholesterol in a defensive adaptation that increases chemoresistance, but blockade of HMG-CoA reductase with statins restores chemosensitivity in vitro. This phase 1 study evaluated adding pravastatin (PV) (40-1680 mg/day, days 1-8) to idarubicin (Ida) ([12 mg/(M2 · day), days 4-6]) + high-dose cytarabine (Ara-C; HDAC) [1.5 g/(M2 · day) by CI, days 4-7] in 15 newly diagnosed and 22 salvage patients with unfavorable (n = 26) or intermediate (n = 10) prognosis cytogenetics. Compared with historical experience with Ida-HDAC, the duration of neutropenia and throbmbocytopenia and the toxicity profile were unaffected by the addition of PV. During PV loading (day 0-4) serum triglyceride and total and LDL cholesterol levels decreased in nearly all patients. Pharmacokinetic studies demonstrated higher and more sustained serum PV levels with PV doses above 1280 mg/day. CR/CRp was obtained in 11 of 15 new patients, including 8 of 10 with unfavorable cytogenetics, and 9 of 22 salvage patients. An MTD for PV + Ida-HDAC was not reached. Addition of PV to Ida-HDAC was safe, and the encouraging response rates support conducting further trials evaluating the effect of cholesterol modulation on response in AML. PMID:17158228

  3. Serotonin syndrome presenting as pulmonary edema

    PubMed Central

    Shah, Nilima Deepak; Jain, Ajay B.

    2016-01-01

    Serotonin syndrome (SS) is a potentially life-threatening condition resulting from excessive central and peripheral serotonergic activity. Clinically, it is a triad of mental-status changes, neuromuscular abnormalities, and autonomic disturbances. It can be caused by intentional self-poisoning, overdose, or inadvertent drug interactions. We report the case of a 58-year-old male with type 2 diabetes mellitus and obsessive compulsive disorder who developed pulmonary edema as a possible complication of SS. SS was caused by a combination of three specific serotonin re-uptake inhibitors (fluoxetine, fluvoxamine, and sertraline), linezolid, and fentanyl. The hospital course was further complicated by difficult weaning from the ventilator. SS was identified and successfully treated with cyproheptadine and lorazepam. The case highlights the importance of effective consultation-liaison and prompt recognition of SS as the presentation may be complex in the presence of co-morbid medical illness. PMID:26997733

  4. Serotonin syndrome presenting as pulmonary edema.

    PubMed

    Shah, Nilima Deepak; Jain, Ajay B

    2016-01-01

    Serotonin syndrome (SS) is a potentially life-threatening condition resulting from excessive central and peripheral serotonergic activity. Clinically, it is a triad of mental-status changes, neuromuscular abnormalities, and autonomic disturbances. It can be caused by intentional self-poisoning, overdose, or inadvertent drug interactions. We report the case of a 58-year-old male with type 2 diabetes mellitus and obsessive compulsive disorder who developed pulmonary edema as a possible complication of SS. SS was caused by a combination of three specific serotonin re-uptake inhibitors (fluoxetine, fluvoxamine, and sertraline), linezolid, and fentanyl. The hospital course was further complicated by difficult weaning from the ventilator. SS was identified and successfully treated with cyproheptadine and lorazepam. The case highlights the importance of effective consultation-liaison and prompt recognition of SS as the presentation may be complex in the presence of co-morbid medical illness. PMID:26997733

  5. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  6. Origins of serotonin innervation of forebrain structures

    NASA Technical Reports Server (NTRS)

    Kellar, K. J.; Brown, P. A.; Madrid, J.; Bernstein, M.; Vernikos-Danellis, J.; Mehler, W. R.

    1977-01-01

    The tryptophan hydroxylase activity and high-affinity uptake of (3H) serotonin ((3H)5-HT) were measured in five discrete brain regions of rats following lesions of the dorsal or median raphe nuclei. Dorsal raphe lesions reduced enzyme and uptake activity in the striatum only. Median raphe lesions reduced activities in the hippocampus, septal area, frontal cortex, and, to a lesser extent, in the hypothalamus. These data are consistent with the suggestion that the dorsal and median raphe nuclei are the origins of two separate ascending serotonergic systems - one innervating striatal structures and the other mesolimbic structures, predominantly. In addition, the data suggest that measurements of high-affinity uptake of (3H)5-HT may be a more reliable index of innervation than either 5-HT content or tryptophan hydroxylase activity.

  7. Increased brain-derived neurotrophic factor (BDNF) protein concentrations in mice lacking brain serotonin.

    PubMed

    Kronenberg, Golo; Mosienko, Valentina; Gertz, Karen; Alenina, Natalia; Hellweg, Rainer; Klempin, Friederike

    2016-04-01

    The interplay between BDNF signaling and the serotonergic system remains incompletely understood. Using a highly sensitive enzyme-linked immunosorbent assay, we studied BDNF concentrations in hippocampus and cortex of two mouse models of altered serotonin signaling: tryptophan hydroxylase (Tph)2-deficient (Tph2 (-/-)) mice lacking brain serotonin and serotonin transporter (SERT)-deficient (SERT(-/-)) mice lacking serotonin re-uptake. Surprisingly, hippocampal BDNF was significantly elevated in Tph2 (-/-) mice, whereas no significant changes were observed in SERT(-/-) mice. Furthermore, BDNF levels were increased in the prefrontal cortex of Tph2 (-/-) but not of SERT(-/-) mice. Our results emphasize the interaction between serotonin signaling and BDNF. Complete lack of brain serotonin induces BDNF expression. PMID:26100147

  8. Serotonin and Social Norms

    PubMed Central

    Bilderbeck, Amy C.; Brown, Gordon D. A.; Read, Judi; Woolrich, Mark; Cowen, Phillip J.; Behrens, Tim E. J.

    2014-01-01

    How do people sustain resources for the benefit of individuals and communities and avoid the tragedy of the commons, in which shared resources become exhausted? In the present study, we examined the role of serotonin activity and social norms in the management of depletable resources. Healthy adults, alongside social partners, completed a multiplayer resource-dilemma game in which they repeatedly harvested from a partially replenishable monetary resource. Dietary tryptophan depletion, leading to reduced serotonin activity, was associated with aggressive harvesting strategies and disrupted use of the social norms given by distributions of other players’ harvests. Tryptophan-depleted participants more frequently exhausted the resource completely and also accumulated fewer rewards than participants who were not tryptophan depleted. Our findings show that rank-based social comparisons are crucial to the management of depletable resources, and that serotonin mediates responses to social norms. PMID:24815611

  9. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice.

    PubMed

    Duerschmied, Daniel; Suidan, Georgette L; Demers, Melanie; Herr, Nadine; Carbo, Carla; Brill, Alexander; Cifuni, Stephen M; Mauler, Maximilian; Cicko, Sanja; Bader, Michael; Idzko, Marco; Bode, Christoph; Wagner, Denisa D

    2013-02-01

    The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1(-/-) mice. The velocity of rolling leukocytes was higher in Tph1(-/-) mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1(-/-) mice. Diminished rolling in Tph1(-/-) mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1(-/-) mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1(-/-) mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity. PMID:23243271

  10. The serotonin system in autism spectrum disorder: From biomarker to animal models.

    PubMed

    Muller, C L; Anacker, A M J; Veenstra-VanderWeele, J

    2016-05-01

    Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker. PMID:26577932

  11. Optogenetic Control of Serotonin and Dopamine Release in Drosophila Larvae

    PubMed Central

    2014-01-01

    Optogenetic control of neurotransmitter release is an elegant method to investigate neurobiological mechanisms with millisecond precision and cell type-specific resolution. Channelrhodopsin-2 (ChR2) can be expressed in specific neurons, and blue light used to activate those neurons. Previously, in Drosophila, neurotransmitter release and uptake have been studied after continuous optical illumination. In this study, we investigated the effects of pulsed optical stimulation trains on serotonin or dopamine release in larval ventral nerve cords. In larvae with ChR2 expressed in serotonergic neurons, low-frequency stimulations produced a distinct, steady-state response while high-frequency patterns were peak shaped. Evoked serotonin release increased with increasing stimulation frequency and then plateaued. The steady-state response and the frequency dependence disappeared after administering the uptake inhibitor fluoxetine, indicating that uptake plays a significant role in regulating the extracellular serotonin concentration. Pulsed stimulations were also used to evoke dopamine release in flies expressing ChR2 in dopaminergic neurons and similar frequency dependence was observed. Release due to pulsed optical stimulations was modeled to determine the uptake kinetics. For serotonin, Vmax was 0.54 ± 0.07 μM/s and Km was 0.61 ± 0.04 μM; and for dopamine, Vmax was 0.12 ± 0.03 μM/s and Km was 0.45 ± 0.13 μM. The amount of serotonin released per stimulation pulse was 4.4 ± 1.0 nM, and the amount of dopamine was 1.6 ± 0.3 nM. Thus, pulsed optical stimulations can be used to mimic neuronal firing patterns and will allow Drosophila to be used as a model system for studying mechanisms underlying neurotransmission. PMID:24849718

  12. Aggression, suicidality, and serotonin.

    PubMed

    Linnoila, V M; Virkkunen, M

    1992-10-01

    Studies from several countries, representing diverse cultures, have reported an association between violent suicide attempts by patients with unipolar depression and personality disorders and low concentrations of the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the cerebrospinal fluid (CSF). Related investigations have documented a similar inverse correlation between impulsive, externally directed aggressive behavior and CSF 5-HIAA in a subgroup of violent offenders. In these individuals, low CSF 5-HIAA concentrations are also associated with a predisposition to mild hypoglycemia, a history of early-onset alcohol and substance abuse, a family history of type II alcoholism, and disturbances in diurnal activity rhythm. These data are discussed in the context of a proposed model for the pathophysiology of a postulated "low serotonin syndrome." PMID:1385390

  13. Serotonin and colonic motility.

    PubMed

    Kendig, D M; Grider, J R

    2015-07-01

    The role of serotonin (5-hydroxytryptamine [5-HT]) in gastrointestinal motility has been studied for over 50 years. Most of the 5-HT in the body resides in the gut wall, where it is located in subsets of mucosal cells (enterochromaffin cells) and neurons (descending interneurons). Many studies suggest that 5-HT is important to normal and dysfunctional gut motility and drugs affecting 5-HT receptors, especially 5-HT3 and 5-HT4 receptors, have been used clinically to treat motility disorders; however, cardiovascular side effects have limited the use of these drugs. Recently studies have questioned the importance and necessity of 5-HT in general and mucosal 5-HT in particular for colonic motility. Recent evidence suggests the importance of 5-HT3 and 5-HT4 receptors for initiation and generation of one of the key colonic motility patterns, the colonic migrating motor complex (CMMC), in rat. The findings suggest that 5-HT3 and 5-HT4 receptors are differentially involved in two different types of rat CMMCs: the long distance contraction (LDC) and the rhythmic propulsive motor complex (RPMC). The understanding of the role of serotonin in colonic motility has been influenced by the specific motility pattern(s) studied, the stimulus used to initiate the motility (spontaneous vs induced), and the route of administration of drugs. All of these considerations contribute to the understanding and the controversy that continues to surround the role of serotonin in the gut. PMID:26095115

  14. Pharmacological and Behavioral Characterization of D-473, an Orally Active Triple Reuptake Inhibitor Targeting Dopamine, Serotonin and Norepinephrine Transporters

    PubMed Central

    Dutta, Aloke K.; Santra, Soumava; Sharma, Horrick; Voshavar, Chandrashekhar; Xu, Liping; Mabrouk, Omar; Antonio, Tamara; Reith, Maarten E. A.

    2014-01-01

    Major depressive disorder (MDD) is a debilitating disease affecting a wide cross section of people around the world. The current therapy for depression is less than adequate and there is a considerable unmet need for more efficacious treatment. Dopamine has been shown to play a significant role in depression including production of anhedonia which has been one of the untreated symptoms in MDD. It has been hypothesized that drugs acting at all three monoamine transporters including dopamine transporter should provide more efficacious antidepressants activity. This has led to the development of triple reuptake inhibitor D-473 which is a novel pyran based molecule and interacts with all three monoamine transporters. The monoamine uptake inhibition activity in the cloned human transporters expressed in HEK-293 cells (70.4, 9.18 and 39.7 for DAT, SERT and NET, respectively) indicates a serotonin preferring triple reuptake inhibition profile for this drug. The drug D-473 exhibited good brain penetration and produced efficacious activity in rat forced swim test under oral administration. The optimal efficacy dose did not produce any locomotor activation. Microdialysis experiment demonstrated that systemic administration of D-473 elevated extracellular level of the three monoamines DA, 5-HT, and NE efficaciously in the dorsal lateral striatum (DLS) and the medial prefrontal cortex (mPFC) area, indicating in vivo blockade of all three monoamine transporters by D-473. Thus, the current biological data from D-473 indicate potent antidepressant activity of the molecule. PMID:25427177

  15. Serotonin: from top to bottom.

    PubMed

    Fidalgo, Sara; Ivanov, Dobril K; Wood, Shona H

    2013-02-01

    Serotonin is a monoamine neurotransmitter, which is phylogenetically conserved in a wide range of species from nematodes to humans. In mammals, age-related changes in serotonin systems are known risk factors of age-related diseases, such as diabetes, faecal incontinence and cardiovascular diseases. A decline in serotonin function with aging would be consistent with observations of age-related changes in behaviours, such as sleep, sexual behaviour and mood all of which are linked to serotonergic function. Despite this little is known about serotonin in relation to aging. This review aims to give a comprehensive analysis of the distribution, function and interactions of serotonin in the brain; gastrointestinal tract; skeletal; vascular and immune systems. It also aims to demonstrate how the function of serotonin is linked to aging and disease pathology in these systems. The regulation of serotonin via microRNAs is also discussed, as are possible applications of serotonergic drugs in aging research and age-related diseases. Furthermore, this review demonstrates that serotonin is potentially involved in whole organism aging through its links with multiple organs, the immune system and microRNA regulation. Methods to investigate these links are discussed. PMID:23100172

  16. Serotonin in the inferior colliculus.

    PubMed

    Hurley, Laura M; Thompson, Ann M; Pollak, George D

    2002-06-01

    It has been recognized for some time that serotonin fibers originating in raphe nuclei are present in the inferior colliculi of all mammalian species studied. More recently, serotonin has been found to modulate the responses of single inferior colliculus neurons to many types of auditory stimuli, ranging from simple tone bursts to complex species-specific vocalizations. The effects of serotonin are often quite strong, and for some neurons are also highly specific. A dramatic illustration of this is that serotonin can change the selectivity of some neurons for sounds, including species-specific vocalizations. These results are discussed in light of several theories on the function of serotonin in the IC, and of outstanding issues that remain to be addressed. PMID:12117504

  17. Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity.

    PubMed

    Krabbe, Grietje; Matyash, Vitali; Pannasch, Ulrike; Mamer, Lauren; Boddeke, Hendrikus W G M; Kettenmann, Helmut

    2012-03-01

    Microglia, the brain immune cell, express several neurotransmitter receptors which modulate microglial functions. In this project we studied the impact of serotonin receptor activation on distinct microglial properties as serotonin deficiency not only has been linked to a number of psychiatric disease like depression and anxiety but may also permeate from the periphery through blood-brain barrier openings seen in neurodegenerative disease. First, we tested the impact of serotonin on the microglial response to an insult caused by a laser lesion in the cortex of acute slices from Cx3Cr1-GFP-/+ mice. In the presence of serotonin the microglial processes moved more rapidly towards the laser lesion which is considered to be a chemotactic response to ATP. Similarly, the chemotactic response of cultured microglia to ATP was also enhanced by serotonin. Quantification of phagocytic activity by determining the uptake of microspheres showed that the amoeboid microglia in slices from early postnatal animals or microglia in culture respond to serotonin application with a decreased phagocytic activity whereas we could not detect any significant change in ramified microglia in situ. The presence of microglial serotonin receptors was confirmed by patch-clamp experiments in culture and amoeboid microglia and by qPCR analysis of RNA isolated from primary cultured and acutely isolated adult microglia. These data suggest that microglia express functional serotonin receptors linked to distinct microglial properties. PMID:22198120

  18. The serotonin transporter gene (5-HTT) variant and psychiatric disorders: review of current literature.

    PubMed

    Kuzelova, Hana; Ptacek, Radek; Macek, Milan

    2010-01-01

    Both serotonin and the serotonin transporter, which transports the neurotransmitter serotonin from synaptic spaces into presynaptic neurons, play an important role in the pathophysiology of several psychiatric disorders. Mutations associated with the serotonin transporter gene may result in changes in serotonin transporter function. The serotonin transporter gene promoter variant, consisting of a long (L) and a short (S) variant, is one of the major factors which contribute to the etiology of many psychiatric disorders. In this regard, many studies have been published on association of this variant with various psychiatric disorders. This repeat length variant in the promoter region of this gene has been shown to affect the rate of serotonin uptake and may play a role in post-traumatic stress disorder and depression-susceptibility in people experiencing emotional trauma. Associations between a functional variant in the serotonin transporter anxiety-related personality traits were found, as well as the risk of developing depression, alcoholism or suicidal behavior. Understanding of possible associations of these variants and psychiatric disorders would bring progress in principles and treatment of many disorders. PMID:20150867

  19. Serotonin-induced down-regulation of cell surface serotonin transporter

    PubMed Central

    Jørgensen, Trine Nygaard; Christensen, Peter Møller; Gether, Ulrik

    2014-01-01

    The serotonin transporter (SERT) terminates serotonergic signaling and enables refilling of synaptic vesicles by mediating reuptake of serotonin (5-HT) released into the synaptic cleft. The molecular and cellular mechanisms controlling SERT activity and surface expression are not fully understood. Here we demonstrate that the substrate 5-HT itself causes acute down-regulation of SERT cell surface expression. To assess surface SERT expression by ELISA, we used a SERT variant (TacSERT) where the N-terminus of SERT was fused to the intracellular tail of the extracellularly FLAG-tagged single-membrane spanning protein Tac. In stably transfected HEK293 cells, 5-HT caused a dose-dependent reduction in TacSERT surface signal with an EC50 value equivalent to the Km value observed for 5-HT uptake. The 5-HT-induced reduction in surface signal reached maximum within 40-60 min and was blocked by the selective SERT inhibitor S-citalopram. 5-HT-induced reduction in SERT expression was further supported by surface biotinylation experiments showing 5-HT-induced reduction in wild type SERT plasma membrane levels. Moreover, preincubation with 5-HT lowered the Vmax for 5-HT uptake in cultured raphe serotonergic neurons, indicting that endogenous cell-surface resident SERT likewise is down-regulated in the presence of substrate. PMID:24462583

  20. Chronic 5-HT transporter blockade reduces DA signaling to elicit basal ganglia dysfunction.

    PubMed

    Morelli, Emanuela; Moore, Holly; Rebello, Tahilia J; Gray, Neil; Steele, Kelly; Esposito, Ennio; Gingrich, Jay A; Ansorge, Mark S

    2011-11-01

    Serotonin (5-HT)-selective reuptake inhibitors (SSRIs) are widely administered for the treatment of depression, anxiety, and other neuropsychiatric disorders, but response rates are low, and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs inhibit dopaminergic activity, but mechanistic insight remains scarce. Here we show that in mice, chronic 5-HT transporter (5-HTT) blockade during adulthood but not during development impairs basal ganglia-dependent behaviors in a dose-dependent and reversible fashion. Furthermore, chronic 5-HTT blockade reduces striatal dopamine (DA) content and metabolism. A causal relationship between reduced DA signaling and impaired basal ganglia-dependent behavior is indicated by the reversal of behavioral deficits through L-DOPA administration. Our data suggest that augmentation of DA signaling would reduce side effects and increase efficacies of SSRI-based therapy. PMID:22049417

  1. Dextromethorphan, chlorphenamine and serotonin toxicity: case report and systematic literature review

    PubMed Central

    Monte, Andrew A; Chuang, Ryan; Bodmer, Michael

    2010-01-01

    The aim of this review was to describe a patient with serotonin toxicity after an overdose of dextromethorphan and chlorphenamine and to perform a systematic literature review exploring whether dextromethorphan and chlorphenamine may be equally contributory in the development of serotonin toxicity in overdose. A Medline literature review was undertaken to identify cases of serotonin toxicity due to dextromethorphan and/or chlorphenamine. Case reports were included if they included information on the ingested dose or plasma concentrations of dextromethorphan and/or chlorphenamine, information about co-ingestions and detailed clinical information to evaluate for serotonin toxicity. Cases were reviewed by two toxicologists and serotonin toxicity, defined by the Hunter criteria, was diagnosed when appropriate. The literature was then reviewed to evaluate whether chlorphenamine may be a serotonergic agent. One hundred and fifty-five articles of dextromethorphan or chlorphenamine poisoning were identified. There were 23 case reports of dextromethorphan, of which 18 were excluded for lack of serotonin toxicity. No cases were identified in which serotonin toxicity could be solely attributed to chlorphenamine. This left six cases of dextrometorphane and/or chlorphenamine overdose, including our own, in which serotonin toxicity could be diagnosed based on the presented clinical information. In three of the six eligible cases dextromethorphan and chlorphenamine were the only overdosed drugs. There is substantial evidence from the literature that chlorphenamine is a similarly potent serotonin re-uptake inhibitor when compared with dextrometorphan. Chlorphenamine is a serotonergic medication and combinations of chlorphenamine and dextromethorphan may be dangerous in overdose due to an increased risk of serotonin toxicity. PMID:21175434

  2. Epigenetic Mechanisms of Serotonin Signaling.

    PubMed

    Holloway, Terrell; González-Maeso, Javier

    2015-07-15

    Histone modifications and DNA methylation represent central dynamic and reversible processes that regulate gene expression and contribute to cellular phenotypes. These epigenetic marks have been shown to play fundamental roles in a diverse set of signaling and behavioral outcomes. Serotonin is a monoamine that regulates numerous physiological responses including those in the central nervous system. The cardinal signal transduction mechanisms via serotonin and its receptors are well established, but fundamental questions regarding complex interactions between the serotonin system and heritable epigenetic modifications that exert control on gene function remain a topic of intense research and debate. This review focuses on recent advances and contributions to our understanding of epigenetic mechanisms of serotonin receptor-dependent signaling, with focus on psychiatric disorders such as schizophrenia and depression. PMID:25734378

  3. The serotonin reuptake inhibitor citalopram suppresses activity in the neonatal rat barrel cortex in vivo.

    PubMed

    Akhmetshina, Dinara; Zakharov, Andrei; Vinokurova, Daria; Nasretdinov, Azat; Valeeva, Guzel; Khazipov, Roustem

    2016-06-01

    Inhibition of serotonin uptake, which causes an increase in extracellular serotonin levels, disrupts the development of thalamocortical barrel maps in neonatal rodents. Previous in vitro studies have suggested that the disruptive effect of excessive serotonin on barrel map formation involves a depression at thalamocortical synapses. However, the effects of serotonin uptake inhibitors on the early thalamocortical activity patterns in the developing barrel cortex in vivo remain largely unknown. Here, using extracellular recordings of the local field potentials and multiple unit activity (MUA) we explored the effects of the selective serotonin reuptake inhibitor (SSRI) citalopram (10-20mg/kg, intraperitoneally) on sensory evoked activity in the barrel cortex of neonatal (postnatal days P2-5) rats in vivo. We show that administration of citalopram suppresses the amplitude and prolongs the delay of the sensory evoked potentials, reduces the power and frequency of the early gamma oscillations, and suppresses sensory evoked and spontaneous neuronal firing. In the adolescent P21-29 animals, citalopram affected neither sensory evoked nor spontaneous activity in barrel cortex. We suggest that suppression of the early thalamocortical activity patterns contributes to the disruption of the barrel map development caused by SSRIs and other conditions elevating extracellular serotonin levels. PMID:27016034

  4. Ovarian steroid regulation of serotonin reuptake transporter (SERT) binding, distribution, and function in female macaques.

    PubMed

    Lu, N Z; Eshleman, A J; Janowsky, A; Bethea, C L

    2003-03-01

    The serotonin reuptake transporter (SERT) plays an important role in serotonin neurotransmission and in several psychopathological disorders such as depression and anxiety disorders. In this study, we investigated whether the ovarian steroids, estrogen (E) and progesterone (P) regulate SERT binding, intracellular distribution, and function using [(3)H]citalopram ligand binding with quantitative autoradiography, immunofluorescence histochemistry with confocal microscopy and [(3)H]serotonin uptake, respectively. Ovariectomized macaques received either placebo, E alone, P alone or E plus P for 28 days. In the raphe, E, P, and E+P treatments did not change SERT binding density. In several hypothalamic nuclei, [(3)H]citalopram binding was increased by E, P, and E+P. Immunofluorescent SERT in serotonin soma was intracellular and similar among treatments. In the hypothalamus, immunofluorescent SERT was located along the serotonergic axons and there was a significant proliferation of immunofluorescent fibers in hormone-treated animals. In addition, E and E+P treatment increased serotonin uptake in the basal ganglia. These findings suggest that ovarian hormones regulate SERT protein expression and distribution, perhaps via extracellular serotonin or mRNA stability, but not solely at the level of gene transcription. Further investigation on the possible action of ovarian steroids on the directionality of SERT transport is indicated. PMID:12660809

  5. 123I-ADAM SPECT imaging of serotonin transporter binding in patients with night eating syndrome: a preliminary report.

    PubMed

    Lundgren, Jennifer D; Newberg, Andrew B; Allison, Kelly C; Wintering, Nancy A; Ploessl, Karl; Stunkard, Albert J

    2008-04-15

    Night eating syndrome (NES) represents a delay in the circadian pattern of food intake, manifested by evening hyperphagia and/or nocturnal awakenings accompanied by ingestions of food. A neurobiological marker of NES has been implicated with the recently discovered therapeutic response to the selective serotonin reuptake inhibitor (SSRI) sertraline. This pilot SPECT (single photon emission computed tomography) study compared the serotonin transporter (SERT) uptake ratios of night eaters with those of healthy controls. Six night eaters underwent SPECT imaging using the radiopharmaceutical (123)I-ADAM. Uptake, compared with that of the cerebellum, was obtained for the midbrain, basal ganglia, and temporal lobes; uptake ratios in night eaters were compared with those of six healthy controls. Night eaters had significantly greater SERT uptake ratios in the midbrain than healthy controls. These findings, in conjunction with the therapeutic response of NES to sertraline, indicate that the serotonin system is involved in the pathophysiology of NES. PMID:18281200

  6. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  7. Depressed patients have decreased binding of tritiated imipramine to platelet serotonin ''transporter''

    SciTech Connect

    Paul, S.M.; Rehavi, M.; Skolnick, P.; Ballenger, J.C.; Goodwin, F.K.

    1981-12-01

    The high-affinity tritiated (3H) imipramine binding sites are functionally (and perhaps structurally) associated with the presynaptic neuronal and platelet uptake sites for serotonin. Since there is an excellent correlation between the relative potencies of a series of antidepressants in displacing 3H-imipramine from binding sites in human brain and platelet, we have examined the binding of 3H-imipramine to platelets from 14 depressed patients and 28 age- and sex-matched controls. A highly significant decrease in the number of 3H-imipramine binding sites, with no significant change in the apparent affinity constants, was observed in platelets from the depressed patients compared with the controls. These results, coupled with previous studies showing a significant decrease in the maximal uptake of serotonin in platelets from depressed patients, suggest that an inherited or acquired deficiency of the serotonin transport protein or proteins may be involved in the pathogenesis of depression.

  8. Characterization of the effects of serotonin on the release of (/sup 3/H)dopamine from rat nucleus accumbens and striatal slices

    SciTech Connect

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-05-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of (/sup 3/H)dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal /sup 3/H overflow and reduced K+-induced release of (/sup 3/H)DA from nucleus accumbens slices. The effect of serotonin on basal /sup 3/H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of (/sup 3/H)DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of (/sup 3/H)DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.

  9. Facilitation of serotonin signaling by SSRIs is attenuated by social isolation.

    PubMed

    Dankoski, Elyse C; Agster, Kara L; Fox, Megan E; Moy, Sheryl S; Wightman, R Mark

    2014-12-01

    Hypofunction of the serotonergic system is often associated with major depression and obsessive compulsive disorder (OCD). Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed to treat these disorders, and require 3-6 weeks of chronic treatment before improvements in the symptoms are observed. SSRIs inhibit serotonin's transporter, and in doing so, increase extracellular serotonin concentrations. Thus, efficacy of SSRIs likely depends upon the brain's adaptive response to sustained increases in serotonin levels. Individual responsiveness to SSRI treatment may depend on a variety of factors that influence these changes, including ongoing stress. Social isolation is a passive, naturalistic form of chronic mild stress that can model depression in rodents. In this study, we examined how 20-day treatment with the SSRI citalopram (CIT) alters marble-burying (MB), open field behavior, and serotonin signaling in single- vs pair-housed animals. We used in vivo voltammetry to measure electrically evoked serotonin, comparing release rate, net overflow, and clearance. Pair-housed mice were significantly more responsive to CIT treatment, exhibiting reduced MB and facilitation of serotonin release that positively correlated with the frequency of electrical stimulation. These effects of CIT treatment were attenuated in single-housed mice. Notably, although CIT treatment enhanced serotonin release in pair-housed mice, it did not significantly alter uptake rate. In summary, we report that chronic SSRI treatment facilitates serotonin release in a frequency-dependent manner, and this effect is blocked by social isolation. These findings suggest that the efficacy of SSRIs in treating depression and OCD may depend on ongoing stressors during treatment. PMID:24981046

  10. Relations between peripheral and brain serotonin measures and behavioural responses in a novelty test in pigs.

    PubMed

    Ursinus, Winanda W; Bolhuis, J Elizabeth; Zonderland, Johan J; Rodenburg, T Bas; de Souza, Adriana S; Koopmanschap, Rudie E; Kemp, Bas; Korte-Bouws, Gerdien A H; Korte, S Mechiel; van Reenen, Cornelis G

    2013-06-13

    Pigs differ in their behavioural responses towards environmental challenges. Individual variation in maladaptive responses such as tail biting, may partly originate from underlying biological characteristics related to (emotional) reactivity to challenges and serotonergic system functioning. Assessing relations between behavioural responses and brain and blood serotonin parameters may help in understanding susceptibility to the development of maladaptive responses. The objective of the current study was, therefore, to assess the relationship between the pigs' serotonergic parameters measured in both blood and brain, and the behaviour of pigs during a novelty test. Pigs (n=31) were subjected to a novelty test at 11weeks of age, consisting of 5-min novel environment exposure after which a novel object (a bucket) was introduced for 5min. Whole blood serotonin, platelet serotonin level, and platelet serotonin uptake were determined at 13weeks of age. Levels of serotonin, its metabolite and serotonin turnover were determined at 19weeks of age in the frontal cortex, hypothalamus and hippocampus. The behaviour of the pigs was different during exposure to a novel object compared to the novel environment only, with more fear-related behaviours exhibited during novel object exposure. Platelet serotonin level and brain serotonergic parameters in the hippocampus were interrelated. Notably, the time spent exploring the test arena was significantly correlated with both platelet serotonin level and right hippocampal serotonin activity (turnover and concentration). In conclusion, the existence of an underlying biological trait - possibly fearfulness - may be involved in the pig's behavioural responses toward environmental challenges, and this is also reflected in serotonergic parameters. PMID:23685231

  11. Serotonin biosynthesis as a predictive marker of serotonin pharmacodynamics and disease-induced dysregulation

    PubMed Central

    Welford, Richard W. D.; Vercauteren, Magali; Trébaul, Annette; Cattaneo, Christophe; Eckert, Doriane; Garzotti, Marco; Sieber, Patrick; Segrestaa, Jérôme; Studer, Rolf; Groenen, Peter M. A.; Nayler, Oliver

    2016-01-01

    The biogenic amine serotonin (5-HT) is a multi-faceted hormone that is synthesized from dietary tryptophan with the rate limiting step being catalyzed by the enzyme tryptophan hydroxylase (TPH). The therapeutic potential of peripheral 5-HT synthesis inhibitors has been demonstrated in a number of clinical and pre-clinical studies in diseases including carcinoid syndrome, lung fibrosis, ulcerative colitis and obesity. Due to the long half-life of 5-HT in blood and lung, changes in steady-state levels are slow to manifest themselves. Here, the administration of stable isotope labeled tryptophan (heavy “h-Trp”) and resultant in vivo conversion to h-5-HT is used to monitor 5-HT synthesis in rats. Dose responses for the blockade of h-5-HT appearance in blood with the TPH inhibitors L-para-chlorophenylalanine (30 and 100 mg/kg) and telotristat etiprate (6, 20 and 60 mg/kg), demonstrated that the method enables robust quantification of pharmacodynamic effects on a short time-scale, opening the possibility for rapid screening of TPH1 inhibitors in vivo. In the bleomycin-induced lung fibrosis rat model, the mechanism of lung 5-HT increase was investigated using a combination of synthesis and steady state 5-HT measurement. Elevated 5-HT synthesis measured in the injured lungs was an early predictor of disease induced increases in total 5-HT. PMID:27444653

  12. Association between serotonin transporter gene polymorphism and recurrent aphthous stomatitis

    PubMed Central

    Manchanda, Aastha; Iyengar, Asha R.; Patil, Seema

    2016-01-01

    Background: Anxiety-related traits have been attributed to sequence variability in the genes coding for serotonin transmission in  the brain. Two alleles, termed long (L) and short (S) differing by 44 base pairs, are found in a polymorphism identified in the promoter region of serotonin transporter gene. The presence of the short allele  and SS and LS genotypes is found to be associated with the reduced expression of this gene decreasing the uptake of serotonin in the brain leading to various anxiety-related traits. Recurrent aphthous stomatitis (RAS) is an oral mucosal disease with varied etiology including the presence of stress, anxiety, and genetic influences. The present study aimed to determine this serotonin transporter gene polymorphism in patients with RAS and compare it with normal individuals. Materials and Methods: This study included 20 subjects with various forms of RAS and 20 normal healthy age- and gender-matched individuals. Desquamated oral mucosal cells were collected for DNA extraction and subjected to polymerase chain reaction for studying insertion/deletion in the 5-HTT gene-linked polymorphic region. Cross tabulations followed by Chi-square tests were performed to compare the significance of findings, P < 0.05 was considered statistically significant. Results: The LS genotype was the most common genotype found in the subjects with aphthous stomatitis (60%) and controls (40%). The total percentage of LS and SS genotypes and the frequency of S allele were found to be higher in the subjects with aphthous stomatitis as compared to the control group although a statistically significant correlation could not be established, P = 0.144 and 0.371, respectively. Conclusion: Within the limitations of this study, occurrence of RAS was not found to be associated with polymorphic promoter region in serotonin transporter gene. PMID:27274339

  13. Hindbrain serotonin and the rapid induction of sodium appetite

    NASA Technical Reports Server (NTRS)

    Menani, J. V.; De Luca, L. A. Jr; Thunhorst, R. L.; Johnson, A. K.

    2000-01-01

    Both systemically administered furosemide and isoproterenol produce water intake (i.e., thirst). Curiously, however, in light of the endocrine and hemodynamic effects produced by these treatments, they are remarkably ineffective in eliciting intake of hypertonic saline solutions (i.e., operationally defined as sodium appetite). Recent work indicates that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nuclei (LPBN) markedly enhance a preexisting sodium appetite. The present studies establish that a de novo sodium appetite can be induced with LPBN-methysergide treatment under experimental conditions in which only water is typically ingested. The effects of bilateral LPBN injections of methysergide were studied on the intake of water and 0. 3 M NaCl following acute (beginning 1 h after treatment) diuretic (furosemide)-induced sodium and water depletion and following subcutaneous isoproterenol treatment. With vehicle injected into the LPBN, furosemide treatment and isoproterenol injection both caused water drinking but essentially no intake of hypertonic saline. In contrast, bilateral treatment of the LPBN with methysergide induced the intake of 0.3 M NaCl after subcutaneous furosemide and isoproterenol. Water intake induced by subcutaneous furosemide or isoproterenol was not changed by LPBN-methysergide injections. The results indicate that blockade of LPBN-serotonin receptors produces a marked intake of hypertonic NaCl (i.e., a de novo sodium appetite) after furosemide treatment as well as subcutaneous isoproterenol.

  14. Blockade of tolerance to morphine analgesia by cocaine.

    PubMed

    Misra, A L; Pontani, R B; Vadlamani, N L

    1989-07-01

    Tolerance to morphine analgesia was induced in male Sprague-Dawley rats by s.c. implantation of a morphine base pellet (75 mg) on the first and second day and determining the magnitude of tolerance 72 h after the first implant by s.c. injection of a test dose of morphine (5 mg/kg). Implantation of a cocaine hydrochloride pellet (25 mg), concurrently with morphine pellets or of a cocaine hydrochloride (50 mg) pellet after the development of tolerance, blocked both the development and expression of morphine analgesic tolerance. In morphine-pelleted animals pretreatment for 3 days with desipramine or zimelidine or phenoxybenzamine but not haloperidol produced no significant morphine tolerance. Pretreatment with a combination of desipramine and zimelidine, however, was as effective as cocaine in blocking morphine tolerance. Alpha-Methyl-p-tyrosine methyl ester counteracted the effect of cocaine in blocking morphine tolerance and potentiated the tolerance development. Blockade of morphine tolerance by cocaine was reinforced and facilitated by pretreatment with fenfluramine or p-chlorophenylalanine ethyl ester and to a lesser extent by clonidine and haloperidol. Acute administration of fenfluramine or zimelidine or a combination of desipramine and zimelidine or alpha-methyl-p-tyrosine methyl ester or p-chlorophenylalanine ethyl ester did not significantly affect morphine analgesia. The study suggests an important role of the concomitant depletion of both central noradrenaline and serotonin in the blockade of morphine tolerance by cocaine and stresses the importance of the counter-balancing functional relationship between these two neurotransmitters in the central nervous system. PMID:2780065

  15. Coulomb blockade with neutral modes.

    PubMed

    Kamenev, Alex; Gefen, Yuval

    2015-04-17

    We study transport through a quantum dot in the fractional quantum Hall regime with filling factors ν=2/3 and ν=5/2, weakly coupled to the leads. We account for both injection of electrons to or from the leads, and quasiparticle rearrangement processes between the edge and the bulk of the quantum dot. The presence of neutral modes introduces topological constraints that modify qualitatively the features of the Coulomb blockade (CB). The periodicity of CB peak spacings doubles and the ratio of spacing between adjacent peaks approaches (in the low temperature and large dot limit) a universal value: 2∶1 for ν=2/3 and 3∶1 for ν=5/2. The corresponding CB diamonds alternate their width in the direction of the bias voltage and allow for the determination of the neutral mode velocity, and of the topological numbers associated with it. PMID:25933323

  16. Neurohumoral blockade in CHF management.

    PubMed

    Willenbrock, R; Philipp, S; Mitrovic, V; Dietz, R

    2000-09-01

    Is heart failure an endocrine disease? Historically, congestive heart failure (CHF) has often been regarded as a mechanical and haemodynamic condition. However, there is now strong evidence that the activation of neuroendocrine systems, like the renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system, as well as the activation of natriuretic peptides, endothelin and vasopressin, play key roles in the progression of CHF. In this context, agents targeting neurohormones offer a highly rational approach to CHF management, with ACE inhibitors, aldosterone antagonists and beta-adrenergic blockade improving the prognosis for many patients. Although relevant improvements in clinical status and survival can be achieved with these drug classes, mortality rates for patients with CHF are still very high. Moreover, most patients do not receive these proven life-prolonging drugs, partially due to fear of adverse events, such as hypotension (with ACE inhibitors), gynaecomastia (with spironolactone) and fatigue (with beta-blockers). New agents that combine efficacy with better tolerability are therefore needed. The angiotensin II type 1 (AT(1))-receptor blockers have the potential to fulfil both these requirements, by blocking the deleterious cardiovascular and haemodynamic effects of angiotensin II while offering placebo-like tolerability. As shown with candesartan, AT(1)-receptor blockers also modulate the levels of other neurohormones, including aldosterone and atrial natriuretic peptide (ANP). Combined with its tight, long-lasting binding to AT(1)-receptors, this characteristic gives candesartan the potential for complete blockade of the RAAS-neurohormonal axis, along with the great potential to improve clinical outcomes. PMID:11967792

  17. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    SciTech Connect

    Block, E.R.; Edwards, D. )

    1987-11-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of ({sup 14}C)-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells.

  18. Serotonin and Blood Pressure Regulation

    PubMed Central

    Morrison, Shaun F.; Davis, Robert Patrick; Barman, Susan M.

    2012-01-01

    5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension. PMID:22407614

  19. Serotonin and CGRP in migraine.

    PubMed

    Aggarwal, Milan; Puri, Veena; Puri, Sanjeev

    2012-04-01

    Migraine is defined as recurrent attack of headache that are commonly unilateral and accompanied by gastrointestinal and visual disorders. Migraine is more prevalent in females than males with a ratio of 3:1. It is primarily a complex neurovascular disorder involving local vasodilation of intracranial, extracerebral blood vessels and simultaneous stimulation of surrounding trigeminal sensory nervous pain pathway that results in headache. The activation of 'trigeminovascular system' causes release of various vasodilators, especially calcitonin gene-related peptide (CGRP) that induces pain response. At the same time, decreased levels of neurotransmitter, serotonin have been observed in migraineurs. Serotonin receptors have been found on the trigeminal nerve and cranial vessels and their agonists especially triptans prove effective in migraine treatment. It has been found that triptans act on trigeminovascular system and bring the elevated serum levels of key molecules like calcitonin gene related peptide (CGRP) to normal. Currently CGRP receptor antagonists, olcegepant and telcagepant are under consideration for antimigraine therapeutics. It has been observed that varying levels of ovarian hormones especially estrogen influence serotonin neurotransmission system and CGRP levels making women more predisposed to migraine attacks. This review provides comprehensive information about the role of serotonin and CGRP in migraine, specifically the menstrual migraine. PMID:25205974

  20. Serotonin and Aggressiveness in Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serotonin (5-HT) regulates aggressive behavior in animals. This study examined if 5-HT regulation of aggressiveness is gene-dependent. Chickens from two divergently selected lines KGB and MBB (Kind Gentle Birds and Mean Bad Birds displaying low and high aggressiveness, respectively) and DXL (Dekalb ...

  1. Serotonin release varies with brain tryptophan levels

    NASA Technical Reports Server (NTRS)

    Schaechter, Judith D.; Wurtman, Richard J.

    1990-01-01

    This study examines directly the effects on serotonin release of varying brain tryptophan levels within the physiologic range. It also addresses possible interactions between tryptophan availability and the frequency of membrane depolarization in controlling serotonin release. We demonstrate that reducing tryptophan levels in rat hypothalamic slices (by superfusing them with medium supplemented with 100 microM leucine) decreases tissue serotonin levels as well as both the spontaneous and the electrically-evoked serotonin release. Conversely, elevating tissue tryptophan levels (by superfusing slices with medium supplemented with 2 microM tryptophan) increases both the tissue serotonin levels and the serotonin release. Serotonin release was found to be affected independently by the tryptophan availability and the frequency of electrical field-stimulation (1-5 Hz), since increasing both variables produced nearly additive increases in release. These observations demonstrate for the first time that both precursor-dependent elevations and reductions in brain serotonin levels produce proportionate changes in serotonin release, and that the magnitude of the tryptophan effect is unrelated to neuronal firing frequency. The data support the hypothesis that serotonin release is proportionate to intracellular serotonin levels.

  2. Selective serotonin reuptake inhibitor exposure.

    PubMed

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Many antidepressants inhibit serotonin or norepinephrine reuptake or both to achieve their clinical effect. The selective serotonin reuptake inhibitor class of antidepressants (SSRIs) includes citalopram, escitalopram (active enantiomer of citalopram), fluoxetine, fluvoxamine, paroxetine, and sertraline. The SSRIs are as effective as tricyclic antidepressants in treatment of major depression with less significant side effects. As a result, they have become the largest class of medications prescribed to humans for depression. They are also used to treat obsessive-compulsive disorder, panic disorders, alcoholism, obesity, migraines, and chronic pain. An SSRI (fluoxetine) has been approved for veterinary use in treatment of canine separation anxiety. SSRIs act specifically on synaptic serotonin concentrations by blocking its reuptake in the presynapse and increasing levels in the presynaptic membrane. Clinical signs of SSRI overdose result from excessive amounts of serotonin in the central nervous system. These signs include nausea, vomiting, mydriasis, hypersalivation, and hyperthermia. Clinical signs are dose dependent and higher dosages may result in the serotonin syndrome that manifests itself as ataxia, tremors, muscle rigidity, hyperthermia, diarrhea, and seizures. Current studies reveal no increase in appearance of any specific clinical signs of serotonin toxicity with regard to any SSRI medication. In people, citalopram has been reported to have an increased risk of electrocardiographic abnormalities. Diagnosis of SSRI poisoning is based on history, clinical signs, and response to therapy. No single clinical test is currently available to confirm SSRI toxicosis. The goals of treatment in this intoxication are to support the animal, prevent further absorption of the drug, support the central nervous system, control hyperthermia, and halt any seizure activity. The relative safety of the SSRIs in overdose despite the occurrence of serotonin syndrome makes them

  3. Role of serotonin in fish reproduction

    PubMed Central

    Prasad, Parvathy; Ogawa, Satoshi; Parhar, Ishwar S.

    2015-01-01

    The neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal (HPG) axis which is evolutionarily conserved in vertebrates. The HPG axis is regulated by a variety of internal as well as external factors. Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive functions. In mammals, serotonin regulates sexual behaviors, gonadotropin release and gonadotropin-release hormone (GnRH) secretion. However, the serotonin system in teleost may also play unique role in the control of reproduction as the mechanism of reproductive control in teleosts is not always the same as in the mammalian models. In fish, the serotonin system is also regulated by natural environmental factors as well as chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs) are commonly detected as pharmaceutical contaminants in the natural environment. Those factors may influence fish reproductive functions via the serotonin system. This review summarizes the functional significance of serotonin in the teleosts reproduction. PMID:26097446

  4. Schistosoma mansoni: effects of in vitro serotonin (5-HT) on aerobic and anaerobic carbohydrate metabolism.

    PubMed

    Rahman, M S; Mettrick, D F; Podesta, R B

    1985-08-01

    The effect of Serotonin on carbohydrate metabolism, excreted end products, and adenine nucleotide pools in Schistosoma mansoni was determined following 60 min in vitro incubations under air (= 21% O2) and anaerobic (95% N2:5% CO2) conditions. In the presence of 0.25 mM Serotonin, glucose uptake increased by 82-84% and lactate excretion increased by 77-78%; levels of excreted lactate were significantly higher under aerobic than under anaerobic conditions. The tissue pools of glucose, hexosephosphates, fructose 1,6-bisphosphate, pyruvate, and lactate were significantly increased under anaerobic conditions compared to air incubation; the presence of Serotonin decreased tissue glucose pools and increased the size of the pyruvate and lactate tissue pools. The glycolytic carbon pool was significantly greater under anaerobic than under aerobic conditions, irrespective of Serotonin. Serotonin increased adenosine 5'-diphosphate and adenosine 5'-monophosphate levels under aerobic conditions; neither Serotonin nor gas phase significantly affected total adenine nucleotide levels or the adenylate energy charge. Serotonin increased energy requirements by S. mansoni due to increased muscle contractions; demand was met by enhanced rates of carbohydrate metabolism. Irrespective of gas phase, 74-78% of available carbohydrate was converted to lactate. In the presence of Serotonin, conversion of glucose to lactate was reduced to 63-67%. In view of the requirements by S. mansoni for an abundant supply of glycoprotein and glycolipid precursors for surface membrane renewal, it is suggested that carbohydrate (glucose and glycogen) that was not converted to lactate may have been incorporated into biosynthetic processes leading to membrane synthesis. PMID:4018216

  5. Imaging neurotransmitter uptake and depletion in astrocytes

    SciTech Connect

    Tan, W. |; Haydon, P.G.; Yeung, E.S.

    1997-08-01

    An ultraviolet (UV) laser-based optical microscope and charge-coupled device (CCD) detection system was used to obtain chemical images of biological cells. Subcellular structures can be easily seen in both optical and fluorescence images. Laser-induced native fluorescence detection provides high sensitivity and low limits of detection, and it does not require coupling to fluorescent dyes. We were able to quantitatively monitor serotonin that has been taken up into and released from individual astrocytes on the basis of its native fluorescence. Different regions of the cells took up different amounts of serotonin with a variety of uptake kinetics. Similarly, we observed different serotonin depletion dynamics in different astrocyte regions. There were also some astrocyte areas where no serotonin uptake or depletion was observed. Potential applications include the mapping of other biogenic species in cells as well as the ability to image their release from specific regions of cells in response to external stimuli. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}

  6. Axillary brachial plexus blockade in moyamoya disease?

    PubMed Central

    Yalcin, Saban; Cece, Hasan; Nacar, Halil; Karahan, Mahmut Alp

    2011-01-01

    Moyamoya disease is characterized by steno-occlusive changes of the intracranial internal carotid arteries. Cerebral blood flow and metabolism are strictly impaired. The goal in perioperative anaesthetic management is to preserve the stability between oxygen supply and demand in the brain. Peripheral nerve blockade allows excellent neurological status monitoring and maintains haemodynamic stability which is very important in this patient group. Herein, we present an axillary brachial plexus blockade in a moyamoya patient operated for radius fracture. PMID:21712873

  7. Axillary brachial plexus blockade in moyamoya disease?

    PubMed

    Yalcin, Saban; Cece, Hasan; Nacar, Halil; Karahan, Mahmut Alp

    2011-03-01

    Moyamoya disease is characterized by steno-occlusive changes of the intracranial internal carotid arteries. Cerebral blood flow and metabolism are strictly impaired. The goal in perioperative anaesthetic management is to preserve the stability between oxygen supply and demand in the brain. Peripheral nerve blockade allows excellent neurological status monitoring and maintains haemodynamic stability which is very important in this patient group. Herein, we present an axillary brachial plexus blockade in a moyamoya patient operated for radius fracture. PMID:21712873

  8. Dopamine blockade and clinical response: Evidence for two biological subgroups of schizophrenia

    SciTech Connect

    Wolkin, A.; Barouche, F.; Wolf, A.P.; Rotrosen, J.; Fowler, J.S.; Shiue, C.Y.; Cooper, T.B.; Brodie, J.D. )

    1989-07-01

    Because CNS neuroleptic concentration cannot be directly measured in patients, the relation between clinical response and extent of dopamine receptor blockade is unknown. This relationship is critical in ascertaining whether nonresponse to neuroleptics is the result merely of inadequate CNS drug levels or of more basic biological differences in pathophysiology. Using ({sup 18}F)N-methylspiroperidol and positron emission tomography, the authors assessed dopamine receptor occupancy in 10 schizophrenic patients before and after treatment with haloperidol. Responders and nonresponders had virtually identical indices of ({sup 18}F)N-methylspiroperidol uptake after treatment, indicating that failure to respond clinically was not a function of neuroleptic uptake or binding in the CNS.

  9. [The practice guideline 'Neuraxis blockade and anticoagulation'].

    PubMed

    De Lange, J J; Van Kleef, J W; Van Everdingen, J J E

    2004-07-31

    In a patient with a coagulation disorder, the administration of a local anaesthetic by means of a needle or via the insertion of a catheter into the epidural space or spinal cavity may lead to bleeding and haematoma formation, with a danger of pressure on the spinal cord or nerve roots. Employing the method of the Dutch Institute for Healthcare (CBO) for the development of practice guidelines, a working group of anaesthesiologists, a haematologist and a hospital chemist have drawn up recommendations for neuraxis blockade in combination with anticoagulant therapy. In patients with a clinically acquired tendency toward increased bleeding, the management is highly dependent on the cause of the bleeding tendency. If the patient uses acetylsalicylic acid or clopidogrel, the medication must be withdrawn at least 10 days before neuraxis blockade is started. Therapy with glycoprotein-IIb/IIIa-receptor antagonists is an absolute contra-indication for neuraxis blockade. In patients who are using coumarin derivatives, neuraxis blockade results in an increased risk of a neuraxial haematoma. The coumarin derivative should then be withdrawn and replaced by a different form of anticoagulation. The use of low-molecular-weight heparin at the usual prophylactic dosage is not a contra-indication for neuraxis blockade and the risk of a neuraxial haematoma following neuraxis blockade is also not increased significantly by the subcutaneous administration of unfractionated heparin. PMID:15366721

  10. Serotonergic hyperinnervation and effective serotonin blockade in an FGF receptor developmental model of psychosis

    PubMed Central

    Klejbor, Ilona; Kucinski, Aaron; Wersinger, Scott R.; Corso, Thomas; Spodnik, Jan H.; Dziewiątkowski, Jerzy; Moryś, Janusz; Hesse, Renae A.; Rice, Kenner C.; Miletich, Robert; Stachowiak, Ewa K.; Stachowiak, Michal K.

    2014-01-01

    The role of fibroblast growth factor receptors (FGFR) in normal brain development has been well-documented in transgenic and knock-out mouse models. Changes in FGF and its receptors have also been observed in schizophrenia and related developmental disorders. The current study examines a transgenic th(tk-)/th(tk-) mouse model with FGF receptor signaling disruption targeted to dopamine (DA) neurons, resulting in neurodevelopmental, anatomical, and biochemical alterations similar to those observed in human schizophrenia. We show in th(tk-)/th(tk-) mice that hypoplastic development of DA systems induces serotonergic hyperinnervation of midbrain DA nuclei, demonstrating the co-developmental relationship between DA and 5-HT systems. Behaviorally, th(tk-)/th(tk-) mice displayed impaired sensory gaiting and reduced social interactions correctable by atypical antipsychotics (AAPD) and a specific 5-HT2A antagonist, M100907. The adult onset of neurochemical and behavioral deficits was consistent with the postpubertal time course of psychotic symptoms in schizophrenia and related disorders. The spectrum of abnormalities observed in th(tk-)/th(tk-) mice and the ability of AAPD to correct the behavioral deficits consistent with human psychosis suggests that midbrain 5-HT2A-controlling systems are important loci of therapeutic action. These results may provide further insight into the complex multi-neurotransmitter etiology of neurodevelopmental diseases such autism, bipolar disorder, Asperger’s Syndrome and schizophrenia. PMID:19570652

  11. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice

    PubMed Central

    Yu, Qinghui; Teixeira, Cátia M.; Mahadevia, Darshini; Huang, Yung-Yu; Balsam, Daniel; Mann, J John; Gingrich, Jay A; Ansorge, Mark S.

    2014-01-01

    Pharmacologic blockade of monoamine oxidase A (MAOA) or serotonin transporter (5-HTT) has antidepressant and anxiolytic efficacy in adulthood. Yet, genetically conferred MAOA or 5-HTT hypo-activity is associated with altered aggression and increased anxiety/depression. Here we test the hypothesis that increased monoamine signaling during development causes these paradoxical aggressive and affective phenotypes. We find that pharmacologic MAOA blockade during early postnatal development (P2-P21) but not during peri-adolescence (P22-41) increases anxiety- and depression-like behavior in adult (> P90) mice, mimicking the effect of P2-21 5-HTT inhibition. Moreover, MAOA blockade during peri-adolescence, but not P2-21 or P182-201, increases adult aggressive behavior, and 5-HTT blockade from P22-P41 reduced adult aggression. Blockade of the dopamine transporter, but not the norepinephrine transporter, during P22-41 also increases adult aggressive behavior. Thus, P2-21 is a sensitive period during which 5-HT modulates adult anxiety/depression-like behavior, and P22-41 is a sensitive period during which DA and 5-HT bi-directionally modulate adult aggression. Permanently altered DAergic function as a consequence of increased P22-P41 monoamine signaling might underlie altered aggression. In support of this hypothesis, we find altered aggression correlating positively with locomotor response to amphetamine challenge in adulthood. Proving that altered DA function and aggression are causally linked, we demonstrate that optogenetic activation of VTA DAergic neurons increases aggression. It therefore appears that genetic and pharmacologic factors impacting dopamine and serotonin signaling during sensitive developmental periods can modulate adult monoaminergic function and thereby alter risk for aggressive and emotional dysfunction. PMID:24589889

  12. Serotonin controlling feeding and satiety.

    PubMed

    Voigt, Jörg-Peter; Fink, Heidrun

    2015-01-15

    Serotonin has been implicated in the control of satiety for almost four decades. Historically, the insight that the appetite suppressant effect of fenfluramine is linked to serotonin has stimulated interest in and research into the role of this neurotransmitter in satiety. Various rodent models, including transgenic models, have been developed to identify the involved 5-HT receptor subtypes. This approach also required the availability of receptor ligands of different selectivity, and behavioural techniques had to be developed simultaneously which allow differentiating between unspecific pharmacological effects of these ligands and 'true' satiation and satiety. Currently, 5-HT1B, 5-HT2C and 5-HT6 receptors have been identified to mediate serotonergic satiety in different ways. The recently approved anti-obesity drug lorcaserin is a 5-HT2C receptor agonist. In brain, both hypothalamic (arcuate nucleus, paraventricular nucleus) and extrahypothalamic sites (parabrachial nucleus, nucleus of the solitary tract) have been identified to mediate the serotonergic control of satiety. Serotonin interacts within the hypothalamus with endogenous orexigenic (Neuropeptide Y/Agouti related protein) and anorectic (α-melanocyte stimulating hormone) peptides. In the nucleus of the solitary tract serotonin integrates peripheral satiety signals. Here, the 5-HT3, but possibly also the 5-HT2C receptor play a role. It has been found that 5-HT acts in concert with such peripheral signals as cholecystokinin and leptin. Despite the recent advances of our knowledge, many of the complex interactions between 5-HT and other satiety factors are not fully understood yet. Further progress in research will also advance the development of new serotonergic anti-obesity drugs. PMID:25217810

  13. Real-time, Spatially Resolved Analysis of Serotonin Transporter Activity And Regulation Using the Fluorescent Substrate, ASP+

    PubMed Central

    Oz, M.; Libby, T.; Kivell, B.; Jaligam, V.; Ramamoorthy, S.; Shippenberg, T.S.

    2010-01-01

    The serotonin transporter (SERT) mediates clearance of serotonin from the synapse, thereby, regulating extracellular serotonin concentrations. Radioligand uptake techniques are typically used to assess SERT function in tissue and heterologous expression systems. The need for sufficient protein in samples, however, requires use of homogenate preparations, potentially masking effects limited to specific cell populations. 4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP+) is a fluorescent monoamine transporter substrate that has been used for real-time monitoring of dopamine and norepinephrine transporter function in single cells. The present live cell imaging studies examine the utility of ASP+ for quantifying hSERT function in HEK-293 and neuroblastoma cells. We show rapid membrane binding and intracellular ASP+ accumulation in hSERT expressing cells. Accumulation is saturable; dependent on temperature and the presence of sodium and chloride in the media, and attenuated by serotonin. Acute or prolonged exposure of cells to serotonin re-uptake inhibitors produces a concentration-dependent decrease in accumulation. Similar effects are produced by PKC activation whereas p38MAPK activation increases ASP+ accumulation. These data demonstrate the validity of ASP+ as a probe for monitoring SERT function in living cells. Alterations in SERT binding and uptake can be quantified in the same cell and use of a within cell design permits analysis of time-related alterations in SERT function. PMID:20524964

  14. Serotonin norepinephrine reuptake inhibitors: a pharmacological comparison.

    PubMed

    Sansone, Randy A; Sansone, Lori A

    2014-03-01

    The serotonin norepinephrine reuptake inhibitors are a family of antidepressants that inhibit the reuptake of both serotonin and norepinephrine. While these drugs are traditionally considered a group of inter-related antidepressants based upon reuptake inhibition, they generally display different chemical structures as well as different pharmacological properties. In this article, we discuss these and other differences among the serotonin norepinephrine reuptake inhibitors, including the year of approval by the United States Food and Drug Administration, generic availability, approved clinical indications, half-lives, metabolism and excretion, presence or not of active metabolites, dosing schedules, proportionate effects on serotonin and norepinephrine, and the timing of serotonin and norepinephrine reuptake (i.e., sequential or simultaneous). Again, while serotonin norepinephrine reuptake inhibitors are grouped as a family of antidepressants, they exhibit a surprising number of differences- differences that may ultimately relate to clinical nuances in patient care. PMID:24800132

  15. Sugammadex: A Review of Neuromuscular Blockade Reversal.

    PubMed

    Keating, Gillian M

    2016-07-01

    Sugammadex (Bridion(®)) is a modified γ-cyclodextrin that reverses the effect of the steroidal nondepolarizing neuromuscular blocking agents rocuronium and vecuronium. Intravenous sugammadex resulted in rapid, predictable recovery from moderate and deep neuromuscular blockade in patients undergoing surgery who received rocuronium or vecuronium. Recovery from moderate neuromuscular blockade was significantly faster with sugammadex 2 mg/kg than with neostigmine, and recovery from deep neuromuscular blockade was significantly faster with sugammadex 4 mg/kg than with neostigmine or spontaneous recovery. In addition, recovery from neuromuscular blockade was significantly faster when sugammadex 16 mg/kg was administered 3 min after rocuronium than when patients spontaneously recovered from succinylcholine. Sugammadex also demonstrated efficacy in various special patient populations, including patients with pulmonary disease, cardiac disease, hepatic dysfunction or myasthenia gravis and morbidly obese patients. Intravenous sugammadex was generally well tolerated. In conclusion, sugammadex is an important option for the rapid reversal of rocuronium- or vecuronium-induced neuromuscular blockade. PMID:27324403

  16. Effects of partial neuromuscular blockade on carotid baroreflex function during exercise in humans.

    PubMed

    Gallagher, K M; Fadel, P J; Strømstad, M; Ide, K; Smith, S A; Querry, R G; Raven, P B; Secher, N H

    2001-06-15

    1. This investigation was designed to determine the contribution of central command to the resetting of the carotid baroreflex during static and dynamic exercise in humans. 2. Thirteen subjects performed 3.5 min of static one-legged exercise (20 % maximal voluntary contraction) and 7 min dynamic cycling (20 % maximal oxygen uptake) under two conditions: control (no intervention) and with partial neuromuscular blockade (to increase central command influence) using Norcuron (curare). Carotid baroreflex function was determined at rest and during steady-state exercise using a rapid neck pressure/neck suction technique. Whole-body Norcuron was repeatedly administered to effectively reduce hand-grip strength by approximately 50 % of control. 3. Partial neuromuscular blockade increased heart rate, mean arterial pressure, perceived exertion, lactate concentration and plasma noradrenaline concentration during both static and dynamic exercise when compared to control (P < 0.05). No effect was seen at rest. Carotid baroreflex resetting was augmented from control static and dynamic exercise by partial neuromuscular blockade without alterations in gain (P < 0.05). In addition, the operating point of the reflex was relocated away from the centring point (i.e. closer to threshold) during exercise by partial neuromuscular blockade (P < 0.05). 4. These findings suggest that central command actively resets the carotid baroreflex during dynamic and static exercise. PMID:11410641

  17. Hypoxia directly increases serotonin transport by porcine pulmonary artery endothelial cell (PAEC) plasma membrane vesicles

    SciTech Connect

    Bhat, G.B.; Block, E.R. )

    1990-02-26

    Alterations in the physical state and composition of membrane lipids have been shown to interfere with a number of critical cellular and membrane functions including transmembrane transport. The authors have reported that hypoxia has profound effects upon the physical state and lipid composition of the PAEC plasma membrane bilayer and have suggested that this is responsible for increased serotonin uptake by these cells. In order to determine whether hypoxia has a direct effect on the plasma membrane transport of serotonin, they measured serotonin transport activity (1) in plasma membrane vesicles isolated from normoxic (20% O{sub 2}-5% CO{sub 2}) and hypoxic (0% O{sub 2}-5% CO{sub 2}) PAEC and (2) in PAEC plasma membrane vesicles that were exposed directly to normoxia or hypoxia. A 24-h exposure of PAEC to hypoxia resulted in a 40% increase in specific serotonin transport by plasma membrane vesicles derived from these cells. When plasma membrane vesicles were isolated and then directly exposed to normoxia or hypoxia for 1 h at 37C, a 31% increase in specific 5-HT transport was observed in hypoxic vesicles. Hypoxia did not alter the Km of serotonin transport (normoxia = 3.47 {mu}M versus hypoxia = 3.76 {mu}M) but markedly increased the maximal rate of transport (V{sup max}) (normoxia = 202.4 pmol/min/mg protein versus hypoxia = 317.9 pmol/min/mg protein). These results indicate that hypoxia increases serotonin transport in PAEC by a direct effect on the plasma membrane leading to an increase in the effective number of transporter molecules without alteration in transporter affinity for serotonin.

  18. Spin blockade qubit in a superconducting junction

    NASA Astrophysics Data System (ADS)

    Padurariu, C.; Nazarov, Yu. V.

    2012-12-01

    We interpret a recent pioneering experiment (Zgirski M. et al., Phys. Rev. Lett., 106 (2011) 257003) on quasiparticle manipulation in a superconducting break junction in terms of spin blockade drawing analogy with spin qubits. We propose a novel qubit design that exploits the spin state of two trapped quasiparticles. We detail the coherent control of all four spin states by resonant quantum manipulation and compute the corresponding Rabi frequencies. The read-out technique is based on the spin blockade that inhibits quasiparticle recombination in triplet states. We provide extensive microscopic estimations of the parameters of our model.

  19. Observation of ionic Coulomb blockade in nanopores

    NASA Astrophysics Data System (ADS)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  20. Evaluation of the serotonin receptor blockers ketanserin and methiothepin on the pulmonary hypertensive responses of broilers to intravenously infused serotonin.

    PubMed

    Chapman, M E; Wideman, R F

    2006-04-01

    The pathogenesis of pulmonary hypertension remains incompletely understood. Many factors have been implicated; however, there has been great interest in the potent pulmonary vasoconstrictor serotonin (5-HT) due to episodes of primary pulmonary hypertension in humans triggered by serotoninergic appetite-suppressant drugs. Pulmonary hypertensive patients have elevated blood 5-HT levels and pulmonary vasoconstriction induced by 5-HT is believed to be mediated through 5-HT1B/1D and 5-HT2A receptors that are expressed by pulmonary smooth muscle cells. The vascular remodeling associated with pulmonary hypertension also appears to require the serotonin transporter. We investigated the roles of 5-HT receptor blockers on the development of pulmonary hypertension induced by infusing 5-HT i.v. in broilers. For this purpose, we treated broilers with the selective 5-HT2A receptor antagonist ketanserin (5 mg/ kg of BW) or with the nonselective 5-HT1/2 receptor antagonist methiothepin (3 mg/kg of BW). Receptor blockade was followed by infusion of 5-HT while recording pulmonary arterial pressure and pulmonary arterial blood flow. The results demonstrate that methiothepin, but not ketanserin, eliminated the 5-HT-induced pulmonary hypertensive responses in broilers. The 5-HT2A receptor does not, therefore, appear to play a role in the 5-HT-induced pulmonary hypertensive responses in broilers. Methiothepin did not inhibit pulmonary vascular contractility per se, because the pulmonary hypertensive response to the thromboxane A2 mimetic U44069 remained intact in methiothepin-treated broilers. Methiothepin will be a useful tool for evaluating the role of 5-HT in the pathogenesis of pulmonary hypertension syndrome (ascites) as well as the onset of pulmonary hypertension triggered by inflammatory stimuli such as bacterial lipolysaccharide. PMID:16615363

  1. Serotonin: Modulator of a Drive to Withdraw

    ERIC Educational Resources Information Center

    Tops, Mattie; Russo, Sascha; Boksem, Maarten A. S.; Tucker, Don M.

    2009-01-01

    Serotonin is a fundamental neuromodulator in both vertebrate and invertebrate nervous systems, with a suspected role in many human mental disorders. Yet, because of the complexity of serotonergic function, researchers have been unable to agree on a general theory. One function suggested for serotonin systems is the avoidance of threat. We propose…

  2. How serotonin shapes moral judgment and behavior

    PubMed Central

    Siegel, Jenifer Z; Crockett, Molly J

    2013-01-01

    Neuroscientists are now discovering how hormones and brain chemicals shape social behavior, opening potential avenues for pharmacological manipulation of ethical values. Here, we review recent studies showing how altering brain chemistry can alter moral judgment and behavior, focusing in particular on the neuromodulator serotonin and its role in shaping values related to harm and fairness. We synthesize previous findings and consider the potential mechanisms through which serotonin could increase the aversion to harming others. We present a process model whereby serotonin influences social behavior by shifting social preferences in the positive direction, enhancing the value people place on others’ outcomes. This model may explain previous findings relating serotonin function to prosocial behavior, and makes new predictions regarding how serotonin may influence the neural computation of value in social contexts. PMID:25627116

  3. The norepinephrine reuptake inhibitor reboxetine is more potent in treating murine narcoleptic episodes than the serotonin reuptake inhibitor escitalopram.

    PubMed

    Schmidt, Christian; Leibiger, Judith; Fendt, Markus

    2016-07-15

    One of the major symptoms of narcolepsy is cataplexy, a sudden loss of muscle tone. Despite the advances in understanding the neuropathology of narcolepsy, cataplexy is still treated symptomatically with antidepressants. Here, we investigate in a murine narcolepsy model the hypothesis that the antidepressants specifically blocking norepinephrine reuptake are more potent in treating narcoleptic episodes than the antidepressants blocking of serotonin reuptake. Furthermore, we tested the effects of α1 receptor stimulation and blockade, respectively, on narcoleptic episodes. Orexin-deficient mice were treated with different doses of the norepinephrine reuptake inhibitor reboxetine, the serotonin reuptake inhibitor escitalopram, the α1 receptor agonist cirazoline or the α1 receptor antagonist prazosin. The effect of these treatments on narcoleptic episodes was tested. Additionally, potential treatment effects on locomotor activity in an open-field were tested. Reboxetine (doses ≥0.55mg/kg) as well as escitalopram (doses ≥3.0mg/kg) dose-dependently reduced the number of narcoleptic episodes in orexin-deficient mice. The ED50 for reboxetine (0.012mg/kg) was significantly lower than for escitalopram (0.44mg/kg). Cirazoline and prazosin did not affect narcoleptic episodes. Furthermore, cirazoline but not the other compounds reduced locomotor activity of the mice. The present study strongly supports the hypothesis that a specific blockade of norepinephrine reuptake is more potent in treating cataplexy than a specific blockade of serotonin reuptake. This argues for the development of more specific norepinephrine reuptake inhibitors for the treatment of narcolepsy. PMID:27118715

  4. Common Drugs Inhibit Human Organic Cation Transporter 1 (OCT1)-Mediated Neurotransmitter Uptake

    PubMed Central

    Boxberger, Kelli H.; Hagenbuch, Bruno

    2014-01-01

    The human organic cation transporter 1 (OCT1) is a polyspecific transporter involved in the uptake of positively charged and neutral small molecules in the liver. To date, few endogenous compounds have been identified as OCT1 substrates; more importantly, the effect of drugs on endogenous substrate transport has not been examined. In this study, we established monoamine neurotransmitters as substrates for OCT1, specifically characterizing serotonin transport in human embryonic kidney 293 cells. Kinetic analysis yielded a Km of 197 micomolar and a Vmax of 561 pmol/mg protein/minute for serotonin. Furthermore, we demonstrated that serotonin uptake was inhibited by diphenhydramine, fluoxetine, imatinib, and verapamil, with IC50 values in the low micromolar range. These results were recapitulated in primary human hepatocytes, suggesting that OCT1 plays a significant role in hepatic elimination of serotonin and that xenobiotics may alter the elimination of endogenous compounds as a result of interactions at the transporter level. PMID:24688079

  5. Serotonin, neural markers, and memory

    PubMed Central

    Meneses, Alfredo

    2015-01-01

    Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals' species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors as well as SERT (serotonin transporter) seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence. PMID:26257650

  6. Neuromuscular blockade in the elderly patient

    PubMed Central

    Lee, Luis A; Athanassoglou, Vassilis; Pandit, Jaideep J

    2016-01-01

    Neuromuscular blockade is a desirable or even essential component of general anesthesia for major surgical operations. As the population continues to age, and more operations are conducted in the elderly, due consideration must be given to neuromuscular blockade in these patients to avoid possible complications. This review considers the pharmacokinetics and pharmacodynamics of neuromuscular blockade that may be altered in the elderly. Compartment distribution, metabolism, and excretion of drugs may vary due to age-related changes in physiology, altering the duration of action with a need for reduced dosage (eg, aminosteroids). Other drugs (atracurium, cisatracurium) have more reliable duration of action and should perhaps be considered for use in the elderly. The range of interpatient variability that neuromuscular blocking drugs may exhibit is then considered and drugs with a narrower range, such as cisatracurium, may produce more predictable, and inherently safer, outcomes. Ultimately, appropriate neuromuscular monitoring should be used to guide the administration of muscle relaxants so that the risk of residual neuromuscular blockade postoperatively can be minimized. The reliability of various monitoring is considered. This paper concludes with a review of the various reversal agents, namely, anticholinesterase drugs and sugammadex, and the alterations in dosing of these that should be considered for the elderly patient. PMID:27382330

  7. Autonomic blockade improves insulin sensitivity in obese subjects.

    PubMed

    Gamboa, Alfredo; Okamoto, Luis E; Arnold, Amy C; Figueroa, Rocio A; Diedrich, André; Raj, Satish R; Paranjape, Sachin Y; Farley, Ginnie; Abumrad, Naji; Biaggioni, Italo

    2014-10-01

    Obesity is an important risk factor for the development of insulin resistance. Initial compensatory mechanisms include an increase in insulin levels, which are thought to induce sympathetic activation in an attempt to restore energy balance. We have previously shown, however, that sympathetic activity has no beneficial effect on resting energy expenditure in obesity. On the contrary, we hypothesize that sympathetic activation contributes to insulin resistance. To test this hypothesis, we determined insulin sensitivity using a standard hyperinsulinemic euglycemic clamp protocol in obese subjects randomly assigned in a crossover design 1 month apart to receive saline (intact day) or trimetaphan (4 mg/min IV, autonomic blocked day). Whole-body glucose uptake (MBW in mg/kg per minute) was used as index of maximal muscle glucose use. During autonomic blockade, we clamped blood pressure with a concomitant titrated intravenous infusion of the nitric oxide synthase inhibitor N-monomethyl-L-arginine. Of the 21 obese subjects (43±2 years; 35±2 kg/m(2) body mass index) studied, 14 were insulin resistant; they were more obese, had higher plasma glucose and insulin, and had higher muscle sympathetic nerve activity (23.3±1.5 versus 17.2±2.1 burst/min; P=0.03) when compared with insulin-sensitive subjects. Glucose use improved during autonomic blockade in insulin-resistant subjects (MBW 3.8±0.3 blocked versus 3.1±0.3 mg/kg per minute intact; P=0.025), with no effect in the insulin-sensitive group. These findings support the concept that sympathetic activation contributes to insulin resistance in obesity and may result in a feedback loop whereby the compensatory increase in insulin levels contributes to greater sympathetic activation. PMID:25001269

  8. Serotonin regulates mouse cranial neural crest migration.

    PubMed Central

    Moiseiwitsch, J R; Lauder, J M

    1995-01-01

    Serotonergic agents (uptake inhibitors, receptor ligands) cause significant craniofacial malformations in cultured mouse embryos suggesting that 5-hydroxytryptamine (serotonin) (5-HT) may be an important regulator of craniofacial development. To determine whether serotonergic regulation of cell migration might underly some of these effects, cranial neural crest (NC) explants from embryonic day 9 (E9) (plug day = E1) mouse embryos or dissociated mandibular mesenchyme cells (derived from NC) from E12 embryos were placed in a modified Boyden chamber to measure effects of serotonergic agents on cell migration. A dose-dependent effect of 5-HT on the migration of highly motile cranial NC cells was demonstrated, such that low concentrations of 5-HT stimulated migration, whereas this effect was progressively lost as the dose of 5-HT was increased. In contrast, most concentrations of 5-HT inhibited migration of less motile, mandibular mesenchyme cells. To investigate the possible involvement of specific 5-HT receptors in the stimulation of NC migration, several 5-HT subtype-selective antagonists were used to block the effects of the most stimulatory dose of 5-HT (0.01 microM). Only NAN-190 (a 5-HT1A antagonist) inhibited the effect of 5-HT, suggesting involvement of this receptor. Further evidence was obtained by using immunohistochemistry with 5-HT receptor antibodies, which revealed expression of the 5-HT1A receptor but not other subtypes by migrating NC cells in both embryos and cranial NC explants. These results suggest that by activating appropriate receptors 5-HT may regulate migration of cranial NC cells and their mesenchymal derivatives in the mouse embryo. Images Fig. 1 Fig. 2 Fig. 3 PMID:7638165

  9. Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria).

    PubMed

    Stern, Michael; Knipp, Sabine; Bicker, Gerd

    2007-03-01

    The enteric nervous system (ENS) of the locust consists of four ganglia (frontal and hypocerebral ganglion, and the paired ingluvial ganglia) located on the foregut, and nerve plexus innervating fore- and midgut. One of the major neurotransmitters of the ENS, serotonin, is known to play a vital role in gut motility and feeding. We followed the anatomy of the serotonergic system throughout embryonic development. Serotonergic neurons are generated in the anterior neurogenic zones of the foregut and migrate rostrally along the developing recurrent nerve to contribute to the frontal ganglion. They grow descending neurites, which arborize in all enteric ganglia and both nerve plexus. On the midgut, the neurites closely follow the leading migrating midgut neurons. The onset of serotonin synthesis occurs around halfway through development-the time of the beginning of midgut closure. Cells developing to serotonergic phenotype express the serotonin uptake transporter (SERT) significantly earlier, beginning at 40% of development. The neurons begin SERT expression during migration along the recurrent nerve, indicating that they are committed to a serotonergic phenotype before reaching their final destination. After completion of the layout of the enteric ganglia (at 60%) a maturational phase follows, during which serotonin-immunoreactive cell bodies increase in size and the fine arborizations in the nerve plexus develop varicosities, putative sites of serotonin release (at 80%). This study provides the initial step for future investigation of potential morphoregulatory functions of serotonin during ENS development. PMID:17206618

  10. Serotonin: A New Hope in Alzheimer's Disease?

    PubMed

    Claeysen, Sylvie; Bockaert, Joël; Giannoni, Patrizia

    2015-07-15

    Alzheimer's disease (AD) is the most common form of dementia affecting 35 million individuals worldwide. Current AD treatments provide only brief symptomatic relief. It is therefore urgent to replace this symptomatic approach with a curative one. Increasing serotonin signaling as well as developing molecules that enhance serotonin concentration in the synaptic cleft have been debated as possible therapeutic strategies to slow the progression of AD. In this Viewpoint, we discuss exciting new insights regarding the modulation of serotonin signaling for AD prevention and therapy. PMID:26011650

  11. Multiphoton-Excited Serotonin Photochemistry

    PubMed Central

    Gostkowski, Michael L.; Allen, Richard; Plenert, Matthew L.; Okerberg, Eric; Gordon, Mary Jane; Shear, Jason B.

    2004-01-01

    We report photochemical and photophysical studies of a multiphoton-excited reaction of serotonin that previously has been shown to generate a photoproduct capable of emitting broadly in the visible spectral region. The current studies demonstrate that absorption of near-infrared light by an intermediate state prepared via three-photon absorption enhances the photoproduct formation yield, with the largest action cross sections (∼10−19 cm2) observed at the short-wavelength limit of the titanium:sapphire excitation source. The intermediate state is shown to persist for at least tens of nanoseconds and likely to be different from a previously reported oxygen-sensitive intermediate. In addition, the two-photon fluorescence action spectrum for the fluorescent photoproduct was determined and found to have a maximum at ∼780 nm (3.2 eV). A general mechanism for this photochemical process is proposed. PMID:15111435

  12. Studies on central nervous system serotonin receptors in mood disorders.

    PubMed

    Young, A; Goodwin, G M

    1991-01-01

    The evidence from studies of central nervous system serotonin (5-HT) receptors is reviewed and the role of these in the pathogenesis of mood disorders is discussed. Clinical evidence indicates that 5-HT function is abnormal in mood disorders. 5-HT precursors and selective inhibitors of 5-HT uptake are effective antidepressives and inhibition of 5-HT synthesis can block the action of antidepressives. Studies of 5-HT in experimental animals after chronic administration of antidepressive treatments suggest that intact 5-HT neurons are necessary for the action of these treatments. Multiple 5-HT receptor subtypes have recently been identified and the effects of chronic antidepressive treatment on some receptor subtypes function in experimental animals have been established. The increasing availability of powerful new in vivo imaging techniques like single photon emission tomography (SPET), and positron emission tomography (PET) may make possible a more direct examination of 5-HT receptor function in patients suffering from mood disorders. PMID:2029163

  13. [The pharmacological basis of the serotonin system: Application to antidepressant response].

    PubMed

    David, D J; Gardier, A M

    2016-06-01

    If serotonin (5-hydroxytryptamin [5-HT]) is well known for its role in mood regulation, it also impacts numerous physiological functions at periphery. Serotonin is synthetized at the periphery into the gut by intestinal enterochromaffin cells and in the central nervous system (CNS) in the raphe nucleus from the essential amino acid tryptophan. Physiological effects of 5-HT are mediated by about 15 serotoninergic receptors grouped into seven broad families (5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, 5-HT7 receptor families). Except 5-HT3 receptor, a ligand-gated ion channels, all the others are G protein-coupled receptors. Serotonin's homeostasis involves serotoninergic autoreceptor such as 5-HT1A, 5-HT1B, 5-HT1D, the enzymatic degradation of serotonin by monoamine oxidase A (MAO-A), and a transporter (serotoninergic transporter [SERT]). In the CNS, the SERT is a key target for various antidepressant drugs such as Selective Serotonin Reuptake Inhibitors (SSRI), Serotonin Norepinephrin Reuptake Inhibitors (SNRI) and tricyclics family. However, antidepressant activity of SERT inhibitors is not directly mediated by the SERT inhibition, but a consequence of postsynaptic 5-HT receptor activation following the increase in 5-HT levels in the synaptic cleft. In pharmacology, SSRIs are defined as indirect agonist of postsynaptic receptor. Among all the 5-HT receptors, 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B and 5-HT4 receptors activation would mediate antidepressant effects. In the meanwhile, 5-HT2A, 5-HT2C, 5-HT3, 5-HT6 and 5-HT7 receptors activation would induce opposite effects. The best serotoninergic antidepressant would directly activate 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B and 5-HT4 and would block 5-HT2A, 5-HT2C, 5-HT3, 5-HT6 and 5-HT7 receptor. If the chemical synthesis of such a compound may be compromised, SERT inhibition associated with the blockade of some but not all 5-HT receptor could shorten onset of action and/or improve antidepressant efficacy on the overall

  14. [Cancer immunotherapy by immuno-checkpoint blockade].

    PubMed

    Kawakami, Yutaka

    2015-10-01

    As cancer immunotherapies utilizing anti-tumor T-cell responses, immuno-checkpoint blockade and adoptive T-cell immunotherapy have recently achieved durable responses even in advanced cancer patients with metastases. Administration of antibodies on the T-cell surface, CTLA-4 and PD-1 (or PD-1 ligand PD-L1), resulted in tumor regression of not only melanoma and renal cell cancer which were known to be relatively sensitive to immunotherapy, but also various malignancies including lung, bladder, ovarian, gastric, and head and neck cancers, as well as hematological malignancies such as Hodgkin and B-cell malignant lymphomas. These findings have changed the status of immunotherapy in the development of cancer treatments. Currently, development of combinations employing cancer immunotherapy with immuno-checkpoint blockade, as well as personalized cancer immunotherapy based on the evaluation of pretreatment immune status, are in progress. PMID:26458459

  15. Efficient Multiparticle Entanglement via Asymmetric Rydberg Blockade

    SciTech Connect

    Saffman, M.; Moelmer, K.

    2009-06-19

    We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.

  16. hERG Blockade by Iboga Alkaloids.

    PubMed

    Alper, Kenneth; Bai, Rong; Liu, Nian; Fowler, Steven J; Huang, Xi-Ping; Priori, Silvia G; Ruan, Yanfei

    2016-01-01

    The iboga alkaloids are a class of naturally occurring and synthetic compounds, some of which modify drug self-administration and withdrawal in humans and preclinical models. Ibogaine, the prototypic iboga alkaloid that is utilized clinically to treat addictions, has been associated with QT prolongation, torsades de pointes and fatalities. hERG blockade as IKr was measured using the whole-cell patch clamp technique in HEK 293 cells. This yielded the following IC50 values: ibogaine manufactured by semisynthesis via voacangine (4.09 ± 0.69 µM) or by extraction from T. iboga (3.53 ± 0.16 µM); ibogaine's principal metabolite noribogaine (2.86 ± 0.68 µM); and voacangine (2.25 ± 0.34 µM). In contrast, the IC50 of 18-methoxycoronaridine, a product of rational synthesis and current focus of drug development was >50 µM. hERG blockade was voltage dependent for all of the compounds, consistent with low-affinity blockade. hERG channel binding affinities (K i) for the entire set of compounds, including 18-MC, ranged from 0.71 to 3.89 µM, suggesting that 18-MC binds to the hERG channel with affinity similar to the other compounds, but the interaction produces substantially less hERG blockade. In view of the extended half-life of noribogaine, these results may relate to observations of persistent QT prolongation and cardiac arrhythmia at delayed intervals of days following ibogaine ingestion. The apparent structure-activity relationships regarding positions of substitutions on the ibogamine skeleton suggest that the iboga alkaloids might provide an informative paradigm for investigation of the structural biology of the hERG channel. PMID:25636206

  17. Ghrelin- and serotonin-producing gastric carcinoid.

    PubMed

    Latta, Eleanor; Rotondo, Fabio; Leiter, Lawrence A; Horvath, Eva; Kovacs, Kalman

    2012-06-01

    We report the case of a 57-year-old woman with gastric carcinoid. The tumor was surgically removed and immunohistochemical investigation demonstrated a rare combination: ghrelin and serotonin in the cytoplasm of the tumor cells. The functional significance of simultaneous production of ghrelin and serotonin is not clear. It may be that an autocrine/paracrine interaction exists between these two different hormones. PMID:21424696

  18. Reversal by pronethalol of dibenamine blockade

    PubMed Central

    Guimarães, S.

    1969-01-01

    1. The guinea-pig seminal vesicle has been shown to be a very suitable test object for the study of mechanisms involving α-adrenoceptive receptors, because no β-receptors were found in this preparation. 2. Adrenaline, noradrenaline and phenylephrine were directly acting agonists, their ED50 values being 7·1 × 10-6M, 1·5 × 10-5M and 2·7 × 10-5M, respectively. 3. Pretreatment with reserpine had no influence on the contractions caused by adrenaline, noradrenaline and phenylephrine but abolished or greatly reduced the contractions caused by dopamine. Cocaine enhanced the effects of adrenaline, noradrenaline and phenylephrine and reduced those of dopamine. 4. Pronethalol (6·8 × 10-5M) reversed the α-receptor blockade by dibenamine, ergotamine and phentolamine of responses to adrenaline, noradrenaline and phenylephrine; it did not affect the blockade by dibenamine of responses to histamine. 5. Reversal of the blockade by dibenamine was observed only when its concentration was such that it caused a parallel shift of the dose-effect curves of the agonists to the right; higher concentrations, which caused an unsurmountable depression of the maximal contraction, were not antagonized by pronethalol. 6. It is assumed that the reversal is dependent on a direct action on α-receptors, “spare receptors” being probably involved. PMID:4389284

  19. Immune Checkpoint Blockade in Cancer Therapy

    PubMed Central

    Postow, Michael A.; Callahan, Margaret K.; Wolchok, Jedd D.

    2015-01-01

    Immunologic checkpoint blockade with antibodies that target cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) and the programmed cell death protein 1 pathway (PD-1/PD-L1) have demonstrated promise in a variety of malignancies. Ipilimumab (CTLA-4) and pembrolizumab (PD-1) are approved by the US Food and Drug Administration for the treatment of advanced melanoma, and additional regulatory approvals are expected across the oncologic spectrum for a variety of other agents that target these pathways. Treatment with both CTLA-4 and PD-1/PD-L1 blockade is associated with a unique pattern of adverse events called immune-related adverse events, and occasionally, unusual kinetics of tumor response are seen. Combination approaches involving CTLA-4 and PD-1/PD-L1 blockade are being investigated to determine whether they enhance the efficacy of either approach alone. Principles learned during the development of CTLA-4 and PD-1/PD-L1 approaches will likely be used as new immunologic checkpoint blocking antibodies begin clinical investigation. PMID:25605845

  20. Serotonin and Dopamine Protect from Hypothermia/Rewarming Damage through the CBS/ H2S Pathway

    PubMed Central

    Talaei, Fatemeh; Bouma, Hjalmar R.; Van der Graaf, Adrianus C.; Strijkstra, Arjen M.; Schmidt, Martina; Henning, Robert H.

    2011-01-01

    Biogenic amines have been demonstrated to protect cells from apoptotic cell death. Herein we show for the first time that serotonin and dopamine increase H2S production by the endogenous enzyme cystathionine-β-synthase (CBS) and protect cells against hypothermia/rewarming induced reactive oxygen species (ROS) formation and apoptosis. Treatment with both compounds doubled CBS expression through mammalian target of rapamycin (mTOR) and increased H2S production in cultured rat smooth muscle cells. In addition, serotonin and dopamine treatment significantly reduced ROS formation. The beneficial effect of both compounds was minimized by inhibition of their re-uptake and by pharmacological inhibition of CBS or its down-regulation by siRNA. Exogenous administration of H2S and activation of CBS by Prydoxal 5′-phosphate also protected cells from hypothermic damage. Finally, serotonin and dopamine pretreatment of rat lung, kidney, liver and heart prior to 24 h of hypothermia at 3°C followed by 30 min of rewarming at 37°C upregulated the expression of CBS, strongly reduced caspase activity and maintained the physiological pH compared to untreated tissues. Thus, dopamine and serotonin protect cells against hypothermia/rewarming induced damage by increasing H2S production mediated through CBS. Our data identify a novel molecular link between biogenic amines and the H2S pathway, which may profoundly affect our understanding of the biological effects of monoamine neurotransmitters. PMID:21829469

  1. In vivo binding of /sup 3/H-N-methylspiperone to dopamine and serotonin receptors

    SciTech Connect

    Frost, J.J.; Smith, A.C.; Kuhar, M.J.; Dannals, R.F.; Wagner, H.N. Jr.

    1987-03-09

    /sup 3/H-N-methylspiperone (/sup 3/H-NMSP) was used to label dopamine-2 and serotonin-2 in vivo in the mouse. The striatum/cerebellum binding ratio reached a maximum of 80 eight hours after intravenous administration of /sup 3/H-NMSP. The frontal cortex/cerebellum ratio was 5 one hour after injection. The binding of /sup 3/H-NMSP was saturable in the frontal cortex and cerebellum between doses of 10 and 1000 ..mu..g/kg. Between 0.01 and 10 ..mu..g/kg the ratio total/nonspecific binding increased from 14 to 21. Inhibition of /sup 3/H-NMSP binding in the frontal cortex and striatum by ketanserin, a selective serotonin-2 antagonist, demonstrated that 20% of the total binding in the striatum was to serotonin-2 rectors and 91% of the total binding in the frontal cortex was to serotonin-2 receptors. Compared to /sup 3/H-spiperone, /sup 3/H-NMSP 1) results in a much higher specific/nonspecific binding ratio in the striatum and frontal cortex and 2) displays more than a two-fold higher brain uptake. 18 references, 4 figures.

  2. Serotonin modulation of caudal photoreceptor in crayfish.

    PubMed

    Rodríguez-Sosa, Leonardo; Calderón-Rosete, Gabina; Porras Villalobos, Mercedes Graciela; Mendoza Zamora, Elena; Anaya González, Víctor

    2006-01-01

    The sixth abdominal ganglion (6th AG) of the crayfish contains two photosensitive neurons. This caudal photoreceptor (CPR) displays spontaneous electrical activity and phasic-tonic responses to light pulses. In this paper, we analyzed the presence of serotonin in the 6th AG and its effects in the modulation of the activity of CPR. In the first part of our study, we identified serotonergic neurons in the 6th AG by immunostaining using an antibody against serotonin. Next, we quantified the serotonin contents in the 6th AG by using liquid chromatography. Finally, we searched for serotonergic modulation of the CPR electrical activity by using conventional extracellular recordings. We found 13 immunopositive neurons located in the ventral side of the 6th AG. The mean diameter of their somata was 23+/-9 microm. In addition, there was immunopositive staining in neuropilar fibers and varicosities. The contents of serotonin and its precursors in the 6th AG varied along the 24-h cycle. Its maximum value was reached by midday. Topic application of serotonin to ganglia kept in darkness increased the CPR spontaneous firing rate and reduced its light responsiveness. Both effects were dose-dependent within ED(50) approximately 1 microM and were blocked by the 5-HT antagonist methysergide. These observations support the role of serotonin as a neurotransmitter or neuromodulator in the CPR of the two species of crayfish Procambarus clarkii and Cherax quadricarinatus. PMID:16298168

  3. Cortical serotonin and norepinephrine denervation in parkinsonism: Preferential loss of the beaded serotonin innervation

    PubMed Central

    Nayyar, Tultul; Bubser, Michael; Ferguson, Marcus C.; Neely, M. Diana; Goodwin, J. Shawn; Montine, Thomas J.; Deutch, Ariel Y.; Ansah, Twum A.

    2009-01-01

    Parkinson’s Disease (PD) is marked by prominent motor symptoms that reflect striatal dopamine insufficiency. However, non-motor symptoms, including depression, are common in PD. These changes have been suggested to reflect pathological involvement of non-dopaminergic systems. We examined regional changes in serotonin and norepinephrine systems in mice treated with two different 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment paradigms and that survived for 3 or 16 weeks after the last MPTP injection. MPTP caused a decrease in striatal dopamine concentration, the magnitude of which depended on the treatment regimen and survival interval after MPTP treatment. There was significant involvement of other subcortical areas receiving a dopamine innervation, but no consistent changes in serotonin or norepinephrine levels in subcortical sites. In contrast, we observed an enduring decrease in serotonin and norepinephrine concentrations in both the somatosensory and medial prefrontal (PFC) cortex. Immunohistochemical studies also revealed a decrease in the density of PFC norepinephrine and serotonin axons. The decrease in the cortical serotonergic innervation preferentially involved the thick beaded but not smooth fine serotonin axons. Similar changes in the serotonin innervation of postmortem samples of the prefrontal cortex from idiopathic PD cases were seen. Our findings point to a major loss of the serotonin and norepinephrine innervations of the cortex in MPTP-induced parkinsonism, and suggest that loss of the beaded cortical serotonin innervation is associated with a predisposition to the development of depression in PD. PMID:19659923

  4. Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date.

    PubMed

    Nikiforuk, Agnieszka

    2015-04-01

    The 5-HT7 (5-hydroxytryptamine 7, serotonin 7) receptor is one of the most recently identified members of the serotonin receptor family. Pharmacological tools, including selective antagonists and, more recently, agonists, along with 5-HT7 receptor (5-HT7R) knock-out mice have revealed the involvement of this receptor in central nervous system processes. Its well-established role in controlling body temperature and regulating sleep and circadian rhythms has implicated this receptor in mood disorders. Thus, the 5-HT7R has gained much attention as a possible target for the treatment of depression. Although preclinical data support the antidepressant-like actions of 5-HT7R antagonists, their clinical efficacy has not been yet established. Other evidence has implicated the 5-HT7R in learning and memory. Preclinical findings suggest that blockade of this receptor may be beneficial against schizophrenia-like cognitive deficits. Other possible indications include nociception, epilepsy, migraine, autism spectrum disorders, and Rett Syndrome. However, the question is whether the beneficial effects may be achieved by activation or blockade of 5-HT7Rs. Hence, this review briefly summarises the recent findings on the role of 5-HT7Rs and their ligands in CNS disorders. PMID:25721336

  5. Neuroimmunomodulatory interactions of norepinephrine and serotonin.

    PubMed

    Walker, R F; Codd, E E

    1985-11-01

    Monoamine neuroleptics alter rodents responses to immunization, suggesting that norepinephrine (NE) and serotonin (5HT) are neuroimmunomodulatory in these animals. Although endocrine factors participate in their mechanism(s) of action, recent studies suggest that NE and 5HT also interact more directly with immunocompetent cells. This review provides an overview of evidence for a direct regulatory link between the nervous and immune systems and further speculates on the process by which NE and 5HT realize in part, their neuroimmunomodulatory potential. Anatomical data show that noradrenergic fibers of the sympathetic nervous system innervate lymphoid organs providing a channel of communication between neurons and lymphocytes. Presumably neural signals transmitted by NE are received by platelets that in turn, transduce them via 5HT into immunomodulatory messages. It is proposed that NE alters the capacity of platelets to sequester and/or catabolize 5HT, thus regulating its physiologically active pool in the plasma. Macrophages possess a 5HT uptake system, the kinetic properties of which make them sensitive to changes in plasma levels of the amine. Thus, through its ability to regulate plasma levels of 5HT, an immunosuppressive amine with access to macrophages, the nervous system can influence cells involved in antigen recognition. Support for this hypothetical immunomodulatory mechanism is gleaned from clinical and experimental studies. For example, individuals suffering emotional trauma are more susceptible than others to developing physical illness. It is of interest that platelet 5HT pharmacodynamics are often abnormal in patients with psychological disorders characterized by catecholamine deficits. Similar platelet changes have been achieved experimentally by treating rats with catecholamine antimetabolites. Additional support for the hypothesis derives from aging research since 'monoamine imbalance' and immune dysfunction are co-characteristics of senescence. In

  6. Switching brain serotonin with oxytocin

    PubMed Central

    Mottolese, Raphaelle; Redouté, Jérôme; Costes, Nicolas; Le Bars, Didier; Sirigu, Angela

    2014-01-01

    Serotonin (5-HT) and oxytocin (OXT) are two neuromodulators involved in human affect and sociality and in disorders like depression and autism. We asked whether these chemical messengers interact in the regulation of emotion-based behavior by administering OXT or placebo to 24 healthy subjects and mapping cerebral 5-HT system by using 2′-methoxyphenyl-(N-2′-pyridinyl)-p-[18F]fluoro-benzamidoethylpiperazine ([18F]MPPF), an antagonist of 5-HT1A receptors. OXT increased [18F]MPPF nondisplaceable binding potential (BPND) in the dorsal raphe nucleus (DRN), the core area of 5-HT synthesis, and in the amygdala/hippocampal complex, insula, and orbitofrontal cortex. Importantly, the amygdala appears central in the regulation of 5-HT by OXT: [18F]MPPF BPND changes in the DRN correlated with changes in right amygdala, which were in turn correlated with changes in hippocampus, insula, subgenual, and orbitofrontal cortex, a circuit implicated in the control of stress, mood, and social behaviors. OXT administration is known to inhibit amygdala activity and results in a decrease of anxiety, whereas high amygdala activity and 5-HT dysregulation have been associated with increased anxiety. The present study reveals a previously unidentified form of interaction between these two systems in the human brain, i.e., the role of OXT in the inhibitory regulation of 5-HT signaling, which could lead to novel therapeutic strategies for mental disorders. PMID:24912179

  7. Immunomodulatory Effects Mediated by Serotonin

    PubMed Central

    Arreola, Rodrigo; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Velasco-Velázquez, Marco Antonio; Garcés-Alvarez, María Eugenia; Hurtado-Alvarado, Gabriela; Quintero-Fabian, Saray; Pavón, Lenin

    2015-01-01

    Serotonin (5-HT) induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a) membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b) downstream signaling transduction proteins; and (c) enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases. PMID:25961058

  8. Effects of alpha and beta adrenergic blockade on hepatic glucose balance before and after oral glucose. Role of insulin and glucagon.

    PubMed Central

    Chap, Z; Ishida, T; Chou, J; Michael, L; Hartley, C; Entman, M; Field, J B

    1986-01-01

    In conscious dogs, phentolamine infusion significantly increased fasting portal vein insulin, glucagon, and decreased net hepatic glucose output and plasma glucose. Propranolol significantly decreased portal vein insulin, portal flow, and increased hepatic glucose production and plasma glucose. Phentolamine, propranolol, and combined blockade reduced glucose absorption after oral glucose. alpha, beta, and combined blockade abolished the augmented fractional hepatic insulin extraction after oral glucose. Despite different absolute amounts of glucose absorbed and different amounts of insulin reaching the liver, the percent of the absorbed glucose retained by the liver was similar for control and with alpha- or beta blockade, but markedly decreased with combined blockade. Our conclusions are: (a) phentolamine and propranolol effects on basal hepatic glucose production may predominantly reflect their action on insulin and glucagon secretion; (b) after oral glucose, alpha- and beta-blockers separately or combined decrease glucose release into the portal system; (c) net hepatic glucose uptake is predominantly determined by hyperglycemia but can be modulated by insulin and glucagon; (d) direct correlation does not exist between hepatic delivery and uptake of insulin and net hepatic glucose uptake; (e) alterations in oral glucose tolerance due to adrenergic blockers, beyond their effects on glucose absorption, can be, to a large extent, mediated by their effects on insulin and glucagon secretion reflecting both hepatic and peripheral glucose metabolism. PMID:2870078

  9. Methamphetamine administration reduces hippocampal vesicular monoamine transporter-2 uptake.

    PubMed

    Rau, Kristi S; Birdsall, Elisabeth; Volz, Trent J; Riordan, James A; Baucum, Anthony J; Adair, Brian P; Bitter, Rebecca; Gibb, James W; Hanson, Glen R; Fleckenstein, Annette E

    2006-08-01

    Repeated high-dose injections of methamphetamine (METH) rapidly decrease dopamine uptake by the vesicular monoamine transporter-2 (VMAT-2) associated with dopaminergic nerve terminals, as assessed in nonmembrane-associated vesicles purified from striata of treated rats. The purpose of this study was to determine whether METH similarly affects vesicular uptake in the hippocampus; a region innervated by both serotonergic and noradrenergic neurons and profoundly affected by METH treatment. Results revealed that repeated high-dose METH administrations rapidly (within 1 h) reduced hippocampal vesicular dopamine uptake, as assessed in vesicles purified from treated rats. This reduction was likely associated with serotonergic nerve terminals because METH did not further reduce vesicular monoamine uptake in para-chloroamphetamine-lesioned animals. Pretreatment with the serotonin transporter inhibitor fluoxetine blocked both this acute effect on VMAT-2 and the decrease in serotonin content observed 7 days after METH treatment. In contrast, there was no conclusive evidence that METH affected vesicular dopamine uptake in noradrenergic neurons or caused persistent noradrenergic deficits. These findings suggest a link between METH-induced alterations in serotonergic hippocampal vesicular uptake and the persistent hippocampal serotonergic deficits induced by the stimulant. PMID:16687477

  10. Biaryls as potent, tunable dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors.

    PubMed

    Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E

    2015-08-01

    Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection. PMID:26048800

  11. Serotonin impairs copulation and attenuates ejaculation-induced glutamate activity in the medial preoptic area.

    PubMed

    Dominguez, Juan M; Hull, Elaine M

    2010-08-01

    The medial preoptic area (MPOA) is critical for male sexual behavior. Glutamate is released in the MPOA of male rats during copulation, and increasing glutamate levels by reverse dialysis of glutamate uptake inhibitors facilitates mating. Conversely, increased release of serotonin (5-HT) inhibits sexual behavior. In both rats and men, selective serotonin reuptake inhibitors (SSRIs) impair erection, ejaculation, and libido. Here we reverse-dialyzed 5-HT through concentric microdialysis probes in the MPOA of male rats; concurrently we collected 2-min samples for analysis of glutamate and measured sexual behavior. Sexual activity, and especially ejaculation, increased levels of glutamate in the MPOA. However, reverse dialysis of 5-HT into the MPOA impaired ejaculatory ability and attenuated glutamate release. Implications of these results for impairment of sexual behavior that results from administration of SSRIs are discussed. PMID:20695654

  12. Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene

    PubMed Central

    2014-01-01

    Background Patients with autism spectrum disorder (ASD) may have low brain serotonin concentrations as reflected by the serotonin end-metabolite 5-hydroxyindolacetic acid (5HIAA) in cerebrospinal fluid (CSF). Methods We sequenced the candidate genes SLC6A4 (SERT), SLC29A4 (PMAT), and GCHFR (GFRP), followed by whole exome analysis. Results The known heterozygous p.Gly56Ala mutation in the SLC6A4 gene was equally found in the ASD and control populations. Using a genetic candidate gene approach, we identified, in 8 patients of a cohort of 248 with ASD, a high prevalence (3.2%) of three novel heterozygous non-synonymous mutations within the SLC29A4 plasma membrane monoamine transporter (PMAT) gene, c.86A > G (p.Asp29Gly) in two patients, c.412G > A (p.Ala138Thr) in five patients, and c.978 T > G (p.Asp326Glu) in one patient. Genome analysis of unaffected parents confirmed that these PMAT mutations were not de novo but inherited mutations. Upon analyzing over 15,000 normal control chromosomes, only SLC29A4 c.86A > G was found in 23 alleles (0.14%), while neither c.412G > A (<0.007%) nor c.978 T > G (<0.007%) were observed in all chromosomes analyzed, emphasizing the rareness of the three alterations. Expression of mutations PMAT-p.Ala138Thr and p.Asp326Glu in cellulae revealed significant reduced transport uptake activity towards a variety of substrates including serotonin, dopamine, and 1-methyl-4-phenylpyridinium (MPP+), while mutation p.Asp29Gly had reduced transport activity only towards MPP+. At least two ASD subjects with either the PMAT-Ala138Thr or the PMAT-Asp326Glu mutation with altered serotonin transport activity had, besides low 5HIAA in CSF, elevated serotonin levels in blood and platelets. Moreover, whole exome sequencing revealed additional alterations in these two ASD patients in mainly serotonin-homeostasis genes compared to their non-affected family members. Conclusions Our findings link mutations in SLC29A4 to the ASD

  13. Sepsis-induced elevation in plasma serotonin facilitates endothelial hyperpermeability

    PubMed Central

    Li, Yicong; Hadden, Coedy; Cooper, Anthonya; Ahmed, Asli; Wu, Hong; Lupashin, Vladimir V.; Mayeux, Philip R.; Kilic, Fusun

    2016-01-01

    Hyperpermeability of the endothelial barrier and resulting microvascular leakage are a hallmark of sepsis. Our studies describe the mechanism by which serotonin (5-HT) regulates the microvascular permeability during sepsis. The plasma 5-HT levels are significantly elevated in mice made septic by cecal ligation and puncture (CLP). 5-HT-induced permeability of endothelial cells was associated with the phosphorylation of p21 activating kinase (PAK1), PAK1-dependent phosphorylation of vimentin (P-vimentin) filaments, and a strong association between P-vimentin and ve-cadherin. These findings were in good agreement with the findings with the endothelial cells incubated in serum from CLP mice. In vivo, reducing the 5-HT uptake rates with the 5-HT transporter (SERT) inhibitor, paroxetine blocked renal microvascular leakage and the decline in microvascular perfusion. Importantly, mice that lack SERT showed significantly less microvascular dysfunction after CLP. Based on these data, we propose that the increased endothelial 5-HT uptake together with 5-HT signaling disrupts the endothelial barrier function in sepsis. Therefore, regulating intracellular 5-HT levels in endothelial cells represents a novel approach in improving sepsis-associated microvascular dysfunction and leakage. These new findings advance our understanding of the mechanisms underlying cellular responses to intracellular/extracellular 5-HT ratio in sepsis and refine current views of these signaling processes during sepsis. PMID:26956613

  14. Immune checkpoint blockade in lung cancer.

    PubMed

    Somasundaram, Aswin; Socinski, Mark A; Villaruz, Liza C

    2016-08-01

    Immunotherapy has revolutionized the therapeutic landscape of advanced lung cancer. The adaptive immune system has developed a sophisticated method of tumor growth control, but T-cell activation is regulated by various checkpoints. Blockade of the immune checkpoints with therapies targeting the PD-1 pathway, such as nivolumab and pembrolizumab, has been validated as a therapeutic approach in non-small cell lung cancer. Newer therapies and novel combinations are also being evaluated, and the use of biomarkers in conjunction with these drugs is an area of active investigation. This review summarizes the current evidence for the efficacy and safety of the above approaches in the treatment of lung cancer. PMID:27585231

  15. Photonic Nonlinearities via Quantum Zeno Blockade

    NASA Astrophysics Data System (ADS)

    Sun, Yu-Zhu; Huang, Yu-Ping; Kumar, Prem

    2013-05-01

    Realizing optical-nonlinear effects at a single-photon level is a highly desirable but also extremely challenging task, because of both fundamental and practical difficulties. We present an avenue to surmounting these difficulties by exploiting quantum Zeno blockade in nonlinear optical systems. Considering specifically a lithium-niobate microresonator, we find that a deterministic phase gate can be realized between single photons with near-unity fidelity. Supported by established techniques for fabricating and operating such devices, our approach can provide an enabling tool for all-optical applications in both classical and quantum domains.

  16. Serotonin and the Australian connection: the science and the people.

    PubMed

    Mylecharane, Ewan J

    2013-01-16

    This contribution to "Putting the pieces together: Proceedings from the International Society for Serotonin Research (aka Serotonin Club)" encapsulates a brief history of serotonin beginning with its discovery in 1946 by Maurice Rapport, Arda Green, and Irvine Page. The first 40 years of serotonin research culminated in the inaugural Serotonin Club meeting held on Heron Island, Australia, in 1987. In light of the silver anniversary of the Serotonin Club and its Australian beginnings, it is timely to highlight some of the contributions made to serotonin research by Australian scientists, which I shared with participants at the 2012 meeting of the Serotonin Club, in Montpellier, France as the honoree of the Maurice Rapport Lectureship. PMID:23336042

  17. Serotonin and the Australian Connection: The Science and the People

    PubMed Central

    2013-01-01

    This contribution to “Putting the pieces together: Proceedings from the International Society for Serotonin Research (aka Serotonin Club)” encapsulates a brief history of serotonin beginning with its discovery in 1946 by Maurice Rapport, Arda Green, and Irvine Page. The first 40 years of serotonin research culminated in the inaugural Serotonin Club meeting held on Heron Island, Australia, in 1987. In light of the silver anniversary of the Serotonin Club and its Australian beginnings, it is timely to highlight some of the contributions made to serotonin research by Australian scientists, which I shared with participants at the 2012 meeting of the Serotonin Club, in Montpellier, France as the honoree of the Maurice Rapport Lectureship. PMID:23336042

  18. Can Serotonin Transporter Genotype Predict Serotonergic Function, Chronicity, and Severity of Drinking?

    PubMed Central

    Johnson, Bankole A.; Javors, Martin A.; Roache, John D.; Seneviratne, Chamindi; Bergeson, Susan E.; Ait-Daoud, Nassima; Dawes, Michael A.; Ma, Jennie Z.

    2008-01-01

    Serotonin transporter (5-HTT) activity is greater in carriers of the long (L) vs. short (S) alleles of the 5-HTT-linked polymorphic region (5′-HTTLPR) among healthy control subjects but not alcohol-dependent adults. In 198 alcoholics, we determined the relationship between current or lifetime drinking and platelet 5-HTT function and density among allelic variants of the 5′-HTTLPR. SS subjects were younger than L-carriers (LL and LS) (p < 0.0085) and had fewer years of lifetime drinking. For L-carriers, the mean of Bmax for paroxetine binding, but not Vmax for serotonin (5-HT) uptake, was lower than that for SS subjects (p < 0.05). More L-carriers than their SS counterparts had Vmax for 5-HT uptake below 200 nmol/107 platelets-min (p < 0.05) and Bmax for paroxetine binding below 600 nmol/mg protein (p < 0.06). Current drinking (drinks per day during the past 14 days) correlated positively with Km and Vmax of platelet 5-HT uptake (p < 0.05) and negatively with Bmax, but not Kd, of paroxetine binding (p < 0.05) for L-carriers alone. Years of lifetime drinking correlated negatively with Km and Vmax of platelet 5-HT uptake (p < 0.05) and Bmax, but not Kd, of paroxetine binding (p < 0.05) for L-carriers alone. Among L-carriers alone, there were higher levels of platelet 5-HT uptake and lower levels of platelet paroxetine binding with increased drinking, and more lifetime drinking was associated with modestly lower levels of 5-HT uptake and paroxetine binding. Thus, 5-HTT expression varies with current and lifetime drinking in L-carriers alone. PMID:17950969

  19. Bioisosteric matrices for ligands of serotonin receptors.

    PubMed

    Warszycki, Dawid; Mordalski, Stefan; Staroń, Jakub; Bojarski, Andrzej J

    2015-04-01

    The concept of bioisosteric replacement matrices is applied to explore the chemical space of serotonin receptor ligands, aiming to determine the most efficient ways of manipulating the affinity for all 5-HT receptor subtypes. Analysis of a collection of over 1 million bioisosteres of compounds with measured activity towards serotonin receptors revealed that an average of 31 % of the ligands for each target are mutual bioisosteres. In addition, the collected dataset allowed the development of bioisosteric matrices-qualitative and quantitative descriptions of the biological effects of each predefined type of bioisosteric substitution, providing favored paths of modifying the compounds. The concept exemplified here for serotonin receptor ligands can likely be more broadly applied to other target classes, thus representing a useful guide for medicinal chemists designing novel ligands. PMID:25772514

  20. Impact of ovarian hormones on the modulation of the serotonin transporter by fluvoxamine.

    PubMed

    Benmansour, Saloua; Piotrowski, Jonathan P; Altamirano, Alfonso V; Frazer, Alan

    2009-02-01

    Most preclinical studies examining the mechanism(s) of action of antidepressants are carried out using male animals. Blockade of serotonin transporter (SERT) function by selective serotonin reuptake inhibitors (SSRIs) is the initial event that triggers a not completely understood process that results in clinical improvement in depression. To investigate whether there are differences in the ability of SSRIs to inhibit the SERT between male and female rats at different phases of the estrous cycle, clearance of locally applied serotonin (5-HT) was measured by in vivo chronoamperometry. Local application of the SSRI, fluvoxamine, directly into the CA3 area of hippocampus increased significantly 5-HT clearance time parameters in male rats and female rats in estrus or diestrus, but not in proestrus. The contribution of ovarian steroids to this result was investigated in ovariectomized (OVX) rats treated with estradiol benzoate (EB) and/or progesterone (P). In OVX-control rats, fluvoxamine increased clearance time parameters, whereas EB and/or P treatment blocked this effect, consistent with what was seen in female rats in proestrus. This effect was gender-specific, since treatment of castrated rats with EB/P had no effect on the ability of fluvoxamine to slow 5-HT clearance. The time course of hormonal effects showed that 1-60 min after local application of 17-beta-estradiol (E(2)) into the CA3 region of OVX rats, fluvoxamine had no effect on clearance time of 5-HT. E(2)-BSA mimicked E(2)'s effects at 10 min but not at 60 min. Pretreatment with estrogen receptor antagonists blocked the effects of E(2). The finding that acutely both estradiol and progesterone can inhibit the ability of an SSRI to slow the clearance of 5-HT, may have important implications for the use of SSRIs in women. PMID:18322468

  1. Selective serotonin reuptake inhibitor discontinuation during pregnancy

    PubMed Central

    Ejaz, Resham; Leibson, Tom; Koren, Gideon

    2014-01-01

    Abstract Question I have a patient who discontinued her selective serotonin reuptake inhibitor in pregnancy against my advice owing to fears it might affect the baby. She eventually attempted suicide. How can we deal effectively with this situation? Answer The “cold turkey” discontinuation of needed antidepressants is a serious public health issue strengthened by fears and misinformation. It is very important for physicians to ensure that evidence-based information is given to women in a way that is easy to understand. The risks of untreated moderate to severe depression far outweigh the theoretical risks of taking selective serotonin reuptake inhibitors. PMID:25642484

  2. Molecular mechanisms of SERT in platelets: regulation of plasma serotonin levels.

    PubMed

    Mercado, Charles P; Kilic, Fusun

    2010-08-01

    The serotonin transporter (SERT) on platelets is a primary mechanism for serotonin (5HT) uptake from the blood plasma. Alteration in plasma 5HT level is associated with a number of cardiovascular diseases and disorders. Therefore, the regulation of the transporter's activity represents a key mechanism to stabilize the concentration of plasma 5HT. There is a biphasic relationship between plasma 5HT elevation, loss of surface SERT, and depletion of platelet 5HT. Specifically, in platelets, plasma membrane SERT levels and platelet 5HT uptake initially rise as plasma 5HT levels are increased but then fall below normal as the plasma 5HT level continues to rise. Therefore, we propose that elevated plasma 5HT limits its own uptake in platelets by down-regulating SERT as well as modifying the characteristics of SERT partners in the membrane trafficking pathway. This review will summarize current findings regarding the biochemical mechanisms by which elevated 5HT downregulates the expression of SERT on the platelet membrane. Intriguing aspects of this regulation include the intracellular interplay of SERT with the small G protein Rab4 and the concerted 5HT-mediated phosphorylation of vimentin. PMID:20729489

  3. IMPACT OF PHARMACOLOGICAL AUTONOMIC BLOCKADE ON COMPLEX FRACTIONATED ATRIAL ELECTROGRAMS

    PubMed Central

    Knecht, Sébastien; Wright, Matthew; Matsuo, Seiichiro; Nault, Isabelle; Lellouche, Nicolas; Sacher, Frédéric; Kim, Steven J.; Morgan, Dennis; Afonso, Valtino; Shinzuke, Miyazaki; Hocini, Mélèze; Clémenty, Jacques; Narayan, Sanjiv M.; Ritter, Phillipe; Jaïs, Pierre; Haïssaguerre, Michel

    2010-01-01

    Introduction The influence of the autonomic nervous system on the pathogenesis of complex fractionated atrial electrograms (CFAE) during atrial fibrillation (AF) is incompletely understood. This study evaluated the impact of pharmacological autonomic blockade on CFAE characteristics. Methods Autonomic blockade was achieved with propanolol and atropine in 29 patients during AF. Three-dimensional maps of the fractionation degree were made before and after autonomic blockade using the Ensite Navx® system. In 2 patients, AF terminated following autonomic blockade. In the remaining 27 patients, 20113 electrogram samples of 5 seconds duration were collected randomly throughout the left atrium (10054 at baseline and 10059 after autonomic blockade). The impact of autonomic blockade on fractionation was assessed by blinded investigators and related to the type of AF and AF cycle length. Results Globally, CFAE as a proportion of all atrial electrogram samples were reduced after autonomic blockade: 61.6±20.3% vs. 57.9±23.7%, p=0.027. This was true/significant for paroxysmal AF (47±23% vs. 40±22%, p=0.003), but not for persistent AF (65±22% vs. 62±25% respectively, p=0.166). Left atrial AF cycle length prolonged with autonomic blockade from 170±33 ms to. 180±40 ms (p=0.001). Fractionation decreases only in the 14/27 patients with a significant (>6ms) prolongation of the AF cycle length (64±20% vs. 59±24%, p=0.027), while fractionation did not reduce when autonomic blockade did not affect the AF cycle length (58±21% vs. 56±25%, p=0.419). Conclusions Pharmacological autonomic blockade reduces CFAE in paroxysmal AF, but not persistent AF. This effect appears to be mediated by prolongation of the AF cycle length. PMID:20132382

  4. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes

    PubMed Central

    Blough, Bruce E.; Landavazo, Antonio; Decker, Ann M.; Partilla, John S.; Baumann, Michael H.; Rothman, Richard B.

    2014-01-01

    Rationale Synthetic hallucinogenic tryptamines, especially those originally described by Alexander Shulgin, continue to be abused in the United States. The range of subjective experiences produced by different tryptamines suggests that multiple neurochemical mechanisms are involved in their actions, in addition to the established role of agonist activity at serotonin-2A (5-HT2A) receptors. Objectives This study evaluated the interaction of a series of synthetic tryptamines with biogenic amine neurotransmitter transporters and with serotonin (5-HT) receptor subtypes implicated in psychedelic effects. Methods Neurotransmitter transporter activity was determined in rat brain synaptosomes. Receptor activity was determined using calcium mobilization and DiscoveRx PathHunter® assays in HEK293, Gα16-CHO, and CHOk1 cells transfected with human receptors. Results Twenty-one tryptamines were analyzed in transporter uptake and release assays, and 5-HT2A, serotonin 1A (5-HT1A), and 5-HT2A β-arrestin functional assays. Eight of the compounds were found to have 5-HT-releasing activity. Thirteen compounds were found to be 5-HT uptake inhibitors or were inactive. All tryptamines were 5-HT2A agonists with a range of potencies and efficacies, but only a few compounds were 5-HT1A agonists. Most tryptamines recruited β-arrestin through 5-HT2A activation. Conclusions All psychoactive tryptamines are 5-HT2A agonists, but 5-HT transporter (SERT) activity may contribute significantly to the pharmacology of certain compounds. The in vitro transporter data confirm structure-activity trends for releasers and uptake inhibitors whereby releasers tend to be structurally smaller compounds. Interestingly, two tertiary amines were found to be selective substrates at SERT, which dispels the notion that 5-HT-releasing activity is limited only to primary or secondary amines. PMID:24800892

  5. A current view of serotonin transporters.

    PubMed

    De Felice, Louis J

    2016-01-01

    Serotonin transporters (SERTs) are largely recognized for one aspect of their function-to transport serotonin back into the presynaptic terminal after its release. Another aspect of their function, however, may be to generate currents large enough to have physiological consequences. The standard model for electrogenic transport is the alternating access model, in which serotonin is transported with a fixed ratio of co-transported ions resulting in net charge per cycle. The alternating access model, however, cannot account for all the observed currents through SERT or other monoamine transporters.  Furthermore, SERT agonists like ecstasy or antagonists like fluoxetine generate or suppress currents that the standard model cannot support.  Here we survey evidence for a channel mode of transport in which transmitters and ions move through a pore. Available structures for dopamine and serotonin transporters, however, provide no evidence for a pore conformation, raising questions of whether the proposed channel mode actually exists or whether the structural data are perhaps missing a transient open state. PMID:27540474

  6. A current view of serotonin transporters

    PubMed Central

    De Felice, Louis J.

    2016-01-01

    Serotonin transporters (SERTs) are largely recognized for one aspect of their function—to transport serotonin back into the presynaptic terminal after its release. Another aspect of their function, however, may be to generate currents large enough to have physiological consequences. The standard model for electrogenic transport is the alternating access model, in which serotonin is transported with a fixed ratio of co-transported ions resulting in net charge per cycle. The alternating access model, however, cannot account for all the observed currents through SERT or other monoamine transporters.  Furthermore, SERT agonists like ecstasy or antagonists like fluoxetine generate or suppress currents that the standard model cannot support.  Here we survey evidence for a channel mode of transport in which transmitters and ions move through a pore. Available structures for dopamine and serotonin transporters, however, provide no evidence for a pore conformation, raising questions of whether the proposed channel mode actually exists or whether the structural data are perhaps missing a transient open state. PMID:27540474

  7. Serotonin in Autism and Pediatric Epilepsies

    ERIC Educational Resources Information Center

    Chugani, Diane C.

    2004-01-01

    Serotonergic abnormalities have been reported in both autism and epilepsy. This association may provide insights into underlying mechanisms of these disorders because serotonin plays an important neurotrophic role during brain development--and there is evidence for abnormal cortical development in both autism and some forms of epilepsy. This…

  8. Modulation of defensive reflex conditioning in snails by serotonin.

    PubMed

    Andrianov, Vyatcheslav V; Bogodvid, Tatiana K; Deryabina, Irina B; Golovchenko, Aleksandra N; Muranova, Lyudmila N; Tagirova, Roza R; Vinarskaya, Aliya K; Gainutdinov, Khalil L

    2015-01-01

    Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the "neurotoxic" analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the "neurotoxic" analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the "neurotoxic" analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3. PMID:26557063

  9. Modulation of defensive reflex conditioning in snails by serotonin

    PubMed Central

    Andrianov, Vyatcheslav V.; Bogodvid, Tatiana K.; Deryabina, Irina B.; Golovchenko, Aleksandra N.; Muranova, Lyudmila N.; Tagirova, Roza R.; Vinarskaya, Aliya K.; Gainutdinov, Khalil L.

    2015-01-01

    Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the “neurotoxic” analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the “neurotoxic” analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the “neurotoxic” analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3. PMID:26557063

  10. Photon blockade in the ultrastrong coupling regime.

    PubMed

    Ridolfo, A; Leib, M; Savasta, S; Hartmann, M J

    2012-11-01

    We explore photon coincidence counting statistics in the ultrastrong coupling regime, where the atom-cavity coupling rate becomes comparable to the cavity resonance frequency. In this regime, usual normal order correlation functions fail to describe the output photon statistics. By expressing the electric-field operator in the cavity-emitter dressed basis, we are able to propose correlation functions that are valid for arbitrary degrees of light-matter interaction. Our results show that the standard photon blockade scenario is significantly modified for ultrastrong coupling. We observe parametric processes even for two-level emitters and temporal oscillations of intensity correlation functions at a frequency given by the ultrastrong photon emitter coupling. These effects can be traced back to the presence of two-photon cascade decays induced by counterrotating interaction terms. PMID:23215383

  11. Coulomb blockade of spin-dependent shuttling

    NASA Astrophysics Data System (ADS)

    Park, Hee Chul; Kadigrobov, Anatoli M.; Shekhter, Robert I.; Jonson, M.

    2013-12-01

    We show that nanomechanical shuttling of single electrons may enable qualitatively new functionality if spin-polarized electrons are injected into a nanoelectromechanical single-electron tunneling (NEM-SET) device. This is due to the combined effects of spin-dependent electron tunneling and Coulomb blockade of tunneling, which are phenomena that occur in certain magnetic NEM-SET devices. Two effects are predicted to occur in such structures. The first is a reentrant shuttle instability, by which we mean the sequential appearance, disappearance and again the appearance of a shuttle instability as the driving voltage is increased (or the mechanical dissipation is diminished). The second effect is an enhanced spin polarization of the nanomechanically assisted current flow.

  12. Pauli spin blockade in double molecular magnets

    NASA Astrophysics Data System (ADS)

    Płomińska, Anna; Weymann, Ireneusz

    2016-07-01

    The Pauli spin blockade effect in transport through two, coupled in series, single molecular magnets weakly attached to external leads is considered theoretically. By using the real-time diagrammatic technique in the lowest-order perturbation theory with respect to the coupling strength, the behavior of the current and the shot noise is studied in the nonlinear response regime. It is shown that the current suppression occurs due to the occupation of highest-weight spin states of the system. Moreover, transport properties are found to strongly depend on parameters of the double molecular magnet, such as the magnitude of spin, internal exchange interaction and the hopping between the molecules. It is also demonstrated that the current suppression may be accompanied by negative differential conductance and a large super-Poissonian shot noise. The mechanisms leading to those effects are discussed.

  13. Novel drug development for neuromuscular blockade.

    PubMed

    Prabhakar, Amit; Kaye, Alan D; Wyche, Melville Q; Salinas, Orlando J; Mancuso, Kenneth; Urman, Richard D

    2016-01-01

    Pharmacological advances in anesthesia in recent decades have resulted in safer practice and better outcomes. These advances include improvement in anesthesia drugs with regard to efficacy and safety profiles. Although neuromuscular blockers were first introduced over a half century ago, few new neuromuscular blockers and reversal agents have come to market and even fewer have remained as common clinically employed medications. In recent years, newer agents have been studied and are presented in this review. With regard to nondepolarizer neuromuscular blocker agents, the enantiomers Gantacurium and CW002, which are olefinic isoquinolinium diester fumarates, have shown potential for clinical application. Advantages include ultra rapid reversal of neuromuscular blockade via cysteine adduction and minimal systemic hemodynamic effects with administration. PMID:27625489

  14. Novel drug development for neuromuscular blockade

    PubMed Central

    Prabhakar, Amit; Kaye, Alan D; Wyche, Melville Q; Salinas, Orlando J; Mancuso, Kenneth; Urman, Richard D

    2016-01-01

    Pharmacological advances in anesthesia in recent decades have resulted in safer practice and better outcomes. These advances include improvement in anesthesia drugs with regard to efficacy and safety profiles. Although neuromuscular blockers were first introduced over a half century ago, few new neuromuscular blockers and reversal agents have come to market and even fewer have remained as common clinically employed medications. In recent years, newer agents have been studied and are presented in this review. With regard to nondepolarizer neuromuscular blocker agents, the enantiomers Gantacurium and CW002, which are olefinic isoquinolinium diester fumarates, have shown potential for clinical application. Advantages include ultra rapid reversal of neuromuscular blockade via cysteine adduction and minimal systemic hemodynamic effects with administration. PMID:27625489

  15. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice

    PubMed Central

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14–20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges. PMID:26930051

  16. Different subcellular localization of muscarinic and serotonin (S2) receptors in human, dog, and rat brain.

    PubMed

    Luabeya, M K; Maloteaux, J M; De Roe, C; Trouet, A; Laduron, P M

    1986-02-01

    Cortex from rat, dog, and human brain was submitted to subcellular fractionation using an analytical approach consisting of a two-step procedure. First, fractions were obtained by differential centrifugation and were analyzed for their content of serotonin S2 and muscarinic receptors, serotonin uptake, and marker enzymes. Second, the cytoplasmic extracts were subfractionated by equilibration in sucrose density gradient. In human brain, serotonin and muscarinic receptors were found associated mostly with mitochondrial fractions which contain synaptosomes, whereas in rat brain they were concentrated mainly in the microsomal fractions. Density gradient centrifugation confirmed a more marked synaptosomal localization of receptors in human than in rat brain, the dog displaying an intermediate profile. In human brain, indeed, more receptor sites were found to be associated with the second peak characterized in electron microscopy by the largest number of nerve terminals. In addition, synaptosomes from human brain are denser than those from rat brain and some marker enzymes reveal different subcellular distribution in the three species. These data indicate that more receptors are of synaptosomal nature in human brain than in other species and this finding is compatible with a larger amount of synaptic contacts in human brain. PMID:2934515

  17. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake.

    PubMed

    Zhang, Zhaiyi; Shen, Manli; Gresch, Paul J; Ghamari-Langroudi, Masoud; Rabchevsky, Alexander G; Emeson, Ronald B; Stamm, Stefan

    2016-01-01

    The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome. PMID:27406820

  18. Serotonergic systems in the balance: CRHR1 and CRHR2 differentially control stress-induced serotonin synthesis.

    PubMed

    Donner, Nina C; Siebler, Philip H; Johnson, Danté T; Villarreal, Marcos D; Mani, Sofia; Matti, Allison J; Lowry, Christopher A

    2016-01-01

    Anxiety and affective disorders are often associated with hypercortisolism and dysfunctional serotonergic systems, including increased expression of TPH2, the gene encoding the rate-limiting enzyme of neuronal serotonin synthesis. We previously reported that chronic glucocorticoid exposure is anxiogenic and increases rat Tph2 mRNA expression, but it was still unclear if this also translates to increased TPH2 protein levels and in vivo activity of the enzyme. Here, we found that adult male rats treated with corticosterone (CORT, 100 μg/ml) via the drinking water for 21 days indeed show increased TPH2 protein expression in the dorsal and ventral part of the dorsal raphe nucleus (DRD, DRV) during the light phase, abolishing the enzyme's diurnal rhythm. In a second study, we systemically blocked the conversion of 5-hydroxytryptophan (5-HTP) to serotonin immediately before rats treated with CORT or vehicle were either exposed to 30 min acoustic startle stress or home cage control conditions. This allowed us to measure 5-HTP accumulation as a direct readout of basal versus stress-induced in vivo TPH2 activity. As expected, basal TPH2 activity was elevated in the DRD, DRV and MnR of CORT-treated rats. In response to stress, a multitude of serotonergic systems reacted with increased TPH2 activity, but the stress-, anxiety-, and learned helplessness-related dorsal and caudal DR (DRD/DRC) displayed stress-induced increases in TPH2 activity only after chronic CORT-treatment. To address the mechanisms underlying this region-specific CORT-dependent sensitization, we stereotaxically implanted CORT-treated rats with cannulae targeting the DR, and pharmacologically blocked either corticotropin-releasing hormone receptor type 1 (CRHR1) or type 2 (CRHR2) 10 min prior to acoustic startle stress. CRHR2 blockade prevented stress-induced increases of TPH2 activity within the DRD/DRC, while blockade of CRHR1 potentiated stress-induced TPH2 activity in the entire DR. Stress-induced TPH2

  19. Function, expression, and characterization of the serotonin transporter in the native human intestine

    PubMed Central

    Gill, Ravinder K.; Pant, Nitika; Saksena, Seema; Singla, Amika; Nazir, Talat M.; Vohwinkel, Lisa; Turner, Jerrold R.; Goldstein, Jay; Alrefai, Waddah A.; Dudeja, Pradeep K.

    2016-01-01

    The enteric serotonin transporter (SERT) plays a critical role in modulating serotonin availability and thus has been implicated in the pathogenesis of various intestinal disorders. To date, SERT expression and function in the human intestine have not been investigated. Current studies were designed to characterize the function, expression, distribution, and membrane localization of SERT in the native human intestine. Real-time PCR studies showed relatively higher SERT mRNA expression in the human small intestine compared with colon (ileum ≫ duodenum ≫ jejunum). Northern blot analysis revealed three mRNA hybridizing species encoding SERT (3.0, 4.9, and 6.8 kb) in the human ileum. Consistent with SERT mRNA expression, SERT immunostaining was mainly detected in the epithelial cells of human duodenal and ileal resected tissues. Notably, SERT expression was localized predominantly to the apical and intracellular compartments and was distributed throughout the crypt-villus axis. Immunoblotting studies detected a prominent protein band (~70 kDa) in the ileal apical plasma membrane vesicles (AMVs) isolated from mucosa obtained from organ-donor intestine. Functional studies showed that uptake of [3H]serotonin (150 nM) in human ileal AMVs was 1) significantly increased in the presence of both Na+ and Cl−; 2) inhibited (~50%) by the neuronal SERT inhibitor, fluoxetine (10 μM) and by unlabeled 5-HT; and 3) exhibited saturation kinetics indicating the presence of a carrier-mediated process. Our studies demonstrated differential expression of SERT across various regions of the human intestine and provide evidence for the existence of a functional SERT capable of removing intraluminal serotonin in human ileal epithelial cells. PMID:17991706

  20. Tail biting in pigs: blood serotonin and fearfulness as pieces of the puzzle?

    PubMed

    Ursinus, Winanda W; Van Reenen, Cornelis G; Reimert, Inonge; Bolhuis, J Elizabeth

    2014-01-01

    Tail biting in pigs is a widespread problem in intensive pig farming. The tendency to develop this damaging behaviour has been suggested to relate to serotonergic functioning and personality characteristics of pigs. We investigated whether tail biting in pigs can be associated with blood serotonin and with their behavioural and physiological responses to novelty. Pigs (n = 480) were born in conventional farrowing pens and after weaning at four weeks of age they were either housed barren (B) or in straw-enriched (E) pens. Individual pigs were exposed to a back test and novel environment test before weaning, and after weaning to a novel object (i.e. bucket) test in an unfamiliar arena. A Principal Component Analysis on behaviours during the tests and salivary cortisol (novel object test only) revealed five factors for both housing systems, labeled 'Early life exploration', 'Near bucket', 'Cortisol', 'Vocalizations & standing alert', and 'Back test activity'. Blood samples were taken at 8, 9 and 22 weeks of age to determine blood platelet serotonin. In different phases of life, pigs were classified as tail biter/non-tail biter based on tail biting behaviour, and as victim/non-victim based on tail wounds. A combination of both classifications resulted in four pig types: biters, victims, biter/victims, and neutrals. Generally, only in phases of life during which pigs were classified as tail biters, they seemed to have lower blood platelet serotonin storage and higher blood platelet uptake velocities. Victims also seemed to have lower blood serotonin storage. Additionally, in B housing, tail biters seemed to consistently have lower scores of the factor 'Near bucket', possibly indicating a higher fearfulness in tail biters. Further research is needed to elucidate the nature of the relationship between peripheral 5-HT, fearfulness and tail biting, and to develop successful strategies and interventions to prevent and reduce tail biting. PMID:25188502

  1. Tail Biting in Pigs: Blood Serotonin and Fearfulness as Pieces of the Puzzle?

    PubMed Central

    Ursinus, Winanda W.; Van Reenen, Cornelis G.; Reimert, Inonge; Bolhuis, J. Elizabeth

    2014-01-01

    Tail biting in pigs is a widespread problem in intensive pig farming. The tendency to develop this damaging behaviour has been suggested to relate to serotonergic functioning and personality characteristics of pigs. We investigated whether tail biting in pigs can be associated with blood serotonin and with their behavioural and physiological responses to novelty. Pigs (n = 480) were born in conventional farrowing pens and after weaning at four weeks of age they were either housed barren (B) or in straw-enriched (E) pens. Individual pigs were exposed to a back test and novel environment test before weaning, and after weaning to a novel object (i.e. bucket) test in an unfamiliar arena. A Principal Component Analysis on behaviours during the tests and salivary cortisol (novel object test only) revealed five factors for both housing systems, labeled ‘Early life exploration’, ‘Near bucket’, ‘Cortisol’, ‘Vocalizations & standing alert’, and ‘Back test activity’. Blood samples were taken at 8, 9 and 22 weeks of age to determine blood platelet serotonin. In different phases of life, pigs were classified as tail biter/non-tail biter based on tail biting behaviour, and as victim/non-victim based on tail wounds. A combination of both classifications resulted in four pig types: biters, victims, biter/victims, and neutrals. Generally, only in phases of life during which pigs were classified as tail biters, they seemed to have lower blood platelet serotonin storage and higher blood platelet uptake velocities. Victims also seemed to have lower blood serotonin storage. Additionally, in B housing, tail biters seemed to consistently have lower scores of the factor ‘Near bucket’, possibly indicating a higher fearfulness in tail biters. Further research is needed to elucidate the nature of the relationship between peripheral 5-HT, fearfulness and tail biting, and to develop successful strategies and interventions to prevent and reduce tail biting. PMID

  2. Rydberg blockade effects at n ˜300 in strontium

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Dunning, F. B.; Yoshida, S.; Burgdörfer, J.

    2015-11-01

    Rydberg blockade at n ˜300 , is examined using strontium n F13 Rydberg atoms excited in an atomic beam in a small volume defined by two tightly focused crossed laser beams. The observation of blockade for such states is challenging due to their extreme sensitivity to stray fields and the many magnetic sublevels associated with F states which results in a high local density of states. Nonetheless, with a careful choice of laser polarization to selectively excite only a limited number of these sublevels, sizable blockade effects are observed on an ˜0.1 mm length scale extending blockade measurements into the near-macroscopic regime and enabling study of the dynamics of strongly coupled many-body high-n Rydberg systems under carefully controlled conditions.

  3. Effect of intestinal chylomicron secretory blockade on apolipoprotein synthesis in the newborn piglet.

    PubMed Central

    Black, D D

    1992-01-01

    Pluronic L-81 is a hydrophobic surfactant which blocks intestinal chylomicron secretion at the pre-Golgi level without affecting triacylglycerol uptake and re-esterification. To study the effects of such blockade on apolipoprotein synthesis, newborn female piglets received 24 h intraduodenal infusions of low-triacylglycerol, or high-triacylglycerol with or without Pluronic L-81, diets, followed by determination of apolipoprotein (apo) B-48, A-I and A-IV synthesis and content and apo B and A-IV mRNA levels in the small intestine. Jejunal apo B-48 content, synthesis and mRNA levels were down-regulated below basal levels by the addition of Pluronic to the high-triacylglycerol infusion. The normal increase in apo A-I synthesis induced by triacylglycerol absorption was ablated in both jejunum and ileum, even though the expected increase in apo A-I content in jejunum still occurred. Although attenuated, the expected increase in jejunal apo A-IV synthesis and mRNA levels with triacylglycerol absorption was still present with Pluronic treatment. These results suggest very different mechanisms of cellular regulation and trafficking for the various apolipoproteins incorporated into nascent intestinal chylomicrons. Apo B may be specifically down-regulated by the chylomicron secretory blockade induced by Pluronic L-81. PMID:1567381

  4. Serotonin: a never-ending story.

    PubMed

    Olivier, Berend

    2015-04-15

    The neurotransmitter serotonin is an evolutionary ancient molecule that has remarkable modulatory effects in almost all central nervous system integrative functions, such as mood, anxiety, stress, aggression, feeding, cognition and sexual behavior. After giving a short outline of the serotonergic system (anatomy, receptors, transporter) the author's contributions over the last 40 years in the role of serotonin in depression, aggression, anxiety, stress and sexual behavior is outlined. Each area delineates the work performed on animal model development, drug discovery and development. Most of the research work described has started from an industrial perspective, aimed at developing animals models for psychiatric diseases and leading to putative new innovative psychotropic drugs, like in the cases of the SSRI fluvoxamine, the serenic eltoprazine and the anxiolytic flesinoxan. Later this research work mainly focused on developing translational animal models for psychiatric diseases and implicating them in the search for mechanisms involved in normal and diseased brains and finding new concepts for appropriate drugs. PMID:25446560

  5. Iron Overload and Apoptosis of HL-1 Cardiomyocytes: Effects of Calcium Channel Blockade

    PubMed Central

    Chen, Mei-pian; Cabantchik, Z. Ioav; Chan, Shing; Chan, Godfrey Chi-fung; Cheung, Yiu-fai

    2014-01-01

    Background Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC) and T-type calcium channels (TTCC) have been proposed to be the main portals of non-transferrinic iron into heart cells, but controversies remain. Here, we investigated the roles of LTCC and TTCC as mediators of cardiac iron overload and cellular damage by using specific Calcium channel blockers as potential suppressors of labile Fe(II) and Fe(III) ingress in cultured cardiomyocytes and ensuing apoptosis. Methods Fe(II) and Fe(III) uptake was assessed by exposing HL-1 cardiomyocytes to iron sources and quantitative real-time fluorescence imaging of cytosolic labile iron with the fluorescent iron sensor calcein while iron-induced apoptosis was quantitatively measured by flow cytometry analysis with Annexin V. The role of calcium channels as routes of iron uptake was assessed by cell pretreatment with specific blockers of LTCC and TTCC. Results Iron entered HL-1 cardiomyocytes in a time- and dose-dependent manner and induced cardiac apoptosis via mitochondria-mediated caspase-3 dependent pathways. Blockade of LTCC but not of TTCC demonstrably inhibited the uptake of ferric but not of ferrous iron. However, neither channel blocker conferred cardiomyocytes with protection from iron-induced apoptosis. Conclusion Our study implicates LTCC as major mediators of Fe(III) uptake into cardiomyocytes exposed to ferric salts but not necessarily as contributors to ensuing apoptosis. Thus, to the extent that apoptosis can be considered a biological indicator of damage, the etiopathology of cardiosiderotic damage that accompanies some forms of hemosiderosis would seem to be unrelated to LTCC or TTCC, but rather to other

  6. Peripheral Serotonin: a New Player in Systemic Energy Homeostasis

    PubMed Central

    Namkung, Jun; Kim, Hail; Park, Sangkyu

    2015-01-01

    Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. An ancient neurotransmitter, serotonin is among those traditional pharmacological targets for anti-obesity treatment because it exhibits strong anorectic effect in the brain. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Here, we discuss the role of serotonin in the regulation of energy homeostasis and introduce peripheral serotonin as a possible target for anti-obesity treatment. PMID:26628041

  7. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatorysystems

    PubMed Central

    Ogawa, Sachie K.; Cohen, Jeremiah Y.; Hwang, Dabin; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2014-01-01

    SUMMARY Serotonin and dopamine are major neuromodulators. Here we used a modified rabies virus to identify monosynaptic inputs to serotonin neurons in the dorsal and median raphe (DR and MR). We found that inputs to DR and MR serotonin neurons are spatially shiftedin the forebrain, with MRserotonin neurons receiving inputs from more medial structures. We then compared these data with inputs to dopamine neurons in the ventral tegmental area (VTA) and substantianigra pars compacta (SNc). We found that DR serotonin neurons receive inputs from a remarkably similar set of areas as VTA dopamine neurons, apart from the striatum, which preferentially targets dopamine neurons. Ourresults suggest three majorinput streams: amedial stream regulates MR serotonin neurons, anintermediate stream regulatesDR serotonin and VTA dopamine neurons, and alateral stream regulatesSNc dopamine neurons. These results providefundamental organizational principlesofafferent control forserotonin and dopamine. PMID:25108805

  8. Comparison of bupivacaine and etidocaine in extradural blockade.

    PubMed

    Sinclair, C J; Scott, D B

    1984-02-01

    In a randomized, double-blind study, 40 female patients underwent major gynaecological surgery with extradural anaesthesia provided by 0.75% bupivacaine, 0.75% bupivacaine with adrenaline 5 micrograms ml-1, 1.5% etidocaine or 1.5% etidocaine with adrenaline 5 micrograms ml-1, 20 ml in each case. In all patients the resultant blockade was suitable for intra-abdominal pelvic surgery. Mean maximum spread of analgesia was around T3/4 with all four drugs. Onset of sensory and motor block was more rapid following etidocaine than following bupivacaine. The addition of adrenaline increased the speed of onset of sensory block. Patients receiving etidocaine had a denser motor blockade than those receiving bupivacaine, and the addition of adrenaline led to an increase in the density of the motor blockade. There were no differences in the durations of motor blockade. Objective measurements of the duration of sensory blockade showed that there were no differences between the drugs and that the addition of adrenaline increased the duration of blockade. However, pain returned sooner following etidocaine than bupivacaine, and the additive effect of adrenaline was to increase this period of subjective analgesia. PMID:6362694

  9. Orbital excitation blockade and algorithmic cooling in quantum gases.

    PubMed

    Bakr, Waseem S; Preiss, Philipp M; Tai, M Eric; Ma, Ruichao; Simon, Jonathan; Greiner, Markus

    2011-12-22

    Interaction blockade occurs when strong interactions in a confined, few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow for the detection and manipulation of the constituent particles, be they electrons, spins, atoms or photons. Applications include single-electron transistors based on electronic Coulomb blockade and quantum logic gates in Rydberg atoms. Here we report a form of interaction blockade that occurs when transferring ultracold atoms between orbitals in an optical lattice. We call this orbital excitation blockade (OEB). In this system, atoms at the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth, and observe staircase-like excitation behaviour as we cross the interaction-split resonances by tuning the modulation frequency. As an application of OEB, we demonstrate algorithmic cooling of quantum gases: a sequence of reversible OEB-based quantum operations isolates the entropy in one part of the system and then an irreversible step removes the entropy from the gas. This technique may make it possible to cool quantum gases to have the ultralow entropies required for quantum simulation of strongly correlated electron systems. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a plan for the implementation of two-quantum-bit gates in a quantum computing architecture with natural scalability. PMID:22193104

  10. Duration of opioid receptor blockade determines biotherapeutic response.

    PubMed

    McLaughlin, Patricia J; Zagon, Ian S

    2015-10-01

    Historically, studies on endogenous and exogenous opioids and their receptors focused on the mediation of pain, with excess opiate consumption leading to addiction. Opioid antagonists such as naloxone and naltrexone blocked these interactions, and still are widely used to reverse drug and alcohol overdose. Although specific opioid antagonists have been designed for mu, delta, and kappa opioid receptors, the general antagonists remain the most effective. With the discovery of the opioid growth factor (OGF)-OGF receptor (OGFr) axis as a novel biological pathway involved in homeostasis of replicating cells and tissues, the role of opioid receptor antagonists was expanded. An intermittent OGFr blockade by low dosages of naltrexone resulted in depressed cell replication, whereas high (or sustained) dosages of naltrexone that conferred a continuous OGFr blockade resulted in enhanced growth. More than 3 decades of research have confirmed that the duration of opioid receptor blockade, not specifically the dosage, by general opioid antagonists determines the biotherapeutic outcome. Dysregulation of the OGF-OGFr pathway is apparent in a number of human disorders including diabetes, multiple sclerosis, and cancer, and thus opioid antagonist disruption of interaction prevails as a therapeutic intervention. We review evidence that the duration of opioid receptor blockade is correlated with the magnitude and direction of response, and discuss the potential therapeutic effectiveness of continuous receptor blockade for treatment of diabetic complications such as corneal defects and skin wounds, and of intermittent receptor blockade by low dosages of naltrexone for treatment of autoimmune diseases and cancer. PMID:26119823

  11. Serotonin, atherosclerosis, and collateral vessel spasm

    NASA Technical Reports Server (NTRS)

    Hollenberg, N.

    1988-01-01

    Studies on animal models demonstrate that platelet products contribute to vascular spasm in ischemic syndromes and that this is reversible with administration of ketanserin and thromboxane synthesis inhibitors. Laboratory animals (dogs, rabbits, and rats) that had femoral artery ligations exhibited supersensitivity to serotonin within days in their collateral blood vessels. This supersensitivity lasted at least 6 months. The response to serotonin was reversed by ketanserin, but not by 5HT-1 antagonists. Supersensitivity does not extend to norepinephrine, and alpha blockers do not influence the response to serotonin. It appears that platelet activation by endothelial injury contributes to ischemia through blood vessel occlusion and vascular spasm. When platelet activation occurs in vivo, blood vessel occlusion and vascular spasm are reversible in part by using ketanserin or agents that block thromboxane synthesis or its action. Combining both classes of agents reverses spasm completely. These findings support existing evidence that platelet products contribute to vascular disease, and provide an approach to improved management with currently available pharmacologic agents.

  12. Checkpoint blockade in combination with cancer vaccines.

    PubMed

    Morse, Michael A; Lyerly, H Kim

    2015-12-16

    Checkpoint blockade, prevention of inhibitory signaling that limits activation or function of tumor antigen-specific T cells responses, is revolutionizing the treatment of many poor prognosis malignancies. Indeed monoclonal antibodies that modulate signaling through the inhibitory molecules CTLA-4 and PD-1 are now clinically available; however, many tumors, demonstrate minimal response suggesting the need for combinations with other therapeutic strategies. Because an inadequate frequency of activated tumor antigen-specific T cells in the tumor environment, the so-called non-inflamed phenotype, is observed in some malignancies, other rationale partners are modalities that lead to enhanced T cell activation (vaccines, cytokines, toll-like receptor agonists, and other anticancer therapies such as chemo-, radio- or targeted therapies that lead to release of antigen from tumors). This review will focus on preclinical and clinical data supporting the use of cancer vaccines with anti-CTLA-4 and anti-PD-1/PD-L1 antibodies. Preliminary preclinical data demonstrate enhanced antitumor activity although the results in human studies are less clear. Broader combinations of multiple immune modulators are now under study. PMID:26482147

  13. Fatal serotonin syndrome precipitated by oxcarbazepine in a patient using an selective serotonin reuptake inhibitor.

    PubMed

    Dardis, Christopher; Omoregie, Eghosa; Ly, Vanthanh

    2012-07-01

    Oxcarbazepine, a metabolite of carbamazepine, is used as an antiepileptic, analgesic for neuropathic pain and in the treatment of affective disorders. It has been approved by the Food and Drug Administration for partial seizures in adults as both adjunctive and monotherapy, and as adjunctive therapy in children aged from 2 to 16 years (http://www.fda.gov/ohrms/dockets/ac/06/briefing/2006-4254b_07_05_KP%20OxcarbazepineFDAlabel102005.pdf). We present a case of serotonin syndrome, which was precipitated by this medicine in a patient who had been predisposed by long-term treatment with sertraline, a selective serotonin reuptake inhibitor. This is the first reported fatality due to this drug interaction and only the second case of serotonin syndrome reported with oxcarbazepine. Physicians should consider this risk when prescribing the above combination. PMID:22735246

  14. Effect of citalopram treatment on relationship between platelet serotonin functions and the Karolinska scales of personality in panic patients.

    PubMed

    Neuger, Jolanta; Wistedt, Börje; Aberg-Wistedt, Anna; Stain-Malmgren, Rigmor

    2002-08-01

    Using the Karolinska Scales of Personality (KSP), we investigated the effect of the selective serotonin reuptake inhibitor citalopram on personality traits and the relationship between personality traits and peripheral indexes for central serotonergic function in patients with panic disorder at baseline and after 6 months of treatment. The degree of anxiety and depression was assessed using the Beck Anxiety Inventory, the Beck Depression Inventory, the Clinical Anxiety Scale, and the Montgomery Asberg Depression Rating Scale. A reduction in anxiety and depression scores of 75% was observed after treatment in two thirds of the patients. Mean changes of 12% in the direction of normalization were observed in all KSP anxiety-related items (Somatic Anxiety, Muscular Tension, Psychic Anxiety, and Psychasthenia), the aggression and hostility related items (Inhibition of Aggression, Irritability, and Guilt) and the item of Socialisation. A positive correlation was found between Vmax for the platelet [14C]-serotonin uptake and Inhibition of Aggression before treatment, and a negative correlation was found between the affinity of serotonin uptake and Inhibition of Aggression after treatment. Negative childhood experiences influenced enhanced scores on some KSP items but not the serotonergic function. In panic patients treated with citalopram, effects were seen on personality traits, confirming an association between serotonergic activity and aggression. PMID:12172340

  15. The human serotonin-7 receptor pseudogene: variation and chromosome location.

    PubMed Central

    Nam, D; Qian, I H; Kusumi, I; Ulpian, C; Tallerico, T; Liu, I S; Seeman, P

    1998-01-01

    We report a variation of the pseudogene for the serotonin-7 receptor in human DNA. Human genomic DNA was amplified, using the polymerase chain reaction method and degenerate oligonucleotide primers for serotonin receptor-like genes. A novel gene DNA sequence of 1325 bp was found. Based on nucleotides, this gene is 88% identical to the serotonin-7 receptor coding sequence. Compared with the previously known serotonin-7 receptor pseudogene, this pseudogene has 1 nucleotide deletion and 4 nucleotide mutations. The gene is located on human chromosome 12 at 12p12.3-p13.2. Images Fig. 1A PMID:9785699

  16. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    PubMed Central

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-01-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states. PMID:26154191

  17. Serotonin modulates glutamatergic transmission to neurons in the lateral habenula

    PubMed Central

    Xie, Guiqin; Zuo, Wanhong; Wu, Liangzhi; Li, Wenting; Wu, Wei; Bekker, Alex; Ye, Jiang-Hong

    2016-01-01

    The lateral habenula (LHb) is bilaterally connected with serotoninergic raphe nuclei, and expresses high density of serotonin receptors. However, actions of serotonin on the excitatory synaptic transmission to LHb neurons have not been thoroughly investigated. The LHb contains two anatomically and functionally distinct regions: lateral (LHbl) and medial (LHbm) divisions. We compared serotonin’s effects on glutamatergic transmission across the LHb in rat brains. Serotonin bi-directionally and differentially modulated glutamatergic transmission. Serotonin inhibited glutamatergic transmission in higher percentage of LHbl neurons but potentiated in higher percentage of LHbm neurons. Magnitude of potentiation was greater in LHbm than in LHbl. Type 2 and 3 serotonin receptor antagonists attenuated serotonin’s potentiation. The serotonin reuptake blocker, and the type 2 and 3 receptor agonists facilitated glutamatergic transmission in both LHbl and LHbm neurons. Thus, serotonin via activating its type 2, 3 receptors, increased glutamate release at nerve terminals in some LHb neurons. Our data demonstrated that serotonin affects both LHbm and LHbl. Serotonin might play an important role in processing information between the LHb and its downstream-targeted structures during decision-making. It may also contribute to a homeostatic balance underlying the neural circuitry between the LHb and raphe nuclei. PMID:27033153

  18. Stress reactions in rats during immunization to serotonin.

    PubMed

    Umriukhin, A E; Kravtsov, A N; Vetrile, L A; Trekova, N A; Evseev, V A; Sudakov, K V

    2005-12-01

    We studied the effect of immunization with a serotonin-bovine serum albumin conjugate on parameters of stress reaction to immobilization stress in rats. Active immunization was accompanied by changes in parameters reflecting animal resistance to emotional stress. The observed changes can be interpreted as a decrease in individual resistance to emotional stress. Active immunization of rats with a serotonin-bovine serum albumin conjugate was accompanied by production of autoantibodies against serotonin and dopamine. The role of autoantibodies against dopamine in modulation of the effect of immunization with serotonin-bovine serum albumin conjugate on the stress reaction in rats is discussed. PMID:16848216

  19. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    SciTech Connect

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-02-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 ..mu..M serotonin with increased incorporation of (/sup 3/H)thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 ..mu..M. At a concentration of 1 ..mu..M, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was approx. = 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors.

  20. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    NASA Astrophysics Data System (ADS)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  1. Serotonin 5-HT2 Receptors Induce a Long-Lasting Facilitation of Spinal Reflexes Independent of Ionotropic Receptor Activity

    PubMed Central

    Shay, Barbara L.; Sawchuk, Michael; Machacek, David W.; Hochman, Shawn

    2009-01-01

    Dorsal root-evoked stimulation of sensory afferents in the hemisected in vitro rat spinal cord produces reflex output, recorded on the ventral roots. Transient spinal 5-HT2C receptor activation induces a long-lasting facilitation of these reflexes (LLFR) by largely unknown mechanisms. Two Sprague-Dawley substrains were used to characterize network properties involved in this serotonin (5-HT) receptor-mediated reflex plasticity. Serotonin more easily produced LLFR in one substrain and a long-lasting depression of reflexes (LLDR) in the other. Interestingly, LLFR and LLDR were bidirectionally interconvertible using 5-HT2A/2C and 5-HT1A receptor agonists, respectively, regardless of substrain. LLFR was predominantly Aβ afferent fiber mediated, consistent with prominent 5-HT2C receptor expression in the Aβ fiber projection territories (deeper spinal laminae). Reflex facilitation involved an unmasking of polysynaptic pathways and an increased receptive field size. LLFR emerged even when reflexes were evoked three to five times/h, indicating an activity independent induction. Both the NMDA and AMPA/kainate receptor-mediated components of the reflex could be facilitated, and facilitation was dependent on 5-HT receptor activation alone, not on coincident reflex activation in the presence of 5-HT. Selective blockade of GABAA and/or glycine receptors also did not prevent reflex amplification and so are not required for LLFR. Indeed, a more robust response was seen after blockade of spinal inhibition, indicating that inhibitory processes serve to limit reflex amplification. Overall we demonstrate that the serotonergic system has the capacity to induce long-lasting bidirectional changes in reflex strength in a manner that is nonassociative and independent of evoked activity or activation of ionotropic excitatory and inhibitory receptors. PMID:16033939

  2. Linezolid-induced serotonin toxicity in a patient not taking monoamine oxidase inhibitors or serotonin receptor antagonists

    PubMed Central

    Sutton, Jacob; Stroup, Jeff

    2016-01-01

    Linezolid is an oxazolidinone antibiotic with weak monoamine oxidase (MAO) type A and MAO type B inhibitory effects. Linezolid has been associated with serotonin toxicity when used concomitantly with multiple medications that are known to increase serotonin concentrations. We report the case of a 65-year-old woman with signs and symptoms of serotonin toxicity following administration of linezolid for treatment of methicillin-resistant Staphylococcus aureus pneumonia. PMID:27034576

  3. Generation of 2,000 breast cancer metabolic landscapes reveals a poor prognosis group with active serotonin production

    PubMed Central

    Leoncikas, Vytautas; Wu, Huihai; Ward, Lara T.; Kierzek, Andrzej M.; Plant, Nick J.

    2016-01-01

    A major roadblock in the effective treatment of cancers is their heterogeneity, whereby multiple molecular landscapes are classified as a single disease. To explore the contribution of cellular metabolism to cancer heterogeneity, we analyse the Metabric dataset, a landmark genomic and transcriptomic study of 2,000 individual breast tumours, in the context of the human genome-scale metabolic network. We create personalized metabolic landscapes for each tumour by exploring sets of active reactions that satisfy constraints derived from human biochemistry and maximize congruency with the Metabric transcriptome data. Classification of the personalized landscapes derived from 997 tumour samples within the Metabric discovery dataset reveals a novel poor prognosis cluster, reproducible in the 995-sample validation dataset. We experimentally follow mechanistic hypotheses resulting from the computational study and establish that active serotonin production is a major metabolic feature of the poor prognosis group. These data support the reconsideration of concomitant serotonin-specific uptake inhibitors treatment during breast cancer chemotherapy. PMID:26813959

  4. Glucose utilization in the medial prefrontal cortex correlates with serotonin turnover rate and clinical depression in alcoholics.

    PubMed

    Williams, Wendol; Reimold, Matthias; Kerich, Michael; Hommer, Dan; Bauer, Michael; Heinz, Andreas

    2004-12-30

    We measured the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) in cerebrospinal fluid (CSF), regional cerebral glucose uptake (rCMRglc) as assessed with positron emission tomography in the medial prefrontal cortex (PFC) and severity of clinical depression (Beck's Depression Inventory, BDI) in detoxified male alcoholics and age-matched healthy men. In alcoholics, the severity of clinical depression was negatively correlated with rCMRglc in the medial PFC and positively with CSF 5-HIAA concentrations. A voxel-based analysis showed that the strongest correlation between CSF 5-HIAA levels and rCMRglc was found in alcoholics in the left orbitofrontal and medial PFC (BA10 and BA11); no significant correlations were observed among healthy control subjects. This pilot study indicates that a dysfunction of medial PFC may interact with central serotonin turnover and negative mood states during early abstinence. PMID:15664793

  5. Regulation of serotonin release from enterochromaffin cells of rat cecum mucosa

    SciTech Connect

    Simon, C.; Ternaux, J.P. )

    1990-05-01

    The release of endogenous serotonin or previously taken up tritiated serotonin from isolated strips of rat cecum mucosa containing enterochromaffin cells was studied in vitro. Release of tritiated serotonin was increased by potassium depolarization and was decreased by tetrodotoxin, veratridine and the absence of calcium. Endogenous serotonin was released at a lower rate than tritiated serotonin; endogenous serotonin release was stimulated by potassium depolarization but was unaffected by tetrodotoxin, veratridine or the absence of calcium. Carbachol, norepinephrine, clonidine and isoproterenol decreased release of tritiated serotonin but had less or reverse effect on release of endogenous serotonin. The results suggest two different serotoninergic pools within the enterochromaffin cell population.

  6. Dual Role of Endogenous Serotonin in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis

    PubMed Central

    Rapalli, Alberto; Bertoni, Simona; Arcaro, Valentina; Saccani, Francesca; Grandi, Andrea; Vivo, Valentina; Cantoni, Anna M.; Barocelli, Elisabetta

    2016-01-01

    Background and Aims: Changes in gut serotonin (5-HT) content have been described in Inflammatory Bowel Disease (IBD) and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous 5-HT through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of IBD. Materials and Methods: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135), 5-HT2A (Ketanserin), 5-HT3 (Ondansetron), 5-HT4 (GR125487), 5-HT7 (SB269970) receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylamino)tetralin. Results: Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4, and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it. Conclusion: The prevailing deleterious contribution given by endogenous 5-HT to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders. PMID:27047383

  7. Serotonin 2A receptors contribute to the regulation of risk-averse decisions

    PubMed Central

    Macoveanu, Julian; Rowe, James B; Hornboll, Bettina; Elliott, Rebecca; Paulson, Olaf B; Knudsen, Gitte M; Siebner, Hartwig R

    2013-01-01

    Pharmacological studies point to a role of the neurotransmitter serotonin (5-HT) in regulating the preference for risky decisions, yet the functional contribution of specific 5-HT receptors remains to be clarified. We used pharmacological fMRI to investigate the role of the 5-HT2A receptors in processing negative outcomes and regulating risk-averse behavior. During fMRI, twenty healthy volunteers performed a gambling task under two conditions: with or without blocking the 5-HT2A receptors. The volunteers repeatedly chose between small, likely rewards and large, unlikely rewards. Choices were balanced in terms of expected utility and potential loss. Acute blockade of the 5-HT2A receptors with ketanserin made participants more risk-averse. Ketanserin selectively reduced the neural response of the frontopolar cortex to negative outcomes that were caused by low-risk choices and were associated with large missed rewards. In the context of normal 5-HT2A receptor function, ventral striatum displayed a stronger response to low-risk negative outcomes in risk-taking as opposed to risk-averse individuals. This (negative) correlation between the striatal response to low-risk negative outcomes and risk-averse choice behavior was abolished by 5-HT2A receptor blockade. The results provide the first evidence for a critical role of 5-HT2A receptor function in regulating risk-averse behavior. We suggest that the 5-HT2A receptor system facilitates risk-taking behavior by modulating the outcome evaluation of “missed” reward. These results have implications for understanding the neural basis of abnormal risk-taking behavior, for instance in pathological gamblers. PMID:23810974

  8. Anteroventral Third Ventricle Lesions Attenuate Pressor Responses to Serotonin in Anesthetized Rats

    NASA Technical Reports Server (NTRS)

    Muntzel, Martin S.; Lewis, Stephen J.; Johnson, Alan Kim

    1996-01-01

    When administered intravenously, serotonin (5-hydroxytryptamine; 5-HT) evokes a triphasic blood pressure response, consisting of the Bezold-Jarisch-associated depressor response, a pressor action, and long-lasting depressor response. Because the pressor response may, in part, be caused by central nervous system (CNS) activation by 5-HT, we predicted that destruction of the anteroventral third ventricle (AV3V) region, an area rich in 5-HT receptors, would attenuate increases in blood pressure to intravenous 5-HT. In anesthetized sham-lesioned and AV3V-lesioned Sprague-Dawley rats. we measured mean arterial pressure (MAP), heart rate (HR), and lumbar sympathetic nerve activity (SNA) to increasing bolus doses of intravenous 5-HT (1, 2.5, 5, 10, 25 microg/kg), before and after blockade of bradycardia using methylatropine (200 microg/kg). In all rats, bolus injections of 5-HT elicited bradycardia accompanied by a fall in lumbar SNA and an initial hypotension followed by a pressor response and a longer lasting hypotensive response. The bradycardia, reduction in lumbar SNA, and both depressor responses were equivalent in sham-lesioned and AV3V-lesioned groups. Importantly, AV3V lesions attenuated pressor responses to increasing doses of 5-HT (3 +/- 1, 6 +/- 4, 6 +/- 4, 17 +/- 4, 35 +/- 3 mmHg) compared to sham-lesioned controls (6 +/- 3, 16 +/- 7, 33 +/- 5, 54 +/- 4, 51 +/- 6 mmHg; P < 0.0001). This attenuation was conserved following blockade of bradycardia with methylatropine (P < 0.01). In summary, pressor responses to intravenous 5-HT are diminished by AV3V lesions. These data indicate that the pressor component of the blood pressure response to intravenous 5-HT is partly dependent upon interaction with the CNS.

  9. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    SciTech Connect

    Brann, M.R.

    1985-12-31

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor.

  10. Heterologous Vaccination and Checkpoint Blockade Synergize To Induce Antileukemia Immunity.

    PubMed

    Manlove, Luke S; Schenkel, Jason M; Manlove, Kezia R; Pauken, Kristen E; Williams, Richard T; Vezys, Vaiva; Farrar, Michael A

    2016-06-01

    Checkpoint blockade-based immunotherapies are effective in cancers with high numbers of nonsynonymous mutations. In contrast, current paradigms suggest that such approaches will be ineffective in cancers with few nonsynonymous mutations. To examine this issue, we made use of a murine model of BCR-ABL(+) B-lineage acute lymphoblastic leukemia. Using a principal component analysis, we found that robust MHC class II expression, coupled with appropriate costimulation, correlated with lower leukemic burden. We next assessed whether checkpoint blockade or therapeutic vaccination could improve survival in mice with pre-established leukemia. Consistent with the low mutation load in our leukemia model, we found that checkpoint blockade alone had only modest effects on survival. In contrast, robust heterologous vaccination with a peptide derived from the BCR-ABL fusion (BAp), a key driver mutation, generated a small population of mice that survived long-term. Checkpoint blockade strongly synergized with heterologous vaccination to enhance overall survival in mice with leukemia. Enhanced survival did not correlate with numbers of BAp:I-A(b)-specific T cells, but rather with increased expression of IL-10, IL-17, and granzyme B and decreased expression of programmed death 1 on these cells. Our findings demonstrate that vaccination to key driver mutations cooperates with checkpoint blockade and allows for immune control of cancers with low nonsynonymous mutation loads. PMID:27183622

  11. Bioactive products of arginine in sepsis: tissue and plasma composition after LPS and iNOS blockade.

    PubMed

    Lortie, M J; Ishizuka, S; Schwartz, D; Blantz, R C

    2000-06-01

    Blockade or gene deletion of inducible nitric oxide synthase (iNOS) fails to fully abrogate all the sequelae leading to the high morbidity of septicemia. An increase in substrate uptake may be necessary for the increased production of nitric oxide (NO), but arginine is also a precursor for other bioactive products. Herein, we demonstrate an increase in alternate arginine products via arginine and ornithine decarboxylase in rats given lipopolysaccharide (LPS). The expression of iNOS mRNA in renal tissue was evident 60 but not 30 min post-LPS, yet a rapid decrease in blood pressure was obtained within 30 min that was completely inhibited by selective iNOS blockade. Plasma levels of arginine and ornithine decreased by at least 30% within 60 min of LPS administration, an effect not inhibited by the iNOS blocker L-N(6)(1-iminoethyl)lysine (L-NIL). Significant increases in plasma nitrates and citrulline occurred only 3-4 h post-LPS, an effect blocked by L-NIL pretreatment. The intracellular composition of organs harvested 6 h post-LPS reflected tissue-specific profiles of arginine and related metabolites. Tissue arginine concentration, normally an order of magnitude higher than in plasma, did not decrease after LPS. Pretreatment with L-NIL had a significant impact on the disposition of tissue arginine that was organ specific. These data demonstrate changes in arginine metabolism before and after de novo iNOS activity. Selective blockade of iNOS did not prevent uptake and can deregulate the production of other bioactive arginine metabolites. PMID:10837347

  12. Dietary Precursors of Serotonin and Newborn State Behavior.

    ERIC Educational Resources Information Center

    Yogman, Michael W.; Zeisel, Steven

    Although previous research with adult humans and nonhumans has suggested a relationship between sleep behavior and brain serotonin levels, no studies have been made of the relationship of normal children's or infants' sleep patterns to serotonin levels, tryptophan metabolism, or diet. This study investigates the relationship between dietary…

  13. The role of serotonin in adult hippocampal neurogenesis.

    PubMed

    Alenina, Natalia; Klempin, Friederike

    2015-01-15

    Serotonin is probably best known for its role in conveying a sense of contentedness and happiness. It is one of the most unique and pharmacologically complex monoamines in both the peripheral and central nervous system (CNS). Serotonin has become in focus of interest for the treatment of depression with multiple serotonin-mimetic and modulators of adult neurogenesis used clinically. Here we will take a broad view of serotonin from development to its physiological role as a neurotransmitter and its contribution to homeostasis of the adult rodent hippocampus. This chapter reflects the most significant findings on cellular and molecular mechanisms from neuroscientists in the field over the last two decades. We illustrate the action of serotonin by highlighting basic receptor targeting studies, and how receptors impact brain function. We give an overview of recent genetically modified mouse models that differ in serotonin availability and focus on the role of the monoamine in antidepressant response. We conclude with a synthesis of the most recent data surrounding the role of serotonin in activity and hippocampal neurogenesis. This synopsis sheds light on the mechanisms and potential therapeutic model by which serotonin plays a critical role in the maintenance of mood. PMID:25125239

  14. Brain serotonin content - Increase following ingestion of carbohydrate diet.

    NASA Technical Reports Server (NTRS)

    Fernstrom, J. D.; Wurtman, R. J.

    1971-01-01

    In the rat, the injection of insulin or the consumption of carbohydrate causes sequential increases in the concentrations of tryptophan in the plasma and the brain and of serotonin in the brain. Serotonin-containing neurons may thus participate in systems whereby the rat brain integrates information about the metabolic state in its relation to control of homeostasis and behavior.

  15. Ozone Exposure Alters Serotonin and Serotonin Receptor Expression in the Developing Lung

    PubMed Central

    Van Winkle, Laura S.

    2013-01-01

    Ozone, a pervasive environmental pollutant, adversely affects functional lung growth in children. Animal studies demonstrate that altered lung development is associated with modified signaling within the airway epithelial mesenchymal trophic unit, including mediators that can change nerve growth. We hypothesized that ozone exposure alters the normal pattern of serotonin, its transporter (5-HTT), and two key receptors (5-HT2A and 5-HT4), a pathway involved in postnatal airway neural, epithelial, and immune processes. We exposed monkeys to acute or episodic ozone during the first 2 or 6 months of life. There were three exposure groups/age: (1) filtered air, (2) acute ozone challenge, and (3) episodic ozone + acute ozone challenge. Lungs were prepared for compartment-specific qRT-PCR, immunohistochemistry, and stereology. Airway epithelial serotonin immunopositive staining increased in all exposure groups with the most prominent in 2-month midlevel and 6-month distal airways. Gene expression of 5-HTT, 5-HT2AR, and 5-HT4R increased in an age-dependent manner. Overall expression was greater in distal compared with midlevel airways. Ozone exposure disrupted both 5-HT2AR and 5-HT4R protein expression in airways and enhanced immunopositive staining for 5-HT2AR (2 months) and 5-HT4R (6 months) on smooth muscle. Ozone exposure increases serotonin in airway epithelium regardless of airway level, age, and exposure history and changes the spatial pattern of serotonin receptor protein (5-HT2A and 5-HT4) and 5-HTT gene expression depending on compartment, age, and exposure history. Understanding how serotonin modulates components of reversible airway obstruction exacerbated by ozone exposure sets the foundation for developing clinically relevant therapies for airway disease. PMID:23570994

  16. Serotonin neuronal function and selective serotonin reuptake inhibitor treatment in anorexia and bulimia nervosa.

    PubMed

    Kaye, W; Gendall, K; Strober, M

    1998-11-01

    Anorexia nervosa (AN) and bulimia nervosa (BN) are disorders characterized by aberrant patterns of feeding behavior and weight regulation, and disturbances in attitudes toward weight and shape and the perception of body shape. Emerging data support the possibility that substantial biologic and genetic vulnerabilities contribute to the pathogenesis of AN and BN. Multiple neuroendocrine and neurotransmitter abnormalities have been documented in AN and BN, but for the most part, these disturbances are state-related and tend to normalize after symptom remission and weight restoration; however, elevated concentrations of 5-hydroxyindoleacetic acid in the cerebrospinal fluid after recovery suggest that altered serotonin activity in AN and BN is a trait-related characteristic. Elevated serotonin activity is consistent with behaviors found after recovery from AN and BN, such as obsessionality with symmetry and exactness, harm avoidance, perfectionism, and behavioral over control. In BN, serotonergic modulating antidepressant medications suppress symptoms independently of their antidepressant effects. Selective serotonin reuptake inhibitors (SSRIs) are not useful when AN subjects are malnourished and under-weight; however, when given after weight restoration, fluoxetine may significantly reduce the extremely high rate of relapse normally seen in AN. Nonresponse to SSRI medication in ill AN subjects could be a consequence of an inadequate supply of nutrients, which are essential to normal serotonin synthesis and function. These data raise the possibility that a disturbance of serotonin activity may create a vulnerability for the expression of a cluster of symptoms that are common to both AN and BN and that nutritional factors may affect SSRI response in depression, obsessive-compulsive disorder, or other conditions characterized by disturbances in serotonergic pathways. PMID:9807638

  17. Brain serotonin and pituitary-adrenal functions

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Berger, P.; Barchas, J. D.

    1973-01-01

    It had been concluded by Scapagnini et al. (1971) that brain serotonin (5-HT) was involved in the regulation of the diurnal rhythm of the pituitary-adrenal system but not in the stress response. A study was conducted to investigate these findings further by evaluating the effects of altering brain 5-HT levels on the daily fluctuation of plasma corticosterone and on the response of the pituitary-adrenal system to a stressful or noxious stimulus in the rat. In a number of experiments brain 5-HT synthesis was inhibited with parachlorophenylalanine. In other tests it was tried to raise the level of brain 5-HT with precursors.

  18. Serotonin involvement in pituitary-adrenal function

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Kellar, K. J.; Kent, D.; Gonzales, C.; Berger, P. A.; Barchas, J. D.

    1977-01-01

    Experiments clarifying the effects of serotonin (5-HT) in the regulation of the hypothalamic-pituitary-adrenocortical system are surveyed. Lesion experiments which seek to determine functional maps of serotonergic input to areas involved in regulation are reported. Investigations of the effects of 5-HT levels on the plasma ACTH response to stress and the diurnal variation in basal plasma corticosterone are summarized, and the question of whether serotonergic transmission is involved in the regulation of all aspects of pituitary-adrenal function is considered with attention to the stimulatory and inhibitory action of 5-HT.

  19. The roles of peripheral serotonin in metabolic homeostasis.

    PubMed

    El-Merahbi, Rabih; Löffler, Mona; Mayer, Alexander; Sumara, Grzegorz

    2015-07-01

    Metabolic homeostasis in the organism is assured both by the nervous system and by hormones. Among a plethora of hormones regulating metabolism, serotonin presents a number of unique features. Unlike classical hormones serotonin is produced in different anatomical locations. In brain it acts as a neurotransmitter and in the periphery it can act as a hormone, auto- and/or paracrine factor, or intracellular signaling molecule. Serotonin does not cross the blood-brain barrier; therefore the two major pools of this bioamine remain separated. Although 95% of serotonin is produced in the periphery, its functions have been ignored until recently. Here we review the impact of the peripheral serotonin on the regulation of function of the organs involved in glucose and lipid homeostasis. PMID:26070423

  20. Primate gastric circulation: effects of catecholamines and adrenergic blockade.

    PubMed

    Zinner, M J; Kerr, J C; Reynolds, D G

    1976-02-01

    The effects of intra-arterial injections and infusions of epinephrine, norepinephrine, and isoproterenol on gastric blood flow were studied in anesthetized baboons. Blood flow was measured electromagnetically before and after adrenergic blockade. The results for injected epinephrine and norepinephrine indicate these agents to be pure vasoconstrictors in the primate gastric circulation, and this response is attenuated by alpha-adrenergic blockade with phenoxybenzamine. Isoproterenol is a pure vasodilator, and its response is attenuated following beta-adrenergic blockade with propranolol. Intra-arterial infusions of epinephrine and norepinephrine (.05 mug kg-1 min-1) resulted in sustained vasoconstriction with no evidence of autoregulatory escape and no postinfusion "over-shoot." This study suggests that epinephrine and norepinephrine might provide alternatives to vasopressin as a vasoconstrictor for the control of upper gastrointestinal bleeding. PMID:1259012

  1. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    PubMed Central

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  2. Antiproliferative effects of the serotonin type 2 receptor antagonist, ketanserin, on smooth muscle cell growth in rats

    SciTech Connect

    Uehara, Y.; Nagata, T.; Matsuoka, H.; Numabe, A.; Hirawa, N.; Takada, S.; Ishimitsu, T.; Yagi, S.; Sugimoto, T. )

    1991-01-01

    The authors defined the role of a serotonin type 2 receptor antagonist, ketanserin, in the growth of aortic vascular smooth muscle cells (VSMCs) from Wistar rats, using cell culture and cell synchrony methods. Deoxyribonucleic acid (DNA) replication in the G0/G1- or G1/S-synchronized VSMCs was assessed by (3H)thymidine uptake into DNA. Ketanserin at 2 {times} 10(-5) M significantly decreased the thymidine uptake by 48% in the proliferating VSMCs, whereas methysergide, a nonspecific serotonin inhibitor, unaffected the thymidine uptake. Ketanserin at 10(-5) M did not influence the duration of the G1 resting period. However, this dose of ketanserin significantly lowered DNA replication in the DNA synthetic (S) period in a dose-dependent manner. Neither methysergide nor the alpha 1-adrenoceptor antagonist, prazosin, affected DNA synthesis in the S period. Ketanserin exhibits antiproliferative effects on rat VSMC growth probably through the suppression of DNA replication in the S phase. This property would also contribute to the vascular protective effects of ketanserin with its well-documented antihypertensive action.

  3. The platelet serotonin-release assay.

    PubMed

    Warkentin, Theodore E; Arnold, Donald M; Nazi, Ishac; Kelton, John G

    2015-06-01

    Few laboratory tests are as clinically useful as The platelet serotonin-release assay (SRA): a positive SRA in the appropriate clinical context is virtually diagnostic of heparin-induced thrombocytopenia (HIT), a life- and limb-threatening prothrombotic disorder caused by anti-platelet factor 4 (PF4)/heparin antibodies that activate platelets, thereby triggering serotonin-release. The SRA's performance characteristics include high sensitivity and specificity, although caveats include indeterminate reaction profiles (observed in ∼4% of test sera) and potential for false-positive reactions. As only a subset of anti-PF4/heparin antibodies detectable by enzyme-immunoassay (EIA) are additionally platelet-activating, the SRA has far greater diagnostic specificity than the EIA. However, requiring a positive EIA, either as an initial screening test or as an SRA adjunct, will reduce risk of a false-positive SRA (since a negative EIA in a patient with a "positive" SRA should prompt critical evaluation of the SRA reaction profile). The SRA also provides useful information on whether a HIT serum produces strong platelet activation even in the absence of heparin: such heparin-"independent" platelet activation is a marker of unusually severe HIT, including delayed-onset HIT and severe HIT complicated by consumptive coagulopathy with risk for microvascular thrombosis. PMID:25775976

  4. Observation of ionic Coulomb blockade in nanopores.

    PubMed

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; Di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels. PMID:27019385

  5. Indirect androgen doping by oestrogen blockade in sports

    PubMed Central

    Handelsman, D J

    2008-01-01

    Androgens can increase muscular mass and strength and remain the most frequently abused and widely available drugs used in sports doping. Banning the administration of natural or synthetic androgens has led to a variety of strategies to circumvent the ban of the most effective ergogenic agents for power sports. Among these, a variety of indirect androgen doping strategies aiming to produce a sustained rise in endogenous testosterone have been utilized. These include oestrogen blockade by drugs that act as oestrogen receptor antagonists (antioestrogen) or aromatase inhibitors. The physiological and pharmacological basis for the effects of oestrogen blockade in men, but not women, are reviewed. PMID:18500381

  6. Cyclooxygenase blockade and exogenous glutamine enhance sodium absorption in infected bovine ileum.

    PubMed

    Cole, Jeffrey; Blikslager, Anthony; Hunt, Elaine; Gookin, Jody; Argenzio, Robert

    2003-03-01

    We have previously shown that prostanoids inhibit electroneutral sodium absorption in Cryptosporidium parvum-infected porcine ileum, whereas glutamine stimulates electroneutral sodium absorption. We postulated that glutamine would stimulate sodium absorption via a cyclooxygenase (COX)-dependent pathway. We tested this hypothesis in C. parvum-infected calves, which are the natural hosts of cryptosporidiosis. Tissues from healthy and infected calves were studied in Ussing chambers and analyzed via immunohistochemistry and Western blots. Treatment of infected tissue with selective COX inhibitors revealed that COX-1 and -2 must be blocked to restore electroneutral sodium absorption, although the transporter involved did not appear to be the expected Na(+)/H(+) exchanger 3 isoform. Glutamine addition also stimulated sodium absorption in calf tissue, but although this transport was electroneutral in healthy tissue, sodium absorption was electrogenic in infected tissue and was additive to sodium transport uncovered by COX inhibition. Blockade of both COX isoforms is necessary to release the prostaglandin-mediated inhibition of electroneutral sodium uptake in C. parvum-infected calf ileal tissue, whereas glutamine increases sodium uptake by an electrogenic mechanism in this same tissue. PMID:12466144

  7. Blockade of dorsolateral pontine 5HT1A receptors destabilizes the respiratory rhythm in C57BL6/J wild-type mice.

    PubMed

    Dhingra, R R; Dutschmann, M; Dick, T E

    2016-06-01

    The neurotransmitter serotonin (5HT) acting via 5HT1a receptors (5HT1aR) is a potent determinant of respiratory rhythm variability. Here, we address the 5HT1aR-dependent control of respiratory rhythm variability in C57BL6/J mice. Using the in situ perfused preparation, we compared the effects of systemic versus focal blockade of 5HT1aRs. Blocking 5HT1aRs in the Kölliker-Fuse nucleus (KFn) increased the occurrence of spontaneous apneas and accounted for the systemic effects of 5HT1aR antagonists. Further, 5HT1aRs of the KFn stabilized the respiratory rhythm's response to arterial chemoreflex perturbations; reducing the recovering time, e.g., the latency to return to the baseline pattern. Together, these results suggest that the KFn regulates both intrinsic and sensory determinants of respiratory rhythm variability. PMID:26840837

  8. Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice.

    PubMed

    Cao, Xuehong; Xu, Pingwen; Oyola, Mario G; Xia, Yan; Yan, Xiaofeng; Saito, Kenji; Zou, Fang; Wang, Chunmei; Yang, Yongjie; Hinton, Antentor; Yan, Chunling; Ding, Hongfang; Zhu, Liangru; Yu, Likai; Yang, Bin; Feng, Yuxin; Clegg, Deborah J; Khan, Sohaib; DiMarchi, Richard; Mani, Shaila K; Tong, Qingchun; Xu, Yong

    2014-10-01

    Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice specifically lacking estrogen receptor-α (ERα) in serotonin (5-HT) neurons in the dorsal raphe nuclei (DRN). Administration of a recently developed glucagon-like peptide-1-estrogen (GLP-1-estrogen) conjugate designed to deliver estrogen to GLP1 receptor-enhanced regions effectively targeted bioactive estrogens to the DRN and substantially suppressed binge-like eating in ovariectomized female mice. Administration of GLP-1 alone reduced binge-like eating, but not to the same extent as the GLP-1-estrogen conjugate. Administration of ERα-selective agonist propylpyrazole triol (PPT) to murine DRN 5-HT neurons activated these neurons in an ERα-dependent manner. PPT also inhibited a small conductance Ca2+-activated K+ (SK) current; blockade of the SK current prevented PPT-induced activation of DRN 5-HT neurons. Furthermore, local inhibition of the SK current in the DRN markedly suppressed binge-like eating in female mice. Together, our data indicate that estrogens act upon ERα to inhibit the SK current in DRN 5-HT neurons, thereby activating these neurons to suppress binge-like eating behavior and suggest ERα and/or SK current in DRN 5-HT neurons as potential targets for anti-binge therapies. PMID:25157819

  9. Effect of transcutaneous electrical stimulation on nociception and edema induced by peripheral serotonin.

    PubMed

    Santos, Cristiane M F; Francischi, Janetti N; Lima-Paiva, Patrícia; Sluka, Kathleen A; Resende, Marcos A

    2013-07-01

    Transcutaneous electrical nerve stimulation (TENS) is defined as the application of an electrical current to the skin through surface electrodes for pain relief. Various theories have been proposed in order to explain the analgesic mechanism of TENS. Recent studies have demonstrated that part of this analgesia is mediated through neurotransmitters acting at peripheral sites. The aim of this study was to investigate the effects of low frequency (LF: 10 HZ) TENS and high frequency (HF: 130 HZ) TENS on hyperalgesia and edema when applied before the serotonin (5-HT) administered into the rat paw. LF and HF TENS were applied to the right paw for 20 min, and 5-HT was administered immediately after TENS. The Hargreaves method was used to measure nociception, while the hydroplethysmometer (Ugo Basile®) was used to measure edema. Neither HF nor LF TENS inhibited 5-HT-induced edema. However, LF TENS, but not HF TENS, completely reduced 5-HT-induced hyperalgesia. Pre-treatment of the paw with naltrexone, prior to application of TENS, (Nx: 50 μg; I.pl.) showed a complete blockade of the analgesic effect induced by low frequency TENS. Thus, our results confirmed the lack of an anti-inflammatory effect through the use of TENS as well as the participation of peripheral endogenous opioid receptors in LF TENS analgesia in addition to its central action. PMID:23336713

  10. Mice Lacking Serotonin 2C Receptors Have increased Affective Responses to Aversive Stimuli

    PubMed Central

    Bonasera, Stephen J.; Schenk, A. Katrin; Luxenberg, Evan J.; Wang, Xidao; Basbaum, Allan; Tecott, Laurence H.

    2015-01-01

    Although central serotonergic systems are known to influence responses to noxious stimuli, mechanisms underlying serotonergic modulation of pain responses are unclear. We proposed that serotonin 2C receptors (5-HT2CRs), which are expressed within brain regions implicated in sensory and affective responses to pain, contribute to the serotonergic modulation of pain responses. In mice constitutively lacking 5-HT2CRs (2CKO mice) we found normal baseline sensory responses to noxious thermal, mechanical and chemical stimuli. In contrast, 2CKO mice exhibited a selective enhancement of affect-related ultrasonic afterdischarge vocalizations in response to footshock. Enhanced affect-related responses to noxious stimuli were also exhibited by 2CKO mice in a fear-sensitized startle assay. The extent to which a brief series of unconditioned footshocks produced enhancement of acoustic startle responses was markedly increased in 2CKO mice. As mesolimbic dopamine pathways influence affective responses to noxious stimuli, and these pathways are disinhibited in 2CKO mice, we examined the sensitivity of footshock-induced enhancement of startle to dopamine receptor blockade. Systemic administration of the dopamine D2/D3 receptor antagonist raclopride selectively reduced footshock-induced enhancement of startle without influencing baseline acoustic startle responses. We propose that 5-HT2CRs regulate affective behavioral responses to unconditioned aversive stimuli through mechanisms involving the disinhibition of ascending dopaminergic pathways. PMID:26630489

  11. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  12. Thermostabilization of the Human Serotonin Transporter in an Antidepressant-Bound Conformation

    PubMed Central

    Green, Evan M.; Coleman, Jonathan A.; Gouaux, Eric

    2015-01-01

    Serotonin is a ubiquitous chemical transmitter with particularly important roles in the gastrointestinal, cardiovascular and central nervous systems. Modulation of serotonergic signaling occurs, in part, by uptake of the transmitter by the serotonin transporter (SERT). In the brain, SERT is the target for numerous antidepressants including tricyclic antidepressants and selective serotonin reuptake inhibitors (SSRIs). Despite the importance of SERT in human physiology, biochemical, biophysical and high-resolution structural studies have been hampered due to the instability of SERT in detergent micelles. To identify a human SERT (hSERT) construct suitable for detailed biochemical and structural studies, we developed an efficient thermostability screening protocol and rapidly screened 219 mutations for thermostabilization of hSERT in complex with the SSRI paroxetine. We discovered three mutations—Y110A, I291A and T439S –that, when combined into a single construct, deemed TS3, yielded a hSERT variant with an apparent melting temperature (Tm) 19°C greater than that of the wild-type transporter, albeit with a loss of transport activity. Further investigation yielded a double mutant—I291A and T439S—defined as TS2, with a 12°C increase in Tm and retention of robust transport activity. Both TS2 and TS3 were more stable in short-chain detergents in comparison to the wild-type transporter. This thermostability screening protocol, as well as the specific hSERT variants, will prove useful in studies of other integral membrane receptors and transporters and in the investigation of structure and function relationships in hSERT. PMID:26695939

  13. Serotonin shifts first-spike latencies of inferior colliculus neurons.

    PubMed

    Hurley, Laura M; Pollak, George D

    2005-08-24

    Many studies of neuromodulators have focused on changes in the magnitudes of neural responses, but fewer studies have examined neuromodulator effects on response latency. Across sensory systems, response latency is important for encoding not only the temporal structure but also the identity of stimuli. In the auditory system, latency is a fundamental response property that varies with many features of sound, including intensity, frequency, and duration. To determine the extent of neuromodulatory regulation of latency within the inferior colliculus (IC), a midbrain auditory nexus, the effects of iontophoretically applied serotonin on first-spike latencies were characterized in the IC of the Mexican free-tailed bat. Serotonin significantly altered the first-spike latencies in response to tones in 24% of IC neurons, usually increasing, but sometimes decreasing, latency. Serotonin-evoked changes in latency and spike count were not always correlated but sometimes occurred independently within individual neurons. Furthermore, in some neurons, the size of serotonin-evoked latency shifts depended on the frequency or intensity of the stimulus, as reported previously for serotonin-evoked changes in spike count. These results support the general conclusion that changes in latency are an important part of the neuromodulatory repertoire of serotonin within the auditory system and show that serotonin can change latency either in conjunction with broad changes in other aspects of neuronal excitability or in highly specific ways. PMID:16120790

  14. Platelet serotonin concentration and depressive symptoms in patients with schizophrenia.

    PubMed

    Peitl, Vjekoslav; Vidrih, Branka; Karlović, Zoran; Getaldić, Biserka; Peitl, Milena; Karlović, Dalibor

    2016-05-30

    Depressive symptoms seem to be frequent in schizophrenia, but so far they have received less attention than other symptom domains. Impaired serotonergic neurotransmission has been implicated in the pathogenesis of depression and schizophrenia. The objectives of this study were to investigate platelet serotonin concentrations in schizophrenic patients with and without depressive symptoms, and to investigate the association between platelet serotonin concentrations and symptoms of schizophrenia, mostly depressive symptoms. A total of 364 patients were included in the study, 237 of which had significant depressive symptoms. Significant depressive symptoms were defined by the cut-off score of 7 or more on Calgary Depression Rating Scale (CDSS). Platelet serotonin concentrations were assessed by the enzyme-linked immunosorbent assay (ELISA). Prevalence of depression in patients with schizophrenia was 65.1%. Schizophrenic patients with depressive symptoms showed lower platelet serotonin concentrations (mean±SD; 490.6±401.2) compared to schizophrenic patients without depressive symptoms (mean±SD; 660.9±471.5). An inverse correlation was established between platelet serotonin concentration and depressive symptoms, with more severe symptoms being associated with lower platelet serotonin concentrations. Depressive symptoms in schizophrenic patients may be associated with reduced concentrations of platelet serotonin. PMID:27137969

  15. Serotonin and the regulation of mammalian energy balance

    PubMed Central

    Donovan, Michael H.; Tecott, Laurence H.

    2013-01-01

    Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system (CNS) serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mechanisms through which serotonin impacts energy balance pathways within the hypothalamus. How upstream factors relevant to energy balance regulate the release of hypothalamic serotonin is less clear, but work addressing this issue is underway. Generally, investigation into the central serotonergic regulation of energy balance has had a predominantly “hypothalamocentric” focus, yet non-hypothalamic structures that have been implicated in energy balance regulation also receive serotonergic innervation and express multiple subtypes of serotonin receptors. Moreover, there is a growing appreciation of the diverse mechanisms through which peripheral serotonin impacts energy balance regulation. Clearly, the serotonergic regulation of energy balance is a field characterized by both rapid advances and by an extensive and diverse set of central and peripheral mechanisms yet to be delineated. PMID:23543912

  16. The Union Blockade and Demoralization of the South: Relative Prices in the Confederacy.

    ERIC Educational Resources Information Center

    Ekelund, Robert B., Jr.; Thornton, Mark

    1992-01-01

    Applies the economic concept of relative prices to the blockaded Confederacy during the U.S. Civil War. Describes how the Union blockade encouraged blockade runners to supply luxury items while soldiers lacked food, clothing, and ammunition. Contends that the resultant demoralization was a factor in the demise of the Confederacy. (CFR)

  17. Modulation of anxiety by cortical serotonin 1A receptors

    PubMed Central

    Piszczek, Lukasz; Piszczek, Agnieszka; Kuczmanska, Joanna; Audero, Enrica; Gross, Cornelius T.

    2015-01-01

    Serotonin (5-HT) plays an important role in the modulation of behavior across animal species. The serotonin 1A receptor (Htr1a) is an inhibitory G-protein coupled receptor that is expressed both on serotonin and non-serotonin neurons in mammals. Mice lacking Htr1a show increased anxiety behavior suggesting that its activation by serotonin has an anxiolytic effect. This outcome can be mediated by either Htr1a population present on serotonin (auto-receptor) or non-serotonin neurons (hetero-receptor), or both. In addition, both transgenic and pharmacological studies have shown that serotonin acts on Htr1a during development to modulate anxiety in adulthood, demonstrating a function for this receptor in the maturation of anxiety circuits in the brain. However, previous studies have been equivocal about which Htr1a population modulates anxiety behavior, with some studies showing a role of Htr1a hetero-receptor and others implicating the auto-receptor. In particular, cell-type specific rescue and suppression of Htr1a expression in either forebrain principal neurons or brainstem serotonin neurons reached opposite conclusions about the role of the two populations in the anxiety phenotype of the knockout. One interpretation of these apparently contradictory findings is that the modulating role of these two populations depends on each other. Here we use a novel Cre-dependent inducible allele of Htr1a in mice to show that expression of Htr1a in cortical principal neurons is sufficient to modulate anxiety. Together with previous findings, these results support a hetero/auto-receptor interaction model for Htr1a function in anxiety. PMID:25759645

  18. Rotavirus and Serotonin Cross-Talk in Diarrhoea

    PubMed Central

    Nordgren, Johan; Karlsson, Thommie; Sharma, Sumit; Magnusson, Karl-Eric; Svensson, Lennart

    2016-01-01

    Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p < 0.05) less diarrhoea, lower diarrhoea severity score and lower total diarrhoea output as compared to mock-treated mice (n = 9). Similarly, Ondansetron-treated mice had better weight gain than mock-treated animals (p < 0.05). A most surprising finding was that the serotonin receptor antagonist significantly (p < 0.05) also attenuated total viral shedding. In summary, we show that intracellularly expressed NSP4 stimulates release of serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron. PMID:27459372

  19. Rotavirus and Serotonin Cross-Talk in Diarrhoea.

    PubMed

    Bialowas, Sonja; Hagbom, Marie; Nordgren, Johan; Karlsson, Thommie; Sharma, Sumit; Magnusson, Karl-Eric; Svensson, Lennart

    2016-01-01

    Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p < 0.05) less diarrhoea, lower diarrhoea severity score and lower total diarrhoea output as compared to mock-treated mice (n = 9). Similarly, Ondansetron-treated mice had better weight gain than mock-treated animals (p < 0.05). A most surprising finding was that the serotonin receptor antagonist significantly (p < 0.05) also attenuated total viral shedding. In summary, we show that intracellularly expressed NSP4 stimulates release of serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron. PMID:27459372

  20. Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.

    ERIC Educational Resources Information Center

    Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.

    1997-01-01

    Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)

  1. A new regime of Pauli-spin blockade

    NASA Astrophysics Data System (ADS)

    Perron, Justin K.; Stewart, M. D.; Zimmerman, Neil M.

    2016-04-01

    Pauli-spin blockade (PSB) is a transport phenomenon in double quantum dots that allows for a type of spin to charge conversion often used to probe fundamental physics such as spin relaxation and singlet-triplet coupling. In this paper, we theoretically explore Pauli-spin blockade as a function of magnetic field B applied parallel to the substrate. In the well-studied low magnetic field regime, where PSB occurs in the forward (1, 1) → (0, 2) tunneling direction, we highlight some aspects of PSB that are not discussed in detail in existing literature, including the change in size of both bias triangles measured in the forward and reverse biasing directions as a function of B. At higher fields, we predict a crossover to "reverse PSB" in which current is blockaded in the reverse direction due to the occupation of a spin singlet as opposed to the traditional triplet blockade that occurs at low fields. The onset of reverse PSB coincides with the development of a tail like feature in the measured bias triangles and occurs when the Zeeman energy of the polarized triplet equals the exchange energy in the (0, 2) charge configuration. In Si quantum dots, these fields are experimentally accessible; thus, this work suggests a way to observe a crossover in magnetic field to qualitatively different behavior.

  2. Accurate Coulomb blockade thermometry up to 60 kelvin.

    PubMed

    Meschke, M; Kemppinen, A; Pekola, J P

    2016-03-28

    We demonstrate experimentally a precise realization of Coulomb blockade thermometry working at temperatures up to 60 K. Advances in nano-fabrication methods using electron beam lithography allow us to fabricate uniform arrays of sufficiently small tunnel junctions to guarantee an overall temperature reading precision of about 1%. PMID:26903107

  3. Sodium intake, RAAS-blockade and progressive renal disease.

    PubMed

    de Borst, Martin H; Navis, Gerjan

    2016-05-01

    Pharmacological blockade of the renin-angiotensin-aldosterone system (RAAS) by angiotensin converting enzyme inhibitors or angiotensin receptor blockers is the current standard treatment to prevent progressive renal function loss in patients with chronic kidney disease. Yet in many patients the renal protective effect of RAAS-blockade is incomplete. Short-term clinical studies have demonstrated that dietary sodium restriction potentiates the antiproteinuric effect of RAAS-blockade. More recently, it was shown that this effect is accompanied by a lower risk of end-stage renal disease and adverse cardiovascular outcomes. The modulation of RAAS-blockade efficacy by sodium intake is likely multifactorial, and is mediated by effects of sodium on local tissue RAAS in kidney, vasculature and brain, and by effects on the immune system. Despite the evidence showing the beneficial effects of even a moderate sodium restriction (∼2.5g/d), it remains difficult to realize in clinical practice. In an analysis based on 24-h urinary sodium excretion data from more than 10,000 CKD patients and renal transplant recipients, we found that sodium intake in these patients is on average 3.8g/d, closely resembling the global general population (3.95g/d). Behavioral approaches including the use of online dietary coaching (ehealth) and feedback using data from 24-h urine collections may be useful to successfully lower dietary sodium intake, aiming to improve cardio-renal outcomes in patients with CKD. PMID:27041482

  4. Renal vasodilatation by dopexamine and fenoldopam due to alpha 1-adrenoceptor blockade.

    PubMed Central

    Martin, S. W.; Broadley, K. J.

    1995-01-01

    1. The renal vascular responses of the rat isolated perfused kidney to the dopamine D1-receptor agonists, dopexamine and fenoldopam, were examined. 2. Both kidneys were perfused in situ at constant flow rate (11 ml min-1) with Krebs-bicarbonate solution at 37 degrees C. The perfusion pressure was monitored and to enable vasodilator responses to be measured, the resting perfusion pressure was raised by infusing noradrenaline (6 x 10(-9) M). 3. Dose-related vasodilator responses to bolus doses of dopexamine and fenoldopam were obtained. However, these were not antagonized by the D1-receptor antagonist, SCH 23390, indicating that D1-receptors were not involved. 4. Bolus doses of the alpha 1-adrenoceptor antagonist, prazosin, caused similar dose-related vasodilator responses indicating the possibility that alpha 1-adrenoceptor blocking properties of dopexamine and fenoldopam were responsible for the vasodilatation. 5. alpha-Adrenoceptor blockade by dopexamine and fenoldopam was confirmed by the parallel displacement of dose-response curves for the vasopressor responses to noradrenaline. pA2 values were determined by Schild analysis for dopexamine, fenoldopam and prazosin antagonism of noradrenaline in the presence of neuronal (cocaine, 10(-5) M) and extraneuronal uptake blockade (metanephrine, 10(-5) M). The values were 6.23, 6.02 and 8.91, respectively. Schild plot slopes of unity were obtained for dopexamine and fenoldopam indicating competitive antagonism. A slope of greater than unity for prazosin may be explained by the lack of equilibrium conditions associated with bolus doses of noradrenaline, the responses of which are affected more by the high affinity antagonist, prazosin, than the two lower affinity antagonists.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7670737

  5. Antidepressant Specificity of Serotonin Transporter Suggested by Three LeuT-SSRI Structures

    SciTech Connect

    Zhou, Z.; Zhen, J; Karpowich, N; Law, C; Reith, M; Wang, D

    2009-01-01

    Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT. For the SERT protein, however, the structural basis of its specificity for SSRIs is poorly understood. Here we report the crystal structures of LeuT, a bacterial SERT homolog, in complex with sertraline, R-fluoxetine or S-fluoxetine. The SSRI halogens all bind to exactly the same pocket within LeuT. Mutation at this halogen-binding pocket (HBP) in SERT markedly reduces the transporter's affinity for SSRIs but not for tricyclic antidepressants. Conversely, when the only nonconserved HBP residue in both norepinephrine and dopamine transporters is mutated into that found in SERT, their affinities for all the three SSRIs increase uniformly. Thus, the specificity of SERT for SSRIs is dependent largely on interaction of the drug halogens with the protein's HBP.

  6. Serotonin syndrome precipitated by fentanyl during procedural sedation.

    PubMed

    Kirschner, Ron; Donovan, J Ward

    2010-05-01

    Fentanyl is frequently used for analgesia during emergency procedures. We present the cases of 2 patients who developed agitation and delirium after intravenous fentanyl administration. These patients were chronically taking selective serotonin reuptake inhibitors (SSRIs). Both developed neuromuscular examinations consistent with serotonin syndrome, a diagnosis that must be established on the basis of clinical criteria. Although they required aggressive supportive care, including mechanical ventilation, both patients made a full recovery. Use of fentanyl for procedural sedation may precipitate serotonin syndrome in patients taking SSRIs or other serotonergic drugs. PMID:18757161

  7. 4-haloethenylphenyl tropane:serotonin transporter imaging agents

    DOEpatents

    Goodman, Mark M.; Martarello, Laurent

    2005-01-18

    A series of compounds in the 4-fluoroalkyl-3-halophenyl nortropanes and 4-haloethenylphenyl tropane families are described as diagnostic and therapeutic agents for diseases associated with serotonin transporter dysfunction. These compounds bind to serotonin transporter protein with high affinity and selectivity. The invention provides methods of synthesis which incorporate radioisotopic halogens at a last step which permit high radiochemical yield and maximum usable product life. The radiolabeled compounds of the invention are useful as imaging agents for visualizing the location and density of serotonin transporter by PET and SPECT imaging.

  8. Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites

    SciTech Connect

    de Chaffoy de Courcelles, D.; Leysen, J.E.; De Clerck, F.; Van Belle, H.; Janssen, P.A.

    1985-06-25

    Upon stimulation with serotonin of washed human platelets prelabeled with (/sup 32/P)orthophosphate, the authors found an approximately 250% increase in (/sup 32/P)phosphatidic acid (PA) formation, a small decrease in (/sup 32/P)phosphatidylinositol 4,5-bisphosphate, and a concomitant increase in (/sup 32/P)phosphatidylinositol 4-phosphate. Using (/sup 3/H)arachidonate for prelabeling, (/sup 3/H)diacylglycerol accumulated transiently at 10 s after addition of the agonist, (/sup 3/H)PA increased but to a lower extent compared to /sup 32/P-labeled lipid, and the formation of both (/sup 3/H)polyphosphoinositides increased. The serotonin-induced dose-dependent changes in (/sup 32/P)PA correlate with its effect on the changes in slope of aggregation of platelets. The potency of 13 drugs to antagonize the serotonin-induced PA formation closely corresponds to both their potency to inhibit platelet aggregation and their binding affinity for serotonin-S2 receptor sites. It is suggested that at least part of the signal transducing system following activation of the serotonin-S2 receptors involves phospholipase C catalyzed inositol lipid breakdown yielding diacylglycerol which is subsequently phosphorylated to PA.

  9. Serotonin levels influence patterns of repetition priming.

    PubMed

    Burgund, E Darcy; Marsolek, Chad J; Luciana, Monica

    2003-01-01

    Repetition priming in a word-stem completion task was examined in a group of control subjects and in a group of experimental subjects under conditions of acute tryptophan depletion (T-) and tryptophan augmentation (T+). Experimental subjects ingested amino acid compounds that depleted or loaded the body with tryptophan, and word-stem completion priming performance was measured. Results indicate differential effects of T- and T+ manipulations on word-stem completion priming. In the control group, both specific-visual and amodal priming were observed. Conversely, in the T+ condition, specific-visual priming, but no amodal priming, was observed, whereas in the T- condition, amodal priming, but no specific-visual priming, was observed. The authors conclude that serotonin (5-hydroxytryptamine) plays a critical role in repetition priming by helping to modulate which neural systems contribute to priming effects. PMID:12597085

  10. Flux coupling in the human serotonin transporter.

    PubMed

    Adams, Scott V; DeFelice, Louis J

    2002-12-01

    The serotonin (5-hydroxytryptamine; 5HT) transporter (SERT) catalyzes the movement of 5HT across cellular membranes. In the brain, SERT clears 5HT from extracellular spaces, modulating the strength and duration of serotonergic signaling. SERT is also an important pharmacological target for antidepressants and drugs of abuse. We have studied the flux of radio-labeled 5HT through the transporter stably expressed in HEK-293 cells. Analysis of the time course of net transport, the equilibrium 5HT gradient sustained, and the ratio of the unidirectional influx to efflux of 5HT indicate that mechanistically, human SERT functions as a 5HT channel rather than a classical carrier. This is especially apparent at relatively high [5HT](out) (> or =10 microM), but is not restricted to this regime of external 5HT. PMID:12496095

  11. The microwave spectrum of neurotransmitter serotonin.

    PubMed

    Cabezas, Carlos; Varela, Marcelino; Peña, Isabel; López, Juan C; Alonso, José L

    2012-10-21

    A laser ablation device in combination with a molecular beam Fourier-transform microwave spectrometer has allowed the observation of the rotational spectrum of serotonin for the first time. Three conformers of the neurotransmitter have been detected and characterized in the 4-10 GHz frequency range. The complicated hyperfine structure arising from the presence of two (14)N nuclei has been fully resolved for all conformers and used for their identification. Nuclear quadrupole coupling constants of the nitrogen atom of the side chain have been used to determine the orientation of the amino group probing the existence of N-Hπ interactions involving the amino group and the pyrrole unit in the Gauche-Phenyl conformer (GPh) or the phenyl unit in the Gauche-Pyrrole (GPy) ones. PMID:22965174

  12. Flux coupling in the human serotonin transporter.

    PubMed Central

    Adams, Scott V; DeFelice, Louis J

    2002-01-01

    The serotonin (5-hydroxytryptamine; 5HT) transporter (SERT) catalyzes the movement of 5HT across cellular membranes. In the brain, SERT clears 5HT from extracellular spaces, modulating the strength and duration of serotonergic signaling. SERT is also an important pharmacological target for antidepressants and drugs of abuse. We have studied the flux of radio-labeled 5HT through the transporter stably expressed in HEK-293 cells. Analysis of the time course of net transport, the equilibrium 5HT gradient sustained, and the ratio of the unidirectional influx to efflux of 5HT indicate that mechanistically, human SERT functions as a 5HT channel rather than a classical carrier. This is especially apparent at relatively high [5HT](out) (> or =10 microM), but is not restricted to this regime of external 5HT. PMID:12496095

  13. CNS effects of citalopram, a new serotonin inhibitor antidepressant (a quantitative pharmaco-electroencephalography study).

    PubMed

    Itil, T M; Menon, G N; Bozak, M M; Itil, K Z

    1984-01-01

    Citalopram, a new phthalane derivative and a specific serotonin re-uptake inhibitor in animal pharmacological tests, was evaluated in a double-blind, crossover, quantitative pharmaco-EEG (QPEEGTM) study in healthy human volunteers. The CNS effects of citalopram are linear, dose- and time-related, can statistically be differentiated from placebo, and indicate a rapid onset of effects with short duration. According to the Computer Data Bank, citalopram has a mode of action similar to mood elevators (antidepressants) with fewer sedative properties. Thus the therapeutic action of citalopram is predicted to be similar to desipramine and protriptyline from the tricyclics, and fluvoxamine from non-tricyclics. According to data bank assessment, it is hypothesized that the single antidepressant dose of citalopram is to be more than 25 mg, which should be given t.i.d. in clinical trials. PMID:6592676

  14. Relationships of Whole Blood Serotonin and Plasma Norepinephrine within Families.

    ERIC Educational Resources Information Center

    Leventhal, Bennett L.; And Others

    1990-01-01

    This study of 47 families of autistic probands found that whole blood serotonin was positively correlated between autistic children and their mothers, fathers, and siblings, but plasma norepinephrine levels were not. (Author/JDD)

  15. Plasma serotonin in horses undergoing surgery for small intestinal colic

    PubMed Central

    Torfs, Sara C.; Maes, An A.; Delesalle, Catherine J.; Pardon, Bart; Croubels, Siska M.; Deprez, Piet

    2015-01-01

    This study compared serotonin concentrations in platelet poor plasma (PPP) from healthy horses and horses with surgical small intestinal (SI) colic, and evaluated their association with postoperative ileus, strangulation and non-survival. Plasma samples (with EDTA) from 33 horses with surgical SI colic were collected at several pre- and post-operative time points. Serotonin concentrations were determined using liquid-chromatography tandem mass spectrometry. Results were compared with those for 24 healthy control animals. The serotonin concentrations in PPP were significantly lower (P < 0.01) in pre- and post-operative samples from surgical SI colic horses compared to controls. However, no association with postoperative ileus or non-survival could be demonstrated at any time point. In this clinical study, plasma serotonin was not a suitable prognostic factor in horses with SI surgical colic. PMID:25694668

  16. [Effect of phenibut on the respiratory arrest caused by serotonin].

    PubMed

    Tarakanov, I A; Tarasova, N N; Belova, E A; Safonov, V A

    2006-01-01

    The role of the GABAergic system in mechanisms of the respiratory arrest caused by serotonin administration was studied in anaesthetized rats. Under normal conditions, the systemic administration of serotonin (20-60 mg/kg, i.v.) resulted in drastic changes of the respiratory pattern, whereby the initial phase of increased respiratory rate was followed by the respiratory arrest. The preliminary injection of phenibut (400 mg/kg, i.p.) abolished or sharply reduced the duration of the respiratory arrest phase induced by serotonin. Bilateral vagotomy following the phenibut injection potentiated the anti-apnoesic effect of phenibut, which was evidence of the additive action of vagotomy and phenibut administration. The mechanism of apnea caused by serotonin administration is suggested to include a central GABAergic element, which is activated by phenibut so as to counteract the respiratory arrest. PMID:16579056

  17. [Serotonin syndrome and pain medication : What is relevant for practice?].

    PubMed

    Schenk, M; Wirz, S

    2015-04-01

    Serotonin syndrome is a dangerous and rare complication of a pharmacotherapy and can lead to death. Caused by unwanted interactions of serotonergic drugs, it is characterised by a neuroexcitatory triad of mental changes, neuromuscular hyperactivity and autonomic instability. Opioids with serotonergic effects include the phenylpiperidine series opioids fentanyl, methadone, meperidine and tramadol and the morphine analogues oxycodone and codeine. In combination with certain serotonergic drugs, e.g. antidepressants, they can provoke serotonin syndrome. In patients with such combinations, special attention should be paid to clinical signs of serotonergic hyperactivity. Higher risk combinations (e.g. monoamine oxidase inhibitors with tramadol) must be avoided. Treatment with serotonergic agents must be stopped in moderate or severe serotonin syndrome. Patients with a severe serotonin syndrome require symptomatic intensive care and specifically a pharmacological antagonism with cyproheptadine or chlorpromazine. PMID:25860200

  18. Serotonin affects movement gain control in the spinal cord.

    PubMed

    Wei, Kunlin; Glaser, Joshua I; Deng, Linna; Thompson, Christopher K; Stevenson, Ian H; Wang, Qining; Hornby, Thomas George; Heckman, Charles J; Kording, Konrad P

    2014-09-17

    A fundamental challenge for the nervous system is to encode signals spanning many orders of magnitude with neurons of limited bandwidth. To meet this challenge, perceptual systems use gain control. However, whether the motor system uses an analogous mechanism is essentially unknown. Neuromodulators, such as serotonin, are prime candidates for gain control signals during force production. Serotonergic neurons project diffusely to motor pools, and, therefore, force production by one muscle should change the gain of others. Here we present behavioral and pharmaceutical evidence that serotonin modulates the input-output gain of motoneurons in humans. By selectively changing the efficacy of serotonin with drugs, we systematically modulated the amplitude of spinal reflexes. More importantly, force production in different limbs interacts systematically, as predicted by a spinal gain control mechanism. Psychophysics and pharmacology suggest that the motor system adopts gain control mechanisms, and serotonin is a primary driver for their implementation in force production. PMID:25232107

  19. (/sup 3/)tetrahydrotrazodone binding. Association with serotonin binding sites

    SciTech Connect

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-05-01

    High (17 nM) and low (603 nM) affinity binding sites for (/sup 3/)tetrahydrotrazodone ((/sup 3/) THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of (/sup 3/)THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, (/sup 3/) THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that (/sup 3/)THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors.

  20. Serotonin Affects Movement Gain Control in the Spinal Cord

    PubMed Central

    Glaser, Joshua I.; Deng, Linna; Thompson, Christopher K.; Stevenson, Ian H.; Wang, Qining; Hornby, Thomas George; Heckman, Charles J.; Kording, Konrad P.

    2014-01-01

    A fundamental challenge for the nervous system is to encode signals spanning many orders of magnitude with neurons of limited bandwidth. To meet this challenge, perceptual systems use gain control. However, whether the motor system uses an analogous mechanism is essentially unknown. Neuromodulators, such as serotonin, are prime candidates for gain control signals during force production. Serotonergic neurons project diffusely to motor pools, and, therefore, force production by one muscle should change the gain of others. Here we present behavioral and pharmaceutical evidence that serotonin modulates the input–output gain of motoneurons in humans. By selectively changing the efficacy of serotonin with drugs, we systematically modulated the amplitude of spinal reflexes. More importantly, force production in different limbs interacts systematically, as predicted by a spinal gain control mechanism. Psychophysics and pharmacology suggest that the motor system adopts gain control mechanisms, and serotonin is a primary driver for their implementation in force production. PMID:25232107

  1. Multiple messengers in descending serotonin neurons: localization and functional implications.

    PubMed

    Hökfelt, T; Arvidsson, U; Cullheim, S; Millhorn, D; Nicholas, A P; Pieribone, V; Seroogy, K; Ulfhake, B

    2000-02-01

    In the present review article we summarize mainly histochemical work dealing with descending bulbospinal serotonin neurons which also express a number of neuropeptides, in particular substance P and thyrotropin releasing hormone. Such neurons have been observed both in rat, cat and monkey, and may preferentially innervate the ventral horns of the spinal cord, whereas the serotonin projections to the dorsal horn seem to lack these coexisting peptides. More recent studies indicate that a small population of medullary raphe serotonin neurons, especially at rostral levels, also synthesize the inhibitory neurotransmitter gamma-amino butyric acid (GABA). Many serotonin neurons contain the glutamate synthesizing enzyme glutaminase and can be labelled with antibodies raised against glutamate, suggesting that one and the same neuron may release several signalling substances, causing a wide spectrum of post- (and pre-) synaptic actions. PMID:10708921

  2. The effect of low estrogen state on serotonin transporter function in mouse hippocampus: a behavioral and electrochemical study.

    PubMed

    Bertrand, Paul P; Paranavitane, Udeni T; Chavez, Carolina; Gogos, Andrea; Jones, Margaret; van den Buuse, Maarten

    2005-12-01

    Defects in serotonergic transmission, including serotonin transporter (SERT) function, have been implicated in depression, anxiety disorders and some aspects of schizophrenia. The sex steroid hormone estrogen is known to modulate functional SERT activity, but whether it is up- or down-regulated is unclear. The aim of the present study was to examine the effect of a low estrogen state in mice on the behavioral effect of drugs acting through the SERT, serotonin uptake kinetics and SERT density in the hippocampus. We compared control mice, ovariectomized (OVX) C57BL/6J mice and aromatase knockout (ArKO) mice that are unable to produce estrogen. Fluoxetine treatment, but not fenfluramine treatment, significantly increased prepulse inhibition (PPI), a measure of sensorimotor gating, in C57BL/6J mice. The effect of fluoxetine was greater in OVX compared to sham-operated mice. In ArKO and J129 wild-type mice, fluoxetine increased PPI to the same extent while fenfluramine increased PPI more in ArKO mice compared to controls. Measurement of the time-course for diffusion and reuptake of exogenous serotonin in the CA3 region of the hippocampus showed that, in OVX mice, the fluoxetine-induced slowing of signal decay after application of serotonin was enhanced when compared to sham-operated controls. Similarly, in ArKO mice, the effect of fluoxetine was enhanced, suggesting that SERT function was greater than in J129 wild-type controls. Measurement of SERT density by [3H]-citalopram autoradiography, revealed an 18% decrease in hippocampus of OVX mice compared to intact controls. SERT density was also significantly reduced in nucleus accumbens (26%) but not in other regions, such as the raphe nuclei. Together, these results suggest that a low estrogen state increases SERT activity in the hippocampus despite an apparent reduction in SERT density. The behavioral consequences of these changes depend on the model of estrogen state used. PMID:16298349

  3. Fatty acids, membrane viscosity, serotonin and ischemic heart disease

    PubMed Central

    2010-01-01

    Novel markers for ischemic heart disease are under investigation by the scientific community at international level. This work focuses on a specific platelet membrane fatty acid condition of viscosity which is linked to molecular aspects such as serotonin and G proteins, factors involved in vascular biology. A suggestive hypothesis is considered about the possibility to use platelet membrane viscosity, in relation to serotonin or, indirectly, the fatty acid profile, as indicator of ischemic risk. PMID:20825633

  4. Serotonin transporter deficiency in rats contributes to impaired object memory.

    PubMed

    Olivier, J D A; Jans, L A W; Blokland, A; Broers, N J; Homberg, J R; Ellenbroek, B A; Cools, A R

    2009-11-01

    Serotonin is well known for its role in affection, but less known for its role in cognition. The serotonin transporter (SERT) has an essential role in serotonergic neurotransmission as it determines the magnitude and duration of the serotonin signal in the synaptic cleft. There is evidence to suggest that homozygous SERT knockout rats (SERT(-/-)), as well as humans with the short SERT allele, show stronger cognitive effects than wild-type control rats (SERT(+/+)) and humans with the long SERT allele after acute tryptophan depletion. In rats, SERT genotype is known to affect brain serotonin levels, with SERT(-/-) rats having lower intracellular basal serotonin levels than wild-type rats in several brain areas. In the present study, it was investigated whether SERT genotype affects memory performance in an object recognition task with different inter-trial intervals. SERT(-/-), heterozygous SERT knockout (SERT(+/-)) and SERT(+/+) rats were tested in an object recognition test applying an inter-trial interval of 2, 4 and 8 h. SERT(-/-) and SERT(+/-) rats showed impaired object memory with an 8 h inter-trial interval, whereas SERT(+/+) rats showed intact object memory with this inter-trial interval. Although brain serotonin levels cannot fully explain the SERT genotype effect on object memory in rats, these results do indicate that serotonin is an important player in object memory in rats, and that lower intracellular serotonin levels lead to enhanced memory loss. Given its resemblance with the human SERT-linked polymorphic region and propensity to develop depression-like symptoms, our findings may contribute to further understanding of mechanisms underlying cognitive deficits in depression. PMID:19740092

  5. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, Mark M.; Faraj, Bahjat

    1999-01-01

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  6. Serotonin and pituitary-adrenal function. [in rat under stress

    NASA Technical Reports Server (NTRS)

    Berger, P. A.; Barchas, J. D.; Vernikos-Danellis, J.

    1974-01-01

    An investigation is conducted to evaluate the response of the pituitary-adrenal system to a stress stimulus in the rat. In the investigation brain serotonin synthesis was inhibited with p-chlorophenylalanine. In other tests the concentration of serotonin was enhanced with precursors such as tryptophan or 5-hydroxytryptophan. On the basis of the results obtained in the study it is speculated that in some disease states there is a defect in serotonergic neuronal processes which impairs pituitary-adrenal feedback mechanisms.

  7. Determination of serotonin released from coffee wax by liquid chromatography.

    PubMed

    Kele, M; Ohmacht, R

    1996-04-12

    A simple hydrolysis and extraction method was developed for the release of serotonin (5-hydroxytryptamine) from a coffee wax sample obtained from decaffeination of coffee beans. The recoverable amount of serotonin was determined by reversed-phase high-performance liquid chromatography with gradient elution and UV detection, using the standard addition method. Different type of basic deactivated chromatographic columns were used for the separation. PMID:8680597

  8. Serotonin augments smooth muscle differentiation of bone marrow stromal cells.

    PubMed

    Hirota, Nobuaki; McCuaig, Sarah; O'Sullivan, Michael J; Martin, James G

    2014-05-01

    Bone marrow stromal cells (BMSCs) contain a subset of multipotent stem cells. Here, we demonstrate that serotonin, a biogenic amine released by platelets and mast cells, can induce the smooth muscle differentiation of BMSCs. Brown Norway rat BMSCs stimulated with serotonin had increased expression of the smooth muscle markers smooth muscle myosin heavy chain (MHC) and α actin (α-SMA) by qPCR and Western blot, indicating smooth muscle differentiation. This was accompanied by a concomitant down-regulation of the microRNA miR-25-5p, which was found to negatively regulate smooth muscle differentiation. Serotonin upregulated serum response factor (SRF) and myocardin, transcription factors known to induce contractile protein expression in smooth muscle cells, while it down-regulated Elk1 and Kruppel-like factor 4 (KLF4), known to induce proliferation. Serotonin increased SRF binding to promoter regions of the MHC and α-SMA genes, assessed by chromatin immunoprecipitation assay. Induction of smooth muscle differentiation by serotonin was blocked by the knock-down of SRF and myocardin. Transforming growth factor (TGF)-β1 was constitutively expressed by BMSCs and serotonin triggered its release. Inhibition of miR-25-5p augmented TGF-β1 expression, however the differentiation of BMSCs was not mediated by TGF-β1. These findings demonstrate that serotonin promotes a smooth muscle-like phenotype in BMSCs by altering the balance of SRF, myocardin, Elk1 and KLF4 and miR-25-5p is involved in modulating this balance. Therefore, serotonin potentially contributes to the pathogenesis of diseases characterized by tissue remodeling with increased smooth muscle mass. PMID:24595007

  9. Tryptophan availability modulates serotonin release from rat hypothalamic slices

    NASA Technical Reports Server (NTRS)

    Schaechter, Judith D.; Wurtman, Richard J.

    1989-01-01

    The relationship between the tryptophan availability and serononin release from rat hypothalamus was investigated using a new in vitro technique for estimating rates at which endogenous serotonin is released spontaneously or upon electrical depolarization from hypothalamic slices superfused with a solution containing various amounts of tryptophan. It was found that the spontaneous, as well as electrically induced, release of serotonin from the brain slices exhibited a dose-dependent relationship with the tryptophan concentration of the superfusion medium.

  10. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, M.M.; Faraj, B.

    1999-07-06

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  11. Serotonin Modulates Olfactory Processing in the Antennal Lobe of Drosophila

    PubMed Central

    Dacks, Andrew M.; Green, David S.; Root, Cory M.; Nighorn, Alan J.; Wang, Jing W.

    2010-01-01

    Sensory systems must be able to extract features of environmental cues within the context of the different physiological states of the organism and often temper their activity in a state-dependent manner via the process of neuromodulation. We examined the effects of the neuromodulator serotonin on a well-characterized sensory circuit, the antennal lobe of Drosophila melanogaster, using two-photon microscopy and the genetically expressed calcium indicator, G-CaMP. Serotonin enhances sensitivity of the antennal lobe output projection neurons in an odor-specific manner. For odorants that sparsely activate the antennal lobe, serotonin enhances projection neuron responses and causes an offset of the projection neuron tuning curve, most likely by increasing projection neuron sensitivity. However, for an odorant that evokes a broad activation pattern, serotonin enhances projection neuron responses in some, but not all, glomeruli. Further, serotonin enhances the responses of inhibitory local interneurons, resulting in a reduction of neurotransmitter release from the olfactory sensory neurons via GABAB receptor-dependent presynaptic inhibition, which may be a mechanism underlying the odorant-specific modulation of projection neuron responses. Our data suggest that the complexity of serotonin modulation in the antennal lobe accommodates coding stability in a glomerular pattern and flexible projection neuron sensitivity under different physiological conditions. PMID:19863268

  12. Classification of dopamine, serotonin, and dual antagonists by decision trees.

    PubMed

    Kim, Hye-Jung; Choo, Hyunah; Cho, Yong Seo; Koh, Hun Yeong; No, Kyoung Tai; Pae, Ae Nim

    2006-04-15

    Dopamine antagonists (DA), serotonin antagonists (SA), and serotonin-dopamine dual antagonists (Dual) are being used as antipsychotics. A lot of dopamine and serotonin antagonists reveal non-selective binding affinity against these two receptors because the antagonists share structurally common features originated from conserved residues of binding site of the aminergic receptor family. Therefore, classification of dopamine and serotonin antagonists into their own receptors can be useful in the designing of selective antagonist for individual therapy of antipsychotic disorders. Data set containing 1135 dopamine antagonists (D2, D3, and D4), 1251 serotonin antagonists (5-HT1A, 5-HT2A, and 5-HT2C), and 386 serotonin-dopamine dual antagonists was collected from the MDDR database. Cerius2 descriptors were employed to develop a classification model for the 2772 compounds with antipsychotic activity. LDA (linear discriminant analysis), SIMCA (soft independent modeling of class analogy), RP (recursive partitioning), and ANN (artificial neural network) algorithms successfully classified the active class of each compound at the average 73.6% and predicted at the average 69.8%. The decision trees from RP, the best model, were generated to identify and interpret those descriptors that discriminate the active classes more easily. These classification models could be used as a virtual screening tool to predict the active class of new candidates. PMID:16387502

  13. Expression of serotonin receptor genes in cranial ganglia.

    PubMed

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  14. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells.

    PubMed

    Barbour, B; Szatkowski, M; Ingledew, N; Attwell, D

    Activation of NMDA (N-methyl-D-aspartate) receptors by neurotransmitter glutamate stimulates phospholipase A2 to release arachidonic acid. This second messenger facilitates long-term potentiation of glutamatergic synapses in the hippocampus, possibly by blocking glutamate uptake. We have studied the effect of arachidonic acid on glutamate uptake into glial cells using the whole-cell patch-clamp technique to monitor the uptake electrically. Micromolar levels of arachidonic acid inhibit glutamate uptake, mainly by reducing the maximum uptake rate with only small effects on the affinity for external glutamate and sodium. On removal of arachidonic acid a rapid (5 minutes) phase of partial recovery is followed by a maintained suppression of uptake lasting at least 20 minutes. Surprisingly, the action of arachidonic acid is unaffected by cyclo-oxygenase or lipoxygenase inhibitors suggesting that it inhibits uptake directly, possibly by increasing membrane fluidity. As blockade of phospholipase A2 prevents the induction of long-term potentiation (LTP), inhibition of glutamate uptake by arachidonic acid may contribute to the increase of synaptic gain that occurs in LTP. During anoxia, release of arachidonic acid could severely compromise glutamate uptake and thus contribute to neuronal death. PMID:2512508

  15. Uptake As Language Awareness.

    ERIC Educational Resources Information Center

    Ellis, Rod

    1995-01-01

    Investigates the sincerity and validity of uptake as a measure of language learning by comparing the words students report they have learned after completing a listening task with the words they score correctly on a translation test. Results indicate that whereas uptake may have construct validity, its concurrent validity is uncertain. (16…

  16. Conductance of a proximitized nanowire in the Coulomb blockade regime

    NASA Astrophysics Data System (ADS)

    van Heck, B.; Lutchyn, R. M.; Glazman, L. I.

    2016-06-01

    We identify the leading processes of electron transport across finite-length segments of proximitized nanowires and build a quantitative theory of their two-terminal conductance. In the presence of spin-orbit interaction, a nanowire can be tuned across the topological transition point by an applied magnetic field. Due to a finite segment length, electron transport is controlled by the Coulomb blockade. Upon increasing of the field, the shape and magnitude of the Coulomb blockade peaks in the linear conductance are defined, respectively, by Andreev reflection, single-electron tunneling, and resonant tunneling through the Majorana modes emerging after the topological transition. Our theory provides the framework for the analysis of experiments with proximitized nanowires [such as reported in S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162] and identifies the signatures of the topological transition in the two-terminal conductance.

  17. Immunotherapeutic implications of IL-6 blockade for cytokine storm.

    PubMed

    Tanaka, Toshio; Narazaki, Masashi; Kishimoto, Tadamitsu

    2016-07-01

    IL-6 contributes to host defense against infections and tissue injuries. However, exaggerated, excessive synthesis of IL-6 while fighting environmental stress leads to an acute severe systemic inflammatory response known as 'cytokine storm', since high levels of IL-6 can activate the coagulation pathway and vascular endothelial cells but inhibit myocardial function. Remarkable beneficial effects of IL-6 blockade therapy using a humanized anti-IL-6 receptor antibody, tocilizumab were recently observed in patients with cytokine release syndrome complicated by T-cell engaged therapy. In this review we propose the possibility that IL-6 blockade may constitute a novel therapeutic strategy for other types of cytokine storm, such as the systemic inflammatory response syndrome including sepsis, macrophage activation syndrome and hemophagocytic lymphohistiocytosis. PMID:27381687

  18. Conductance through a proximitized nanowire in the Coulomb blockade regime

    NASA Astrophysics Data System (ADS)

    van Heck, Bernard; Lutchyn, Roman; Glazman, Leonid

    Motivated by recent experiments of the Copenhagen group on InAs nanowires with epitaxial Al, we investigate the two-terminal conductance of a strongly proximitized nanowire in the Coulomb blockade regime. We identify the leading electron transport processes at zero applied magnetic field B as well as at finite fields, suppressing the induced gap Δind (B) . In the conventional superconducting phase, the conductance is controlled by the sequential Cooper pair tunneling if Δind (B) exceeds the charging energy Ec, and by the elastic single-electron processes if Δind (B) blockade peaks, which explains the experimental finding in Ref.. We also develop a quantitative theory for the differential conductance and examine its evolution across the topological transition point.

  19. Effect of beta blockade and beta stimulation on stage fright.

    PubMed

    Brantigan, C O; Brantigan, T A; Joseph, N

    1982-01-01

    Stage fright, physiologically the "fight or flight" reaction, is a disabling condition to the professional musician. Because it is mediated by the sympathetic nervous system, we have investigated the effects of beta blockade on musical performance with propranolol in a double blind fashion and the effects of beta stimulation using terbutaline. Stage fright symptoms were evaluated in two trials, which included a total of 29 subjects, by questionnaire and by the State Trai Anxiety Inventory. Quality of musical performance was evaluated by experienced music critics. Beta blockade eliminates the physical impediments to performance caused by stage fright and even eliminates the dry mouth so frequently encountered. The quality of musical performance as judged by experienced music critics is significantly improved. This effect is achieved without tranquilization. Beta stimulating drugs increase stage fright problems, and should be used in performing musicians only after consideration of the detrimental effects which they may have on musical performance. PMID:6120650

  20. Gastric pentadecapeptide BPC 157 effective against serotonin syndrome in rats.

    PubMed

    Boban Blagaic, Alenka; Blagaic, Vladimir; Mirt, Mirela; Jelovac, Nikola; Dodig, Goran; Rucman, Rudolf; Petek, Marijan; Turkovic, Branko; Anic, Tomislav; Dubovecak, Miroslav; Staresinic, Mario; Seiwerth, Sven; Sikiric, Predrag

    2005-04-11

    Serotonin syndrome commonly follows irreversible monoamine oxidase (MAO)-inhibition and subsequent serotonin (5-HT) substrate (in rats with fore paw treading, hind limbs abduction, wet dog shake, hypothermia followed by hyperthermia). A stable gastric pentadecapeptide BPC 157 with very safe profile (inflammatory bowel disease clinical phase II, PL-10, PLD-116, PL-14736, Pliva) reduced the duration of immobility to a greater extent than imipramine, and, given peripherally, has region specific influence on brain 5-HT synthesis (alpha-[14C]methyl-L-tryptophan autoradiographic measurements) in rats, different from any other serotonergic drug. Thereby, we investigate this peptide (10 microg, 10 ng, 10 pg/kg i.p.) in (i) full serotonin syndrome in rat combining pargyline (irreversible MAO-inhibition; 75 mg/kg i.p.) and subsequent L-tryptophan (5-HT precursor; 100 mg/kg i.p.; BPC 157 as a co-treatment), or (ii, iii) using pargyline or L-tryptophan given separately, as a serotonin-substrate with (ii) pargyline (BPC 157 as a 15-min posttreatment) or as a potential serotonin syndrome inductor with (iii) L-tryptophan (BPC 157 as a 15 min-pretreatment). In all experiments, gastric pentadecapeptide BPC 157 contrasts with serotonin-syndrome either (i) presentation (i.e., particularly counteracted) or (ii) initiation (i.e., neither a serotonin substrate (counteraction of pargyline), nor an inductor for serotonin syndrome (no influence on L-tryptophan challenge)). Indicatively, severe serotonin syndrome in pargyline + L-tryptophan rats is considerably inhibited even by lower pentadecapeptide BPC 157 doses regimens (particularly disturbances such as hyperthermia and wet dog shake thought to be related to stimulation of 5-HT2A receptors), while the highest pentadecapeptide dose counteracts mild disturbances present in pargyline rats (mild hypothermia, feeble hind limbs abduction). Thereby, in severe serotonin syndrome, gastric pentadecapeptide BPC 157 (alone, no behavioral or

  1. Touch Perception Altered by Chronic Pain and by Opioid Blockade.

    PubMed

    Case, Laura K; Čeko, Marta; Gracely, John L; Richards, Emily A; Olausson, Håkan; Bushnell, M Catherine

    2016-01-01

    Touch plays a significant role in human social behavior and social communication, and its rewarding nature has been suggested to involve opioids. Opioid blockade in monkeys leads to increased solicitation and receipt of grooming, suggesting heightened enjoyment of touch. We sought to study the role of endogenous opioids in perception of affective touch in healthy adults and in patients with fibromyalgia, a chronic pain condition shown to involve reduced opioid receptor availability. The pleasantness of touch has been linked to the activation of C-tactile fibers, which respond maximally to slow gentle touch and correlate with ratings of pleasantness. We administered naloxone to patients and healthy controls to directly observe the consequences of µ-opioid blockade on the perceived pleasantness and intensity of touch. We found that at baseline chronic pain patients showed a blunted distinction between slow and fast brushing for both intensity and pleasantness, suggesting reduced C-tactile touch processing. In addition, we found a differential effect of opioid blockade on touch perception in healthy subjects and pain patients. In healthy individuals, opioid blockade showed a trend toward increased ratings of touch pleasantness, while in chronic pain patients it significantly decreased ratings of touch intensity. Further, in healthy individuals, naloxone-induced increase in touch pleasantness was associated with naloxone-induced decreased preference for slow touch, suggesting a possible effect of opioid levels on processing of C-tactile fiber input. These findings suggest a role for endogenous opioids in touch processing, and provide further evidence for altered opioid functioning in chronic pain patients. PMID:27022625

  2. Deterministic entanglement of two neutral atoms via Rydberg blockade

    SciTech Connect

    Zhang, X. L.; Isenhower, L.; Gill, A. T.; Walker, T. G.; Saffman, M.

    2010-09-15

    We demonstrate the deterministic entanglement of two individually addressed neutral atoms using a Rydberg blockade mediated controlled-not gate. Parity oscillation measurements reveal a Bell state fidelity of F=0.58{+-}0.04, which is above the entanglement threshold of F=0.5, without any correction for atom loss, and F=0.71{+-}0.05 after correcting for background collisional losses. The fidelity results are shown to be in good agreement with a detailed error model.

  3. Shape-sensitive Pauli blockade in a bent carbon nanotube

    NASA Astrophysics Data System (ADS)

    Széchenyi, Gábor; Pályi, András

    2015-01-01

    Motivated by a recent experiment [F. Pei et al., Nat. Nanotechnol. 7, 630 (2012), 10.1038/nnano.2012.160], we theoretically study the Pauli blockade transport effect in a double quantum dot embedded in a bent carbon nanotube. We establish a model for the Pauli blockade, taking into account the strong g -factor anisotropy that is linked to the local orientation of the nanotube axis in each quantum dot. We provide a set of conditions under which our model is approximately mapped to the spin-blockade model of Jouravlev and Nazarov [O. N. Jouravlev and Y. V. Nazarov, Phys. Rev. Lett. 96, 176804 (2006), 10.1103/PhysRevLett.96.176804]. The results we obtain for the magnetic anisotropy of the leakage current, together with their qualitative geometrical explanation, provide a possible interpretation of previously unexplained experimental results. Furthermore, we find that in a certain parameter range, the leakage current becomes highly sensitive to the shape of the tube, and this sensitivity increases with increasing g -factor anisotropy. This mutual dependence of the electron transport and the tube shape allows for mechanical control of the leakage current, and for characterization of the tube shape via measuring the leakage current.

  4. Sequential RAAS blockade: is it worth the risk?

    PubMed

    Persson, Frederik; Rossing, Peter

    2014-03-01

    Soon after the emergence of the renin-angiotensin-aldosterone system (RAAS) blocking treatment as the cornerstone of renoprotective treatment in the prevention and treatment of diabetic and nondiabetic CKD, it was investigated if a higher degree of achievable RAAS blockade by combining more than one compound is feasible and advantageous. Regardless of the benefits from using monotherapy for diabetic kidney disease, there is still much improvement to wish for in terms of kidney prognosis in these populations. A great deal of research has gone into evaluating combinations of the RAAS blocking treatments in different populations and with different drugs and doses. Studies have mostly been short-term and use surrogate endpoints such as albuminuria. Side effects have been well known and expected in terms of increasing potassium levels and hypotension, but to an acceptable extent. With recent disappointing results from major hard endpoint trials using dual RAAS blockade the concept is now under scrutiny. In this review we will discuss the pros and cons of dual RAAS blockade, with facts and findings from smaller studies, endpoint trials, and meta-analyses. PMID:24602465

  5. Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages

    NASA Astrophysics Data System (ADS)

    Grabert, Hermann

    2015-12-01

    The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.

  6. Beta-adrenergic blockade and atrio--ventricular conduction impairment.

    PubMed

    Giudicelli, J F; Lhoste, F; Boissier, J R

    1975-04-01

    Atrio--ventricular conduction and its modifications induced by six Beta-adrenergic blocking agents have been investigated in the dog. Premature atrial stimuli (St2) were applied at variable intervals following regular stimuli (St1) ensuring atrial pacing; atrial (AERP), nodoventricular (NERP) and global (GERP) effective refractory periods as well as global functional refractory period (GFRP) were determined before and after administration of each of the six drugs. When Beta-blockade was produced with d,1-propranolol which hwas membrane stabilizing effects (MSE) but no intrinsic sympathomimetic activity (ISA) or with sotalol, which has neither MSE nor ISA, all parameters were significantly increased. When Beta-blockade was achieved with pindolol or practolol, which have only a poor Beta-adrenolytic potency and no ISA. Alprenolol showed intermediate effects. Thus, it appears that Beta-blockade and not MSE, is responsible for the onset of A-V conduction impairment but that ISA, probably through a metabolic mechanism, affords protection against this impairment. On the other hand, measurement of ventricular effective refractory period (VERP) has shown that at the Purkinje-free junction, it is MSE which is mainly involved in conduction impairment. PMID:238853

  7. [Effect of cimetidine on neuromuscular blockade by succinylcholine and pancuronium].

    PubMed

    Sato, Y; Tsuchida, H; Harada, Y; Namiki, A

    1990-02-01

    The effect of cimetidine on neuromuscular blockade by succinylcholine and pancuronium was investigated in 54 adult patients scheduled for elective surgery. The neuromuscular blocking properties were estimated with single twitch height (T1) which was obtained by measuring the acceleration of adduction of the thumb in response to the ulnar nerve stimulation under N2O-fentanyl anesthesia. In cimetidine group, cimetidine 200 mg was administered orally on the night before surgery and 90 mins before anesthesia. Succinylcholine 1 mg.kg-1 (n = 14) or 1.5 mg.kg-1 (n = 20) was injected intravenously, and the onset time (from injection to 0% T1), the duration of maximal block (0% T1), and the recovery time from injection to 50% and 75% of control twitch height were evaluated. ED25 and ED50 of pancuronium were calculated from the dose response curve obtained by incremental administration of the drug (n = 20) whose total cumulative dose was 0.1 mg.kg-1. The recovery index of pancuronium was determined by measuring the 25%-75% recovery time. There was no significant difference between cimetidine pretreated patients and non-pretreated patients regarding these parameters of neuromuscular blockade with both succinylcholine and pancuronium. In conclusion, cimetidine has no influence on neuromuscular blockade of succinylcholine and pancuronium under N2O-fentanyl anesthesia. PMID:2325250

  8. Serum Immunoglobulin A Cross-Strain Blockade of Human Noroviruses

    PubMed Central

    Lindesmith, Lisa C.; Beltramello, Martina; Swanstrom, Jesica; Jones, Taylor A.; Corti, Davide; Lanzavecchia, Antonio; Baric, Ralph S.

    2015-01-01

    Background. Human noroviruses are the leading cause of acute viral gastroenteritis, justifying vaccine development despite a limited understanding of strain immunity. After genogroup I (GI).1 norovirus infection and immunization, blockade antibody titers to multiple virus-like particles (VLPs) increase, suggesting that GI cross-protection may occur. Methods. Immunoglobulin (Ig)A was purified from sera collected from GI.1-infected participants, and potential neutralization activity was measured using a surrogate neutralization assay based on antibody blockade of ligand binding. Human and mouse monoclonal antibodies (mAbs) were produced to multiple GI VLPs to characterize GI epitopes. Results. Immunoglobulin A purified from day 14 post-GI.1 challenge sera blocked binding of GI.1, GI.3, and GI.4 to carbohydrate ligands. In some subjects, purified IgA preferentially blocked binding of other GI VLPs compared with GI.1, supporting observations that the immune response to GI.1 infection may be influenced by pre-exposure history. For other subjects, IgA equivalently blocked multiple GI VLPs. Only strain-specific mAbs recognized blockade epitopes, whereas strain cross-reactive mAbs recognized nonblockade epitopes. Conclusions. These studies are the first to describe a functional role for serum IgA in norovirus immunity and the first to characterize human monoclonal antibodies to GI strains, expanding our understanding of norovirus immunobiology. PMID:26180833

  9. Intrathecal rimantadine induces motor, proprioceptive, and nociceptive blockades in rats.

    PubMed

    Tzeng, Jann-Inn; Wang, Jieh-Neng; Wang, Jhi-Joung; Chen, Yu-Wen; Hung, Ching-Hsia

    2016-04-01

    The purpose of the experiment was to evaluate the local anesthetic effect of rimantadine in spinal anesthesia. Rimantadine in a dose-dependent fashion was constructed after intrathecally injecting the rats with four different doses. The potency and duration of rimantadine were compared with that of the local anesthetic lidocaine at producing spinal motor, nociceptive, and proprioceptive blockades. We demonstrated that intrathecal rimantadine dose-dependently produced spinal motor, nociceptive, and proprioceptive blockades. On the 50% effective dose (ED50) basis, the ranks of potencies at inducing spinal motor, nociceptive, and proprioceptive blockades was lidocaine>rimantadine (P<0.01). Rimantadine exhibited more nociceptive block (ED50) than motor block (P<0.05). At equi-anesthetic doses (ED25, ED50, and ED75), the spinal block duration produced by rimantadine was longer than that produced by lidocaine (P<0.01). Furthermore, rimantadine (26.52μmol/kg) prolonged the nociceptive nerve block more than the motor block (P<0.001). Our preclinical data showed that rimantadine, with a more sensory-selective action over motor block, was less potent than lidocaine. Rimantadine produced longer duration in spinal anesthesia when compared with lidocaine. PMID:26949181

  10. Serotonin signaling mediates protein valuation and aging

    PubMed Central

    Ro, Jennifer; Pak, Gloria; Malec, Paige A; Lyu, Yang; Allison, David B; Kennedy, Robert T; Pletcher, Scott D

    2016-01-01

    Research into how protein restriction improves organismal health and lengthens lifespan has largely focused on cell-autonomous processes. In certain instances, however, nutrient effects on lifespan are independent of consumption, leading us to test the hypothesis that central, cell non-autonomous processes are important protein restriction regulators. We characterized a transient feeding preference for dietary protein after modest starvation in the fruit fly, Drosophila melanogaster, and identified tryptophan hydroxylase (Trh), serotonin receptor 2a (5HT2a), and the solute carrier 7-family amino acid transporter, JhI-21, as required for this preference through their role in establishing protein value. Disruption of any one of these genes increased lifespan up to 90% independent of food intake suggesting the perceived value of dietary protein is a critical determinant of its effect on lifespan. Evolutionarily conserved neuromodulatory systems that define neural states of nutrient demand and reward are therefore sufficient to control aging and physiology independent of food consumption. DOI: http://dx.doi.org/10.7554/eLife.16843.001 PMID:27572262

  11. Pulmonary serotonin and histamine in experimental asbestosis

    SciTech Connect

    Keith, I.M.; Day, R.; Lemaire, S.

    1986-03-01

    Adult male Wistar rats were treated once with tracheal instillation of 5 mg Crysotile B asbestos fibers in 0.5 ml saline under ketamine/xylaxine anesthesia. Control rats (n = 37) received 0.5 ml saline. Test and control rats were killed at 7 and 14 d., and 1, 3 and 6 mo. post instillation. Serotonin (5-HT) was quantitated in lung tissue homogenate from all rats using HPLC and electrochemical detection. Among rats killed at 1, 3 and 6 mo., lung tissue histamine-o-phthaldialdehyde complex was quantitated using reverse phase HPLC coupled to a fluorometric detector. Furthermore, 5-HT was quantitated in the cytoplasm of grouped (NEB) and individual (NEC) neuroendocrine cells and in mast cells using formaldehyde-vapor-induced fluorescence and microspectrofluorometry, and mast cell numbers were determined. Test rats had higher pulmonary 5-HT and histamine levels than controls at 1, 3 and 6 mo. Test rats also had higher cellular 5-HT compared to controls in NEB's at 1 mo., but not in NECs, and tended to have higher 5-HT-levels in mast cells at 6 mo. Mast cell numbers were higher among tests at 1 and 3 mo. The authors results suggest that NEBs may contribute to the early asbestos induced rise in 5-HT, and that the major source of 5-HT and histamine is from the increased numbers of mast cells.

  12. Serotonin signaling mediates protein valuation and aging.

    PubMed

    Ro, Jennifer; Pak, Gloria; Malec, Paige A; Lyu, Yang; Allison, David B; Kennedy, Robert T; Pletcher, Scott D

    2016-01-01

    Research into how protein restriction improves organismal health and lengthens lifespan has largely focused on cell-autonomous processes. In certain instances, however, nutrient effects on lifespan are independent of consumption, leading us to test the hypothesis that central, cell non-autonomous processes are important protein restriction regulators. We characterized a transient feeding preference for dietary protein after modest starvation in the fruit fly, Drosophila melanogaster, and identified tryptophan hydroxylase (Trh), serotonin receptor 2a (5HT2a), and the solute carrier 7-family amino acid transporter, JhI-21, as required for this preference through their role in establishing protein value. Disruption of any one of these genes increased lifespan up to 90% independent of food intake suggesting the perceived value of dietary protein is a critical determinant of its effect on lifespan. Evolutionarily conserved neuromodulatory systems that define neural states of nutrient demand and reward are therefore sufficient to control aging and physiology independent of food consumption. PMID:27572262

  13. Selective serotonin-reuptake inhibitors: an update.

    PubMed

    Masand, P S; Gupta, S

    1999-01-01

    Selective serotonin-reuptake inhibitors (SSRIs), including fluoxetine, sertraline, paroxetine, fluvoxamine, and citalopram, represent an important advance in the pharmacotherapy of mood and other disorders. They are chemically unrelated to tricyclic, heterocyclic, and other first-generation antidepressants. SSRIs are the treatment of choice for many indications, including major depression, dysthymia, panic disorder, obsessive-compulsive disorder, eating disorders, and premenstrual dysphoric disorder, because of their efficacy, good side-effect profile, tolerability, and safety in overdose, as well as patient compliance. A review of the literature was conducted using Medline and the terms "SSRIs," "fluoxetine," "sertraline," "paroxetine," "fluvoxamine," and "citalopram." Articles were limited to those published in English within the last 15 years. The search revealed that indications for antidepressants include unipolar depression, dysthymia, bipolar depression, treatment-resistant depression, depression in the medically ill, panic disorder, obsessive-compulsive disorder, eating disorders, social phobia, and premenstrual dysphoric disorder. One SSRI, fluoxetine, has demonstrated safety in pregnancy. Side effects of SSRIs include gastrointestinal disturbances, headache, sedation, insomnia, activation, weight gain, impaired memory, excessive perspiration, paresthesia, and sexual dysfunction. PMID:10471245

  14. Fluoxetine-induced alterations in human platelet serotonin transporter expression: serotonin transporter polymorphism effects

    PubMed Central

    Little, Karley Y.; Zhang, Lian; Cook, Edwin

    2006-01-01

    Objective Long-term antidepressant drug exposure may regulate its target molecule — the serotonin transporter (SERT). This effect could be related to an individual's genotype for an SERT promoter polymorphism (human serotonin transporter coding [5-HTTLPR]). We aimed to determine the effects of fluoxetine exposure on human platelet SERT levels. Method We harvested platelet samples from 21 healthy control subjects. The platelets were maintained alive ex vivo for 24 hours while being treated with 0.1 μM fluoxetine or vehicle. The effects on SERT immunoreactivity (IR) were then compared. Each individual's SERT promoter genotype was also determined to evaluate whether fluoxetine effects on SERT were related to genotype. Results Fluoxetine exposure replicably altered SERT IR within individuals. Both the magnitude and the direction of effect were related to a person's SERT genotype. People who were homozygous for the short gene (SS) displayed decreased SERT IR, whereas those who were homozygous for the long gene (LL) demonstrated increased SERT IR. A mechanistic experiment suggested that some individuals with the LL genotype might experience increased conversion of complexed SERT to primary SERT during treatment. Conclusions These preliminary results suggest that antidepressant effects after longer-term use may include changes in SERT expression levels and that the type and degree of effect may be related to the 5-HTTLPR polymorphism. PMID:16951736

  15. Radioactive iodine uptake

    MedlinePlus

    ... uptake may be due to: Factitious hyperthyroidism Iodine overload Subacute thyroiditis Silent (or painless) thyroiditis Amiodarone Risks ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  16. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin

    PubMed Central

    Kusek, Magdalena; Sowa, Joanna; Kamińska, Katarzyna; Gołembiowska, Krystyna; Tokarski, Krzysztof; Hess, Grzegorz

    2015-01-01

    The 5-HT7 receptor is one of the several serotonin (5-HT) receptor subtypes that are expressed in the dorsal raphe nucleus (DRN). Some earlier findings suggested that 5-HT7 receptors in the DRN were localized on GABAergic interneurons modulating the activity of 5-HT projection neurons. The aim of the present study was to find out how the 5-HT7 receptor modulates the GABAergic synaptic input to putative 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5-HT in the target structure. Male Wistar rats with microdialysis probes implanted in the prefrontal cortex (PFC) received injections of the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB 269970), which induced an increase in the levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the PFC. In another set of experiments whole-cell recordings from presumed projection neurons were carried out using DRN slices. SB 269970 application resulted in depolarization and in an increase in the firing frequency of the cells. In order to activate 5-HT7 receptors, 5-carboxamidotryptamine (5-CT) was applied in the presence of N-[2-[4-(2-methoxyphenyl)-1piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635). Hyperpolarization of cells and a decrease in the firing frequency were observed after activation of the 5-HT7 receptor. Blockade of 5-HT7 receptors caused a decrease in the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs), while its activation induced an increase. The mechanism of these effects appears to involve tonically-active 5-HT7 receptors modulating firing and/or GABA release from inhibitory interneurons which regulate the activity of DRN serotonergic projection neurons. PMID:26347612

  17. Pharmacometabolomics Reveals That Serotonin Is Implicated in Aspirin Response Variability

    PubMed Central

    Ellero-Simatos, S; Lewis, J P; Georgiades, A; Yerges-Armstrong, L M; Beitelshees, A L; Horenstein, R B; Dane, A; Harms, A C; Ramaker, R; Vreeken, R J; Perry, C G; Zhu, H; Sànchez, C L; Kuhn, C; Ortel, T L; Shuldiner, A R; Hankemeier, T; Kaddurah-Daouk, R

    2014-01-01

    While aspirin is generally effective for prevention of cardiovascular disease, considerable variation in drug response exists, resulting in some individuals displaying high on-treatment platelet reactivity. We used pharmacometabolomics to define pathways implicated in variation of response to treatment. We profiled serum samples from healthy subjects pre- and postaspirin (14 days, 81 mg/day) using mass spectrometry. We established a strong signature of aspirin exposure independent of response (15/34 metabolites changed). In our discovery (N = 80) and replication (N = 125) cohorts, higher serotonin levels pre- and postaspirin correlated with high, postaspirin, collagen-induced platelet aggregation. In a third cohort, platelets from subjects with the highest levels of serotonin preaspirin retained higher reactivity after incubation with aspirin than platelets from subjects with the lowest serotonin levels preaspirin (72 ± 8 vs. 61 ± 11%, P = 0.02, N = 20). Finally, ex vivo, serotonin strongly increased platelet reactivity after platelet incubation with aspirin (+20%, P = 4.9 × 10−4, N = 12). These results suggest that serotonin is implicated in aspirin response variability. PMID:25029353

  18. Structure and function of serotonin G protein-coupled receptors.

    PubMed

    McCorvy, John D; Roth, Bryan L

    2015-06-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein-coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  19. Pharmacometabolomics reveals that serotonin is implicated in aspirin response variability.

    PubMed

    Ellero-Simatos, S; Lewis, J P; Georgiades, A; Yerges-Armstrong, L M; Beitelshees, A L; Horenstein, R B; Dane, A; Harms, A C; Ramaker, R; Vreeken, R J; Perry, C G; Zhu, H; Sànchez, C L; Kuhn, C; Ortel, T L; Shuldiner, A R; Hankemeier, T; Kaddurah-Daouk, R

    2014-01-01

    While aspirin is generally effective for prevention of cardiovascular disease, considerable variation in drug response exists, resulting in some individuals displaying high on-treatment platelet reactivity. We used pharmacometabolomics to define pathways implicated in variation of response to treatment. We profiled serum samples from healthy subjects pre- and postaspirin (14 days, 81 mg/day) using mass spectrometry. We established a strong signature of aspirin exposure independent of response (15/34 metabolites changed). In our discovery (N = 80) and replication (N = 125) cohorts, higher serotonin levels pre- and postaspirin correlated with high, postaspirin, collagen-induced platelet aggregation. In a third cohort, platelets from subjects with the highest levels of serotonin preaspirin retained higher reactivity after incubation with aspirin than platelets from subjects with the lowest serotonin levels preaspirin (72 ± 8 vs. 61 ± 11%, P = 0.02, N = 20). Finally, ex vivo, serotonin strongly increased platelet reactivity after platelet incubation with aspirin (+20%, P = 4.9 × 10(-4), N = 12). These results suggest that serotonin is implicated in aspirin response variability. PMID:25029353

  20. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  1. Genetic linkage study of bipolar disorder and the serotonin transporter

    SciTech Connect

    Kelsoe, J.R.; Morison, M.; Mroczkowski-Parker, Z.; Bergesch, P.; Rapaport, M.H.; Mirow, A.L.

    1996-04-09

    The serotonin transporter (HTT) is an important candidate gene for the genetic transmission of bipolar disorder. It is the site of action of many antidepressants, and plays a key role in the regulation of serotonin neurotransmission. Many studies of affectively ill patients have found abnormalities in serotonin metabolism, and dysregulation of the transporter itself. The human serotonin transporter has been recently cloned and mapped to chromosome 17. We have identified a PstI RFLP at the HTT locus, and here report our examination of this polymorphism for possible linkage to bipolar disorder. Eighteen families were examined from three populations: the Old Order Amish, Iceland, and the general North American population. In addition to HTT, three other microsatellite markers were examined, which span an interval known to contain HTT. Linkage analyses were conducted under both dominant and recessive models, as well as both narrow (bipolar only) and broad (bipolar + recurrent unipolar) diagnostic models. Linkage could be excluded to HTT under all models examined. Linkage to the interval spanned by the microsatellites was similarly excluded under the dominant models. In two individual families, maximum lod scores of 1.02 and 0.84 were obtained at D17S798 and HTT, respectively. However, these data overall do not support the presence of a susceptibility locus for bipolar disorder near the serotonin transporter. 20 refs., 2 tabs.

  2. [Case of prolonged recovery from serotonin syndrome caused by paroxetine].

    PubMed

    Ochiai, Yusuke; Katsu, Hisatoshi; Okino, Shinji; Wakutsu, Noriyuki; Nakayama, Kazuhiko

    2003-01-01

    We report a case of serotonin syndrome in a patient being treated with paroxetine for depression. Despite prompt discontinuation of medication, his serotonin syndrome continued for 10 days before full consciousness was restored. The patient was a 48-year-old male with chief complaints of hypobulia and suicidal thoughts. He consulted as a psychiatric outpatient, and oral paroxetine 20 mg/day, etizolam 1.0 mg/day, and brotizolam 0.25 mg/day were immediately started. Upsurge of feeling and disinhibition state were noted the following day, then on treatment day 6 his condition deteriorated to substupor state and he was admitted for further treatment. On admission, change of mental condition (consciousness disturbance), perspiration, hyperreflexia, myoclonus and tremor were seen, and serotonin syndrome caused by paroxetine was suspected. Paroxetine was thus discontinued, and under intravenous drip his condition gradually improved. However, it was not until the 10th hospital day that he became fully alert. In examinations, no infectious, metabolic or organic diseases were detected. The patient's condition often improves with in 24 hours of discontinuation of the causative medication in serotonin syndrome. Symptoms continued for 10 days in this patient, however, perhaps because paroxetine was administered for 6 days before discontinuation. In addition, interaction with other medications may have occurred. Therefore, when serotonin syndrome is suspected, prompt discontinuation of the suspected causative medication, followed by close monitoring of the pharmacokinetics is warranted. PMID:15027311

  3. A Theoretical Study of the Conformational Landscape of Serotonin

    SciTech Connect

    Mourik, Van Tonja; Emson, Laura E.

    2002-10-25

    The conformational landscape of neutral serotonin has been investigated by several theoretical methods. The potential energy surface was scanned by systematically varying the three dihedral angles that determine the conformation of the alkyl side chain. In addition, the two possible conformations of the phenol hydroxyl group (anti and syn with respect to the indole NH) were considered. The OH-anti stationary points located with SCF/6-31G* have been re-optimized with B3LYP/6-31+G*, which resulted in twelve true minima. Eleven of these have a corresponding OH-syn conformer that is 1-4 kJ/mol higher in energy. IR vibrational spectra of all twenty-three serotonin conformers, computed at the B3LYP/6-31+G* level f theory, are presented. The initial scan of the serotonin potential energy surface has been repeated with several computationally cheaper methods, to assess their reliability for locating the correct serotonin conformers. It is found that the semi-empirical methods AM1 and PM3 do no t yield sufficiently accurate results, due to their inability to account for subtle intramolecular interactions within the serotonin molecule. On the other hand, SCF in combination with the 3-21G* basis set is ascertained to be a good alternative to SCF/6-31G* for performing the initial scan of the potential energy surface of flexible molecules.

  4. The serotonin 5-HT7 receptors: two decades of research.

    PubMed

    Gellynck, Evelien; Heyninck, Karen; Andressen, Kjetil W; Haegeman, Guy; Levy, Finn Olav; Vanhoenacker, Peter; Van Craenenbroeck, Kathleen

    2013-10-01

    Like most neurotransmitters, serotonin possesses a simple structure. However, the pharmacological consequences are more complex and diverse. Serotonin is involved in numerous functions in the human body including the control of appetite, sleep, memory and learning, temperature regulation, mood, behavior, cardiovascular function, muscle contraction, endocrine regulation, and depression. Low levels of serotonin may be associated with several disorders, namely increase in aggressive and angry behaviors, clinical depression, Parkinson's disease, obsessive-compulsive disorder, eating disorders, migraine, irritable bowel syndrome, tinnitus, and bipolar disease. These effects are mediated via different serotonin (5-HT) receptors. In this review, we will focus on the last discovered member of this serotonin receptor family, the 5-HT7 receptor. This receptor belongs to the G protein-coupled receptor superfamily and was cloned two decades ago. Later, different splice variants were described but no major functional differences have been described so far. All 5-HT7 receptor variants are coupled to Gαs proteins and stimulate cAMP formation. Recently, several interacting proteins have been reported, which can influence receptor signaling and trafficking. PMID:24042216

  5. Serotonin modulation of cerebral glucose metabolism: sex and age effects.

    PubMed

    Munro, Cynthia A; Workman, Clifford I; Kramer, Elisse; Hermann, Carol; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; Smith, Gwenn S

    2012-11-01

    The serotonin system is implicated in a variety of psychiatric disorders whose clinical presentation and response to treatment differ between males and females, as well as with aging. However, human neurobiological studies are limited. Sex differences in the cerebral metabolic response to an increase in serotonin concentrations were measured, as well as the effect of aging, in men compared to women. Thirty-three normal healthy individuals (14 men/19 women, age range 20-79 years) underwent two resting positron emission tomography studies with the radiotracer [18F]-2-deoxy-2-fluoro-D-glucose ([(18)F]-FDG) after placebo and selective serotonin reuptake inhibitor (SSRI, citalopram) infusions on two separate days. Results indicated that women demonstrated widespread areas of increased cortical glucose metabolism with fewer areas of decrease in metabolism in response to citalopram. Men, in contrast, demonstrated several regions of decreased cortical metabolism, but no regions of increased metabolism. Age was associated with greater increases in women and greater decreases in men in most brain regions. These results support prior studies indicating that serotonin function differs in men and women across the lifespan. Future studies aimed at characterizing the influences of age and sex on the serotonin system in patients with psychiatric disorders are needed to elucidate the relationship between sex and age differences in brain chemistry and associated differences in symptom presentation and treatment response. PMID:22836227

  6. A case study of delayed serotonin syndrome: lessons learned.

    PubMed

    Pearce, Shannon; Ahned, Nasiva; Varas, Grace M

    2009-01-01

    Serotonin syndrome is a potentially life-threatening condition that results from excessive serotonin agonism of the central and peripheral nervous system. Though serotonin syndrome is most often associated with ingestion of more than one serotonergic drug, many other mechanisms have been associated with serotonergic excess. This case study presents a 79-year-old African-American female, an assisted living resident, who presented to the emergency department with altered mental status, acute onset of "chills," reduced appetite, urinary incontinence, and an elevated temperature of 103 degrees F (39.4 degrees C). Extensive initial diagnostic findings were negative for urinary tract infection, systemic infection, pneumonia, myocardial infarction, and stroke. Despite aggressive medical management, including intravenous hydration and broad-spectrum antibiotics, the patient continued to become more confused, agitated, and despondent over the subsequent 24 hours. The initial working diagnosis did not include serotonin syndrome, but once other studies did not reveal an etiology of the symptoms and the patient continued to be delirious, paroxetine was discontinued and all symptoms resolved within 48 hours of last dose. Voluntary reporting, postmarketing surveillance, and implementation of well-designed randomized clinical trials are all mechanisms to gather data on serotonin syndrome. These practices will provide future researchers with needed information to solidify diagnostic criteria, educate health care professionals, and safeguard the public against this preventable and potentially lethal drug-drug interaction. PMID:19275460

  7. Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators

    SciTech Connect

    Liu Yuxi; Miranowicz, Adam; Gao, Y. B.; Bajer, Jiri; Sun, C. P.; Nori, Franco

    2010-09-15

    The observation of quantized nanomechanical oscillations by detecting femtometer-scale displacements is a significant challenge for experimentalists. We propose that a phonon blockade can serve as a signature of quantum behavior in nanomechanical resonators. In analogy to the photon blockade and Coulomb blockade for electrons, the main idea for phonon blockade is that the second phonon cannot be excited when there is one phonon in the nonlinear oscillator. To realize phonon blockade, a superconducting quantum two-level system is coupled to the nanomechanical resonator and is used to induce the phonon self-interaction. Using Monte Carlo simulations, the dynamics of the induced nonlinear oscillator is studied via the Cahill-Glauber s-parametrized quasiprobability distributions. We show how the oscillation of the resonator can occur in the quantum regime and demonstrate how the phonon blockade can be observed with the currently accessible experimental parameters.

  8. Usefulness of galvanic skin reflex monitor in CT-guided thoracic sympathetic blockade for palmar hyperhidrosis.

    PubMed

    Uchino, Hiroyuki; Sasaki, Seiichi; Miura, Hitoshi; Hirabayashi, Go; Nishiyama, Takahisa; Ohta, Takashi; Ishii, Nagao; Ito, Tatsushi

    2007-01-01

    Computed tomography (CT)-guided thoracic sympathetic blockade with ethanol was performed while monitoring sympathetic nerve activity, with an alternating current (AC) galvanic skin reflex (GSR) monitor, in a patient with palmar hyperhidrosis in whom endoscopic thoracic sympathectomy was impossible because of pleural adhesion. Sweating was suppressed after the thoracic sympathetic blockade, and the monitor showed a significant increase in skin resistance. The effect of sympathetic blockade could be evaluated directly and in real time using a GSR monitor. PMID:17680195

  9. Aortic Valve Cyclic Stretch Causes Increased Remodeling Activity and Enhanced Serotonin Receptor Responsiveness

    PubMed Central

    Balachandran, Kartik; Bakay, Marina A.; Connolly, Jeanne M.; Zhang, Xuemei; Yoganathan, Ajit P.; Levy, Robert J.

    2011-01-01

    Background Increased serotonin(5HT) receptor(5HTR) signaling has been associated with cardiac valvulopathy. Prior cell culture studies of 5HTR signaling in heart valve interstitial cells have provided mechanistic insights concerning only static conditions. We investigated the hypothesis that aortic valve biomechanics participate in the regulation of both 5HTR expression and inter-related extracellular matrix remodeling events. Methods The effects of cyclic-stretch on aortic valve 5HTR, expression, signaling and extracellular matrix remodeling were investigated using a tensile stretch bioreactor in studies which also compared the effects of adding 5HT and/or the 5HT-transporter inhibitor, Fluoxetine. Results Cyclic-stretch alone increased both proliferation and collagen in porcine aortic valve cusp samples. However, with cyclic-stretch, unlike static conditions, 5HT plus Fluoxetine caused the greatest increase in proliferation (p<0.0001), and also caused significant increases in collagen(p<0.0001) and glycosaminoglycans (p<0.0001). DNA microarray data demonstrated upregulation of 5HTR2A and 5HTR2B (>4.5 fold) for cyclic-stretch versus static (p<0.001), while expression of the 5HT transporter was not changed significantly. Extracellular matrix genes (eg. Collagen Types I,II,III, and proteoglycans) were also upregulated by cyclic-stretch. Conclusions Porcine aortic valve cusp samples subjected to cyclic stretch upregulate 5HTR2A and 2B, and also initiate remodeling activity characterized by increased proliferation and collagen production. Importantly, enhanced 5HTR responsiveness, due to increased 5HTR2A and 2B expression, results in a significantly greater response in remodeling endpoints (proliferation, collagen and GAG production) to 5HT in the presence of 5HT transporter blockade. PMID:21718840

  10. Lack of evidence for reduced prefrontal cortical serotonin and dopamine efflux after acute tryptophan depletion

    PubMed Central

    Meerkerk, Dorie (T). J.; Lieben, Cindy K. J.; Blokland, Arjan; Feenstra, Matthijs G. P.

    2007-01-01

    Rationale Acute tryptophan depletion (ATD) is a widely used method to study the role of serotonin (5-HT) in affect and cognition. ATD results in a strong but transient decrease in plasma tryptophan and central 5-HT synthesis and availability. Although its use is widespread, the evidence that the numerous functional effects of ATD are caused by actual changes in 5-HT neuronal release is not very strong. Thus far, decreases in 5-HT efflux (thought to reflect synaptic release) were only reported after chronic tryptophan depletion or when ATD was combined with blockade of 5-HT reuptake. Objective With the current experiment, we aimed to study the validity of the method of ATD by measuring the extent to which it reduces the efflux of 5-HT (and dopamine) in the prefrontal cortex in the absence of reuptake blockage. Materials and methods We simultaneously measured in freely moving animals plasma tryptophan via a catheter in the jugular vein and 5-HT and DA efflux in the medial prefrontal cortex through microdialysis after ATD treatment. Results ATD reduced plasma tryptophan to less than 30% of control, without affecting 5-HT or DA efflux in the prefrontal cortex, indicating that even strong reductions of plasma tryptophan do not necessarily result in decreases in central 5-HT efflux. Conclusion The present experiment showed that reductions in plasma tryptophan, similar to values associated with behavioural effects, do not necessarily reduce 5-HT efflux and suggest that the cognitive and behavioural effects of ATD may not be (exclusively) due to alterations in 5-HT release. PMID:17713760

  11. Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice

    PubMed Central

    Cao, Xuehong; Xu, Pingwen; Oyola, Mario G.; Xia, Yan; Yan, Xiaofeng; Saito, Kenji; Zou, Fang; Wang, Chunmei; Yang, Yongjie; Hinton, Antentor; Yan, Chunling; Ding, Hongfang; Zhu, Liangru; Yu, Likai; Yang, Bin; Feng, Yuxin; Clegg, Deborah J.; Khan, Sohaib; DiMarchi, Richard; Mani, Shaila K.; Tong, Qingchun; Xu, Yong

    2014-01-01

    Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice specifically lacking estrogen receptor-α (ERα) in serotonin (5-HT) neurons in the dorsal raphe nuclei (DRN). Administration of a recently developed glucagon-like peptide-1–estrogen (GLP-1–estrogen) conjugate designed to deliver estrogen to GLP1 receptor–enhanced regions effectively targeted bioactive estrogens to the DRN and substantially suppressed binge-like eating in ovariectomized female mice. Administration of GLP-1 alone reduced binge-like eating, but not to the same extent as the GLP-1–estrogen conjugate. Administration of ERα-selective agonist propylpyrazole triol (PPT) to murine DRN 5-HT neurons activated these neurons in an ERα-dependent manner. PPT also inhibited a small conductance Ca2+-activated K+ (SK) current; blockade of the SK current prevented PPT-induced activation of DRN 5-HT neurons. Furthermore, local inhibition of the SK current in the DRN markedly suppressed binge-like eating in female mice. Together, our data indicate that estrogens act upon ERα to inhibit the SK current in DRN 5-HT neurons, thereby activating these neurons to suppress binge-like eating behavior and suggest ERα and/or SK current in DRN 5-HT neurons as potential targets for anti-binge therapies. PMID:25157819

  12. The role of serotonin receptor subtypes in treating depression: a review of animal studies

    PubMed Central

    Carr, Gregory V.

    2012-01-01

    Rationale Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs. Objective Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed. Results Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT1A, 5-HT1B, 5-HT2C, 5-HT4, and 5-HT6 receptors. Also, antagonists at 5-HT2A, 5-HT2C, 5-HT3, 5- HT6, and 5-HT7 receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination. Conclusions The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs. PMID:21107537

  13. Neuronal serotonin in the regulation of maternal behavior in rodents

    PubMed Central

    Angoa-Pérez, Mariana; Kuhn, Donald M.

    2016-01-01

    Maternal behavior is probably the most important pro-social behavior in female mammals, ensuring both the development and survival of her offspring. Signals driving maternal behaviors are complex and involve several brain areas, most of which are innervated by serotonin. Serotonin transmission influences maternal processes indirectly through release of maternally-relevant hormones such as prolactin, oxytocin and vasopressin, but it can also have more direct effects on survival and the growth rate of offspring, as well as on maternal care, aggression and pup killing. This article aims to examine the basics of the components of maternal behaviors in rodents and the neural systems underpinning these maternal responses with special emphasis on the role of neural serotonin in the regulation of these behaviors. PMID:27148594

  14. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter

    PubMed Central

    Davis, Bruce A.; Nagarajan, Anu; Forrest, Lucy R.; Singh, Satinder K.

    2016-01-01

    The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site and orientation of paroxetine in SERT remain controversial. To provide molecular insight, we constructed SERT homology models based on the Drosophila melanogaster dopamine transporter and docked paroxetine to these models. We tested the predicted binding configurations with a combination of radioligand binding and flux assays on wild-type and mutant SERTs. Our data suggest that the orientation of paroxetine, specifically its fluorophenyl ring, in SERT’s substrate binding site directly depends on this pocket’s charge distribution, and thereby provide an avenue toward understanding and enhancing high-affinity antidepressant activity. PMID:27032980

  15. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    NASA Astrophysics Data System (ADS)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  16. Soy and social stress affect serotonin neurotransmission in primates.

    PubMed

    Shively, C A; Mirkes, S J; Lu, N Z; Henderson, J A; Bethea, C L

    2003-01-01

    Stress and sex steroidal milieu can each influence mood in women. The purpose of this study was to compare the effect of long-term conjugated equine estrogen (CEE), soy phytoestrogen (SPE), and social subordination stress on dorsal raphe serotonin neurotransmission of ovariectomized cynomolgus monkeys. Tryptophan hydroxylase (TPH) and serotonin reuptake transporter (SERT) protein content were determined, and the in vitro degradation of macaque SERT protein was examined in the presence and absence of protease inhibitors, serotonin (5-HT), and citalopram. Like CEE, SPE increased TPH protein levels. Social subordinates had markedly lower TPH protein levels than dominants regardless of hormone replacement. Therefore, these two variables had independent and additive effects. CEE and SPE increased SERT, and social status had no effect. Thus, the hormone-induced increase in SERT was accompanied by increased 5-HT synthesis and neuronal firing, which appears biologically reasonable as 5-HT prevented SERT degradation in vitro. PMID:12746737

  17. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter.

    PubMed

    Davis, Bruce A; Nagarajan, Anu; Forrest, Lucy R; Singh, Satinder K

    2016-01-01

    The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site and orientation of paroxetine in SERT remain controversial. To provide molecular insight, we constructed SERT homology models based on the Drosophila melanogaster dopamine transporter and docked paroxetine to these models. We tested the predicted binding configurations with a combination of radioligand binding and flux assays on wild-type and mutant SERTs. Our data suggest that the orientation of paroxetine, specifically its fluorophenyl ring, in SERT's substrate binding site directly depends on this pocket's charge distribution, and thereby provide an avenue toward understanding and enhancing high-affinity antidepressant activity. PMID:27032980

  18. [Serotonin dysfunctions in the background of the seven deadly sins].

    PubMed

    Janka, Zoltán

    2003-11-20

    The symbolic characters of the Seven Deadly Sins can be traced from time to time in the cultural history of human mankind, being directly specified in certain artistic products. Such are, among others, the painting entitled "The Seven Deadly Sins and the Four Lost Things" by Hieronymus Bosch and the poems Divina Commedia and The Foerie Queene by Dante Alighieri and Edmund Spenser, respectively. However, there are several paragraphs referring to these behaviours of the Seven Deadly Sins in the Bible and in the dramas of William Shakespeare. The objective of the present review is to propose that dysfunctions in the central serotonergic system might be involved in the neurobiology of these 'sinful' behaviour patterns. Evidences indicate that behaviour traits such as Accidia (Sloth), Luxuria (Lust, Lechery), Superbia (Pride), Ira (Wrath, Anger), Invidia (Envy), Avaritia (Greed, Avarice), and Gula (Gluttony) can relate to the functional alterations of serotonin in the brain. Results of biochemical and molecular genetic (polymorphism) studies on the human serotonergic system (receptor, transporter, enzyme), findings of functional imaging techniques, effects of depletion (or supplementation) of the serotonin precursor tryptophan, data of challenge probe investigations directed to testing central serotonergic functions, alterations in the peripheral serotonin measures (platelet), and the changes in the CSF 5-hydroxy-indoleacetic acid content indicate such serotonergic involvement. Furthermore, results of animal experiments on behaviour change (aggressive, dominant or submissive, appetite, alcohol preference) attributed to serotonin status modification and the clinically evidenced therapeutic efficacy of pharmacological interventions, based on the modulation and perturbation of the serotonergic system (e.g. selective serotonin reuptake inhibitors), in treating the 'sinful' behaviour forms and analogous pathological states reaching the severity of psychiatric disorders

  19. Association of Serotonin Concentration to Behavior and IQ in Autistic Children.

    ERIC Educational Resources Information Center

    Kuperman, Samuel; And Others

    1987-01-01

    The IQ and behavior patterns on the Autism Behavior Checklist (ABC) of 25 boys were compared to blood concentrations of platelet rich plasma (PRP) serotonin. Although no correlations were found between serotonin levels and IQ or ABC scales, four individual ABC items did correlate with serotonin concentrations. (Author/DB)

  20. Coaction of Stress and Serotonin Transporter Genotype in Predicting Aggression at the Transition to Adulthood

    ERIC Educational Resources Information Center

    Conway, Christopher C.; Keenan-Miller, Danielle; Hammen, Constance; Lind, Penelope A.; Najman, Jake M.; Brennan, Patricia A.

    2012-01-01

    Despite consistent evidence that serotonin functioning affects stress reactivity and vulnerability to aggression, research on serotonin gene-stress interactions (G x E) in the development of aggression remains limited. The present study investigated variation in the promoter region of the serotonin transporter gene (5-HTTLPR) as a moderator of the…

  1. THE RELATIONSHIP BETWEEN WHOLE BLOOD SEROTONIN AND REPETITIVE BEHAVIORS IN AUTISM

    PubMed Central

    Kolevzon, Alexander; Newcorn, Jeffrey H.; Kryzak, Lauren; Chaplin, William; Watner, Dryden; Hollander, Eric; Smith, Christopher J.; Cook, Edwin H.; Silverman, Jeremy M.

    2009-01-01

    This study was conducted to examine the relationship between whole blood serotonin level and behavioral symptoms in 78 subjects with autism. No significant associations were found between serotonin level and the primary behavioral outcome measures. However, a significant inverse relationship between serotonin level and self-injury was demonstrated. PMID:20044143

  2. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  3. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  4. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  5. Serotonin Reuptake Inhibitors and Risk of Abnormal Bleeding.

    PubMed

    Andrade, Chittaranjan; Sharma, Eesha

    2016-09-01

    Serotonin reuptake inhibitors (SRIs) increase the risk of abnormal bleeding by lowering platelet serotonin and hence the efficiency of platelet-driven hemostasis; by increasing gastric acidity and possibly gastric ulceration; and by other mechanisms. The upper gastrointestinal tract is the commonest site of SRI-related abnormal bleeding; bleeding at this location may be increased by concurrent nonsteroidal anti-inflammatory drug therapy and by treatment with antiplatelet or anticoagulant drugs. Bleeding at this location may be reduced by concurrent administration of acid-suppressing drugs. PMID:27514297

  6. Serotonin syndrome in patients with peripheral neuropathy: a diagnostic challenge.

    PubMed

    Prakash, Sanjay; Gosai, Falgun; Brahmbhatt, Jit; Shah, Chintan

    2014-01-01

    According to the Hunter Serotonin Toxicity Criteria, the presence of either clonus or hyperreflexia is a must for making a diagnosis of serotonin syndrome (SS). We report five patients with SS who had areflexia because of associated polyneuropathy. None of the patients fulfilled the Hunter criteria for SS. However, all five patients had features suggestive of neuromuscular hyperactivity, autonomic hyperactivity and altered mental status and fulfilled the Sternbach criteria for SS. All patients responded to cyproheptadine within 5 days to 2 weeks duration. These cases highlight the limitations of the Hunter criteria for SS in patients with associated polyneuropathy. PMID:24768426

  7. Serotonin dysregulation in Fragile X Syndrome: implications for treatment

    PubMed Central

    Hanson, Alicia C; Hagerman, Randi J

    2014-01-01

    Summary Fragile X Syndrome (FXS) is a trinucleotide repeat disorder that results in the silencing of the Fragile X Mental Retardation 1 gene (FMR1), leading to a lack of the FMR1 protein (FMRP). FMRP is an mRNA-binding protein that regulates the translation of hundreds of mRNAs important for synaptic plasticity. Several of these pathways have been identified and have guided the development of targeted treatments for FXS. Here we present evidence that serotonin is dysregulated in FXS and treatment with the selective serotonin reuptake inhibitor (SSRI) sertraline may be beneficial for individuals with FXS, particularly in early childhood. PMID:25606361

  8. Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation.

    PubMed

    Heisler, Lora K; Pronchuk, Nina; Nonogaki, Katsunori; Zhou, Ligang; Raber, Jacob; Tung, Loraine; Yeo, Giles S H; O'Rahilly, Stephen; Colmers, William F; Elmquist, Joel K; Tecott, Laurence H

    2007-06-27

    The dynamic interplay between serotonin [5-hydroxytryptamine (5-HT)] neurotransmission and the hypothalamic-pituitary-adrenal (HPA) axis has been extensively studied over the past 30 years, but the underlying mechanism of this interaction has not been defined. A possibility receiving little attention is that 5-HT regulates upstream corticotropin-releasing hormone (CRH) signaling systems via activation of serotonin 2C receptors (5-HT(2C)Rs) in the paraventricular nucleus of the hypothalamus (PVH). Through complementary approaches in wild-type rodents and 5-HT(2C)R-deficient mice, we determined that 5-HT(2C)Rs are necessary for 5-HT-induced HPA axis activation. We used laser-capture PVH microdissection followed by microarray analysis to compare the expression of 13 5-HTRs. Only 5-HT(2C)R and 5-HT(1D)R transcripts were consistently identified as present in the PVH, and of these, the 5-HT(2C)R was expressed at a substantially higher level. The abundant expression of 5-HT(2C)Rs in the PVH was confirmed with in situ hybridization histochemistry. Dual-neurohistochemical labeling revealed that approximately one-half of PVH CRH-containing neurons coexpressed 5-HT(2C)R mRNA. We observed that PVH CRH neurons consistently depolarized in the presence of a high-affinity 5-HT(2C)R agonist, an effect blocked by a 5-HT(2C)R antagonist. Supporting the importance of 5-HT(2C)Rs in CRH neuronal activity, genetic inactivation of 5-HT(2C)Rs produced a downregulation of CRH mRNA and blunted CRH and corticosterone release after 5-HT compound administration. These findings thus provide a mechanistic explanation for the longstanding observation of HPA axis stimulation in response to 5-HT and thereby give insight into the neural circuitry mediating the complex neuroendocrine responses to stress. PMID:17596444

  9. GP IIb/IIIa Blockade During Peripheral Artery Interventions

    SciTech Connect

    Tepe, Gunnar Wiskirchen, Jakub; Pereira, Philippe; Claussen, Claus D.; Miller, Stephen; Duda, Stephan H.

    2008-01-15

    The activation of the platelet GP IIb/IIIa receptor is the final and common pathway in platelet aggregation. By blocking this receptor, platelet aggregation can be inhibited independently of the stimulus prompted the targeting of this receptor. Several years ago, three drugs have been approved for coronary artery indications. Since that time, there is increasing evidence that GP IIb/IIIa receptor blockade might have also an important role in peripheral arterial intervention. This article summarizes the action and differences of GP Ilb/IIIa receptor inhibitors and its possible indication in peripheral arteries.

  10. Filtering single atoms from Rydberg-blockaded mesoscopic ensembles

    NASA Astrophysics Data System (ADS)

    Petrosyan, David; Rao, D. D. Bhaktavatsala; Mølmer, Klaus

    2015-04-01

    We propose an efficient method to filter out single atoms from trapped ensembles with unknown numbers of atoms. The method employs stimulated adiabatic passage to reversibly transfer a single atom to the Rydberg state which blocks subsequent Rydberg excitation of all the other atoms within the ensemble. This triggers the excitation of Rydberg-blockaded atoms to short-lived intermediate states and their subsequent decay to untrapped states. Using an auxiliary microwave field to carefully engineer the dissipation, we obtain a nearly deterministic single-atom source. Our method is applicable to small atomic ensembles in individual microtraps and in lattice arrays.

  11. 5-HT1B receptor modulation of the serotonin transporter in vivo: studies using KO mice.

    PubMed

    Montañez, Sylvia; Munn, Jaclyn L; Owens, W Anthony; Horton, Rebecca E; Daws, Lynette C

    2014-07-01

    The serotonin transporter (SERT) controls the strength and duration of serotonergic neurotransmission by the high-affinity uptake of serotonin (5-HT) from extracellular fluid. SERT is a key target for many psychotherapeutic and abused drugs, therefore understanding how SERT activity and expression are regulated is of fundamental importance. A growing literature suggests that SERT activity is under regulatory control of the 5-HT1B autoreceptor. The present studies made use of mice with a constitutive reduction (5-HT1B+/-) or knockout of 5-HT1B receptors (5-HT1B-/-), as well as mice with a constitutive knockout of SERT (SERT-/-) to further explore the relationship between SERT activity and 5-HT1B receptor expression. High-speed chronoamperometry was used to measure clearance of 5-HT from CA3 region of hippocampus in vivo. Serotonin clearance rate, over a range of 5-HT concentrations, did not differ among 5-HT1B receptor genotypes, nor did [(3)H]cyanoimipramine binding to SERT in this brain region, suggesting that SERT activity is not affected by constitutive reduction or loss of 5-HT1B receptors; alternatively, it might be that other transport mechanisms for 5-HT compensate for loss of 5-HT1B receptors. Consistent with previous reports, we found that the 5-HT1B receptor antagonist, cyanopindolol, inhibited 5-HT clearance in wild-type mice. However, this effect of cyanopindolol was lost in 5-HT1B-/- mice and diminished in 5-HT1B+/- mice, indicating that the 5-HT1B receptor is necessary for cyanopindolol to inhibit 5-HT clearance. Likewise, cyanopindolol was without effect on 5-HT clearance in SERT-/- mice, demonstrating a requirement for the presence of both SERT and 5-HT1B receptors in order for cyanopindolol to inhibit 5-HT clearance in CA3 region of hippocampus. Our findings are consistent with SERT being under the regulatory control of 5-HT1B autoreceptors. Future studies to identify signaling pathways involved may help elucidate novel therapeutic targets for the

  12. Serotonin stimulates lateral habenula via activation of the post-synaptic serotonin 2/3 receptors and transient receptor potential channels.

    PubMed

    Zuo, Wanhong; Zhang, Yong; Xie, Guiqin; Gregor, Danielle; Bekker, Alex; Ye, Jiang-Hong

    2016-02-01

    There is growing interest on the role of the lateral habenula (LHb) in depression, because it closely and bilaterally connects with the serotoninergic raphe nuclei. The LHb sends glutamate efferents to the raphe nuclei, while it receives serotoninergic afferents, and expresses a high density of serotonin (5-HT) receptors. Recent studies suggest that 5-HT receptors exist both in the presynaptic and postsynaptic sites of LHb neurons, and activation of these receptors may have different effects on the activity of LHb neurons. The current study focused on the effect of 5-HT on the postsynaptic membrane. We found that 5-HT initiated a depolarizing inward current (I((5-HTi))) and accelerated spontaneous firing in ∼80% of LHb neurons in rat brain slices. I((5-HTi)) was also induced by the 5-HT uptake blocker citalopram, indicating activity of endogenous 5-HT. I((5-HTi)) was diminished by 5-HT(2/3) receptor antagonists (ritanserin, SB-200646 or ondansetron), and activated by the selective 5-HT(2/3) agonists 1-(3-Chlorophenyl) piperazine hydrochloride or 1-(3-Chlorophenyl) biguanide hydrochloride. Furthermore, I((5-HTi)) was attenuated by 2-Aminoethyl diphenylborinate, a blocker of transient receptor potential channels, and an IP3 receptor inhibitor, indicating the involvement of transient receptor potential channels. These results demonstrate that the reciprocal connection between the LHb and the 5-HT system highlights a key role for 5-HT stimulation of LHb neurons that may be important in the pathogenesis of depression. PMID:26471419

  13. Two allelic isoforms of the serotonin transporter from Schistosoma mansoni display electrogenic transport and high selectivity for serotonin

    PubMed Central

    Fontana, Andréia C. K.; Sonders, Mark S.; Pereira-Junior, Olavo S.; Knight, Matty; Javitch, Jonathan A.; Rodrigues, Vanderlei; Amara, Susan G.; Mortensen, Ole V.

    2009-01-01

    The human blood fluke Schistosoma mansoni is the primary cause of schistosomiasis, a debilitating disease that affects 200 million individuals in over 70 countries. The biogenic amine serotonin is essential for the survival of the parasite and serotonergic proteins are potential novel drug targets for treating schistosomiasis. Here we characterize two novel serotonin transporter gene transcripts, SmSERT-A and SmSERT-B, from Schistosoma mansoni. Southern blot analysis shows that the two mRNAs are the products of different alleles of a single SmSERT gene locus. The two SmSERT forms differ in three amino acid positions near the N-terminus of the protein. Both SmSERTs are expressed in the adult form and in the sporocyst form (infected snails) of the parasite, but are absent from all other stages of the parasite’s complex life cycle. Heterologous expression of the two cDNAs in mammalian cells resulted in saturable, sodium-dependent serotonin transport activity with an apparent affinity for serotonin comparable to that of the human serotonin transporter. Although the two SmSERTs are pharmacologically indistinguishable from each other, efflux experiments reveal notably higher substrate selectivity for serotonin compared with their mammalian counterparts. Several well-established substrates for human SERT including (±)MDMA, S-(+)amphetamine, RU 24969, and m-CPP are not transported by SmSERTs, underscoring the higher selectivity of the schistosomal isoforms. Voltage clamp recordings of SmSERT substrate-elicited currents confirm the substrate selectivity observed in efflux experiments and suggest that it may be possible to exploit the electrogenic nature of SmSERT to screen for compounds that target the parasite in vivo. PMID:19549517

  14. Serotonin modulation of cortical neurons and networks

    PubMed Central

    Celada, Pau; Puig, M. Victoria; Artigas, Francesc

    2013-01-01

    The serotonergic pathways originating in the dorsal and median raphe nuclei (DR and MnR, respectively) are critically involved in cortical function. Serotonin (5-HT), acting on postsynaptic and presynaptic receptors, is involved in cognition, mood, impulse control and motor functions by (1) modulating the activity of different neuronal types, and (2) varying the release of other neurotransmitters, such as glutamate, GABA, acetylcholine and dopamine. Also, 5-HT seems to play an important role in cortical development. Of all cortical regions, the frontal lobe is the area most enriched in serotonergic axons and 5-HT receptors. 5-HT and selective receptor agonists modulate the excitability of cortical neurons and their discharge rate through the activation of several receptor subtypes, of which the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT3 subtypes play a major role. Little is known, however, on the role of other excitatory receptors moderately expressed in cortical areas, such as 5-HT2C, 5-HT4, 5-HT6, and 5-HT7. In vitro and in vivo studies suggest that 5-HT1A and 5-HT2A receptors are key players and exert opposite effects on the activity of pyramidal neurons in the medial prefrontal cortex (mPFC). The activation of 5-HT1A receptors in mPFC hyperpolarizes pyramidal neurons whereas that of 5-HT2A receptors results in neuronal depolarization, reduction of the afterhyperpolarization and increase of excitatory postsynaptic currents (EPSCs) and of discharge rate. 5-HT can also stimulate excitatory (5-HT2A and 5-HT3) and inhibitory (5-HT1A) receptors in GABA interneurons to modulate synaptic GABA inputs onto pyramidal neurons. Likewise, the pharmacological manipulation of various 5-HT receptors alters oscillatory activity in PFC, suggesting that 5-HT is also involved in the control of cortical network activity. A better understanding of the actions of 5-HT in PFC may help to develop treatments for mood and cognitive disorders associated with an abnormal function of the frontal lobe

  15. Serotonin, Amygdala and Fear: Assembling the Puzzle

    PubMed Central

    Bocchio, Marco; McHugh, Stephen B.; Bannerman, David M.; Sharp, Trevor; Capogna, Marco

    2016-01-01

    The fear circuitry orchestrates defense mechanisms in response to environmental threats. This circuitry is evolutionarily crucial for survival, but its dysregulation is thought to play a major role in the pathophysiology of psychiatric conditions in humans. The amygdala is a key player in the processing of fear. This brain area is prominently modulated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT input to the amygdala has drawn particular interest because genetic and pharmacological alterations of the 5-HT transporter (5-HTT) affect amygdala activation in response to emotional stimuli. Nonetheless, the impact of 5-HT on fear processing remains poorly understood.The aim of this review is to elucidate the physiological role of 5-HT in fear learning via its action on the neuronal circuits of the amygdala. Since 5-HT release increases in the basolateral amygdala (BLA) during both fear memory acquisition and expression, we examine whether and how 5-HT neurons encode aversive stimuli and aversive cues. Next, we describe pharmacological and genetic alterations of 5-HT neurotransmission that, in both rodents and humans, lead to altered fear learning. To explore the mechanisms through which 5-HT could modulate conditioned fear, we focus on the rodent BLA. We propose that a circuit-based approach taking into account the localization of specific 5-HT receptors on neurochemically-defined neurons in the BLA may be essential to decipher the role of 5-HT in emotional behavior. In keeping with a 5-HT control of fear learning, we review electrophysiological data suggesting that 5-HT regulates synaptic plasticity, spike synchrony and theta oscillations in the BLA via actions on different subcellular compartments of principal neurons and distinct GABAergic interneuron populations. Finally, we discuss how recently developed optogenetic tools combined with electrophysiological recordings and behavior could progress the knowledge of the mechanisms underlying 5

  16. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    SciTech Connect

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na{sup +}, Cl{sup {minus}} and K{sup +} to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na{sup +}. Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na{sup +} and Cl{sup {minus}}, the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na{sup +} binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl{sup {minus}}. Cl{sup {minus}} enhances the transporters affinity for imipramine, as well as for Na{sup +}. At concentrations in the range of its K{sub M} for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na{sup +}-independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both ({sup 3}H)imipramine binding and ({sup 3}H)serotonin transport.

  17. 5-HT2CR blockade in the amygdala conveys analgesic efficacy to SSRIs in a rat model of arthritis pain

    PubMed Central

    2013-01-01

    Background Pain, including arthritic pain, has a negative affective component and is often associated with anxiety and depression. However, selective serotonin reuptake inhibitor antidepressants (SSRIs) show limited effectiveness in pain. The amygdala plays a key role in the emotional-affective component of pain, pain modulation and affective disorders. Neuroplasticity in the basolateral and central amygdala (BLA and CeA, respectively) correlate positively with pain behaviors. Evidence suggests that serotonin receptor subtype 5-HT2CR in the amygdala contributes critically to anxiogenic behavior and anxiety disorders. In this study, we tested the hypothesis that 5-HT2CR in the amygdala accounts for the limited effectiveness of SSRIs in reducing pain behaviors and that 5-HT2CR blockade in the amygdala renders SSRIs effective. Results Nocifensive reflexes, vocalizations and anxiety-like behavior were measured in adult male Sprague–Dawley rats. Behavioral experiments were done in sham controls and in rats with arthritis induced by kaolin/carrageenan injections into one knee joint. Rats received a systemic (i.p.) administration of an SSRI (fluvoxamine, 30 mg/kg) or vehicle (sterile saline) and stereotaxic application of a selective 5-HT2CR antagonist (SB242084, 10 μM) or vehicle (ACSF) into BLA or CeA by microdialysis. Compared to shams, arthritic rats showed decreased hindlimb withdrawal thresholds (increased reflexes), increased duration of audible and ultrasonic vocalizations, and decreased open-arm choices in the elevated plus maze test suggesting anxiety-like behavior. Fluvoxamine (i.p.) or SB242084 (intra-BLA) alone had no significant effect, but their combination inhibited the pain-related increase of vocalizations and anxiety-like behavior without affecting spinal reflexes. SB242084 applied into the CeA in combination with systemic fluvoxamine had no effect on vocalizations and spinal reflexes. Conclusions The data suggest that 5-HT2CR in the amygdala

  18. Synthesis and evaluation of (S)-[(18)F]fesetron in the rat brain as a potential PET imaging agent for serotonin 5-HT3 receptors.

    PubMed

    Pithia, Neema K; Liang, Christopher; Pan, Xiang-Zuo; Pan, Min-Liang; Mukherjee, Jogeshwar

    2016-04-15

    Serotonin 5-HT3 receptors are involved in various brain functions including as an emesis target during cancer chemotherapy. We report here the development of (S)-2,3-dimethoxy-5-(3'-[(18)F]fluoropropyl)-N-(1-azabicyclo[2.2.2]oct-3-yl)benzamide ([(18)F]fesetron) as a potential PET imaging agent for serotonin 5-HT3 receptors. By radiolabeling((S)-2,3-dimethoxy-5-(3'-tosyloxypropyl)-N-(1-azabicyclo[2.2.2]oct-3-yl)benzamide) with fluorine-18, (S)-[(18)F]fesetron was obtained in 5 to 10% decay-corrected yields and with specific activities >74GBq/μmol at the end of radiosynthesis. PET imaging in rats showed low uptake of [(18)F]fesetron in the brain with retention of binding in the striatal and cerebellar regions. Using colliculi as a reference region, ratios were 3.4 for striata and 2.5 for cerebellum. Ex vivo brain PET analysis displayed binding of [(18)F]fesetron in the hippocampus, striatum and cerebellar regions. Cerebellar regions corresponded to area postrema and nucleus tract solitaris known to contain 5-HT3 receptors. Dorsal hippocampus showed the highest uptake with ratio of >17 with respect to colliculi, while area postrema and striata had ratios of >10. Thus, [(18)F]fesetron exhibited a unique binding profile to rat brain regions known to contain significant amounts of serotonin 5-HT3 receptors. However, the very low brain uptake limits its usefulness as a PET radiotracer in this animal model. PMID:26979158

  19. Biogenic monoamine uptake by rat brain synaptosomes during aging. Effects of nootropic drugs.

    PubMed

    Stancheva, S L; Alova, L G

    1994-09-01

    1. In experiments on young (3-5-month-old), adult (10-11-month-old) and old (21-22-month-old) rats, it was found that significant age-related changes occurred in the high-affinity uptake of dopamine (DA), noradrenaline (NA) and serotonin (5-HT) by cortical and striatal synaptosomes. 2. Changes in DA, NA and 5-HT uptake during aging are suggested to be neurochemical correlates of cognition and memory deficits that develops in senescence. 3. The in vitro effects of the nootropic drugs piracetam, aniracetam, meclofenoxate and adafenoxate on the DA, NA and 5-HT uptake by cortical and striatal synaptosomes from young rats were studied. Administered in increasing concentrations (1 x 10(-4) to 5 x 10(-3) M) these drugs inhibited monoamine uptake. 4. Adafenoxate proved to be a more potent monoamine uptake inhibitor than the other three drugs; it inhibited the uptake in the frontal cortex and striatum without selectivity for either monoaminergic system. It is suggested that adafenoxate affects cognition through the involvement of central neurotransmission and particularly through the inhibition of monoamine uptake systems. PMID:7835648

  20. Uptake and metabolism of indole compounds by the goldfish pineal organ

    SciTech Connect

    McNulty, J.A.

    1986-02-01

    Indole metabolism was studied in the pineal organ of the goldfish by radioautography and high-performance liquid chromatography. The rate of uptake of tritiated serotonin was rapid in vitro with dense labeling over the photoreceptor cells. Tritiated tryptophan was taken up at a slower rate and the label was distributed evenly over the epithelium. Continual light caused a reduction in the concentration of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) compared to groups exposed to constant darkness both in vivo and in explants, suggesting that these effects are not derived from photoreceptors outside the pineal organ. These data are consistent with the hypothesis that indole metabolism is functionally linked to phototransduction events in the pineal organ of lower vertebrates.

  1. Effects of cyclopiazonic acid and dexamethasone on serotonin-induced calcium responses in vascular smooth muscle cells.

    PubMed

    Selli, Cigdem; Tosun, Metiner

    2016-06-01

    We previously observed that sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA) blockade by cyclopiazonic acid (CPA) significantly potentiates serotonin (5-hydroxytryptamine (5-HT))-induced vascular contractions. Furthermore, 5-HT receptor antagonist methysergide partially inhibited CPA-potentiated 5-HT contractions. In the present study, we further investigated whether SERCA inhibition potentiates 5-HT-induced Ca(2+) responses along with attenuating the receptor antagonism by store-operated Ca(2+) (SOC) entry and protein kinase C (PKC)-mediated mechanisms. The effects of dexamethasone that was previously shown to induce SOC entry and enhance 5-HT responses were also tested. For this purpose, intracellular Ca(2+) levels were monitored in A7r5 embryonic rat vascular smooth muscle cells by spectrofluorometry using the fluorescent indicator fura-2. The results showed that CPA, although not dexamethasone, significantly potentiated 5-HT-induced Ca(2+) elevations. Ketanserin partially decreased 5-HT-induced and CPA-potentiated Ca(2+) elevations whereas both PKC inhibitor D-sphingosine and SOC entry blocker 2-aminoethoxydiphenyl borate (2-APB) abolished the remaining responses. The data suggests that diminished antagonistic effect on 5-HT-induced Ca(2+) elevations in the presence of SERCA inhibition is induced by SOC entry and PKC activation. PMID:26944908

  2. Effects of VLA-1 Blockade on Experimental Inflammation in Mice.

    PubMed

    Totsuka, Ryuichi; Kondo, Takaaki; Matsubara, Shigeki; Hirai, Midori; Kurebayashi, Yoichi

    2016-01-01

    VLA-1 (very late antigen-1) is implicated in recruitment, retention and activation of leukocytes and its blockade has been referred as a potential target of new drug discovery to address unmet medical needs in inflammatory disease area. In the present study, we investigate the effects of an anti-murine CD49a (integrin α subunit of VLA-1) monoclonal antibody (Ha31/8) on various experimental models of inflammatory diseases in mice. Pretreatment with Ha31/8 at an intraperitoneal dose of 250 µg significantly (P<0.01) reduced arthritic symptoms and joint tissue damage in mice with type II collagen-induced arthritis. In addition, Ha31/8 at an intraperitoneal dose of 100 µg significantly (P<0.01) inhibited airway inflammatory cell infiltration induced by repeated exposure to cigarette smoke. In contrast, Ha31/8 failed to inhibit oxazolone-induced chronic dermatitis and OVA-induced airway hyperresponsiveness at an intraperitoneal dose of 100 µg. These results show that VLA-1 is involved, at least partly, in the pathogenesis of type II collagen-induced arthritis and cigarette smoke-induced airway inflammatory cell infiltration in mice, indicating the therapeutic potential of VLA-1 blockade against rheumatoid arthritis and chronic occlusive pulmonary disease. PMID:27578034

  3. [Recent Development of Therapies for Melanoma Using Immune Checkpoint Blockades].

    PubMed

    Okuyama, Ryuhei

    2016-06-01

    Melanoma is a highly immune tumor, and tumor-specific T lymphocytes are occasionally induced. Recent progress in tumor immunology has made it possible to clinically develop new medicines targeting immune checkpoint molecules, such as cytotoxic T lymphocyte antigen 4(CTLA-4), programmed cell death 1(PD-1), and programmed cell death 1 ligand 1(PD-L1). CTLA-4 is expressed on naïve T cells and regulatory T cells. Ipilimumab, an anti-CTLA-4 antibody, shows a distinct durable clinical benefit by inhibiting the immunosuppressive function of CTLA-4. PD-1, which is expressed on activated T cells, inhibits T cell responses against tumor cells. The antibodies against PD-1, nivolumab and pembrolizumab, produce anti-tumor responses in melanoma and other cancers due to T cell reactivation. Furthermore, clinical trials of combination therapies using immune checkpoint blockades with molecularly targeted therapies and other chemotherapeutic agents are being conducted. However, immune checkpoint blockades frequently cause immune-related adverse events. Targeted therapies to immune checkpoint molecules are expected to be promising strategies for treatment of melanoma and other cancers. PMID:27306802

  4. PD-1 Checkpoint Blockade in Acute Myeloid Leukemia

    PubMed Central

    Sehgal, Alison; Whiteside, Theresa L.; Boyiadzis, Michael

    2015-01-01

    Introduction Immune checkpoints are regulatory pathways induced in activated T lymphocytes that regulate antigen responsiveness. These immune checkpoints are hijacked by tumors to promote dysfunction of anti-tumor effector cells and consequently of tumor escape from the host immune system. Areas covered PD1/PDL-1, a checkpoint pathway, has been extensively investigated in leukemia mouse models. Expression of PD-1 on the surface of activated immune cells and of its ligands, PD-L1 and PD-L2, on leukemic blasts has been documented. Clinical trials with PD-1 inhibitors in patients with hematological malignancies are ongoing with promising clinical responses. Expert Opinion Therapy of hematological cancers with antibodies blocking inhibitory receptors is expected to be highly clinically effective. Checkpoint inhibitory receptors and their ligands are co-expressed on hematopoietic cells found in the leukemic milieu. Several distinct immunological mechanisms are likely to be engaged by antibody-based checkpoint blockade. Co-expression of multiple inhibitory receptors on hematopoietic cells offers an opportunity for combining blocking antibodies to achieve more effective therapy. Up-regulation of receptor/ligand expression in the leukemic milieu may provide a blood marker predictive of response. Finally, chemotherapy-induced up-regulation of PD-1 on T cells after conventional leukemia therapy creates a solid rationale for application of checkpoint blockade as a follow-up therapy. PMID:26036819

  5. OX40L blockade protects against inflammation-driven fibrosis.

    PubMed

    Elhai, Muriel; Avouac, Jérôme; Hoffmann-Vold, Anna Maria; Ruzehaji, Nadira; Amiar, Olivia; Ruiz, Barbara; Brahiti, Hassina; Ponsoye, Matthieu; Fréchet, Maxime; Burgevin, Anne; Pezet, Sonia; Sadoine, Jérémy; Guilbert, Thomas; Nicco, Carole; Akiba, Hisaya; Heissmeyer, Vigo; Subramaniam, Arun; Resnick, Robert; Molberg, Øyvind; Kahan, André; Chiocchia, Gilles; Allanore, Yannick

    2016-07-01

    Treatment for fibrosis represents a critical unmet need, because fibrosis is the leading cause of death in industrialized countries, and there is no effective therapy to counteract the fibrotic process. The development of fibrosis relates to the interplay between vessel injury, immune cell activation, and fibroblast stimulation, which can occur in various tissues. Immunotherapies have provided a breakthrough in the treatment of immune diseases. The glycoprotein OX40-OX40 ligand (OX40L) axis offers the advantage of a targeted approach to costimulatory signals with limited impact on the whole immune response. Using systemic sclerosis (SSc) as a prototypic disease, we report compelling evidence that blockade of OX40L is a promising strategy for the treatment of inflammation-driven fibrosis. OX40L is overexpressed in the fibrotic skin and serum of patients with SSc, particularly in patients with diffuse cutaneous forms. Soluble OX40L was identified as a promising serum biomarker to predict the worsening of lung and skin fibrosis, highlighting the role of this pathway in fibrosis. In vivo, OX40L blockade prevents inflammation-driven skin, lung, and vessel fibrosis and induces the regression of established dermal fibrosis in different complementary mouse models. OX40L exerts potent profibrotic effects by promoting the infiltration of inflammatory cells into lesional tissues and therefore the release of proinflammatory mediators, thereafter leading to fibroblast activation. PMID:27298374

  6. Evaluation of the safety of epinephrine in digital nerve blockade

    PubMed Central

    Chapeskie, Henry; Juliao, Alexis; Payne, Sonja; Koichopolos, Jennifer

    2016-01-01

    Abstract Objective To evaluate the safety profile of lidocaine containing 1:200 000 to 1:100 000 epinephrine with concurrent tourniquet use in patients undergoing toe surgery. Design A retrospective case series analysis of toe procedures performed under digital blockade with adjuvant vasopressor from January 25, 2009, to May 31, 2014, was conducted. Exclusion criteria were limited to procedures performed without adjuvant vasopressor use. Setting A single clinic in Ontario. Participants A total of 1334 toe procedures performed in 937 patients. Main outcome measures The primary study outcome was the incidence of postoperative digital necrosis. Secondary outcomes included other postoperative complications including infection, reperfusion injury, persistent granulation, and damage to the nail matrix. Results In total, 1334 toe procedures were included in this study, of which 45 involved patients with a pre-existing diagnosis of diabetes mellitus. The overall incidence of postoperative complications was low (4.6%). No cases of digital ischemia or gangrenous necrosis were observed. Subgroup analysis of patients with and without diabetes showed no statistically significant difference in the rate of complications. Conclusion This study demonstrates the safety of adjuvant vasopressor use in digital nerve blockade of the toes within a large, diverse population. This study adds to a growing base of evidence on the safety of lidocaine with 1:200 000 to 1:100 000 epinephrine for digital anesthesia.

  7. Assessment of Methods for the Intracellular Blockade of GABAA Receptors.

    PubMed

    Atherton, Laura A; Burnell, Erica S; Mellor, Jack R

    2016-01-01

    Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4'-dinitro-stilbene-2,2'-disulphonic acid (DNDS) and 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility. PMID:27501143

  8. Philosophical Intelligence: Letters, Print, and Experiment during Napoleon's Continental Blockade.

    PubMed

    Watts, Iain P

    2015-12-01

    This essay investigates scientific exchanges between Britain and France from 1806 to 1814, at the height of the Napoleonic Wars. It argues for a picture of scientific communication that sees letters and printed texts not as separate media worlds, but as interconnected bearers of time-critical information within a single system of intelligence gathering and experimental practice. During this period, Napoleon Bonaparte's Continental System blockade severed most links between Britain and continental Europe, yet scientific communications continued--particularly on electrochemistry, a subject of fierce rivalry between Britain and France. The essay traces these exchanges using the archive of a key go-between, the English man of science Sir Charles Blagden. The first two sections look at Blagden's letter-writing operation, reconstructing how he harnessed connections with neutral American diplomats, merchants, and the State to get scientific intelligence between London and Paris. The third section, following Blagden's words from Britain to France to America, looks at how information in letters cross-fertilized with information in print. The final section considers how letters and print were used together to solve the difficult practical problem of replicating experiments across the blockade. PMID:27024935

  9. Expression of serotonin, chromogranin-A, serotonin receptor-2B, tryptophan hydroxylase-1, and serotonin reuptake transporter in the intestine of dogs with chronic enteropathy.

    PubMed

    Bailey, Candice; Ruaux, Craig; Stang, Bernadette V; Valentine, Beth A

    2016-05-01

    Serotonin regulates many intestinal motor and sensory functions. Altered serotonergic metabolism has been described in human gastrointestinal diseases. The objective of our study was to compare expression of several components of the serotonergic system [serotonin (5-HT), serotonin reuptake transporter protein (SERT), tryptophan hydroxylase-1 (TPH-1), 5-HT receptor2B (5-HT2B)] and the enterochromaffin cell marker chromogranin-A (CgA) in the intestinal mucosa between dogs with chronic enteropathy and healthy controls. Serotonin and CgA expression were determined by immunohistochemistry using banked and prospectively obtained, paraffin-embedded canine gastrointestinal biopsies (n = 11), and compared to a control group of canine small intestinal sections (n = 10). Expression of SERT, TPH-1, and 5-HT2B were determined via real-time reverse transcription (qRT)-PCR using prospectively collected endoscopic duodenal biopsies (n = 10) and compared to an additional control group of control duodenal biopsies (n = 8, control group 2) showing no evidence of intestinal inflammation. Dogs with chronic enteropathies showed strong staining for both 5-HT and CgA. Mean positive cells per high power field (HPF) were significantly increased for both compounds in dogs with chronic enteropathies (p < 0.001 for 5-HT; p < 0.05 for CgA). The number of 5-HT-positive and CgA-positive cells/HPF showed significant correlation in the entire group of dogs, including both diseased and healthy individuals (Pearson r(2) = 0.2433, p = 0.016). No significant differences were observed for SERT, TPH-1, or 5-HT2B expression; however, dogs with chronic enteropathy showed greater variability in expression of TPH-1 and 5-HT2B We conclude that components of the neuroendocrine system show altered expression in the intestinal mucosa of dogs with chronic enteropathy. These changes may contribute to nociception and clinical signs in these patients. PMID:27026108

  10. Perinatal vs Genetic Programming of Serotonin States Associated with Anxiety

    PubMed Central

    Altieri, Stefanie C; Yang, Hongyan; O'Brien, Hannah J; Redwine, Hannah M; Senturk, Damla; Hensler, Julie G; Andrews, Anne M

    2015-01-01

    Large numbers of women undergo antidepressant treatment during pregnancy; however, long-term consequences for their offspring remain largely unknown. Rodents exposed to serotonin transporter (SERT)-inhibiting antidepressants during development show changes in adult emotion-like behavior. These changes have been equated with behavioral alterations arising from genetic reductions in SERT. Both models are highly relevant to humans yet they vary in their time frames of SERT disruption. We find that anxiety-related behavior and, importantly, underlying serotonin neurotransmission diverge between the two models. In mice, constitutive loss of SERT causes life-long increases in anxiety-related behavior and hyperserotonemia. Conversely, early exposure to the antidepressant escitalopram (ESC; Lexapro) results in decreased anxiety-related behavior beginning in adolescence, which is associated with adult serotonin system hypofunction in the ventral hippocampus. Adult behavioral changes resulting from early fluoxetine (Prozac) exposure were different from those of ESC and, although somewhat similar to SERT deficiency, were not associated with changes in hippocampal serotonin transmission in late adulthood. These findings reveal dissimilarities in adult behavior and neurotransmission arising from developmental exposure to different widely prescribed antidepressants that are not recapitulated by genetic SERT insufficiency. Moreover, they support a pivotal role for serotonergic modulation of anxiety-related behavior. PMID:25523893

  11. Platelet Serotonin, A Possible Marker for Familial Autism.

    ERIC Educational Resources Information Center

    Piven, Joseph; And Others

    1991-01-01

    Platelet serotonin (5HT) levels of 5 autistic subjects (ages 16-37) who had siblings with either autism or pervasive developmental disorder were significantly higher than levels of 23 autistic subjects without affected siblings. Autistic subjects without affected siblings had 5HT levels significantly higher than 10 normal controls. Sex, age, and…

  12. Linezolid and Rasagiline - A culprit for serotonin syndrome.

    PubMed

    Hisham, Mohamed; Sivakumar, Mundalipalayam N; Nandakumar, V; Lakshmikanthcharan, S

    2016-01-01

    A 65-year-old female patient was admitted to the hospital for cellulitis. She had a history of diabetes mellitus and parkinsonism on levodopa/carbidopa, rasagiline, ropinirole, trihexyphenidyl, amantadine, metformin, and glipizide. We present here a case of rare incidence of serotonin syndrome associated with linezolid and rasagiline. PMID:26997732

  13. Linezolid and Rasagiline – A culprit for serotonin syndrome

    PubMed Central

    Hisham, Mohamed; Sivakumar, Mundalipalayam N.; Nandakumar, V.; Lakshmikanthcharan, S.

    2016-01-01

    A 65-year-old female patient was admitted to the hospital for cellulitis. She had a history of diabetes mellitus and parkinsonism on levodopa/carbidopa, rasagiline, ropinirole, trihexyphenidyl, amantadine, metformin, and glipizide. We present here a case of rare incidence of serotonin syndrome associated with linezolid and rasagiline. PMID:26997732

  14. 5-Hydroxytryptophan: a clinically-effective serotonin precursor.

    PubMed

    Birdsall, T C

    1998-08-01

    5-Hydroxytryptophan (5-HTP) is the intermediate metabolite of the essential amino acid L-tryptophan (LT) in the biosynthesis of serotonin. Intestinal absorption of 5-HTP does not require the presence of a transport molecule, and is not affected by the presence of other amino acids; therefore it may be taken with meals without reducing its effectiveness. Unlike LT, 5-HTP cannot be shunted into niacin or protein production. Therapeutic use of 5-HTP bypasses the conversion of LT into 5-HTP by the enzyme tryptophan hydroxylase, which is the rate-limiting step in the synthesis of serotonin. 5-HTP is well absorbed from an oral dose, with about 70 percent ending up in the bloodstream. It easily crosses the blood-brain barrier and effectively increases central nervous system (CNS) synthesis of serotonin. In the CNS, serotonin levels have been implicated in the regulation of sleep, depression, anxiety, aggression, appetite, temperature, sexual behaviour, and pain sensation. Therapeutic administration of 5-HTP has been shown to be effective in treating a wide variety of conditions, including depression, fibromyalgia, binge eating associated with obesity, chronic headaches, and insomnia. PMID:9727088

  15. Brief Report: Platelet-Poor Plasma Serotonin in Autism

    ERIC Educational Resources Information Center

    Anderson, George M.; Hertzig, Margaret E.; McBride, P. A.

    2012-01-01

    Possible explanations for the well-replicated platelet hyperserotonemia of autism include an alteration in the platelet's handling of serotonin (5-hydroxyserotonin, 5-HT) or an increased exposure of the platelet to 5-HT. Measurement of platelet-poor plasma (PPP) levels of 5-HT appears to provide the best available index of in vivo exposure of the…

  16. [Serotonin syndrome in a patient with small cell lung cancer].

    PubMed

    Takahashi, Chieko; Goto, Emi; Taira, Sachiko; Kataoka, Noriaki; Nishihara, Masami; Katsumata, Takahiro; Goto, Isao; Takiuchi, Hiroya

    2013-08-01

    The patient was a 67-year-old male who had been treated for several years with 150 mg fluvoxamine maleate due to depression. He visited our hospital with primary symptoms of swelling of the right upper extremity and dyspnea in August, XXXX. As a result of examinations, he was diagnosed with stage IIIB extended small cell lung cancer(T4N3M0). One course of carboplatin/etoposide(CBDCA/VP-16)therapy was started on October 1. Since the tumor size was reduced, thoracic effusion disappeared, and superior vena cava syndrome was alleviated, the therapy was changed to cisplatin/irinotecan (CDDP/CPT-11)on October 23, and the 3rd course was initiated on November 22. Anxiety and tremor appeared on the 4th day of the 3rd course and because they were exacerbated, and myoclonus appeared, a diagnosis of serotonin syndrome was made on the 38th day, and the administration of fluvoxamine maleate was discontinued. The symptoms were alleviated after the discontinuation, and the 4th course could be implemented. In this patient, serotonin syndrome was considered to have been induced by serotonin secretion promoted by the CDDP administration, and by serotonin in the brain increasing abnormally due to the SSRI. PMID:23986051

  17. Nutraceutical up-regulation of serotonin paradoxically induces compulsive behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of diet in either the etiology or treatment of complex mental disorder is highly controversial in psychiatry. However, physiological mechanisms by which diet can influence brain chemistry – particularly that of serotonin – are well established. Here we show that dietary up-regulation of br...

  18. Serotonin and Noradrenaline Reuptake Inhibitors Improve Micturition Control in Mice

    PubMed Central

    Simonetto, Marialaura; Claus, Mirko; Ballabio, Maurizio; Caretta, Antonio; Mucignat-Caretta, Carla

    2015-01-01

    Poor micturition control may cause profound distress, because proper voiding is mandatory for an active social life. Micturition results from the subtle interplay of central and peripheral components. It involves the coordination of autonomic and neuromuscular activity at the brainstem level, under the executive control of the prefrontal cortex. We tested the hypothesis that administration of molecules acting as reuptake inhibitors of serotonin, noradrenaline or both may exert a strong effect on the control of urine release, in a mouse model of overactive bladder. Mice were injected with cyclophosphamide (40 mg/kg), to increase micturition acts. Mice were then given one of four molecules: the serotonin reuptake inhibitor imipramine, its metabolite desipramine that acts on noradrenaline reuptake, the serotonin and noradrenaline reuptake inhibitor duloxetine or its active metabolite 4-hydroxy-duloxetine. Cyclophosphamide increased urine release without inducing overt toxicity or inflammation, except for increase in urothelium thickness. All the antidepressants were able to decrease the cyclophosphamide effects, as apparent from longer latency to the first micturition act, decreased number of urine spots and volume of released urine. These results suggest that serotonin and noradrenaline reuptake inhibitors exert a strong and effective modulatory effect on the control of urine release and prompt to additional studies on their central effects on brain areas involved in the social and behavioral control of micturition. PMID:25812116

  19. Tall Fescue Alkaloids Bind Serotonin Receptors in Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The serotonin (5HT) receptor 5HT2A is involved in the tall fescue alkaloid-induced vascular contraction in the bovine periphery. This was determined by evaluating the contractile responses of lateral saphenous veins biopsied from cattle grazing different tall fescue/endophyte combinations. The contr...

  20. The role of melatonin and serotonin in aging: update.

    PubMed

    Grad, B R; Rozencwaig, R

    1993-01-01

    It has been proposed that aging occurs because of a failure of the pineal gland to produce melatonin from serotonin each day beginning at sunset and throughout the night. This lack leads to a nighttime deficiency of melatonin both absolutely and also relatively to serotonin. As melatonin has wide-spread integrative and regenerative effects, its lack may lead to disturbances normally associated with aging. The present paper reviews the pertinent literature which appeared since our first publication, but earlier articles are also included. Evidence is presented for a role of melatonin and serotonin in controlling the neuroendocrine and immune networks and in inhibiting the development of ischemic heart and Alzheimer's disease, tumor formation and other degenerative processes associated with aging. The possible role of melatonin in the favourable effects of dietary restriction on aging is also discussed. This paper provides additional evidence that a melatonin deficiency, especially in relation to serotonin, may be responsible for the promotion of aging in the organism. PMID:8292130

  1. Alterations to embryonic serotonin change aggression and fearfulness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prenatal environment, including maternal hormones, affects the development of the serotonin (5-HT) system, with long-lasting effects on mood and behavioral exhibition in children and adults. The chicken provides a unique animal model to study the effects of embryonic development on childhood and ado...

  2. Effects of Postnatal Serotonin Agonism on Fear Response and Memory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The neurotransmitter serotonin (5-HT) also acts as a neurogenic compound in the developing brain. Early administration of a 5-HT agonist could alter the development of the serotonergic circuitry, altering behaviors mediated by 5-HT signaling, such as memory, fear and aggression. White leghorn chicks...

  3. A role for serotonin in piglet preweaning mortality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving piglet survivability rate is of high priority for swine production as well as for piglet well-being. Dysfunction in the serotonin system has been associated with growth deficiencies, infant mortality or failure to thrive (FTT) in human infants. The aim of this study was to examine the role...

  4. Cortisol decreases and serotonin and dopamine increase following massage therapy.

    PubMed

    Field, Tiffany; Hernandez-Reif, Maria; Diego, Miguel; Schanberg, Saul; Kuhn, Cynthia

    2005-10-01

    In this article the positive effects of massage therapy on biochemistry are reviewed including decreased levels of cortisol and increased levels of serotonin and dopamine. The research reviewed includes studies on depression (including sex abuse and eating disorder studies), pain syndrome studies, research on auto-immune conditions (including asthma and chronic fatigue), immune studies (including HIV and breast cancer), and studies on the reduction of stress on the job, the stress of aging, and pregnancy stress. In studies in which cortisol was assayed either in saliva or in urine, significant decreases were noted in cortisol levels (averaging decreases 31%). In studies in which the activating neurotransmitters (serotonin and dopamine) were assayed in urine, an average increase of 28% was noted for serotonin and an average increase of 31% was noted for dopamine. These studies combined suggest the stress-alleviating effects (decreased cortisol) and the activating effects (increased serotonin and dopamine) of massage therapy on a variety of medical conditions and stressful experiences. PMID:16162447

  5. Perinatal vs genetic programming of serotonin states associated with anxiety.

    PubMed

    Altieri, Stefanie C; Yang, Hongyan; O'Brien, Hannah J; Redwine, Hannah M; Senturk, Damla; Hensler, Julie G; Andrews, Anne M

    2015-05-01

    Large numbers of women undergo antidepressant treatment during pregnancy; however, long-term consequences for their offspring remain largely unknown. Rodents exposed to serotonin transporter (SERT)-inhibiting antidepressants during development show changes in adult emotion-like behavior. These changes have been equated with behavioral alterations arising from genetic reductions in SERT. Both models are highly relevant to humans yet they vary in their time frames of SERT disruption. We find that anxiety-related behavior and, importantly, underlying serotonin neurotransmission diverge between the two models. In mice, constitutive loss of SERT causes life-long increases in anxiety-related behavior and hyperserotonemia. Conversely, early exposure to the antidepressant escitalopram (ESC; Lexapro) results in decreased anxiety-related behavior beginning in adolescence, which is associated with adult serotonin system hypofunction in the ventral hippocampus. Adult behavioral changes resulting from early fluoxetine (Prozac) exposure were different from those of ESC and, although somewhat similar to SERT deficiency, were not associated with changes in hippocampal serotonin transmission in late adulthood. These findings reveal dissimilarities in adult behavior and neurotransmission arising from developmental exposure to different widely prescribed antidepressants that are not recapitulated by genetic SERT insufficiency. Moreover, they support a pivotal role for serotonergic modulation of anxiety-related behavior. PMID:25523893

  6. Comparative study of the effects of stimulation or blockade of beta-adrenoceptors on the head-twitches induced in mice by 5-hydroxytryptophan versus 5-methoxy-N, N-dimethyltryptamine.

    PubMed

    Martin, P; Soubrié, P; Simon, P

    1986-01-01

    This study aimed at comparing the effects of blockade or stimulation of beta-adrenoceptors on the head-twitch response induced in mice by direct (5-MeODMT) or indirect (5-HTP) activation of serotonergic receptors shows that: beta-agonists (clenbuterol and salbutamol) increased the 5-HTP-induced head-twitches and decreased the response to 5-MeODMT. beta-agonists (propranolol and penbutolol) reduced the head-twitches elicited by 5-HTP but enhanced those induced by 5-MeODMT. Under our experimental conditions, desipramine behaved like the beta-agonists studied. Prior intracerebroventricular injection of 5,7-DHT enhanced the response to 5-MeODMT but did not prevent the antagonism of clenbuterol against 5-MeODMT-induced head-twitches. These findings suggest that beta-receptors are in a position to regulate differentially serotonin transmission. PMID:2875219

  7. Integrin antagonists prevent costimulatory blockade-resistant transplant rejection by CD8(+) memory T cells.

    PubMed

    Kitchens, W H; Haridas, D; Wagener, M E; Song, M; Kirk, A D; Larsen, C P; Ford, M L

    2012-01-01

    The success of belatacept in late-stage clinical trials inaugurates the arrival of a new class of immunosuppressants based on costimulatory blockade, an immunosuppression strategy that disrupts essential signals required for alloreactive T-cell activation. Despite having improved renal function, kidney transplant recipients treated with belatacept experienced increased rates of acute rejection. This finding has renewed focus on costimulatory blockade-resistant rejection and specifically the role of alloreactive memory T cells in mediating this resistance. To study the mechanisms of costimulatory blockade-resistant rejection and enhance the clinical efficacy of costimulatory blockade, we developed an experimental transplant system that models a donor-specific memory CD8(+) T-cell response. After confirming that graft-specific memory T cells mediate costimulatory blockade-resistant rejection, we characterized the role of integrins in this rejection. The resistance of memory T cells to costimulatory blockade was abrogated when costimulatory blockade was coupled with either anti-VLA-4 or anti-LFA-1. Mechanistic studies revealed that in the presence of costimulatory blockade, anti-VLA-4 impaired T-cell trafficking to the graft but not memory T-cell recall effector function, whereas anti-LFA-1 attenuated both trafficking and memory recall effector function. As antagonists against these integrins are clinically approved, these findings may have significant translational potential for future clinical transplant trials. PMID:21942986

  8. Beta-adrenoceptor blockade and atrio-ventricular conduction in dogs. Role of intrinsic sympathomimetic activity.

    PubMed

    Giudicelli, J F; Lhoste, F

    1982-01-01

    1 Atrio-ventricular conduction and its modifications induced by six beta-adrenoceptor blocking agents and isoprenaline have been investigated in the anaesthetized dog using the extrastimulus technique and measuring atrial (AERP), nodal (NERP), global (GERP) effective refractory periods as well as global functional refractory period (GFRP). 2 When beta-adrenoceptor blockade was produced by (+/-)-propranolol (beta 1 + beta 2-adrenoceptor blockade) which is devoid of intrinsic sympathomimetic activity (ISA) but has membrane stabilizing effects (MSE), sotalol (beta 1 + beta 2-adrenoceptor blockade, no ISA, no MSE) and atenolol (beta 1-adrenoceptor blockade, no ISA, no MSE), all parameters were significantly increased. When beta-adrenoceptor blockade was achieved with pindolol (beta 1 + beta 2-adrenoceptor blockade) and practolol (beta 1-adrenoceptor blockade) which have ISA but no MSE, all parameters remained unchanged, as was also the case with (+)-propranolol, which has MSE but neither ISA nor beta-adrenolytic properties. 3 Isoprenaline at high doses significantly reduced the refractory periods but when infusion was stopped, marked but reversible conduction depression was observed. 4 It thus appears that beta-adrenoceptor blockade but not MSE is responsible for the onset of atrial and AV-conduction impairment and that ISA affords protection against this impairment. PMID:6125166

  9. Integrin antagonists prevent costimulatory blockade-resistant transplant rejection by CD8+ memory T cells

    PubMed Central

    Kitchens, W. H.; Haridas, D.; Wagener, M. E.; Song, M.; Kirk, A. D.; Larsen, C. P.; Ford, M. L.

    2012-01-01

    The success of belatacept in late-stage clinical trials inaugurates the arrival of a new class of immunosuppressants based on costimulatory blockade, an immunosuppression strategy that disrupts essential signals required for alloreactive T cell activation. Despite having improved renal function, kidney transplant recipients treated with belatacept experienced increased rates of acute rejection. This finding has renewed focus on costimulatory blockade-resistant rejection and specifically the role of alloreactive memory T cells in mediating this resistance. To study mechanisms of costimulatory blockade-resistant rejection and enhance the clinical efficacy of costimulatory blockade, we developed an experimental transplant system that models a donor-specific memory CD8+ T cell response. After confirming that graft-specific memory T cells mediate costimulatory blockade-resistant rejection, we characterized the role of integrins in this rejection. The resistance of memory T cells to costimulatory blockade was abrogated when costimulatory blockade was coupled with either anti-VLA-4 or anti-LFA-1. Mechanistic studies revealed that in the presence of costimulatory blockade, anti-VLA-4 impaired T cell trafficking to the graft but not memory T cell recall effector function, whereas anti-LFA-1 attenuated both trafficking and memory recall effector function. As antagonists against these integrins are clinically approved, these findings may have significant translational potential for future clinical transplant trials. PMID:21942986

  10. Receptors and Other Signaling Proteins Required for Serotonin Control of Locomotion in Caenorhabditis elegans

    PubMed Central

    Gürel, Güliz; Gustafson, Megan A.; Pepper, Judy S.; Horvitz, H. Robert; Koelle, Michael R.

    2012-01-01

    A better understanding of the molecular mechanisms of signaling by the neurotransmitter serotonin is required to assess the hypothesis that defects in serotonin signaling underlie depression in humans. Caenorhabditis elegans uses serotonin as a neurotransmitter to regulate locomotion, providing a genetic system to analyze serotonin signaling. From large-scale genetic screens we identified 36 mutants of C. elegans in which serotonin fails to have its normal effect of slowing locomotion, and we molecularly identified eight genes affected by 19 of the mutations. Two of the genes encode the serotonin-gated ion channel MOD-1 and the G-protein-coupled serotonin receptor SER-4. mod-1 is expressed in the neurons and muscles that directly control locomotion, while ser-4 is expressed in an almost entirely non-overlapping set of sensory and interneurons. The cells expressing the two receptors are largely not direct postsynaptic targets of serotonergic neurons. We analyzed animals lacking or overexpressing the receptors in various combinations using several assays for serotonin response. We found that the two receptors act in parallel to affect locomotion. Our results show that serotonin functions as an extrasynaptic signal that independently activates multiple receptors at a distance from its release sites and identify at least six additional proteins that appear to act with serotonin receptors to mediate serotonin response. PMID:23023001

  11. A voltammetric and mathematical analysis of histaminergic modulation of serotonin in the mouse hypothalamus.

    PubMed

    Samaranayake, Srimal; Abdalla, Aya; Robke, Rhiannon; Nijhout, H Frederik; Reed, Michael C; Best, Janet; Hashemi, Parastoo

    2016-08-01

    Histamine and serotonin are neuromodulators which facilitate numerous, diverse neurological functions. Being co-localized in many brain regions, these two neurotransmitters are thought to modulate one another's chemistry and are often implicated in the etiology of disease. Thus, it is desirable to interpret the in vivo chemistry underlying neurotransmission of these two molecules to better define their roles in health and disease. In this work, we describe a voltammetric approach to monitoring serotonin and histamine simultaneously in real time. Via electrical stimulation of the axonal bundles in the medial forebrain bundle, histamine release was evoked in the mouse premammillary nucleus. We found that histamine release was accompanied by a rapid, potent inhibition of serotonin in a concentration-dependent manner. We developed mathematical models to capture the experimental time courses of histamine and serotonin, which necessitated incorporation of an inhibitory receptor on serotonin neurons. We employed pharmacological experiments to verify that this serotonin inhibition was mediated by H3 receptors. Our novel approach provides fundamental mechanistic insights that can be used to examine the full extent of interconnectivity between histamine and serotonin in the brain. Histamine and serotonin are co-implicated in many of the brain's functions. In this paper, we develop a novel voltammetric method for simultaneous real-time monitoring of histamine and serotonin in the mouse premammillary nucleus. Electrical stimulation of the medial forebrain bundle evokes histamine and inhibits serotonin release. We show voltammetrically, mathematically, and pharmacologically that this serotonin inhibition is H3 receptor mediated. PMID:27167463

  12. Serotonin and calcium homeostasis during the transition period.

    PubMed

    Weaver, S R; Laporta, J; Moore, S A E; Hernandez, L L

    2016-07-01

    The transition from pregnancy to lactation puts significant, sudden demands on maternal energy and calcium reserves. Although most mammals are able to effectively manage these metabolic adaptations, the lactating dairy cow is acutely susceptible to transition-related disorders because of the high amounts of milk being produced. Hypocalcemia is a common metabolic disorder that occurs at the onset of lactation. Hypocalcemia is also known to result in poor animal welfare conditions. In addition, cows that develop hypocalcemia are more susceptible to a host of other negative health outcomes. Different feeding tactics, including manipulating the dietary cation-anion difference and administering low-calcium diets, are commonly used preventative strategies. Despite these interventions, the incidence of hypocalcemia in the subclinical form is still as high as 25% to 30% in the United States dairy cow population, with a 5% to 10% incidence of clinical hypocalcemia. In addition, although there are various effective treatments in place, they are administered only after the cow has become noticeably ill, at which point there is already significant metabolic damage. This emphasizes the need for developing alternative prevention strategies, with the monoamine serotonin implicated as a potential therapeutic target. Our research in rodents has shown that serotonin is critical for the induction of mammary parathyroid hormone-related protein, which is necessary for the mobilization of bone tissue and subsequent restoration of maternal calcium stores during lactation. We have shown that circulating serotonin concentrations are positively correlated with serum total calcium on the first day of lactation in dairy cattle. Administration of serotonin's immediate precursor through feeding, injection, or infusion to various mammalian species has been shown to increase circulating serotonin concentrations, with positive effects on other components of maternal metabolism. Most recently

  13. Lithium carbonate therapy for cluster headache. Changes in number of platelets, and serotonin and histamine levels.

    PubMed

    Medina, J L; Fareed, J; Diamond, S

    1980-09-01

    Three groups of patients were studied: Group A consisted of 12 patients with cluster headache that was treated with lithium carbonate. Group B consisted of six patients with cluster headache that was managed with other drugs. Group C consisted of five patients with muscle contraction headache who received lithium. Serum lithium levels, platelet count, platelet serotonin levels, and platelet-rich plasma histamine levels were determined before and during therapy. The frequency of the headache and levels of serotonin and histamine tended to follow a parallel course in groups A and B: as the headache frequency dropped, serotonin and histamine levels fell. The stable period was characterized by little change in serotonin and histamine levels. Recurrences of headaches were accompanied by a return of serotonin and histamine to pretreatment levels. The course of cluster headache is related to changes in serotonin and histamine levels. Lithium, by modifying the headache course, changes serotonin and histamine levels. PMID:7417056

  14. Regrowth of Serotonin Axons in the Adult Mouse Brain Following Injury.

    PubMed

    Jin, Yunju; Dougherty, Sarah E; Wood, Kevin; Sun, Landy; Cudmore, Robert H; Abdalla, Aya; Kannan, Geetha; Pletnikov, Mikhail; Hashemi, Parastoo; Linden, David J

    2016-08-17

    It is widely believed that damaged axons in the adult mammalian brain have little capacity to regrow, thereby impeding functional recovery after injury. Studies using fixed tissue have suggested that serotonin neurons might be a notable exception, but remain inconclusive. We have employed in vivo two-photon microscopy to produce time-lapse images of serotonin axons in the neocortex of the adult mouse. Serotonin axons undergo massive retrograde degeneration following amphetamine treatment and subsequent slow recovery of axonal density, which is dominated by new growth with little contribution from local sprouting. A stab injury that transects serotonin axons running in the neocortex is followed by local regression of cut serotonin axons and followed by regrowth from cut ends into and across the stab rift zone. Regrowing serotonin axons do not follow the pathways left by degenerated axons. The regrown axons release serotonin and their regrowth is correlated with recovery in behavioral tests. PMID:27499084

  15. Serotonin syndrome probably triggered by a morphine-phenelzine interaction.

    PubMed

    Mateo-Carrasco, Hector; Muñoz-Aguilera, Eva María; García-Torrecillas, Juan Manuel; Abu Al-Robb, Hiba

    2015-06-01

    Serotonin syndrome is a potentially life-threatening condition caused by excessive central and peripheral stimulation of serotonin brainstem receptors, usually triggered by inadvertent interactions between agents with serotonergic activity. Evidence supporting an association between nonserotonergic opiates, such as oxycodone or morphine, and serotonin syndrome is very limited and even contradictory. In this case report, we describe a patient who developed serotonergic-adverse effects likely precipitated by an interaction between morphine and phenelzine. A 57-year-old woman presented to the emergency department with complaints of increasing visual hallucinations, restlessness, photophobia, dizziness, neck stiffness, occipital headache, confusion, sweating, tachycardia, and nausea over the previous week. On admission, her blood pressure was 185/65 mm Hg, and clonus was noted in the lower extremities. The patient was hospitalized 10 days earlier for cellulitis of the left breast secondary to a left mastectomy 5 months earlier, and a short course of oral morphine was prescribed for pain control. Her routine medications consisted of aspirin, atorvastatin, bisoprolol, clopidogrel, gabapentin, omeprazole, phenelzine, and ramipril. Supportive measures were initiated on admission. Phenelzine and morphine were discontinued immediately, leading to a progressive resolution of symptoms over the next 48 hours. Phenelzine was restarted on discharge without further complications. Use of the Drug Interaction Probability Scale indicated a probable relationship (score of 6) between the patient's development of serotonin syndrome and the combination of morphine and phenelzine. The mechanism underlying this interaction, however, remains unclear and warrants further investigation. Clinicians should carefully weigh the risk and benefits of initiating morphine in patients taking monoamine oxidase inhibitors or any other serotonin-enhancing drugs. PMID:25903219

  16. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.

    PubMed

    O'Mahony, S M; Clarke, G; Borre, Y E; Dinan, T G; Cryan, J F

    2015-01-15

    The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders. PMID:25078296

  17. Exercise and sleep in aging: emphasis on serotonin.

    PubMed

    Melancon, M O; Lorrain, D; Dionne, I J

    2014-10-01

    Reductions in central serotonin activity with aging might be involved in sleep-related disorders in later life. Although the beneficial effects of aerobic exercise on sleep are not new, sleep represents a complex recurring state of unconsciousness involving many lines of transmitters which remains only partly clear despite intense ongoing research. It is known that serotonin released into diencephalon and cerebrum might play a key inhibitory role to help promote sleep, likely through an active inhibition of supraspinal neural networks. Several lines of evidence support the stimulatory effects of exercise on higher serotonergic pathways. Hence, exercise has proved to elicit acute elevations in forebrain serotonin concentrations, an effect that waned upon cessation of exercise. While adequate exercise training might lead to adaptations in higher serotonergic networks (desensitization of forebrain receptors), excessive training has been linked to serious brain serotonergic maladaptations accompanied by insomnia. Dietary supplementation of tryptophan (the only serotonin precursor) is known to stimulate serotonergic activity and promote sleep, whereas acute tryptophan depletion causes deleterious effects on sleep. Regarding sleep-wake regulation, exercise has proved to accelerate resynchronization of the biological clock to new light-dark cycles following imposition of phase shifts in laboratory animals. Noteworthy, the effect of increased serotonergic transmission on wake state appears to be biphasic, i.e. promote wake and thereafter drowsiness. Therefore, it might be possible that acute aerobic exercise would act on sleep by increasing activity of ascending brain serotonergic projections, though additional work is warranted to better understand the implication of serotonin in the exercise-sleep axis. PMID:25104243

  18. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research.

    PubMed

    Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2013-09-01

    Psychiatric disorders represent a large economic burden in modern societies. However, pharmacological treatments are still far from optimal. Drugs used in the treatment of major depressive disorder (MDD) and anxiety disorders (selective serotonin [5-HT] reuptake inhibitors [SSRIs] and serotonin-noradrenaline reuptake inhibitors [SNRIs]) are pharmacological refinements of first-generation tricyclic drugs, discovered by serendipity, and show low efficacy and slowness of onset. Moreover, antipsychotic drugs are partly effective in positive symptoms of schizophrenia, yet they poorly treat negative symptoms and cognitive deficits. The present article reviews the neurobiological basis of 5-HT1A receptor (5-HT1A-R) function and the role of pre- and postsynaptic 5-HT1A-Rs in the treatment of MDD, anxiety and psychotic disorders. The activation of postsynaptic 5-HT1A-Rs in corticolimbic areas appears beneficial for the therapeutic action of antidepressant drugs. However, presynaptic 5-HT1A-Rs play a detrimental role in MDD, since individuals with high density or function of presynaptic 5-HT1A-Rs are more susceptible to mood disorders and suicide, and respond poorly to antidepressant drugs. Moreover, the indirect activation of presynaptic 5-HT1A-Rs by SSRIs/SNRIs reduces 5-HT neuron activity and terminal 5-HT release, thus opposing the elevation of extracellular 5-HT produced by blockade of the serotonin transporter (SERT) in the forebrain. Chronic antidepressant treatment desensitizes presynaptic 5-HT1A-Rs, thus reducing the effectiveness of the 5-HT1A autoreceptor-mediated negative feedback. The prevention of this process by the non-selective partial agonist pindolol accelerates clinical antidepressant effects. Two new antidepressant drugs, vilazodone (marketed in the USA) and vortioxetine (in development) incorporate partial 5-HT1A-R agonist properties with SERT blockade. Several studies with transgenic mice have also established the respective role of pre- and

  19. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice.

    PubMed

    Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L

    2007-06-01

    Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice. PMID:16939636

  20. Effects of the monoamine uptake inhibitors RTI-112 and RTI-113 on cocaine- and food-maintained responding in rhesus monkeys.

    PubMed

    Negus, S S; Mello, N K; Kimmel, H L; Howell, L L; Carroll, F I

    2009-01-01

    Cocaine blocks uptake of the monoamines dopamine, serotonin and norepinephrine, and monoamine uptake inhibitors constitute one class of drugs under consideration as candidate "agonist" medications for the treatment of cocaine abuse and dependence. The pharmacological selectivity of monoamine uptake inhibitors to block uptake of dopamine, serotonin and norepinephrine is one factor that may influence the efficacy and/or safety of these compounds as drug abuse treatment medications. To address this issue, the present study compared the effects of 7-day treatment with a non-selective monoamine uptake inhibitor (RTI-112) and a dopamine-selective uptake inhibitor (RTI-113) on cocaine- and food-maintained responding in rhesus monkeys. Monkeys (N=3) were trained to respond for cocaine injections (0.01 mg/kg/inj) and food pellets under a second-order schedule [FR2(VR16:S)] during alternating daily components of cocaine and food availability. Both RTI-112 (0.0032-0.01 mg/kg/hr) and RTI-113 (0.01-0.056 mg/kg/h) produced dose-dependent, sustained and nearly complete elimination of cocaine self-administration. However, for both drugs, the potency to reduce cocaine self-administration was similar to the potency to reduce food-maintained responding. These findings do not support the hypothesis that pharmacological selectivity to block dopamine uptake is associated with behavioral selectivity to decrease cocaine- vs. food-maintained responding in rhesus monkeys. PMID:18755212

  1. 2′-(2-((dimethylamino)methyl)-4′-(2-fluoroalkoxy)-phenylthio)benzenamine Derivatives as Serotonin Transporter Imaging Agents

    PubMed Central

    Parhi, Ajit K.; Wang, Julie L.; Oya, Shunichi; Choi, Seok-Rye; Kung, Mei-Ping; Kung, Hank F.

    2008-01-01

    A novel series of ligands with substitutions at the 5-position on phenyl ring A and at the 4′-position on phenyl ring B of 2′-(2-((dimethylamino)methyl)-4′-(2-fluoro- alkoxy)phenylthio)benzenamine (4′-2-fluoroethoxy derivatives, 28–31 and 4′-3-fluoro propoxy derivatives, 40–42) were prepared and tested as serotonin transporter (SERT) imaging agents. The new ligands displayed high binding affinities to SERT (Ki ranging from 0.07 to 1.5 nM). The corresponding 18F labeled compounds, which can be prepared readily, showed excellent brain uptake and retention after iv injection in rats. The hypothalamus region showed high uptake values between 0.74 to 2.2 % dose/g at 120 min post iv injection. Significantly, the hypothalamus to cerebellum ratios (target to non-target ratios) at 120 min were 7.8 and 7.7 for [18F]28 and [18F]40, respectively. The selective uptake and retention in the hypothalamus, which has a high concentration of SERT binding sites, demonstrated that [18F]28 and [18F]40 are promising PET (positron emission computed tomography) imaging agents for mapping SERT binding sites in the brain. PMID:18052090

  2. It is never too late to treat anxiety neurosis or panic disorder with a serotonin-reuptake inhibitor.

    PubMed

    Bech, Per; Lindberg, Lone

    2014-08-01

    In a register study on patients hospitalized in the 1950s for anxiety neurosis, going until 1994 for diagnostic behaviour and until 2004 for suicidal behaviour, we found a co-existence with depression. However, the study has no information about therapy. Just after the finalization of this study, one of the patients was hospitalized in our department for depression. At that time the patient was 70 years old; at his index hospitalization in 1954 he was 30 years of age. Throughout his 40 years of illness he had received no psychiatric treatment. The spontaneous course went from panic attacks through stages of phobia and avoidance behaviour until the final stage of depression. At 70 years of age, for the first time in his life, he received antidepressant medication in the form of a specific serotonin re-uptake inhibitor. After 6 weeks of therapy not only the depression but also the anxiety disorder remitted. PMID:25988044

  3. [Treatment of inter-specific aggression in cats with the selective serotonin reuptake inhibitor fluvoxamine. A case report].

    PubMed

    Sprauer, S

    2012-01-01

    The article describes the redirected, inter-specific aggression of a Maine Coon cat, which was principally directed towards the owners. The cat reacted towards different, nonspecific sounds with abrupt aggressive behaviour and injured the victims at this juncture with moderate scratching and biting. Exclusively using behaviour therapy did not achieve the desired result, thus the therapy was supported with pharmaceuticals. The cat orally received the selective serotonin re-uptake inhibitor fluvoxamine at an initial dosage of 0.5mg/kg BW once daily. After 4 weeks the application rate was increased to 1.0 mg/kg BW once daily. The medication did not cause any side effects. Together with the behaviour-modulating therapy, carried out parallel to the medication therapy, the aggressive behaviour problem of the cat was resolved. After administration for a period of 63 weeks the fluvoxamine therapy was discontinued by gradually reducing the dose without recurrence of the aggressive behaviour. PMID:23242225

  4. Organic cation transporter 3: Keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice

    PubMed Central

    Baganz, Nicole L.; Horton, Rebecca E.; Calderon, Alfredo S.; Owens, W. Anthony; Munn, Jaclyn L.; Watts, Lora T.; Koldzic-Zivanovic, Nina; Jeske, Nathaniel A.; Koek, Wouter; Toney, Glenn M.; Daws, Lynette C.

    2008-01-01

    Mood disorders cause much suffering and are the single greatest cause of lost productivity worldwide. Although multiple medications, along with behavioral therapies, have proven effective for some individuals, millions of people lack an effective therapeutic option. A common serotonin (5-HT) transporter (5-HTT/SERT, SLC6A4) polymorphism is believed to confer lower 5-HTT expression in vivo and elevates risk for multiple mood disorders including anxiety, alcoholism, and major depression. Importantly, this variant is also associated with reduced responsiveness to selective 5-HT reuptake inhibitor antidepressants. We hypothesized that a reduced antidepressant response in individuals with a constitutive reduction in 5-HTT expression could arise because of the compensatory expression of other genes that inactivate 5-HT in the brain. A functionally upregulated alternate transporter for 5-HT may prevent extracellular 5-HT from rising to levels sufficiently high enough to trigger the adaptive neurochemical events necessary for therapeutic benefit. Here we demonstrate that expression of the organic cation transporter type 3 (OCT3, SLC22A3), which also transports 5-HT, is upregulated in the brains of mice with constitutively reduced 5-HTT expression. Moreover, the OCT blocker decynium-22 diminishes 5-HT clearance and exerts antidepressant-like effects in these mice but not in WT animals. OCT3 may be an important transporter mediating serotonergic signaling when 5-HTT expression or function is compromised. PMID:19033200

  5. Review article: serotonin receptors and transporters -- roles in normal and abnormal gastrointestinal motility.

    PubMed

    Gershon, M D

    2004-11-01

    secretory reflexes. Instead, they rely on natural stimuli to activate reflexes, which they strengthen by enhancing the release of transmitters in prokinetic pathways. Finally, when all the signalling by 5-HT is over, its action is terminated by uptake into enterocytes or neurones, which is mediated by the serotonin reuptake transporter. In inflammation, serotonergic signalling is specifically diminished in the mucosa. Transcripts encoding tryptophan hydroxylase-1 and serotonin reuptake transporter are both markedly decreased. Successive potentiation of 5-HT and/or desensitization of its receptor could account for the symptoms seen in diarrhoea-predominant and constipation-predominant irritable bowel syndrome, respectively. Symptoms associated with the down-regulation of the serotonin reuptake transporter in the human mucosa in irritable bowel syndrome are similar to the symptoms associated with the knockout of the serotonin reuptake transporter in mice. The observation that molecular defects occur in the human gut in irritable bowel syndrome strengthens the hand of those seeking to legitimize the disease. At least it is not 'all in your head'. The bowel contributes. PMID:15521849

  6. Sustained Neuromuscular Blockade after Vecuronium Use in a Premature Infant

    PubMed Central

    Sahni, Mitali; Richardson, C. Joan; Jain, Sunil K.

    2015-01-01

    Background Prolonged use of neuromuscular blocking agents (NMBAs) is very common in critically ill children both in pediatric and neonatal intensive care units. There are no guidelines available for use of NMBAs in children or neonates in the US, and the data for their safety in this age group is limited. Case Description Our case describes prolonged neuromuscular blockade following concurrent use of a NMBA along with aminoglycosides and steroids in the setting of renal failure in a premature infant. Conclusion Prolonged use of NMBAs in preterm infants should be avoided if possible or should be restricted to the shortest possible duration and the smallest possible physiologically effective dose. Concurrent use of NMBAs with aminoglycoside and steroids should be avoided, especially in the setting of renal failure. PMID:26495168

  7. Costimulation Blockade in Autoimmunity and Transplantation: The CD28 Pathway.

    PubMed

    Adams, Andrew B; Ford, Mandy L; Larsen, Christian P

    2016-09-15

    T cell activation is a complex process that requires multiple cell signaling pathways, including a primary recognition signal and additional costimulatory signals. TCR signaling in the absence of costimulatory signals can lead to an abortive attempt at activation and subsequent anergy. One of the best-characterized costimulatory pathways includes the Ig superfamily members CD28 and CTLA-4 and their ligands CD80 and CD86. The development of the fusion protein CTLA-4-Ig as an experimental and subsequent therapeutic tool is one of the major success stories in modern immunology. Abatacept and belatacept are clinically approved agents for the treatment of rheumatoid arthritis and renal transplantation, respectively. Future interventions may include selective CD28 blockade to block the costimulatory potential of CD28 while exploiting the coinhibitory effects of CTLA-4. PMID:27591335

  8. Cavity polaritons with Rydberg blockade and long-range interactions

    NASA Astrophysics Data System (ADS)

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-08-01

    We study interactions between polaritons, arising when photons strongly couple to collective excitations in an array of two-level atoms trapped in an optical lattice inside a cavity. We consider two types of interactions between atoms: dipolar forces and atomic saturability, which range from hard-core repulsion to Rydberg blockade. We show that, in spite of the underlying repulsion in the subsystem of atomic excitations, saturability induces a broadband bunching of photons for two-polariton scattering states. We interpret this bunching as a result of interference, and trace it back to the mismatch of the quantization volumes for atomic excitations and photons. We also examine bound bipolaritonic states: these include states created by dipolar forces, as well as a gap bipolariton, which forms solely due to saturability effects in the atomic transition. Both types of bound states exhibit strong bunching in the photonic component. We discuss the dependence of bunching on experimentally relevant parameters.

  9. Investigation of uncertainty components in Coulomb blockade thermometry

    SciTech Connect

    Hahtela, O. M.; Heinonen, M.; Manninen, A.; Meschke, M.; Savin, A.; Pekola, J. P.; Gunnarsson, D.; Prunnila, M.; Penttilä, J. S.; Roschier, L.

    2013-09-11

    Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin.

  10. Anisotropic Pauli spin blockade in hole quantum dots

    NASA Astrophysics Data System (ADS)

    Brauns, Matthias; Ridderbos, Joost; Li, Ang; Bakkers, Erik P. A. M.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.

    2016-07-01

    We present measurements on gate-defined double quantum dots in Ge-Si core-shell nanowires, which we tune to a regime with visible shell filling in both dots. We observe a Pauli spin blockade and can assign the measured leakage current at low magnetic fields to spin-flip cotunneling, for which we measure a strong anisotropy related to an anisotropic g factor. At higher magnetic fields we see signatures for leakage current caused by spin-orbit coupling between (1,1) singlet and (2,0) triplet states. Taking into account these anisotropic spin-flip mechanisms, we can choose the magnetic field direction with the longest spin lifetime for improved spin-orbit qubits.

  11. Ultra-high-ohmic microstripline resistors for Coulomb blockade devices.

    PubMed

    Lotkhov, Sergey V

    2013-06-14

    In this paper, we report on the fabrication and low-temperature characterization of ultra-high-ohmic microstripline resistors made of a thin film of weakly oxidized titanium. Nearly linear voltage-current characteristics were measured at temperatures down to T ~ 20 mK for films with sheet resistivities as high as ~7 kΩ, i.e. about an order of magnitude higher than our previous findings for weakly oxidized Cr. Our analysis indicates that such an improvement can help to create an advantageous high-impedance environment for different Coulomb blockade devices. Further properties of the Ti film addressed in this work show the promise of low-noise behavior of the resistors when applied in different realizations of the quantum standard of current. PMID:23670293

  12. Entanglement of Two Individual Neutral Atoms Using Rydberg Blockade

    SciTech Connect

    Wilk, T.; Gaeetan, A.; Evellin, C.; Wolters, J.; Miroshnychenko, Y.; Grangier, P.; Browaeys, A.

    2010-01-08

    We report the generation of entanglement between two individual {sup 87}Rb atoms in hyperfine ground states |F=1,M=1> and |F=2,M=2> which are held in two optical tweezers separated by 4 {mu}m. Our scheme relies on the Rydberg blockade effect which prevents the simultaneous excitation of the two atoms to a Rydberg state. The entangled state is generated in about 200 ns using pulsed two-photon excitation. We quantify the entanglement by applying global Raman rotations on both atoms. We measure that 61% of the initial pairs of atoms are still present at the end of the entangling sequence. These pairs are in the target entangled state with a fidelity of 0.75.

  13. Edge-state blockade of transport in quantum dot arrays

    NASA Astrophysics Data System (ADS)

    Benito, Mónica; Niklas, Michael; Platero, Gloria; Kohler, Sigmund

    2016-03-01

    We propose a transport blockade mechanism in quantum dot arrays and conducting molecules based on an interplay of Coulomb repulsion and the formation of edge states. As a model we employ a dimer chain that exhibits a topological phase transition. The connection to a strongly biased electron source and drain enables transport. We show that the related emergence of edge states is manifest in the shot noise properties as it is accompanied by a crossover from bunched electron transport to a Poissonian process. For both regions we develop a scenario that can be captured by a rate equation. The resulting analytical expressions for the Fano factor agree well with the numerical solution of a full quantum master equation.

  14. Photoalteration of calcium channel blockade in the cardiac Purkinje fiber.

    PubMed

    Sanguinetti, M C; Kass, R S

    1984-05-01

    Organic compounds that block calcium channel current (calcium antagonists) are important tools for the characterization of this channel. However, the practically irreversible nature of this block restricts the usefulness of this group of drugs. In this paper, we investigate the influence of light on calcium channel blockade by several organic compounds. Our results show that inhibition of calcium channel current by two dihydropyridine derivatives that contain an o-nitro moiety (nisoldipine and nifedipine) can be rapidly reversed by illumination. The energy range important to this reaction is for light wavelengths between 320 and 450 nm. Calcium channel inhibition by two other dihydropyridine derivatives (nicardipine and nitrendipine) as well as by D600, is not modulated by illumination. These results indicate that the photosensitivity of certain dihydropyridine calcium channel blockers make these compounds useful as reversible blockers of this channel. PMID:6329345

  15. Single-Photon Switch Based on Rydberg Blockade

    NASA Astrophysics Data System (ADS)

    Baur, Simon; Tiarks, Daniel; Rempe, Gerhard; Duerr, Stephan

    2015-05-01

    All-optical switching is a technique in which a gate light pulse changes the transmission of a target light pulse without the detour via electronic signal processing. We take this to the quantum regime, where the incoming gate light pulse contains only one photon on average. The gate pulse is stored as a Rydberg excitation in an ultracold atomic gas using electromagnetically induced transparency. Rydberg blockade suppresses the transmission of the subsequent target pulse. Finally, the stored gate photon can be retrieved. A retrieved photon heralds successful storage. The corresponding postselected subensemble shows a relative transmission of 0.05. The single-photon switch offers many interesting perspectives ranging from quantum communication to quantum information processing.

  16. Coulomb blockade in low-mobility nanometer size Si MOSFET's

    NASA Astrophysics Data System (ADS)

    Sanquer, M.; Specht, M.; Ghenim, L.; Deleonibus, S.; Guegan, G.

    2000-03-01

    We investigate coherent transport in Si metal-oxide-semiconductor field-effect transistors with nominal gate lengths 50-100 nm and various widths at very low temperature. Independent of the geometry, localized states appear when G~=e2/h and transport is dominated by resonant tunnelling through a single quantum dot formed by an impurity potential. We find that the typical size of the relevant impurity quantum dot is comparable to the channel length and that the periodicity of the observed Coulomb blockade oscillations is roughly inversely proportional to the channel length. The spectrum of resonances and the nonlinear I-V curves allow us to measure the charging energy and the mean level energy spacing for electrons in the localized state. Furthermore, we find that in the dielectric regime the variance var(lng) of the logarithmic conductance lng is proportional to its average value consistent with one-electron scaling models.

  17. Amphetamine Action at the Cocaine- and Antidepressant-Sensitive Serotonin Transporter Is Modulated by αCaMKII

    PubMed Central

    Steinkellner, Thomas; Montgomery, Therese R.; Hofmaier, Tina; Kudlacek, Oliver; Yang, Jae-Won; Rickhag, Mattias; Jung, Gangsoo; Lubec, Gert; Gether, Ulrik; Freissmuth, Michael

    2015-01-01

    Serotonergic neurotransmission is terminated by reuptake of extracellular serotonin (5-HT) by the high-affinity serotonin transporter (SERT). Selective 5-HT reuptake inhibitors (SSRIs) such as fluoxetine or escitalopram inhibit SERT and are currently the principal treatment for depression and anxiety disorders. In addition, SERT is a major molecular target for psychostimulants such as cocaine and amphetamines. Amphetamine-induced transport reversal at the closely related dopamine transporter (DAT) has been shown previously to be contingent upon modulation by calmodulin kinase IIα (αCaMKII). Here, we show that not only DAT, but also SERT, is regulated by αCaMKII. Inhibition of αCaMKII activity markedly decreased amphetamine-triggered SERT-mediated substrate efflux in both cells coexpressing SERT and αCaMKII and brain tissue preparations. The interaction between SERT and αCaMKII was verified using biochemical assays and FRET analysis and colocalization of the two molecules was confirmed in primary serotonergic neurons in culture. Moreover, we found that genetic deletion of αCaMKII impaired the locomotor response of mice to 3,4-methylenedioxymethamphetamine (also known as “ecstasy”) and blunted d-fenfluramine-induced prolactin release, substantiating the importance of αCaMKII modulation for amphetamine action at SERT in vivo as well. SERT-mediated substrate uptake was neither affected by inhibition of nor genetic deficiency in αCaMKII. This finding supports the concept that uptake and efflux at monoamine transporters are asymmetric processes that can be targeted separately. Ultimately, this may provide a molecular mechanism for putative drug developments to treat amphetamine addiction. PMID:26019340

  18. The antidepressant-like pharmacological profile of Yuanzhi-1, a novel serotonin, norepinephrine and dopamine reuptake inhibitor.

    PubMed

    Jin, Zeng-liang; Gao, Nana; Li, Xiao-rong; Tang, Yu; Xiong, Jie; Chen, Hong-xia; Xue, Rui; Li, Yun-Feng

    2015-04-01

    Triple reuptake inhibitors that block dopamine transporters (DATs), norepinephrine transporters (NETs), and serotonin transporters (SERTs) are being developed as a new class of antidepressants that might have better efficacy and fewer side effects than traditional antidepressants. In this study, we performed in vitro binding and uptake assays as well as in vivo behavioural tests to assess the pharmacological properties and antidepressant-like efficacy of Yuanzhi-1. In vitro, Yuanzhi-1 had a high affinity for SERTs, NETs, and DATs prepared from rat brain tissue (Ki=3.95, 4.52 and 0.87nM, respectively) and recombinant cells (Ki=2.87, 6.86 and 1.03nM, respectively). Moreover, Yuanzhi-1 potently inhibited the uptake of serotonin (5-hydroxytryptamine; 5-HT), norepinephrine (NE) and dopamine (DA) into rat brain synaptosomes (Ki=2.12, 4.85 and 1.08nM, respectively) and recombinant cells (Ki=1.65, 5.32 and 0.68nM, respectively). In vivo, Yuanzhi-1 decreased immobility in a dose-dependent manner, which was shown among rats via the forced-swim test (FST) and mice via the tail-suspension test (TST). The results observed in the behavioural tests did not appear to result from the stimulation of locomotor activity. Repeated Yuanzhi-1 treatment (2.5, 5 or 10mg/kg) significantly reversed depression-like behaviours in chronically stressed rats, including reduced sucrose preference, decreased locomotor activity, and prolonged time to begin eating. Furthermore, in vivo microdialysis studies showed that 5- and 10-mg/kg administrations of Yuanzhi-1 significantly increased the extracellular concentrations of 5-HT, NE and DA in the frontal cortices of freely moving rats. Therefore, Yuanzhi-1 might represent a novel triple reuptake inhibitor and possess antidepressant-like activity. PMID:25638027

  19. Assessment of Methods for the Intracellular Blockade of GABAA Receptors

    PubMed Central

    Atherton, Laura A.; Burnell, Erica S.; Mellor, Jack R.

    2016-01-01

    Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4’-dinitro-stilbene-2,2’-disulphonic acid (DNDS) and 4,4’-diisothiocyanostilbene-2,2’-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility. PMID:27501143

  20. The serotonin releaser fenfluramine alters the auditory responses of inferior colliculus neurons.

    PubMed

    Hall, Ian C; Hurley, Laura M

    2007-06-01

    Local direct application of the neuromodulator serotonin strongly influences auditory response properties of neurons in the inferior colliculus (IC), but endogenous stores of serotonin may be released in a distinct spatial or temporal pattern. To explore this issue, the serotonin releaser fenfluramine was iontophoretically applied to extracellularly recorded neurons in the IC of the Mexican free-tailed bat (Tadarida brasiliensis). Fenfluramine mimicked the effects of serotonin on spike count and first spike latency in most neurons, and its effects could be blocked by co-application of serotonin receptor antagonists, consistent with fenfluramine-evoked serotonin release. Responses to fenfluramine did not vary during single applications or across multiple applications, suggesting that fenfluramine did not deplete serotonin stores. A predicted gradient in the effects of fenfluramine with serotonin fiber density was not observed, but neurons with fenfluramine-evoked increases in latency occurred at relatively greater recording depths compared to other neurons with similar characteristic frequencies. These findings support the conclusion that there may be spatial differences in the effects of exogenous and endogenous sources of serotonin, but that other factors such as the identities and locations of serotonin receptors are also likely to play a role in determining the dynamics of serotonergic effects. PMID:17339086

  1. Serotonin-immunoreactive sensory neurons in the antenna of the cockroach Periplaneta americana.

    PubMed

    Watanabe, Hidehiro; Shimohigashi, Miki; Yokohari, Fumio

    2014-02-01

    The antennae of insects contain a vast array of sensory neurons that process olfactory, gustatory, mechanosensory, hygrosensory, and thermosensory information. Except those with multimodal functions, most sensory neurons use acetylcholine as a neurotransmitter. Using immunohistochemistry combined with retrograde staining of antennal sensory neurons in the cockroach Periplaneta americana, we found serotonin-immunoreactive sensory neurons in the antenna. These were selectively distributed in chaetic and scolopidial sensilla and in the scape, the pedicel, and first 15 segments of the flagellum. In a chaetic sensillum, A single serotonin-immunoreactive sensory neuron cohabited with up to four serotonin-negative sensory neurons. Based on their morphological features, serotonin-immunopositive and -negative sensory neurons might process mechanosensory and contact chemosensory modalities, respectively. Scolopidial sensilla constitute the chordotonal and Johnston's organs within the pedicel and process antennal vibrations. Immunoelectron microscopy clearly revealed that serotonin-immunoreactivities selectively localize to a specific type of mechanosensory neuron, called type 1 sensory neuron. In a chordotonal scolopidial sensillum, a serotonin-immunoreactive type 1 neuron always paired with a serotonin-negative type 1 neuron. Conversely, serotonin-immunopositive and -negative type 1 neurons were randomly distributed in Johnston's organ. In the deutocerebrum, serotonin-immunoreactive sensory neuron axons formed three different sensory tracts and those from distinct types of sensilla terminated in distinct brain regions. Our findings indicate that a biogenic amine, serotonin, may act as a neurotransmitter in peripheral mechanosensory neurons. PMID:23852943

  2. Is Serum Serotonin Involved in the Bone Loss of Young Females with Anorexia Nervosa?

    PubMed

    Maïmoun, L; Guillaume, S; Lefebvre, P; Philibert, P; Bertet, H; Picot, M-C; Courtet, P; Mariano-Goulart, D; Renard, E; Sultan, C

    2016-03-01

    Recent experimental data suggest that circulating serotonin interacts with bone metabolism, although this is less clear in humans. This study investigated whether serum serotonin interferes with bone metabolism in young women with anorexia nervosa (AN), a clinical model of energy deprivation. Serum serotonin, markers of bone turnover [osteocalcin (OC), procollagen type I N-terminal propeptide (PINP), type I-C telopeptide breakdown products (CTX)], leptin, soluble leptin receptor (sOB-R), and insulin-like growth factor-1 (IGF-1) and its binding protein (IGFBP-3) were assessed. Whole body, spine, hip, and radius areal bone mineral density BMD (aBMD) were assessed by dual-energy X-ray absorptiometry in 21 patients with AN and 19 age-matched controls. Serum serotonin, leptin, IGF-1, IGFBP-3, OC, PINP, and aBMD at all sites, radius excepted, were significantly reduced in AN whereas CTX and sOB-R were increased compared with controls. Serum serotonin levels were positively correlated with weight, body mass index, whole body fat mass, leptin, and IGF-1, and negatively with CTX for the entire population. Low serum serotonin levels are observed in patients with AN. Although no direct link between low serum serotonin levels and bone mass was identified in these patients, the negative relationship between serotonin and markers of bone resorption found in all population nevertheless suggests the implication of serotonin in bone metabolism. Impact of low serum serotonin on bone in AN warrants further studies. PMID:26418163

  3. Effects of aromatase inhibition and androgen activity on serotonin and behavior in male macaques.

    PubMed

    Bethea, Cynthia L; Reddy, Arubala P; Robertson, Nicola; Coleman, Kristine

    2013-06-01

    Aggression in humans and animals has been linked to androgens and serotonin function. To further our understanding of the effect of androgens on serotonin and aggression in male macaques, we sought to manipulate circulating androgens and the activity of aromatase; and to then determine behavior and the endogenous availability of serotonin. Male Japanese macaques (Macaca fuscata) were castrated for 5-7 months and then treated for 3 months with (a) placebo; (b) testosterone (T); (c) T + Dutasteride (5a reductase inhibitor; AvodartTM); (d) T + Letrozole (nonsteroidal aromatase inhibitor; FemeraTM); (e) Flutamide + ATD (androgen antagonist plus steroidal aromatase inhibitor); or (f) dihydrotestosterone (DHT) + ATD (n = 5/group). Behavioral observations were made during treatments. At the end of the treatment period, each animal was sedated with propofol and administered a bolus of fenfluramine (5 mg/kg). Fenfluramine causes the release of serotonin proportional to endogenous availability and in turn, serotonin stimulates the secretion of prolactin. Therefore, serum prolactin concentrations reflect endogenous serotonin. Fenfluramine significantly increased serotonin/prolactin in all groups (p < .0001). Fenfluramine-induced serotonin/prolactin in the T-treated group was significantly higher than the other groups (p < .0001). Castration partially reduced the serotonin/prolactin response and Letrozole partially blocked the effect of T. Complete inhibition of aromatase with ATD, a noncompetitive inhibitor, significantly and similarly reduced the fenfluramine-induced serotonin/prolactin response in the presence or absence of DHT. Neither aggressive behavior nor yawning (indicators of androgen activity) correlated with serotonin/prolactin, but posited aromatase activity correlated significantly with prolactin (p < .0008; r² = 0.95). In summary, androgens induced aggressive behavior but they did not regulate serotonin. Altogether, the data suggest that aromatase activity

  4. Selective serotonin reuptake inhibitors for fibromyalgia syndrome

    PubMed Central

    Walitt, Brian; Urrútia, Gerard; Nishishinya, María Betina; Cantrell, Sarah E; Häuser, Winfried

    2016-01-01

    Background Fibromyalgia is a clinically well-defined chronic condition with a biopsychosocial aetiology. Fibromyalgia is characterized by chronic widespread musculoskeletal pain, sleep problems, cognitive dysfunction, and fatigue. Patients often report high disability levels and poor quality of life. Since there is no specific treatment that alters the pathogenesis of fibromyalgia, drug therapy focuses on pain reduction and improvement of other aversive symptoms. Objectives The objective was to assess the benefits and harms of selective serotonin reuptake inhibitors (SSRIs) in the treatment of fibromyalgia. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2014, Issue 5), MEDLINE (1966 to June 2014), EMBASE (1946 to June 2014), and the reference lists of reviewed articles. Selection criteria We selected all randomized, double-blind trials of SSRIs used for the treatment of fibromyalgia symptoms in adult participants. We considered the following SSRIs in this review: citalopram, fluoxetine, escitalopram, fluvoxamine, paroxetine, and sertraline. Data collection and analysis Three authors extracted the data of all included studies and assessed the risks of bias of the studies. We resolved discrepancies by discussion. Main results The quality of evidence was very low for each outcome. We downgraded the quality of evidence to very low due to concerns about risk of bias and studies with few participants. We included seven placebo-controlled studies, two with citalopram, three with fluoxetine and two with paroxetine, with a median study duration of eight weeks (4 to 16 weeks) and 383 participants, who were pooled together. All studies had one or more sources of potential major bias. There was a small (10%) difference in patients who reported a 30% pain reduction between SSRIs (56/172 (32.6%)) and placebo (39/171 (22.8%)) risk difference (RD) 0.10, 95% confidence interval (CI) 0.01 to 0.20; number needed to treat for an additional

  5. Differential Effects of Hormone Therapy on Serotonin, Vascular Function and Mood in the KEEPS

    PubMed Central

    Raz, Limor; Hunter, Larry; Dowling, N. Maritza; Wharton, Whitney; Gleason, Carey; Jayachandran, Muthuvel; Anderson, Layne; Asthana, Sanjay; Miller, Virginia

    2016-01-01

    Background Serotonin (5-hydroxytryptamine, 5-HT) is modulated by sex steroid hormones and affects vascular function and mood. In the Kronos Early Estrogen Prevention Cognitive and Affective Ancillary Study (KEEPS-Cog), women randomized to oral conjugated equine estrogens (oCEE) showed greater benefit on affective mood states than women randomized to transdermal 17β-estradiol (tE2) or placebo (PL). This study examined the effect of these treatments on the platelet content of 5-HT as a surrogate measure of 5-HT synthesis and uptake in the brain. Methods The following were measured in a subset (n = 79) of women enrolled in KEEPS-Cog: 5-HT by ELISA, carotid intima-medial thickness (CIMT) by ultrasound, endothelial function by reactive hyperemia index (RHI), and self-reported symptoms of affective mood states by the Profile of Mood States (POMS) questionnaire. Results Mean platelet content of 5-HT increased by 107.0%, 84.5% and 39.8%, in tE2, oCEE and PL groups, respectively. Platelet 5-HT positively correlated with estrone in the oCEE group and with 17β- estradiol in the tE2 group. Platelet 5-HT showed a positive association with RHI, but not CIMT, in the PL and oCEE groups. Reduction in mood scores for depression-dejection and anger-hostility associated with elevations in platelet 5-HT only in the oCEE group (r = −0.5, p = 0.02). Conclusions Effects of oCEE compared to tE2 on RHI and mood may be related to mechanisms involving platelet, and perhaps neuronal, uptake and release of 5-HT and reflect conversion of estrone to bioavailable 17β- estradiol in platelets and the brain. PMID:26652904

  6. Ontogeny and Regulation of the Serotonin Transporter: Providing Insights into Human Disorders

    PubMed Central

    Daws, Lynette C.; Gould, Georgianna G.

    2011-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) was one of the first neurotransmitters for which a role in development was identified. Pharmacological and gene knockout studies have revealed a critical role for 5-HT in numerous processes, including cell division, neuronal migration, differentiation and synaptogenesis. An excess in brain 5-HT appears to be mechanistically linked to abnormal brain development, which in turn is associated with neurological disorders. Ambient levels of 5-HT are controlled by a vast orchestra of proteins, including a multiplicity of pre- and post-synaptic 5-HT receptors, heteroreceptors, enzymes and transporters. The 5-HT transporter (SERT, 5-HTT) is arguably the most powerful regulator of ambient extracellular 5-HT. SERT is the high-affinity uptake mechanism for 5-HT and exerts tight control over the strength and duration of serotonergic neurotransmission. Perturbation of its expression level or function has been implicated in many diseases, prominent among them are psychiatric disorders. This review synthesizes existing information on the ontogeny of SERT during embryonic and early postnatal development though adolescence, along with factors that influence its expression and function during these critical developmental windows. We integrate this knowledge to emphasize how inappropriate SERT expression or its dysregulation may be linked to the pathophysiology of psychiatric, cardiovascular and gastrointestinal diseases. PMID:21447358

  7. Inhibition of serotonin release by bombesin-like peptides in rat hypothalamus in vitro

    SciTech Connect

    Saporito, M.S.; Warwick, R.O. Jr.

    1989-01-01

    We investigated the activity of bombesin (BN), neuromedin-C (NM-C) and neuromedin-B (NM-B) on serotonin (5-HT) release and reuptake in rat hypothalamus (HYP) in vitro. BN and NM-C but not NM-B decreased K/sup +/ evoked /sup 3/H-5-HT release from superfused HYP slices by 25%. Bacitracin, a nonspecific peptidase inhibitor, reversed the inhibitory effect of BN on K/sup +/ evoked /sup 3/H-5-HT release. Phosphoramidon (PAN, 10 /mu/M) an endopeptidase 24.11 inhibitor, abolished the inhibitory effect of BN, but not NM-C, on K/sup +/ evoked /sup 3/H-5-HT release. The peptidyl dipeptidase A inhibitor enalaprilat (ENP, 10 /mu/M), enhanced both BN and NM-C inhibition of /sup 3/H-5-HT release. Bestatin (BST, 10 /mu/M) had no effect on BN or NM-C inhibitory activity on /sup 3/H-5-HT release. Neither BN, NM-C nor NM-B affected reuptake of /sup 3/H-5-HT into HYP synaptosomes alone or in combination with any of the peptidase inhibitors, nor did these peptides alter the ability of fluoxetine to inhibit /sup 3/H-5-HT uptake.

  8. Serotonin 5-HT2 Receptor Interactions with Dopamine Function: Implications for Therapeutics in Cocaine Use Disorder

    PubMed Central

    Cunningham, Kathryn A.

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  9. Chloride dysregulation and inhibitory receptor blockade yield equivalent disinhibition of spinal neurons yet are differentially reversed by carbonic anhydrase blockade.

    PubMed

    Lee, Kwan Yeop; Prescott, Steven A

    2015-12-01

    Synaptic inhibition plays a key role in processing somatosensory information. Blocking inhibition at the spinal level is sufficient to produce mechanical allodynia, and many neuropathic pain conditions are associated with reduced inhibition. Disinhibition of spinal neurons can arise through decreased GABAA/glycine receptor activation or through dysregulation of intracellular chloride. We hypothesized that these distinct disinhibitory mechanisms, despite all causing allodynia, are differentially susceptible to therapeutic intervention. Specifically, we predicted that reducing bicarbonate efflux by blocking carbonic anhydrase with acetazolamide (ACTZ) would counteract disinhibition caused by chloride dysregulation without affecting normal inhibition or disinhibition caused by GABAA/glycine receptor blockade. To test this, responses to innocuous tactile stimulation were recorded in vivo from rat superficial dorsal horn neurons before and after different forms of pharmacological disinhibition and again after application of ACTZ. Blocking GABAA or glycine receptors caused hyperresponsiveness equivalent to that caused by blocking the potassium chloride cotransporter KCC2, but, consistent with our predictions, only disinhibition caused by KCC2 blockade was counteracted by ACTZ. ACTZ did not alter responses of neurons with intact inhibition. As pathological downregulation of KCC2 is triggered by brain-derived neurotrophic factor, we also confirmed that ACTZ was effective against brain-derived neurotrophic factor-induced hyperresponsiveness. Our results argue that intrathecal ACTZ has antiallodynic effects only if allodynia arises through chloride dysregulation; therefore, behavioral evidence that ACTZ is antiallodynic in nerve-injured animals affirms the contribution of chloride dysregulation as a key pathological mechanism. Although different disinhibitory mechanisms are not mutually exclusive, these results demonstrate that their relative contribution dictates which

  10. Serotonin syndrome versus neuroleptic malignant syndrome: a challenging clinical quandary.

    PubMed

    Dosi, Rupal; Ambaliya, Annirudh; Joshi, Harshal; Patell, Rushad

    2014-01-01

    Serotonin syndrome and neuroleptic malignant syndrome are two drug toxidromes that have often overlapping and confusing clinical pictures. We report a case of a young man who presented with alteration of mental status, autonomic instability and neuromuscular hyperexcitability following ingestion of multiple psychiatric and antiepileptic medications. The patient satisfied criteria for serotonin syndrome and neuroleptic malignant syndrome, and based on the characteristic clinical features, laboratory findings and clinical course it was concluded that the patient had both toxidromes. The patient was managed with cyproheptadine and supportive measures, and recovered over the course of 3 weeks. A brief review of literature highlighting the diagnostic clues as well as the importance of recognising and distinguishing the often missed and confounding diagnoses follows. PMID:24957740

  11. Expression analysis for inverted effects of serotonin transporter inactivation

    SciTech Connect

    Ichikawa, Manabu |; Okamura-Oho, Yuko Shimokawa, Kazuro; Kondo, Shinji; Nakamura, Sakiko; Yokota, Hideo |; Himeno, Ryutaro; Lesch, Klaus-Peter; Hayashizaki, Yoshihide |

    2008-03-28

    Inactivation of serotonin transporter (HTT) by pharmacologically in the neonate or genetically increases risk for depression in adulthood, whereas pharmacological inhibition of HTT ameliorates symptoms in depressed patients. The differing role of HTT function during early development and in adult brain plasticity in causing or reversing depression remains an unexplained paradox. To address this we profiled the gene expression of adult Htt knockout (Htt KO) mice and HTT inhibitor-treated mice. Inverted profile changes between the two experimental conditions were seen in 30 genes. Consistent results of the upstream regulatory element search and the co-localization search of these genes indicated that the regulation may be executed by Pax5, Pax7 and Gata3, known to be involved in the survival, proliferation, and migration of serotonergic neurons in the developing brain, and these factors are supposed to keep functioning to regulate downstream genes related to serotonin system in the adult brain.

  12. Serotonin competence of mouse beta cells during pregnancy.

    PubMed

    Goyvaerts, Lotte; Schraenen, Anica; Schuit, Frans

    2016-07-01

    Pregnancy is a key mammalian reproductive event in which growth and differentiation of the fetus imposes extra metabolic and hormonal demands on the mother. Its successful outcome depends on major changes in maternal blood circulation, metabolism and endocrine function. One example is the endocrine pancreas, where beta cells undergo a number of changes in pregnancy that result in enhanced functional beta cell mass in order to compensate for the rising metabolic needs for maternal insulin. During the last 5 years, a series of studies have increased our understanding of the molecular events involved in this functional adaptation. In the mouse, a prominent functional change during pregnancy is the capacity of some beta cells to produce serotonin. In this review we will discuss the mechanism and potential effects of pregnancy-related serotonin production in beta cells, considering functional consequences at the local intra-islet and systemic level. PMID:27056372

  13. Argentaffin and argyrophil reactions and serotonin content of endocrine tumours.

    PubMed Central

    Wells, C A; Taylor, S M; Cuello, A C

    1985-01-01

    Sixty carcinoid tumours were tested in a retrospective study with an immunoperoxidase technique using a monoclonal antibody against serotonin immunoreactive sites, with argyrophil staining using the Grimelius technique, and with argentaffin staining using the Masson-Fontana technique. A good correlation between all three techniques in the diagnosis of ileal carcinoid tumour was found, but the immunoperoxidase technique showed greater sensitivity than the Masson-Fontana technique and greater specificity than the Grimelius technique in the diagnosis of foregut and hindgut carcinoid tumours. The immunoperoxidase technique with a monoclonal antibody against serotonin immunoreactive sites (YC5/45) is recommended as a sensitive and specific test for carcinoid tumours. The reactions in other endocrine tumours are also included. Images PMID:2578484

  14. Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions

    PubMed Central

    Cools, Roshan; Nakamura, Kae; Daw, Nathaniel D

    2011-01-01

    Serotonin, like dopamine (DA), has long been implicated in adaptive behavior, including decision making and reinforcement learning. However, although the two neuromodulators are tightly related and have a similar degree of functional importance, compared with DA, we have a much less specific understanding about the mechanisms by which serotonin affects behavior. Here, we draw on recent work on computational models of dopaminergic function to suggest a framework by which many of the seemingly diverse functions associated with both DA and serotonin—comprising both affective and activational ones, as well as a number of other functions not overtly related to either—can be seen as consequences of a single root mechanism. PMID:20736991

  15. Serotonin syndrome versus neuroleptic malignant syndrome: a challenging clinical quandary

    PubMed Central

    Dosi, Rupal; Ambaliya, Annirudh; Joshi, Harshal; Patell, Rushad

    2014-01-01

    Serotonin syndrome and neuroleptic malignant syndrome are two drug toxidromes that have often overlapping and confusing clinical pictures. We report a case of a young man who presented with alteration of mental status, autonomic instability and neuromuscular hyperexcitability following ingestion of multiple psychiatric and antiepileptic medications. The patient satisfied criteria for serotonin syndrome and neuroleptic malignant syndrome, and based on the characteristic clinical features, laboratory findings and clinical course it was concluded that the patient had both toxidromes. The patient was managed with cyproheptadine and supportive measures, and recovered over the course of 3 weeks. A brief review of literature highlighting the diagnostic clues as well as the importance of recognising and distinguishing the often missed and confounding diagnoses follows. PMID:24957740

  16. Putrescine uptake in saintpaulia petals.

    PubMed

    Bagni, N; Pistocchi, R

    1985-02-01

    Putrescine uptake and the kinetics of this uptake were studied in petals of Saintpaulia ionantha Wendl. Uptake experiments of [(3)H] or [(14)C] putrescine were done on single petals at room temperature at various pH values. The results show that putrescine uptake occurs against a concentration gradient at low external putrescine concentration (0.5-100 micromolar) and follows a concentration gradient at higher external putrescine concentrations (100 micromolar to 100 millimolar). 2,4-Dinitrophenol and carbonylcyanide-m-chlorophenylhydrazone, two uncouplers, had no effect on putrescine uptake. Uptake rates were constant for 2 hours, reaching a maximum after 3 to 4 hours. Putrescine uptake depended markedly on the external pH and two maxima were observed: at low external concentrations of putrescine, the optimum was at pH 5 to 5.5; at higher concentrations the optimum was at pH 8. PMID:16664065

  17. How the Serotonin Story is Being Rewritten By New Gene-Based Discoveries Principally Related to SLC6A4, the Serotonin Transporter Gene, Which Functions To Influence All Cellular Serotonin Systems

    PubMed Central

    Murphy, Dennis L.; Fox, Meredith A.; Timpano, Kiara R.; Moya, Pablo; Ren-Patterson, Renee; Andrews, Anne M.; Holmes, Andrew; Lesch, Klaus-Peter; Wendland, Jens R.

    2009-01-01

    Discovered and crystallized over sixty years ago, serotonin's important functions in the brain and body were identified over the ensuing years by neurochemical, physiological and pharmacological investigations. This 2008 M. Rapport Memorial Serotonin Review focuses on some of the most recent discoveries in serotonin that are based on genetic methodologies. These include examples of the consequences that result from direct serotonergic gene manipulation (gene deletion or overexpression) in mice and other species; an evaluation of some phenotypes related to functional human serotonergic gene variants, particularly in SLC6A4, the serotonin transporter gene; and finally, a consideration of the pharmacogenomics of serotonergic drugs with respect to both their therapeutic actions and side effects. The serotonin transporter (SERT) has been the most comprehensively studied of the serotonin system molecular components, and will be the primary focus of this review. We provide in-depth examples of gene-based discoveries primarily related to SLC6A4 that have clarified serotonin's many important homeostatic functions in humans, non-human primates, mice and other species. PMID:18824000

  18. Differential Regulation of the Serotonin Transporter by Vesicle-Associated Membrane Protein 2 in Cells of Neuronal versus Non-Neuronal Origin

    PubMed Central

    Müller, Heidi Kaastrup; Kragballe, Marie; Fjorback, Anja Winther; Wiborg, Ove

    2014-01-01

    The serotonin transporter (SERT) is a key regulator of serotonergic signalling as it mediates the re-uptake of synaptic serotonin into nerve terminals, thereby terminating or modulating its signal. It is well-known that SERT regulation is a dynamic process orchestrated by a wide array of proteins and mechanisms. However, molecular details on possible coordinated regulation of SERT activity and 5-HT release are incomplete. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, interacts with SERT. This was documented in vitro, through GST pull-down assays, by co-immunoprecipitation experiments on heterologous cells and rat hippocampal synaptosomes, and with FRET analysis in live transfected HEK-293 MSR cells. The related isoforms VAMP1 and VAMP3 also physically interact with SERT. However, comparison of the three VAMP isoforms shows that only VAMP2 possesses a functionally distinct role in relation to SERT. VAMP2 influences 5-HT uptake, cell surface expression and the delivery rate of SERT to the plasma membrane differentially in HEK-293 MSR and PC12 cells. Moreover, siRNA-mediated knock-down of endogenous VAMP2 reduces 5-HT uptake in CAD cells stably expressing low levels of heterologous SERT. Deletion and mutant analysis suggest a role for the isoform specific C-terminal domain of VAMP2 in regulating SERT function. Our data identify a novel interaction between SERT and a synaptic vesicle protein and support a link between 5-HT release and re-uptake. PMID:24878716

  19. Differential regulation of the serotonin transporter by vesicle-associated membrane protein 2 in cells of neuronal versus non-neuronal origin.

    PubMed

    Müller, Heidi Kaastrup; Kragballe, Marie; Fjorback, Anja Winther; Wiborg, Ove

    2014-01-01

    The serotonin transporter (SERT) is a key regulator of serotonergic signalling as it mediates the re-uptake of synaptic serotonin into nerve terminals, thereby terminating or modulating its signal. It is well-known that SERT regulation is a dynamic process orchestrated by a wide array of proteins and mechanisms. However, molecular details on possible coordinated regulation of SERT activity and 5-HT release are incomplete. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, interacts with SERT. This was documented in vitro, through GST pull-down assays, by co-immunoprecipitation experiments on heterologous cells and rat hippocampal synaptosomes, and with FRET analysis in live transfected HEK-293 MSR cells. The related isoforms VAMP1 and VAMP3 also physically interact with SERT. However, comparison of the three VAMP isoforms shows that only VAMP2 possesses a functionally distinct role in relation to SERT. VAMP2 influences 5-HT uptake, cell surface expression and the delivery rate of SERT to the plasma membrane differentially in HEK-293 MSR and PC12 cells. Moreover, siRNA-mediated knock-down of endogenous VAMP2 reduces 5-HT uptake in CAD cells stably expressing low levels of heterologous SERT. Deletion and mutant analysis suggest a role for the isoform specific C-terminal domain of VAMP2 in regulating SERT function. Our data identify a novel interaction between SERT and a synaptic vesicle protein and support a link between 5-HT release and re-uptake. PMID:24878716

  20. Revisiting the Serotonin Hypothesis: Implications for Major Depressive Disorders.

    PubMed

    Fakhoury, Marc

    2016-07-01

    Major depressive disorder (MDD) is a heritable neuropsychiatric disease associated with severe changes at cellular and molecular levels. Its diagnosis mainly relies on the characterization of a wide range of symptoms including changes in mood and behavior. Despite the availability of antidepressant drugs, 10 to 30 % of patients fail to respond after a single or multiple treatments, and the recurrence of depression among responsive patients is very high. Evidence from the past decades suggests that the brain neurotransmitter serotonin (5-HT) is incriminated in MDD, and that a dysfunction of 5-HT receptors may play a role in the genesis of this disease. The 5-HT membrane transporter protein (SERT), which helps regulate the serotonergic transmission, is also implicated in MDD and is one of the main targets of antidepressant therapy. Although a number of behavioral tests and animal models have been developed to study depression, little is known about the neurobiological bases of MDD. Understanding the role of the serotonergic pathway will significantly help improve our knowledge of the pathophysiology of depression and may open up avenues for the development of new antidepressant drugs. The overarching goal of this review is to present recent findings from studies examining the serotonergic pathway in MDD, with a focus on SERT and the serotonin 1A (5-HT1A), serotonin 1B (5-HT1B), and serotonin 2A (5-HT2A) receptors. This paper also describes some of the main molecules involved in the internalization of 5-HT receptors and illustrates the changes in 5-HT neurotransmission in knockout mice and animal model of depression. PMID:25823514

  1. Plasma serotonin levels in Italian Fresian dairy cows.

    PubMed

    Bruschetta, G; Di Pietro, P; Sanzarello, L; Giacoppo, E; Ferlazzo, A M

    2010-06-01

    The aim of this work was to investigate the metabolism of plasma serotonin or 5-hydroxytryptamine (5-HT), an important neurotransmitter, in Fresian dairy cows, a breed of zootechnical interest, using high-performance liquid chromatography with electrochemical detection. The subjects under study were at the stage of early lactation (n = 10; mean body weight 375 +/- 50 kg; average age of 3 years; body condition score 2.5), bred in a farm at an altitude of 150 m a.s.l. To evaluate animal welfare on this farm, which is closely connected to an animal's physiological status, tryptophan and cortisol levels (measured by enzyme-linked immunosorbent assay), together with levels of certain blood components [total proteins (TP), albumin, creatinine, glucose (Glu), triglycerides, phospholipids, total cholesterol, and aspartate transaminase, measured by spectrophotometry] were analyzed. The results obtained are discussed in comparison with reference values, taking into account the environmental living conditions. Measured plasma serotonin concentrations, which were lower than values reported for Brown Swiss dairy cows of a comparable age and diet, appeared to be affected by breed, temperature, blood sampling season, and altitude. Additional differences between the levels of plasma tryptophan, the amino acid precursor of serotonin, of the two breeds were comparable. Negative correlations between plasma tryptophan and plasma cortisol levels (r = -0.83, P < 0.005), plasma serotonin and plasma TP levels (r = -0.72, P < 0.05), or Glu levels (r = -0.77, P < 0.05) highlight the existence of a stress condition, which is connected to an energetic deficit related to lactation. PMID:20449652

  2. Beyond Genotype: Serotonin Transporter Epigenetic Modification Predicts Human Brain Function

    PubMed Central

    Nikolova, Yuliya S.; Koenen, Karestan C.; Galea, Sandro; Wang, Chiou-Miin; Seney, Marianne L.; Sibille, Etienne; Williamson, Douglas E.; Hariri, Ahmad R.

    2014-01-01

    We examined epigenetic regulation in regards to behaviorally and clinically relevant human brain function. Specifically, we found that increased promoter methylation of the serotonin transporter gene predicted increased threat-related amygdala reactivity and decreased mRNA expression in postmortem amygdala tissue. These patterns were independent of functional genetic variation in the same region. Furthermore, the association with amygdala reactivity was replicated in a second cohort and was robust to both sampling methods and age. PMID:25086606

  3. Serotonin and norepinephrine reuptake inhibition and eating behavior.

    PubMed

    Hainer, Vojtech; Kabrnova, Karolina; Aldhoon, Bashar; Kunesova, Marie; Wagenknecht, Martin

    2006-11-01

    Brain neurotransmitters, serotonin and norepinephrine, play an important role in the central nervous control of energy balance and are involved in symptomatology related to both obesity and depression. Therefore both serotonin and norepinephrine neural pathways have been paid a special attention as targets for the antiobesity drugs, antidepressants, and drugs used in the treatment of eating disorders. Selective serotonin reuptake inhibitors (SSRI) have been used in the treatment of depression and eating disorders but have failed to achieve sustained weight loss in the treatment of obesity. Sibutramine, a serotonin and norepinephrine reuptake inhibitor, which induces satiety and prevents decline in metabolic rate associated with a hypocaloric diet, is currently the sole centrally acting drug indicated for the long-term treatment of obesity. Depression, dietary disinhibition (evaluated by the Eating Inventory [EI]), and stress are associated with the accumulation of abdominal fat and the development of metabolic syndrome and related diseases. Subjects with abdominal obesity demonstrate neuroendocrine abnormalities which result in disturbances in hypothalamo-pituitary-adrenal (HPA) function. Treatment with SSRI might interrupt the vicious circle which leads to endocrine abnormalities and the accumulation of abdominal fat. Obesity treatment with sibutramine results, not only in significant weight loss, but also in reduction of abdominal fat and in the improvement of health risks associated with metabolic syndrome (lipid profile, blood glucose, insulin, HbA1c, and uric acid), as well as in the decline in disinhibition score of the EI. In a 1-year sibutramine trial, only a decrease in the disinhibition score remained a significant correlate of weight loss among the psychobehavioral and nutritional factors which were taken into account. PMID:17148744

  4. Oestradiol modulation of serotonin reuptake transporter and serotonin metabolism in the brain of monkeys.

    PubMed

    Sánchez, M G; Morissette, M; Di Paolo, T

    2013-06-01

    Serotonin (5-hydroxytryptamine; 5-HT) is an important brain neurotransmitter that is implicated in mental and neurodegenerative diseases and is modulated by ovarian hormones. Nevertheless, the effect of oestrogens on 5-HT neurotransmission in the primate caudate nucleus, putamen and nucleus accumbens, which are major components of the basal ganglia, and the anterior cerebral cortex, mainly the frontal and cingulate gyrus, is not well documented. The present study evaluated 5-HT reuptake transporter (SERT) and 5-HT metabolism in these brain regions in response to 1-month treatment with 17β-oestradiol in short-term (1 month) ovariectomised (OVX) monkeys (Macaca fascicularis). SERT-specific binding was measured by autoradiography using the radioligand [³H]citalopram. Biogenic amine concentrations were quantified by high-performance liquid chromatography. 17β-Oestradiol increased SERT in the superior frontal cortex and in the anterior cingulate cortex, in the nucleus accumbens, and in subregions of the caudate nucleus of OVX monkeys. 17β-Oestradiol left [³H]citalopram-specific binding unchanged in the putamen, as well as the dorsal and medial raphe nucleus. 17β-Oestradiol treatment decreased striatal concentrations of the precursor of 5-HT, 5-hydroxytryptophan, and increased 5-HT, dopamine and 3-methoxytyramine concentrations in the nucleus accumbens, caudate nucleus and putamen, whereas the concentrations of the metabolites 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid and homovanillic acid remained unchanged. No effect of 17β-oestradiol treatment was observed for biogenic amine concentrations in the cortical regions. A significant positive correlation was observed between [³H]citalopram-specific binding and 5-HT concentrations in the caudate nucleus, putamen and nucleus accumbens, suggesting their link. These results have translational value for women with low oestrogen, such as those in surgical menopause or perimenopause. PMID:23414342

  5. Phasic alterations in dopamine and serotonin release in striatum and prefrontal cortex in response to cocaine predictive cues in behaving rhesus macaques.

    PubMed

    Bradberry, Charles W; Rubino, Susan R

    2004-04-01

    The ability of environmental cues associated with cocaine availability to cause relapse may result from conditioned activation of dopamine (DA) release. We examined this hypothesis in macaque monkeys by conducting microdialysis studies in animals during exposure to a cocaine predictive compound cue. In addition to studying DA release in mesolimbic and sensorimotor striatum, both DA and serotonin levels were determined in the prefrontal cortex (medial orbitofrontal and anterior cingulate). The compound cue employed visual, auditory, and olfactory components, and was salient to the animals as demonstrated by anticipatory lever pressing in the absence of cocaine. During a 10-min period of exposure prior to cocaine availability, there was no significant increase in striatal or cortical DA. The addition of a DA uptake inhibitor to the striatal perfusate to reduce the potential interference of neuronal uptake did not alter the results. In contrast to the lack of any change in striatal DA, a significant decrease in extracellular serotonin in the prefrontal cortex during the 10 min of cue exposure was observed. PMID:14747825

  6. The serotonin aldehyde, 5-HIAL, oligomerizes alpha-synuclein.

    PubMed

    Jinsmaa, Yunden; Cooney, Adele; Sullivan, Patricia; Sharabi, Yehonatan; Goldstein, David S

    2015-03-17

    In Parkinson's disease (PD) alpha-synuclein oligomers are thought to be pathogenic, and 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate aldehyde intermediate in neuronal dopamine metabolism, potently oligomerizes alpha-synuclein. PD involves alpha-synuclein deposition in brainstem raphe nuclei; however, whether 5-hydroxyindoleacetaldehyde (5-HIAL), the aldehyde of serotonin, oligomerizes alpha-synuclein has been unknown. In this study we tested whether 5-HIAL oligomerizes alpha-synuclein in vitro and in PC12 cells conditionally over-expressing alpha-synuclein. Alpha-synuclein oligomers were quantified by western blotting after incubation of alpha-synuclein with serotonin and monoamine oxidase-A (MAO-A) to generate 5-HIAL or dopamine to generate DOPAL. Oligomerization of alpha-synuclein in PC12 cells over-expressing the protein was compared between vehicle-treated cells and cells incubated with levodopa to generate DOPAL or 5-hydroxytryptophan to generate 5-HIAL. Monoamine aldehyde mediation of the oligomerization was assessed using the MAO inhibitor, pargyline. Dopamine and serotonin incubated with MAO-A both strongly oligomerized alpha-synuclein (more than 10 times control); pargyline blocked the oligomerization. In synuclein overexpressing PC12 cells, levodopa and 5-hydroxytryptophan elicited pargyline-sensitive alpha-synuclein oligomerization. 5-HIAL oligomerizes alpha-synuclein both in vitro and in synuclein-overexpressing PC12 cells, in a manner similar to DOPAL. The findings may help explain loss of serotonergic neurons in PD. PMID:25637699

  7. The serotonin aldehyde, 5-HIAL, oligomerizes alpha-synuclein

    PubMed Central

    Jinsmaa, Yunden; Cooney, Adele; Sullivan, Patricia; Sharabi, Yehonatan; Goldstein, David S.

    2016-01-01

    In Parkinson’s disease (PD) alpha-synuclein oligomers are thought to be pathogenic, and 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate aldehyde intermediate in neuronal dopamine metabolism, potently oligomerizes alpha-synuclein. PD involves alpha-synuclein deposition in brainstem raphe nuclei; however, whether 5-hydroxyindoleacetaldehyde (5-HIAL), the aldehyde of serotonin, oligomerizes alpha-synuclein has been unknown. In this study we tested whether 5-HIAL oligomerizes alpha-synuclein in vitro and in PC12 cells conditionally over-expressing alpha-synuclein. Alpha-synuclein oligomers were quantified by western blotting after incubation of alpha-synuclein with serotonin and monoamine oxidase-A (MAO-A) to generate 5-HIAL or dopamine to generate DOPAL. Oligomerization of alpha-synuclein in PC12 cells over-expressing the protein was compared between vehicle-treated cells and cells incubated with levodopa to generate DOPAL or 5-hydroxytryptophan to generate 5-HIAL. Monoamine aldehyde mediation of the oligomerization was assessed using the MAO inhibitor, pargyline. Dopamine and serotonin incubated with MAO-A both strongly oligomerized alpha-synuclein (more than 10 times control); pargyline blocked the oligomerization. In synuclein overexpressing PC12 cells, levodopa and 5-hydroxytryptophan elicited pargyline-sensitive alpha-synuclein oligomerization. 5-HIAL oligomerizes alpha-synuclein both in vitro and in synuclein-overexpressing PC12 cells, in a manner similar to DOPAL. The findings may help explain loss of serotonergic neurons in PD. PMID:25637699

  8. Serotonin 6 receptor controls alzheimer’s disease and depression

    PubMed Central

    Kim, Eun-Cheol; Kim, Sanghyeon; Hong, Jin Tae

    2015-01-01

    Alzheimer’s disease (AD) and depression in late life are one of the most severe health problems in the world disorders. Serotonin 6 receptor (5-HT6R) has caused much interest for potential roles in AD and depression. However, a causative role of perturbed 5-HT6R function between two diseases was poorly defined. In the present study, we found that a 5-HT6R antagonist, SB271036 rescued memory impairment by attenuating the generation of Aβ via the inhibition of γ-secretase activity and the inactivation of astrocytes and microglia in the AD mouse model. It was found that the reduction of serotonin level was significantly recovered by SB271036, which was mediated by an indirect regulation of serotonergic neurons via GABA. Selective serotonin reuptake inhibitor (SSRI), fluoxetine significantly improved cognitive impairment and behavioral changes. In human brain of depression patients, we then identified the potential genes, amyloid beta (A4) precursor protein-binding, family A, member 2 (APBA2), well known AD modulators by integrating datasets from neuropathology, microarray, and RNA seq. studies with correlation analysis tools. And also, it was demonstrated in mouse models and patients of AD. These data indicate functional network of 5-HT6R between AD and depression. PMID:26449188

  9. [A case of serotonin syndrome following minimum doses of sertraline].

    PubMed

    Kan, Rumiko; Endou, Masatoshi; Unno, Yukihiro

    2009-01-01

    We report a 75-year-old woman developing serotonin syndrome following minimum doses of sertraline. She showed a depressed mood, insomnia, and general fatigue and was taking sulpiride at 300 mg/day, alprazolam at 1.2 mg/day, zopiclone at 7.5 mg/day, and etizolam at 1 mg/day. As she remained symptomatic, sertraline at 25 mg/day was added. Within 14 hours of starting sertraline, the patient began to experience delirium, impaired coordination, diaphoresis, tremulousness of the upper limbs bilaterally, and agitation. Sertraline was thus discontinued, and all of the above-mentioned symptoms disappeared rapidly. Serotonin syndrome is rarely reported in patients taking sertraline in Japan. To our knowledge, ours is the second case of serotonin syndrome associated with sertraline in Japan. According to Drug in Japan, sertraline must be started at the lowest efficacious dose with slow titration and is contraindicated for patients who are taking pimozide or monoamine oxidase inhibitors (MAOIs). Also, the coadministration of sertraline with other agents such as lithium, tricyclic antidepressants, and triptans necessitates the close observation of symptoms and signs. However, our case didn't take any of these combinations, and she was administered 25 mg/day, the lowest efficacious dose. This report emphasizes that caution is needed when prescribing sertraline to elderly patients and on its coadministration. PMID:19999561

  10. Ventilatory adaptation to hypoxia occurs in serotonin-depleted rats.

    PubMed

    Olson, E B

    1987-08-01

    To test the hypothesis that serotonin mediated respiratory activity is involved in ventilatory adaptation to hypoxia, rats were treated with parachlorophenylalanine (PCPA), a potent, long-acting inhibitor of tryptophan hydroxylase, the rate-limiting enzyme in the biosynthesis of serotonin. In normoxia, a single, intraperitoneal injection of 300 mg PCPA/kg body weight decreased the Paco2 from a control level at 39.1 +/- 0.6 Torr (mean +/- 95% confidence limits) to 34.0 +/- 0.6 Torr measured during a period from 1 to 48 h following PCPA treatment. This PCPA-produced hyperventilation corresponds to an increase of 3.7 +/- 0.5 in the VA (BTPS)/Vco2 (STPD) ratio. Hyperventilation during ventilatory adaptation to hypoxia (PIO2 approximately equal to 90 Torr) was superimposed in an additive fashion on the underlying hyperventilation due to PCPA pretreatment. Specifically, PCPA pretreatment caused an average 3.5 +/- 1.2 increase in the VA/VCO2 ratio determined in acute (1 h) hypoxia, chronic (24 h) hypoxia and acute return to normoxia following chronic hypoxia. Since ventilatory adaptation to hypoxia occurred in rats treated with PCPA, the prolonged, serotonin mediated respiratory activity described by Millhorn et al. (1980b) is probably not important in ventilatory acclimatization to - or deacclimatization from - hypoxia. PMID:2957766

  11. Blockade of the GLT-1 Transporter in the Central Nucleus of the Amygdala Induces both Anxiety and Depressive-Like Symptoms

    PubMed Central

    John, Catherine S; Sypek, Elizabeth I; Carlezon, William A; Cohen, Bruce M; Öngür, Dost; Bechtholt, Anita J

    2015-01-01

    Depression has been associated with abnormalities in glutamatergic neurotransmission and decreased astrocyte number in limbic areas. We previously demonstrated that global and prefrontal cortical blockade of the astrocytic glutamate transporter (GLT-1) induces anhedonia and c-Fos expression in areas that regulate anxiety, including the central amygdala (CEA). Given the role of the amygdala in anxiety and the high degree of comorbidity between anxiety and depression, we hypothesized that GLT-1 blockade in the CEA would induce symptoms of anhedonia and anxiety in rats. We microinjected the GLT-1 inhibitor, dihydrokainic acid (DHK), into the CEA and examined effects on intracranial self-stimulation (ICSS) as an index of hedonic state, and on behavior in two anxiety paradigms, elevated plus maze (EPM) and fear conditioning. At lower doses, intra-CEA DHK produced modest increases in ICSS responding (T0). Higher doses resulted in complete cessation of responding for 15 min, suggesting an anhedonic or depressive-like effect. Intra-CEA DHK also increased anxiety-like behavior such that percent time in the open arms and total entries were decreased in the EPM and acquisition of freezing behavior to the tone was increased in a fear-conditioning paradigm. These effects did not appear to be explained by non-specific changes in activity, because effects on fear conditioning were assessed in a drug-free state, and a separate activity test showed no significant effects of intra-CEA DHK on locomotion. Taken together, these studies suggest that blockade of GLT-1 in the CEA is sufficient to induce both anhedonia and anxiety and therefore that a lack of glutamate uptake resulting from glial deficits may contribute to the comorbidity of depression and anxiety. PMID:25586634

  12. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    PubMed

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. PMID:27142747

  13. Exocytosis of serotonin from the neuronal soma is sustained by a serotonin and calcium-dependent feedback loop

    PubMed Central

    Leon-Pinzon, Carolina; Cercós, Montserrat G.; Noguez, Paula; Trueta, Citlali; De-Miguel, Francisco F.

    2014-01-01

    The soma of many neurons releases large amounts of transmitter molecules through an exocytosis process that continues for hundreds of seconds after the end of the triggering stimulus. Transmitters released in this way modulate the activity of neurons, glia and blood vessels over vast volumes of the nervous system. Here we studied how somatic exocytosis is maintained for such long periods in the absence of electrical stimulation and transmembrane Ca2+ entry. Somatic exocytosis of serotonin from dense core vesicles could be triggered by a train of 10 action potentials at 20 Hz in Retzius neurons of the leech. However, the same number of action potentials produced at 1 Hz failed to evoke any exocytosis. The 20-Hz train evoked exocytosis through a sequence of intracellular Ca2+ transients, with each transient having a different origin, timing and intracellular distribution. Upon electrical stimulation, transmembrane Ca2+ entry through L-type channels activated Ca2+-induced Ca2+ release. A resulting fast Ca2+ transient evoked an early exocytosis of serotonin from sparse vesicles resting close to the plasma membrane. This Ca2+ transient also triggered the transport of distant clusters of vesicles toward the plasma membrane. Upon exocytosis, the released serotonin activated autoreceptors coupled to phospholipase C, which in turn produced an intracellular Ca2+ increase in the submembrane shell. This localized Ca2+ increase evoked new exocytosis as the vesicles in the clusters arrived gradually at the plasma membrane. In this way, the extracellular serotonin elevated the intracellular Ca2+ and this Ca2+ evoked more exocytosis. The resulting positive feedback loop maintained exocytosis for the following hundreds of seconds until the last vesicles in the clusters fused. Since somatic exocytosis displays similar kinetics in neurons releasing different types of transmitters, the data presented here contributes to understand the cellular basis of paracrine neurotransmission

  14. Changes in Intensity of Serotonin Syndrome Caused by Adverse Interaction between Monoamine Oxidase Inhibitors and Serotonin Reuptake Blockers

    PubMed Central

    Tao, Rui; Rudacille, Mary; Zhang, Gongliang; Ma, Zhiyuan

    2014-01-01

    Drug interaction between inhibitors of monoamine oxidase (MAOIs) and selective serotonin (5-hydroxytryptamine, 5-HT) reuptake (SSRIs) induces serotonin syndrome, which is usually mild but occasionally severe in intensity. However, little is known about neural mechanisms responsible for the syndrome induction and intensification. In this study, we hypothesized that the syndrome induction and intensity utilize two different but inter-related mechanisms. Serotonin syndrome is elicited by excessive 5-HT in the brain (presynaptic mechanism), whereas syndrome intensity is attributed to neural circuits involving 5-HT2A and NMDA receptors (postsynaptic mechanism). To test this hypothesis, basal 5-HT efflux and postsynaptic circuits were pharmacologically altered in rats by once daily pretreatment of the MAOI clorgyline for 3, 6, or 13 days. Syndrome intensity was estimated by measuring 5-HT efflux, neuromuscular activity, and body-core temperature in response to challenge injection of clorgyline combined with the SSRI paroxetine. Results showed that the onset of serotonin syndrome is caused by 5-HT efflux exceeding 10-fold above baseline, confirming the presynaptic hypothesis. The neuromuscular and body-core temperature abnormalities, which were otherwise mild in drug-naive rats, were significantly intensified to a severe level in rats pretreated with daily clorgyline for 3 and 6 days but not in rats pretreated for 13 days. The intensified effect was blocked by M100907 and MK-801, suggesting that variation in syndrome intensity was mediated through a 5-HT2A and NMDA receptor-engaged circuit. Therefore, we concluded that pretreatments of MAOI pharmacologically alter the activity of postsynaptic circuits, which is responsible for changes in syndrome intensity. PMID:24577320

  15. Serotonin modulates responses to species-specific vocalizations in the inferior colliculus.

    PubMed

    Hurley, Laura M; Pollak, George D

    2005-06-01

    Neuromodulators such as serotonin are capable of altering the neural processing of stimuli across many sensory modalities. In the inferior colliculus, a major midbrain auditory gateway, serotonin alters the way that individual neurons respond to simple tone bursts and linear frequency modulated sweeps. The effects of serotonin are complex, and vary among neurons. How serotonin transforms the responses to spectrotemporally complex sounds of the type normally heard in natural settings has been poorly examined. To explore this issue further, the effects of iontophoretically applied serotonin on the responses of individual inferior colliculus neurons to a variety of recorded species-specific vocalizations were examined. These experiments were performed in the Mexican free-tailed bat, a species that uses a rich repertoire of vocalizations for the purposes of communication as well as echolocation. Serotonin frequently changed the number of recorded calls that were capable of evoking a response from individual neurons, sometimes increasing (15% of serotonin-responsive neurons), but usually decreasing (62% of serotonin-responsive neurons), this number. A functional consequence of these serotonin-evoked changes would be to change the population response to species-specific vocalizations. PMID:15830241

  16. Depressing Antidepressant: Fluoxetine Affects Serotonin Neurons Causing Adverse Reproductive Responses in Daphnia magna.

    PubMed

    Campos, Bruno; Rivetti, Claudia; Kress, Timm; Barata, Carlos; Dircksen, Heinrich

    2016-06-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants. As endocrine disruptive contaminants in the environment, SSRIs affect reproduction in aquatic organisms. In the water flea Daphnia magna, SSRIs increase offspring production in a food ration-dependent manner. At limiting food conditions, females exposed to SSRIs produce more but smaller offspring, which is a maladaptive life-history strategy. We asked whether increased serotonin levels in newly identified serotonin-neurons in the Daphnia brain mediate these effects. We provide strong evidence that exogenous SSRI fluoxetine selectively increases serotonin-immunoreactivity in identified brain neurons under limiting food conditions thereby leading to maladaptive offspring production. Fluoxetine increases serotonin-immunoreactivity at low food conditions to similar maximal levels as observed under high food conditions and concomitantly enhances offspring production. Sublethal amounts of the neurotoxin 5,7-dihydroxytryptamine known to specifically ablate serotonin-neurons markedly decrease serotonin-immunoreactivity and offspring production, strongly supporting the effect to be serotonin-specific by reversing the reproductive phenotype attained under fluoxetine. Thus, SSRIs impair serotonin-regulation of reproductive investment in a planktonic key organism causing inappropriately increased reproduction with potentially severe ecological impact. PMID:27128505

  17. Serotonin metabolism is dysregulated in cholangiocarcinoma, which has implications for tumor growth

    PubMed Central

    Alpini, Gianfranco; Invernizzi, Pietro; Gaudio, Eugenio; Venter, Julie; Kopriva, Shelley; Bernuzzi, Francesca; Onori, Paolo; Franchitto, Antonio; Stutes, Monique; Frampton, Gabriel; Alvaro, Domenico; Lee, Sum P.; Marzioni, Marco; Benedetti, Antonio; DeMorrow, Sharon

    2008-01-01

    Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. Symptoms are usually evident after blockage of the bile duct by the tumor and, at this late stage, they are relatively resistant to chemotherapy and radiation therapy. Therefore it is imperative that alternative treatment options are explored. We present novel data indicating that the metabolism of serotonin is dysregulated in cholangiocarcinoma cell lines compared to normal cholangiocytes and in tissue and bile from cholangiocarcinoma patients. Specifically there was an increased expression of tryptophan hydroxylase 1 and a suppression of monoamine oxidase A expression (enzymes responsible for the synthesis and degradation of serotonin respectively) in cholangiocarcinoma. This resulted in an increased secretion of serotonin from cholangiocarcinoma and increased serotonin in the bile from cholangiocarcinoma patients. Increased local serotonin release may have implications on cholangiocarcinoma cell growth. Serotonin administration increased cholangiocarcinoma cell growth in vitro, whereas inhibition of serotonin synthesis decreases tumor cell growth both in vitro and in vivo. The data presented here represents the first evidence that serotonin metabolism is dysregulated in cholangiocarcinoma and that modulation of serotonin synthesis may represent an alternative target for the development of therapeutic strategies. PMID:19010890

  18. Effects of 60-Hz electric fields on serotonin metabolism in the rat pineal gland

    SciTech Connect

    Anderson, L.E.; Hilton, D.I.; Phillips, R.D.; Wilson, B.W.; Chess, E.K.

    1982-06-01

    Serotonin and two of its metabolites, melatonin and 5-methoxytryptophol, exhibit circadian rhythmicity in the pineal gland. We recently reported a marked reduction in the normal night-time increase in melatonin concentration in the pineal glands of rats exposed to 60-Hz electric fields. Concomitant with the apparent abolition of melatonin rhythmicity, serotonin-N-acetyl transferase (SNAT) activity was suppressed. We have now conducted studies to determine if abolition of the rhythm in melatonin production in electric-field-exposed rats arises solely from interference in SNAT activity, or if the availability of pineal serotonin is a factor that is affected by exposure. Pineal serotonin concentrations were compared in rats that were either exposed or sham exposed to 65 kV/m for 30 days. Sham-exposed animals exhibited normal diurnal rhythmicity for pineal concentrations of both melatonin and serotonin; melatonin levels increased markedly during the dark phase with a concurrent decrease in serotonin levels. In the exposed animals, however, normal serotonin rhythmicity was abolished; serotonin levels in these animals did not increase during the light period. The conclusion that electric field exposure results in a biochemical alteration in SNAT enzyme activity can be inferred from the loss of both serotonin and melatonin rhythmicity, as well as by direct measurement of SNAT activity itself. 35 references, 3 figures, 1 table.

  19. Serotonin content of platelets in inflammatory rheumatic diseases. Correlation with clinical activity.

    PubMed

    Zeller, J; Weissbarth, E; Baruth, B; Mielke, H; Deicher, H

    1983-04-01

    Significantly decreased platelet serotonin contents were measured in rheumatoid arthritis, systemic lupus erythematosus (SLE), progressive systemic sclerosis, and mixed connective tissue disease. An inverse relationship between platelet serotonin levels and clinical disease activity was observed in both rheumatoid arthritis and systemic lupus erythematosus. SLE patients with multiple organ involvement showed the lowest platelet serotonin values. No correlation was observed between platelet serotonin contents and nonsteroidal antiinflammatory drug treatment, presence of circulating platelet reactive IgG, or the amount of circulating immune complexes. The results are interpreted as indicating platelet release occurring in vivo during inflammatory episodes of the rheumatic disorders investigated. PMID:6838676

  20. [The role of serotonin in the immune system development and functioning during ontogenesis].

    PubMed

    Mel'nikova, V I; Izvol'skaia, M S; Voronova, S N; Zakharova, L A

    2012-01-01

    In this study, we investigated the influence of serotonin on the development and functioning of T- and B-cell-mediated immunity during ontogenesis using the pharmacological model of serotonin depletion in rat fetuses. It has been demonstrated that prenatal serotonin deficiency resulted in a decrease in thymus and spleen weights, changes in their cellular composition, and long-lasting disturbances in cell-mediated and humoral immunity in postnatal ontogenesis. The data obtained suggest that serotonin may be considered a morphogenic factor in development of the immune system. PMID:22834312

  1. Radioenzymatic microassay for picogram quantities of serotonin or acetylserotonin in biological fluids and tissues

    SciTech Connect

    Hussain, M.N.; Benedict, C.R.

    1987-06-01

    This paper describes several modifications of the original radioenzymatic assay for serotonin which increase the sensitivity of the assay 20-fold as well as enhance its reliability. Using this method serotonin concentrations can be directly measured in biological examples without precleaning the sample. When compared to currently available methods this assay is specific and sensitive to approximately 1 pg of serotonin and can be used to measure serotonin levels in individual brain nuclei or microliter quantities of biological fluids. This assay can be easily adapted for the direct measurement of N-acetylserotonin. A large number of samples can be assayed in a single working day.

  2. Sex- and SERT-mediated differences in stimulated serotonin revealed by fast microdialysis.

    PubMed

    Yang, Hongyan; Sampson, Maureen M; Senturk, Damla; Andrews, Anne M

    2015-08-19

    In vivo microdialysis is widely used to investigate how neurotransmitter levels in the brain respond to biologically relevant challenges. Here, we combined recent improvements in the temporal resolution of online sampling and analysis for serotonin with a brief high-K(+) stimulus paradigm to study the dynamics of evoked release. We observed stimulated serotonin overflow with high-K(+) pulses as short as 1 min when determined with 2-min dialysate sampling in ventral striatum. Stimulated serotonin levels in female mice during the high estrogen period of the estrous cycle were similar to serotonin levels in male mice. By contrast, stimulated serotonin overflow during the low estrogen period in female mice was increased to levels similar to those in male mice with local serotonin transporter (SERT) inhibition. Stimulated serotonin levels in mice with constitutive loss of SERT were considerably higher yet, pointing to neuroadaptive potentiation of serotonin release. When combined with brief K(+) stimulation, fast microdialysis reveals dynamic changes in extracellular serotonin levels associated with normal hormonal cycles and pharmacologic vs genetic loss of SERT function. PMID:26167657

  3. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    SciTech Connect

    Brogi, Bharat Bhushan Ahluwalia, P. K.; Chand, Shyam

    2015-06-24

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.

  4. [Genetic Mutation Accumulation and Clinical Outcome of Immune Checkpoint Blockade Therapy].

    PubMed

    Takahashi, Masanobu

    2016-06-01

    Immune checkpoint blockade therapy has recently attracted great attention in the area of oncology. In Japan, since 2014, an anti-PD-1antibody nivolumab and anti-CTLA-4 antibody ipilimumab have been available for the treatment of patients with malignant melanoma, and nivolumab has been available for patients with non-small cell lung cancer. Clinical trials using these drugs and other immune checkpoint inhibitors are currently in progress worldwide. The immune checkpoint blockade therapy is a promising new cancer therapy; however, not all patients with cancer can benefit from this therapy. Recent evidence shows that markers reflecting the extent of genetic mutation accumulation, including mutation burden, non-synonymous mutation that produces neoantigen, and microsatellite instability, possibly serve as promising marker to predict who can benefit from the immune checkpoint blockade therapy. Here, I introduce the recent evidence and discuss the correlation between genetic mutation accumulation and clinical outcome of immune checkpoint blockade therapy. PMID:27306805

  5. EXTRINSIC COAGULATION BLOCKADE ATTENUATES LUNG INJURY AND PROINFLAMMATORY CYTOKINE RELEASE AFTER INTRATRACHEAL LIPOPOLYSACCHARIDE

    EPA Science Inventory

    Initiation of coagulation by tissue factor (TF) is a potentially powerful regulator of local inflammatory responses. We hypothesized that blockade of TF-factor VIIa (FVIIa) complex would decrease lung inflammation and proinflammatory cytokine release after tracheal instillation o...

  6. Facilitating T Cell Infiltration in Tumor Microenvironment Overcomes Resistance to PD-L1 Blockade.

    PubMed

    Tang, Haidong; Wang, Yang; Chlewicki, Lukasz K; Zhang, Yuan; Guo, Jingya; Liang, Wei; Wang, Jieyi; Wang, Xiaoxiao; Fu, Yang-Xin

    2016-03-14

    Immune checkpoint blockade therapies fail to induce responses in the majority of cancer patients, so how to increase the objective response rate becomes an urgent challenge. Here, we demonstrate that sufficient T cell infiltration in tumor tissues is a prerequisite for response to PD-L1 blockade. Targeting tumors with tumor necrosis factor superfamily member LIGHT activates lymphotoxin β-receptor signaling, leading to the production of chemokines that recruit massive numbers of T cells. Furthermore, targeting non-T cell-inflamed tumor tissues by antibody-guided LIGHT creates a T cell-inflamed microenvironment and overcomes tumor resistance to checkpoint blockade. Our data indicate that targeting LIGHT might be a potent strategy to increase the responses to checkpoint blockades and other immunotherapies in non-T cell-inflamed tumors. PMID:26977880

  7. Blockaded six- and eight-wave mixing processes tailored by electromagnetically induced transparency scissors

    NASA Astrophysics Data System (ADS)

    Zheng, H. B.; Yao, X.; Zhang, Z. Y.; Che, J. L.; Zhang, Y. Q.; Zhang, Y. P.; Xiao, M.

    2014-04-01

    We report the first experimental observations of the blockaded six- and eight-wave mixing processes in a collective multi-level Rydberg atomic ensemble tailored by multi-channel scissors and created by three coexisting electromagnetically induced transparency (EIT) windows. The interplay between the dressed-state effect and the Rydberg blockade caused by strong van der Waals interactions is investigated when several parameters in the excitation lasers are changed. Blockaded multi-wave mixing (MWM) signals are obtained when the coupling frequency detuning is changed, which is improved to give multiple channels when the probe detuning is scanned. Such MWM signals tailored by EIT scissors produce a much narrower linewidth and therefore are suitable for application in long-distance quantum communication. The advantages of having multi-channel blockaded MWM signals also makes potential applications in demonstrating multi-channel entanglement possible and improves the performance of quantum computation with Rydberg atoms.

  8. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.

    PubMed

    Vétizou, Marie; Pitt, Jonathan M; Daillère, Romain; Lepage, Patricia; Waldschmitt, Nadine; Flament, Caroline; Rusakiewicz, Sylvie; Routy, Bertrand; Roberti, Maria P; Duong, Connie P M; Poirier-Colame, Vichnou; Roux, Antoine; Becharef, Sonia; Formenti, Silvia; Golden, Encouse; Cording, Sascha; Eberl, Gerard; Schlitzer, Andreas; Ginhoux, Florent; Mani, Sridhar; Yamazaki, Takahiro; Jacquelot, Nicolas; Enot, David P; Bérard, Marion; Nigou, Jérôme; Opolon, Paule; Eggermont, Alexander; Woerther, Paul-Louis; Chachaty, Elisabeth; Chaput, Nathalie; Robert, Caroline; Mateus, Christina; Kroemer, Guido; Raoult, Didier; Boneca, Ivo Gomperts; Carbonnel, Franck; Chamaillard, Mathias; Zitvogel, Laurence

    2015-11-27

    Antibodies targeting CTLA-4 have been successfully used as cancer immunotherapy. We find that the antitumor effects of CTLA-4 blockade depend on distinct Bacteroides species. In mice and patients, T cell responses specific for B. thetaiotaomicron or B. fragilis were associated with the efficacy of CTLA-4 blockade. Tumors in antibiotic-treated or germ-free mice did not respond to CTLA blockade. This defect was overcome by gavage with B. fragilis, by immunization with B. fragilis polysaccharides, or by adoptive transfer of B. fragilis-specific T cells. Fecal microbial transplantation from humans to mice confirmed that treatment of melanoma patients with antibodies against CTLA-4 favored the outgrowth of B. fragilis with anticancer properties. This study reveals a key role for Bacteroidales in the immunostimulatory effects of CTLA-4 blockade. PMID:26541610

  9. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota

    PubMed Central

    Vétizou, Marie; Pitt, Jonathan M.; Daillère, Romain; Lepage, Patricia; Waldschmitt, Nadine; Flament, Caroline; Rusakiewicz, Sylvie; Routy, Bertrand; Roberti, Maria P.; Duong, Connie P. M.; Poirier-Colame, Vichnou; Roux, Antoine; Becharef, Sonia; Formenti, Silvia; Golden, Encouse; Cording, Sascha; Eberl, Gerard; Schlitzer, Andreas; Ginhoux, Florent; Mani, Sridhar; Yamazaki, Takahiro; Jacquelot, Nicolas; Enot, David P.; Bérard, Marion; Nigou, Jérôme; Opolon, Paule; Eggermont, Alexander; Woerther, Paul-Louis; Chachaty, Elisabeth; Chaput, Nathalie; Robert, Caroline; Mateus, Christina; Kroemer, Guido; Raoult, Didier; Boneca, Ivo Gomperts; Carbonnel, Franck; Chamaillard, Mathias; Zitvogel, Laurence

    2016-01-01

    Antibodies targeting CTLA-4 have been successfully used as cancer immunotherapy. We find that the antitumor effects of CTLA-4 blockade depend on distinct Bacteroides species. In mice and patients, T cell responses specific for B. thetaiotaomicron or B. fragilis were associated with the efficacy of CTLA-4 blockade. Tumors in antibiotic-treated or germ-free mice did not respond to CTLA blockade. This defect was overcome by gavage with B. fragilis, by immunization with B. fragilis polysaccharides, or by adoptive transfer of B. fragilis–specific T cells. Fecal microbial transplantation from humans to mice confirmed that treatment of melanoma patients with antibodies against CTLA-4 favored the outgrowth of B. fragilis with anticancer properties. This study reveals a key role for Bacteroidales in the immunostimulatory effects of CTLA-4 blockade. PMID:26541610

  10. Peripheral serotonin-mediated system suppresses bone development and regeneration via serotonin 6 G-protein-coupled receptor

    PubMed Central

    Yun, Hyung-Mun; Park, Kyung-Ran; Hong, Jin Tae; Kim, Eun-Cheol

    2016-01-01

    Serotonin is important in brain functions and involved in neurological diseases. It is also drawn considerable attention in bone disease since it mainly produced by the gut. Serotonin 6 G-protein-coupled receptor (5-HT6R) is clinical targets for the treatment of neurological diseases. However, 5-HT6R as a therapeutic target in bone has not been reported. Herein, we found that 5-HT6R showed higher expression in bone, and its expression was increased during bone remodeling and osteoblast differentiation. The activation of 5-HT6R by ST1936 caused the inhibition of ALP activity and mineralization in primary osteoblast cultures, which was antagonized by SB258585, an antagonist and by the knockdown of 5-HT6R. Further investigation indicated that 5-HT6R inhibited osteoblast differentiation via Jab1 in BMP2 signaling but not PKA and ERK1/2. In vivo studies showed that the activation of 5-HT6R inhibited bone regeneration in the calvarial defect mice and also delayed bone development in newborn mice; this response was antagonized by SB258585. Therefore, our findings indicate a key role of 5-HT6R in bone formation through serotonin originating in the peripheral system, and suggest that it is a novel therapeutic target for drug development in the bone repair and bone diseases. PMID:27581523

  11. Peripheral serotonin-mediated system suppresses bone development and regeneration via serotonin 6 G-protein-coupled receptor.

    PubMed

    Yun, Hyung-Mun; Park, Kyung-Ran; Hong, Jin Tae; Kim, Eun-Cheol

    2016-01-01

    Serotonin is important in brain functions and involved in neurological diseases. It is also drawn considerable attention in bone disease since it mainly produced by the gut. Serotonin 6 G-protein-coupled receptor (5-HT6R) is clinical targets for the treatment of neurological diseases. However, 5-HT6R as a therapeutic target in bone has not been reported. Herein, we found that 5-HT6R showed higher expression in bone, and its expression was increased during bone remodeling and osteoblast differentiation. The activation of 5-HT6R by ST1936 caused the inhibition of ALP activity and mineralization in primary osteoblast cultures, which was antagonized by SB258585, an antagonist and by the knockdown of 5-HT6R. Further investigation indicated that 5-HT6R inhibited osteoblast differentiation via Jab1 in BMP2 signaling but not PKA and ERK1/2. In vivo studies showed that the activation of 5-HT6R inhibited bone regeneration in the calvarial defect mice and also delayed bone development in newborn mice; this response was antagonized by SB258585. Therefore, our findings indicate a key role of 5-HT6R in bone formation through serotonin originating in the peripheral system, and suggest that it is a novel therapeutic target for drug development in the bone repair and bone diseases. PMID:27581523

  12. Serotonin 1A and Serotonin 4 Receptors: Essential Mediators of the Neurogenic and Behavioral Actions of Antidepressants.

    PubMed

    Samuels, Benjamin Adam; Mendez-David, Indira; Faye, Charlène; David, Sylvain André; Pierz, Kerri A; Gardier, Alain M; Hen, René; David, Denis J

    2016-02-01

    Selective serotonin reuptake inhibitors are the mostly widely used treatment for major depressive disorders and also are prescribed for several anxiety disorders. However, similar to most antidepressants, selective serotonin reuptake inhibitors suffer from two major problems: They only show beneficial effects after 2 to 4 weeks and only about 33% of patients show remission to first-line treatment. Thus, there is a considerable need for development of more effective antidepressants. There is a growing body of evidence supporting critical roles of 5-HT1A and 5-HT4 receptor subtypes in mediating successful depression treatments. In addition, appropriate activation of these receptors may be associated with a faster onset of the therapeutic response. This review will examine the known roles of 5-HT1A and 5-HT4 receptors in mediating both the pathophysiology of depression and anxiety and the treatment of these mood disorders. At the end of the review, the role of these receptors in the regulation of adult hippocampal neurogenesis will also be discussed. Ultimately, we propose that novel antidepressant drugs that selectively target these serotonin receptors could be developed to yield improvements over current treatments for major depressive disorders. PMID:25488850

  13. Serotonin induces the migration of PC12 cells via the serotonin receptor 6/cAMP/ERK pathway

    PubMed Central

    KOIZUMI, KEITA; NAKAJIMA, HIDEO

    2014-01-01

    Serotonin (5-HT) functions as a chemoattractant that modulates neural migration during prenatal and early postnatal development. However, its molecular mechanism remains to be elucidated. The effect of 5-HT on neural cell migration was examined using PC12 neuron-like cell line. Transwell migration assay was used to determine the effect of 5-HT on PC12 cell migration. The results demonstrated that 5-HT and nerve growth factor (NGF) induced PC12 cell migration in a dose-dependent manner. Additionally, 5-HT receptor antagonists suggest that 5-HT-induced migration was mediated by serotonin receptor 6 (5-HT6), a Gs-protein coupled receptor that elevates the intercellular cAMP level. By contrast, antagonists of serotonin receptor 3 (5-HT3) did not show any effects on PC12 cell migration. Clozapine, an inhibitor of cAMP accumulation mediated by 5-HT6, significantly reduced the effect of 5-HT on the PC12 cell migration. An inhibitor of extracellular signal-regulated kinase (ERK) also suppressed migration. These results suggest that 5-HT induces PC12 cell migration by activating cAMP/ERK signaling pathways, which is mediated by 5-HT6 receptor. PMID:24649064

  14. Serotonin 1A and Serotonin 4 Receptors: Essential Mediators of the Neurogenic and Behavioral Actions of Antidepressants

    PubMed Central

    Samuels, Benjamin Adam; Mendez-David, Indira; Faye, Charlène; David, Sylvain André; Pierz, Kerri A.; Gardier, Alain M.; Hen, René; David, Denis J.

    2016-01-01

    Selective serotonin reuptake inhibitors are the mostly widely used treatment for major depressive disorders and also are prescribed for several anxiety disorders. However, similar to most antidepressants, selective serotonin reuptake inhibitors suffer from two major problems: They only show beneficial effects after 2 to 4 weeks and only about 33% of patients show remission to first-line treatment. Thus, there is a considerable need for development of more effective antidepressants. There is a growing body of evidence supporting critical roles of 5-HT1A and 5-HT4 receptor subtypes in mediating successful depression treatments. In addition, appropriate activation of these receptors may be associated with a faster onset of the therapeutic response. This review will examine the known roles of 5-HT1A and 5-HT4 receptors in mediating both the pathophysiology of depression and anxiety and the treatment of these mood disorders. At the end of the review, the role of these receptors in the regulation of adult hippocampal neurogenesis will also be discussed. Ultimately, we propose that novel antidepressant drugs that selectively target these serotonin receptors could be developed to yield improvements over current treatments for major depressive disorders. PMID:25488850

  15. Binding of serotonin and N1-benzenesulfonyltryptamine-related analogs at human 5-HT6 serotonin receptors: receptor modeling studies.

    PubMed

    Dukat, Małgorzata; Mosier, Philip D; Kolanos, Renata; Roth, Bryan L; Glennon, Richard A

    2008-02-14

    A population of 100 graphics models of the human 5-HT6 serotonin receptor was constructed based on the structure of bovine rhodopsin. The endogenous tryptamine-based agonist serotonin (5-HT; 1) and the benzenesulfonyl-containing tryptamine-derived 5-HT6 receptor antagonist MS-245 (4a) were automatically docked with each of the 100 receptor models using a genetic algorithm approach. Similar studies were conducted with the more selective 5-HT6 receptor agonist EMDT (5) and optical isomers of EMDT-related analog 8, as well as with optical isomers of MS-245 (4a)-related and benzenesulfonyl-containing pyrrolidine 6 and aminotetralin 7. Although associated with the same general aromatic/hydrophobic binding cluster, 5-HT (1) and MS-245 (4a) were found to preferentially bind with distinct receptor conformations, and did so with different binding orientations (i.e., poses). A 5-HT pose/model was found to be common to EMDT (5) and its analogs, whereas that identified for MS-245 (4a) was found common to benzenesulfonyl-containing compounds. Specific amino acid residues were identified that can participate in binding, and evaluation of a sulfenamide analog of MS-245 indicates for the first time that the presence of the sulfonyl oxygen atoms enhances receptor affinity. The results indicate that the presence or absence of an N1-benzenesulfonyl group is a major determinant of the manner in which tryptamine-related agents bind at 5-HT6 serotonin receptors. PMID:18201064

  16. Electronic ground state properties of Coulomb blockaded quantum dots

    NASA Astrophysics Data System (ADS)

    Patel, Satyadev Rajesh

    Conductance through quantum dots at low temperature exhibits random but repeatable fluctuations arising from quantum interference of electrons. The observed fluctuations follow universal statistics arising from the underlying universality of quantum chaos. Random matrix theory (RMT) has provided an accurate description of the observed universal conductance fluctuations (UCF) in "open" quantum dots (device conductance ≥e 2/h). The focus of this thesis is to search for and decipher the underlying origin of similar universal properties in "closed" quantum dots (device conductance ≤e2/ h). A series of experiments is presented on electronic ground state properties measured via conductance measurements in Coulomb blockaded quantum dots. The statistics of Coulomb blockade (CB) peak heights with zero and non-zero magnetic field measured in various devices agree qualitatively with predictions from Random Matrix Theory (RMT). The standard deviation of the peak height fluctuations for non-zero magnetic field is lower than predicted by RMT; the temperature dependence of the standard deviation of the peak height for non-zero magnetic field is also measured. The second experiment summarizes the statistics of CB peak spacings. The peak spacing distribution width is observed to be on the order of the single particle level spacing, Delta, for both zero and non-zero magnetic field. The ratio of the zero field peak spacing distribution width to the non-zero field peak spacing distribution width is ˜1.2; this is good agreement with predictions from spin-resolved RMT predictions. The standard deviation of the non-zero magnetic field peak spacing distribution width shows a T-1/2 dependence in agreement with a thermal averaging model. The final experiment summarizes the measurement of the peak height correlation length versus temperature for various quantum dots. The peak height correlation length versus temperature saturates in small quantum dots, suggesting spectral scrambling

  17. Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Ásgeirsdóttir, Herborg N; Cohen, Sarah J; Munchow, Alcira H; Barrera, Mercy P; Stackman, Robert W

    2013-01-01

    Excessive fear is a hallmark of several emotional and mental disorders such as phobias and panic disorders. Considerable attention is focused on defining the neurobiological mechanisms of the extinction of conditioned fear memory in an effort to identify mechanisms that may hold clinical significance for remediating aberrant fear memory. Serotonin modulates the acquisition and retention of conditioned emotional memory, and the serotonin 2A receptor (5HT2AR) may be one of the postsynaptic targets mediating such effects. Here we tested the hypothesis that the 5HT2AR regulates the consolidation and extinction of fear memory in male C57BL/6J mice. The influence of 5HT2ARs on memory consolidation was further confirmed with a novel object recognition task. With a trace fear conditioning paradigm, administration of the 5HT2AR agonist TCB-2 (1.0 mg/kg, i.p.) before the extinction test facilitated the acquisition of extinction of fear memory as compared to vehicle treatment. In contrast, administration of the 5HT2AR antagonist MDL 11,939 (0.5 mg/kg, i.p.) delayed the acquisition of extinction of fear memory. Further, the post-conditioning administration of TCB-2 enhanced contextual and cued fear memory, possibly by facilitating the consolidation of fear memory. Administration of TCB-2 also facilitated the acquisition of extinction of fear memory in delay fear conditioned mice. Stimulation or blockade of 5HT2ARs did not affect the encoding or retrieval of conditioned fear memory. Finally, administration of TCB-2 right after training in an object recognition task enhanced the consolidation of object memory. These results suggest that stimulation of 5HT2ARs facilitates the consolidation and extinction of trace and delay cued fear memory and the consolidation of object memory. Blocking the 5HT2AR impairs the acquisition of fear memory extinction. The results support the view that serotonergic activation of the 5HT2AR provides an important modulatory influence on circuits

  18. Immune checkpoint blockade in hepatocellular carcinoma: Current progress and future directions

    PubMed Central

    Hato, Tai; Goyal, Lipika; Greten, Tim F.; Duda, Dan G.; Zhu, Andrew X.

    2014-01-01

    Immune checkpoint blockade has recently emerged as a promising therapeutic approach for various malignancies including hepatocellular carcinoma (HCC). Preclinical and clinical studies have shown the potential benefit of modulating immunogenicity of HCC. In addition, recent advances in tumor immunology have broadened our understanding of the complex mechanism of immune evasion. In this review, we summarize the current knowledge on HCC immunology, and discuss the potential of immune checkpoint blockade as a novel HCC therapy from the basic, translational, and clinical perspectives. PMID:24912948

  19. Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Deng, Li; Chen, Ai-Xi; Zhang, Jian-Song

    2011-11-01

    We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.

  20. Blockade of opioid receptors in anterior cingulate cortex disrupts ethanol-seeking behavior in mice.

    PubMed

    Gremel, Christina M; Young, Emily A; Cunningham, Christopher L

    2011-06-01

    The anterior cingulate cortex (ACC) and opioid receptors have been suggested to play a role in attributing incentive motivational properties to drug-related cues. We examined whether blockade of ACC opioid receptors would reduce cue-induced ethanol-seeking behavior in mice. We show that intra-ACC opioid receptor blockade disrupted expression of an ethanol-induced conditioned place preference, suggesting that endogenous opioid modulation in the ACC may be critical for maintaining the cue's conditioned rewarding effects. PMID:21219940

  1. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression.

    PubMed

    Müller, N; Schwarz, M J

    2007-11-01

    Beside the well-known deficiency in serotonergic neurotransmission as pathophysiological correlate of major depression (MD), recent evidence points to a pivotal role of increased glutamate receptor activation as well. However, cause and interaction of these neurotransmitter alterations are not understood. In this review, we present a hypothesis integrating current concepts of neurotransmission and hypothalamus-pituitary-adrenal (HPA) axis dysregulation with findings on immunological alterations and alterations in brain morphology in MD. An immune activation including increased production of proinflammatory cytokines has repeatedly been described in MD. Proinflammatory cytokines such as interleukin-2, interferon-gamma, or tumor necrosis factor-alpha activate the tryptophan- and serotonin-degrading enzyme indoleamine 2,3-dioxygenase (IDO). Depressive states during inflammatory somatic disorders are also associated with increased proinflammatory cytokines and increased consumption of tryptophan via activation of IDO. An enhanced consumption of serotonin and its precursor tryptophan through IDO activation could well explain the reduced availability of serotonergic neurotransmission in MD. An increased activation of IDO and its subsequent enzyme kynurenine monooxygenase by proinflammatory cytokines, moreover, leads to an enhanced production of quinolinic acid, a strong agonist of the glutamatergic N-methyl-D-aspartate receptor. In inflammatory states of the central nervous system, IDO is mainly activated in microglial cells, which preferentially metabolize tryptophan to the NMDA receptor agonist quinolinic acid, whereas astrocytes - counteracting this metabolism due to the lack of an enzyme of this metabolism - have been observed to be reduced in MD. Therefore the type 1/type 2 immune response imbalance, associated with an astrocyte/microglia imbalance, leads to serotonergic deficiency and glutamatergic overproduction. Astrocytes are further strongly involved in re-uptake

  2. Long-term NMDAR antagonism correlates reduced astrocytic glutamate uptake with anxiety-like phenotype

    PubMed Central

    Zimmer, Eduardo R.; Torrez, Vitor R.; Kalinine, Eduardo; Augustin, Marina C.; Zenki, Kamila C.; Almeida, Roberto F.; Hansel, Gisele; Muller, Alexandre P.; Souza, Diogo O.; Machado-Vieira, Rodrigo; Portela, Luis V.

    2015-01-01

    The role of glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been extensively studied in schizophrenia; however, less is known about its role in anxiety disorders. Recently, it was demonstrated that astrocytic GLT-1 blockade leads to an anxiety-like phenotype. Although astrocytes are capable of modulating NMDAR activity through glutamate uptake transporters, the relationship between astrocytic glutamate uptake and the development of an anxiety phenotype remains poorly explored. Here, we aimed to investigative whether long-term antagonism of NMDAR impacts anxiety-related behaviors and astrocytic glutamate uptake. Memantine, an NMDAR antagonist, was administered daily for 24 days to healthy adult CF-1 mice by oral gavage at doses of 5, 10, or 20 mg/kg. The mice were submitted to a sequential battery of behavioral tests (open field, light–dark box and elevated plus-maze tests). We then evaluated glutamate uptake activity and the immunocontents of glutamate transporters in the frontoparietal cortex and hippocampus. Our results demonstrated that long-term administration of memantine induces anxiety-like behavior in mice in the light–dark box and elevated plus-maze paradigms. Additionally, the administration of memantine decreased glutamate uptake activity in both the frontoparietal cortex and hippocampus without altering the immunocontent of either GLT-1 or GLAST. Remarkably, the memantine-induced reduction in glutamate uptake was correlated with enhancement of an anxiety-like phenotype. In conclusion, long-term NMDAR antagonism with memantine induces anxiety-like behavior that is associated with reduced glutamate uptake activity but that is not dependent on GLT-1 or GLAST protein expression. Our study suggests that NMDAR and glutamate uptake hypofunction may contribute to the development of conditions that fall within the category of anxiety disorders. PMID:26089779

  3. Distinct Therapeutic Mechanisms of Tau Antibodies: Promoting Microglial Clearance Versus Blocking Neuronal Uptake.

    PubMed

    Funk, Kristen E; Mirbaha, Hilda; Jiang, Hong; Holtzman, David M; Diamond, Marc I

    2015-08-28

    Tauopathies are neurodegenerative diseases characterized by accumulation of Tau amyloids, and include Alzheimer disease and certain frontotemporal dementias. Trans-neuronal propagation of amyloid mediated by extracellular Tau may underlie disease progression. Consistent with this, active and passive vaccination studies in mouse models reduce pathology, although by unknown mechanisms. We previously reported that intracerebroventricular administration of three anti-Tau monoclonal antibodies (HJ8.5, HJ9.3, and HJ9.4) reduces pathology in a model overexpressing full-length mutant (P301S) human Tau. We now study effects of these three antibodies and a negative control antibody (HJ3.4) on Tau aggregate uptake into BV2 microglial-like cells and primary neurons. Antibody-independent Tau uptake into BV2 cells was blocked by heparin, consistent with a previously described role for heparan sulfate proteoglycans. Two therapeutic antibodies (HJ8.5 and HJ9.4) promoted uptake of full-length Tau fibrils into microglia via Fc receptors. Surprisingly, HJ9.3 promoted uptake of fibrils composed of the Tau repeat domain or Alzheimer disease-derived Tau aggregates, but failed to influence full-length recombinant Tau fibrils. Size fractionation of aggregates showed that antibodies preferentially promote uptake of larger oligomers (n ≥ ∼ 20-mer) versus smaller oligomers (n ∼ 10-mer) or monomer. No antibody inhibited uptake of full-length recombinant fibrils into primary neurons, but HJ9.3 blocked neuronal uptake of Tau repeat domain fibrils and Alzheimer disease-derived Tau. Antibodies thus have multiple potential mechanisms, including clearance via microglia and blockade of neuronal uptake. However these effects are epitope- and aggregate size-dependent. Establishing specific mechanisms of antibody activity in vitro may help in design and optimization of agents that are more effective in vivo. PMID:26126828

  4. Appropriate dosing of sugammadex to reverse deep rocuronium-induced neuromuscular blockade in morbidly obese patients.

    PubMed

    Loupec, T; Frasca, D; Rousseau, N; Faure, J-P; Mimoz, O; Debaene, B

    2016-03-01

    In morbidly obese patients, the speed of reversal of neuromuscular blockade with sugammadex based on ideal body weight is still matter of debate. In this single-center, randomised, double-blinded study, neuromuscular blockade was monitored in 50 patients using acceleromyography at the adductor pollicis. At the end of surgery with deep rocuronium-induced neuromuscular blockade, patients randomly received sugammadex 4 mg.kg(-1) (high dose group), 2 mg.kg(-1) (middle dose group), or 1 mg.kg(-1) (low dose group) of ideal body weight. After administration of the first dose of sugammadex, the mean (SD) recovery time (censored at 600 s) from deep neuromuscular blockade was significantly shorter (p < 0.001) in the high-dose group (n = 14; 255 (63) s) vs the middle-dose group (n = 13; 429 (102) s), or low-dose group (n = 4; 581 (154) s). Success rate from neuromuscular blockade reversal defined by a train-of-four ≥ 0.9 within 10 min after sugammadex administration, were 93%, 77% and 22% for these high, middle and low-dose groups respectively (p < 0.05 vs low-dose group). In morbidly obese patients, 4 mg.kg(-1) of ideal body weight of sugammadex allows suitable reversal of deep rocuronium-induced neuromuscular blockade. Monitoring remains essential to detect residual curarisation or recurarisation. PMID:26685122

  5. Nonnutritive flow impairs uptake of fatty acid by white muscles of the perfused rat hindlimb.

    PubMed

    Clerk, L H; Smith, M E; Rattigan, S; Clark, M G

    2003-03-01

    Triglyceride hydrolysis by the perfused rat hindlimb is enhanced with serotonin-induced nonnutritive flow (NNF) and may be due to the presence of nonnutritive route-associated connective tissue fat cells. Here, we assess whether NNF influences muscle uptake of 0.55 mM palmitate in the perfused hindlimb. Comparisons were made with insulin-mediated glucose uptake. NNF induced during 60 nM insulin infusion inhibited hindlimb oxygen uptake from 22.0 +/- 0.5 to 9.7 +/- 0.8 micromol x g(-1) x h(-1) (P < 0.001), 1-methylxanthine metabolism (indicator of nutritive flow) from 5.8 +/- 0.4 to 3.8 +/- 0.4 nmol x min(-1) x g(-1) (P = 0.004), glucose uptake from 29.2 +/- 1.7 to 23.1 +/- 1.8 micromol x g(-1) x h(-1) (P = 0.005) and muscle 2-deoxyglucose uptake from 82.1 +/- 4.6 to 41.6 +/- 6.7 micromol x g(-1) x h(-1) (P < 0.001). Palmitate uptake, unaffected by insulin alone, was inhibited by NNF in extensor digitorum longus, white gastrocnemius, and tibialis anterior muscles; average inhibition was from 13.9 +/- 1.2 to 6.9 +/- 1.4 micromol x g(-1) x h(-1) (P = 0.02). Thus NNF impairs both fatty acid and glucose uptake by muscle by restricting flow to myocytes but, as shown previously, favors triglyceride hydrolysis and uptake into nearby connective tissue fat cells. The findings have implications for lipid partitioning in limb muscles between myocytes and attendant adipocytes. PMID:12453824

  6. Mevalonate Pathway Blockade, Mitochondrial Dysfunction and Autophagy: A Possible Link

    PubMed Central

    Tricarico, Paola Maura; Crovella, Sergio; Celsi, Fulvio

    2015-01-01

    The mevalonate pathway, crucial for cholesterol synthesis, plays a key role in multiple cellular processes. Deregulation of this pathway is also correlated with diminished protein prenylation, an important post-translational modification necessary to localize certain proteins, such as small GTPases, to membranes. Mevalonate pathway blockade has been linked to mitochondrial dysfunction: especially involving lower mitochondrial membrane potential and increased release of pro-apoptotic factors in cytosol. Furthermore a severe reduction of protein prenylation has also been associated with defective autophagy, possibly causing inflammasome activation and subsequent cell death. So, it is tempting to hypothesize a mechanism in which defective autophagy fails to remove damaged mitochondria, resulting in increased cell death. This mechanism could play a significant role in Mevalonate Kinase Deficiency, an autoinflammatory disease characterized by a defect in Mevalonate Kinase, a key enzyme of the mevalonate pathway. Patients carrying mutations in the MVK gene, encoding this enzyme, show increased inflammation and lower protein prenylation levels. This review aims at analysing the correlation between mevalonate pathway defects, mitochondrial dysfunction and defective autophagy, as well as inflammation, using Mevalonate Kinase Deficiency as a model to clarify the current pathogenetic hypothesis as the basis of the disease. PMID:26184189

  7. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade.

    PubMed

    Buchbinder, Elizabeth; Hodi, F Stephen

    2015-09-01

    The relationship between cancer and the immune system is complex and provides unique therapeutic opportunities. Cytotoxic T lymphocyte antigen-4 (CTLA-4) is a regulatory molecule that suppresses T cell effector function following initial activation by costimulatory signals. Fully human monoclonal antibodies targeting CTLA-4 have been shown to increase T cell function and antitumor responses in patients with advanced metastatic melanoma. Responses observed with such immune checkpoint therapy can follow a different pattern from that seen with cytotoxic chemotherapy or targeted therapy and may continue after therapy is discontinued. In addition, the toxicities that are associated with anti-CTLA-4 therapy may differ from those of conventional therapies and consist of inflammatory events in parts of the body that do not contain cancerous cells. Early recognition of these inflammatory events and intervention is important, and the identification of predictive biomarkers continues to be an unfulfilled need in the field of immunotherapy. Combinatorial approaches with targeted therapies, radiation therapy, chemotherapy, or other immune checkpoint agonists/antagonists have the potential to increase the efficacy of CTLA-4 blockade. PMID:26325034

  8. Coulomb blockade phenomena in ultrathin Langmuir-Blodgett sandwich junctions

    NASA Astrophysics Data System (ADS)

    Burghard, M.; Mueller-Schwanneke, C.; Philipp, G.; Roth, S.

    1999-04-01

    Electrical junctions were fabricated in sandwich configuration from Langmuir-Blodgett (LB) films of two types of material, 0953-8984/11/14/015/img1-conjugated, peripherally substituted ring systems or a 0953-8984/11/14/015/img2-bonded polymer. The sandwich junctions consisted of four to ten monolayers between two micro-structured gold electrodes, corresponding to a nominal film thickness between about 8 and 20 nm. At liquid helium temperature, the current (I)/voltage (V) characteristics generally exhibited smooth exponential behaviour or irregular steps. However, for a small fraction of the LB sandwiches comprising a 0953-8984/11/14/015/img1-conjugated or 0953-8984/11/14/015/img2-bonded compound, regular staircases were observed. It was possible to fit such 0953-8984/11/14/015/img5 characteristics with curves calculated on the basis of a Coulomb blockade model. These results are accounted for by the presence of nanometre-sized gold particles formed upon evaporation of the top electrode. Single electron tunnelling is assumed to proceed through double tunnel barrier junctions consisting of a gold island asymmetrically located between the top and bottom electrode.

  9. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    PubMed Central

    Ahn, Brian J.; Pollack, Ian F.; Okada, Hideho

    2013-01-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas. PMID:24202450

  10. Endothelin-A receptor blockade improves postischemic hepatic microhemodynamics.

    PubMed

    Uhlmann, Dirk; Glasser, Sebastian; Lauer, Heike; Ludwig, Stefan; Gaebel, Gabor; Serr, Frederick; Hauss, Johann; Witzigmann, Helmut

    2004-11-01

    The aim of this study was to investigate a possible protective role of a selective endothelin-A receptor antagonist on hepatic microcirculation after ischemia/reperfusion. In a rat model, warm ischemia of the left liver lobe was induced for 90 minutes under intraperitoneal anesthesia with xylazine and ketamine. Shamoperated and untreated ischemic groups and a group treated with BSF 208075 were investigated. The effect of the endothelin-A receptor antagonist on ischemia/reperfusion was assessed by in-vivo microscopy and measurement of aspartate aminotransferase and alanine aminotransferase levels. In the untreated group, sinusoidal constriction to 70% of basal diameters was observed, leading to a significant decrease in perfusion rate. In addition, we found an increased percentage of stagnant leukocytes and platelets in sinusoids and in postsinusoidal venules (P < 0.05). A significant increase in liver enzymes was detected 6 hours after reperfusion (P < 0.05). In the treatment group, sinusoidal diameters were maintained at 108%, and perfusion rate was significantly increased (P < 0.05). Hepatocellular damage was decreased and leukocyte and platelet-endothelium interactions were reduced (P < 0.05). Our results provide evidence that the new therapeutic approach using an endothelin-A receptor antagonist is effective in reducing hepatic ischemia/reperfusion injury. It could be shown for the first time that endothelin receptor blockade also influences platelet-endothelium interactions. PMID:15838253

  11. Monoaminergic uptake in synaptosomes prepared from frozen brain tissue samples of normal and narcoleptic canines.

    PubMed

    Valtier, D; Dement, W C; Mignot, E

    1992-08-14

    Canine narcolepsy, a model of the human disorder, is associated with altered catecholamine but not serotonin (5-HT) metabolism in some brain areas, particularly the amygdala. A possible explanation for these global changes could be the existence of specific defects in monoamine uptake processes. We have studied the uptake of [3H]norepinephrine (NE), [3H]dopamine (DA) and [3H]5-HT in synaptosomes prepared from cortex and amygdala of narcoleptic and control Doberman pinscher brains. Since narcoleptic canines are relatively few in number, we have used a specific brain freezing procedure that has been reported to allow restoration of metabolically functional tissue upon thawing. Preliminary studies comparing monoamine uptake in fresh and frozen brain samples of both groups of dogs were carried out and demonstrated that this procedure significantly altered serotoninergic but not noradrenergic and dopaminergic uptake. All further investigations were then done on synaptosomes prepared from frozen samples. Our results demonstrate that synaptosomal uptake of [3H]NE, [3H]DA and [3H]5-HT in cortex and amygdala are not altered in narcolepsy. PMID:1393561

  12. D2-dopamine receptor specific brain uptake of carbon-11-labeled YM-09151-2

    SciTech Connect

    Hatano, K.; Ishiwata, K.; Kawashima, K.; Hatazawa, J.; Itoh, M.; Ido, T. )

    1989-04-01

    The in vivo D2-receptor specific brain uptake of N-((2RS,3RS)-1-benzyl-2- methyl-3-pyrrolidinyl)-5-chloro-2-methoxy-4-({sup 11}C)methylaminobenzamide (({sup 11}C)YM-09151-2), was investigated. In rat brain the high uptake of ({sup 11}C)YM-09151-2 in striatum was displaced with sulpiride, spiroperidol, and YM-09151-2. SCH-23390 and ritanserin, D1-dopamine and S2-serotonin antagonists, showed no effect on the distribution of ({sup 11}C)YM-09151-2. In the striatum at 60 min, 95% of the radioactivity was detected as ({sup 11}C)YM-09151-2 by high performance liquid chromatography. On the other hand, 41% of {sup 11}C in the plasma at 60 min was observed as metabolites. In vivo autoradiography showed a high uptake of ({sup 11}C)YM-09151-2 in the striatum and in the nucleus accumbens of rat brain. A high uptake of radioactivity was also found in the canine basal ganglia with positron emission tomography. The uptake was reduced by pretreatment with spiroperidol. The present results demonstrate that ({sup 11}C)YM-09151-2 is a D2 receptor specific compound and is a potential in vivo tracer for measuring D2 receptors.

  13. Effects of prolonged selective serotonin reuptake inhibition on the development and expression of L-DOPA-induced dyskinesia in hemi-parkinsonian rats.

    PubMed

    Conti, Melissa M; Ostock, Corinne Y; Lindenbach, David; Goldenberg, Adam A; Kampton, Elias; Dell'isola, Rich; Katzman, Aaron C; Bishop, Christopher

    2014-02-01

    Dopamine (DA) replacement therapy with l-DOPA is the standard treatment for Parkinson's disease (PD). Unfortunately chronic treatment often leads to the development of abnormal involuntary movements (AIMs) referred to as L-DOPA-induced dyskinesia (LID). Accumulating evidence has shown that compensatory plasticity in serotonin (5-HT) neurons contributes to LID and recent work has indicated that acute 5-HT transporter (SERT) blockade provides anti-dyskinetic protection. However neither the persistence nor the mechanism(s) of these effects have been investigated. Therefore the current endeavor sought to mimic a prolonged regimen of SERT inhibition in L-DOPA-primed and -naïve hemi-parkinsonian rats. Rats received 3 weeks of daily co-treatment of the selective 5-HT reuptake inhibitors (SSRIs) citalopram (0, 3, or 5 mg/kg) or paroxetine (0, 0.5, or 1.25 mg/kg) with L-DOPA (6 mg/kg) during which AIMs and motor performance were monitored. In order to investigate potential mechanisms of action, tissue levels of striatal monoamines were monitored and the 5-HT(1A) receptor antagonist WAY100635 (0.5 mg/kg) was used. Results revealed that prolonged SSRIs attenuated AIMs expression and development in L-DOPA-primed and -naïve subjects, respectively, without interfering with motor performance. Neurochemical analysis of striatal tissue indicated that a 3 week SERT blockade increased DA levels in L-DOPA-treated rats. Pharmacologically, anti-dyskinetic effects were partially reversed with WAY100635 signifying involvement of the 5-HT1A receptor. Collectively, these findings demonstrate that prolonged SERT inhibition provides enduring anti-dyskinetic effects in part via 5-HT(1A) receptors while maintaining L-DOPA's anti-parkinsonian efficacy by enhancing striatal DA levels. PMID:24067924

  14. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder.

    PubMed

    Mc Mahon, Brenda; Andersen, Sofie B; Madsen, Martin K; Hjordt, Liv V; Hageman, Ida; Dam, Henrik; Svarer, Claus; da Cunha-Bang, Sofi; Baaré, William; Madsen, Jacob; Hasholt, Lis; Holst, Klaus; Frokjaer, Vibe G; Knudsen, Gitte M

    2016-05-01

    Cross-sectional neuroimaging studies in non-depressed individuals have demonstrated an inverse relationship between daylight minutes and cerebral serotonin transporter; this relationship is modified by serotonin-transporter-linked polymorphic region short allele carrier status. We here present data from the first longitudinal investigation of seasonal serotonin transporter fluctuations in both patients with seasonal affective disorder and in healthy individuals. Eighty (11)C-DASB positron emission tomography scans were conducted to quantify cerebral serotonin transporter binding; 23 healthy controls with low seasonality scores and 17 patients diagnosed with seasonal affective disorder were scanned in both summer and winter to investigate differences in cerebral serotonin transporter binding across groups and across seasons. The two groups had similar cerebral serotonin transporter binding in the summer but in their symptomatic phase during winter, patients with seasonal affective disorder had higher serotonin transporter than the healthy control subjects (P = 0.01). Compared to the healthy controls, patients with seasonal affective disorder changed their serotonin transporter significantly less between summer and winter (P < 0.001). Further, the change in serotonin transporter was sex- (P = 0.02) and genotype- (P = 0.04) dependent. In the patients with seasonal affective disorder, the seasonal change in serotonin transporter binding was positively associated with change in depressive symptom severity, as indexed by Hamilton Rating Scale for Depression - Seasonal Affective Disorder version scores (P = 0.01). Our findings suggest that the development of depressive symptoms in winter is associated with a failure to downregulate serotonin transporter levels appropriately during exposure to the environmental stress of winter, especially in individuals with high predisposition to affective disorders.media-1vid110.1093/brain/aww043_video_abstractaww043_video

  15. Melatonin Supports CYP2D-Mediated Serotonin Synthesis in the Brain.

    PubMed

    Haduch, Anna; Bromek, Ewa; Wójcikowski, Jacek; Gołembiowska, Krystyna; Daniel, Władysława A

    2016-03-01

    Melatonin is used in the therapy of sleep and mood disorders and as a neuroprotective agent. The aim of our study was to demonstrate that melatonin supported (via its deacetylation to 5-methoxytryptamine) CYP2D-mediated synthesis of serotonin from 5-methoxytryptamine. We measured serotonin tissue content in some brain regions (the cortex, hippocampus, nucleus accumbens, striatum, thalamus, hypothalamus, brain stem, medulla oblongata, and cerebellum) (model A), as well as its extracellular concentration in the striatum using an in vivo microdialysis (model B) after melatonin injection (100 mg/kg i.p.) to male Wistar rats. Melatonin increased the tissue concentration of serotonin in the brain structures studied of naïve, sham-operated, or serotonergic neurotoxin (5,7-dihydroxytryptamine)-lesioned rats (model A). Intracerebroventricular quinine (a CYP2D inhibitor) prevented the melatonin-induced increase in serotonin concentration. In the presence of pargyline (a monoaminoxidase inhibitor), the effect of melatonin was not visible in the majority of the brain structures studied but could be seen in all of them in 5,7-dihydroxytryptamine-lesioned animals when serotonin storage and synthesis via a classic tryptophan pathway was diminished. Melatonin alone did not significantly increase extracellular serotonin concentration in the striatum of naïve rats but raised its content in pargyline-pretreated animals (model B). The CYP2D inhibitor propafenone given intrastructurally prevented the melatonin-induced increase in striatal serotonin in those animals. The obtained results indicate that melatonin supports CYP2D-catalyzed serotonin synthesis from 5-methoxytryptamine in the brain in vivo, which closes the serotonin-melatonin-serotonin biochemical cycle. The metabolism of exogenous melatonin to the neurotransmitter serotonin may be regarded as a newly recognized additional component of its pharmacological action. PMID:26884482

  16. Serotonin as a putative scavenger of hypohalous acid in the brain.

    PubMed

    Kalogiannis, Mike; Delikatny, E James; Jeitner, Thomas M

    2016-04-01

    Neurodegenerative disorders represent the culmination of numerous insults including oxidative stress. The long etiology of most of these disorders suggests that lessening the effects of one or more of the insults could significantly delay disease onset. Antioxidants have been tested as possible therapeutics for neurodegenerative disorders, but with little success. Here we report that serotonin acts as a scavenger of hypochlorous acid (HOCl) in the brain. Serotonin was shown to prevent the oxidation of 2-thio-5-nitrobenzoate by HOCl in a biphasic manner. The first phase was a partial scavenging that occurred at concentrations of serotonin that exceeded those of HOCl. (1)H-NMR studies indicated that HOCl chlorinates both the aryl and akyl nitrogen atoms of serotonin. Thus, the oxidation of 2-thio-5-nitrobenzoate that occurred during the first phase of scavenging is likely due to the formation of serotonergic chloramines. A second phase of scavenging occurred at concentrations of HOCl that exceeded those of serotonin. Under these conditions, the chlorinated serotonin polymerized and formed inert aggregates. Serotonin was further shown to prevent the loss of cells and cellular α-ketoglutarate dehydrogenase complex activity caused by HOCl. Extracellular concentrations of serotonin in the brain can be elevated with selective serotonin reuptake inhibitors and suggests that such compounds could be used to increase the cerebral antioxidant capacity. Acute administration of selective serotonin reuptake inhibitors to mice treated with endotoxin partially mitigated sickness behavior and protein chlorination in the brain. These observations suggest that serotonin may act to suppress chlorinative stress in the brain. PMID:26699077

  17. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  18. Vacuolar Ca(2+) uptake.

    PubMed

    Pittman, Jon K

    2011-08-01

    Calcium transporters that mediate the removal of Ca(2+) from the cytosol and into internal stores provide a critical role in regulating Ca(2+) signals following stimulus induction and in preventing calcium toxicity. The vacuole is a major calcium store in many organisms, particularly plants and fungi. Two main pathways facilitate the accumulation of Ca(2+) into vacuoles, Ca(2+)-ATPases and Ca(2+)/H(+) exchangers. Here I review the biochemical and regulatory features of these transporters that have been characterised in yeast and plants. These Ca(2+) transport mechanisms are compared with those being identified from other vacuolated organisms including algae and protozoa. Studies suggest that Ca(2+) uptake into vacuoles and other related acidic Ca(2+) stores occurs by conserved mechanisms which developed early in evolution. PMID:21310481

  19. Serotonin (5-HT) and 5-HT2A receptor agonists suppress lipolysis in primary rat adipose cells.

    PubMed

    Hansson, Björn; Medina, Anya; Fryklund, Claes; Fex, Malin; Stenkula, Karin G

    2016-05-27

    Serotonin (5-HT) is a biogenic monoamine that functions both as a neurotransmitter and a circulating hormone. Recently, the metabolic effects of 5-HT have gained interest and peripheral 5-HT has been proposed to influence lipid metabolism in various ways. Here, we investigated the metabolic effects of 5-HT in isolated, primary rat adipose cells. Incubation with 5-HT suppressed β-adrenergically stimulated glycerol release and decreased phosphorylation of protein kinase A (PKA)-dependent substrates, hormone sensitive lipase (Ser563) and perilipin (Ser522). The inhibitory effect of 5-HT on lipolysis enhanced the anti-lipolytic effect of insulin, but sustained in the presence of phosphodiesterase inhibitors, OPC3911 and isobuthylmethylxanthine (IBMX). The relative expression of 5-HT1A, -2B and -4 receptor class family were significantly higher in adipose tissue compared to adipose cells, whereas 5-HT1D, -2A and -7 were highly expressed in isolated adipose cells. Similar to 5-HT, 5-HT2 receptor agonists reduced lipolysis while 5-HT1 receptor agonists rather decreased non-stimulated and insulin-stimulated glucose uptake. Together, these data provide evidence of a direct effect of 5-HT on adipose cells, where 5-HT suppresses lipolysis and glucose uptake, which could contribute to altered systemic lipid- and glucose metabolism. PMID:27109474

  20. Single-dose paravertebral blockade versus epidural blockade for pain relief after open renal surgery: A prospective randomized study

    PubMed Central

    Moawad, Hazem Ebrahem; Mousa, Sherif Abdo; El-Hefnawy, Ahmed S.

    2013-01-01

    Background: Paravertebral block (PVB) has been an established technique for providing analgesia to the chest and abdomen. We conducted the current study to compare single-dose PVB versus single-dose epidural blockade (EP) for pain relief after renal surgery. Methods: Eighty patients scheduled for renal surgery were randomly assigned into two groups according to the analgesic technique, PVB group or EP group. General anesthesia was induced for all patients. Postoperative pain was assessed over 24 h using 10-cm visual analog scale (VAS). Postoperative total pethidine consumption was recorded. Any postoperative events, such as nausea, vomiting, shivering, or respiratory complications, were recorded. Hemodynamics and blood gasometry were also recorded. Results: EP group showed significant decrease of both heart rate and mean blood pressure at most of the operative periods when compared with PVB group. There was no difference in total rescue analgesic consumption. Postoperative VAS showed no significant difference between the studied groups. Postoperative events were comparable in both the groups. Conclusion: Single injection PVB resulted in similar analgesia but greater hemodynamic stability than epidural analgesia in patients undergoing renal surgery, therefore this technique may be recommended for patients with coexisting circulatory disease. PMID:23717235

  1. Influence of brain-derived neurotrophic factor (BDNF) on serotonin neurotransmission in the hippocampus of adult rodents.

    PubMed

    Benmansour, Saloua; Deltheil, Thierry; Piotrowski, Jonathan; Nicolas, Lorelei; Reperant, Christelle; Gardier, Alain M; Frazer, Alan; David, Denis J

    2008-06-10

    Whereas SSRIs produce rapid blockade of the serotonin transporter (SERT) in vitro and in vivo, the onset of an observable clinical effect takes longer to occur and a variety of pharmacological effects caused by antidepressants have been speculated to be involved either in initiating antidepressant effects and/or enhancing their effects on serotonergic transmission so as to cause clinical improvement. Among such secondary factors is increased activity of brain-derived neurotrophic factor (BDNF), which requires the Tropomyosine-related kinase B receptor (TrkB) for its effects. To begin an analysis of the influence of BDNF on serotonergic activity, we studied the acute effects of BDNF on SERT activity. A single BDNF injection (either intracerebroventricularly or directly into the CA3 region of hippocampus) decreased the signal amplitude and clearance rate produced by exogenously applied 5-HT compared to what was measured in control rats, shown using in vivo chronoamperometry. It also reduced the ability of a locally applied SSRI to block the clearance of 5-HT. In awake freely moving mice, acute intrahippocampal injection of BDNF decreased extracellular levels of 5-HT in the hippocampus, as measured using microdialysis. In addition, perfusion with BDNF decreased KCl-evoked elevations of 5-HT. These effects of BDNF were blocked by the non-selective antagonist of TrkB receptors, K252a. Overall, it may be inferred that in the hippocampus, through TrkB activation, a single injection of BDNF enhances SERT function. Such acute effects of BDNF would be expected to counter early effects of SSRIs, which might, in part, account for some delay in therapeutic effect. PMID:18474368

  2. Presynaptic α4β2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus.

    PubMed

    Garduño, Julieta; Galindo-Charles, Luis; Jiménez-Rodríguez, Javier; Galarraga, Elvira; Tapia, Dagoberto; Mihailescu, Stefan; Hernandez-Lopez, Salvador

    2012-10-24

    Several behavioral effects of nicotine are mediated by changes in serotonin (5-HT) release in brain areas that receive serotonergic afferents from the dorsal raphe nucleus (DRN). In vitro experiments have demonstrated that nicotine increases the firing activity in the majority of DRN 5-HT neurons and that DRN contains nicotinic acetylcholine receptors (nAChRs) located at both somata and presynaptic elements. One of the most common presynaptic effects of nicotine is to increase glutamate release. Although DRN receives profuse glutamatergic afferents, the effect of nicotine on glutamate release in the DRN has not been studied in detail. Using whole-cell recording techniques, we investigated the effects of nicotine on the glutamatergic input to 5-HT DRN neurons in rat midbrain slices. Low nicotine concentrations, in the presence of bicuculline and tetrodotoxin (TTX), increased the frequency but did not change the amplitude of glutamate-induced EPSCs, recorded from identified 5-HT neurons. Nicotine-induced increase of glutamatergic EPSC frequency persisted 10-20 min after drug withdrawal. This nicotinic effect was mimicked by exogenous administration of acetylcholine (ACh) or inhibition of ACh metabolism. In addition, the nicotine-induced increase in EPSC frequency was abolished by blockade of α4β2 nAChRs, voltage-gated calcium channels, or intracellular calcium signaling but not by α7 nAChR antagonists. These data suggest that both nicotine and endogenous ACh can increase glutamate release through activation of presynaptic α4β2 but not α7 nAChRs in the DRN. The effect involves long-term changes in synaptic function, and it is dependent on voltage-gated calcium channels and presynaptic calcium stores. PMID:23100436

  3. Regulator of Calcineurin 1 Modulates Expression of Innate Anxiety and Anxiogenic Responses to Selective Serotonin Reuptake Inhibitor Treatment

    PubMed Central

    Wong, Helen; Cain, Peter; Levenga, Josien; Cowansage, Kiriana K.; Choi, Yoon; Davy, Camille; Majmundar, Neil; McMillan, D. Randy; Rothermel, Beverly A.; Klann, Eric

    2013-01-01

    Regulator of calcineurin 1 (RCAN1) controls the activity of calcium/calmodulin-dependent phosphatase calcineurin (CaN), which has been implicated in human anxiety disorders. Previously, we reported that RCAN1 functioned as an inhibitor of CaN activity in the brain. However, we now find enhanced phosphorylation of a CaN substrate, cAMP response element-binding protein (CREB), in the brains of Rcan1 knock-out (KO) mice. Consistent with enhanced CREB activation, we also observe enhanced expression of a CREB transcriptional target, brain-derived neurotrophic factor (BDNF) in Rcan1 KO mice. We also discovered that RCAN1 deletion or blockade of RCAN1–CaN interaction reduced CaN and protein phosphatase-1 localization to nuclear-enriched protein fractions and promoted CREB activation. Because of the potential links between CREB, BDNF, and anxiety, we examined the role of RCAN1 in the expression of innate anxiety. Rcan1 KO mice displayed reduced anxiety in several tests of unconditioned anxiety. Acute pharmacological inhibition of CaN rescued these deficits while transgenic overexpression of human RCAN1 increased anxiety. Finally, we found that Rcan1 KO mice lacked the early anxiogenic response to the selective serotonin reuptake inhibitor (SSRI) fluoxetine and had improved latency for its therapeutic anxiolytic effects. Together, our study suggests that RCAN1 plays an important role in the expression of anxiety-related and SSRI-related behaviors through CaN-dependent signaling pathways. These results identify RCAN1 as a mediator of innate emotional states and possible therapeutic target for anxiety. PMID:24155299

  4. Modulation of midbrain dopamine neurotransmission by serotonin, a versatile interaction between neurotransmitters and significance for antipsychotic drug action.

    PubMed

    Olijslagers, J E; Werkman, T R; McCreary, A C; Kruse, C G; Wadman, W J

    2006-01-01

    Schizophrenia has been associated with a dysfunction of brain dopamine (DA). This, so called, DA hypothesis has been refined as new insights into the pathophysiology of schizophrenia have emerged. Currently, dysfunction of prefrontocortical glutamatergic and GABAergic projections and dysfunction of serotonin (5-HT) systems are also thought to play a role in the pathophysiology of schizophrenia. Refinements of the DA hypothesis have lead to the emergence of new pharmacological targets for antipsychotic drug development. It was shown that effective antipsychotic drugs with a low liability for inducing extra-pyramidal side-effects have affinities for a range of neurotransmitter receptors in addition to DA receptors, suggesting that a combination of neurotransmitter receptor affinities may be favorable for treatment outcome.This review focuses on the interaction between DA and 5-HT, as most antipsychotics display affinity for 5-HT receptors. We will discuss DA/5-HT interactions at the level of receptors and G protein-coupled potassium channels and consequences for induction of depolarization blockade with specific attention to DA neurons in the ventral tegmental area (VTA) and the substantia nigra zona compacta (SN), neurons implicated in treatment efficacy and the side-effects of schizophrenia, respectively. Moreover, it has been reported that electrophysiological interactions between DA and 5-HT show subtle, but important, differences between the SN and the VTA which could explain (in part) the effectiveness and lower propensity to induce side-effects of the newer atypical antipsychotic drugs. In that respect the functional implications of DA/5-HT interactions for schizophrenia will be discussed. PMID:18615139

  5. Serotonin7 receptors in the lateral habenular nucleus regulate depressive-like behaviors in the hemiparkinsonian rats.

    PubMed

    Han, Ling Na; Zhang, Li; Sun, Yi Na; Du, Cheng Xue; Zhang, Yu Ming; Wang, Tao; Zhang, Jin; Liu, Jian

    2016-08-01

    Preclinical studies indicate that serotonin7 (5-HT7) receptors may regulate depressive-like behaviors. Depression is a common symptom in Parkinson's disease (PD); however, its pathophysiology is unclear. Here we examined whether 5-HT7 receptors in the lateral habenular nucleus (LHb) involve in the regulation of PD-related depression. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-LHb injection of 5-HT7 receptor agonist AS19 (1, 2 and 4μg/rat) induced or increased the expression of depressive-like behaviors in sham-operated and the lesioned rats. Further, intra-LHb injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6μg/rat) produced antidepressant effects in the two groups of rats. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-LHb injection of AS19 (4μg/rat) decreased dopamine and 5-HT levels in the medial prefrontal cortex, habenula and hippocampus in sham-operated and the lesioned rats; whereas SB269970 (6μg/rat) increased dopamine and 5-HT levels in these structures. In addition, noradrenaline levels in these structures were not changed after intra-LHb injection of AS19 or SB269970 in the two groups of rats. These findings suggest that activation or blockade of 5-HT7 receptors in the LHb may change the activity of LHb glutamate neurons, and then decreases or increases dopamine and 5-HT levels in the limbic and limbic-related brain regions, which are involved in the regulation of depressive-like behaviors. PMID:27178363

  6. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    PubMed

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range. PMID:26655822

  7. A Review of Vilazodone, Serotonin, and Major Depressive Disorder

    PubMed Central

    Thase, Michael E.

    2014-01-01

    Objective: To review the mechanism of selective serotonin reuptake inhibitor (SSRI)–mediated serotonergic neurotransmission, focusing on serotonin 1A (5-HT1A) autoreceptors, which are proposed to be involved in delaying therapeutic efficacy. Vilazodone was specifically designed to function both as an SSRI and a partial agonist at 5-HT1A receptors. This combined mechanism is proposed to decrease time to efficacy, minimize sexual side effects, and provide concomitant anxiolytic properties. Data Sources: A PubMed search of all English-language articles from January 1990 to January 2013 was conducted using the search terms depression and 5-HT1A, depression and buspirone, depression and pindolol, and vilazodone. Study Selection: We found 47 articles and abstracts that were selected for inclusion on the basis of information about the pharmacology of 5-HT1A receptors and the clinical data on pindolol, buspirone, and vilazodone in depression. Data Extraction: This review summarizes current literature involving antidepressant activity, the role of 5-HT1A autoreceptors, and clinical trials involving serotonin reuptake inhibition in conjunction with 5-HT1A agonists and partial agonists, with a focus on vilazodone. Results:Vilazodone has demonstrated efficacy in 2 large, randomized, double-blind, placebo-controlled trials in major depressive disorder. Results suggest that vilazodone has a low incidence of sexual side effects and is effective in patients with high levels of anxiety. A pooled analysis shows evidence of significant symptom reduction after only 1 week of therapy. Conclusions: If future studies corroborate the clinical benefits attributed to its mechanism of action, vilazodone may show potential advantages in terms of onset of action, sexual side effects, and anxiolytic activity in patients with major depressive disorder. PMID:24940527

  8. Brain serotonin determines maternal behavior and offspring survival

    PubMed Central

    Angoa-Pérez, M.; Kane, M. J.; Sykes, C. E.; Perrine, S. A.; Church, M. W.; Kuhn, D. M.

    2016-01-01

    Maternal care is an indispensable component of offspring survival and development in all mammals and necessary for reproductive success. Although brain areas regulating maternal behaviors are innervated by serotonergic afferents, very little is known about the role of this neuro-transmitter in these behaviors. To evaluate the contribution of serotonin to maternal care, we used mice with a null mutation in the gene for tryptophan hydroxylase-2 (TPH2), which results in a genetic depletion of brain serotonin, and tested them in a wide range of maternal behavior paradigms. We found that litters born to and reared by TPH2−/− mothers showed decreased survival, lower weaning weights and increased cannibalization. In addition, TPH2−/− mothers performed poorly in pup retrieval, huddling, nest construction and high-arched back nursing. Aggression in TPH2−/− dams was not triggered by lactation and was steadily high. Survival and weaning weight deficits of TPH2−/− pups were rescued by cross-fostering and in litters of mixed genotype (TPH2−/− and TPH2−/+). However, the maternal behaviors of TPH2−/− dams did not improve when rearing either TPH2+/+ pups or mixed-genotype litters. In addition, TPH2−/− pups significantly worsened the behavior of TPH2+/+ dams with respect to cannibalism, weaning weight and latency to attack. Olfactory and auditory functions of TPH2−/− females or anxiety-like behaviors did not account for these maternal alterations as they were equal to their TPH2+/+ counterparts. These findings illustrate a profound influence of brain serotonin on virtually all elements of maternal behavior and establish that TPH2−/− pups can engender maladaptive mothering in dams of both genotypes. PMID:25077934

  9. Selective Serotonin Reuptake Inhibitor Suppression of HIV Infectivity and Replication

    PubMed Central

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R.; Tustin, Nancy B.; Lai, Jian Ping; Metzger, David S.; Blume, Joshua; Douglas, Steven D.; Evans, Dwight L.

    2010-01-01

    Objective To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down regulate HIV infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/AIDS. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells (NK) cells and CD8+ lymphocytes, key regulators of HIV infection. Methods Ex-vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication, in 48 depressed and non-depressed women. For both the acute and chronic infection models, HIV reverse transcriptase (RT) activity was measured in the citalopram treatment condition and the control condition. Results The SSRI significantly downregulated the RT response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. Conclusions These studies suggest that an SSRI enhances NK/CD8 non-cytolytic HIV suppression in HIV/AIDS and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV. PMID:20947783

  10. Looking on the bright side of serotonin transporter gene variation.

    PubMed

    Homberg, Judith R; Lesch, Klaus-Peter

    2011-03-15

    Converging evidence indicates an association of the short (s), low-expressing variant of the repeat length polymorphism, serotonin transporter-linked polymorphic region (5-HTTLPR), in the human serotonin transporter gene (5-HTT, SERT, SLC6A4) with anxiety-related traits and increased risk for depression in interaction with psychosocial adversity across the life span. However, genetically driven deficient serotonin transporter (5-HTT) function would not have been maintained throughout evolution if it only exerted negative effects without conveying any gain of function. Here, we review recent findings that humans and nonhuman primates carrying the s variant of the 5-HTTLPR outperform subjects carrying the long allele in an array of cognitive tasks and show increased social conformity. In addition, studies in 5-HTT knockout rodents are included that provide complementary insights in the beneficial effects of the 5-HTTLPR s-allele. We postulate that hypervigilance, mediated by hyperactivity in corticolimbic structures, may be the common denominator in the anxiety-related traits and (social) cognitive superiority of s-allele carriers and that environmental conditions determine whether a response will turn out to be negative (emotional) or positive (cognitive, in conformity with the social group). Taken together, these findings urge for a conceptual change in the current deficit-oriented connotation of the 5-HTTLPR variants. In fact, these factors may counterbalance or completely offset the negative consequences of the anxiety-related traits. This notion may not only explain the modest effect size of the 5-HTTLPR and inconsistent reports but may also lead to a more refined appreciation of allelic variation in 5-HTT function. PMID:21047622

  11. Different serotonin receptor agonists have distinct effects on sound-evoked responses in inferior colliculus.

    PubMed

    Hurley, Laura M

    2006-11-01

    The neuromodulator serotonin has a complex set of effects on the auditory responses of neurons within the inferior colliculus (IC), a midbrain auditory nucleus that integrates a wide range of inputs from auditory and nonauditory sources. To determine whether activation of different types of serotonin receptors is a source of the variability in serotonergic effects, four selective agonists of serotonin receptors in the serotonin (5-HT) 1 and 5-HT2 families were iontophoretically applied to IC neurons, which were monitored for changes in their responses to auditory stimuli. Different agonists had different effects on neural responses. The 5-HT1A agonist had mixed facilitatory and depressive effects, whereas 5-HT1B and 5-HT2C agonists were both largely facilitatory. Different agonists changed threshold and frequency tuning in ways that reflected their effects on spike count. When pairs of agonists were applied sequentially to the same neurons, selective agonists sometimes affected neurons in ways that were similar to serotonin, but not to other selective agonists tested. Different agonists also differentially affected groups of neurons classified by the shapes of their frequency-tuning curves, with serotonin and the 5-HT1 receptors affecting proportionally more non-V-type neurons relative to the other agonists tested. In all, evidence suggests that the diversity of serotonin receptor subtypes in the IC is likely to account for at least some of the variability of the effects of serotonin and that receptor subtypes fulfill specialized roles in auditory processing. PMID:16870843

  12. The neurobiology of depression--revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies.

    PubMed

    Albert, Paul R; Benkelfat, Chawki

    2013-01-01

    The serotonin system originates from a small number of neurons (a few hundred thousand of the 100 billion in man) located in the midbrain raphe nuclei, that project widely throughout the central nervous system to influence a large array of inter-related biological functions, not least of which are circuits involved in mood and emotion. The serotonin hypothesis of depression has postulated that a reduction in serotonin leads to increased predisposition to depression. Indeed, it has become evident from therapeutic strategies that affect serotonin activity, that alterations in serotonin may not only predispose to depression, but also to aggressive behaviour, impulsivity, obsessive-compulsive behaviour and suicide. Many potential mechanisms known to alter the genes that regulate the serotonin system, including developmental epigenetic modifications, are presented, as additional evidence implicating the serotonin system. This second issue of two special issues of Philosophical Transactions B presents a series of reviews, perspectives and new findings that argue that the serotonin hypothesis remains an important idea that continues to guide research into the aetiology and treatment of depression. PMID:23440469

  13. [Determination of the optimal proportions as regards toxicity of AET, ATP and serotonin used in combination].

    PubMed

    Benova, D K; Ptev, I Kh

    1985-01-01

    In experiments on mice, a study was made of the quantitative dependence of toxicity of AET, ATP and serotonin applied in combinations. The toxicity decreased when ATP was combined with AET and increased when ATP of AET were combined with serotonin. The toxicity of a combination of all three substances was reduced by introducing high doses of ATP. PMID:3975373

  14. ACTIVATION OF GATA-4 BY SEROTONIN IN PULMONARY ARTERY SMOOTH MUSCLE CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serotonin (5-HT) is a mitogen of pulmonary artery smooth muscle cells (PASMC) and plays an important role in the development of pulmonary hypertension. Signal transduction initiated by 5-HT involves serotonin transporter (SERT)-dependent generation of reactive oxygen species (ROS) and activation of...

  15. Asthma Medication and the Role of Serotonin in the Development of Cognitive and Psychological Difficulties

    ERIC Educational Resources Information Center

    Pretorius, E.

    2005-01-01

    This literature review will focus on the discussion of asthma and how it affects the sufferer. The role of serotonin and its physiological working at a neural level will follow, as well as the effects of corticosteroids on the brain and how low serotonin levels are linked to depression and corticosteroid use.

  16. Ligand induced conformational changes of the human serotonin transporter revealed by molecular dynamics simulations.

    PubMed

    Koldsø, Heidi; Autzen, Henriette Elisabeth; Grouleff, Julie; Schiøtt, Birgit

    2013-01-01

    The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design. PMID:23776432

  17. Brief Report: Whole Blood Serotonin Levels and Gastrointestinal Symptoms in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Marler, Sarah; Ferguson, Bradley J.; Lee, Evon Batey; Peters, Brittany; Williams, Kent C.; McDonnell, Erin; Macklin, Eric A.; Levitt, Pat; Gillespie, Catherine Hagan; Anderson, George M.; Margolis, Kara Gross; Beversdorf, David Q.; Veenstra-VanderWeele, Jeremy

    2016-01-01

    Elevated whole blood serotonin levels are observed in more than 25% of children with autism spectrum disorder (ASD). Co-occurring gastrointestinal (GI) symptoms are also common in ASD but have not previously been examined in relationship with hyperserotonemia, despite the synthesis of serotonin in the gut. In 82 children and adolescents with ASD,…

  18. Endurance training in Wistar rats decreases receptor sensitivity to a serotonin agonist.

    PubMed

    Dwyer, D; Browning, J

    2000-11-01

    There is mounting evidence that increased brain serotonin during exercise is associated with the onset of CNS-mediated fatigue. Serotonin receptor sensitivity is likely to be an important determinant of this fatigue. Alterations in brain serotonin receptor sensitivity were examined in Wistar rats throughout 6 weeks of endurance training, running on a treadmill four times a week with two exercise tests per week to exhaustion. Receptor sensitivity was determined indirectly as the reduction in exercise time in response to a dose of a serotonin (1A) agonist, m-chlorophenylpiperazine (m-CPP). The two groups of controls were used to examine (i) the effect of the injection per se on exercise performance and (ii) changes in serotonin receptor sensitivity associated with maturation. In the test group, undrugged exercise performance significantly improved by 47% after 6 weeks of training (4518 +/- 729 to 6640 +/- 903 s, P=0.01). Drugged exercise performance also increased significantly from week 1 to week 6 (306 +/- 69-712 +/- 192 s, P = 0.04). Control group results indicated that the dose of m-CPP alone caused fatigue during exercise tests and that maturation was not responsible for any decrease in receptor sensitivity. Improved resistance to the fatiguing effects of the serotonin agonist suggests desensitization of central serotonin receptors, probably the 5-HT1A receptors. Endurance training appears to stimulate an adaptive response to the fatiguing effects of increased brain serotonin, which may enhance endurance exercise performance. PMID:11167306

  19. Effect of epinephrine and serotonin on hepatic poly(A)/sup +/ RNA synthesis

    SciTech Connect

    Roy, A.K.; Bhadra, R.; Datta, A.G.

    1985-06-17

    In vivo administration of epinephrine or serotonin has been shown to stimulate the incorporation of /sup 14/C-orotic acid into Poly(A)/sup +/ RNA. However, only epinephrine and not serotonin could stimulate DNA dependent RNA polymerase activity of isolated hepatic nuclei in in vitro experiments. 21 references, 1 figure, 3 tables.

  20. Ligand Induced Conformational Changes of the Human Serotonin Transporter Revealed by Molecular Dynamics Simulations

    PubMed Central

    Grouleff, Julie; Schiøtt, Birgit

    2013-01-01

    The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design. PMID:23776432