Science.gov

Sample records for serum albuminfluorescein isothiocyanate

  1. Tetraalkylammonium uranyl isothiocyanates.

    PubMed

    Rowland, Clare E; Kanatzidis, Mercouri G; Soderholm, L

    2012-11-01

    Three tetraalkylammonium uranyl isothiocyanates, [(CH(3))(4)N](3)UO(2)(NCS)(5) (1), [(C(2)H(5))(4)N](3)UO(2)(NCS)(5) (2), and [(C(3)H(7))(4)N](3)UO(2)(NCS)(5) (3), have been synthesized from aqueous solution and their structures determined by single-crystal X-ray diffraction. All of the compounds consist of the uranyl cation equatorially coordinated to five N-bound thiocyanate ligands, UO(2)(NCS)(5)(3-), and charge-balanced by three tetraalkylammonium cations. Raman spectroscopy data have been collected on compounds 1-3, as well as on solutions of uranyl nitrate with increasing levels of sodium thiocyanate. By tracking the Raman signatures of thiocyanate, the presence of both free and bound thiocyanate is confirmed in solution. The shift in the Raman signal of the uranyl symmetric stretching mode suggests the formation of higher-order uranyl thiocyanate complexes in solution, while the solid-state Raman data support homoleptic isothiocyanate coordination about the uranyl cation. Presented here are the syntheses and crystal structures of 1-3, pertinent Raman spectra, and a discussion regarding the relationship of these isothiocyanates to previously described uranyl halide phases, UO(2)X(4)(2-). PMID:23072277

  2. Naturally Occurring Isothiocyanates Exert Anticancer Effects by Inhibiting Deubiquitinating Enzymes.

    PubMed

    Lawson, Ann P; Long, Marcus J C; Coffey, Rory T; Qian, Yu; Weerapana, Eranthie; El Oualid, Farid; Hedstrom, Lizbeth

    2015-12-01

    The anticancer properties of cruciferous vegetables are well known and attributed to an abundance of isothiocyanates such as benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC). While many potential targets of isothiocyanates have been proposed, a full understanding of the mechanisms underlying their anticancer activity has remained elusive. Here we report that BITC and PEITC effectively inhibit deubiquitinating enzymes (DUB), including the enzymes USP9x and UCH37, which are associated with tumorigenesis, at physiologically relevant concentrations and time scales. USP9x protects the antiapoptotic protein Mcl-1 from degradation, and cells dependent on Mcl-1 were especially sensitive to BITC and PEITC. These isothiocyanates increased Mcl-1 ubiquitination and either isothiocyanate treatment, or RNAi-mediated silencing of USP9x decreased Mcl-1 levels, consistent with the notion that USP9x is a primary target of isothiocyanate activity. These isothiocyanates also increased ubiquitination of the oncogenic fusion protein Bcr-Abl, resulting in degradation under low isothiocyanate concentrations and aggregation under high isothiocyanate concentrations. USP9x inhibition paralleled the decrease in Bcr-Abl levels induced by isothiocyanate treatment, and USP9x silencing was sufficient to decrease Bcr-Abl levels, further suggesting that Bcr-Abl is a USP9x substrate. Overall, our findings suggest that USP9x targeting is critical to the mechanism underpinning the well-established anticancer activity of isothiocyanate. We propose that the isothiocyanate-induced inhibition of DUBs may also explain how isothiocyanates affect inflammatory and DNA repair processes, thus offering a unifying theme in understanding the function and useful application of isothiocyanates to treat cancer as well as a variety of other pathologic conditions. PMID:26542215

  3. Peculiar Reactivity of Isothiocyanates with Pentaphenylborole.

    PubMed

    Huang, Kexuan; Martin, Caleb D

    2016-01-01

    The reactions of isothiocyanates with the antiaromatic pentaphenylborole were investigated, revealing significantly different outcomes than the analogous reactions with isocyanates. The 1:1 stoichiometric reaction products isolated include a seven-membered BNC5 heterocycle and a fused bicyclic 4/5-ring system. Studies suggest that the seven-membered ring undergoes an intramolecular [2 + 2] electrocyclic ring closure to produce the bicyclic system. The only derivative for which stoichiometry influenced the reaction outcome was 4-methoxyphenylisothiocyanate. The reaction of borole with an excess of 4-methoxyphenylisothiocyanate resulted in the formation of a fused tetracyclic species with two equivalents of isothiocyanate incorporated into the product. Rational pathways for these unusual transformations are presented. PMID:26682496

  4. Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis.

    PubMed

    Agerbirk, Niels; De Nicola, Gina Rosalinda; Olsen, Carl Erik; Müller, Caroline; Iori, Renato

    2015-10-01

    Isothiocyanates form adducts with a multitude of biomolecules, and these adducts need analytical methods. Likewise, analytical methods for hydrophilic isothiocyanates are needed. We considered reaction with ammonia to form thiourea derivatives. The hydrophilic, glycosylated isothiocyanate moringin, 4-(α-L-rhamnopyranosyloxy)benzyl isothiocyanate, was efficiently derivatized to the thiourea derivative by incubation with ammonia. The hydrophobic benzyl isothiocyanate was also efficiently derivatized to the thiourea derivative. The thiourea group provided a UV absorbing chromophore, and the derivatives showed expectable sodium and hydrogen adducts in ion trap mass spectrometry and were suitable for liquid chromatography analysis. Reactive dithiocarbamate adducts constitute the major type of reactive ITC adduct expected in biological matrices. Incubation of a model dithiocarbamate with ammonia likewise resulted in conversion to the corresponding thiourea derivative, suggesting that a variety of matrix-bound reactive isothiocyanate adducts can be determined using this strategy. As an example of the application of the method, recovery of moringin and benzyl isothiocyanate applied to cabbage leaf discs was studied in simulated insect feeding assays. The majority of moringin was recovered as native isothiocyanate, but a major part of benzyl isothiocyanate was converted to reactive adducts. PMID:26342619

  5. Monitoring of isothiocyanates emanating from Arabidopsis thaliana upon paraquat spraying.

    PubMed

    Vercammen, J; Pham-Tuan, H; Arickx, I; Van der Straeten, D; Sandra, P

    2001-03-30

    Arabidopsis thaliana plants were sprayed with the superoxide-generating herbicide paraquat. The headspace of sprayed plants was characterized by a number of compounds, which were absent in the headspace of untreated plants. They were identified as isothiocyanates (ITCs) with 4-methylthiobutyl isothiocyanate as main compound. After identification, a GC-system, based on PDMS sorption, was used to continuously monitor the ITC emissions. The specificity of isothiocyanate emission was also determined by subjecting the Arabidopsis thaliana plants to in vitro mechanical wounding. Again, 4-methylthiobutyl isothiocyanate was the main component, but the emission profile was completely different since the compound was emitted immediately, i.e., during wounding itself. PMID:11307975

  6. SaxA-Mediated Isothiocyanate Metabolism in Phytopathogenic Pectobacteria.

    PubMed

    Welte, Cornelia U; Rosengarten, Jamila F; de Graaf, Rob M; Jetten, Mike S M

    2016-04-01

    Pectobacteria are devastating plant pathogens that infect a large variety of crops, including members of the family Brassicaceae. To infect cabbage crops, these plant pathogens need to overcome the plant's antibacterial defense mechanisms, where isothiocyanates are liberated by hydrolysis of glucosinolates. Here, we found that a Pectobacterium isolate from the gut of cabbage root fly larvae was particularly resistant to isothiocyanate and even seemed to benefit from the abundant Brassica root metabolite 2-phenylethyl isothiocyanate as a nitrogen source in an ecosystem where nitrogen is scarce. The Pectobacterium isolate harbored a naturally occurring mobile plasmid that contained a sax operon. We hypothesized that SaxA was the enzyme responsible for the breakdown of 2-phenylethyl isothiocyanate. Subsequently, we heterologously produced and purified the SaxA protein and characterized the recombinant enzyme. It hydrolyzed 2-phenylethyl isothiocyanate to yield the products carbonyl sulfide and phenylethylamine. It was also active toward another aromatic isothiocyanate but hardly toward aliphatic isothiocyanates. It belongs to the class B metal-dependent beta-lactamase fold protein family but was not, however, able to hydrolyze beta-lactam antibiotics. We discovered that several copies of the saxA gene are widespread in full and draft Pectobacterium genomes and therefore hypothesize that SaxA might be a new pathogenicity factor of the genus Pectobacterium, possibly compromising food preservation strategies using isothiocyanates. PMID:26873319

  7. The first naturally occurring aromatic isothiocyanates, rapalexins A and B, are cruciferous phytoalexins.

    PubMed

    Pedras, M Soledade C; Zheng, Qing-An; Gadagi, Ravi S

    2007-01-28

    The discovery of the first naturally occurring aromatic isothiocyanates, indole-3-isothiocyanates, their first synthesis, antimicrobial activity and proposed biogenetic origin in canola plants are reported. PMID:17220973

  8. Mechanisms of the Anticancer Effects of Isothiocyanates.

    PubMed

    Fofaria, Neel M; Ranjan, Alok; Kim, Sung-Hoon; Srivastava, Sanjay K

    2015-01-01

    Cancer results from aberrant signaling pathways that result in uncontrolled cellular proliferation. The epidemiological studies have shown a strong inverse correlation between dietary consumption of cruciferous vegetables and incidences of cancer. Isothiocyanates (ITCs) are present in cruciferous vegetables like broccoli, cabbage, watercress, etc. and are identified as the major active constituents. Several mechanistic studies have demonstrated chemopreventive and chemotherapeutic activity of ITCs against various tumor types. ITCs exert anticancer activity by suppressing various critical hallmarks of cancer like cellular proliferation, angiogenesis, apoptosis, metastasis, etc., in vitro as well as in preclinical animal model. ITCs also generate reactive oxygen species to induce apoptosis in cancer cells. Due to promising preclinical results, few ITCs have also advanced to clinical trials. This chapter provides a candid review on the chemopreventive and chemotherapeutic activity of various major ITCs. PMID:26298458

  9. Evaluation of Fluorescein Isothiocyanate-labeled Whole Antiserum in the Immunofluorescent Identification of Microorganisms

    PubMed Central

    Sweet, George H.; Schindler, Charles A.

    1967-01-01

    Portions of a whole antiserum to Histoplasma capsulatum were reacted with amounts of fluorescein isothiocyanate (FITC) that ranged from 50 to 400 μg/mg of protein. Portions of the globulin from the same antiserum were reacted with amounts of FITC that ranged from 12.5 to 50 μg of FITC per mg of protein. The globulin conjugates (postlabeled globulins), the whole serum conjugates, and the globulins from the whole serum conjugates (prelabeled globulins) were compared with respect to their fluorescein-protein (F:P) ratios and fluorescent-antibody (FA) activities. The whole serum sample treated with 50 μg of FITC per mg of protein was least reactive in FA tests, and its globulin had the lowest F:P. All other conjugates had globulins with F:P ratios that were considered to be adequate for high FA activity. It was found, however, that the prelabeled globulins were considerably less reactive than the postlabeled globulins or the whole serum conjugates. A larger amount of brightly staining reagent per milliliter of original serum could be obtained from labeled whole serum than from postlabeled globulin. Lissamine-rhodamine conjugated to bovine serum albumin (LRBSA) was evaluated as a counterstain to be used in conjunction with FITC-labeled whole antisera. The counterstain was effective in masking nonspecific FITC fluorescence in Formalin-fixed tissues and in culture smears of fungi. Masking was incomplete in culture smears of a bacterium and in blood smears containing a protozoan. Images PMID:5337774

  10. Peptide Reactivity of Isothiocyanates - Implications for Skin Allergy.

    PubMed

    Karlsson, Isabella; Samuelsson, Kristin; Ponting, David J; Törnqvist, Margareta; Ilag, Leopold L; Nilsson, Ulrika

    2016-01-01

    Skin allergy is a chronic condition that affects about 20% of the population of the western world. This disease is caused by small reactive compounds, haptens, able to penetrate into the epidermis and modify endogenous proteins, thereby triggering an immunogenic reaction. Phenyl isothiocyanate (PITC) and ethyl isothiocyanate (EITC) have been suggested to be responsible for allergic skin reactions to chloroprene rubber, the main constituent of wetsuits, orthopedic braces, and many types of sports gear. In the present work we have studied the reactivity of the isothiocyanates PITC, EITC, and tetramethylrhodamine-6-isothiocyanate (6-TRITC) toward peptides under aqueous conditions at physiological pH to gain information about the types of immunogenic complexes these compounds may form in the skin. We found that all three compounds reacted quickly with cysteine moieties. For PITC and 6-TRITC the cysteine adducts decomposed over time, while stable adducts with lysine were formed. These experimental findings were verified by DFT calculations. Our results may suggest that the latter are responsible for allergic reactions to isothiocyanates. The initial adduct formation with cysteine residues may still be of great importance as it prevents hydrolysis and facilitates the transport of isothiocyanates into epidermis where they can form stable immunogenic complexes with lysine-containing proteins. PMID:26883070

  11. Peptide Reactivity of Isothiocyanates – Implications for Skin Allergy

    PubMed Central

    Karlsson, Isabella; Samuelsson, Kristin; Ponting, David J.; Törnqvist, Margareta; Ilag, Leopold L.; Nilsson, Ulrika

    2016-01-01

    Skin allergy is a chronic condition that affects about 20% of the population of the western world. This disease is caused by small reactive compounds, haptens, able to penetrate into the epidermis and modify endogenous proteins, thereby triggering an immunogenic reaction. Phenyl isothiocyanate (PITC) and ethyl isothiocyanate (EITC) have been suggested to be responsible for allergic skin reactions to chloroprene rubber, the main constituent of wetsuits, orthopedic braces, and many types of sports gear. In the present work we have studied the reactivity of the isothiocyanates PITC, EITC, and tetramethylrhodamine-6-isothiocyanate (6-TRITC) toward peptides under aqueous conditions at physiological pH to gain information about the types of immunogenic complexes these compounds may form in the skin. We found that all three compounds reacted quickly with cysteine moieties. For PITC and 6-TRITC the cysteine adducts decomposed over time, while stable adducts with lysine were formed. These experimental findings were verified by DFT calculations. Our results may suggest that the latter are responsible for allergic reactions to isothiocyanates. The initial adduct formation with cysteine residues may still be of great importance as it prevents hydrolysis and facilitates the transport of isothiocyanates into epidermis where they can form stable immunogenic complexes with lysine-containing proteins. PMID:26883070

  12. Effects of Brassicaceae Isothiocyanates on Prostate Cancer.

    PubMed

    Novío, Silvia; Cartea, María Elena; Soengas, Pilar; Freire-Garabal, Manuel; Núñez-Iglesias, María Jesús

    2016-01-01

    Despite the major progress made in the field of cancer biology, cancer is still one of the leading causes of mortality, and prostate cancer (PCa) is one of the most encountered malignancies among men. The effective management of this disease requires developing better anticancer agents with greater efficacy and fewer side effects. Nature is a large source for the development of chemotherapeutic agents, with more than 50% of current anticancer drugs being of natural origin. Isothiocyanates (ITCs) are degradation products from glucosinolates that are present in members of the family Brassicaceae. Although they are known for a variety of therapeutic effects, including antioxidant, immunostimulatory, anti-inflammatory, antiviral and antibacterial properties, nowadays, cell line and animal studies have additionally indicated the chemopreventive action without causing toxic side effects of ITCs. In this way, they can induce cell cycle arrest, activate apoptosis pathways, increase the sensitivity of resistant PCa to available chemodrugs, modulate epigenetic changes and downregulate activated signaling pathways, resulting in the inhibition of cell proliferation, progression and invasion-metastasis. The present review summarizes the chemopreventive role of ITCs with a particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo cancer animal models. PMID:27187332

  13. Isothiocyanates of Phosphorus Acids, N-Phosphorylated Thiocarbamates and Thioureas

    NASA Astrophysics Data System (ADS)

    Kamalov, R. M.; Zimin, M. G.; Pudovik, A. N.

    1985-12-01

    Current data on the synthesis, structures, the activities, and practical applications of the isothiocyanates of tricoordinate, tetracoordinate, pentacoordinate, and hexacoordinate phosphorus acids and N-phosphorylated and N-thiophosphorylated thiocarbamates, dithiocarbamates, and thioureas are examined and surveyed. The bibliography includes 223 references.

  14. Behavioral Response of Meloidogyne incognita to Benzyl Isothiocyanate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One reported mechanism of plant-parasitic nematode suppression by brassicaceous cover crops is the production of isothiocyanates (ITC) in soil after biomass incorporation. While plant-parasitic nematode mortality is the objective when using these cover crops for biofumigation, very little is known ...

  15. Water and methyl isothiocyanate distribution in soil after drip fumigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl isothiocyanate (MITC) generators, such as metam sodium (Met-Na), are used for soil fumigation of agricultural land. The ban on the fumigant methyl bromide (MBr) has resulted in greater use of MITC generators. In order to understand the efficacy of MITC, it is necessary to assess its generat...

  16. Novel Route to Transition Metal Isothiocyanate Complexes Using Metal Powders and Thiourea

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Eckles, William E.; Hepp, Aloysius F.; Duraj, Stan A.; Hehemann, David G.; Fanwick, Phillip E.; Richardson, John

    2003-01-01

    A new synthetic route to isothiocyanate-containing materials is presented. Eight isothiocyanate- 4-methylpyridine (y-picoline) compounds were prepared by refluxing metal powders (Mn, Fe, Co, Ni, and Cu) with thiourea in y-picoline. With the exception of compound 5,prepared with Co, the isothiocyanate ligand was generated in situ by the isomerization of thiourea to NH4+SCN- at reflux temperatures. The complexes were characterized by x-ray crystallography. Compounds 1,2, and 8 are the first isothiocyanate- 4-methylpyridine anionic compounds ever prepared and structurally characterized. Compounds 1 and 2 are isostructural with four equatorially bound isothiocyanate ligands and two axially bound y-picoline molecules. Compound 8 is a five-coordinate copper(II) molecule with a distorted square-pyramidal geometry. Coordinated picoline and two isothiocyanates form the basal plane and the remaining isothiocyanate is bound at the apex. Structural data are presented for all compounds.

  17. Antimicrobial Activities of Isothiocyanates Against Campylobacter jejuni Isolates

    PubMed Central

    Dufour, Virginie; Alazzam, Bachar; Ermel, Gwennola; Thepaut, Marion; Rossero, Albert; Tresse, Odile; Baysse, Christine

    2012-01-01

    Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes. We have investigated the bacteriostatic and bactericidal activities of two phytochemicals, allyl-isothiocyanate (AITC), and benzyl isothiocyanate (BITC), against 24 C. jejuni isolates from chicken feces, human infections, and contaminated foods, as well as two reference strains NCTC11168 and 81-176. AITC and BITC displayed a potent antibacterial activity against C. jejuni. BITC showed a higher overall antibacterial effect (MIC of 1.25–5 μg mL−1) compared to AITC (MIC of 50–200 μg mL−1). Both compounds are bactericidal rather than bacteriostatic. The sensitivity levels of C. jejuni isolates against isothiocyanates were neither correlated with the presence of a GGT (γ-Glutamyl Transpeptidase) encoding gene in the genome, with antibiotic resistance nor with the origin of the biological sample. However the ggt mutant of C. jejuni 81-176 displayed a decreased survival rate compared to wild-type when exposed to ITC. This work determined the MIC of two ITC against a panel of C. jejuni isolates, showed that both compounds are bactericidal rather than bacteriostatic, and highlighted the role of GGT enzyme in the survival rate of C. jejuni exposed to ITC. PMID:22919644

  18. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells.

    PubMed

    Rajan, Thangavelu Soundara; De Nicola, Gina Rosalinda; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2016-04-01

    Isothiocyanates (ITCs) released from their glucosinolate precursors have been shown to inhibit tumorigenesis and they have received significant attention as potential chemotherapeutic agents against cancer. Astrocytoma grade IV is the most frequent and most malignant primary brain tumor in adults without any curative treatment. New therapeutic drugs are therefore urgently required. In the present study, we investigated the in vitro antitumor activity of the glycosylated isothiocyanate moringin [4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate] produced from quantitative myrosinase-induced hydrolysis of glucomoringin (GMG) under neutral pH value. We have evaluated the potency of moringin on apoptosis induction and cell death in human astrocytoma grade IV CCF-STTG1 cells. Moringin showed to be effective in inducing apoptosis through p53 and Bax activation and Bcl-2 inhibition. In addition, oxidative stress related Nrf2 transcription factor and its upstream regulator CK2 alpha expressions were modulated at higher doses, which indicated the involvement of oxidative stress-mediated apoptosis induced by moringin. Moreover, significant reduction in 5S rRNA was noticed with moringin treatment. Our in vitro results demonstrated the antitumor efficacy of moringin derived from myrosinase-hydrolysis of GMG in human malignant astrocytoma cells. PMID:26882972

  19. A one-pot approach to pyridyl isothiocyanates from amines.

    PubMed

    Zhang, Hao; Liu, Rui-Quan; Liu, Ke-Chang; Li, Qi-Bo; Li, Qing-Yang; Liu, Shang-Zhong

    2014-01-01

    A one-pot preparation of pyridyl isothiocyanates (ITCs) from their corresponding amines has been developed. This method involves aqueous iron(III) chloride-mediated desulfurization of a dithiocarbamate salt that is generated in situ by treatment of an amine with carbon disulfide in the present of DABCO or sodium hydride. The choice of base is of decisive importance for the formation of the dithiocarbamate salts. This one-pot process works well for a wide range of pyridyl ITCs. Utilizing this protocol, some highly electron-deficient pyridyl and aryl ITCs are obtained in moderate to good yields. PMID:25185069

  20. Multidirectional Time-Dependent Effect of Sinigrin and Allyl Isothiocyanate on Metabolic Parameters in Rats

    PubMed Central

    2010-01-01

    Sinigrin (SIN) and allyl isothiocyanate (AITC) are compounds found in high concentrations in Brassica family vegetables, especially in Brussels sprouts. Recently, they have been used as a nutrition supplement for their preventive and medicinal effect on some types of cancer and other diseases. In this research, nutritional significance of parent glucosinolate sinigrin 50 μmol/kg b. w./day and its degradation product allyl isothiocyanate 25 μmol/kg b. w./day and 50 μmol/kg b. w./day was studied by the evaluation of their influence on some parameters of carbohydrate and lipid metabolism in an animal rat model in vivo after their single (4 h) and 2 weeks oral administration. Additionally, the aim of this trial was to evaluate the direct action of AITC on basal and epinephrine-induced lipolysis in isolated rat adipocytes at concentration 1 μM, 10 μM and 100 μM in vitro. Sole AITC after 4 h of its ingestion caused liver triacylglycerols increment at both doses and glycaemia only at the higher dose. Multiple SIN treatment showed its putative bioconversion into AITC. It was found that SIN and AITC multiple administration in the same way strongly disturbed lipid and carbohydrate homeostasis, increasing esterified and total cholesterol, free fatty acids and lowering tracylglycerols in the blood serum. Additionally, AITC at both doses elevated insulinaemia and liver glycogen enhancement. The in vitro experiment revealed that AITC potentiated basal lipolysis process at 10 μM, and had stimulatory effect on epinephrine action at 1 μM and 10 μM. The results of this study demonstrated that the effect of SIN and AITC is multidirectional, indicating its impact on many organs like liver as well as pancreas, intestine in vivo action and rat adipocytes in vitro. Whilst consumption of cruciferous vegetables at levels currently considered “normal” seems to be beneficial to human health, this data suggest that any large increase in intake could conceivably lead

  1. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster.

    PubMed

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  2. Allyl isothiocyanate induces stomatal closure in Vicia faba.

    PubMed

    Sobahan, Muhammad Abdus; Akter, Nasima; Okuma, Eiji; Uraji, Misugi; Ye, Wenxiu; Mori, Izumi C; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Isothiocyanates are enzymatically produced from glucosinolates in plants, and allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis thaliana. In this study, we investigated stomatal responses to AITC in Vicia faba. AITC-induced stomatal closure accompanied by reactive oxygen species (ROS) and NO production, cytosolic alkalization and glutathione (GSH) depletion in V. faba. GSH monoethyl ester induced stomatal reopening and suppressed AITC-induced GSH depletion in guard cells. Exogenous catalase and a peroxidase inhibitor, salicylhydroxamic acid, inhibited AITC-induced stomatal closure, unlike an NAD(P)H oxidase inhibitor, diphenylene iodonium chloride. The peroxidase inhibitor also abolished the AITC-induced ROS production, NO production, and cytosolic alkalization. AITC-induced stomatal closure was suppressed by an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and an agent to acidify cytosol, butyrate. These results indicate that AITC-induced stomatal closure in V. faba as well as in A. thaliana and suggest that AITC signaling in guard cells is conserved in both plants. PMID:26027691

  3. The anti-oxidant properties of isothiocyanates: a review.

    PubMed

    de Figueiredo, Sônia M; Filho, Sidney A V; Nogueira-Machado, José A; Caligiorne, Rachel B

    2013-09-01

    Cruciferous vegetables, such as broccoli and watercress, have been studied extensively aiming to evaluate their chemopreventive properties. Some of them have already been established using animal models. The ITCs induce Phase II enzymes related to detoxification processes of chemical carcinogens to prevent the start of carcinogenesis. They also exhibit antitumor activity at post-initiation phase, suggesting their additional role(s) in cancer prevention. Sulforaphane is the most extensively studied isothiocyanate, focused in its anti-tumoral activity and it is mainly found in great amounts in broccoli and other cruciferous. In a dose dependent manner, ITCs inhibit the cell viability of human cervical cancer cells, human pancreatic cancer cells, human hepatocellular carcinoma cells, human ovarian cancer cells, and have antiinflammatory properties in the treatment of human T-cell leukemia cells. This protective effect may be due to improved antioxidant status. Although the health effects of diet in humans are generally considered promising, there are definite challenges and limitations of the current data in better understanding of the molecular mechanisms responsible for this effect, together with the possible interactions between different dietary constituents. The survey of relevant patents on the use of isothiocyanates such as sulforaphane for cancer and cardiovascular diseases treatments is also included in this review. PMID:23978168

  4. Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms

    PubMed Central

    Gupta, Parul; Wright, Stephen E.; Kim, Sung-Hoon; Srivastava, Sanjay K.

    2014-01-01

    The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent. PMID:25152445

  5. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    PubMed Central

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A.; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E.

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  6. Hepatoprotective effects of allyl isothiocyanate against carbon tetrachloride-induced hepatotoxicity in rat.

    PubMed

    Ahn, Meejung; Kim, Jeongtae; Bang, Hyojin; Moon, Jihwan; Kim, Gi Ok; Shin, Taekyun

    2016-07-25

    We evaluated the hepatoprotective activity of allyl isothiocyanate (AITC) against carbon tetrachloride (CCl4)-induced liver injury in rats. Sprague Dawley rats were orally administered AITC at doses of 5 (AITC 5) and 50 (AITC 50) mg/kg body weight once daily for 3 days, with or without intraperitoneal injection of CCl4. Serum chemistry was assessed for changes in alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The enzyme activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were examined in liver tissues, while pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) mRNA expression were analyzed using real-time polymerase chain reaction. And heme oxygenase-1 (HO-1) and ionized calcium binding protein-1 (Iba-1) immunoreactivities were evaluated by Western blot analysis and immunohistochemistry, respectively. In serum chemistry, the oral administration of AITC itself did not affect the serum levels of ALT or AST, furthermore pretreatment with AITC 5 and AITC 50 significantly reduced the ALT and AST activity levels that were elevated in CCl4-intoxicated rats. In addition, AITC significantly suppressed the reduction of SOD and CAT, and the elevation of MDA, TNF-α mRNA expression, on the other hands, induced the expression of HO-1 compared with those of the vehicle-treated CCl4 group. The histopathological evaluation and Iba-1 immunoreactivity also supported the hepatoprotective effects of AITC against CCl4-induced liver injury. These results suggest that AITC ameliorates oxidative liver injury, possibly through reducing lipid peroxidation, enhancing antioxidant enzymes, and suppressing Kupffer cells and macrophages. PMID:27241356

  7. Insights into the Mode of Action of Benzyl Isothiocyanate on Campylobacter jejuni

    PubMed Central

    Dufour, Virginie; Stahl, Martin; Rosenfeld, Eric; Stintzi, Alain

    2013-01-01

    Campylobacter jejuni is a widespread pathogen responsible for most of the food-borne gastrointestinal diseases in Europe. The use of natural antimicrobial molecules is a promising alternative to antibiotic treatments for pathogen control in the food industry. Isothiocyanates are natural antimicrobial compounds, which also display anticancer activity. Several studies described the chemoprotective effect of isothiocyanates on eukaryotic cells, but the antimicrobial mechanism is still poorly understood. We investigated the early cellular response of C. jejuni to benzyl isothiocyanate by both transcriptomic and physiological approaches. The transcriptomic response of C. jejuni to benzyl isothiocyanate showed upregulation of heat shock response genes and an impact on energy metabolism. Oxygen consumption was progressively impaired by benzyl isothiocyanate treatment, as revealed by high-resolution respirometry, while the ATP content increased soon after benzyl isothiocyanate exposition, which suggests a shift in the energy metabolism balance. Finally, benzyl isothiocyanate induced intracellular protein aggregation. These results indicate that benzyl isothiocyanate affects C. jejuni by targeting proteins, resulting in the disruption of major metabolic processes and eventually leading to cell death. PMID:24014524

  8. Isothiocyanate exposure, glutathione S-transferase polymorphisms, and colorectal cancer risk1234

    PubMed Central

    Gao, Yu-Tang; Shu, Xiao-Ou; Cai, Qiuyin; Li, Guo-Liang; Li, Hong-Lan; Ji, Bu-Tian; Rothman, Nathaniel; Dyba, Marcin; Xiang, Yong-Bing; Chung, Fung-Lung; Chow, Wong-Ho; Zheng, Wei

    2010-01-01

    Background: Isothiocyanates, compounds found primarily in cruciferous vegetables, have been shown in laboratory studies to possess anticarcinogenic activity. Glutathione S-transferases (GSTs) are involved in the metabolism and elimination of isothiocyanates; thus, genetic variations in these enzymes may affect in vivo bioavailability and the activity of isothiocyanates. Objective: The objective was to prospectively evaluate the association between urinary isothiocyanate concentrations and colorectal cancer risk as well as the potential modifying effect of GST genotypes on the association. Design: A nested case-control study of 322 cases and 1251 controls identified from the Shanghai Women's Health Study was conducted. Results: Urinary isothiocyanate concentrations were inversely associated with colorectal cancer risk; the inverse association was statistically significant or nearly significant in the GSTM1-null (P for trend = 0.04) and the GSTT1-null (P for trend = 0.07) genotype groups. The strongest inverse association was found among individuals with both the GSTM1-null and the GSTT1-null genotypes, with an adjusted odds ratio of 0.51 (95% CI: 0.27, 0.95), in a comparison of the highest with the lowest tertile of urinary isothiocyanates. No apparent associations between isothiocyanate concentration and colorectal cancer risk were found among individuals who carried either the GSTM1 or GSTT1 gene (P for interaction < 0.05). Conclusion: This study suggests that isothiocyanate exposure may reduce the risk of colorectal cancer, and this protective effect may be modified by the GSTM1 and GSTT1 genes. PMID:20042523

  9. Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassicales contain a myrosinase enzyme that hydrolyzes glucosinolates to form toxic isothiocyanates, as a defense against bacteria, fungi, insects and herbivores including man. Low levels of isothiocyanates trigger a host defense system in mammals that protects them against chronic diseases. Becaus...

  10. Transcriptomic alterations in human prostate cancer cell LNCaP tumor xenograft modulated by dietary phenethyl isothiocyanate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal growth of tumor xenografts in mice on a control diet was compared to mice supplemented daily with 3 µmol/g of the cancer preventive compound phenethyl isothiocyanate. Phenethyl isothiocyanate decreased the rate of tumor growth. The effects of phenethyl isothiocyanate on tumor growth were ex...

  11. Honey-Induced Protein Stabilization as Studied by Fluorescein Isothiocyanate Fluorescence

    PubMed Central

    Abdul Kadir, Habsah; Tayyab, Saad

    2013-01-01

    Protein stabilizing potential of honey was studied on a model protein, bovine serum albumin (BSA), using extrinsic fluorescence of fluorescein isothiocyanate (FITC) as the probe. BSA was labelled with FITC using chemical coupling, and urea and thermal denaturation studies were performed on FITC-labelled BSA (FITC-BSA) both in the absence and presence of 10% and 20% (w/v) honey using FITC fluorescence at 522 nm upon excitation at 495 nm. There was an increase in the FITC fluorescence intensity upon increasing urea concentration or temperature, suggesting protein denaturation. The results from urea and thermal denaturation studies showed increased stability of protein in the presence of honey as reflected from the shift in the transition curve along with the start point and the midpoint of the transition towards higher urea concentration/temperature. Furthermore, the increase in ΔGDH2O and ΔGD25°C in presence of honey also suggested protein stabilization. PMID:24222758

  12. Isothiocyanates: a class of bioactive metabolites with chemopreventive potential.

    PubMed

    Kumar, Gaurav; Tuli, Hardeep Singh; Mittal, Sonam; Shandilya, Jitendra Kumar; Tiwari, Anil; Sandhu, Sardul Singh

    2015-06-01

    In recent years, growing interest has been focused on the field of chemoprevention using natural therapies. The reason to turn toward "natural" remedies is associated with diverse beneficial pharmacological properties of natural compounds. Isothiocyanates (ITCs), the major pharmacological active constituents of cruciferous vegetables, are derived from the enzymatic hydrolysis of glucosinolates (GSLs). ITCs govern many intracellular targets including cytochrome P 450 (CYP) enzymes, proteins involved in antioxidant response, tumorigenesis, apoptosis, cell cycle, and metastasis. Investigation of the mechanisms of anti-cancer drugs has given important information regarding the use of natural chemopreventive compounds. This extensive review covers various molecular aspects of the interactions of ITCs with their recognized cellular targets involved in cancer treatment in order to enhance anti-tumor outcome with decreased toxicity to patients. PMID:25835976

  13. Antimicrobial activities of phenethyl isothiocyanate isolated from horseradish.

    PubMed

    Chen, Hongxia; Wang, Chengzhang; Ye, Jianzhong; Zhou, Hao; Chen, Xijuan

    2012-01-01

    Phenethyl isothiocyanate (PEITC) was obtained from horseradish. The preparation procedure was as follows: the horseradish powder was hydrolysed in the water first, and then, after filtration, the residue was extracted by petroleum ether; finally, PEITC was isolated by silica gel column. The structure of PEITC was identified by IR, MS, ¹H-NMR and ¹³C-NMR chromatography methods. The inhibitory activities of PEITC against Gibberella zeae, Xanthomonas axonopodis pv . citri, Cytospora sp . and Phytophthora capsisi showed that PEITC had good inhibition effects. The EC₅₀ values of G. zeae, X. axonopodis pv . citri, Cytospora sp . and P. capsisi were 13.92, 1.20, 0.73 and 3.69 µg mL⁻¹, respectively. PMID:21815843

  14. Cruciferous vegetables, isothiocyanates, and prevention of bladder cancer

    PubMed Central

    Veeranki, Omkara L.; Bhattacharya, Arup; Tang, Li; Marshall, James R.; Zhang, Yuesheng

    2015-01-01

    Approximately 80% of human bladder cancers (BC) are non-muscle invasive when first diagnosed and are usually treated by transurethral tumor resection. But 50–80% of patients experience cancer recurrence. Agents for prevention of primary BC have yet to be identified. Existing prophylactics against BC recurrence, e.g., Bacillus Calmette-Guerin (BCG), have limited efficacy and utility; they engender significant side effects and require urethral catheterization. Many cruciferous vegetables, rich sources of isothiocyanates (ITCs), are commonly consumed by humans. Many ITCs possess promising chemopreventive activities against BC and its recurrence. Moreover, orally ingested ITCs are selectively delivered to bladder via urinary excretion. This review is focused on urinary delivery of ITCs to the bladder, their cellular uptake, their chemopreventive activities in preclinical and epidemiological studies that are particularly relevant to prevention of BC recurrence and progression, and their chemopreventive mechanisms in BC cells and tissues. PMID:26273545

  15. Genetic Incorporation of a Reactive Isothiocyanate Group into Proteins.

    PubMed

    Xuan, Weimin; Li, Jack; Luo, Xiaozhou; Schultz, Peter G

    2016-08-16

    Methods for the site-specific modification of proteins are useful for introducing biological probes into proteins and engineering proteins with novel activities. Herein, we genetically encode a novel noncanonical amino acid (ncAA) that contains an aryl isothiocyanate group which can form stable thiourea crosslinks with amines under mild conditions. We show that this ncAA (pNCSF) allows the selective conjugation of proteins to amine-containing molecular probes through formation of a thiourea bridge. pNCSF was also used to replace a native salt bridge in myoglobin with an intramolecular crosslink to a proximal Lys residue, leading to increased thermal stability. Finally, we show that pNCSF can form stable intermolecular crosslinks between two interacting proteins. PMID:27418387

  16. Total isothiocyanate yield from raw cruciferous vegetables commonly consumed in the United States

    PubMed Central

    Tang, Li; Paonessa, Joseph D.; Zhang, Yuesheng; Ambrosone, Christine B.; McCann, Susan E.

    2013-01-01

    Dietary isothiocyanates are a group of promising chemopreventive agents obtained primarily from cruciferous vegetables. Due to their potent chemopreventive and/or anti-cancer activities, there is a growing interest in assessing dietary isothiocyanate exposure and its impact on human health. Using the HPLC-based cyclocondensation assay, the current study measured total isothiocyanate yield from raw cruciferous vegetables. A total of 73 samples comprising nine types of cruciferous vegetables were analyzed. We observed a wide range of isothiocyanate content across the individual vegetables with an average level of 16.2 μmol/100g wet weight, ranging from 1.5 μmol in raw cauliflower to 61.3 μmol in raw mustard greens. The data represent the maximum amount of isothiocyanates released from the intake of raw cruciferous vegetables. Given that the vegetables assayed in this study include the most commonly consumed cruciferous vegetables in western diets, the data may be particularly useful in estimation of dietary isothiocyanate exposure in these populations. However, due to the variation observed within each vegetable, biomarkers such as urinary isothiocyanate level may be necessary for accurate estimation of individual exposure. PMID:24443655

  17. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro.

    PubMed

    Waterman, Carrie; Cheng, Diana M; Rojas-Silva, Patricio; Poulev, Alexander; Dreifus, Julia; Lila, Mary Ann; Raskin, Ilya

    2014-07-01

    Moringa (Moringa oleifera Lam.) is an edible plant used as both a food and medicine throughout the tropics. A moringa concentrate (MC), made by extracting fresh leaves with water, utilized naturally occurring myrosinase to convert four moringa glucosinolates into moringa isothiocyanates. Optimum conditions maximizing MC yield, 4-[(α-L-rhamnosyloxy)benzyl]isothiocyanate, and 4-[(4'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate content were established (1:5 fresh leaf weight to water ratio at room temperature). The optimized MC contained 1.66% isothiocyanates and 3.82% total polyphenols. 4-[(4'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate exhibited 80% stability at 37°C for 30 days. MC, and both of the isothiocyanates described above significantly decreased gene expression and production of inflammatory markers in RAW macrophages. Specifically, both attenuated expression of iNOS and IL-1β and production of nitric oxide and TNFα at 1 and 5 μM. These results suggest a potential for stable and concentrated moringa isothiocyanates, delivered in MC as a food-grade product, to alleviate low-grade inflammation associated with chronic diseases. PMID:24731259

  18. Association between consumption of cruciferous vegetables and condiments and excretion in urine of isothiocyanate mercapturic acids.

    PubMed

    Vermeulen, Martijn; van den Berg, Robin; Freidig, Andreas P; van Bladeren, Peter J; Vaes, Wouter H J

    2006-07-26

    A high intake of cruciferous vegetables is associated with a reduced risk of cancer and cardiovascular diseases. This protective effect has been linked to isothiocyanates, enzymatic hydrolysis products of glucosinolates. In this study, the metabolic fate of glucosinolates and isothiocyanates after ingestion of 19 different cruciferous vegetables was studied in three male subjects. After the consumption of 13 cruciferous vegetables (glucosinolate content, 0.01-0.94 mmol/kg) and six condiments (isothiocyanate content, 0.06-49.3 mmol/kg), eight different isothiocyanate mercapturic acids were determined in urine samples. Excretion levels after the consumption of raw vegetables and condiments were higher (bioavailability, 8.2-113%) as compared to cooked vegetables (bioavailability, 1.8-43%), but the excretion rate was similar (t1/2=2.1-3.9 h). Isothiocyanates in urine remain longer at a nonzero level after the consumption of glucosinolates from cooked vegetables, as compared to raw vegetables and condiments, and maximal levels in urine were reached about 4 h later. Isothiocyanate mercapturic acids can be used as a biomarker to reflect the active dose of isothiocyanates absorbed. PMID:16848516

  19. Antimicrobial Activity of Isothiocyanates from Cruciferous Plants against Methicillin-Resistant Staphylococcus aureus (MRSA)

    PubMed Central

    Dias, Carla; Aires, Alfredo; Saavedra, Maria José

    2014-01-01

    Purified isothiocyanates from cruciferous plants (Brassicacea, Syn. Cruciferae) plants were evaluated against 15 isolates of methicillin-resistant S. aureus isolated from diabetic foot-ulcer patients aiming the study of the potential usage of allyl-isothiocyanate, benzyl-isothiocyanate and 2-phenylethyl-isothiocyanate against this important bacteria. Disc diffusion and minimum inhibitory concentration methods were used to access the antimicrobial activity. The index (Ia) and rate (Ra) of the antibacterial activity for each compound were calculated. The results showed a highly dose-dependent compound and chemical structure antibacterial effectiveness. The results showed a strong relation between the chemical structure of isothiocyanates and its antibacterial effectiveness. The benzyl-isothiocyanate was the most effective with a minimum inhibitory concentration varying between 2.9 and 110 µg· mL−1 with an antibacterial activity rate up to 87%. Moreover, their antibacterial activity was mainly bactericidal. This study provides scientific evidence that isothiocyanates have an interesting biological value and must be considered as an important tool to be used against MRSA. PMID:25353177

  20. ER stress contributes to alpha-naphthyl isothiocyanate-induced liver injury with cholestasis in mice.

    PubMed

    Yao, Xiaomin; Li, Yue; Cheng, Xiaoyan; Li, Hongwei

    2016-06-01

    Endoplasmic reticulum (ER) stress is involved in the development of several liver diseases and tumors. This study investigated the underlying mechanisms of α-naphthyl isothiocyanate (ANIT)-induced liver injury with cholestasis in mice and found ER stress contributes to the injury. All animals were randomly divided into three groups. In the ANIT-intoxicated group, mice were intragastrically given 100mg/kg ANIT (dissolved in corn oil), while the other groups received an equal volume of vehicle as control. After 24 and 48h of ANIT administration, blood samples and liver tissues of all animals were collected for serum biochemistry and hepatic histopathological examinations to evaluate liver injuries with cholestasis. Hepatocellular apoptosis was assessed by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. The expression of hepatic ER stress-related markers was determined by real-time PCR, immunohistochemical assay and Western blot. ANIT was found to significantly induce liver injury with cholestasis compared with control mice as evidenced by the increase of serum transaminases and total bilirubin (TBil), and histopathological changes in mice. ANIT remarkably induced hepatocellular apoptosis, upregulated the expression of caspase-9 and cytochrome c, and inhibited the gene and protein expression of proliferating cell nuclear antigen (PCNA). The gene expression of ER stress-related markers, including glucose-regulated protein 78 (GRP78), protein kinase R-like ER kinase (PERK), eukaryotic initiation factor 2α (eIF2α), inositol requiring enzyme-1α (IRE-1α) and activating transcription factor 6 (ATF6) was upregulated by ANIT in mice. ANIT also upregulated the protein expression of GRP78 and activated the phosphorylation of IRE1. These results suggested that ANIT induced liver injury with cholestasis partly due to its ability to activate the ER stress pathway. PMID:27173049

  1. Effect of Allyl Isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pungent natural compound allyl isothiocyanate isolated from the seeds of Cruciferous (Brassica) plants such as mustard is reported to exhibit numerous beneficial health-promoting antimicrobial, antifungal, anticarcinogenic, cardioprotective, and neuroprotective properties. Because it is also re...

  2. Oxidative conversion of isothiocyanates to isocyanates by rat liver.

    PubMed Central

    Lee, M S

    1994-01-01

    This report describes the oxidative metabolism of isothiocyanates to isocyanates catalyzed by rat liver microsomes. Incubation of 2-naphthylisothiocyanate, microsomes, and NADPH yielded either N,N'-di-naphthylurea or, on inclusion of 2-aminofluorene in the incubations, N-2-naphthyl-N'-2-fluorenylurea. These ureas were formed by the production of the known genotoxicant, 2-naphthylisocyanate, which reacted with its hydrolysis product, 2-aminonaphthalene, to yield the symmetrical urea, or with 2-aminofluorene to form the mixed urea. Formation of N,N'-di-2-naphthylthiourea was also observed because 2-aminonaphthalene reacted with the substrate. Urea formation was dependent on the microsomes, NADPH, and oxygen. Use of microsomes from rats previously treated with Aroclor 1254 increased urea formation greater than 10-fold. The enzyme activity was inhibited by alpha-napthoflavone, flavone, or CO, and slightly inhibited by metyrapone, 7-ethoxycoumarin, or SKF-525A. It was not inhibited by methimazole or paraoxon, suggesting that neither flavin-containing monooxygenase nor hydrolytic enzyme was involved. These data are consistent with a cytochrome P450-dependent, oxidative desulfuration of 2-naphthylisothiocyanate to yield 2-naphthylisocyanate. Further studies with the isomeric 1-naphthylisothiocyanate and the dietary benzylisothiocyanate showed that they can also be metabolized to their isocyanates, as evidenced by the trapping of isocyanates with 2-aminofluorene to form the mixed ureas. PMID:7889832

  3. Proteins as binding targets of isothiocyanates in cancer prevention

    PubMed Central

    Mi, Lixin; Di Pasqua, Anthony J.

    2011-01-01

    Isothiocyanates are versatile cancer-preventive compounds. Evidence from animal studies indicates that the anticarcinogenic activities of ITCs involve all the major stages of tumor growth: initiation, promotion and progression. Epidemiological studies have also shown that dietary intake of ITCs is associated with reduced risk of certain human cancers. A number of mechanisms have been proposed for the chemopreventive activities of ITCs. To identify the molecular targets of ITCs is a first step to understand the molecular mechanisms of ITCs. Studies in recent years have shown that the covalent binding to certain protein targets by ITCs seems to play an important role in ITC-induced apoptosis and cell growth inhibition and other cellular effects. The knowledge gained from these studies may be used to guide future design and screen of better and more efficacious compounds. In this review, we intend to cover all potential protein targets of ITCs so far studied and summarize what are known about their binding sites and the potential biological consequences. In the end, we also offer discussions to shed light onto the relationship between protein binding and reactive oxygen species generation by ITCs. PMID:21665889

  4. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  5. Release of allyl isothiocyanate from mustard seed meal powder.

    PubMed

    Dai, Ruyan; Lim, Loong-Tak

    2014-01-01

    Allyl isothiocyanate (AITC) is a wide-spectrum antimicrobial compound found in mustard seeds, produced when their tissues are disrupted. The formation of AITC in mustard seed is mediated by the myrosinase enzyme which catalyzes the release of volatile AITC from a glucosinolate-sinigrin. Since water is a substrate in the reaction, humidity from the air can be used to activate the release of AITC from mustard seed. In this study, defatted and partially defatted mustard seed meals were ground into powders with particle size ranging from 5 to 300 μm. The mustard seed meal powder (MSMP) samples were enclosed within hermetically sealed glass jars wherein the headspace air was adjusted to 85% or 100% relative humidity at 5, 20, or 35 °C. Data from gas chromatography analysis showed that AITC release rate and amount increased with increasing relative humidity and temperature. Moreover, the release rate can be manipulated by particle size and lipid content of the MSMP samples. The amount of AITC released ranged from 2 to 17 mg/g MSMP within 24 h under the experimental conditions tested. In view of the antimicrobial properties of AITC, the mustard meal powder may be used as a natural antimicrobial material for extending the shelf life of food products. PMID:24313968

  6. Allyl isothiocyanate enhances shelf life of minimally processed shredded cabbage.

    PubMed

    Banerjee, Aparajita; Penna, Suprasanna; Variyar, Prasad S

    2015-09-15

    The effect of allyl isothiocyanate (AITC), in combination with low temperature (10°C) storage on post harvest quality of minimally processed shredded cabbage was investigated. An optimum concentration of 0.05μL/mL AITC was found to be effective in maintaining the microbial and sensory quality of the product for a period of 12days. Inhibition of browning was shown to result from a down-regulation (1.4-fold) of phenylalanine ammonia lyase (PAL) gene expression and a consequent decrease in PAL enzyme activity and o-quinone content. In the untreated control samples, PAL activity increased following up-regulation in PAL gene expression that could be linearly correlated with enhanced o-quinone formation and browning. The efficacy of AITC in extending the shelf life of minimally processed shredded cabbage and its role in down-regulation of PAL gene expression resulting in browning inhibition in the product is reported here for the first time. PMID:25863635

  7. Molecular Targets of Isothiocyanates in Cancer: Recent Advances

    PubMed Central

    Gupta, Parul; Kim, Bonglee; Kim, Sung-Hoon; Srivastava, Sanjay K.

    2014-01-01

    Cancer is a multistep process resulting in uncontrolled cell division. It results from aberrant signaling pathways that lead to uninhibited cell division and growth. Various recent epidemiological studies have indicated that consumption of cruciferous vegetables such as garden cress, broccoli, etc., reduces the risk of cancer. Isothiocyanates (ITC) have been identified as major active constituents of cruciferous vegetables. ITCs occur in plants as glucosinolate and can readily be derived by hydrolysis. Numerous mechanistic studies have demonstrated the anti-cancer effects of ITCs in various cancer types. ITCs suppress tumor growth by generating reactive oxygen species or by inducing cycle arrest leading to apoptosis. Based on the exciting outcomes of pre-clinical studies, few ITCs have advanced to the clinical phase. Available data from pre-clinical as well as available clinical studies suggests ITCs to be one of the promising anti-cancer agents available from natural sources. This is an up-to-date exhaustive review on the preventive and therapeutic effects of ITCs in cancer. PMID:24510468

  8. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates.

    PubMed

    Fahey, Jed W; Stephenson, Katherine K; Wade, Kristina L; Talalay, Paul

    2013-05-24

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 260-320 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  9. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates

    PubMed Central

    Fahey, Jed W.; Stephenson, Katherine K.; Wade, Kristina L.; Talalay, Paul

    2013-01-01

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 280–340 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  10. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro

    PubMed Central

    Waterman, Carrie; Cheng, Diana M.; Rojas-Silva, Patricio; Poulev, Alexander; Dreifus, Julia; Ann Lila, Mary; Raskin, Ilya

    2014-01-01

    Moringa (Moringa oleifera Lam.) is an edible plant used as food and medicine throughout the tropics. A moringa concentrate (MC) made by extracting fresh leaves with water utilized naturally occurring myrosinase to convert four moringa glucosinolates (1–4) into moringa isothiocyanates (5–8). Optimum conditions maximizing MC yield, compound 5 (4-[(α-L-rhamnosyloxy)benzyl]isothiocyanate), and compound 8 (4-[(4’-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate) content were established (1:5 fresh leaf weight to water ratio at room temperature). The optimized MC contained 1.66% isothiocyanates and 3.82% total polyphenols. Compound 8 exhibited 80% stability at 37 °C for 30 days. MC, 5, and 8 significantly decreased gene expression and production of inflammatory markers in RAW macrophages. Specifically, 5 and 8 attenuated expression of iNOS and IL-1β and production of nitric oxide and TNFβ at 1 and 5 µM. Our results suggest a potential for stable and concentrated moringa isothiocyanates (5–8), delivered in MC as a food-grade product, to alleviate low-grade inflammation associated with chronic diseases. PMID:24731259

  11. In vitro studies of phenethyl isothiocyanate against the growth of LN229 human glioma cells.

    PubMed

    Su, Ji-Chun; Lin, Kai; Wang, Yan; Sui, Shao-Hua; Gao, Zhi-Yu; Wang, Zhi-Gang

    2015-01-01

    Phenethyl isothiocyanate (PEITC) is one of the best studied members of isothiocyanates (ITC), a variety of edible cruciferous vegetables including broccoli, watercress, and cabbage, and have generated particular interest because of its remarkable chemopreventive activity. Many literature reports proved that phenethyl isothiocyanate exhibited significant anti-cancer chemopreventive effects including lung, glioma and leukemia cancer. In this study, we explored the inhibitory effects as well as mechanisms of PEITC on human glioma LN229 cells. Results demonstrated that PEITC possesses the potential ability to inhibit proliferation, induce apoptosis and arrest cell cycling against LN229 human glioma cells. Moreover, investigated results showed that PEITC inhibited the expression of superoxide dismutase (SOD) and glutathione (GSH), and caused oxidative stress to tumor cells. Collective results suggested us to believe that PEITC can inhibit the growth of LN229 cells and its mechanism can be related to the fact that PEITC can cause oxidative stress to tumor cells. PMID:26097624

  12. In vitro studies of phenethyl isothiocyanate against the growth of LN229 human glioma cells

    PubMed Central

    Su, Ji-Chun; Lin, Kai; Wang, Yan; Sui, Shao-Hua; Gao, Zhi-Yu; Wang, Zhi-Gang

    2015-01-01

    Phenethyl isothiocyanate (PEITC) is one of the best studied members of isothiocyanates (ITC), a variety of edible cruciferous vegetables including broccoli, watercress, and cabbage, and have generated particular interest because of its remarkable chemopreventive activity. Many literature reports proved that phenethyl isothiocyanate exhibited significant anti-cancer chemopreventive effects including lung, glioma and leukemia cancer. In this study, we explored the inhibitory effects as well as mechanisms of PEITC on human glioma LN229 cells. Results demonstrated that PEITC possesses the potential ability to inhibit proliferation, induce apoptosis and arrest cell cycling against LN229 human glioma cells. Moreover, investigated results showed that PEITC inhibited the expression of superoxide dismutase (SOD) and glutathione (GSH), and caused oxidative stress to tumor cells. Collective results suggested us to believe that PEITC can inhibit the growth of LN229 cells and its mechanism can be related to the fact that PEITC can cause oxidative stress to tumor cells. PMID:26097624

  13. Assessing Natural Isothiocyanate Air Emissions after Field Incorporation of Mustard Cover Crop

    SciTech Connect

    Trott, Donna M.; LePage, Jane; Hebert, Vincent

    2012-01-01

    A regional air assessment was performed to characterize volatile natural isothiocyanate (NITC) compounds in air during soil incorporation of mustard cover crops in Washington State. Field air sampling and analytical methods were developed specific to three NITCs known to be present in air at appreciable concentrations during/after field incorporation. The maximum observed concentrations in air for the allyl, benzyl, and phenethyl isothiocyanates were respectively 188, 6.1, and 0.7 lg m-3 during mustard incorporation. Based on limited inhalation toxicity information, airborne NITC concentrations did not appear to pose an acute human inhalation exposure concern to field operators and bystanders.

  14. Isocyanates and isothiocyanates as versatile platforms for accessing (thio)amide-type compounds.

    PubMed

    Pace, Vittorio; Monticelli, Serena; de la Vega-Hernández, Karen; Castoldi, Laura

    2016-08-16

    The addition of carbon (Grignard and organolithium reagents) and hydride nucleophiles (Schwartz reagent) to isocyanates and isothiocyanates constitutes a versatile, direct and high yielding approach to the synthesis of functionalized (thio)amide derivatives including haloamides and formamides. The chemoselective delivery of a nucleophilic (eventually configurationally stable) organometallic species to a given iso(thio)cyanate is the crucial parameter for the success of the strategy. Thus, the influence of the factors governing classical methodologies (e.g. dehydrative condensation) such as steric hindrance and electronic properties of the reactants become practically negligible. PMID:27461156

  15. Evaluation of antibacterial activity of 3-butenyl, 4-pentenyl, 2-phenylethyl, and benzyl isothiocyanate in Brassica vegetables.

    PubMed

    Jang, Miran; Hong, Eunyoung; Kim, Gun-Hee

    2010-09-01

    This study investigated antibacterial activities of 4 isothiocyanates (3-butenyl, 4-phentenyl, 2-phenylethyl, and benzyl isothiocyanate) against 4 Gram-positive bacteria (Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus) and 7 Gram-negative bacteria (Aeromonas hydrophila, Pseudomonas aeruginosa, Salmonella choleaesuis, Salmonella enterica, Serratia marcescens, Shigella sonnei, and Vibrio parahaemolyticus) by an agar disc diffusion assay. Benzyl isothiocyanate (> 90.00 mm inhibition zone diameter at 0.1 μL/mL) and 2-phenylethyl isothiocyanate (58.33 mm at 0.2 μL/mL) showed large inhibition zones especially against B. cereus. Also, 3-butenyl isothiocyanate (21.67 mm at 1.0 μL/mL) and 4-pentenyl isothiocyanate (19.67 mm at 1.0 μL/mL) displayed potent antibacterial activity against A. hydrophila. Benzyl and 2-phenylethyl isothiocyanate indicated higher activity against most of the pathogenic bacteria than 3-butenyl and 4-pentenyl isothiocyanate, and were more effective against Gram-positive bacteria than Gram-negative bacteria. PMID:21535549

  16. Benzyl isothiocyanate affects development, hatching and reproduction of the soybean cyst nematode Heterodera glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzyl isothiocyanate (BITC) applied at micromolar doses decreased Heterodera glycines J2 movement, H. glycines hatching, and reproduction of H. glycines on soybean, Glycine max. Direct exposure of J2 to 30 microM BITC caused an immediate decrease (17%; P < 0.05) in J2 movement relative to 1% methan...

  17. DIETARY ISOTHIOCYANATE IBERIN INHIBITS GROWTH AND INDUCES APOPTOSIS IN HUMAN GLIOBLASTOMA CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we evaluated the antiproliferative and proapoptotic effects of the isothiocyanate iberin, a bioactive agent in Brassicaceae species, in human glioblastoma cells. The human glioblastoma cell cultures were treated with different concentrations of iberin and tested for growth inhibition...

  18. Isothiocyanates as effective agents against enterohemorrhagic Escherichia coli: insight to the mode of action

    PubMed Central

    Nowicki, Dariusz; Rodzik, Olga; Herman-Antosiewicz, Anna; Szalewska-Pałasz, Agnieszka

    2016-01-01

    Production of Shiga toxins by enterohemorrhagic Escherichia coli (EHEC) which is responsible for the pathogenicity of these strains, is strictly correlated with induction of lambdoid bacteriophages present in the host’s genome, replication of phage DNA and expression of stx genes. Antibiotic treatment of EHEC infection may lead to induction of prophage into a lytic development, thus increasing the risk of severe complications. This, together with the spread of multi-drug resistance, increases the need for novel antimicrobial agents. We report here that isothiocyanates (ITC), plant secondary metabolites, such as sulforaphane (SFN), allyl isothiocyanate (AITC), benzyl isothiocynanate (BITC), phenyl isothiocyanate (PITC) and isopropyl isothiocyanate (IPRITC), inhibit bacterial growth and lytic development of stx-harboring prophages. The mechanism underlying the antimicrobial effect of ITCs involves the induction of global bacterial stress regulatory system, the stringent response. Its alarmone, guanosine penta/tetraphosphate ((p)ppGpp) affects major cellular processes, including nucleic acids synthesis, which leads to the efficient inhibition of both, prophage induction and toxin synthesis, abolishing in this way EHEC virulence for human and simian cells. Thus, ITCs could be considered as potential therapeutic agents in EHEC infections. PMID:26922906

  19. Spectroscopic and structural investigations of iron(III) isothiocyanates. A comparative theoretical and experimental study.

    PubMed

    Elijošiutė, Erika; Eicher-Lorka, Olegas; Griškonis, Egidijus; Kuodis, Zenonas; Jankūnaitė, Dalia; Denafas, Gintaras

    2014-08-14

    A combined experimental and theoretical study on the molecular structure and vibrational spectra of [Fe(NCS)](2+) complex in the aqueous solution at the pH∼2 ± 0.1 have been performed. Experimental Raman spectra of the iron(III) isothiocyanate with higher coordination number in the acidic aqueous solution have been analyzed. Molecular modeling of the iron(III) monoisothiocyanate complex was accomplished by the density functional theory (DFT) method using B3LYP and PBE1PBE functionals. Theoretical vibrational spectra of the iron(III) monoisothiocyanate were interpreted by means of the potential energy distributions (PEDs). The influence of different solvation models and position of SO4(2)(-) ligand vs. NCS(-) ligand upon its geometry and vibrational frequencies have been evaluated. The effect of H2O/D2O isotopic substitution on the experimental and calculated Raman spectra of iron(III) isothiocyanates has been examined. Procedures of Raman spectra subtraction have been applied for the extractions of weak and/or obscured Raman signals. As a result, the presence of bound SO4(2)(-) ion and water molecules in the first coordination sphere in the acidic aqueous iron(III) isothiocyanate solution was confirmed. The vibrational assignments for the investigated iron(III) isothiocyanates were proposed here for the first time. PMID:24721282

  20. Assessment of DNA damage and repair in adults consuming allyl isothiocyanate or Brassica vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Allyl isothiocyanate (AITC) is a dietary component with potentially important anti-cancer effects, though much of the information about AITC and cancer processes has been obtained from cell studies. To investigate the effect of AITC on DNA integrity and repair in vivo, a human feeding study was con...

  1. Effect of allyl isothiocyanate on antioxidants and fruit decay of blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of allyl isothiocyanate (AITC) on flavonoids, radical scavenging capacity, fruit decay and quality of blueberries (Vaccinium corymbosum L. cv. Duke) was evaluated. Results from this study showed that AITC was effective in retarding blueberry decay during storage at 10 'C. AITC treatment r...

  2. Effects of benzyl isothiocyanate on the reproduction of Meloidogyne incognita on Glycine max and Capsicum annuum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reproduction of Meloidogyne incognita on Capsicum annuum or Glycine max was suppressed when infective juveniles (J2) were exposed to 0.03 millimolar benzyl isothiocyanate (BITC) for 2hr prior to inoculation of the host. Infectivity assessed by gall index was significantly reduced on both G. max (co...

  3. A Quick and Simple Conversion of Carboxylic Acids into Their Anilides of Heating with Phenyl Isothiocyanate.

    ERIC Educational Resources Information Center

    Ram, Ram N.; And Others

    1983-01-01

    Converting carboxylic acids into their anilides, which usually involves preparation of acid chloride or mixed anhydride followed by treatment with aniline, is tedious and/or time-consuming. A quick and easier procedure, using phenyl isothiocyanate, is provided. Reactions involved and a summary table of results are included. (JN)

  4. Evaluating surface seals in soil columns to mitigate methy isothiocyanate volatilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The banning of methyl bromide (MeBr) as a pre-plant soil fumigant due to its implication as an ozone depleting substance, has led to increased interest in finding alternative soil fumigants to replace MeBr. One of the promising alternatives for certain crops is methyl isothiocyanate (MITC) generati...

  5. Water and Methyl-Isothiocyanate Distribution in Soil Following Drip Fumigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl isothiocyanate (MITC) generators, such as metam sodium (Met-Na), are used for soil fumigation of agricultural land. The ban on the fumigant methyl bromide (MBr) has resulted in greater use of MITC generators. In order to understand the efficacy of MITC, it is necessary to assess its generat...

  6. A principal mechanism for the cancer chemopreventive activity of phenethyl isothiocyanate is modulation of carcinogen metabolism.

    PubMed

    Ioannides, Costas; Konsue, Nattaya

    2015-08-01

    Isothiocyanates are small molecules characterized by high chemical reactivity that allows them to interact readily with cellular constituents eliciting a plethora of biological activities. They are present exclusively in cruciferous vegetables, as glucosinolates, the intake of which has been associated with cancer chemoprevention. When the physical structure of these vegetables is disturbed, e.g. during mastication, the enzyme myrosinase is released and converts the glucosinolates to isothiocyanates (R-N=C=S), where R can be aliphatic or aromatic. Although sulforaphane, an aliphatic isothiocyanate, has received most attention worldwide, the most extensively studied aromatic isothiocyanate is phenethyl isothiocyanate (PEITC), and there are substantial differences in biological activity between the two sub-classes. In animal cancer models, PEITC effectively antagonized the carcinogenicity of chemicals, especially nitrosocompounds. A principal mechanism of their action is to protect the integrity of DNA by decreasing the levels of the genotoxic metabolites of chemical carcinogens. Extensive studies established that PEITC modulates the metabolism of the tobacco-specific carcinogenic nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) by inhibiting its cytochrome P450-mediated bioactivation. Moreover, PEITC is a potent inducer of detoxification enzymes such as quinone reductase, glutathione S-transferase and glucuronosyl transferase. PEITC is rapidly absorbed and is characterized by a large bioavailability; Cmax concentrations achieved in plasma after dietary intake are sufficient to modulate carcinogen metabolism. PEITC is primarily metabolized by glutathione conjugation and is excreted in the urine and bile as the mercapturate. The ability of PEITC to perturb carcinogen metabolism through modulation of cytochrome P450 and phase II detoxification enzymes is comprehensively and critically reviewed. PMID:26119477

  7. DETERMINATION OF ALIPHATIC AMINES IN WATER USING DERIVATIZATION WITH FLUORESCEIN ISOTHIOCYANATE AND CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION.

    EPA Science Inventory

    Detection-oriented derivatization of aliphatic amines and amine functional groups in coumpounds of environmental interest was studied using fluorescein isothiocyanate (FITC) with separation/determination by capillary electrophoresis/laser-induced fluorescence. Determinative level...

  8. Reaction of /alpha/,/beta/-unsaturated acyl isothiocyanates with salts of dithiocarbamic acids

    SciTech Connect

    Krus, K.; Masias, A.; Beletskaya, I.P.

    1989-01-10

    The reaction of unsaturated isothiocyanates with the sodium and calcium salts of N-alkyl- and N,N-dialkyldithiocarbamic acids was studied. Depending on the structure of the dithiocarbamate, the reaction products are thiazines or acyl dithiocarbamates. For the salts of methyldithiocarbamic acid the effect of the concentration and the nature of the metal on the relative yields of 6-phenyl-3-methylpropiorhodanine and 6-phenylpropiorhodanine was studied. A method is proposed for the synthesis of 3-substituted propiorhodanines.

  9. Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from Moringa oleifera.

    PubMed

    Tumer, Tugba Boyunegmez; Rojas-Silva, Patricio; Poulev, Alexander; Raskin, Ilya; Waterman, Carrie

    2015-02-11

    Moringa oleifera Lam. is a fast-growing, tropical tree with various edible parts used as nutritious food and traditional medicine. This study describes an efficient preparatory strategy to extract and fractionate moringa leaves by fast centrifugal partition chromatography (FCPC) to produce polyphenol and isothiocyanate (ITC) rich fractions. Characterization and further purification of these fractions showed that moringa polyphenols were potent direct antioxidants assayed by oxygen radical absorbance capacity (ORAC), whereas moringa ITCs were effective indirect antioxidants assayed by induction of NAD(P)H quinone oxidoreductase 1 (NQO1) activity in Hepa1c1c7 cells. In addition, purified 4-[(α-l-rhamnosyloxy)benzyl]isothiocyanate and 4-[(4'-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate were further evaluated for their ORAC and NQO1 inducer potency in comparison with sulforaphane (SF). Both ITCs were as potent as SF in inducing NQO1 activity. These findings suggest that moringa leaves contain a potent mixture of direct and indirect antioxidants that can explain its various health-promoting effects. PMID:25605589

  10. Induction of epoxide hydrolase, glucuronosyl transferase, and sulfotransferase by phenethyl isothiocyanate in male Wistar albino rats.

    PubMed

    Abdull Razis, Ahmad Faizal; Mohd Noor, Noramaliza; Konsue, Nattaya

    2014-01-01

    Phenethyl isothiocyanate (PEITC) is an isothiocyanate found in watercress as the glucosinolate (gluconasturtiin). The isothiocyanate is converted from the glucosinolate by intestinal microflora or when contacted with myrosinase during the chopping and mastication of the vegetable. PEITC manifested protection against chemically-induced cancers in various tissues. A potential mechanism of chemoprevention is by modulating the metabolism of carcinogens so as to promote deactivation. The principal objective of this study was to investigate in rats the effect of PEITC on carcinogen-metabolising enzyme systems such as sulfotransferase (SULT), N-acetyltransferase (NAT), glucuronosyl transferase (UDP), and epoxide hydrolase (EH) following exposure to low doses that simulate human dietary intake. Rats were fed for 2 weeks diets supplemented with PEITC at 0.06 µmol/g (low dose, i.e., dietary intake), 0.6 µmol/g (medium dose), and 6.0 µmol/g (high dose), and the enzymes were monitored in rat liver. At the Low dose, no induction of the SULT, NAT, and EH was noted, whereas UDP level was elevated. At the Medium dose, only SULT level was increased, whereas at the High dose marked increase in EH level was observed. It is concluded that PEITC modulates carcinogen-metabolising enzyme systems at doses reflecting human intake thus elucidating the mechanism of its chemoprevention. PMID:24592387

  11. Inhibition of Bladder Cancer by Broccoli Isothiocyanates Sulforaphane and Erucin: Characterization, Metabolism and Interconversion

    PubMed Central

    Abbaoui, Besma; Riedl, Kenneth M; Ralston, Robin A; Thomas-Ahner, Jennifer M; Schwartz, Steven J; Clinton, Steven K; Mortazavi, Amir

    2013-01-01

    Epidemiologic evidence suggests diets rich in cruciferous vegetables, particularly broccoli, are associated with lower bladder cancer risk. Our objectives are to investigate these observations and determine the role of isothiocyanates in primary or secondary bladder cancer prevention. We initially investigate the mechanisms whereby broccoli and broccoli sprout extracts and pure isothiocyanates inhibit normal, non-invasive (RT4) and invasive (J82, UMUC3) human urothelial cell viability. Sulforaphane (IC50= 5.66±1.2μM) and erucin (IC50= 8.79±1.3μM) are found to be the most potent inhibitors and normal cells are least sensitive. This observation is associated with downregulation of survivin, EGFR and HER2/neu, G2/M cell cycle accumulation and apoptosis. In a murine UMUC3 xenograft model, we fed semipurified diets containing 4% broccoli sprouts, or 2% broccoli sprout isothiocyanate extract; or gavaged pure sulforaphane or erucin (each at 295 μmol/kg, similar to dietary exposure); and report tumor weight reduction of 42% (p=0.02), 42% (p=0.04), 33% (p=0.04) and 58% (p<0.0001), respectively. Sulforaphane and erucin metabolites are present in mouse plasma (micromolar range) and tumor tissue, with N-acetyl cysteine conjugates as the most abundant. Interconversion of sulforaphane and erucin metabolites was observed. This work supports development of fully characterized, novel food products for phase I/II human studies targeting bladder cancer prevention. PMID:23038615

  12. Direct and Indirect Antioxidant Activity of Polyphenol- and Isothiocyanate-Enriched Fractions from Moringa oleifera

    PubMed Central

    Boyunegmez Tumer, Tugba; Rojas-Silva, Patricio; Poulev, Alexander; Raskin, Ilya; Waterman, Carrie

    2016-01-01

    Moringa oleifera Lam. is a fast-growing, tropical tree with various edible parts used as nutritious food and traditional medicine. This study describes an efficient preparatory strategy to extract and fractionate moringa leaves by fast centrifugal partition chromatography (FCPC) to produce polyphenol and isothiocyanate (ITC) rich fractions. Characterization and further purification of these fractions showed that moringa polyphenols were potent direct antioxidants assayed by oxygen radical absorbance capacity (ORAC), whereas moringa ITCs were effective indirect antioxidants assayed by induction of NAD(P)H quinone oxidoreductase 1 (NQO1) activity in Hepa1c1c7 cells. In addition, purified 4-[(α-l-rhamnosyloxy)benzyl]-isothiocyanate and 4-[(4′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate were further evaluated for their ORAC and NQO1 inducer potency in comparison with sulforaphane (SF). Both ITCs were as potent as SF in inducing NQO1 activity. These findings suggest that moringa leaves contain a potent mixture of direct and indirect antioxidants that can explain its various health-promoting effects. PMID:25605589

  13. Induction of Epoxide Hydrolase, Glucuronosyl Transferase, and Sulfotransferase by Phenethyl Isothiocyanate in Male Wistar Albino Rats

    PubMed Central

    Mohd Noor, Noramaliza; Konsue, Nattaya

    2014-01-01

    Phenethyl isothiocyanate (PEITC) is an isothiocyanate found in watercress as the glucosinolate (gluconasturtiin). The isothiocyanate is converted from the glucosinolate by intestinal microflora or when contacted with myrosinase during the chopping and mastication of the vegetable. PEITC manifested protection against chemically-induced cancers in various tissues. A potential mechanism of chemoprevention is by modulating the metabolism of carcinogens so as to promote deactivation. The principal objective of this study was to investigate in rats the effect of PEITC on carcinogen-metabolising enzyme systems such as sulfotransferase (SULT), N-acetyltransferase (NAT), glucuronosyl transferase (UDP), and epoxide hydrolase (EH) following exposure to low doses that simulate human dietary intake. Rats were fed for 2 weeks diets supplemented with PEITC at 0.06 µmol/g (low dose, i.e., dietary intake), 0.6 µmol/g (medium dose), and 6.0 µmol/g (high dose), and the enzymes were monitored in rat liver. At the Low dose, no induction of the SULT, NAT, and EH was noted, whereas UDP level was elevated. At the Medium dose, only SULT level was increased, whereas at the High dose marked increase in EH level was observed. It is concluded that PEITC modulates carcinogen-metabolising enzyme systems at doses reflecting human intake thus elucidating the mechanism of its chemoprevention. PMID:24592387

  14. Goat serums for fluorescent antibody conjugates to chlamydial antigens.

    PubMed Central

    Tessler, J

    1984-01-01

    Serums from goats hyperimmunized with Chlamydia psittaci consistently produce antichlamydial fluorescent antibody conjugate of high titer. The titer of the fluorescent antibody conjugate prepared from a given serum correlated well with the titer obtained by agar gel precipitin, but not with the complement fixation. The agar gel precipitin test can be used to predict whether a given serum is satisfactory for use in production of a conjugate for direct fluorescent antibody tests. Serums with an agar gel precipitin titer of 1/8 or higher generally produce a usable fluorescent antibody conjugate. Labeling gamma globulins with fluorescein isothiocyanate at a ratio of 1/150 resulted in satisfactory fluorescent antibody conjugates. Cultures of Vero cells infected with chlamydiae were found to be suitable for titration of the fluorescent antibody conjugates. PMID:6372973

  15. CXCR4 is a novel target of cancer chemopreventative isothiocyanates in prostate cancer cells.

    PubMed

    Sakao, Kozue; Vyas, Avani R; Chinni, Sreenivasa R; Amjad, Ali I; Parikh, Rahul; Singh, Shivendra V

    2015-05-01

    Isothiocyanates (ITCs) derived from cruciferous vegetables, including phenethyl isothiocyanate (PEITC) and sulforaphane (SFN), exhibit in vivo activity against prostate cancer in a xenograft and transgenic mouse model, and thus are appealing for chemoprevention of this disease. Watercress constituent PEITC and SFN-rich broccoli sprout extract are under clinical investigations but the molecular mechanisms underlying their cancer chemopreventive effects are not fully understood. The present study demonstrates that chemokine receptor CXCR4 is a novel target of ITCs in prostate cancer cells. Exposure of prostate cancer cells (LNCaP, 22Rv1, C4-2, and PC-3) to pharmacologically applicable concentrations of PEITC, benzyl isothiocyanate (BITC), and SFN (2.5 and 5 μmol/L) resulted in downregulation of CXCR4 expression. None of the ITCs affected secretion of CXCR4 ligand (stromal-derived factor-1). In vivo inhibition of PC-3 xenograft growth upon PEITC treatment was associated with a significant decrease in CXCR4 protein level. A similar trend was discernible in the tumors from SFN-treated TRAMP mice compared with those of control mice, but the difference was not significant. Stable overexpression of CXCR4 in PC-3 cells conferred significant protection against wound healing, cell migration, and cell viability inhibition by ITCs. Inhibition of cell migration resulting from PEITC and BITC exposure was significantly augmented by RNAi of CXCR4. This study demonstrates, for the first time, that cancer chemopreventive ITCs suppress CXCR4 expression in prostate cancer cells in vitro as well as in vivo. These results suggest that CXCR4 downregulation may be an important pharmacodynamic biomarker of cancer chemopreventative ITCs in prostate adenocarcinoma. PMID:25712054

  16. Metal-mediated reaction modeled on nature: the activation of isothiocyanates initiated by zinc thiolate complexes.

    PubMed

    Eger, Wilhelm A; Presselt, Martin; Jahn, Burkhard O; Schmitt, Michael; Popp, Jürgen; Anders, Ernst

    2011-04-18

    On the basis of detailed theoretical studies of the mode of action of carbonic anhydrase (CA) and models resembling only its reactive core, a complete computational pathway analysis of the reaction between several isothiocyanates and methyl mercaptan activated by a thiolate-bearing model complex [Zn(NH(3))(3)SMe](+) was performed at a high level of density functional theory (DFT). Furthermore, model reactions have been studied in the experiment using relatively stable zinc complexes and have been investigated by gas chromatography/mass spectrometry and Raman spectroscopy. The model complexes used in the experiment are based upon the well-known azamacrocyclic ligand family ([12]aneN(4), [14]aneN(4), i-[14]aneN(4), and [15]aneN(4)) and are commonly formulated as ([Zn([X]aneN(4))(SBn)]ClO(4). As predicted by our DFT calculations, all of these complexes are capable of insertion into the heterocumulene system. Raman spectroscopic investigations indicate that aryl-substituted isothiocyanates predominantly add to the C═N bond and that the size of the ring-shaped ligands of the zinc complex also has a very significant influence on the selectivity and on the reactivity as well. Unfortunately, the activated isothiocyanate is not able to add to the thiolate-corresponding mercaptan to invoke a CA analogous catalytic cycle. However, more reactive compounds such as methyl iodide can be incorporated. This work gives new insight into the mode of action and reaction path variants derived from the CA principles. Further, aspects of the reliability of DFT calculations concerning the prediction of the selectivity and reactivity are discussed. In addition, the presented synthetic pathways can offer a completely new access to a variety of dithiocarbamates. PMID:21405064

  17. Isothiocyanate synthetic analogs: biological activities, structure-activity relationships and synthetic strategies.

    PubMed

    Milelli, Andrea; Fimognari, Carmela; Ticchi, Nicole; Neviani, Paolo; Minarini, Anna; Tumiatti, Vincenzo

    2014-01-01

    Sulforaphane is a natural product that is constantly under biological investigation for its unique biological properties. This naturally occurring isothiocyanate (ITC) and its analogs are the main components of cruciferous vegetables, such as cauliflower, watercress, broccoli, cabbage, Brussels sprouts, widely used as chemopreventive agents. Due to their interesting biological profiles, natural ITCs have been exploited as starting point to develop new synthetic analogs. The present mini-review briefly highlights the most important biological actions of selected new synthetic ITCs focusing on their structure-activity relationships and related synthetic strategies. PMID:25373847

  18. Synthesis of Cyclic Azomethine Imines by Cycloaddition Reactions of N-Isocyanates and N-Isothiocyanates.

    PubMed

    Bongers, Amanda; Ranasinghe, Indee; Lemire, Philippe; Perozzo, Alyssa; Vincent-Rocan, Jean-François; Beauchemin, André M

    2016-08-01

    Various nitrogen-substituted iso(thio)cyanates engage in [3 + 2]-cycloaddition reactions to form azomethine imines containing triazolone, triazole-thione, and pyrazole-thione cores. First, iminoisothiocyanates are shown to undergo aminothiocarbonylation reactions with strained alkenes, and a comparison with recently reported reactions of iminoisocyanates highlights their reduced reactivity. In contrast, amino(thio)carbonylation reactions of imines with iminoisocyanates and iminoisothiocyanates proved more efficient, providing access to triazolone and triazole-thione cores. The dipole products can be converted to valuable heterocyclic cores through simple derivatization reactions. PMID:27458786

  19. Studies on the interaction of fluorescein isothiocyanate and its sugar analogues with cetyltrimethylammonium bromide

    NASA Astrophysics Data System (ADS)

    Ghosh, Sujit Kumar; Ali, Mohammed; Chatterjee, Hirak

    2013-03-01

    The interaction of fluorescein isothiocyanate (FITC) and its two sugar analogues (viz., FITC-Dextran 40S and FITC-Dextran 2000S) with cetyltrimethylammonium bromide has been elucidated by absorption, fluorescence, Fourier transform infrared spectroscopy and fluorescence microscopic studies. It is seen that the emission of the probe molecules is uniquely sensitive to the changes in surfactant concentrations at a particular regime due to the formation of dye-surfactant supramolecular assembly. The formation of supramolecular assembly becomes effective at a lower surfactant concentration with increasing dextran size as a consequence of definite dye-surfactant interaction and could pave a facile strategy for designing hierarchical superstructures.

  20. Comparative study between extraction techniques and column separation for the quantification of sinigrin and total isothiocyanates in mustard seed.

    PubMed

    Cools, Katherine; Terry, Leon A

    2012-07-15

    Glucosinolates are β-thioglycosides which are found naturally in Cruciferae including the genus Brassica. When enzymatically hydrolysed, glucosinolates yield isothiocyanates and give a pungent taste. Both glucosinolates and isothiocyanates have been linked with anticancer activity as well as antifungal and antibacterial properties and therefore the quantification of these compounds is scientifically important. A wide range of literature exists on glucosinolates, however the extraction and quantification procedures differ greatly resulting in discrepancies between studies. The aim of this study was therefore to compare the most popular extraction procedures to identify the most efficacious method and whether each extraction can also be used for the quantification of total isothiocyanates. Four extraction techniques were compared for the quantification of sinigrin from mustard cv. Centennial (Brassica juncea L.) seed; boiling water, boiling 50% (v/v) aqueous acetonitrile, boiling 100% methanol and 70% (v/v) aqueous methanol at 70 °C. Prior to injection into the HPLC, the extractions which involved solvents (acetonitrile or methanol) were freeze-dried and resuspended in water. To identify whether the same extract could be used to measure total isothiocyanates, a dichloromethane extraction was carried out on the sinigrin extracts. For the quantification of sinigrin alone, boiling 50% (v/v) acetonitrile was found to be the most efficacious extraction solvent of the four tested yielding 15% more sinigrin than the water extraction. However, the removal of the acetonitrile by freeze-drying had a negative impact on the isothiocyanate content. Quantification of both sinigrin and total isothiocyanates was possible when the sinigrin was extracted using boiling water. Two columns were compared for the quantification of sinigrin revealing the Zorbax Eclipse to be the best column using this particular method. PMID:22743340

  1. Effect of Indole Ethyl Isothiocyanates on Proliferation, Apoptosis and MAPK Signaling in Neuroblastoma Cell Lines

    PubMed Central

    Singh, Rakesh K.; Lange, Thilo S.; Kim, Kyu Kwang; Zou, Yongping; Lieb, Casey; Sholler, Giselle L.; Brard, Laurent

    2007-01-01

    Several indole ethyl isothiocyanate (IEITC) analogs were designed, synthesized and screened to evaluate their cytotoxicity against neuroblastoma (NB) cells in-vitro. In NB, predominantly a tumor of early childhood, survival remains low despite aggressive treatments. Therefore, novel treatment strategies are greatly needed. The objective of the present study was to study the therapeutic potential of IEITC by analyzing the cytotoxic, anti-proliferative and apoptotic effects on NB cell lines. 7-methyl-indole-3-ethyl isothiocyanate (7Me-IEITC) proved to be cytotoxic to various NB cell lines (SMS-KCNR, SK-N-SH, SH-SY5Y, IMR-32) with an IC50 at 2.5-5.0 μM, while primary control cells (lung fibroblasts) were not affected. 7Me-IEITC led to the activation of apoptotic markers caspase-3, - 8 and -9, caused activation of pro-apoptotic p38 MAPK and SAP/JNK, and down-regulated pro-survival factor AKT in SMS-KCNR cells. Moreover, 7Me-IEITC displayed anti-proliferative effects (IC50 at 600 nM) and caused an arrest in cell cycle progression. This wide effect of 7Me-IEITC on NB cell signaling and survival suggests that it could be developed as a therapeutic agent against neuroblastoma. PMID:17855093

  2. Blockade of ATP binding site of P2 purinoceptors in rat parotid acinar cells by isothiocyanate compounds.

    PubMed

    Soltoff, S P; McMillian, M K; Talamo, B R; Cantley, L C

    1993-05-01

    Extracellular ATP activates a P2Z-type purinergic receptor (purinoceptor) in rat parotid acinar cells that increases the intracellular free Ca2+ concentration via the entry of extracellular Ca2+ through an ATP-sensitive cation channel (Soltoff et al., Am J Physiol 262: C934-C940, 1992). To learn more about the ATP binding site of the purinoceptor, we examined the effects of several stilbene isothiocyanate analogs of DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid), which block the binding of [32P]ATP to intact parotid cells (McMillian et al., Biochem J 255:291-300, 1988) and blocked the activation of the P2Z purinoceptor. The ATP-stimulated 45Ca2+ uptake was blocked by DIDS, H2DIDS (dihydro-DIDS; 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid), and SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid), but not by DNDS (4,4'-dinitrostilbene-2,2'-disulfonic acid), a stilbene disulfonate compound lacking isothiocyanate (SCN-) groups, or by KSCN. The potency of the stilbene disulfonates was related to the number of isothiocyanate groups on each compound. Under the experimental conditions, the IC50 value of DIDS (approximately 35 microM), which has two SCN-groups, was much lower than that of SITS (approximately 125 microM), which has only one SCN-group. The inhibitory effects of DIDS appeared to be much more potent than those of SITS due to the kinetics of their binding to the purinoceptors. Eosin-5-isothiocyanate (EITC) and fluorescein-5-isothiocyanate (FITC), non-stilbene isothiocyanate compounds with single SCN-groups, also blocked the response to ATP and were less potent than DIDS. Trinitrophenyl-ATP (TNP-ATP), an ATP derivative that is not an effective agonist of the parotid P2Z receptor, blocked the covalent binding of DIDS to the plasma membrane, suggesting that ATP and DIDS bind to the same site. Reactive Blue 2 (Cibacron Blue 3GA), an anthraquinone-sulfonic acid derivative that is a noncovalent purinergic antagonist, also blocked

  3. Fumigation of wheat using liquid ethyl formate plus methyl isothiocyanate in 50-tonne farm bins.

    PubMed

    Ren, Yonglin; Lee, Byungho; Mahon, Daphne; Xin, Ni; Head, Matthew; Reid, Robin

    2008-04-01

    Australian Standard White wheat, Triticum aestivum L. (a marketing grade with mixed grain hardness),with a moisture content of 12.5% was fumigated with a new ethyl formate formulation (95% ethyl formate plus 5% methyl isothiocyanate) identified and developed by Commonwealth Scientific and Industrial Research Organization Entomology, Canberra, Australia. Wheat was fumigated with the formulation at a calculated application rate of 80 g/m3 in two 50-tonne sealed metal vertical silos located at Fisherman Islands, Queensland, Australia. Access was gained through the top of the silo where the application of the formulation was completed within a few minutes by pouring it onto the top of the wheat. After 2 h of recirculation, using a 0.5-kW fan, the in-bin concentrations of ethyl formate achieved equilibrium with a concentration variation < 7%. The ethyl formate concentration, in both silos 1 and 2, during the first day's exposure period remained above 10 g/m3. The concentration of ethyl formate by time product achieved was 790 and 650 g h/m3 in silos 1 and 2, respectively. In silo 1, the formulation was sufficient to kill all life stages of mixed age cultures of Sitophilus oryzae (L.), Rhyzopertha dominica (F.), and Tribolium castaneum (Herbst). In silo 2, control was 100% for R. dominica and T. castaneum and 99.4% for S. oryzae. After 5 d fumigation, the silo top-hatch was opened but no forced aeration was initiated. The in-bin concentration of ethyl formate was lower than the Australian experimental threshold limit value of 100 ppm. The ethyl formate and methyl isothiocyanate residues in the grain had declined to below the Australian experimental maximum residue limit of 0.2 and 0.1 mg/kg, respectively. The workspace and environmental levels of ethyl formate and methyl isothiocyanate were less than the detection limit of 0.1 ppm. The treatment with ethyl formate formulation had no affect on the wheat germination and seed color compared with untreated controls. PMID

  4. Antimicrobial effect of allyl isothiocyanate and modified atmosphere on Pseudomonas aeruginosa in fresh catfish fillet under abuse temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa, a common spoilage microorganism on fresh catfish products, can grow rapidly at temperatures above 4 degree C during storage and transportation. Allyl isothiocyanate (AIT), an extract of horseradish oil, and modified atmosphere (MA) can be used to inhibit the growth of P. aeru...

  5. Structural Interactions Dictate the Kinetics of Macrophage Migration Inhibitory Factor Inhibition by Different Cancer-Preventive Isothiocyanates

    PubMed Central

    Crichlow, Gregg V.; Fan, Chengpeng; Keeler, Camille; Hodsdon, Michael; Lolis, Elias J.

    2012-01-01

    Regulation of cellular processes by dietary nutrients is known to affect the likelihood of cancer development. One class of cancer preventive nutrients, isothiocyanates (ITCs) derived from consumption of cruciferous vegetables, is known to have various effects on cellular biochemistry. One target of ITCs is macrophage migration inhibitory factor (MIF), a widely expressed protein with known inflammatory, pro-tumorigenic, pro-angiogenic, and anti-apoptotic properties. MIF is covalently inhibited by a variety of ITCs, which in part, may explain how they exert their cancer-preventive effects. We report the crystallographic structures of human MIF bound to phenethylisothiocyanate and to L-sulforaphane (dietary isothiocyanates derived from watercress and broccoli, respectively), and correlate structural features of these two isothiocyanates with their second-order rate constants for MIF inactivation. We also characterize changes in the MIF structure using NMR HSQC spectra of these complexes and observe many changes at the subunit interface. While a number of chemical shifts do not change, many of those that change do not have similar features in magnitude or direction for the two isothiocyanates. The difference in the binding modes of these two ITCs provides a means of using structure-activity relationships to reveal insights into MIF biological interactions. The results of this study provide a framework for the development of therapeutics that target MIF. PMID:22931430

  6. Structural interactions dictate the kinetics of macrophage migration inhibitory factor inhibition by different cancer-preventive isothiocyanates.

    PubMed

    Crichlow, Gregg V; Fan, Chengpeng; Keeler, Camille; Hodsdon, Michael; Lolis, Elias J

    2012-09-25

    Regulation of cellular processes by dietary nutrients is known to affect the likelihood of cancer development. One class of cancer-preventive nutrients, isothiocyanates (ITCs), derived from the consumption of cruciferous vegetables, is known to have various effects on cellular biochemistry. One target of ITCs is macrophage migration inhibitory factor (MIF), a widely expressed protein with known inflammatory, pro-tumorigenic, pro-angiogenic, and anti-apoptotic properties. MIF is covalently inhibited by a variety of ITCs, which in part may explain how they exert their cancer-preventive effects. We report the crystallographic structures of human MIF bound to phenethylisothiocyanate and to l-sulforaphane (dietary isothiocyanates derived from watercress and broccoli, respectively) and correlate structural features of these two isothiocyanates with their second-order rate constants for MIF inactivation. We also characterize changes in the MIF structure using nuclear magnetic resonance heteronuclear single-quantum coherence spectra of these complexes and observe many changes at the subunit interface. While a number of chemical shifts do not change, many of those that change do not have features similar in magnitude or direction for the two isothiocyanates. The difference in the binding modes of these two ITCs provides a means of using structure-activity relationships to reveal insights into MIF biological interactions. The results of this study provide a framework for the development of therapeutics that target MIF. PMID:22931430

  7. Effect of allyl isothiocyanate in headspace and modified atmosphere on Pseduomonas Aeruginosa growth in fresh catfish fillets under abuse temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa, a common spoilage microorganism on fresh catfish products, can grow rapidly at temperatures above 4 deg C during storage and transportation. Allyl isothiocyanate (AIT), an extract of horseradish oil, and modified atmosphere (MA) can be used to inhibit the growth of P. aerugin...

  8. Growth behavior prediction of fresh catfish fillet with Pseudomonas aeruginosa under stresses of allyl isothiocyanate, temperature and modified atmosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa, a common spoilage microorganism in fish, grows rapidly when temperature rises above 4 degree C. The combination of allyl isothiocyanate (AIT) and modified atmosphere (MA) was applied and proved to be effective to retard the growth of P. aeruginosa. The objective of this resea...

  9. Overexpression of Glutathione Transferase E7 in Drosophila Differentially Impacts Toxicity of Organic Isothiocyanates in Males and Females

    PubMed Central

    Mannervik, Bengt; Mannervik, Mattias

    2014-01-01

    Organic isothiocyanates (ITCs) are allelochemicals produced by plants in order to combat insects and other herbivores. The compounds are toxic electrophiles that can be inactivated and conjugated with intracellular glutathione in reactions catalyzed by glutathione transferases (GSTs). The Drosophila melanogaster GSTE7 was heterologously expressed in Escherichia coli and purified for functional studies. The enzyme showed high catalytic activity with various isothiocyanates including phenethyl isothiocyanate (PEITC) and allyl isothiocyanate (AITC), which in millimolar dietary concentrations conferred toxicity to adult D. melanogaster leading to death or a shortened life-span of the flies. In situ hybridization revealed a maternal contribution of GSTE7 transcripts to embryos, and strongest zygotic expression in the digestive tract. Transgenesis involving the GSTE7 gene controlled by an actin promoter produced viable flies expressing the GSTE7 transcript ubiquitously. Transgenic females show a significantly increased survival when subjected to the same PEITC treatment as the wild-type flies. By contrast, transgenic male flies show a significantly lower survival rate. Oviposition activity was enhanced in transgenic flies. The effect was significant in transgenic females reared in the absence of ITCs as well as in the presence of 0.15 mM PEITC or 1 mM AITC. Thus the GSTE7 transgene elicits responses to exposure to ITC allelochemicals which differentially affect life-span and fecundity of male and female flies. PMID:25329882

  10. DNA Microarray Highlights Nrf2-Mediated Neuron Protection Targeted by Wasabi-Derived Isothiocyanates in IMR-32 Cells.

    PubMed

    Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing

    2016-01-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects. PMID:27547033

  11. Effect of allyl isothiocyanate on antioxidant enzyme activities, flavonoids and fruit quality of blueberry (Vaccinium corymbosum L., cv. Duke)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of allyl isothiocyanate (AITC) on antioxidant enzyme activities, flavonoid content, and fruit quality of blueberries var. Duke (Vaccinium corymbosum L.) was evaluated. Results from this study showed that AITC was effective in maintaining higher amounts of sugars and lower organic acids co...

  12. Dietary phenethyl isothiocyanate inhibition of androgen-responsive LNCaP prostate cancer cell tumor growth correlates with decreased angiogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenethyl isothiocyanate (PEITC), found in certain cruciferous vegetables, has antitumor activity in several cancer models, including prostate cancer. In our xenograft model, dietary administration of PEITC (100-150 mg/kg/d) inhibited androgen-responsive LNCaP human prostate cancer cell tumor growth...

  13. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid (PLA) and chitosan were incorporated with AIT and coated on one side of the film. T...

  14. DNA Microarray Highlights Nrf2-Mediated Neuron Protection Targeted by Wasabi-Derived Isothiocyanates in IMR-32 Cells

    PubMed Central

    Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing

    2016-01-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects. PMID:27547033

  15. Fullerol-fluorescein isothiocyanate-concanavalin agglutinin phosphorescent sensor for the detection of alpha-fetoprotein and forecast of human diseases

    NASA Astrophysics Data System (ADS)

    Liu, Jia-ming; Lin, Li-ping; Jiang, Shu-Lian; Cui, Ma Lin; Jiao, Li; Zhang, Xiao Yang; Zhang, Li-hong; Zheng, Zhi Yong; Lin, Xuan; Lin, Shao-qin

    2013-11-01

    Based on the reaction of the active -OH group in fullerol (F) with the dissociated -COOH group in fluorescein isothiocyanate (FITC) to form an F-FITC and the enhanced effect of N, N-dimethylaniline (DMA) on phosphorescence signal of F-FITC, a new phosphorescent labeling reagent (DMA-F-FITC) was developed. What's more, a phosphorescent sensor for the determination of alpha-fetoprotein variant (AFP-V) has been designed via the coupling technique of the high sensitivity for affinity adsorption-solid substrate-room temperature phosphorimetry (AA-SS-RTP) with the strong specificity reaction between DMA-F-FITC-Con A and AFP-V. The DMA-F-FITC increased the number of luminescent molecules in the biological target which improved the sensitivity of phosphorescent sensor. The proposed sensor was responsive, simple, selective and sensitive, and it has been applied to the determination of trace AFP-V in human serum and the forecast of human diseases using phosphorescence emission wavelength of F or FITC, with the results agreed well with those obtained by enzyme-linked immunoassay (ELISA). Meanwhile, the mechanisms for the labeling reaction and the sensing detection of AFP-V were discussed.

  16. Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis

    PubMed Central

    Angelino, Donato; Dosz, Edward B.; Sun, Jianghao; Hoeflinger, Jennifer L.; Van Tassell, Maxwell L.; Chen, Pei; Harnly, James M.; Miller, Michael J.; Jeffery, Elizabeth H.

    2015-01-01

    Brassicales contain a myrosinase enzyme that hydrolyzes glucosinolates to form toxic isothiocyanates (ITC), as a defense against bacteria, fungi, insects and herbivores including man. Low levels of ITC trigger a host defense system in mammals that protects them against chronic diseases. Because humans typically cook their brassica vegetables, destroying myrosinase, there is a great interest in determining how human microbiota can hydrolyze glucosinolates and release them, to provide the health benefits of ITC. ITC are highly reactive electrophiles, binding reversibly to thiols, but accumulating and causing damage when free thiols are not available. We found that addition of excess thiols released protein-thiol-bound ITC, but that the microbiome supports only poor hydrolysis unless exposed to dietary glucosinolates for a period of days. These findings explain why 3–5 servings a week of brassica vegetables may provide health effects, even if they are cooked. PMID:26500669

  17. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery

    SciTech Connect

    Mi, Lixin; Gan, Nanqin; Chung, Fung-Lung

    2009-10-16

    Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule-organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic {alpha}- and {beta}-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy to cope with misfolded proteins.

  18. Myrosinase-dependent and -independent formation and control of isothiocyanate products of glucosinolate hydrolysis.

    PubMed

    Angelino, Donato; Dosz, Edward B; Sun, Jianghao; Hoeflinger, Jennifer L; Van Tassell, Maxwell L; Chen, Pei; Harnly, James M; Miller, Michael J; Jeffery, Elizabeth H

    2015-01-01

    Brassicales contain a myrosinase enzyme that hydrolyzes glucosinolates to form toxic isothiocyanates (ITC), as a defense against bacteria, fungi, insects and herbivores including man. Low levels of ITC trigger a host defense system in mammals that protects them against chronic diseases. Because humans typically cook their brassica vegetables, destroying myrosinase, there is a great interest in determining how human microbiota can hydrolyze glucosinolates and release them, to provide the health benefits of ITC. ITC are highly reactive electrophiles, binding reversibly to thiols, but accumulating and causing damage when free thiols are not available. We found that addition of excess thiols released protein-thiol-bound ITC, but that the microbiome supports only poor hydrolysis unless exposed to dietary glucosinolates for a period of days. These findings explain why 3-5 servings a week of brassica vegetables may provide health effects, even if they are cooked. PMID:26500669

  19. Combined inhibition of the EGFR/AKT pathways by a novel conjugate of quinazoline with isothiocyanate.

    PubMed

    Tarozzi, Andrea; Marchetti, Chiara; Nicolini, Benedetta; D'Amico, Massimo; Ticchi, Nicole; Pruccoli, Letizia; Tumiatti, Vincenzo; Simoni, Elena; Lodola, Alessio; Mor, Marco; Milelli, Andrea; Minarini, Anna

    2016-07-19

    Epidermal growth factor receptor inhibitors (EGFR-TKIs) represent a class of compounds widely used in anticancer therapy. An increasing number of studies reports on combination therapies in which the block of the EGFR-TK activity is associated with inhibition of its downstream pathways, as PI3K-Akt. Sulforaphane targets the PI3K-Akt pathway whose dysregulation is implicated in many functions of cancer cells. According to these considerations, a series of multitarget molecules have been designed by combining key structural features derived from an EGFR-TKI, PD168393, and the isothiocyanate sulforaphane. Among the obtained molecules 1-6, compound 6 emerges as a promising lead compound able to exert antiproliferative and proapoptotic effects in A431 epithelial cancer cell line by covalently binding to EGFR-TK, and reducing the phosphorylation of Akt without affecting the total Akt levels. PMID:27135370

  20. Early events in herpes simplex virus type 1 infection: photosensitivity of fluorescein isothiocyanate-treated virions

    SciTech Connect

    DeLuca, N.; Bzik, D.; Person, S.; Snipes, W.

    1981-02-01

    Herpes simplex virus type 1 is photosensitized by treatment with fluorescein isothiocyanate (FITC). The inactivation of FITC-treated virions upon subsequent exposure to light is inhibited by the presence of sodium azide, suggesting the involvement of singlet oxygen in the process. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed that treatment with FITC plus light induces crosslinks in viral envelope glycoproteins. Treatment of virions with high concentrations of FITC (50 ..mu..g/ml) plus light causes a reduction in the adsorption of the virus to monolayers of human embryonic lung cells. For lower concentrations of FITC (10 ..mu..g/ml) plus light, treated virions adsorb to the host cells, but remain sensitive to light until entry occurs. The loss of light sensitivity coincides with the development of resistance to antibodies. These results are most consistent with a mechanism of entry for herpes simplex virus involving fusion of the viral membrane with the plasma membrane of the host cell.

  1. Isothiocyanates may chemically detoxify mutagenic amines formed in heat processed meat.

    PubMed

    Lewandowska, Anna; Przychodzeń, Witold; Kusznierewicz, Barbara; Kołodziejski, Dominik; Namieśnik, Jacek; Bartoszek, Agnieszka

    2014-08-15

    Meat consumption represents a dietary risk factor increasing the incidence of common cancers, probably due to carcinogenic amines (HAAs) formed upon meat heating. Interestingly, cancers whose incidence is increased by meat consumption, are decreased in populations consuming brassica vegetables regularly. This inverse correlation is attributed to brassica anticarcinogenic components, especially isothiocyanates (ITCs) that stimulate detoxification of food carcinogens. However, ITC reactivity towards amines generating stable thioureas, may also decrease mutagenicity of processed meat. We confirmed here that combining meat with cabbage (fresh or lyophilized), in proportions found in culinary recipes, limited by 17-20% formation of HAAs and significantly lowered mutagenic activity of fried burgers. Moreover, MeIQx mutagenicity was lowered in the presence of ITCs, as well as for synthetic ITC-MeIQx conjugates. This suggests that formation of thioureas could lead to chemical detoxification of food carcinogens, reducing the cancer risk associated with meat consumption. PMID:24679758

  2. Short-form RON overexpression augments benzyl isothiocyanate-induced apoptosis in human breast cancer cells.

    PubMed

    Sehrawat, Anuradha; Singh, Shivendra V

    2016-05-01

    Chemoprevention of breast cancer is feasible with the use of non-toxic phytochemicals from edible and medicinal plants. Benzyl isothiocyanate (BITC) is one such plant compound that prevents mammary cancer development in a transgenic mouse model in association with tumor cell apoptosis. Prior studies from our laboratory have demonstrated a role for reactive oxygen species (ROS)-dependent Bax activation through the intermediary of c-Jun N-terminal kinases in BITC-induced apoptosis in human breast cancer cells. The present study demonstrates that truncated Recepteur d'Origine Nantais (sfRON) is a novel regulator of BITC-induced apoptosis in breast cancer cells. Overexpression of sfRON in MCF-7 and MDA-MB-361 cells resulted in augmentation of BITC-induced apoptosis when the apoptotic fraction was normalized against vehicle control for each cell type (untransfected and sfRON overexpressing cells). ROS generation and G2 /M phase cell cycle arrest resulting from BITC treatment were significantly attenuated in sfRON overexpressing cells after normalization with vehicle control for each cell type. Increased BITC-induced apoptosis by sfRON overexpression was independent of c-Jun N-terminal kinase or p38 mitogen-activated protein kinase hyperphosphorylation. On the other hand, activation of Bax and Bak following BITC exposure was markedly more pronounced in sfRON overexpressing cells than in controls. sfRON overexpression also augmented apoptosis induction by structurally diverse cancer chemopreventive phytochemicals including withaferin A, phenethyl isothiocyanate, and D,L-sulforaphane. In conclusion, the present study provides novel mechanistic insights into the role of sfRON in apoptosis regulation by BITC and other electrophilic phytochemicals. © 2015 Wiley Periodicals, Inc. PMID:25857724

  3. A new class of isothiocyanate-based irreversible inhibitors of Macrophage Migration Inhibitory Factor (MIF)

    PubMed Central

    Ouertatani-Sakouhi, Hajer; El-Turk, Farah; Fauvet, Bruno; Roger, Thierry; Le Roy, Didier; Karpinar, Damla Pinar; Leng, Lin; Bucala, Richard; Zweckstetter, Markus; Calandra, Thierry; Lashuel, Hilal A.

    2013-01-01

    Macrophage migration inhibitory factor (MIF) is a homotrimeric multifunctional proinflammatory cytokine that has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Current therapeutic strategies for targeting MIF focus on developing inhibitors of its tautomerase activity or modulating its biological activities using anti-MIF neutralizing antibodies. Herein we report a new class of isothiocyanate (ITC)-based irreversible inhibitors of MIF. Modification by benzyl isothiocyanate (BITC) and related analogues occurred at the N-terminal catalytic proline residue without affecting the oligomerization state of MIF. Different alkyl and arylalkyl ITCs-modified MIF with nearly the same efficiency as BITC. To elucidate the mechanism of action, we performed detailed biochemical, biophysical, and structural studies to determine the effect of BITC and its analogues on the conformational state, quaternary structure, catalytic activity, receptor binding and biological activity of MIF. Light scattering, analytical ultracentrifugation and NMR studies on unmodified and ITC-modified MIF demonstrated that modification of Pro1 alters the tertiary, but not the secondary or quaternary, structure of the trimer without affecting its thermodynamic stability. BITC induced drastic effects on the tertiary structure of MIF, in particular residues that cluster around Pro1 and constitute the tautomerase active site. These changes in tertiary structure and loss of catalytic activity translated into reduction in MIF receptor binding activity, MIF-mediated glucocorticoid overriding and MIF-induced Akt phosphorylation. Together, these findings highlight the role of tertiary structure in modulating the biochemical and biological activities of MIF and present new opportunities for modulating MIF biological activities in vivo. PMID:19737008

  4. Pharmacokinetics and pharmacodynamics of phenethyl isothiocyanate: implications in breast cancer prevention.

    PubMed

    Morris, Marilyn E; Dave, Rutwij A

    2014-07-01

    Phenethyl isothiocyanate (PEITC)-a naturally occurring isothiocyanate in cruciferous vegetables-has been extensively studied as a chemopreventive agent in several preclinical species and in humans. Pharmacokinetic features of unchanged PEITC are (I) linear and first-order absorption, (II) high protein binding and capacity-limited tissue distribution, and (III) reversible metabolism and capacity-limited hepatic elimination. Membrane transport of PEITC is mediated by BCRP, multidrug resistance-associated protein (MRP) 1, and MRP2 transporters belonging to the ATP-binding-cassette (ABC) family. PEITC is metabolized by glutathione S-transferase (GST) in the liver, with the glutathione conjugate of PEITC undergoing further conversion to mercapturic acid by N-acetyl transferase in rats and humans. PEITC modulates the activity and expression of numerous phase I and phase II drug-metabolizing enzymes and can inhibit the metabolism of procarcinogens to form carcinogens and increase carcinogen elimination. In recent years, several in vitro and in vivo studies have elucidated molecular mechanisms underlying the pharmacodynamics of PEITC in breast cancer that include cancer cell apoptosis by upregulation of apoptotic genes, cell cycle arrest at G2/M phase by generation of reactive oxygen species and depletion of intracellular glutathione, downregulation of the estrogen receptor, decrease in sensitivity to estrogen, and inhibition of tumor metastasis. Inhibition of angiogenesis is one of the recently reported mechanisms of breast cancer prevention by PEITC. Complex pharmacokinetics and pharmacodynamics of PEITC necessitate a systems-biology approach in parallel with PK/PD modeling to develop PEITC as a therapeutic agent for treating cancers. PMID:24821055

  5. Serum sickness

    MedlinePlus

    ... passive immunization. It gives you immediate, but temporary, protection while your body develops an active immune response against the toxin or germ. During serum sickness, the immune system falsely identifies a protein in antiserum as a ...

  6. Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins

    SciTech Connect

    Sarkar, Ruma; Mukherjee, Sutapa; Biswas, Jaydip; Roy, Madhumita

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer HSPs (27, 70 and 90) and HSF1 are overexpressed in MCF-7 and MDA-MB-231 cells. Black-Right-Pointing-Pointer Sulphoraphane, a natural isothiocyanate inhibited HSPs and HSF1 expressions. Black-Right-Pointing-Pointer Inhibition of HSPs and HSF1 lead to regulation of apoptotic proteins. Black-Right-Pointing-Pointer Alteration of apoptotic proteins activate of caspases particularly caspase 3 and 9 leading to induction of apoptosis. Black-Right-Pointing-Pointer Alteration of apoptotic proteins induce caspases leading to induction of apoptosis. -- Abstract: Heat shock proteins (HSPs) are involved in protein folding, aggregation, transport and/or stabilization by acting as a molecular chaperone, leading to inhibition of apoptosis by both caspase dependent and/or independent pathways. HSPs are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion and metastasis. HSPs particularly 27, 70, 90 and the transcription factor heat shock factor1 (HSF1) play key roles in the etiology of breast cancer and can be considered as potential therapeutic target. The present study was designed to investigate the role of sulphoraphane, a natural isothiocyanate on HSPs (27, 70, 90) and HSF1 in two different breast cancer cell lines MCF-7 and MDA-MB-231 cells expressing wild type and mutated p53 respectively, vis-a-vis in normal breast epithelial cell line MCF-12F. It was furthermore investigated whether modulation of HSPs and HSF1 could induce apoptosis in these cells by altering the expressions of p53, p21 and some apoptotic proteins like Bcl-2, Bax, Bid, Bad, Apaf-1 and AIF. Sulphoraphane was found to down-regulate the expressions of HSP70, 90 and HSF1, though the effect on HSP27 was not pronounced. Consequences of HSP inhibition was upregulation of p21 irrespective of p53 status. Bax, Bad, Apaf-1, AIF were upregulated followed by down-regulation of Bcl-2 and this effect was prominent

  7. Allyl isothiocyanate from mustard seed is effective in reducing the levels of volatile sulfur compounds responsible for intrinsic oral malodor.

    PubMed

    Tian, Minmin; Hanley, A Bryan; Dodds, Michael W J

    2013-06-01

    Oral malodor is a major social and psychological issue that affects general populations. Volatile sulfur compounds (VSCs), particularly hydrogen sulfide (H₂S) and methyl mercaptan (CH₃SH), are responsible for most oral malodor. The objectives for this study were to determine whether allyl isothiocyanate (AITC) at an organoleptically acceptable level can eliminate VSCs containing a free thiol moiety and further to elucidate the mechanism of action and reaction kinetics. The study revealed that gas chromatograph with a sulfur detector demonstrated a good linearity, high accuracy and sensitivity on analysis of VSCs. Zinc salts eliminate the headspace level of H₂S but not CH₃SH. AITC eliminates both H₂S and CH₃SH via a nucleophilic addition reaction. In addition, a chemical structure-activity relationship study revealed that the presence of unsaturated group on the side chain of the isothiocyanate accelerates the elimination of VSCs. PMID:23470258

  8. Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate.

    PubMed

    Welte, Cornelia U; de Graaf, Rob M; van den Bosch, Tijs J M; Op den Camp, Huub J M; van Dam, Nicole M; Jetten, Mike S M

    2016-05-01

    Cabbage root fly larvae (Delia radicum) cause severe crop losses (≥ 50%) of rapeseed/ canola and cabbages used in the food and biofuel industries. These losses occur despite the fact that cabbages produce insecticidal toxins such as isothiocyanates. Here we describe the cabbage root fly larval gut microbiome as a source of isothiocyanate degrading enzymes. We sequenced the microbial gut community of the larvae and analysed phylogenetic markers and functional genes. We combined this with the isolation of several microbial strains representing the phylogenetic distribution of the metagenome. Eleven of those isolates were highly resistant towards 2-phenylethyl isothiocyanate, a subset also metabolized 2-phenylethyl isothiocyanate. Several plasmids appeared to be shared between those isolates that metabolized the toxin. One of the plasmids harboured a saxA gene that upon transformation gave resistance and enabled the degradation of 2-phenylethyl isothiocyanate in Escherichia coli. Taken together, the results showed that the cabbage root fly larval gut microbiome is capable of isothiocyanate degradation, a characteristic that has not been observed before, and may help us understand and design new pest control strategies. PMID:26234684

  9. Broad spectrum antibacterial activity of a mixture of isothiocyanates from nasturtium (Tropaeoli majoris herba) and horseradish (Armoraciae rusticanae radix).

    PubMed

    Conrad, A; Biehler, D; Nobis, T; Richter, H; Engels, I; Biehler, K; Frank, U

    2013-02-01

    Isothiocyanates have been reported to exert antimicrobial activity. These compounds are found in a licensed native preparation of nasturtium (Tropaeoli majoris herba) and horseradish (Armoraciae rusticanae radix) which is used for treatment of upper respiratory and urinary tract infections. The aim of our investigation was to assess the antimicrobial activity of a mixture of the contained benzyl-, allyl-, and phenylethyl- isothiocyanates against clinically important bacterial and fungal pathogens including antimicrobial resistant isolates. Susceptibility testing was performed by agar-dilution technique. Isothiocyanates were mixed in proportions identical to the licensed drug. Minimum inhibitory- and minimum bactericidal concentrations were assessed. The Minimum inhibitory concentration90 was defined as the concentration which inhibited 90% of the microbial species tested. H. influenzae, M. catarrhalis, S. marcescens, P. vulgaris, and Candida spp. were found to be highly susceptible, with minimum inhibitory concentration90 -values ranging between ≤0.0005% and 0.004% (v/v) of total ITC. Intermediate susceptibilities were observed for S. aureus, S. pyogenes, S. pneumoniae, K. pneumoniae, E. coli and P. aeruginosa, with Minimum inhibitory concentration90 -values ranging between 0.004% and 0.125% (v/v), but with elevated Minimum bactericidal concentrations90-values (2-7 dilution steps above Minimum inhibitory concentration90). Low susceptibilities were determined for viridans streptococci and enterococci. Interestingly, both resistant and non-resistant bacteria were similarly susceptible to the test preparation. PMID:23447075

  10. Preclinical Evaluation of 4-Methylthiobutyl Isothiocyanate on Liver Cancer and Cancer Stem Cells with Different p53 Status

    PubMed Central

    Lamy, Evelyn; Hertrampf, Anke; Herz, Corinna; Schüler, Julia; Erlacher, Miriam; Bertele, Daniela; Bakare, Adekunle; Wagner, Meike; Weiland, Timo; Lauer, Ulrich; Drognitz, Oliver; Huber, Roman; Rohn, Sascha; Giesemann, Torsten; Mersch-Sundermann, Volker

    2013-01-01

    Isothiocyanates from plants of the order Brassicales are considered promising cancer chemotherapeutic phytochemicals. However, their selective cytotoxicity on liver cancer has been barely researched. Therefore, in the present study, we systematically studied the chemotherapeutic potency of 4-methylthiobutyl isothiocyanate (MTBITC). Selective toxicity was investigated by comparing its effect on liver cancer cells and their chemoresistant subpopulations to normal primary hepatocytes and liver tissue slices. Additionally, in a first assessment, the in vivo tolerability of MTBITC was investigated in mice. Growth arrest at G2/M and apoptosis induction was evident in all in vitro cancer models treated with MTBITC, including populations with cancer initiating characteristics. This was found independent from TP53; however cell death was delayed in p53 compromised cells as compared to wt-p53 cells which was probably due to differential BH3 only gene regulation i. e. Noxa and its antagonist A1. In normal hepatocytes, no apoptosis or necrosis could be detected after repeated administration of up to 50 µM MTBITC. In mice, orally applied MTBITC was well tolerated over 18 days of treatment for up to 50 mg/kg/day, the highest dose tested. In conclusion, we could show here that the killing effect of MTBITC has a definite selectivity for cancer cells over normal liver cells and its cytotoxicity even applies for chemoresistant cancer initiating cells. Our study could serve for a better understanding of the chemotherapeutic properties of isothiocyanates on human liver-derived cancer cells. PMID:23936472

  11. A glutathione S-transferase inducer from papaya: rapid screening, identification and structure-activity relationship of isothiocyanates.

    PubMed

    Nakamura, Y; Morimitsu, Y; Uzu, T; Ohigashi, H; Murakami, A; Naito, Y; Nakagawa, Y; Osawa, T; Uchida, K

    2000-09-01

    We have developed a simple system for rapid detection and measurement of glutathione S-transferase placental form (GSTP1) that detoxify polycyclic aromatic hydrocarbons using the cultured rat normal liver epithelial cell line, (RL34) cells. Survey of fruit extracts for GST inducing ability identified both papaya and avocado as significant sources. Benzyl isothiocyanate (BITC) was isolated from papaya methanol extract as a principal inducer of GST activity. Further, the GST inducing ability of a total of 20 isothiocyanates (ITCs) and their derivatives was investigated. Some ITCs showed significant induction, and BITC was one of the most potent inducers among all compounds tested in the present study. The modification of isothiocyanate group (-NCS) or introduction of substituent group to the alpha-carbon modifies GST induction. Moreover, a significant correlation (P<0.01, r=0.913) between the GST activity enrichment and GSTP1 protein induction by ITCs was observed. We also indicated that phenethyl ITC and nitrophenyl ITC, potently inducing GST activity, but not inactive benzyl isocyanate, are potential inducers of intracellular reactive oxygen intermediates (ROIs). Our system of GSTP1 induction is appropriate for the chemical research such as screening and identification of novel type of inducers as well as the structure-activity relationship studies, providing mechanistic insight into essential structural elements for GSTP1 induction. PMID:10936680

  12. Phenethyl isothiocyanate induces apoptosis and inhibits cell proliferation and invasion in Hep-2 laryngeal cancer cells.

    PubMed

    Dai, Meng-Yuan; Wang, Yan; Chen, Chen; Li, Fen; Xiao, Bo-Kui; Chen, Shi-Ming; Tao, Ze-Zhang

    2016-05-01

    The dietary compound phenethyl isothiocyanate (PEITC), an important tumoricidal component found in cruciferous vegetables, exhibits strong anticancer and chemopreventive effects in a variety of tumors. However, its role in human laryngeal cancer is unclear. The aim of the present study was to investigate whether PEITC exhibits anticancer properties in human laryngeal carcinoma Hep-2 cells in vitro and to identify the potential molecular mechanisms. The results showed that treatment of Hep-2 cells with PEITC significantly inhibited cell proliferation in a dose- and time-dependent manner, promoted apoptosis with concurrent G2/M cell cycle arrest and inhibited cell invasion in a dose-dependent manner. These effects were accompanied by significant alterations in the expression levels of key proteins associated with pro-survival signaling pathways, including PI3K, Akt, ERK, NF-κB, Bcl, Bax, cyclin B, CDK4 and CDK6. Importantly, these effects were not reflected in 16HBE normal human bronchial epithelial cells, suggesting a safe range of treatment concentrations between 0 and 10 µM PEITC. In summary, PEITC exhibited significant anticancer effects against human laryngeal cancer cells in vitro with low toxicological impact on normal bronchial epithelial cells. This was achieved through dysregulation of key proteins involved in the occurrence and development of tumors, thereby offering a valuable contribution to future strategies for the treatment and screening of patients with laryngocarcinoma. PMID:26986926

  13. Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana

    PubMed Central

    Øverby, Anders; Stokland, Ragni A.; Åsberg, Signe E.; Sporsheim, Bjørnar; Bones, Atle M.

    2015-01-01

    Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as the regulation of stomatal aperture. However, the underlying cellular modes of action in plants remain scarcely investigated. Here we report evidence of an AITC-induced depletion of glutathione (GSH) and the effect on gene expression of the detoxification enzyme family glutathione S-transferases (GSTs) in Arabidopsis thaliana. Treatment of A. thaliana wild-type with AITC resulted in a time- and dose-dependent depletion of cellular GSH. AITC-exposure of mutant lines vtc1 and pad2-1 with elevated and reduced GSH-levels, displayed enhanced and decreased AITC-tolerance, respectively. AITC-exposure also led to increased ROS-levels in the roots and loss of chlorophyll which are symptoms of oxidative stress. Following exposure to AITC, we found that GSH rapidly recovered to the same level as in the control plant, suggesting an effective route for replenishment of GSH or a rapid detoxification of AITC. Transcriptional analysis of genes encoding GSTs showed an upregulation in response to AITC. These findings demonstrate cellular effects by AITC involving a reversible depletion of the GSH-pool, induced oxidative stress, and elevated expression of GST-encoding genes. PMID:25954298

  14. Involvement of the Electrophilic Isothiocyanate Sulforaphane in Arabidopsis Local Defense Responses1

    PubMed Central

    Andersson, Mats X.; Nilsson, Anders K.; Johansson, Oskar N.; Boztaş, Gülin; Adolfsson, Lisa E.; Pinosa, Francesco; Petit, Christel Garcia; Aronsson, Henrik; Mackey, David; Tör, Mahmut; Hamberg, Mats; Ellerström, Mats

    2015-01-01

    Plants defend themselves against microbial pathogens through a range of highly sophisticated and integrated molecular systems. Recognition of pathogen-secreted effector proteins often triggers the hypersensitive response (HR), a complex multicellular defense reaction where programmed cell death of cells surrounding the primary site of infection is a prominent feature. Even though the HR was described almost a century ago, cell-to-cell factors acting at the local level generating the full defense reaction have remained obscure. In this study, we sought to identify diffusible molecules produced during the HR that could induce cell death in naive tissue. We found that 4-methylsulfinylbutyl isothiocyanate (sulforaphane) is released by Arabidopsis (Arabidopsis thaliana) leaf tissue undergoing the HR and that this compound induces cell death as well as primes defense in naive tissue. Two different mutants impaired in the pathogen-induced accumulation of sulforaphane displayed attenuated programmed cell death upon bacterial and oomycete effector recognition as well as decreased resistance to several isolates of the plant pathogen Hyaloperonospora arabidopsidis. Treatment with sulforaphane provided protection against a virulent H. arabidopsidis isolate. Glucosinolate breakdown products are recognized as antifeeding compounds toward insects and recently also as intracellular signaling and bacteriostatic molecules in Arabidopsis. The data presented here indicate that these compounds also trigger local defense responses in Arabidopsis tissue. PMID:25371552

  15. Comparison of the Photobleaching and Photostability Traits of Alexa Fluor 568- and Fluorescein Isothiocyanate- conjugated Antibody

    PubMed Central

    Mahmoudian, Jafar; Hadavi, Reza; Jeddi-Tehrani, Mahmood; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Shaban, Elham; Vafakhah, Mohtaram; Darzi, Maryam; Tarahomi, Majid; Ghods, Roya

    2011-01-01

    Objective: Synthetic fluorescent dyes that are conjugated to antibodies are useful tools to probe molecules. Based on dye chemical structures, their photobleaching and photostability indices are quite diverse. It is generally believed that among different fluorescent dyes, Alexa Fluor family has greater photostability than traditional dyes like fluorescein isothiocyanate (FITC) and Cy5. Alexa Fluor 568 is a member of Alexa Fluor family presumed to have superior photostability and photobleahing profiles than FITC. Materials and Methods: In this experimental study, we conjugated Alexa Fluor 568 and FITC dyes to a mouse anti-human nestin monoclonal antibody (ANM) to acquire their photobleaching profiles and photostability indices. Then, the fluorophore/antibody ratios were calculated using a spectrophotometer. The photobleaching profiles and photostability indices of conjugated antibodies were subsequently studied by immunocytochemistry (ICC). Samples were continuously illuminated and digital images acquired under a fluorescent microscope. Data were processed by ImageJ software. Results: Alexa Fluor 568 has a brighter fluorescence and higher photostability than FITC. Conclusion: Alexa Fluor 568 is a capable dye to use in photostaining techniques and it has a longer photostability when compared to FITC. PMID:23508937

  16. Reduction of methyl isothiocyanate atmospheric emissions after application of metam sodium by shank injection.

    PubMed

    Ajwa, Husein A; Sullivan, David A; Holdsworth, Mark T; Sullivan, Ryan D; Nelson, Shad D

    2013-11-01

    Regulatory initiatives in the United States have created the impetus to reassess application methods for metam sodium (sodium -methyldithiocarbamate), a methyl isothiocyanate (MITC) generator, to reduce flux to the atmosphere. This paper compares flux rates in the years 1990 through 2002 with flux rates based on four studies conducted during the period 2008 through 2010 in California, Michigan, Wisconsin, and Washington using current shank-injection/compaction methods. Up to a 100-fold reduction in peak flux rates and total loss of MITC have been observed. A combination of the following factors led to these reductions in flux: soil moisture goals set at 70% of the field water holding capacity; improved design of shank-injection systems to break up the voids after injection; effective shank compaction to further reduce volatilization; and the use of water sealing, where applicable. These refinements in the application methods for metam sodium provide a means to merge environmental and agricultural goals in the United States and in other countries that use metam sodium. This paper documents the reduced atmospheric emissions of MITC under commercial production conditions when applied using good agricultural practices. This research also shows that MITC flux can be effectively managed without the use of high barrier tarp material. PMID:25602406

  17. Pharmacokinetics, Tissue Distribution, and Anti-Lipogenic/Adipogenic Effects of Allyl-Isothiocyanate Metabolites

    PubMed Central

    Ahn, Jiyun; Chung, Woo-Jae; Jang, Young Jin; Seong, Ki-Seung; Moon, Jae-Hak; Ha, Tae Youl; Jung, Chang Hwa

    2015-01-01

    Allyl-isothiocyanate (AITC) is an organosulfur phytochemical found in abundance in common cruciferous vegetables such as mustard, wasabi, and cabbage. Although AITC is metabolized primarily through the mercapturic acid pathway, its exact pharmacokinetics remains undefined and the biological function of AITC metabolites is still largely unknown. In this study, we evaluated the inhibitory effects of AITC metabolites on lipid accumulation in vitro and elucidated the pharmacokinetics and tissue distribution of AITC metabolites in rats. We found that AITC metabolites generally conjugate with glutathione (GSH) or N-acetylcysteine (NAC) and are distributed in most organs and tissues. Pharmacokinetic analysis showed a rapid uptake and complete metabolism of AITC following oral administration to rats. Although AITC has been reported to exhibit anti-tumor activity in bladder cancer, the potential bioactivity of its metabolites has not been explored. We found that GSH-AITC and NAC-AITC effectively inhibit adipogenic differentiation of 3T3-L1 preadipocytes and suppress expression of PPAR-γ, C/EBPα, and FAS, which are up-regulated during adipogenesis. GSH-AITC and NAC-AITC also suppressed oleic acid-induced lipid accumulation and lipogenesis in hepatocytes. Our findings suggest that AITC is almost completely metabolized in the liver and rapidly excreted in urine through the mercapturic acid pathway following administration in rats. AITC metabolites may exert anti-obesity effects through suppression of adipogenesis or lipogenesis. PMID:26317351

  18. Anabolic and Antiresorptive Modulation of Bone Homeostasis by the Epigenetic Modulator Sulforaphane, a Naturally Occurring Isothiocyanate.

    PubMed

    Thaler, Roman; Maurizi, Antonio; Roschger, Paul; Sturmlechner, Ines; Khani, Farzaneh; Spitzer, Silvia; Rumpler, Monika; Zwerina, Jochen; Karlic, Heidrun; Dudakovic, Amel; Klaushofer, Klaus; Teti, Anna; Rucci, Nadia; Varga, Franz; van Wijnen, Andre J

    2016-03-25

    Bone degenerative pathologies like osteoporosis may be initiated by age-related shifts in anabolic and catabolic responses that control bone homeostasis. Here we show that sulforaphane (SFN), a naturally occurring isothiocyanate, promotes osteoblast differentiation by epigenetic mechanisms. SFN enhances active DNA demethylation viaTet1andTet2and promotes preosteoblast differentiation by enhancing extracellular matrix mineralization and the expression of osteoblastic markers (Runx2,Col1a1,Bglap2,Sp7,Atf4, andAlpl). SFN decreases the expression of the osteoclast activator receptor activator of nuclear factor-κB ligand (RANKL) in osteocytes and mouse calvarial explants and preferentially induces apoptosis in preosteoclastic cells via up-regulation of theTet1/Fas/Caspase 8 and Caspase 3/7 pathway. These mechanistic effects correlate with higher bone volume (∼20%) in both normal and ovariectomized mice treated with SFN for 5 weeks compared with untreated mice as determined by microcomputed tomography. This effect is due to a higher trabecular number in these mice. Importantly, no shifts in mineral density distribution are observed upon SFN treatment as measured by quantitative backscattered electron imaging. Our data indicate that the food-derived compound SFN epigenetically stimulates osteoblast activity and diminishes osteoclast bone resorption, shifting the balance of bone homeostasis and favoring bone acquisition and/or mitigation of bone resorptionin vivo Thus, SFN is a member of a new class of epigenetic compounds that could be considered for novel strategies to counteract osteoporosis. PMID:26757819

  19. [Effect of phenylhexyl isothiocyanate on Wnt/beta-catenin signaling pathway in Jurkat cell line].

    PubMed

    Lin, Juan; Huang, Yi-Qun; Ma, Xu-Dong

    2013-04-01

    This study was purposed to investigate the effect of phenylhexyl isothiocyanate (PHI) on Wnt/β-catenin signaling pathway, histone acetylation, histone methylation and cell apoptosis in Jurkat cell line. The viability of Jurkat cells after treatment with PHI was tested by MTT. Apoptotic rate of Jurkat cells was measured by flow cytometry. The levels of Wnt/β-catenin related proteins including β-catenin, TCF, c-myc, and cyclinD1, histone acetylated H3 and H4, histone methylated H3K9 and H3K4 were detected by Western blot. The results showed that PHI inhibited the cell growth and induced apoptosis in Jurkat cells in time-and dose-dependent manners. Its IC50 at 48 h was about 20 µmol/L. Expression of histone acetylated H3, H4 and histone methylated H3k4 increased after exposure to PHI for 3 h, while histone methylated H3K9 decreased. Expression of β-catenin was not changed after exposure to PHI for 3 h, but expression of β-catenin, and its cell cycle-related genes such as TCF, c-myc and cyclinD1 decreased after exposure to PHI for 7 h. It is concluded that PHI regulates acetylation and methylation of histone, inhibits Wnt/β-catenin signal pathway, and is able to induce apoptosis and inhibits growth of Jurkat cells. PMID:23628033

  20. Isothiocyanate from the Tunisian radish (Raphanus sativus) prevents genotoxicity of Zearalenone in vivo and in vitro.

    PubMed

    Ben Salah-Abbès, Jalila; Abbès, Samir; Ouanes, Zouhour; Abdel-Wahhab, Mosaad A; Bacha, Hassen; Oueslati, Ridha

    2009-01-01

    Zearalenone (ZEN) is a naturally occurring contaminant of animal feed that has been implicated in several mycotoxicoses in farm livestock. Recently some information has become available indicating that ZEN caused cancer or at least increased its prevalence, although the mechanism of action is unknown. Many papers mentioned that exposure to ZEN results in genotoxicity and DNA damage. Therefore, we investigated the chemo-preventive role of 4-(methylthio)-3-butenyl isothiocyanate (MTBITC) extracted from Tunisian Raphanus sativus (radish) on the cytogenetic effect of ZEN in Balb/c mice and in in vitro cultures of mouse lymphocytes isolated from mouse spleen. We determined chromosome aberrations and micronuclei as well as the mitotic index and DNA fragmentation following ZEN treatment alone or in combination with MTBITC. This report is the first to provide evidence of a statistically significant decrease of structural chromosome aberrations and micronuclei associated with an augmentation of the mitotic index and prevention of DNA fragmentation in all mice treated with ZEN-MTBITC and in mouse lymphocyte cultures. The MTBITC alone was safe and succeeded in reducing the toxicity of ZEN by counteracting its deleterious effect, thus protecting against the genotoxicity and clastogenicity from ZEN. PMID:19501672

  1. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation.

    PubMed

    Hu, Ping; Hollister, Emily B; Somenahally, Anilkumar C; Hons, Frank M; Gentry, Terry J

    2014-01-01

    The meals from many oilseed crops have potential for biofumigation due to their release of biocidal compounds such as isothiocyanates (ITCs). Various ITCs are known to inhibit numerous pathogens; however, much less is known about how the soil microbial community responds to the different types of ITCs released from oilseed meals (SMs). To simulate applying ITC-releasing SMs to soil, we amended soil with 1% flax SM (contains no biocidal chemicals) along with four types of ITCs (allyl, butyl, phenyl, and benzyl ITC) in order to determine their effects on soil fungal and bacterial communities in a replicated microcosm study. Microbial communities were analyzed based on the ITS region for fungi and 16S rRNA gene for bacteria using qPCR and tag-pyrosequencing with 454 GS FLX titanium technology. A dramatic decrease in fungal populations (~85% reduction) was observed after allyl ITC addition. Fungal community compositions also shifted following ITC amendments (e.g., Humicola increased in allyl and Mortierella in butyl ITC amendments). Bacterial populations were less impacted by ITCs, although there was a transient increase in the proportion of Firmicutes, related to bacteria know to be antagonistic to plant pathogens, following amendment with allyl ITC. Our results indicate that the type of ITC released from SMs can result in differential impacts on soil microorganisms. This information will aid selection and breeding of plants for biofumigation-based control of soil-borne pathogens while minimizing the impacts on non-target microorganisms. PMID:25709600

  2. Allyl isothiocyanates and cinnamaldehyde potentiate miniature excitatory postsynaptic inputs in the supraoptic nucleus in rats.

    PubMed

    Yokoyama, Toru; Ohbuchi, Toyoaki; Saito, Takeshi; Sudo, Yuka; Fujihara, Hiroaki; Minami, Kouichiro; Nagatomo, Toshihisa; Uezono, Yasuhito; Ueta, Yoichi

    2011-03-25

    Allyl isothiocyanates (AITC) and cinnamaldehyde are pungent compounds present in mustard oil and cinnamon oil, respectively. These compounds are well known as transient receptor potential ankyrin 1 (TRPA1) agonists. TRPA1 is activated by low temperature stimuli, mechanosensation and pungent irritants such as AITC and cinnamaldehyde. TRPA1 is often co-expressed in TRPV1. Recent study showed that hypertonic solution activated TRPA1 as well as TRPV1. TRPV1 is involved in excitatory synaptic inputs to the magnocellular neurosecretory cells (MNCs) that produce vasopressin in the supraoptic nucleus (SON). However, it remains unclear whether TRPA1 may be involved in this activation. In the present study, we examined the role of TRPA1 on the synaptic inputs to the MNCs in in vitro rat brain slice preparations, using whole-cell patch-clamp recordings. In the presence of tetrodotoxin, AITC (50μM) and cinnamaldehyde (30μM) increased the frequency of miniature excitatory postsynaptic currents without affecting the amplitude. This effect was significantly attenuated by previous exposure to ruthenium red (10μM), non-specific TRP channels blocker, high concentration of menthol (300μM) and HC-030031 (10μM), which are known to antagonize the effects of TRPA1 agonists. These results suggest that TRPA1 may exist at presynaptic terminals to the MNCs and enhance glutamate release in the SON. PMID:21266172

  3. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana.

    PubMed

    Sporsheim, Bjørnar; Øverby, Anders; Bones, Atle Magnar

    2015-01-01

    Volatile allyl isothiocyanate (AITC) derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP)-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER), vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system. PMID:26690132

  4. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    PubMed Central

    Sporsheim, Bjørnar; Øverby, Anders; Bones, Atle Magnar

    2015-01-01

    Volatile allyl isothiocyanate (AITC) derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP)-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER), vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system. PMID:26690132

  5. Lacosamide Isothiocyanate-based Agents: Novel Agents to Target and Identify Lacosamide Receptors

    PubMed Central

    Park, Ki Duk; Morieux, Pierre; Salomé, Christophe; Cotten, Steven W.; Reamtong, Onrapak; Eyers, Claire; Gaskell, Simon J.; Stables, James P.; Liu, Rihe; Kohn, Harold

    2009-01-01

    (R)-Lacosamide ((R)-2, (R)-N-benzyl 2-acetamido-3-methoxypropionamide), has recently gained regulatory approval for the treatment of partial-onset seizures in adults. Whole animal pharmacological studies have documented that (R)-2 function is unique. A robust strategy is advanced for the discovery of interacting proteins associated with function and toxicity of (R)-2 through the use of (R)-2 analogs, 3, that contain “affinity bait (AB)” and “chemical reporter (CR)” functional groups. In 3, covalent modification of the interacting proteins proceeds at the AB moiety, and detection or isolation of the selectively captured protein occurs through the bioorthogonal CR group upon reaction with an appropriate probe. We report the synthesis, pharmacological evaluation, and interrogation of the mouse soluble brain proteome using 3 where the AB group is an isothiocyanate moiety. One compound, (R)-N-(4-isothiocyanato)benzyl 2-acetamido-3-(prop-2-ynyloxy)propionamide ((R)-9), exhibited excellent seizure protection in mice and, like (R)-2, anticonvulsant activity principally resided in the (R)-stereoisomer. Several proteins were preferentially labeled by (R)-9 compared with (S)-9, including collapsin response mediator protein 2. PMID:19795888

  6. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance and hepatic gluconeogenesis in mice

    PubMed Central

    Waterman, Carrie; Rojas-Silva, Patricio; Tumer, Tugba Boyunegmez; Kuhn, Peter; Richard, Allison J.; Wicks, Shawna; Stephens, Jacqueline M.; Wang, Zhong; Mynatt, Randy; Cefalu, William; Raskin, Ilya

    2015-01-01

    Scope Moringa oleifera (moringa) is tropical plant traditionally used as an antidiabetic food. It produces structurally unique and chemically stable moringa isothiocyanates (MICs) that were evaluated for their therapeutic use in vivo. Methods and results C57BL/6L mice fed very high fat diet (VHFD) supplemented with 5% moringa concentrate (MC, delivering 66 mg/kg/d of MICs) accumulated fat mass, had improved glucose tolerance and insulin signaling, and did not develop fatty liver disease compared to VHFD-fed mice. MC-fed group also had reduced plasma insulin, leptin, resistin, cholesterol, IL-1β, TNFα, and lower hepatic glucose-6-phosphatase (G6P) expression. In hepatoma cells, MC and MICs at low micromolar concentrations inhibited gluconeogenesis and G6P expression. MICs and MC effects on lipolysis in vitro and on thermogenic and lipolytic genes in adipose tissue in vivo argued these are not likely primary targets for the anti-obesity and anti- diabetic effects observed. Conclusion Data suggest that MICs are the main anti-obesity and anti-diabetic bioactives of MC, and that they exert their effects by inhibiting rate-limiting steps in liver gluconeogenesis resulting in direct or indirect increase in insulin signaling and sensitivity. These conclusions suggest that MC may be an effective dietary food for the prevention and treatment of obesity and type 2 diabetes. PMID:25620073

  7. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation

    PubMed Central

    Hu, Ping; Hollister, Emily B.; Somenahally, Anilkumar C.; Hons, Frank M.; Gentry, Terry J.

    2015-01-01

    The meals from many oilseed crops have potential for biofumigation due to their release of biocidal compounds such as isothiocyanates (ITCs). Various ITCs are known to inhibit numerous pathogens; however, much less is known about how the soil microbial community responds to the different types of ITCs released from oilseed meals (SMs). To simulate applying ITC-releasing SMs to soil, we amended soil with 1% flax SM (contains no biocidal chemicals) along with four types of ITCs (allyl, butyl, phenyl, and benzyl ITC) in order to determine their effects on soil fungal and bacterial communities in a replicated microcosm study. Microbial communities were analyzed based on the ITS region for fungi and 16S rRNA gene for bacteria using qPCR and tag-pyrosequencing with 454 GS FLX titanium technology. A dramatic decrease in fungal populations (~85% reduction) was observed after allyl ITC addition. Fungal community compositions also shifted following ITC amendments (e.g., Humicola increased in allyl and Mortierella in butyl ITC amendments). Bacterial populations were less impacted by ITCs, although there was a transient increase in the proportion of Firmicutes, related to bacteria know to be antagonistic to plant pathogens, following amendment with allyl ITC. Our results indicate that the type of ITC released from SMs can result in differential impacts on soil microorganisms. This information will aid selection and breeding of plants for biofumigation-based control of soil-borne pathogens while minimizing the impacts on non-target microorganisms. PMID:25709600

  8. Effects of hyperthermia, irradiation, and cytotoxic drugs on fluorescein isothiocyanate staining intensity for flow cytofluorometry

    SciTech Connect

    Dyson, J.E.; McLaughlin, J.B.; Surrey, C.R.; Simmons, D.M.; Daniel, J.

    1987-01-01

    Measurement of fluorescein isothiocyanate (FITC) staining intensity of cultured lymphoblastoid cells following hyperthermia showed large increases without concomitant increases in nuclear protein. Similar measurements of cells following incubation with cytotoxic drugs showed fluorescent intensity increases that exceeded the increases in nuclear protein that were due to the cell cycle blocking action of the drug. The reverse, however, was true for cells following irradiation. In contrast, FITC staining intensity and nuclear protein measurements of cells proceeding through the cell cycle after removal of the cycle blocking agent showed nearly parallel changes, although there were reproducible minor differences, especially following blocking with hydroxyurea. These results suggest that FITC staining intensity is a function not only of nuclear protein content but also of stain access to the reaction sites of the protein constituents of the chromatin. Thus, it is possible that FITC staining may be used as a probe of changes in chromatin structure following experimental manipulation of cells in vitro or treatment of tumors in vivo.

  9. Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme-substrate system.

    PubMed

    Ke, Chen-Yi; Wu, Yun-Tse; Tseng, Wei-Lung

    2015-07-15

    This study describes the synthesis of a dual emission probe for the fluorescent ratiometric sensing of hydrogen peroxide (H2O2), enzyme activity, and environmental pH change. Green-emitting fluorescein-5-isothiocyanate (FITC) was conjugated to the amino groups of bovine serum albumin (BSA). This FITC-conjugated BSA acted as a template for the synthesis of red-emitting gold nanoclusters (AuNCs) under alkaline conditions. Under single wavelength excitation, FITC/BSA-stabilized AuNCs (FITC/BSA-AuNCs) emitted fluorescence at 525 and 670nm, which are sensitive to changes in solution pH and H2O2 concentration, respectively. The effective fluorescence quenching of AuNCs by H2O2 enabled FITC/BSA-AuNCs to ratiometrically detect the H2O2 product-related enzyme system and its inhibition, including glucose oxidase-catalyzed oxidation of glucose, acetylcholinesterase/choline oxidase-mediated hydrolysis and oxidation of acetylcholine, and paraoxon-induced inhibition of acetylcholinesterase activity. When pH-insensitive AuNCs were used as an internal standard, FITC/BSA-AuNCs offered a sensitive and reversible ratiometric sensing of a 0.1-pH unit change in the pH range 5.0-8.5. The pH-induced change in FITC fluorescence enabled FITC/BSA-AuNCs to detect an ammonia product-related enzyme system. This was exemplified with the determination of urea in plasma by urease-mediated hydrolysis of urea. PMID:25703728

  10. Benzyl isothiocyanate disturbs lipid metabolism in rats in a way independent of its thyroid impact following in vivo long-term treatment and in vitro adipocytes studies.

    PubMed

    Okulicz, Monika; Hertig, Iwona

    2013-03-01

    During recent decades, benzyl isothiocyanate (BITC) was examined mainly in terms of its cancer chemopreventive action. Although some research has been conducted on goitrogenic activity of many glucosinolate derivatives, little attention has been paid to the BITC impact on the thyroid gland and lipid metabolism strictly associated with it. Therefore, this research project aimed at expanding our knowledge about how non-physiological doses of BITC (widely used in chemotherapy) influence some hormonal and metabolic (lipid) parameters in in vivo and in vitro experiments. The trial was focused on BITC action on thyroid tissue, liver, as well as white adipocyte tissue, at doses which were previously proved to exert a strong anticancer effect (10 mg/kg body weight in vivo and 1, 10 and 100 μmol/L in in vitro trials, respectively). Two-week oral administration of BITC in in vivo trial affected thyroid gland by decreasing total thyroxine and triiodothyronine. However, the obtained lipid profile was not specific for thyroid hormone deficiency because no lipid changes in the blood serum and liver steatosis were observed. BITC per se evoked elevation of basal lipolysis at 1 and 100 μmol/L and limitation of basal lipogenesis at 100 μmol/L in adipocyte tissues in in vitro experiment. BITC did not remain indifferent to liver metabolism by its possible influence on hepatic cholesterol 7α-hydroxylase and 5-deiodinase as well as on adipocytes by its enhanced basal lipolysis and limited lipogenesis independently of epinephrine and insulin action steps, respectively. Additionally, BITC was probably involved in bile flow obstruction. PMID:22798227

  11. The effects and mode of action of biochar on the degradation of methyl isothiocyanate in soil.

    PubMed

    Fang, Wensheng; Wang, Qiuxia; Han, Dawei; Liu, Pengfei; Huang, Bin; Yan, Dongdong; Ouyang, Canbin; Li, Yuan; Cao, Aocheng

    2016-09-15

    Biochar is used as a new type of fertilizer in agriculture; however, its effect on the fate of fumigants in soil is not fully understood. The objective of this study was to investigate the effects of biochar on methyl isothiocyanate (MITC) degradation in soil in laboratory incubation experiments, including the effects of biochar composition, amendment rate, moisture, temperature, soil sterilization and soil type. The dissipation pathways of MITC in biochars included adsorption and chemical degradation. The adsorption of MITC by biochars was positively correlated with the specific surface area (SSA) of the biochar. Biochar with a high SSA and low H/C value (such as biochar type BC-1) reduced MITC degradation in soil substantially; following BC-1 amendment, the degradation rate was 73.9% slower than in unamended soil. The degradation of MITC was positively correlated with the H/C value of biochar, and MITC degradation in soil increased 2.2-31.1 times following amendment with biochars with higher H/C values (e.g. biochar types BC-3-6). The biochar with the lowest organic matter and low H/C value did not affect the fate of MITC in soil. Biochars affect abiotic degradation processes more than biodegradation. When soil samples had a higher water content (>10%), higher temperature (40°C), and lower organic matter, the addition of BC-1 biochar reduced MITC degradation substantially; and this did not change significantly when the amendment rate increased. However, BC-4 biochar accelerated MITC degradation with increasing amendment rate, increasing temperature, and decreasing soil water content. The differences in degradation rates due to soil type were minimized by amendment with BC-4, but significant differences in BC-1. The results showed that the rational use of biochar has the potential to reduce MITC emission by accelerated degradation and adsorption. PMID:27177140

  12. Bim contributes to phenethyl isothiocyanate-induced apoptosis in breast cancer cells.

    PubMed

    Hahm, Eun-Ryeong; Singh, Shivendra V

    2012-06-01

    Phenethyl isothiocyanate (PEITC) is a highly promising cancer chemopreventive constituent of cruciferous vegetables (e.g., watercress) with in vivo efficacy in experimental rodent cancer models. Research thus far implicates apoptosis induction in cancer chemopreventive response to PEITC, but the mechanism of proapoptotic effect is not fully understood. The present study demonstrates that p53 upregulated modulator of apoptosis (PUMA)-independent apoptosis by PEITC is mediated by B-cell lymphoma 2 interacting mediator of cell death (Bim). Exposure of a cell line (BRI-JM04) derived from spontaneously developing mammary tumor of a MMTV-neu transgenic mouse to pharmacological concentrations of PEITC resulted in decreased cell viability coupled with apoptosis induction, characterized by release of histone-associated DNA fragments into the cytosol and cleavage of poly-(ADP-ribose)-polymerase and procaspase-3. The PEITC-induced apoptosis in BRI-JM04 cells was associated with up-regulation of Bak, PUMA, and Bim (long and short forms of Bim), increased S65 phosphorylation of BimEL (extra-long form), and down-regulation of Bcl-xL and Bcl-2. On the other hand, a non-tumorigenic human mammary epithelial cell line (MCF-10A) was significantly more resistant to PEITC-induced apoptosis compared with BRI-JM04 despite induction of Bax and PUMA due to concomitant overexpression of anti-apoptotic proteins, including Bcl-xL, Bcl-2, and Mcl-1. Wild-type HCT-116 cells and its isogenic PUMA knockout variant exhibited comparable sensitivity to PEITC-induced apoptosis. On the other hand, small interfering RNA knockdown of Bim protein imparted partial but statistically significant protection against PEITC-induced apoptosis in BRI-JM04, MCF-7, and MDA-MB-231 cells. In conclusion, the present study provides novel insight into the mechanism of PEITC-induced apoptosis involving Bim. PMID:21739479

  13. Urinary isothiocyanate excretion, brassica consumption, and gene polymorphisms among women living in Shanghai, China.

    PubMed

    Fowke, Jay H; Shu, Xiao-Ou; Dai, Qi; Shintani, Ayumi; Conaway, C Clifford; Chung, Fung-Lung; Cai, Qiuyin; Gao, Yu-Tang; Zheng, Wei

    2003-12-01

    Alternative measures of Brassica vegetable consumption (e.g., cabbage) may clarify the association between Brassica and cancer risk. Brassica isothiocyanates (ITCs) are excreted in urine and may provide a sensitive and food-specific dietary biomarker. However, the persistence of ITCs in the body may be brief and dependent on the activity of several Phase II enzymes, raising questions about the relationship between a single ITC measure and habitual dietary patterns. This study investigates the association between urinary ITC excretion and habitual Brassica consumption, estimated by a food frequency questionnaire, among healthy Chinese women enrolled in the Shanghai Breast Cancer Study. Participants (n = 347) completed a validated food frequency questionnaire querying habitual dietary intake during the prior 5 years and provided a fasting first-morning urine specimen. Genetic deletion of glutathione S-transferases (GSTM1/GSTT1), and single nucleotide substitutions in GSTP1 (A313G) and NAD(P)H:quinone oxidoreductase 1 (NQO1: C609T), were identified from blood DNA. Urinary ITC excretion levels were marginally higher with the GSTT1-null or GSTP1-G/G genotypes (P = 0.07, P = 0.05, respectively). Mean habitual Brassica intake was 98.3 g/day, primarily as bok choy, and Brassica intake significantly increased across quartile categories of ITC levels. The association between habitual Brassica intake and urinary ITC levels was stronger among women with GSTT1-null or GSTP1-A/A genotypes, or NQO1 T-allele, and the interaction was statistically significant across GSTP1 genotype. In conclusion, a single urinary ITC measure, in conjunction with markers of Phase II enzyme activity, provides a complementary measure of habitual Brassica intake among Shanghai women. PMID:14693750

  14. Benefits and Risks of the Hormetic Effects of Dietary Isothiocyanates on Cancer Prevention

    PubMed Central

    Bao, Yongping; Wang, Wei; Zhou, Zhigang; Sun, Changhao

    2014-01-01

    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1–5 µM) to promote cell proliferation to 120–143% of the controls in a number of human cell lines, whilst at high levels (10–40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10–20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint. PMID:25532034

  15. Dietary chemopreventative benzyl isothiocyanate inhibits breast cancer stem cells in vitro and in vivo.

    PubMed

    Kim, Su-Hyeong; Sehrawat, Anuradha; Singh, Shivendra V

    2013-08-01

    A small subset of mammary tumor-initiating cells (also known as breast cancer stem cells; bCSC), characterized by expression of different markers [CD44(high)/CD24(low)/epithelial-specific antigen (ESA)+], aldehyde dehydrogenase-1 (ALDH1) activity, and ability to form mammospheres under ultra-low attachment culture conditions, are suspected to evade conventional therapies leading to disease recurrence. Elimination of both therapy-sensitive epithelial tumor cells and therapy-resistant bCSC is therefore necessary for prevention of breast cancer. We have shown previously that a nontoxic small-molecule constituent of edible cruciferous vegetables (benzyl isothiocyanate; BITC) inhibits mammary cancer development in mouse mammary tumor virus-neu (MMTV-neu) transgenic mice by causing epithelial tumor cell apoptosis. The present study shows efficacy of BITC against bCSC in vitro and in vivo. Mammosphere formation frequency and CD44(high)/CD24(low)/ESA+ and/or ALDH1+ populations in cultured MCF-7 (estrogen receptor-positive) and SUM159 (triple-negative) human breast cancer cells were decreased significantly in the presence of plasma achievable concentrations of BITC. BITC administration in the diet (3 μmol BITC/g diet for 29 weeks) resulted in a marked decrease in bCSCs in the MMTV-neu mice tumors in vivo. Overexpression of full-length Ron as well as its truncated form (sfRon), but not urokinase-type plasminogen activator receptor, conferred near complete protection against BITC-mediated inhibition of bCSCs in MCF-7 cells. The BITC treatment downregulated protein levels of Ron and sfRon in cultured breast cancer cells and in tumor xenografts. Ron overexpression resulted in upregulation of bCSC-associated genes Oct-4, SOX-2, and Nanog. In conclusion, the present study indicates that BITC treatment eliminates bCSCs in vitro and in vivo. PMID:23661606

  16. Anticancer Activities of Pterostilbene-Isothiocyanate Conjugate in Breast Cancer Cells: Involvement of PPARγ

    PubMed Central

    Nikhil, Kumar; Sharan, Shruti; Singh, Abhimanyu K.; Chakraborty, Ajanta; Roy, Partha

    2014-01-01

    Trans-3,5-dimethoxy-4′-hydroxystilbene (PTER), a natural dimethylated analog of resveratrol, preferentially induces certain cancer cells to undergo apoptosis and could thus have a role in cancer chemoprevention. Peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is a ligand-dependent transcription factor whose activation results in growth arrest and/or apoptosis in a variety of cancer cells. Here we investigated the potential of PTER-isothiocyanate (ITC) conjugate, a novel class of hybrid compound (PTER-ITC) synthesized by appending an ITC moiety to the PTER backbone, to induce apoptotic cell death in hormone-dependent (MCF-7) and -independent (MDA-MB-231) breast cancer cell lines and to elucidate PPARγ involvement in PTER-ITC action. Our results showed that when pre-treated with PPARγ antagonists or PPARγ siRNA, both breast cancer cell lines suppressed PTER-ITC-induced apoptosis, as determined by annexin V/propidium iodide staining and cleaved caspase-9 expression. Furthermore, PTER-ITC significantly increased PPARγ mRNA and protein levels in a dose-dependent manner and modulated expression of PPARγ-related genes in both breast cancer cell lines. This increase in PPARγ activity was prevented by a PPARγ-specific inhibitor, in support of our hypothesis that PTER-ITC can act as a PPARγ activator. PTER-ITC-mediated upregulation of PPARγ was counteracted by co-incubation with p38 MAPK or JNK inhibitors, suggesting involvement of these pathways in PTER-ITC action. Molecular docking analysis further suggested that PTER-ITC interacted with 5 polar and 8 non-polar residues within the PPARγ ligand-binding pocket, which are reported to be critical for its activity. Collectively, our observations suggest potential applications for PTER-ITC in breast cancer prevention and treatment through modulation of the PPARγ activation pathway. PMID:25119466

  17. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil).

    PubMed

    Sávio, André Luiz Ventura; da Silva, Glenda Nicioli; Salvadori, Daisy Maria Fávero

    2015-01-01

    Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm the role of AITC as a potential antiproliferative compound that modulates gene expression according to the tumor cell TP53 genotype. PMID:25771977

  18. Active packaging of cheese with allyl isothiocyanate, an alternative to modified atmosphere packaging.

    PubMed

    Winther, Mette; Nielsen, Per Vaeggemose

    2006-10-01

    The natural antimicrobial compound allyl isothiocyanate (AITC), found in mustard oil, is effective against cheese-related fungi both on laboratory media and cheese. Penicillium commune, Penicillium roqueforti, and Aspergillus flavus were more sensitive to AITC when it was added just after the spores had completed 100% germination and branching had started on Czapek yeast extract agar than were spores in the dormant phase. The use of 1 AITC label (Wasaouro interior labels, LD30D, 20 by 20 mm) in combination with atmospheric air in the packaging extended the shelf life of Danish Danbo cheese from 4 1/2 to 13 weeks. Two AITC labels extended the shelf life from 4 1/2 to 28 weeks. Both 1 and 2 labels in combination with modified atmosphere packaging extended the shelf life of the cheese from 18 to 28 weeks. This study showed that AITC was absorbed in the cheese, but it was not possible to detect any volatile breakdown products from AITC in the cheese. Cheese stored for up to 12 weeks with an AITC label had an unacceptable mustard flavor. The mustard flavor decreased to an acceptable level between weeks 12 and 28. Cheese stored in atmospheric air had a fresher taste without a CO2 off-flavor than did cheese stored in modified atmosphere packaging. AITC may be a good alternative to modified atmosphere packaging for cheese. The extended shelf life of cheese in the package is very desirable: the cheese can be transported longer distances, and the packaging can be used for the final maturing of the cheese. Furthermore, AITC can address problems such as pinholes and leaking seals in cheese packaging. PMID:17066923

  19. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells.

    PubMed

    Guzmán-Pérez, Valentina; Bumke-Vogt, Christiane; Schreiner, Monika; Mewis, Inga; Borchert, Andrea; Pfeiffer, Andreas F H

    2016-01-01

    Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate-the benzyl isothiocyanate (BITC)-modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC-extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase-to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance. PMID:27622707

  20. Urinary total isothiocyanates and colorectal cancer: a prospective study of men in Shanghai, China

    PubMed Central

    Moy, Kristin A.; Yuan, Jian-Min; Chung, Fung-Lung; Van Den Berg, David; Wang, Renwei; Gao, Yu-Tang; Yu, Mimi C.

    2008-01-01

    Laboratory and epidemiological evidence suggest that dietary isothiocyanates (ITCs) may have a chemopreventive effect on cancer. Humans are exposed to ITCs primarily through ingestion of cruciferous vegetables which contain glucosinolates, the precursors to ITCs. The association between urinary total ITC level and colorectal cancer risk was examined in a cohort of 18,244 men in Shanghai, China, with 16 years of follow-up. Urinary total ITCs were quantified on 225 incident cases of colorectal cancer and 1119 matched controls. Odds ratios (ORs) and their 95% confidence intervals (95% CIs) were calculated using logistic regression models. High levels of urinary total ITCs were associated with a reduced risk of colorectal cancer five years after baseline measurements of ITCs whereas a statistically nonsignificant increase in the risk of colorectal cancer was observed for cases within five years of post-enrollment (OR=1.93; 95% CI =0.85, 4.39 for the upper three quartiles of urinary ITCs versus the lowest quartile). The inverse ITC-colorectal cancer association became stronger with a longer duration of follow-up. Compared with the first quartile, ORs (95% CIs) for the second, third, and fourth quartiles of total ITCs in urine collected 10 or more years before cancer diagnosis were 0.61 (0.35, 1.05), 0.51 (0.29, 0.92), and 0.46 (0.25, 0.83), respectively, for risk of colorectal cancer (P for trend = 0.006). The present study suggests that dietary ITCs may exert tumor inhibitory effects, especially during earlier stages of the multistage process of carcinogenesis. PMID:18559550

  1. Benzyl isothiocyanate inhibits inflammasome activation in E. coli LPS-stimulated BV2 cells.

    PubMed

    Lee, Chang-Min; Lee, Dae-Sung; Jung, Won-Kyo; Yoo, Jong Su; Yim, Mi-Jin; Choi, Yung Hyun; Park, Saegwang; Seo, Su-Kil; Choi, Jung Sik; Lee, Young-Min; Park, Won Sun; Choi, Il-Whan

    2016-09-01

    Inflammasomes are multi-protein complexes that play a crucial role in innate immune responses. Benzyl isothiocyanate (BITC) is a naturally occurring compound found in cruciferous vegetables, and BITC exhibits potential as a chemopreventive agent. However, whether BITC exerts inflammasome-mediated regulatory effects on neuroinflammation is unknown. In this study, we examined the effects of BITC on inflammasome-mediated interleukin-1β (IL-1β) production in E. coli lipopolysaccharide (LPS)-stimulated BV2 microglial cells. IL-1β production is tightly regulated at the post-translational level through the inflammasoume. We measured the levels of IL-1β produced from the LPS-exposed BV2 microglial cells using enzyme-linked immunosorbent assays (ELISAs). The BITC regulatory mechanisms in inflammasome-mediated cellular signaling pathways were examined by RT-PCR, western blot analysis and electrophoretic mobility shift assays. BITC inhibited the secretion of IL-1β induced by LPS in the BV2 microglial cells. BITC inhibited inflammasome activation and NLR family, pyrin domain containing 3 (NLRP3)-mediated caspase-1 activation, and decreased the levels of inflammasome activation pro-inflammatory mediators, including mitochondrial reactive oxygen species (ROS) and adenosine triphosphate (ATP) secretion in the LPS-stimulated BV2 microglial cells. Furthermore, we demonstrated that nuclear factor-κB (NF-κB) activation induced by LPS was inhibited by BITC, which may contribute to the attenuated secretion of IL-1β. These BITC-mediated inhibitory effects on IL-1β expression may thus regulate neuroinflammation through the inflammasome-mediated signaling pathway. PMID:27430883

  2. In vitro antiproliferative activity of isothiocyanates and nitriles generated by myrosinase-mediated hydrolysis of glucosinolates from seeds of cruciferous vegetables.

    PubMed

    Nastruzzi, C; Cortesi, R; Esposito, E; Menegatti, E; Leoni, O; Iori, R; Palmieri, S

    2000-08-01

    A comparison of the effect of isothiocyanates and nitriles derived from some glucosinolates, namely, epi-progoitrin, sinalbin, glucotropaeolin, glucocheirolin, and glucoraphenin, on human erythroleukemic in vitro cultured cells was studied. Many studies have in fact evidenced that a consumption of vegetable containing glucosinolates could reduce the development of colorectal cancer. In the experimental conditions used, the production of isothiocyanates and nitriles from glucosinolates is almost quantitative as confirmed by HPLC or GC-MS analysis. The obtained results demonstrated that in general nitriles are considerably less potent than the corresponding isothiocyanates in inhibiting cancer cell growth. Particularly, the isothiocyanates inhibitory activity on K562 cells growth is higher in the case of products derived from epi-progoitrin, glucotropaeolin, glucoraphenin, and glucocheirolin; while for nitriles the higher activity in inhibiting K562 cells growth is showed by sinalbin-derived product. Considering the antiproliferative activity found for isothiocyanates and nitriles, further studies will be aimed to the possible application of glucosinolate-derived products as chemopreventive cancer agents for the reduction of colorectal cancer. PMID:10956152

  3. A yeast chemical genetics approach identifies the compound 3,4,5-trimethoxybenzyl isothiocyanate as a calcineurin inhibitor.

    PubMed

    Prescott, Thomas A K; Panaretou, Barry; Veitch, Nigel C; Simmonds, Monique S J

    2014-01-31

    The phosphatase enzyme calcineurin controls gene expression in a variety of biological contexts however few potent inhibitors are currently available. A screen of 360 plant extracts for inhibition of calcineurin-dependent gene expression in the model organism Saccharomyces cerevisiae identified the compound 3,4,5-trimethoxybenzyl isothiocyanate as an inhibitor. The compound was subsequently shown to inhibit human calcineurin via a mixed inhibition mechanism. To gain further mechanistic insight a yeast haploinsufficiency screen of 1152 deletion strains was carried out using a novel liquid medium screening method. The resulting haploinsufficiency profile is similar to that reported for the known calcineurin inhibitor FK506. PMID:24374339

  4. Efficient fluorescence energy transfer system between fluorescein isothiocyanate and CdTe quantum dots for the detection of silver ions.

    PubMed

    Feng, Yueshu; Liu, Liwei; Hu, Siyi; Zou, Peng; Zhang, Jiaqi; Huang, Chen; Wang, Yue; Wang, Sihan; Zhang, Xihe

    2016-03-01

    We report a fluorescence resonance energy transfer (FRET) system in which the fluorescent donor is fluorescein isothiocyanate (FITC) dye and the fluorescent acceptor is CdTe quantum dot (QDs). Based on FRET quenching theory, we designed a method to detect the concentration of silver ions (Ag(+)). The results revealed a good linear trend over Ag(+) concentrations in the range 0.01-8.96 nmol/L, a range that was larger than with other methods; the quenching coefficient is 0.442. The FRET mechanism and physical mechanisms responsible for dynamic quenching are also discussed. PMID:26277997

  5. Nrf2 Knockout Attenuates the Anti-Inflammatory Effects of Phenethyl Isothiocyanate and Curcumin

    PubMed Central

    2015-01-01

    The role of phytochemicals in preventive and therapeutic medicine is a major area of scientific research. Several studies have illustrated the mechanistic roles of phytochemicals in Nrf2 transcriptional activation. The present study aims to examine the importance of the transcription factor Nrf2 by treating peritoneal macrophages from Nrf2+/+ and Nrf2–/– mice ex vivo with phenethyl isothiocyanate (PEITC) and curcumin (CUR). The peritoneal macrophages were pretreated with the drugs and challenged with lipopolysaccharides (LPSs) alone and in combination with PEITC or CUR to assess their anti-inflammatory and antioxidative effects based on gene and protein expression in the treated cells. LPS treatment resulted in an increase in the expression of inflammatory markers such as cycloxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in both Nrf2+/+ and Nrf2–/– macrophages, detected by quantitative polymerase chain reaction (qPCR). Nrf2+/+ macrophages treated with PEITC and CUR exhibited a significant decrease in the expression of these anti-inflammatory genes along with an increase in the expression of hemeoxygenase-1 (HO-1), which is an antioxidative stress gene downstream of the Nrf2 transcription factor battery. Although there was no significant decrease in the expression of the anti-inflammatory genes or an increase in HO-1 expression in Nrf2–/– macrophages treated with either PEITC or CUR, there was a significant decrease in the protein expression of COX-2 and an increase in the expression of HO-1 in Nrf2+/+ macrophages treated with PEITC compared to that with CUR treatment. No significant changes were observed in the macrophages from knockout animals. Additionally, there was a significant decrease in LPS-induced IL-6 and TNF-α production following PEITC treatment compared with that following CUR in Nrf2+/+ macrophages, whereas no change was observed in the macrophages from knockout

  6. Urinary Isothiocyanate Levels and Lung Cancer Risk Among Non-Smoking Women: a Prospective Investigation

    PubMed Central

    Fowke, Jay H.; Gao, Yu-Tang; Chow, Wong-Ho; Cai, Qiuyin; Shu, Xiao-Ou; Li, Hong-lan; Ji, Bu-Tian; Rothman, Nat; Yang, Gong; Chung, Fung-Lung; Zheng, Wei

    2010-01-01

    Background Aside from tobacco carcinogen metabolism, isothiocyanates (ITC) from cruciferous vegetables may induce apoptosis or steroid metabolism to reduce lung cancer risk. To separate the effect of these divergent mechanisms of action, we investigated the association between urinary ITC levels and lung cancer risk among non-smoking women. Methods We conducted a nested case-control within the Shanghai Women’s Health Study. Subjects included 209 incident lung cancer cases who never used tobacco, and 787 individually matched non-smoking controls. Conditional logistic regression was used to calculate odds ratios (OR) and 95% confidence intervals (CI) summarizing the association between urinary ITC levels and lung cancer. Secondary analyses stratified the ITC-lung cancer analyses by menopausal status, exposure to environmental tobacco smoke, and GSTM1 and GSTT1 genotypes. Results Urinary ITC levels were not significantly associated with lower lung cancer risk among non-smoking women, regardless of exposure to environmental tobacco smoke or menopausal status. Furthermore, this association was not modified by GSTT1 genotype. However, an inverse association was suggested among women with a GSTM1-positive genotype (Q1: OR=1.0 (reference); Q2: OR=0.35 (0.14, 0.89); Q3: OR=0.47 (0.20, 1.10); Q4: OR=0.63 (0.35, 1.54), p-trend = 0.38)). In contrast, lung cancer risk was positively associated with urinary ITC levels among women with the GSTM1-null genotype (Q1: OR=1.0 (reference); Q2: OR=1.67 (0.80, 3.50); Q3: OR=1.54 (0.71, 3.33); Q4: OR=2.22 (1.05, 4.67), p-trend = 0.06)). Conclusion Urinary ITC levels were not associated overall with lower lung cancer risk among non-smoking women, but secondary analyses suggested an interaction between urinary ITC levels, GSTM1 genotype, and lung cancer risk. PMID:21122939

  7. Modulation of Histone Deacetylase Activity by Dietary Isothiocyanates and Allyl Sulfides: Studies with Sulforaphane and Garlic Organosulfur Compounds

    PubMed Central

    Nian, Hui; Delage, Barbara; Ho, Emily; Dashwood, Roderick H.

    2009-01-01

    Histone deacetylase (HDAC) inhibitors reactivate epigenetically-silenced genes in cancer cells, triggering cell cycle arrest and apoptosis. Recent evidence suggests that dietary constituents can act as HDAC inhibitors, such as the isothiocyanates found in cruciferous vegetables and the allyl compounds present in garlic. Broccoli sprouts are a rich source of sulforaphane (SFN), an isothiocyanate that is metabolized via the mercapturic acid pathway and inhibits HDAC activity in human colon, prostate, and breast cancer cells. In mouse preclinical models, SFN inhibited HDAC activity and induced histone hyperacetylation coincident with tumor suppression. Inhibition of HDAC activity also was observed in circulating peripheral blood mononuclear cells obtained from people who consumed a single serving of broccoli sprouts. Garlic organosulfur compounds can be metabolized to allyl mercaptan (AM), a competitive HDAC inhibitor that induced rapid and sustained histone hyperacetylation in human colon cancer cells. Inhibition of HDAC activity by AM was associated with increased histone acetylation and Sp3 transcription factor binding to the promoter region of the P21WAF1 gene, resulting in elevated p21 protein expression and cell cycle arrest. Collectively, the results from these studies, and others reviewed herein, provide new insights into the relationships between reversible histone modifications, diet, and cancer chemoprevention. PMID:19197985

  8. Allyl isothiocyanate induces replication-associated DNA damage response in NSCLC cells and sensitizes to ionizing radiation

    PubMed Central

    Barnett, Reagan; Bachaboina, Lavanya; Scalici, Jennifer; Rocconi, Rodney P.; Owen, Laurie B.; Piazza, Gary A.

    2015-01-01

    Allyl isothiocyanate (AITC), a constituent of many cruciferous vegetables exhibits significant anticancer activities in many cancer models. Our studies provide novel insights into AITC-induced anticancer mechanisms in human A549 and H1299 non-small cell lung cancer (NSCLC) cells. AITC exposure induced replication stress in NSCLC cells as evidenced by γH2AX and FANCD2 foci, ATM/ATR-mediated checkpoint responses and S and G2/M cell cycle arrest. Furthermore, AITC-induced FANCD2 foci displayed co-localization with BrdU foci, indicating stalled or collapsed replication forks in these cells. Although PITC (phenyl isothiocyanate) exhibited concentration-dependent cytotoxic effects, treatment was less effective compared to AITC. Previously, agents that induce cell cycle arrest in S and G2/M phases were shown to sensitize tumor cells to radiation. Similar to these observations, combination therapy involving AITC followed by radiation treatment exhibited increased DDR and cell killing in NSCLC cells compared to single agent treatment. Combination index (CI) analysis revealed synergistic effects at multiple doses of AITC and radiation, resulting in CI values of less than 0.7 at Fa of 0.5 (50% reduction in survival). Collectively, these studies identify an important anticancer mechanism displayed by AITC, and suggest that the combination of AITC and radiation could be an effective therapy for NSCLC. PMID:25742788

  9. Flavor, glucosinolates, and isothiocyanates of nau (Cook's scurvy grass, Lepidium oleraceum) and other rare New Zealand Lepidium species.

    PubMed

    Sansom, Catherine E; Jones, Veronika S; Joyce, Nigel I; Smallfield, Bruce M; Perry, Nigel B; van Klink, John W

    2015-02-18

    The traditionally consumed New Zealand native plant nau, Cook's scurvy grass, Lepidium oleraceum, has a pungent wasabi-like taste, with potential for development as a flavor ingredient. The main glucosinolate in this Brassicaceae was identified by LC-MS and NMR spectroscopy as 3-butenyl glucosinolate (gluconapin, 7-22 mg/g DM in leaves). The leaves were treated to mimic chewing, and the headspace was analyzed by solid-phase microextraction and GC-MS. This showed that 3-butenyl isothiocyanate, with a wasabi-like flavor, was produced by the endogenous myrosinase. Different postharvest treatments were used to create leaf powders as potential flavor products, which were tasted and analyzed for gluconapin and release of 3-butenyl isothiocyanate. A high drying temperature (75 °C) did not give major glucosinolate degradation, but did largely inactivate the myrosinase, resulting in no wasabi-like flavor release. Drying at 45 °C produced more pungent flavor than freeze-drying. Seven other Lepidium species endemic to New Zealand were also analyzed to determine their flavor potential and also whether glucosinolates were taxonomic markers. Six contained mostly gluconapin, but the critically endangered Lepidium banksii had a distinct composition including isopropyl glucosinolate, not detected in the other species. PMID:25625566

  10. Antitumor activity of phenethyl isothiocyanate in HER2-positive breast cancer models

    PubMed Central

    2012-01-01

    Background HER2 is an oncogene, expression of which leads to poor prognosis in 30% of breast cancer patients. Although trastuzumab is apparently an effective therapy against HER2-positive tumors, its systemic toxicity and resistance in the majority of patients restricts its applicability. In this study we evaluated the effects of phenethyl isothiocyanate (PEITC) in HER2-positive breast cancer cells. Methods MDA-MB-231 and MCF-7 breast cancer cells stably transfected with HER2 (high HER2 (HH)) were used in this study. The effect of PEITC was evaluated using cytotoxicity and apoptosis assay in these syngeneic cells. Western blotting was used to delineate HER2 signaling. SCID/NOD mice were implanted with MDA-MB-231 (HH) xenografts. Results Our results show that treatment of MDA-MB-231 and MCF-7 cells with varying concentrations of PEITC for 24 h extensively reduced the survival of the cells with a 50% inhibitory concentration (IC50) of 8 μM in MDA-MB-231 and 14 μM in MCF-7 cells. PEITC treatment substantially decreased the expression of HER2, epidermal growth factor receptor (EGFR) and phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr-705. The expression of BCL-2-associated × (BAX) and BIM proteins were increased, whereas the levels of B cell lymphoma-extra large (BCL-XL) and X-linked inhibitor of apoptosis protein (XIAP) were significantly decreased in both the cell lines in response to PEITC treatment. Substantial cleavage of caspase 3 and poly-ADP ribose polymerase (PARP) were associated with PEITC-mediated apoptosis in MDA-MB-231 and MCF-7 cells. Notably, transient silencing of HER2 decreased and overexpressing HER2 increased the effects of PEITC. Furthermore, reactive oxygen species (ROS) generation, mitochondrial depolarization and apoptosis by PEITC treatment were much higher in breast cancer cells expressing higher levels of HER2 (HH) as compared to parent cell lines. The IC50 of PEITC following 24 h of treatment was

  11. Development of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous analysis of intact glucosinolates and isothiocyanates in Brassicaceae seeds and functional foods.

    PubMed

    Franco, P; Spinozzi, S; Pagnotta, E; Lazzeri, L; Ugolini, L; Camborata, C; Roda, A

    2016-01-01

    A new high pressure liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous determination of glucosinolates, as glucoraphanin and glucoerucin, and the corresponding isothiocyanates, as sulforaphane and erucin, was developed and applied to quantify these compounds in Eruca sativa defatted seed meals and enriched functional foods. The method involved solvent extraction, separation was achieved in gradient mode using water with 0.5% formic acid and acetonitrile with 0.5% formic acid and using a reverse phase C18 column. The electrospray ion source operated in negative and positive mode for the detection of glucosinolates and isothiocyanates, respectively, and the multiple reaction monitoring (MRM) was selected as acquisition mode. The method was validated following the ICH guidelines. Replicate experiments demonstrated a good accuracy (bias%<10%) and precision (CV%<10%). Detection limits and quantification limits are in the range of 1-400ng/mL for each analytes. Calibration curves were validated on concentration ranges from 0.05 to 50μg/mL. The method proved to be suitable for glucosinolates and isothiocyanates determination both in biomasses and in complex matrices such as food products enriched with glucosinolates, or nutraceutical bakery products. In addition, the developed method was applied to the simultaneous determination of glucosinolates and isothiocyanates in bakery product enriched with glucosinolates, to evaluate their thermal stability after different industrial processes from cultivation phases to consumer processing. PMID:26363943

  12. Isothiocyanate-functionalized bifunctional chelates and fac-[MI(CO)3]+ (M = Re, 99mTc) complexes for targeting uPAR in prostate cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing strategies to rapidly incorporate the fac-[MI(CO)3]+ (M = Re, 99mTc) core into biological targeting vectors is a growing realm in radiopharmaceutical development. This work presents the preparation of a novel isothiocyanate-functionalized bifunctional chelate based on 2,2´-dipicolylamine ...

  13. Inhibition of mutagenicity of food-derived heterocyclic amines by sulphoraphene--an isothiocyanate isolated from radish.

    PubMed

    Shishu; Singla, A K; Kaur, I P

    2003-02-01

    The naturally derived isothiocyanate, sulphoraphene [4-isothiocyanato-(1R)-(methylsulphinyl)-1-(E)-butene], isolated from seeds of radish ( Raphanus sativus L., Cruciferae) was investigated for its antigenotoxic effects against a battery of cooked food mutagens (heterocyclic amines) in the Ames Salmonella/reversion assay using Salmonella typhimurium TA98 (frame-shift mutation sensitive) and TA100 (base -pair mutation sensitive) bacterial strains in the presence of Aroclor 1254 induced rat liver S9. Results of the present in vitro anti-mutagenicity studies using the base-pair mutation sensitive strain TA100, strongly suggest that sulphoraphene is a potent inhibitor of the S9-mediated mutagenicity of all the tested heterocyclic amines (60 - 75 % inhibition at a dose of 500 nmol/plate). PMID:12624832

  14. Blood–brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate

    PubMed Central

    Shityakov, Sergey; Salvador, Ellaine; Pastorin, Giorgia; Förster, Carola

    2015-01-01

    In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT–FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood–brain barrier. The results indicated that the MWCNT–FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell® system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT–FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT–FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCNT–FITC rapid dissociation as an intermediate phase. PMID:25784800

  15. Derivatives of the triaminoguanidinium ion, 3. Multiple N-functionalization of the triaminoguanidinium ion with isocyanates and isothiocyanates

    PubMed Central

    Szabo, Jan; Karger, Kerstin; Bucher, Nicolas

    2014-01-01

    Summary 1,2,3-Triaminoguanidinium chloride was combined with benzaldehyde and hydratropic aldehyde to furnish the corresponding tris(imines), which were converted into 1,2,3-tris(benzylamino)guanidinium salts by catalytic hydrogenation in the former, and by borane reduction in the latter case. The resulting alkyl-substituted triaminoguanidinium salts underwent a threefold carbamoylation with aryl isocyanates to furnish 1,2,3-tris(ureido)guanidinium salts, while p-toluenesulfonyl isocyanate led only to a mono-ureido guanidinium salt. With aryl isothiocyanates, 3-hydrazino-1H-1,2,4-triazole-5(4H)-thione derivatives were obtained. Compounds 7a and 8 show interesting solid-state structures with intra- and intermolecular hydrogen bonds. PMID:25298792

  16. Derivatives of the triaminoguanidinium ion, 3. Multiple N-functionalization of the triaminoguanidinium ion with isocyanates and isothiocyanates.

    PubMed

    Szabo, Jan; Karger, Kerstin; Bucher, Nicolas; Maas, Gerhard

    2014-01-01

    1,2,3-Triaminoguanidinium chloride was combined with benzaldehyde and hydratropic aldehyde to furnish the corresponding tris(imines), which were converted into 1,2,3-tris(benzylamino)guanidinium salts by catalytic hydrogenation in the former, and by borane reduction in the latter case. The resulting alkyl-substituted triaminoguanidinium salts underwent a threefold carbamoylation with aryl isocyanates to furnish 1,2,3-tris(ureido)guanidinium salts, while p-toluenesulfonyl isocyanate led only to a mono-ureido guanidinium salt. With aryl isothiocyanates, 3-hydrazino-1H-1,2,4-triazole-5(4H)-thione derivatives were obtained. Compounds 7a and 8 show interesting solid-state structures with intra- and intermolecular hydrogen bonds. PMID:25298792

  17. Fluorescein Isothiocyanate-Labeled Lectin Analysis of the Surface of the Nitrogen-Fixing Bacterium Azospirillum brasilense by Flow Cytometry

    PubMed Central

    Yagoda-Shagam, Janet; Barton, Larry L.; Reed, William P.; Chiovetti, Robert

    1988-01-01

    The cell surface of Azospirillum brasilense was probed by using fluorescein isothiocyanate (FITC)-labeled lectins, with binding determined by fluorescence-activated flow cytometry. Cells from nitrogen-fixing or ammonium-assimilating cultures reacted similarly to FITC-labeled lectins, with lectin binding in the following order: Griffonia simplicifolia II agglutinin > Griffonia simplicifolia I agglutinin > Triticum vulgaris agglutinin > Glycine max agglutinin > Canavalia ensiformis agglutinin > Limax flavus agglutinin > Lotus tetragonolobus agglutinin. The fluorescence intensity of cells labeled with FITC-labeled G. simplicifolia I, C. ensiformis, T. vulgaris, and G. max agglutinins was influenced by lectin concentration. Flow cytometry measurements of lectin binding to cells was consistent with measurements of agglutination resulting from lectin-cell interaction. Capsules surrounding nitrogen-fixing and ammonium-assimilating cells were readily demonstrated by light and transmission electron microscopies. Images PMID:16347693

  18. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells.

    PubMed

    Abe, N; Hou, D-X; Munemasa, S; Murata, Y; Nakamura, Y

    2014-01-01

    Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells. PMID:25412312

  19. Dietary isothiocyanates, glutathione S-transferase -M1, -T1 polymorphisms and lung cancer risk among Chinese women in Singapore.

    PubMed

    Zhao, B; Seow, A; Lee, E J; Poh, W T; Teh, M; Eng, P; Wang, Y T; Tan, W C; Yu, M C; Lee, H P

    2001-10-01

    Chinese populations consume a diet relatively high in isothiocyanates (ITCs), a derivative of cruciferous vegetables known to have cancer-protective effects. This class of compounds is metabolized by the glutathione S-transferase family of enzymes, which are also involved in the detoxification of tobacco-related carcinogens such as polycyclic aromatic hydrocarbons and alkyl halides. We evaluated the association between dietary isothiocyanate intake, GSTM1 and GSTT1 polymorphisms, and lung cancer risk in 420 Chinese women: 233 histologically confirmed lung cancer patients and 187 hospital controls. Among these, 58.8% of cases and 90.3% of controls were lifetime nonsmokers. An allele-specific PCR method was used to detect the presence or absence of the GSTM1 and GSTT1 genes in DNA isolated from peripheral blood. Higher weekly intake of ITCs (above the control median value of 53.0 micromol) reduced the risk of lung cancer to a greater extent in smokers [adjusted odds ratio (OR), 0.31; 95% confidence interval (CI), 0.10-0.98] than nonsmokers (OR, 0.70; 95% CI, 0.45-1.11). The inverse association was stronger among subjects with homozygous deletion of GSTM1 and/or GSTT1. Among nonsmokers with GSTM1-null genotype, higher intake of ITCs significantly reduced the risk of lung cancer (OR, 0.54; 95% CI, 0.30-0.95), an effect not seen among those with detectable GSTM1 (OR, 1.07; 95% CI, 0.50-2.29). Our results, in a Chinese female population, are consistent with the hypothesis that ITC is inversely related to the risk of lung cancer, and we show that among nonsmokers this effect may be primarily confined to GST-null individuals. Conjugation and elimination of ITCs is enhanced in GST-non-null relative to -null individuals, such that the GST metabolic genotype modifies the protective effect of ITCs on lung cancer development. PMID:11588132

  20. Degradation of Biofumigant Isothiocyanates and Allyl Glucosinolate in Soil and Their Effects on the Microbial Community Composition

    PubMed Central

    Hanschen, Franziska S.; Yim, Bunlong; Winkelmann, Traud; Smalla, Kornelia; Schreiner, Monika

    2015-01-01

    Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils (model biofumigation). In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products. PMID:26186695

  1. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells

    PubMed Central

    Abe, N; Hou, D-X; Munemasa, S; Murata, Y; Nakamura, Y

    2014-01-01

    Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells. PMID:25412312

  2. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1.

    PubMed

    Bolloskis, Michael P; Carvalho, Fabiana P; Loo, George

    2016-04-15

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases. PMID:26945724

  3. Serum herpes simplex antibodies

    MedlinePlus

    ... gov/ency/article/003352.htm Serum herpes simplex antibodies To use the sharing features on this page, please enable JavaScript. Serum herpes simplex antibodies is a blood test that looks for antibodies ...

  4. Serum free hemoglobin test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003677.htm Serum free hemoglobin test To use the sharing features on this page, please enable JavaScript. Serum free hemoglobin is a blood test that measures the ...

  5. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    PubMed

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the genetic level and are

  6. Allyl isothiocyanate suppresses the proteolytic activation of sterol regulatory element-binding proteins and de novo fatty acid and cholesterol synthesis.

    PubMed

    Miyata, Shingo; Inoue, Jun; Shimizu, Makoto; Sato, Ryuichiro

    2016-05-01

    Sterol regulatory element-binding proteins (SREBPs) are a family of transcription factors that regulate lipid homeostasis by controlling the expression of genes involved in fatty acid and cholesterol synthesis. In this study, we used a stable cell line that expresses a luciferase reporter gene driven by an SRE-containing fatty acid synthase promoter to identify allyl isothiocyanate (AITC), one of the major isothiocyanates in cruciferous vegetables, as a novel SREBP inactivator. We found that AITC downregulated the proteolytic processing of SREBPs and the expression of their target genes in human hepatoma Huh-7 cells. Furthermore, AITC reduced the de novo synthesis of both fatty acids and cholesterol. Our results indicate a novel physiological function of AITC in lipid metabolism regulation. PMID:26822063

  7. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust.

    PubMed

    Quiles, Juan M; Manyes, Lara; Luciano, Fernando; Mañes, Jordi; Meca, Giuseppe

    2015-09-01

    Aflatoxins (AFs) are secondary metabolites produced by different species of Aspergillus, such as Aspergillus flavus and Aspergillus parasiticus, which possess mutagenic, teratogenic and carcinogenic activities in humans. In this study, active packaging devices containing allyl isothiocyanate (AITC) or oriental mustard flour (OMF) + water were tested to inhibit the growth of A. parasiticus and AFs production in fresh pizza crust after 30 d. The antimicrobial and anti-aflatoxin activities were compared to a control group (no antimicrobial treatment) and to a group added with commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth was only inhibited after 30 d by AITC in filter paper at 5 μL/L and 10 μL/L, AITC sachet at 5 μL/L and 10 μL/L and OMF sachet at 850 mg + 850 μL of water. However, AFs production was inhibited by all antimicrobial treatments in a dose-dependent manner. More importantly, AITC in a filter paper at 10 μL/L, AITC sachet at 10 μL/L, OMF sachet at 850 mg + 850 μL of water and sorbic acid + sodium propionate at 0.5-2.0 g/Kg completely inhibited AFs formation. The use of AITC in active packaging devices could be a natural alternative to avoid the growth of mycotoxinogenic fungi in refrigerated bakery products in substitution of common commercial preservatives. PMID:26146190

  8. Effect of glutathione-S-transferase polymorphisms on the cancer preventive potential of isothiocyanates: an epidemiological perspective.

    PubMed

    Seow, Adeline; Vainio, Harri; Yu, Mimi C

    2005-12-30

    Isothiocyanates (ITCs) are widely distributed in cruciferous vegetables and are biologically active against chemical carcinogenesis due to their ability to induce phase II conjugating enzymes. Among these is the glutathione-S-transferase (GST) family of enzymes, which in turn catalyzes the metabolism of ITCs, for which it has high substrate specificity. A recent body of epidemiologic data on the inverse association between cruciferous vegetable/ITC intake and cancers of the colo-rectum, lung and breast, also support that this protective effect is greater among individuals who possess the GSTM1 or T1 null genotype, and who would be expected to accumulate higher levels of ITC at the target tissue level, a pre-requisite for their enzyme-inducing effects. The association between ITC and cancer, and its modification by GST status, is most consistent for lung cancer and appears to be strongest among current smokers. Within limits, a comparison between groups which have been stratified by GST genotype may be less susceptible to confounding by other variables, given the random assortment of genes in gametogenesis. While a more complete understanding of the overall effects on health will need to take into account other components such as indoles and anti-oxidants, the interaction between ITC intake and GST genotype may provide a firmer basis to support a biologically significant role for ITC in cruciferous vegetables. PMID:16019037

  9. The isothiocyanate erucin abrogates telomerase in hepatocellular carcinoma cells in vitro and in an orthotopic xenograft tumour model of HCC.

    PubMed

    Herz, Corinna; Hertrampf, Anke; Zimmermann, Stefan; Stetter, Nadine; Wagner, Meike; Kleinhans, Claudia; Erlacher, Miriam; Schüler, Julia; Platz, Stefanie; Rohn, Sascha; Mersch-Sundermann, Volker; Lamy, Evelyn

    2014-12-01

    In contrast to cancer cells, most normal human cells have no or low telomerase levels which makes it an attractive target for anti-cancer drugs. The small molecule sulforaphane from broccoli is known for its cancer therapeutic potential in vitro and in vivo. In animals and humans it was found to be quickly metabolized into 4-methylthiobutyl isothiocyanate (MTBITC, erucin) which we recently identified as strong selective apoptosis inducer in hepatocellular carcinoma (HCC) cells. Here, we investigated the relevance of telomerase abrogation for cytotoxic efficacy of MTBITC against HCC. The drug was effective against telomerase, independent from TP53 and MTBITC also blocked telomerase in chemoresistant subpopulations. By using an orthotopic human liver cancer xenograft model, we give first evidence that MTBITC at 50 mg/KG b.w./d significantly decreased telomerase activity in vivo without affecting enzyme activity of adjacent normal tissue. Upon drug exposure, telomerase decrease was consistent with a dose-dependent switch to anti-survival, cell arrest and apoptosis in our in vitro HCC models. Blocking telomerase by the specific inhibitor TMPyP4 further sensitized cancer cells to MTBITC-mediated cytotoxicity. Overexpression of hTERT, but not enzyme activity deficient DNhTERT, protected against apoptosis; neither DNA damage nor cytostasis induction by MTBITC was prevented by hTERT overexpression. These findings imply that telomerase enzyme activity does not protect against MTBITC-induced DNA damage but impacts signalling processes upstream of apoptosis execution level. PMID:25256442

  10. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    PubMed

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation. PMID:24788892

  11. Phenylethyl isothiocyanate reverses cisplatin resistance in biliary tract cancer cells via glutathionylation-dependent degradation of Mcl-1.

    PubMed

    Li, Qiwei; Zhan, Ming; Chen, Wei; Zhao, Benpeng; Yang, Kai; Yang, Jie; Yi, Jing; Huang, Qihong; Mohan, Man; Hou, Zhaoyuan; Wang, Jian

    2016-03-01

    Biliary tract cancer (BTC) is a highly malignant cancer. BTC exhibits a low response rate to cisplatin (CDDP) treatment, and therefore, an understanding of the mechanism of CDDP resistance is urgently needed. Here, we show that BTC cells develop CDDP resistance due, in part, to upregulation of myeloid cell leukemia 1 (Mcl-1). Phenylethyl isothiocyanate (PEITC), a natural compound found in watercress, could enhance the efficacy of CDDP by degrading Mcl-1. PEITC-CDDP co-treatment also increased the rate of apoptosis of cancer stem-like side population (SP) cells and inhibited xenograft tumor growth without obvious toxic effects. In vitro, PEITC decreased reduced glutathione (GSH), which resulted in decreased GSH/oxidized glutathione (GSSG) ratio and increased glutathionylation of Mcl-1, leading to rapid proteasomal degradation of Mcl-1. Furthermore, we identified Cys16 and Cys286 as Mcl-1 glutathionylation sites, and mutating them resulted in PEITC-mediated degradation resistant Mcl-1 protein. In conclusion, we demonstrate for the first time that CDDP resistance is partially associated with Mcl-1 in BTC cells and we identify a novel mechanism that PEITC can enhance CDDP-induced apoptosis via glutathionylation-dependent degradation of Mcl-1. Hence, our results provide support that dietary intake of watercress may help reverse CDDP resistance in BTC patients. PMID:26848531

  12. Phenylethyl isothiocyanate reverses cisplatin resistance in biliary tract cancer cells via glutathionylation-dependent degradation of Mcl-1

    PubMed Central

    Li, Qiwei; Zhan, Ming; Chen, Wei; Zhao, Benpeng; Yang, Kai; Yang, Jie; Yi, Jing; Huang, Qihong; Mohan, Man; Hou, Zhaoyuan; Wang, Jian

    2016-01-01

    Biliary tract cancer (BTC) is a highly malignant cancer. BTC exhibits a low response rate to cisplatin (CDDP) treatment, and therefore, an understanding of the mechanism of CDDP resistance is urgently needed. Here, we show that BTC cells develop CDDP resistance due, in part, to upregulation of myeloid cell leukemia 1 (Mcl-1). Phenylethyl isothiocyanate (PEITC), a natural compound found in watercress, could enhance the efficacy of CDDP by degrading Mcl-1. PEITC-CDDP co-treatment also increased the rate of apoptosis of cancer stem-like side population (SP) cells and inhibited xenograft tumor growth without obvious toxic effects. In vitro, PEITC decreased reduced glutathione (GSH), which resulted in decreased GSH/oxidized glutathione (GSSG) ratio and increased glutathionylation of Mcl-1, leading to rapid proteasomal degradation of Mcl-1. Furthermore, we identified Cys16 and Cys286 as Mcl-1 glutathionylation sites, and mutating them resulted in PEITC-mediated degradation resistant Mcl-1 protein. In conclusion, we demonstrate for the first time that CDDP resistance is partially associated with Mcl-1 in BTC cells and we identify a novel mechanism that PEITC can enhance CDDP-induced apoptosis via glutathionylation-dependent degradation of Mcl-1. Hence, our results provide support that dietary intake of watercress may help reverse CDDP resistance in BTC patients. PMID:26848531

  13. Numbers and phenotype of lymphocytes emigrating from sheep bone marrow after in situ labelling with fluorescein isothiocyanate.

    PubMed Central

    Pabst, R; Miyasaka, M; Dudler, L

    1986-01-01

    In normal young lambs the bone marrow was selectively labelled with fluorescein isothiocyanate by a temporary perfusion of one hind-leg. One day later, the incidence of bone marrow emigrants in different lymph nodes, spleen, Peyer's patches, thymus, non-perfused bone marrow and blood was determined. The emigrants were also phenotyped by the use of monoclonal antibodies and classified into monocytes or lymphocyte subsets. Large numbers of lymphocytes left the bone marrow of the perfused leg during 1 day. Considerable numbers of cells migrated to other bone marrow compartments. Varying numbers of mononuclear emigrants were found in peripheral lymphoid organs, with labelling indices ranging from 1.06% in the blood to 0.004% in the thymus. In the spleen, comparable numbers of B- and T-lymphocyte emigrants from the bone marrow were found, whereas in the blood, lymph nodes and jejunal Peyer's patches many more emigrants were T lymphocytes than B lymphocytes. In the prescapular lymph nodes, for instance, 90.4% of emigrants were T cells but only 9.6% were B cells. Based on the large numbers of lymphocytes emigrating from the bone marrow, their phenotypes and their entry into other bone marrow compartments, it it can be concluded that the bone marrow of young lambs is an integral part of the migratory route of lymphocytes. Images Figure 2 Figure 3 PMID:3095227

  14. Transcriptional responses to exposure to the brassicaceous defence metabolites camalexin and allyl-isothiocyanate in the necrotrophic fungus Alternaria brassicicola.

    PubMed

    Sellam, Adnane; Dongo, Anita; Guillemette, Thomas; Hudhomme, Piétrick; Simoneau, Philippe

    2007-03-01

    SUMMARY Alternaria brassicicola is the causative agent of black spot disease of Brassicaceae belonging to the genera Brassica and Raphanus. During host infection, A. brassicicola is exposed to high levels of antimicrobial defence compounds such as indolic phytoalexins and glucosinolate breakdown products. To investigate the transcriptomic response of A. brassicicola when challenged with brassicaceous defence metabolites, suppression subtractive hybridization (SSH) was performed to generate two cDNA libraries from germinated conidia treated either with allyl isothiocyanate (Al-ITC) or with camalexin. Following exposure to Al-ITC, A. brassicicola displayed a response similar to that experienced during oxidative stress. Indeed, a substantial subset of differentially expressed genes was related to cell protection against oxidative damage. Treatment of A. brassicicola conidia with the phytoalexin camalexin appeared to activate a compensatory mechanism to preserve cell membrane integrity and, among the camalexin-elicited genes, several were involved in sterol and sphingolipid biosynthesis. The transcriptomic analysis suggested that protection against the two tested compounds also involved mechanisms aimed at limiting their intracellular accumulation, such as melanin biosynthesis (in the case of camalexin exposure only) and drug efflux. From the Al-ITC and the camalexin differentially expressed genes identified here, 25 were selected to perform time-course studies during interactions with brassicaceous hosts. In planta, up-regulation of all the selected genes was observed during infection of Raphanus sativus whereas only a subset were over-expressed during the incompatible interaction with Arabidopsis thaliana ecotype Columbia. PMID:20507491

  15. Isothiocyanates Are Promising Compounds against Oxidative Stress, Neuroinflammation and Cell Death that May Benefit Neurodegeneration in Parkinson's Disease.

    PubMed

    Sita, Giulia; Hrelia, Patrizia; Tarozzi, Andrea; Morroni, Fabiana

    2016-01-01

    Parkinson's disease (PD) is recognized as the second most common neurodegenerative disorder and is characterized by a slow and progressive degeneration of dopaminergic neurons in the substantia nigra. Despite intensive research, the mechanisms involved in neuronal loss are not completely understood yet; however, misfolded proteins, oxidative stress, excitotoxicity and inflammation play a pivotal role in the progression of the pathology. Neuroinflammation may have a greater function in PD pathogenesis than initially believed, taking part in the cascade of events that leads to neuronal death. To date, no efficient therapy, able to arrest or slow down PD, is available. In this context, the need to find novel strategies to counteract neurodegenerative progression by influencing diseases' pathogenesis is becoming increasingly clear. Isothiocyanates (ITCs) have already shown interesting properties in detoxification, inflammation, apoptosis and cell cycle regulation through the induction of phase I and phase II enzyme systems. Moreover, ITCs may be able to modulate several key points in oxidative and inflammatory evolution. In view of these considerations, the aim of the present review is to describe ITCs as pleiotropic compounds capable of preventing and modulating the evolution of PD. PMID:27598127

  16. Preparation and characterization of inclusion complex of benzyl isothiocyanate extracted from papaya seed with β-cyclodextrin.

    PubMed

    Li, Wenzhao; Liu, Xiaoyu; Yang, Qingfeng; Zhang, Ning; Du, Yideng; Zhu, Huaping

    2015-10-01

    The inclusion complex of benzyl isothiocyanate (BITC), extracted from papaya seed with β-cyclodextrin (β-CD), was prepared. Different analytical techniques, such as Fourier transform infrared spectroscopy, thermal analysis, X-ray diffractometry, particle size distribution analysis and (1)H Nuclear magnetic resonance analysis, were used to investigate the characterization of the inclusion complex (BITC-β-CD). All these approaches indicated that the inclusion complex was capable of being formed. The inclusion complex exhibited different spectroscopic and thermodynamic features and properties from BITC, and we deduced the possible inclusion modes for BITC-β-CD. The calculated apparent stability constant of the BITC-β-CD was 600.8l/mol, and the aqueous solubility of BITC was indistinctively improved by phase solubility studies. The results illustrated that β-CD was a proper excipient for increasing the stability and controlled release of BITC. Thus, β-CD complexation technology would be a promising approach, in expanding the application of BITC as a food antibacterial agent. PMID:25872431

  17. Low concentrations of isothiocyanates protect mesenchymal stem cells from oxidative injuries, while high concentrations exacerbate DNA damage.

    PubMed

    Zanichelli, Fulvia; Capasso, Stefania; Di Bernardo, Giovanni; Cipollaro, Marilena; Pagnotta, Eleonora; Cartenì, Maria; Casale, Fiorina; Iori, Renato; Giordano, Antonio; Galderisi, Umberto

    2012-09-01

    Isothiocyanates (ITCs) are molecules naturally present in many cruciferous vegetables (broccoli, black radish, daikon radish, and cauliflowers). Several studies suggest that cruciferous vegetable consumption may reduce cancer risk and slow the aging process. To investigate the effect of ITCs on cellular DNA damage, we evaluated the effects of two different ITCs [sulforaphane (SFN) and raphasatin (RPS)] on the biology of human mesenchymal stem cells (MSCs), which, in addition to their ability to differentiate into mesenchymal tissues, contribute to the homeostatic maintenance of many organs. The choice of SFN and RPS relies on two considerations: they are among the most popular cruciferous vegetables in the diet of western and eastern countries, respectively, and their bioactive properties may differ since they possess specific molecular moiety. Our investigation evidenced that MSCs incubated with low doses of SFN and RPS show reduced in vitro oxidative stress. Moreover, these cells are protected from oxidative damages induced by hydrogen peroxide, while no protection was evident following treatment with the UV ray of a double strand DNA damaging drug, such as doxorubicin. High concentrations of both ITCs induced cytotoxic effects in MSC cultures and further increased DNA damage induced by peroxides. In summary, our study suggests that ITCs, at low doses, may contribute to slowing the aging process related to oxidative DNA damage. Moreover, in cancer treatment, low doses of ITCs may be used as an adjuvant to reduce chemotherapy-induced oxidative stress, while high doses may synergize with anticancer drugs to promote cell DNA damage. PMID:22684843

  18. The isothiocyanate erucin abrogates telomerase in hepatocellular carcinoma cells in vitro and in an orthotopic xenograft tumour model of HCC

    PubMed Central

    Herz, Corinna; Hertrampf, Anke; Zimmermann, Stefan; Stetter, Nadine; Wagner, Meike; Kleinhans, Claudia; Erlacher, Miriam; Schüler, Julia; Platz, Stefanie; Rohn, Sascha; Mersch-Sundermann, Volker; Lamy, Evelyn

    2014-01-01

    In contrast to cancer cells, most normal human cells have no or low telomerase levels which makes it an attractive target for anti-cancer drugs. The small molecule sulforaphane from broccoli is known for its cancer therapeutic potential in vitro and in vivo. In animals and humans it was found to be quickly metabolized into 4-methylthiobutyl isothiocyanate (MTBITC, erucin) which we recently identified as strong selective apoptosis inducer in hepatocellular carcinoma (HCC) cells. Here, we investigated the relevance of telomerase abrogation for cytotoxic efficacy of MTBITC against HCC. The drug was effective against telomerase, independent from TP53 and MTBITC also blocked telomerase in chemoresistant subpopulations. By using an orthotopic human liver cancer xenograft model, we give first evidence that MTBITC at 50 mg/KG b.w./d significantly decreased telomerase activity in vivo without affecting enzyme activity of adjacent normal tissue. Upon drug exposure, telomerase decrease was consistent with a dose-dependent switch to anti-survival, cell arrest and apoptosis in our in vitro HCC models. Blocking telomerase by the specific inhibitor TMPyP4 further sensitized cancer cells to MTBITC-mediated cytotoxicity. Overexpression of hTERT, but not enzyme activity deficient DNhTERT, protected against apoptosis; neither DNA damage nor cytostasis induction by MTBITC was prevented by hTERT overexpression. These findings imply that telomerase enzyme activity does not protect against MTBITC-induced DNA damage but impacts signalling processes upstream of apoptosis execution level. PMID:25256442

  19. Enhanced inhibition of urinary bladder cancer growth and muscle invasion by allyl isothiocyanate and celecoxib in combination.

    PubMed

    Bhattacharya, Arup; Li, Yun; Shi, Yi; Zhang, Yuesheng

    2013-11-01

    Allyl isothiocyanate (AITC) occurs in cruciferous vegetables that are commonly consumed by humans and has been shown to inhibit urinary bladder cancer growth and progression in previous preclinical studies. However, AITC does not significantly modulate cyclooxygenase-2 (Cox-2), whose oncogenic activity has been well documented in bladder cancer and other cancers. Celecoxib is a selective Cox-2 inhibitor and has been widely used for treatment of several diseases. Celecoxib has also been evaluated in bladder cancer patients, but its efficacy against bladder cancer as a single agent remains unclear. In a syngeneic rat model of orthotopic bladder cancer, treatment of the animals with the combination of AITC and celecoxib at low dose levels (AITC at 1 mg/kg and celecoxib at 10 mg/kg) led to increased or perhaps synergistic inhibition of bladder cancer growth and muscle invasion, compared with each agent used alone. The combination regime was also more effective than each single agent in inhibiting microvessel formation and stimulating microvessel maturation in the tumor tissues. The anticancer efficacy of the combination regime was associated with depletion of prostaglandin E2, a key downstream signaling molecule of Cox-2, caspase activation and downregulation of vascular endothelial growth factor in the tumor tissues. These data show that AITC and celecoxib complement each other for inhibition of bladder cancer and provide a novel combination approach for potential use for prevention or treatment of human bladder cancer. PMID:23946495

  20. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery

    PubMed Central

    Calmes, Benoit; N’Guyen, Guillaume; Dumur, Jérome; Brisach, Carlos A.; Campion, Claire; Iacomi, Béatrice; Pigné, Sandrine; Dias, Eva; Macherel, David; Guillemette, Thomas; Simoneau, Philippe

    2015-01-01

    Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola. PMID:26089832

  1. Isothiocyanate metabolism, distribution, and interconversion in mice following consumption of thermally processed broccoli sprouts or purified sulforaphane

    PubMed Central

    Bricker, Gregory V.; Riedl, Kenneth M.; Ralston, Robin A.; Tober, Kathleen L.; Oberyszyn, Tatiana M.; Schwartz, Steven J.

    2014-01-01

    Scope Broccoli sprouts are a rich source of glucosinolates, a group of phytochemicals that when hydrolyzed, are associated with cancer prevention. Our objectives were to investigate the metabolism, distribution, and interconversion of isothiocyanates (ITCs) in mice fed thermally processed broccoli sprout powders (BSPs) or the purified ITC sulforaphane. Methods and results For 1 wk, mice were fed a control diet (n = 20) or one of four treatment diets (n = 10 each) containing nonheated BSP, 60°C mildly heated BSP, 5-min steamed BSP, or 3 mmol purified sulforaphane. Sulforaphane and erucin metabolite concentrations in skin, liver, kidney, bladder, lung, and plasma were quantified using HPLC-MS/MS. Thermal intensity of BSP processing had disparate effects on ITC metabolite concentrations upon consumption. Mild heating generally resulted in the greatest ITC metabolite concentrations in vivo, followed by the nonheated and steamed BSP diets. We observed interconversion between sulforaphane and erucin species or metabolites, and report that erucin is the favored form in liver, kidney, and bladder, even when only sulforaphane is consumed. Conclusion ITC metabolites were distributed to all tissues analyzed, suggesting the potential for systemic benefits. We report for the first time tissue-dependent ratio of sulforaphane and erucin, though further investigation is warranted to assess biological activity of individual forms. PMID:24975513

  2. Factors affecting the dissolution and degradation of oriental mustard-derived sinigrin and allyl isothiocyanate in aqueous media.

    PubMed

    Tsao, R; Yu, Q; Friesen, I; Potter, J; Chiba, M

    2000-05-01

    Sinigrin, the predominant glucosinolate in the oriental mustard Brassica juncea, is mainly degraded upon the enzymatic action of myrosinase under normal conditions to give allyl isothiocyanate (AITC) in an aqueous media. Because AITC is considered to be the principal nematicidal ingredient in B. juncea, its stability in aqueous media is an important issue in achieving efficient nematode control. Pure sinigrin and AITC were found to be relatively stable in buffered water in the pH range of 5.00-7.00 but less stable at pH 9.00. Both sinigrin and AITC were more stable in soil water (supernatant of a 1:1 water/air-dried soil mixture) than in buffered water at the same pH range of 5.00-9.00. Sinigrin dissolved from the mustard bran or ground seed into water very quickly and was degraded by codissolved myrosinase to AITC. The AITC that formed from the degradation of sinigrin was found to be more stable in the soil water than in the buffered water. Buffer capacity was considered to be one of the factors that contributed to the stabilization of AITC in the soil water, but other unknown factors from both bran or seed and soil may also have contributed to the stabilization. PMID:10820112

  3. Neuroprotection by 6-(methylsulfinyl)hexyl isothiocyanate in a 6-hydroxydopamine mouse model of Parkinson׳s disease.

    PubMed

    Morroni, Fabiana; Sita, Giulia; Tarozzi, Andrea; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2014-11-17

    A number of pathogenic factors have been implicated in the progression of Parkinson׳s disease (PD), including oxidative stress, mitochondrial dysfunction, inflammation, excitotoxicity, and signals mediating apoptosis cascade. 6-(methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major component in wasabi, a very popular spice in Japan and a member of the Brassica family of vegetables. This study was designed to investigate the neuroprotective effects of 6-MSITC in a PD mouse model. Mice were treated with 6-MSITC (5mg/kg twice a week) for four weeks after the unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). On the 28th day, 6-OHDA-injected mice showed behavioral impairments, a significant decrease in tyrosine hydroxylase (TH) and an increase in apoptosis. In addition, lesioned mice showed reduced glutathione levels and glutathione-S-transferase and glutathione reductase activities. Notably, 6-MSITC demonstrated neuroprotective effects in our experimental model strongly related to the preservation of functional nigral dopaminergic neurons, which contributed to the reduction of motor dysfunction induced by 6-OHDA. Furthermore, this study provides evidence that the beneficial effects of 6-MSITC could be attributed to the decrease of apoptotic cell death and to the activation of glutathione-dependent antioxidant systems. These findings may render 6-MSITC as a promising molecule for further pharmacological studies on the investigation for disease-modifying treatment in PD. PMID:25257035

  4. Characterization of some amino acid derivatives of benzoyl isothiocyanate: Crystal structures and theoretical prediction of their reactivity

    NASA Astrophysics Data System (ADS)

    Odame, Felix; Hosten, Eric C.; Betz, Richard; Lobb, Kevin; Tshentu, Zenixole R.

    2015-11-01

    The reaction of benzoyl isothiocyanate with L-serine, L-proline, D-methionine and L-alanine gave 2-[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic acid (I), 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid (II), 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl)butanoic acid (III) and 2-[(benzoylcarbamothioyl)amino]propanoic acid (IV), respectively. The compounds have been characterized by IR, NMR, microanalyses and mass spectrometry. The crystal structures of all the compounds have also been discussed. Compound II showed rotamers in solution. DFT calculations of the frontier orbitals of the compounds have been carried out to ascertain the groups that contribute to the HOMO and LUMO, and to study their contribution to the reactivity of these compounds. The calculations indicated that the carboxylic acid group in these compounds is unreactive hence making the conversion to benzimidazoles via cyclization on the carboxylic acids impractical. This has been further confirmed by the reaction of compounds I-IV, respectively, with o-phenylene diamine which was unsuccessful but gave compound V.

  5. Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study.

    PubMed

    Seow, Adeline; Yuan, Jian-Min; Sun, Can-Lan; Van Den Berg, David; Lee, Hin-Peng; Yu, Mimi C

    2002-12-01

    Dietary intake of cruciferous vegetables (Brassica spp.) has been inversely related to colorectal cancer risk, and this has been attributed to their high content of glucosinolate degradation products such as isothiocyanates (ITCs). These compounds act as anticarcinogens by inducing phase II conjugating enzymes, in particular glutathione S-transferases (GSTs). These enzymes also metabolize ITCs, such that the protective effect of cruciferous vegetables may predicate on GST genotype. The Singapore Chinese Health Study is a prospective investigation among 63 257 middle-aged men and women, who were enrolled between April 1993 and December 1998. In this nested case-control analysis, we compared 213 incident cases of colorectal cancer with 1194 controls. Information on dietary ITC intake from cruciferous vegetables, collected at recruitment via a semi-quantitative food frequency questionnaire, was combined with GSTM1, T1 and P1 genotype from peripheral blood lymphocytes or buccal mucosa. When categorized into high (greater than median) and low (less than/equal to median) intake, dietary ITC was slightly lower in cases than controls but the difference was not significant [odds ratio (OR) 0.81, 95% confidence interval (CI) 0.59-1.12]. There were no overall associations between GSTM1, T1 or P1 genotypes and colorectal cancer risk. However, among individuals with both GSTM1 and T1 null genotypes, we observed a 57% reduction in risk among high versus low consumers of ITC (OR 0.43, 95% CI 0.20-0.96), in particular for colon cancer (OR 0.31, 0.12-0.84). Our results are compatible with the hypothesis that ITCs from cruciferous vegetables modify risk of colorectal cancer in individuals with low GST activity. Further, this gene-diet interaction may be important in studies evaluating the effect of risk-enhancing compounds in the colorectum. PMID:12507929

  6. Comparative systems biology analysis to study the mode of action of the isothiocyanate compound Iberin on Pseudomonas aeruginosa.

    PubMed

    Tan, Sean Yang-Yi; Liu, Yang; Chua, Song Lin; Vejborg, Rebecca Munk; Jakobsen, Tim Holm; Chew, Su Chuen; Li, Yingying; Nielsen, Thomas E; Tolker-Nielsen, Tim; Yang, Liang; Givskov, Michael

    2014-11-01

    Food is now recognized as a natural resource of novel antimicrobial agents, including those that target the virulence mechanisms of bacterial pathogens. Iberin, an isothiocyanate compound from horseradish, was recently identified as a quorum-sensing inhibitor (QSI) of the bacterial pathogen Pseudomonas aeruginosa. In this study, we used a comparative systems biology approach to unravel the molecular mechanisms of the effects of iberin on QS and virulence factor expression of P. aeruginosa. Our study shows that the two systems biology methods used (i.e., RNA sequencing and proteomics) complement each other and provide a thorough overview of the impact of iberin on P. aeruginosa. RNA sequencing-based transcriptomics showed that iberin inhibits the expression of the GacA-dependent small regulatory RNAs RsmY and RsmZ; this was verified by using gfp-based transcriptional reporter fusions with the rsmY or rsmZ promoter regions. Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics showed that iberin reduces the abundance of the LadS protein, an activator of GacS. Taken together, the findings suggest that the mode of QS inhibition in iberin is through downregulation of the Gac/Rsm QS network, which in turn leads to the repression of QS-regulated virulence factors, such as pyoverdine, chitinase, and protease IV. Lastly, as expected from the observed repression of small regulatory RNA synthesis, we also show that iberin effectively reduces biofilm formation. This suggests that small regulatory RNAs might serve as potential targets in the future development of therapies against pathogens that use QS for controlling virulence factor expression and assume the biofilm mode of growth in the process of causing disease. PMID:25155599

  7. Protection of humans by plant glucosinolates: efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora.

    PubMed

    Fahey, Jed W; Wehage, Scott L; Holtzclaw, W David; Kensler, Thomas W; Egner, Patricia A; Shapiro, Theresa A; Talalay, Paul

    2012-04-01

    Plant-based diets rich in crucifers are effective in preventing cancer and other chronic diseases. Crucifers contain very high concentrations of glucosinolates (GS; β-thioglucoside-N-hydroxysulfates). Although not themselves protective, GS are converted by coexisting myrosinases to bitter isothiocyanates (ITC) which defend plants against predators. Coincidentally, ITC also induce mammalian genes that regulate defenses against oxidative stress, inflammation, and DNA-damaging electrophiles. Consequently, the efficiency of conversion of GS to ITC may be critical in controlling the health-promoting benefits of crucifers. If myrosinase is heat-inactivated by cooking, the gastrointestinal microflora converts GS to ITC, a process abolished by enteric antibiotics and bowel cleansing. When single oral doses of GS were administered as broccoli sprout extracts (BSE) to two dissimilar populations (rural Han Chinese and racially mixed Baltimoreans) patterns of excretions of urinary dithiocarbamates (DTC) were very similar. Individual conversions in both populations varied enormously, from about 1% to more than 40% of dose. In contrast, administration of ITC (largely sulforaphane)-containing BSE resulted in uniformly high (70%-90%) conversions to urinary DTC. Despite the remarkably large range of conversion efficiencies between individuals, repeated determinations within individuals were much more consistent. The rates of urinary excretion (slow or fast) were unrelated to the ultimate magnitudes (low or high) of these conversions. Although no demographic factors affecting conversion efficiency have been identified, there are clearly diurnal variations: conversion of GS to DTC was greater during the day, but conversion of ITC to DTC was more efficient at night. PMID:22318753

  8. The MAPK Pathway Signals Telomerase Modulation in Response to Isothiocyanate-Induced DNA Damage of Human Liver Cancer Cells

    PubMed Central

    Lamy, Evelyn; Herz, Corinna; Lutz-Bonengel, Sabine; Hertrampf, Anke; Márton, Melinda-Rita; Mersch-Sundermann, Volker

    2013-01-01

    4-methylthiobutyl isothiocyanate (MTBITC), an aliphatic, sulphuric compound from Brassica vegetables, possesses in vitro and in vivo antitumor activity. Recently we demonstrated the potent growth inhibitory potential of the DNA damaging agent MTBITC in human liver cancer cells. Here we now show that MTBITC down regulates telomerase which sensitizes cells to apoptosis induction. This is mediated by MAPK activation but independent from production of reactive oxygen species (ROS). Within one hour, MTBITC induced DNA damage in cancer cells correlating to a transient increase in hTERT mRNA expression which then turned into telomerase suppression, evident at mRNA as well as enzyme activity level. To clarify the role of MAPK for telomerase regulation, liver cancer cells were pre-treated with MAPK-specific inhibitors prior to MTBITC exposure. This clearly showed that transient elevation of hTERT mRNA expression was predominantly mediated by the MAPK family member JNK. In contrast, activated ERK1/2 and P38, but not JNK, signalled to telomerase abrogation and consequent apoptosis induction. DNA damage by MTBITC was also strongly abolished by MAPK inhibition. Oxidative stress, as analysed by DCF fluorescence assay, electron spin resonance spectroscopy and formation of 4-hydroxynonenal was found as not relevant for this process. Furthermore, N-acetylcysteine pre-treatment did not impact MTBITC-induced telomerase suppression or depolarization of the mitochondrial membrane potential as marker for apoptosis. Our data therefore imply that upon DNA damage by MTBITC, MAPK are essential for telomerase regulation and consequent growth impairment in liver tumor cells and this detail probably plays an important role in understanding the potential chemotherapeutic efficacy of ITC. PMID:23382840

  9. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae.

    PubMed

    Müller, Caroline; van Loon, Joop; Ruschioni, Sara; De Nicola, Gina Rosalinda; Olsen, Carl Erik; Iori, Renato; Agerbirk, Niels

    2015-10-01

    Isothiocyanates (ITCs), released from Brassicales plants after hydrolysis of glucosinolates, are known for their negative effects on herbivores but mechanisms have been elusive. The ITCs are initially present in dissolved form at the site of herbivore feeding, but volatile ITCs may subsequently enter the gas phase and all ITCs may react with matrix components. Deterrence to herbivores resulting from topically applied volatile ITCs in artificial feeding assays may hence lead to ambiguous conclusions. In the present study, the non-volatile ITC moringin (4-(α-L-rhamnopyranosyloxy)benzyl ITC) and its glucosinolate precursor glucomoringin were examined for effects on behaviour and taste physiology of specialist insect herbivores of Brassicales. In feeding bioassays, glucomoringin was not deterrent to larvae of Pieris napi (Lepidoptera: Pieridae) and Athalia rosae (Hymenoptera: Tenthredinidae), which are adapted to glucosinolates. Glucomoringin stimulated feeding of larvae of the related Pieris brassicae (Lepidoptera: Pieridae) and also elicited electrophysiological activity from a glucosinolate-sensitive gustatory neuron in the lateral maxillary taste sensilla. In contrast, the ITC moringin was deterrent to P. napi and P. brassicae at high levels and to A. rosae at both high and low levels when topically applied to cabbage leaf discs (either 12, 120 or 1200 nmol moringin per leaf disc of 1cm diameter). Survival of A. rosae was also significantly reduced when larvae were kept on leaves treated with moringin for several days. Furthermore, moringin elicited electrophysiological activity in a deterrent-sensitive neuron in the medial maxillary taste sensillum of P. brassicae, providing a sensory mechanism for the deterrence and the first known ITC taste response of an insect. In simulated feeding assays, recovery of moringin was high, in accordance with its non-volatile nature. Our results demonstrate taste-mediated deterrence of a non-volatile, natural ITC to glucosinolate

  10. Inhibition of Listeria monocytogenes on cooked cured chicken breasts by acidified coating containing allyl isothiocyanate or deodorized Oriental mustard extract.

    PubMed

    Olaimat, Amin N; Holley, Richard A

    2016-08-01

    Ready-to-eat meats are considered foods at high risk to cause life-threatening Listeria monocytogenes infections. This study screened 5 L. monocytogenes strains for their ability to hydrolyze sinigrin (a glucosinolate in Oriental mustard), which formed allyl isothiocyanate (AITC) and reduced L. monocytogenes viability on inoculated vacuum-packed, cooked, cured roast chicken slices at 4 °C. Tests involved incorporation of 25-50 μl/g AITC directly or 100-250 mg/g Oriental mustard extract in 0.5% (w/v) κ-carrageenan/2% (w/v) chitosan-based coatings prepared using 1.5% malic or acetic acid. L. monocytogenes strains hydrolyzed 33.6%-48.4% pure sinigrin in MH broth by 21 d at 25 °C. Acidified κ-carrageenan/chitosan coatings containing 25-50 μl/g AITC or 100-250 mg/g mustard reduced the viability of L. monocytogenes and aerobic bacteria on cooked, cured roast chicken slices by 4.1 to >7.0 log10 CFU/g compared to uncoated chicken stored at 4 °C for 70 d. Coatings containing malic acid were significantly more antimicrobial than those with acetic acid. During storage for 70 d, acidified κ-carrageenan/chitosan coatings containing 25-50 μl/g AITC or 250 mg/g mustard extract reduced lactic acid bacteria (LAB) numbers 3.8 to 5.4 log10 CFU/g on chicken slices compared to uncoated samples. Acidified κ-carrageenan/chitosan-based coatings containing either AITC or Oriental mustard extract at the concentrations tested had the ability to control L. monocytogenes viability and delay growth of potential spoilage bacteria on refrigerated, vacuum-packed cured roast chicken. PMID:27052706

  11. Prevention of cigarette smoke–induced lung tumors in mice by budesonide, phenethyl isothiocyanate, and N-acetylcysteine

    PubMed Central

    Balansky, Roumen; Ganchev, Gancho; Iltcheva, Marietta; Steele, Vernon E.; De Flora, Silvio

    2009-01-01

    Lung cancer is the most important cause of death among neoplastic diseases worldwide, and cigarette smoke (CS) is the major risk factor for cancer. Complementarily to avoidance of exposure to CS, chemoprevention will lower the risk of cancer in passive smokers, ex-smokers, and addicted current smokers who fail to quit smoking. Unfortunately, chemoprevention clinical trials have produced disappointing results to date and, until recently, a suitable animal model evaluating CS carcinogenicity was not available. We previously demonstrated that mainstream CS induces a potent carcinogenic response when exposure of mice starts at birth. In the present study, neonatal mice (strain H) were exposed to CS for 120 consecutive days, starting at birth. The chemopreventive agents budesonide (2.4 mg/kg diet), phenethyl isothiocyanate (PEITC, 1,000 mg/kg diet), and N-acetyl-l-cysteine (NAC, 1,000 mg/kg body weight) were administered orally according to various protocols. The experiment was stopped after 210 days. Exposure to CS resulted in a high incidence and multiplicity of benign lung tumors and in significant increases of malignant lung tumors and other histopathological alterations. All three chemopreventive agents, administered to current smokers after weanling, were quite effective in protecting both male and female mice from CS pulmonary carcinogenicity. When given to ex-smokers after withdrawal of exposure to CS, the protective capacity of budesonide was unchanged, while PEITC lost part of its cancer chemopreventive activity. In conclusion, the proposed experimental model provides convincing evidence that it is possible to prevent CS-induced lung cancer by means of dietary and pharmacological agents. PMID:19816928

  12. Serum bactericidal test.

    PubMed Central

    Stratton, C W

    1988-01-01

    The serum bactericidal test represents one of the few in vitro tests performed in the clinical microbiology laboratory that combines the interaction of the pathogen, the antimicrobial agent, and the patient. Although the use of such a test antedates the antimicrobial era, its performance, results, and interpretation have been subject to question and controversy. Much of the confusion concerning the serum bactericidal test can be avoided by an understanding of the various factors which influence bactericidal testing. In addition, the methodologic aspects of the serum bactericidal test have recently been addressed and should place this test on firmer ground. New information on the clinical utility of this test is becoming available; additional data are needed to establish more clearly the usefulness of the serum bactericidal test in specific infections. Such clinical trials from multiple centers will enable firmer recommendations for the future use of the serum bactericidal test. PMID:3060242

  13. Isothiocyanates Ameliorate the Symptom of Heart Dysfunction and Mortality in a Murine AIDS Model by Inhibiting Apoptosis in the Left Ventricle

    PubMed Central

    Ho, Jin-Nyoung; Yoon, Ho-Geun; Park, Chang-Soo; Kim, Sunoh; Jun, Woojin; Choue, Ryowon

    2012-01-01

    Abstract Cardiac involvement has been reported in as many as 45–55% of patients with human immunodeficiency virus (HIV) infection and acquired immune deficiency syndrome (AIDS), and significant cardiac morbidity is reported in 6–7% of HIV patients. We investigated the inhibitory effects of isothiocyanates (ITCs) on heart dysfunction and mortality by regulating apoptosis in the left ventricle of the heart in a murine AIDS model. Mice were divided into six groups: an uninfected group, an untreated LP-BM5 retrovirus-infected group, and four LP-BM5 retrovirus-infected groups treated with one of four ITCs (sulforaphane [SUL], indolo[3,2-b]carbazole, benzyl isothiocyanate [BITC], or phenethyl isothiocyanate [PEITC]). After 16 weeks, the median survival time of the LP-BM5 retrovirus-infected mice was 87 days, whereas that of the uninfected control group and all ITC treatment groups was over 112 days. SUL, PEITC, and BITC significantly inhibited apoptosis in the left ventricle by increasing the Bcl-2/Bax ratio compared with LP-BM5-infected mice. In addition, SUL and PEITC suppressed inducible nitric oxide synthase (iNOS) expression at both the mRNA and protein levels in the left ventricle of heart tissue infected with the LP-BM5 retrovirus by inactivating cytoplasmic nuclear factor κB (NF-κB). In conclusion, LP-BM5 retrovirus infection was related to survival of murine AIDS mice, and NF-κB-mediated iNOS expression may be an important mediator of left ventricle dysfunction of the heart. Furthermore, certain ITCs may have the potential to improve AIDS-related heart dysfunction due to their inhibition of apoptosis by decreasing iNOS and Bax expression through suppression of NF-κB. PMID:22925072

  14. Expression of the platelet-activating factor receptor enhances benzyl isothiocyanate-induced apoptosis in murine and human melanoma cells.

    PubMed

    Sahu, Ravi Prakash

    2015-07-01

    Melanoma cells often express platelet-activating factor receptor (PAF-R), which has been demonstrated to increase metastatic behavior. However, the effect of PAF-R on the responsiveness of melanoma to naturally occurring cytotoxic agents remains to be elucidated. The present study aimed to determine the relative cytotoxicity and mechanism of benzyl isothiocyanate (BITC), a component of cruciferous vegetables, in melanoma cells expressing PAF-R. To evaluate the importance of PAF-R signaling in melanoma cell growth, PAF-R-negative murine B16F10 cells were transduced with a retrovirus containing the cDNA for PAF-R to generate cells stably expressing PAF-R (B16-PAF-R) or an empty vector (MSCV) to generate PAF-R-deficient B16-MSCV control cells. Activation of PAF-R, using the PAF-R agonist, 1-hexadecyl-2-N-methylcarbamoyl-3-glycerophosphocholine, induced an increase in the proliferation of B16-PAF-R cells compared with the B16-MSCV cells. Reverse transcription quantitative polymerase chain reaction revealed the presence of functional PAF-R in human melanoma SK23MEL cells, but not in SK5MEL cells. The present study investigated the effect of BITC treatments on the survival of murine and human melanoma cells, in the presence or absence of functional PAF-R. The results revealed that treatment with BITC decreased the survival rate of the PAF-R-positive and negative murine and human melanoma cells. However, the expression of PAF-R substantially augmented BITC-mediated cytotoxicity in the PAF-R-positive cells at lower concentrations compared with the PAF-R-negative cells. In order to determine the underlying mechanism, flow cytometric analysis was used, which demonstrated a significant increase in the generation of reactive oxygen species (ROS) in the B16-PAF-R cells compared with the B16-MSCV cells, which enhanced apoptosis by BITC, as measured by increased caspase-3/7 luminescence. Notably, the BITC-mediated decreased cell survival rate, increased ROS and increased

  15. Serum free hemoglobin test

    MedlinePlus

    Blood hemoglobin; Serum hemoglobin ... Hemoglobin (Hb) is the main component of red blood cells. It is a protein that carries oxygen. ... people may contain up to 5 mg/dL hemoglobin. Normal value ranges may vary slightly among different ...

  16. Serum globulin electrophoresis

    MedlinePlus

    ... may indicate: Acute infection Bone marrow cancer called multiple myeloma Chronic inflammatory disease (for example, rheumatoid arthritis and ... test Hemoglobin Hyperimmunization Immunoelectrophoresis - ... electrophoresis - serum Rheumatoid arthritis Systemic lupus erythematosus ...

  17. Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles

    PubMed Central

    Sinigaglia, Giulietta; Magro, Massimiliano; Miotto, Giovanni; Cardillo, Sara; Agostinelli, Enzo; Zboril, Radek; Bidollari, Eris; Vianello, Fabio

    2012-01-01

    Novel superparamagnetic surface-active maghemite nanoparticles (SAMNs) characterized by a diameter of 10 ± 2 nm were modified with bovine serum amine oxidase, which used rhodamine B isothiocyanate (RITC) adduct as a fluorescent spacer-arm. A fluorescent and magnetically drivable adduct comprised of bovine serum copper-containing amine oxidase (SAMN–RITC–BSAO) that immobilized on the surface of specifically functionalized magnetic nanoparticles was developed. The multifunctional nanomaterial was characterized using transmission electron microscopy, infrared spectroscopy, mass spectrometry, and activity measurements. The results of this study demonstrated that bare magnetic nanoparticles form stable colloidal suspensions in aqueous solutions. The maximum binding capacity of bovine serum amine oxidase was approximately 6.4 mg g−1 nanoparticles. The immobilization procedure reduced the catalytic activity of the native enzyme to 30% ± 10% and the Michaelis constant was increased by a factor of 2. We suggest that the SAMN–RITC–BSAO complex, characterized by a specific activity of 0.81 IU g−1, could be used in the presence of polyamines to create a fluorescent magnetically drivable H2O2 and aldehydes-producing system. Selective tumor cell destruction is suggested as a potential future application of this system. PMID:22619559

  18. Serum susceptibility of bovine pasteurellas.

    PubMed Central

    Blau, K A; Ward, A C; Prieur, D J; Corbeil, L B

    1987-01-01

    In this study, the serum sensitivity of 23 P. haemolytica isolates and 18 P. multocida isolates was determined by incubating dilutions of bacteria with equal volumes of fresh or heat-inactivated bovine serum for one, two, or three hours. Clinical isolates of both Pasteurella species were resistant to serum, whereas isolates from asymptomatic cattle varied in serum susceptibility. The classical pathway of complement appeared to be the principal means of complement mediated killing as detected by incubation in the presence or absence of EGTA-MgCl2. Lyzozyme and iron saturation of serum did not greatly affect serum susceptibility with either of the Pasteurella species. PMID:3300919

  19. Use of 4-sulfophenyl isothiocyanate labeling and mass spectrometry to determine the site of action of the streptococcolytic peptidoglycan hydrolase zoocin A.

    PubMed

    Gargis, Shaw R; Heath, Harry E; Heath, Lucie S; Leblanc, Paul A; Simmonds, Robin S; Abbott, Brian D; Timkovich, Russell; Sloan, Gary L

    2009-01-01

    Zoocin A is a streptococcolytic peptidoglycan hydrolase with an unknown site of action that is produced by Streptococcus equi subsp. zooepidemicus 4881. Zoocin A has now been determined to be a d-alanyl-l-alanine endopeptidase by digesting susceptible peptidoglycan with a combination of mutanolysin and zoocin A, separating the resulting muropeptides by reverse-phase high-pressure liquid chromatography, and analyzing them by mass spectrometry (MS) in both the positive- and negative-ion modes to determine their compositions. In order to distinguish among possible structures for these muropeptides, they were N-terminally labeled with 4-sulfophenyl isothiocyanate (SPITC) and analyzed by tandem MS in the negative-ion mode. This novel application of SPITC labeling and MS/MS analysis can be used to analyze the structure of peptidoglycans and to determine the sites of action of other peptidoglycan hydrolases. PMID:18978086

  20. Evaluation of gastrointestinal leakage using serum (1→3)-β-D-glucan in a Clostridium difficile murine model.

    PubMed

    Leelahavanichkul, Asada; Panpetch, Wimonrat; Worasilchai, Navaporn; Somparn, Poorichaya; Chancharoenthana, Wiwat; Nilgate, Sumanee; Finkelman, Malcolm; Chindamporn, Ariya; Tumwasorn, Somying

    2016-09-01

    Gastrointestinal (GI) leakage in Clostridium difficile-associated diarrhea (CDAD) is well known but is not routinely assessed in clinical practice. Serum (1→3)-β-D-glucan (BG), a fungal cell wall component used as a biomarker for invasive fungal disease, was tested in a CDAD mouse model with and without probiotics. Higher serum fluorescein isothiocyanate-dextran (FITC-dextran) and spontaneous gram-negative bacteremia, GI leakage indicators, were frequently found in CDAD mice, which died compared with those which survived. BG, serum macrophage inflammatory protein-2 and FITC-dextran but not quantitative blood bacterial count differentiated the clinical severity. Interestingly, a specific dose of Lactobacillus rhamnosus L34 attenuated CDAD and decreased serum BG and FITC-dextran, but not other parameters. BG also showed a higher area under the receiver operating characteristic curve for 7-day mortality than FITC-dextran. Fifty-five percent of CDAD mice with BG ≥ 60 pg/ml (the human negative cut-off value for invasive fungal disease) at 1 day after C. difficile gavage died within 7 days. In conclusion, S: erum BG was elevated in mice with severe CDAD, an established model of GI leakage with a strong association with mortality rate. BG monitoring in patients with CDAD is of interest as both a potential prognostic tool and a therapeutic efficacy indicator. PMID:27573235

  1. Pharmacodynamics of dietary phytochemical indoles I3C and DIM: Induction of Nrf2-mediated Phase II drug metabolizing and antioxidant genes and synergism with isothiocyanates

    PubMed Central

    Saw, Constance Lay-Lay; Cintron, Melvilí; Wu, Tien-Yuan; Guo, Yue; Huang, Ying; Jeong, Woo-Sik; Kong, Ah-Ng Tony

    2012-01-01

    The antioxidant response element (ARE) is a critical regulatory element for the expression of many phase II drug metabolizing enzymes (DME), phase III transporters, and anti-oxidant enzymes, mediated by the transcription factor Nrf2. The aim of this study was to examine the potential activation and synergism of Nrf2-ARE-mediated transcriptional activity between four common phytochemicals present in cruciferous vegetables, the indoles; indole-3-carbinol (I3C), 3,3’-diindolylmethane (DIM), and the isothiocyanates (ITCs); phenethyl isothiocyanate (PEITC) and sulforaphane (SFN). The cytotoxicity of the compounds was determined in human liver hepatoma cell line (HepG2-C8). The combination index was calculated to assess the synergistic effects on the induction of ARE-mediated gene expressions. qPCR was employed to measure the mRNA expressions of Nrf2 and Nrf2-mediated genes. I3C and DIM showed less cytotoxicity than SFN and PEITC. Compared to I3C, DIM was found to be a stronger inducer of ARE. Synergism was observed after combined treatments of I3C 6.25 µM + SFN 1 µM, I3C 6.25 µM + PEITC 1 µM and DIM 6.25 µM + PEITC 1 µM, while additive effect was observed for DIM 6.25 µM + SFN 1 µM. Induction of endogenous Nrf2, phase II genes (GSTm2, UGT1A1, and NQO1) and antioxidant genes (HO-1 and SOD1) was also observed. In summary, the indole I3C or DIM alone could induce or syngergistically induce in combination with the ITCs SFN or PEITC, Nrf2-ARE-mediated gene expression, which could potentially enhance cancer chemopreventive activity. PMID:21656528

  2. 2-Phenethyl Isothiocyanate, Glutathione S-transferase M1 and T1 Polymorphisms, and Detoxification of Volatile Organic Carcinogens and Toxicants in Tobacco Smoke.

    PubMed

    Yuan, Jian-Min; Murphy, Sharon E; Stepanov, Irina; Wang, Renwei; Carmella, Steven G; Nelson, Heather H; Hatsukami, Dorothy; Hecht, Stephen S

    2016-07-01

    Cigarette smoke contains relatively large quantities of volatile organic toxicants or carcinogens such as benzene, acrolein, and crotonaldehyde. Among their detoxification products are mercapturic acids formed from glutathione conjugation, catalyzed in part by glutathione S-transferases (GST). A randomized phase II clinical trial with a crossover design was conducted to evaluate the effect of 2-phenethyl isothiocyanate (PEITC), a natural product formed from gluconasturtiin in certain cruciferous vegetables, on the detoxification of benzene, acrolein, and crotonaldehyde in 82 cigarette smokers. Urinary mercapturic acids of benzene, acrolein, and crotonaldehyde at baseline and during treatment were quantified. Overall, oral PEITC supplementation increased the mercapturic acid formed from benzene by 24.6% (P = 0.002) and acrolein by 15.1% (P = 0.005), but had no effect on crotonaldehyde. A remarkably stronger effect was observed among subjects with the null genotype of both GSTM1 and GSTT1: in these individuals, PEITC increased the detoxification metabolite of benzene by 95.4% (P < 0.001), of acrolein by 32.7% (P = 0.034), and of crotonaldehyde by 29.8% (P = 0.006). In contrast, PEITC had no effect on these mercapturic acids in smokers possessing both genes. PEITC had no effect on the urinary oxidative stress biomarker 8-iso-prostaglandin F2α or the inflammation biomarker prostaglandin E2 metabolite. This trial demonstrates an important role of PEITC in detoxification of environmental carcinogens and toxicants which also occur in cigarette smoke. The selective effect of PEITC on detoxification in subjects lacking both GSTM1 and GSTT1 genes supports the epidemiologic findings of stronger protection by dietary isothiocyanates against the development of lung cancer in such individuals. Cancer Prev Res; 9(7); 598-606. ©2016 AACR. PMID:27099270

  3. Conversion to isothiocyanates via dithiocarbamates for the determination of aromatic primary amines by headspace-solid phase microextraction and gas chromatography.

    PubMed

    Jain, Archana; Reddy-Noone, Kishan; Pillai, Aradhana K K V; Verma, Krishna K

    2013-11-01

    A novel and highly selective method has been developed for the determination of aromatic primary amines by their conversion to dithiocarbamates by reaction with carbon disulphide, and then to isothiocyanates, which are volatile, by heating in the presence of a heavy metal ion. Zinc(II) was selected owing to its low toxicity and optimum yield of isothiocyanates. The latter were sampled by headspace-solid phase microextraction (HS-SPME) on divinylbenzene-carboxen-polydimethylsiloxane fibre, 50/30 μm. The HS-SPME procedure was optimized to provide adequate limits of detection in the analysis of aromatic amines in their real samples by gas chromatography with mass spectrometry (GC-MS) or flame ionization detection (GC-FID). The method gave rectilinear calibration graph, correlation coefficient and limit of detection, respectively, over the range 0.08-100 μg L(-1), 0.9950-0.9990 and 25-240 ng L(-1) in gas chromatography-mass spectrometry, and 0.01-10 mg L(-1), 0.9910-0.9991 and 0.8-3.0 μg L(-1) in gas chromatography-flame ionization detection. At two different levels, 10 and 40 μg L(-1), the range of intra-day RSD was 3.7-8.5% (GC-MS) and 3.3-9.2% (GC-FID), respectively. The proposed method is simple and rapid, and has been applied to determine aromatic primary amines in the environmental waters, food samples of ice cream powder and soft drinks concentrate, and food colours. The intra-day RSD in the analysis of real samples by GC-MS was in the range 3.6-6.2%. The food/colour samples were found to contain elevated levels of aniline and 2-toluidine. PMID:24139574

  4. 4(α-L-RHAMNOSYLOXY)-BENZYL ISOTHIOCYANATE, A BIOACTIVE PHYTOCHEMICAL THAT DEFENDS CEREBRAL TISSUE AND PREVENTS SEVERE DAMAGE INDUCED BY FOCAL ISCHEMIA/REPERFUSION.

    PubMed

    Galuppo, M; Giacoppo, S; Iori, R; De Nicola, G R; Milardi, D; Bramanti, P; Mazzon, E

    2015-01-01

    Natural compounds are a promising source to treat several pathologies. The present study shows the in vivo pharmacological beneficial effect of 4(α-L-rhamnosyloxy)-benzyl isothiocyanate (glucomoringin isothiocyanate; GMG-ITC) obtained from glucomoringin (GMG; 4(α;-L-rhamnosyloxy)- benzyl glucosinolate), purified from Moringa oleifera seeds and hydrolyzed by myrosinase enzyme (β-thioglucoside glucohydrolase; E.C. 3.2.1.147). Cerebral ischemia/reperfusion (CIR) was induced in rats according to a classic model of carotid artery occlusion for a time period of 1 h and the reperfusion time was prolonged for seven days. GMG-ITC (3.5 mg GMG/ml plus 30 μl enzyme/rat; one ml i.p./rat) was administered 15 min after the beginning of ischemia and daily. The results clearly show that GMG-ITC possesses the capability to counteract the CIR-induced damage reducing TNF-alpha release, IκB-alpha cytosolic degradation/NFκBp65 nuclear translocation, as well as several other direct or indirect markers of inflammation (phospho-ERK p42/44, p-selectin) and oxidative stress (inducible Nitric Oxide Synthase (iNOS), MMP-9). GMG-ITC was shown to exert neuroprotective properties in preventing CIR-induced damage and the related cascade of inflammatory and oxidative mediators that exacerbate the progression of this disease in an experimental rat model. Our results clearly show that the tested phytochemical GMG-ITC possesses the capability to counteract CIR-induced damage. PMID:26122222

  5. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    SciTech Connect

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta; Bodipati, Naganjaneyulu; Krishna Peddinti, Rama; Roy, Partha

    2014-01-15

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC{sub 50}=25±0.38) when compared to reference compound PTER (IC{sub 50}=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene.

  6. The Human Serum Metabolome

    PubMed Central

    Psychogios, Nikolaos; Hau, David D.; Peng, Jun; Guo, An Chi; Mandal, Rupasri; Bouatra, Souhaila; Sinelnikov, Igor; Krishnamurthy, Ramanarayan; Eisner, Roman; Gautam, Bijaya; Young, Nelson; Xia, Jianguo; Knox, Craig; Dong, Edison; Huang, Paul; Hollander, Zsuzsanna; Pedersen, Theresa L.; Smith, Steven R.; Bamforth, Fiona; Greiner, Russ; McManus, Bruce; Newman, John W.; Goodfriend, Theodore; Wishart, David S.

    2011-01-01

    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca. PMID:21359215

  7. Estrous sheep serum enables in vitro capacitation of ram spermatozoa while preventing caspase activation.

    PubMed

    Del Olmo, E; García-Álvarez, O; Maroto-Morales, A; Ramón, M; Jiménez-Rabadán, P; Iniesta-Cuerda, M; Anel-Lopez, L; Martinez-Pastor, F; Soler, A J; Garde, J J; Fernández-Santos, M R

    2016-01-15

    Estrous sheep serum (ESS) is considered the most efficient agent for in vitro capacitation of ram spermatozoa. We have explored the relationship between caspase activation and capacitation in ram. Semen samples from 17 rams were cryopreserved. In vivo fertility was evaluated after intrauterine artificial insemination. Samples were submitted to four treatments: control, ESS (10%), caspase inhibitor (Z-VAD-FMK), and estrous ewe serum plus caspase inhibitor (I + E). Sperm samples were incubated for 30 minutes at 38.5 °C and 5% CO2 and analyzed with flow cytometry for mitochondrial membrane potential (MitoTracker deep red), sperm viability and apoptosis-like changes (YO-PRO-1/propidium iodide), acrosomal status (peanut agglutinin-fluorescein isothiocyanate), membrane fluidity (merocyanine 540), and caspase activity (Vybrant FAM kits for polycaspases, caspase-8, and caspases 3-7). Estrous sheep serum induced changes compatible with capacitation, doubling the proportion of viable spermatozoa with increased merocyanine 540 and increasing YO-PRO-1(+) and acrosome-reacted spermatozoa (P < 0.05). Incubation increased the proportion of spermatozoa with activated caspases (P < 0.05), which was abolished by the treatments. We detected a simultaneous decrease in the proportion of the viable and caspase(-) spermatozoa after the incubation, which was prevented by the presence of estrous ewe serum (P < 0.05). The analysis of caspases 3/7 and 8 resulted in less marked differences. Fertility was positively related to viability and inactivated caspases and negatively to viable-capacitated spermatozoa and active caspases. In vitro induction of capacitation in thawed ram spermatozoa by using ESS suggests a downregulation in apoptotic pathways. However, males with the lowest fertility showed parameters similar to high-fertility males, suggesting that other factors were involved apart from capacitation and/or caspase activation. PMID:26474680

  8. Structure of Serum Albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Ho, Joseph X.

    1994-01-01

    Because of its availability, low cost, stability, and unusual ligand-binding properties, serum albumin has been one of the mst extensively studied and applied proteins in biochemistry. However, as a protein, albumin is far from typical, and the widespread interest in and application of albumin have not been balanced by an understanding of its molecular structure. Indeed, for more than 30 years structural information was surmised based solely on techniques such as hydrodynamics, low-angle X-ray scattering, and predictive methods.

  9. 4(α-l-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury.

    PubMed

    Giacoppo, Sabrina; Galuppo, Maria; De Nicola, Gina Rosalinda; Iori, Renato; Bramanti, Placido; Mazzon, Emanuela

    2015-01-01

    4(α-l-Rhamnosyloxy)-benzyl isothiocyanate (glucomoringin isothiocyanate; GMG-ITC) is released from the precursor 4(α-l-rhamnosyloxy)-benzyl glucosinolate (glucomoringin; GMG) by myrosinase (β-thioglucoside glucohydrolase; E.C. 3.2.1.147) catalyzed hydrolysis. GMG is an uncommon member of the glucosinolate group as it presents a unique characteristic consisting in a second glycosidic residue within the side chain. It is a typical glucosinolate found in large amounts in the seeds of Moringa oleifera Lam., the most widely distributed plant of the Moringaceae family. GMG was purified from seed-cake of M. oleifera and was hydrolyzed by myrosinase at neutral pH in order to form the corresponding GMG-ITC. This bioactive phytochemical can play a key role in counteracting the inflammatory response connected to the oxidative-related mechanisms as well as in the control of the neuronal cell death process, preserving spinal cord tissues after injury in mice. Spinal cord trauma was induced in mice by the application of vascular clips (force of 24g) for 1 min., via four-level T5-T8 after laminectomy. In particular, the purpose of this study was to investigate the dynamic changes occurring in the spinal cord after ip treatment with bioactive GMG-ITC produced 15 min before use from myrosinase-catalyzed hydrolysis of GMG (10mg/kg body weight+5 μl Myr mouse/day). The following parameters, such as histological damage, distribution of reticular fibers in connective tissue, nuclear factor (NF)-κB translocation and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) degradation, expression of inducible Nitric Oxide Synthases (iNOS), as well as apoptosis, were evaluated. In conclusion, our results show a protective effect of bioactive GMG-ITC on the secondary damage, following spinal cord injury, through an antioxidant mechanism of neuroprotection. Therefore, the bioactive phytochemical GMG-ITC freshly produced before use by myrosinase

  10. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 expression and inducible nitric oxide synthase by 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera

    PubMed Central

    Park, Eun-Jung; Cheenpracha, Sarot; Chang, Leng Chee; Kondratyuk, Tamara P.; Pezzuto, John M.

    2011-01-01

    Moringa oleifera Lamarack is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential anti-inflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC50 = 0.96 ± 0.23 µM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC50 = 2.86 ± 0.39 µM) and benzyl isothiocyanate (IC50 = 2.08 ± 0.28 µM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB, and subsequent binding to NF-κB cis-acting element, was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating anti-inflammatory or cancer chemopreventive activity. PMID:21774591

  11. Inhibition of Mitochondrial Respiration and Rapid Depletion of Mitochondrial Glutathione by β-Phenethyl Isothiocyanate: Mechanisms for Anti-Leukemia Activity

    PubMed Central

    Chen, Gang; Chen, Zhao; Hu, Yumin

    2011-01-01

    Abstract Aims β-Phenethyl isothiocyanate (PEITC) is a natural product with potent anticancer activity against human leukemia cells including drug-resistant primary leukemia cells from patients. This study aimed at investigating the key mechanisms that contribute to the potent anti-leukemia activity of PEITC and at evaluating its therapeutic potential. Results Our study showed that PEITC caused a rapid depletion of mitochondrial glutathione (GSH) and a significant elevation of reactive oxygen species (ROS) and nitric oxide, and induced a disruption of the mitochondrial electron transport complex I manifested by an early degradation of NADH dehydrogenase Fe-S protein-3 and a significant suppression of mitochondrial respiration. Using biochemical and pharmacological approaches, we further showed that inhibition of mitochondrial respiration alone by rotenone caused only a moderate cytotoxicity in leukemia cells, whereas a combination of respiratory inhibition and an ROS-generating agent exhibited a synergistic effect against leukemia and lymphoma cells. Innovation and Conclusion Although PEITC is a reactive compound and might have multiple mechanisms of action, we showed that a rapid depletion of GSH and inhibition of mitochondrial respiration are two important early events that induced synergistic cytotoxicity in leukemia cells. These findings not only suggest that PEITC is a promising compound for potential use in leukemia treatment, but also provide a basis for developing new therapeutic strategies to effectively kill leukemia cells by using a novel combination to modulate ROS and inhibit mitochondrial respiration. Antioxid. Redox Signal. 15, 2911–2921. PMID:21827296

  12. Identification of an Isothiocyanate on the HypEF Complex Suggests a Route for Efficient Cyanyl-Group Channeling during [NiFe]-Hydrogenase Cofactor Generation.

    PubMed

    Stripp, Sven T; Lindenstrauss, Ute; Sawers, R Gary; Soboh, Basem

    2015-01-01

    [NiFe]-hydrogenases catalyze uptake and evolution of H2 in a wide range of microorganisms. The enzyme is characterized by an inorganic nickel/ iron cofactor, the latter of which carries carbon monoxide and cyanide ligands. In vivo generation of these ligands requires a number of auxiliary proteins, the so-called Hyp family. Initially, HypF binds and activates the precursor metabolite carbamoyl phosphate. HypF catalyzes removal of phosphate and transfers the carbamate group to HypE. In an ATP-dependent condensation reaction, the C-terminal cysteinyl residue of HypE is modified to what has been interpreted as thiocyanate. This group is the direct precursor of the cyanide ligands of the [NiFe]-hydrogenase active site cofactor. We present a FT-IR analysis of HypE and HypF as isolated from E. coli. We follow the HypF-catalyzed cyanation of HypE in vitro and screen for the influence of carbamoyl phosphate and ATP. To elucidate on the differences between HypE and the HypEF complex, spectro-electrochemistry was used to map the vibrational Stark effect of naturally cyanated HypE. The IR signature of HypE could ultimately be assigned to isothiocyanate (-N=C=S) rather than thiocyanate (-S-C≡N). This has important implications for cyanyl-group channeling during [NiFe]-hydrogenase cofactor generation. PMID:26186649

  13. Administration of 4-(α-L-rhamnosyloxy)-benzyl isothiocyanate delays disease phenotype in SOD1(G93A) rats: a transgenic model of amyotrophic lateral sclerosis.

    PubMed

    Galuppo, Maria; Giacoppo, Sabrina; Iori, Renato; De Nicola, Gina Rosalinda; Bramanti, Placido; Mazzon, Emanuela

    2015-01-01

    4-(α-L-Rhamnosyloxy)-benzyl glucosinolate (glucomoringin, GMG) is a compound found in Moringa oleifera seeds. Myrosinase-catalyzed hydrolysis at neutral pH of GMG releases the biologically active compound 4-(α-L-rhamnosyloxy)-benzyl isothiocyanate (GMG-ITC). The present study was designed to test the potential therapeutic effectiveness of GMG-ITC to counteract the amyotrophic lateral sclerosis (ALS) using SOD1tg rats, which physiologically develops SOD1(G93A) at about 16 weeks of life, and can be considered a genetic model of disease. Rats were treated once a day with GMG (10 mg/Kg) bioactivated with myrosinase (20 µL/rat) via intraperitoneal (i.p.) injection for two weeks before disease onset and the treatment was prolonged for further two weeks before the sacrifice. Immune-inflammatory markers as well as apoptotic pathway were investigated to establish whether GMG-ITC could represent a new promising tool in clinical practice to prevent ALS. Achieved data display clear differences in molecular and biological profiles between treated and untreated SOD1tg rats leading to guessing that GMG-ITC can interfere with the pathophysiological mechanisms at the basis of ALS development. Therefore, GMG-ITC produced from myrosinase-catalyzed hydrolysis of pure GMG could be a candidate for further studies aimed to assess its possible use in clinical practice for the prevention or to slow down this disease. PMID:26075221

  14. A Novel Ratiometric Probe Based on Nitrogen-Doped Carbon Dots and Rhodamine B Isothiocyanate for Detection of Fe3+ in Aqueous Solution

    PubMed Central

    Liu, Lin; Chen, Lu; Liang, Jiangong; Liu, Lingzhi; Han, Heyou

    2016-01-01

    A ratiometric probe for determining ferric ions (Fe3+) was developed based on nitrogen-doped carbon dots (CDs) and rhodamine B isothiocyanate (RhB), which was then applied to selective detection of Fe3+ in PB buffer solution, lake water, and tap water. In the sensing system, FePO4 particles deposit on the surface of CDs, resulting in larger particles and surface passivation. The fluorescence (FL) intensity and the light scattering (LS) intensity of CDs can be gradually enhanced with the addition of Fe3+, while the FL intensity of RhB remains constant. The ratiometric light intensity of CDs LS and RhB FL was quantitatively in response to Fe3+ concentrations in a dynamic range of 0.01–1.2 μM, with a detection limit as low as 6 nM. Other metal ions, such as Fe2+, Al3+, K+, Ca2+, and Co2+, had no significant interference on the determination of Fe3+. Compared with traditional probes based on single-signal probe for Fe3+ detection, this dual-signal-based ratiometric probe exhibits a more reliable and stable response on target concentration and is characterized by easy operation in a simple fluorescence spectrophotometer. PMID:27119042

  15. Upregulation of Multidrug Resistance-Associated Protein 1 by Allyl Isothiocyanate in Human Bronchial Epithelial Cell: Involvement of c-Jun N-Terminal Kinase Signaling Pathway

    PubMed Central

    Wang, Shujun; Wang, Shanshan; Wang, Chenyin; Chen, Yajun; Li, Jie; Wang, Xueqi; Wang, Dianlei; Li, Zegeng; Peng, Zhaoliang; Fan, Ling

    2015-01-01

    Multidrug resistance-associated protein 1 (MRP1) plays a protective role in the etiology and progression of chronic obstructive pulmonary disease (COPD) which results from oxidative stress and inflammation of lung injury. The lower functional MRP1 activity is related to COPD development. Our previous study showed that Allyl isothiocyanate (AITC) induced the expression and activity of MRP1 in a dose-dependent manner. However, which signaling pathway contributes to the upregulation of MRP1 by AITC is unclear. In this study, signaling pathway specific inhibitors were used to examine the mechanism of AITC. We found that JNK inhibitor SP600125 treatment decreased MRP1 mRNA expression in 16HBE14o- cells. But the ERK inhibitor U0126 or PI3K/Akt inhibitor LY294002 produced no obvious effect. The AITC-induced increase of MRP1 mRNA expression was abolished by cotreatment of SP600125, while it was not obviously affected by U0126 or LY294002. Furthermore, AITC acivates the JNK signaling pathway in 16HBE14o- cells. Finally, we found that JNK pathway mediated the upregulation of AITC-induced expression and function of MRP1. Taken together, our results indicated that AITC increased the expression and the activity of MRP1 via a JNK-dependent pathway. ERK and PI3K signaling pathway were not involved in the expression of MRP1 mRNA. PMID:26273426

  16. Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP) Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest

    PubMed Central

    Cho, Han Jin; Lim, Do Young; Kwon, Gyoo Taik; Kim, Ji Hee; Huang, Zunnan; Song, Hyerim; Oh, Yoon Sin; Kang, Young-Hee; Lee, Ki Won; Dong, Zigang; Park, Jung Han Yoon

    2016-01-01

    Benzyl isothiocyanate (BITC) is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC) was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker), cyclin A, cyclin D1, and cyclin-dependent kinase (CDK)2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC. PMID:26907265

  17. Raman Imaging Spectroscopy as a Tool To Investigate the Cell Damage on Aspergillus ochraceus Caused by an Antimicrobial Packaging Containing Benzyl Isothiocyanate.

    PubMed

    Clemente, Isabel; Aznar, Margarita; Nerín, Cristina

    2016-05-01

    Raman imaging spectroscopy is a nondestructive analytical method that can be a useful tool to obtain detailed information about the molecular composition and morphology of biological samples. Its high spatial resolution was used to collect spectra of Aspergillus ochraceus, a mold producer of ochratoxin A (OTA), in order to investigate the cell damage caused on it by the action of the antimicrobial benzyl isothiocyanate (BITC). The study was performed in both direct contact and vapor phase, in order to check the use of BITC as active agent in food packaging material. The results showed that there were morphologic alteration and a characteristic Raman spectrum on spore and hyphae exposed to BITC. BITC was accumulated in the mold cells where it caused an enormous amount of alterations in cellular components (lipids, proteins, saccharides, amino acids...) and cellular functions (cell cycle, respiration, metabolism, transcription of genes, fluidity of the cellular wall). All these structural, composition, and metabolic changes will affect the production of OTA. Pattern recognition with chemometrics using principal component analysis (PCA) demonstrated an excellent separation between control and BITC treated samples, both in spores and hyphae. PCA results also showed two different affection levels when samples were exposed to BITC in the vapor phase. PMID:27032001

  18. Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential.

    PubMed

    Xiao, Dong; Lew, Karen L; Zeng, Yan; Xiao, Hui; Marynowski, Stanley W; Dhir, Rajiv; Singh, Shivendra V

    2006-11-01

    The present study was undertaken to gain insights into the molecular mechanism of apoptosis induction by phenethyl isothiocyanate (PEITC), which is a cancer chemopreventive constituent of cruciferous vegetables, using PC-3 human prostate cancer cells as a model. The PEITC-induced cell death in PC-3 cells was associated with disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria to the cytosol and generation of reactive oxygen species (ROS), which were blocked in the presence of a combined mimetic of superoxide dismutase and catalase (Euk134). Ectopic expression of Bcl-xL, whose protein level is reduced markedly on treatment of PC-3 cells with PEITC, conferred partial protection against PEITC-induced apoptosis only at higher drug concentrations (>10 microM). Administration of 12 micromol PEITC/day (Monday through Friday) by oral gavage significantly retarded growth of PC-3 xenografts in athymic mice. For instance, 31 days after the initiation of PEITC administration, the average tumor volume in control mice (721 +/- 153 mm3) was approximately 2-fold higher compared with mice receiving 12 micromol PEITC/day. The PEITC-mediated inhibition of PC-3 xenograft growth was associated with induction of Bax and Bid proteins. In conclusion, the present study indicates that the PEITC-induced apoptosis in PC-3 cells is mediated by ROS-dependent disruption of the mitochondrial membrane potential and regulated by Bax and Bid. PMID:16774948

  19. New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One-Step Labeling and PET Imaging with 68Ga3+

    PubMed Central

    2015-01-01

    Two new bifunctional tris(hydroxypyridinone) (THP) chelators designed specifically for rapid labeling with 68Ga have been synthesized, each with pendant isothiocyanate groups and three 1,6-dimethyl-3-hydroxypyridin-4-one groups. Both compounds have been conjugated with the primary amine group of a cyclic integrin targeting peptide, RGD. Each conjugate can be radiolabeled and formulated by treatment with generator-produced 68Ga3+ in over 95% radiochemical yield under ambient conditions in less than 5 min, with specific activities of 60–80 MBq nmol–1. Competitive binding assays and in vivo biodistribution in mice bearing U87MG tumors demonstrate that the new 68Ga3+-labeled THP peptide conjugates retain affinity for the αvβ3 integrin receptor, clear within 1–2 h from circulation, and undergo receptor-mediated tumor uptake in vivo. We conclude that bifunctional THP chelators can be used for simple, efficient labeling of 68Ga biomolecules under mild conditions suitable for peptides and proteins. PMID:26286399

  20. Administration of 4-(α-L-Rhamnosyloxy)-benzyl Isothiocyanate Delays Disease Phenotype in SOD1G93A Rats: A Transgenic Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    De Nicola, Gina Rosalinda; Mazzon, Emanuela

    2015-01-01

    4-(α-L-Rhamnosyloxy)-benzyl glucosinolate (glucomoringin, GMG) is a compound found in Moringa oleifera seeds. Myrosinase-catalyzed hydrolysis at neutral pH of GMG releases the biologically active compound 4-(α-L-rhamnosyloxy)-benzyl isothiocyanate (GMG-ITC). The present study was designed to test the potential therapeutic effectiveness of GMG-ITC to counteract the amyotrophic lateral sclerosis (ALS) using SOD1tg rats, which physiologically develops SOD1G93A at about 16 weeks of life, and can be considered a genetic model of disease. Rats were treated once a day with GMG (10 mg/Kg) bioactivated with myrosinase (20 µL/rat) via intraperitoneal (i.p.) injection for two weeks before disease onset and the treatment was prolonged for further two weeks before the sacrifice. Immune-inflammatory markers as well as apoptotic pathway were investigated to establish whether GMG-ITC could represent a new promising tool in clinical practice to prevent ALS. Achieved data display clear differences in molecular and biological profiles between treated and untreated SOD1tg rats leading to guessing that GMG-ITC can interfere with the pathophysiological mechanisms at the basis of ALS development. Therefore, GMG-ITC produced from myrosinase-catalyzed hydrolysis of pure GMG could be a candidate for further studies aimed to assess its possible use in clinical practice for the prevention or to slow down this disease. PMID:26075221

  1. Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP) Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest.

    PubMed

    Cho, Han Jin; Lim, Do Young; Kwon, Gyoo Taik; Kim, Ji Hee; Huang, Zunnan; Song, Hyerim; Oh, Yoon Sin; Kang, Young-Hee; Lee, Ki Won; Dong, Zigang; Park, Jung Han Yoon

    2016-01-01

    Benzyl isothiocyanate (BITC) is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC) was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker), cyclin A, cyclin D1, and cyclin-dependent kinase (CDK)2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC. PMID:26907265

  2. Simultaneous determination of individual isothiocyanates in plant samples by HPLC-DAD-MS following SPE and derivatization with N-acetyl-l-cysteine.

    PubMed

    Pilipczuk, Tadeusz; Kusznierewicz, Barbara; Chmiel, Tomasz; Przychodzeń, Witold; Bartoszek, Agnieszka

    2017-01-01

    The procedure for the isothiocyanates (ITCs) determination that involves derivatization with N-acetyl-l-cysteine (NAC) and separation by HPLC was developed. Prior to derivatization, plant ITCs were isolated and purified using solid-phase extraction (SPE). The optimum conditions of derivatization are: 500μL of isopropanolic eluate obtained by SPE combined with 500μL of derivatizing reagent (0.2M NAC and 0.2M NaHCO3 in water) and reaction time of 1h at 50°C. The formed dithiocarbamates are directly analyzed by HPLC coupled with diode array detector and mass spectrometer if required. The method was validated for nine common natural ITCs. Calibration curves were linear (R(2)⩾0.991) within a wide range of concentrations and limits of detection were below 4.9nmol/mL. The recoveries were in the range of 83.3-103.7%, with relative standard deviations <5.4%. The developed method has been successfully applied to determine ITCs in broccoli, white cabbage, garden cress, radish, horseradish and papaya. PMID:27507514

  3. Identification of an Isothiocyanate on the HypEF Complex Suggests a Route for Efficient Cyanyl–Group Channeling during [NiFe]–Hydrogenase Cofactor Generation

    PubMed Central

    Stripp, Sven T.; Lindenstrauss, Ute; Sawers, R. Gary; Soboh, Basem

    2015-01-01

    [NiFe]–hydrogenases catalyze uptake and evolution of H2 in a wide range of microorganisms. The enzyme is characterized by an inorganic nickel/ iron cofactor, the latter of which carries carbon monoxide and cyanide ligands. In vivo generation of these ligands requires a number of auxiliary proteins, the so–called Hyp family. Initially, HypF binds and activates the precursor metabolite carbamoyl phosphate. HypF catalyzes removal of phosphate and transfers the carbamate group to HypE. In an ATP–dependent condensation reaction, the C–terminal cysteinyl residue of HypE is modified to what has been interpreted as thiocyanate. This group is the direct precursor of the cyanide ligands of the [NiFe]–hydrogenase active site cofactor. We present a FT–IR analysis of HypE and HypF as isolated from E. coli. We follow the HypF–catalyzed cyanation of HypE in vitro and screen for the influence of carbamoyl phosphate and ATP. To elucidate on the differences between HypE and the HypEF complex, spectro–electrochemistry was used to map the vibrational Stark effect of naturally cyanated HypE. The IR signature of HypE could ultimately be assigned to isothiocyanate (–N=C=S) rather than thiocyanate (–S–C≡N). This has important implications for cyanyl–group channeling during [NiFe]–hydrogenase cofactor generation. PMID:26186649

  4. A mode of action of glucosinolate-derived isothiocyanates: Detoxification depletes glutathione and cysteine levels with ramifications on protein metabolism in Spodoptera littoralis.

    PubMed

    Jeschke, Verena; Gershenzon, Jonathan; Vassão, Daniel Giddings

    2016-04-01

    Glucosinolates are activated plant defenses common in the order Brassicales that release isothiocyanates (ITCs) and other hydrolysis products upon tissue damage. The reactive ITCs are toxic to insects resulting in reduced growth, delayed development and occasionally mortality. Generalist lepidopteran larvae often detoxify ingested ITCs via conjugation to glutathione (GSH) and survive on low glucosinolate diets, but it is not known how this process influences other aspects of metabolism. We investigated the impact of the aliphatic 4-methylsulfinylbutyl-ITC (4msob-ITC, sulforaphane) on the metabolism of Spodoptera littoralis larvae, which suffer a significant growth decline on 4msob-ITC-containing diets while excreting ITC-glutathione conjugates and their derivatives in the frass. The most striking effects were a decrease of GSH in midgut tissue and hemolymph due to losses by conjugation to ITC during detoxification, and a decline of the GSH biosynthetic precursor cysteine. Protein content was likewise reduced by ITC treatment suggesting that protein is actively catabolized in an attempt to supply cysteine for GSH biosynthesis. The negative growth and protein effects were relieved by dietary supplementation with cystine. Other consequences of protein breakdown included deamination of amino acids with increased excretion of uric acid and elevated lipid content. Thus metabolic detoxification of ITCs provokes a cascade of negative effects on insects that result in reduced fitness. PMID:26855197

  5. Sulforaphane, a Dietary Isothiocyanate, Induces G₂/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association.

    PubMed

    Cheng, Ya-Min; Tsai, Ching-Chou; Hsu, Yi-Chiang

    2016-01-01

    Globally, cervical cancer is the most common malignancy affecting women. The main treatment methods for this type of cancer include conization or hysterectomy procedures. Sulforaphane (SFN) is a natural, compound-based drug derived from dietary isothiocyanates which has previously been shown to possess potent anti-tumor and chemopreventive effects against several types of cancer. The present study investigated the effects of SFN on anti-proliferation and G₂/M phase cell cycle arrest in cervical cancer cell lines (Cx, CxWJ, and HeLa). We found that cytotoxicity is associated with an accumulation of cells in the G₂/M phases of the cell-cycle. Treatment with SFN led to cell cycle arrest as well as the down-regulation of Cyclin B1 expression, but not of CDC2 expression. In addition, the effects of GADD45β gene activation in cell cycle arrest increase proportionally with the dose of SFN; however, mitotic delay and the inhibition of proliferation both depend on the dosage of SFN used to treat cancer cells. These results indicate that SFN may delay the development of cancer by arresting cell growth in the G₂/M phase via down-regulation of Cyclin B1 gene expression, dissociation of the cyclin B1/CDC2 complex, and up-regulation of GADD45β proteins. PMID:27626412

  6. Measurement of acetol in serum.

    PubMed

    Casazza, J P; Fu, J L

    1985-08-01

    A method for the derivatization of acetol (1-hydroxyacetone) with 2,4-dinitrophenylhydrazine (DNPH) and for the measurement of the acetol dinitrophenylhydrazone derivative (acetol-DNPH) by high-performance liquid chromatography is presented. The chromatographic separation described here resulted in baseline resolution of the acetol-DNPH peak. Peak integration was proportional to serum acetol concentration over a 5- to 500-nmol/ml range. No other method for the determination of acetol in serum currently exists. Serum from rats in diabetic ketoacidosis was found to contain 11.2 +/- 1.1 nmol acetol/ml serum (N = 3). Serum from a 21-day-fasted human contained 16 nmol/ml acetol. Serum from rats maintained on drinking water containing 1% acetone (v:v) for 6 days contained 152 +/- 31 nmol/ml acetol (N = 5). The presence of acetol in serum under conditions where acetoacetate and acetone are chronically elevated suggests that acetoacetate may be converted to glucose through the conversion of acetone to acetol and L-1,2-propanediol. PMID:3933378

  7. Identification of cancer chemopreventive isothiocyanates as direct inhibitors of the arylamine N-acetyltransferase-dependent acetylation and bioactivation of aromatic amine carcinogens

    PubMed Central

    Duval, Romain; Xu, Ximing; Bui, Linh-Chi; Mathieu, Cécile; Petit, Emile; Cariou, Kevin; Dodd, Robert H.; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-01-01

    Aromatic amines (AAs) are chemicals of industrial, pharmacological and environmental relevance. Certain AAs, such as 4-aminobiphenyl (4-ABP), are human carcinogens that require enzymatic metabolic activation to reactive chemicals to form genotoxic DNA adducts. Arylamine N-acetyltransferases (NAT) are xenobiotic metabolizing enzymes (XME) that play a major role in this carcinogenic bioactivation process. Isothiocyanates (ITCs), including benzyl-ITC (BITC) and phenethyl-ITC (PEITC), are phytochemicals known to have chemopreventive activity against several aromatic carcinogens. In particular, ITCs have been shown to modify the bioactivation and subsequent mutagenicity of carcinogenic AA chemicals such as 4-ABP. However, the molecular and biochemical mechanisms by which these phytochemicals may modulate AA carcinogens bioactivation and AA-DNA damage remains poorly understood. This manuscript provides evidence indicating that ITCs can decrease the metabolic activation of carcinogenic AAs via the irreversible inhibition of NAT enzymes and subsequent alteration of the acetylation of AAs. We demonstrate that BITC and PEITC react with NAT1 and inhibit readily its acetyltransferase activity (ki = 200 M−1.s−1 and 66 M−1.s−1 for BITC and PEITC, respectively). Chemical labeling, docking approaches and substrate protection assays indicated that inhibition of the acetylation of AAs by NAT1 was due to the chemical modification of the enzyme active site cysteine. Moreover, analyses of AAs acetylation and DNA adducts in cells showed that BITC was able to modulate the endogenous acetylation and bioactivation of 4-ABP. In conclusion, we show that direct inhibition of NAT enzymes may be an important mechanism by which ITCs exert their chemopreventive activity towards AA chemicals. PMID:26840026

  8. Control of off-gassing rates of methyl isothiocyanate from the application of metam-sodium by chemigation and shank injection

    NASA Astrophysics Data System (ADS)

    Sullivan, D. A.; Holdsworth, M. T.; Hlinka, D. J.

    Fumigants are used to enhance the yield and quality of agricultural produce, which is critical to the maintenance of the production levels of carrots, potatoes, tomatoes, strawberries, melons, and many other crops grown in the US and throughout much of the world. With the worldwide phase-out of methyl bromide in progress, the continued availability of the remaining alternatives, such as metam-sodium, 1,3-dichloropropene, and chloropicrin, is becoming increasingly important. Metam-sodium has been used for over 40 years and is the second most widely used fumigant in the United States. Reduction in off-gassing rates of fumigants can promote health and safety benefits and an increased dose in the treatment zone, thereby increasing the potential efficacy of these products. On this basis, there is a need to evaluate off-gassing rates as a function of application and sealing methods. This paper summarizes recent research into the volatilization of the principal transformation product of metam-sodium, i.e., methyl isothiocyanate (MITC), into the atmosphere as a function of application and sealing methods. Seven field studies were conducted from 1999-2001 to evaluate the off-gassing rates of MITC from applications of metam-sodium by shank injection and chemigation using two different water sealing methods, i.e., standard water sealing and intermittent water sealing. MITC is slightly soluble in water. Irrigation of a field following an application helps to retain the compound in the soil, minimizing off-gassing while increasing the dose to the target pests. Intermittent water sealing involves applying water on an intermittent basis to minimize off-gassing rates during nighttime periods when relatively poor atmospheric dispersion conditions often occur. Research conducted by the Metam-Sodium TASK Force indicates that intermittent water sealing significantly reduces off-gassing rates both for shank injection and chemigation applications when compared with standard water

  9. MiR-135a and MRP1 play pivotal roles in the selective lethality of phenethyl isothiocyanate to malignant glioma cells

    PubMed Central

    Zhang, Taolan; Shao, Yingying; Chu, Tang-Yuan; Huang, Hsuan-Shun; Liou, Yu-Ligh; Li, Qing; Zhou, Honghao

    2016-01-01

    Amounting evidence has demonstrated that phenethyl isothiocyanate (PEITC) is a strong inducer of reactive oxygen species (ROS) and functions as a selective killer to various human cancer cells. However, it remains obscure whether PEITC has potential selective lethality to malignant glioma cells. Thus in this study, we performed multiple analysis such as MTT assay, Hoechst 33258 staining, flow cytometry, foci formation, RT-PCR, Western blot, and transfection to explore the selective lethality of PEITC to malignant glioma cells and the underlying mechanisms. We found that PEITC induced a selective apoptosis and suppressed tumorigenicity and migration of malignant glioma cells. Furthermore, we found PEITC significantly induced GSH depletion, ROS production, caspase-9 and caspase-3 activation, and miR-135a upregulation in malignant glioma cells but not in normal cells. Moreover, PEITC activated the miR-135a-mitochondria dependent apoptosis pathway as demonstrated by downregulation of STAT6, SMAD5 and Bcl-xl while upregulation of Bax expression and Cytochrome-C release in malignant glioma cell lines but not in the immortalized human normal glial HEB cells. Correspondingly, the above PEITC-induced activation of the ROS-MiR-135a-Mitochondria dependent apoptosis pathways in malignant glioma was attenuated by pre-transfection with miR-135a inhibitor, pre-treatment with multidrug resistance-associated protein 1 (MRP1) inhibitor Sch B, or combination with glutathione (GSH). These results revealed that PEITC selectively induced apoptosis of malignant glioma cells through MRP1-mediated export of GSH to activate ROS-MiR-135a-Mitochondria dependent apoptosis pathway, suggesting a potential application of PEITC for treating glioma. PMID:27293991

  10. Determination of benzyl isothiocyanate metabolites in human plasma and urine by LC-ESI-MS/MS after ingestion of nasturtium (Tropaeolum majus L.).

    PubMed

    Platz, Stefanie; Kühn, Carla; Schiess, Sonja; Schreiner, Monika; Mewis, Inga; Kemper, Margrit; Pfeiffer, Andreas; Rohn, Sascha

    2013-09-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to determine the concentration of benzyl isothiocyanate (BITC) metabolites in human plasma and urine. In this study, the following BITC metabolites have been considered: BITC-glutathione, BITC-cysteinylglycine, BITC-cysteine, and BITC-N-acetyl-L-cysteine. The assay development included: (1) synthesis of BITC conjugates acting as reference substances; (2) sample preparation based on protein precipitation and solid-phase extraction; (3) development of a quantitative LC-MS/MS method working in the multiple-reaction monitoring mode; (4) validation of the assay; (5) investigation of the stability and the reactivity of BITC conjugates in vitro; (6) application of the method to samples from a human intervention study. The lower limits of quantification were in the range of 21-183 nM depending on analyte and matrix, whereas the average recovery rates from spiked plasma and urine were approximately 85 and 75 %, respectively. BITC conjugates were found to be not stable in alkaline buffered solutions. After consumption of nasturtium, containing 1,000 μM glucotropaeolin, the primary source of BITC, quantifiable levels of BITC-NAC, BITC-Cys, and BITC-CysGly were found in human urine samples. Maximum levels in urine were determined 4 h after the ingestion of nasturtium. With regard to the human plasma samples, all metabolites were determined including individual distributions. The work presented provides a validated LC-MS/MS method for the determination of BITC metabolites and its successful application for the analysis of samples collected in a human intervention study. PMID:23852079

  11. Clinical Trial of 2-Phenethyl Isothiocyanate as an Inhibitor of Metabolic Activation of a Tobacco-Specific Lung Carcinogen in Cigarette Smokers.

    PubMed

    Yuan, Jian-Min; Stepanov, Irina; Murphy, Sharon E; Wang, Renwei; Allen, Sharon; Jensen, Joni; Strayer, Lori; Adams-Haduch, Jennifer; Upadhyaya, Pramod; Le, Chap; Kurzer, Mindy S; Nelson, Heather H; Yu, Mimi C; Hatsukami, Dorothy; Hecht, Stephen S

    2016-05-01

    2-Phenethyl isothiocyanate (PEITC), a natural product found as a conjugate in watercress and other cruciferous vegetables, is an inhibitor of the metabolic activation and lung carcinogenicity of the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in F344 rats and A/J mice. We carried out a clinical trial to determine whether PEITC also inhibits the metabolic activation of NNK in smokers. Cigarette smokers were recruited and asked to smoke cigarettes containing deuterium-labeled [pyridine-D4]NNK for an acclimation period of at least 1 week. Then subjects were randomly assigned to one of two arms: PEITC followed by placebo, or placebo followed by PEITC. During the 1-week treatment period, each subject took PEITC (10 mg in 1 mL of olive oil, 4 times per day). There was a 1-week washout period between the PEITC and placebo periods. The NNK metabolic activation ratio [pyridine-D4]hydroxy acid/total [pyridine-D4]NNAL was measured in urine samples to test the hypothesis that PEITC treatment modified NNK metabolism. Eighty-two smokers completed the study and were included in the analysis. Overall, the NNK metabolic activation ratio was reduced by 7.7% with PEITC treatment (P = 0.023). The results of this trial, while modest in effect size, provide a basis for further investigation of PEITC as an inhibitor of lung carcinogenesis by NNK in smokers. Cancer Prev Res; 9(5); 396-405. ©2016 AACR. PMID:26951845

  12. Control of Salmonella on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized Oriental mustard extract plus EDTA.

    PubMed

    Olaimat, Amin N; Holley, Richard A

    2015-06-01

    Control of Salmonella in poultry is a public health concern as salmonellosis is one of the most common foodborne diseases worldwide. This study aimed to screen the ability of 5 Salmonella serovars to degrade the mustard glucosinolate, sinigrin (by bacterial myrosinase) in Mueller-Hinton broth at 25 °C for 21 d and to reduce Salmonella on fresh chicken breasts by developing an edible 0.2% (w/v) κ-carrageenan/2% (w/v) chitosan-based coating containing Oriental mustard extract, allyl isothiocyanate (AITC), EDTA or their combinations. Individual Salmonella serovars degraded 50.2%-55.9% of the sinigrin present in 21 d. κ-Carrageenan/chitosan-based coatings containing 250 mg Oriental mustard extract/g or 50 μl AITC/g reduced the numbers of Salmonella on chicken breasts 2.3 log10 CFU/g at 21 d at 4 °C. However, when either mustard extract or AITC was combined with 15 mg/g EDTA in κ-carrageenan/chitosan-based coatings, Salmonella numbers were reduced 2.3 log10 CFU/g at 5 d and 3.0 log10 CFU/g at 21 d. Moreover, these treatments reduced numbers of lactic acid bacteria and aerobic bacteria by 2.5-3.3 log10 CFU/g at 21 d. κ-Carrageenan/chitosan coatings containing either 50 μl AITC/g or 250 mg Oriental mustard extract/g plus 15 mg EDTA/g have the potential to reduce Salmonella on raw chicken. PMID:25790995

  13. Identification of cancer chemopreventive isothiocyanates as direct inhibitors of the arylamine N-acetyltransferase-dependent acetylation and bioactivation of aromatic amine carcinogens.

    PubMed

    Duval, Romain; Xu, Ximing; Bui, Linh-Chi; Mathieu, Cécile; Petit, Emile; Cariou, Kevin; Dodd, Robert H; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-02-23

    Aromatic amines (AAs) are chemicals of industrial, pharmacological and environmental relevance. Certain AAs, such as 4-aminobiphenyl (4-ABP), are human carcinogens that require enzymatic metabolic activation to reactive chemicals to form genotoxic DNA adducts. Arylamine N-acetyltransferases (NAT) are xenobiotic metabolizing enzymes (XME) that play a major role in this carcinogenic bioactivation process. Isothiocyanates (ITCs), including benzyl-ITC (BITC) and phenethyl-ITC (PEITC), are phytochemicals known to have chemopreventive activity against several aromatic carcinogens. In particular, ITCs have been shown to modify the bioactivation and subsequent mutagenicity of carcinogenic AA chemicals such as 4-ABP. However, the molecular and biochemical mechanisms by which these phytochemicals may modulate AA carcinogens bioactivation and AA-DNA damage remains poorly understood.This manuscript provides evidence indicating that ITCs can decrease the metabolic activation of carcinogenic AAs via the irreversible inhibition of NAT enzymes and subsequent alteration of the acetylation of AAs. We demonstrate that BITC and PEITC react with NAT1 and inhibit readily its acetyltransferase activity (ki = 200 M-1.s-1 and 66 M-1.s-1 for BITC and PEITC, respectively). Chemical labeling, docking approaches and substrate protection assays indicated that inhibition of the acetylation of AAs by NAT1 was due to the chemical modification of the enzyme active site cysteine. Moreover, analyses of AAs acetylation and DNA adducts in cells showed that BITC was able to modulate the endogenous acetylation and bioactivation of 4-ABP. In conclusion, we show that direct inhibition of NAT enzymes may be an important mechanism by which ITCs exert their chemopreventive activity towards AA chemicals. PMID:26840026

  14. Combined effects of isothiocyanate intake, glutathione S-transferase polymorphisms and risk habits for age of oral squamous cell carcinoma development.

    PubMed

    Karen-Ng, Lee Peng; Marhazlinda, Jamaludin; Rahman, Zainal Arif Abdul; Yang, Yi-Hsin; Jalil, Norma; Cheong, Sok Ching; Zain, Rosnah Binti

    2011-01-01

    Dietary isothiocyanates (ITCs) found in cruciferous vegetables (Brassica spp.) has been reported to reduce cancer risk by inducing phase II conjugating enzymes, in particular glutathione S-transferases (GSTs). This case-control study was aimed at determining associations between dietary ITCs, GSTs polymorphisms and risk habits (cigarette smoking, alcohol drinking and betel-quid chewing) with oral cancer in 115 cases and 116 controls. Information on dietary ITC intake from cruciferous vegetables was collected via a semi-quantitative food frequency questionnaire (FFQ). Peripheral blood lymphocytes were obtained for genotyping of GSTM1, GSTT1 and GSTP1 using PCR multiplex and PCR-RFLP. Chi-square and logistic regression were performed to determine the association of ITC and GSTs polymorphism and risk of oral cancer. When dietary ITC was categorized into high (greater than/equal to median) and low (less than median) intake, there was no significant difference between cases and control group. Logistic regression yielding odd ratios resulted in no significant association between dietary ITC intake, GSTM1, GSTT1 or GSTP1 genotypes with oral cancer risk overall. However, GSTP1 wild-type genotype was associated with later disease onset in women above 55 years of age (p= 0.017). Among the men above 45 years of age, there was clinical significant difference of 17 years in the age of onset of oral cancer between GSTP1 wild-type + low ITC intake and GSTP1 polymorphism + high ITC intake (p= 0.001). Similar conditions were also seen among men above 45 years of age with risk habits like drinking and chewing as the earlier disease onset associated with GSTP1 polymorphism and high ITC intake (p< 0.001). This study suggests that combination effects between dietary ITCs, GSTP1 polymorphism and risk habits may be associated with the risk of oral cancer and modulate the age of disease onset. PMID:21875259

  15. Anti-inflammatory potential of allyl-isothiocyanate--role of Nrf2, NF-(κ) B and microRNA-155.

    PubMed

    Wagner, Anika Eva; Boesch-Saadatmandi, Christine; Dose, Janina; Schultheiss, Gerhard; Rimbach, Gerald

    2012-04-01

    In this study, the underlying mechanisms of the potential anti-inflammatory properties of allyl-isothiocyanate (AITC) were analysed in vitro and in vivo. Murine RAW264.7 macrophages stimulated with lipopolysaccharide (LPS) were supplemented with increasing concentrations of AITC. In addition, C57BL/6 mice (n= 10 per group) were fed a pro-inflammatory high-fat diet and AITC was administered orally via gavage for 7 days. Biomarkers of inflammation were determined both in cultured cells and in mice. AITC significantly decreased tumour necrosis factor α mRNA levels and its secretion in LPS stimulated RAW264.7 macrophages. Furthermore, gene expression of other pro-inflammatory markers including interleukin-1β and inducible nitric oxide synthase were down-regulated following AITC treatment. AITC decreased nuclear p65 protein levels, a subunit of the transcription factor NF-κB. Importantly, our data indicate that AITC significantly attenuated microRNA-155 levels in LPS-stimulated RAW264.7 macrophages in a dose-dependent manner. The anti-inflammatory effects of AITC were accompanied by an increase in Nrf2 nuclear translocation and consequently by an increase of mRNA and protein levels of the Nrf2 target gene heme-oxygenase 1. AITC was slightly less potent than sulforaphane (used as a positive control) in down-regulating inflammation in LPS-stimulated macrophages. A significant increase in nuclear Nrf2 and heme-oxygenase 1 gene expression and only a moderate down-regulation of interleukin-1β and microRNA-155 levels due to AITC was found in mouse liver. Present data suggest that AITC exhibits potent anti-inflammatory activity in cultured macrophages in vitro but has only little anti-inflammatory activity in mice in vivo. PMID:21692985

  16. MiR-135a and MRP1 play pivotal roles in the selective lethality of phenethyl isothiocyanate to malignant glioma cells.

    PubMed

    Zhang, Taolan; Shao, Yingying; Chu, Tang-Yuan; Huang, Hsuan-Shun; Liou, Yu-Ligh; Li, Qing; Zhou, Honghao

    2016-01-01

    Amounting evidence has demonstrated that phenethyl isothiocyanate (PEITC) is a strong inducer of reactive oxygen species (ROS) and functions as a selective killer to various human cancer cells. However, it remains obscure whether PEITC has potential selective lethality to malignant glioma cells. Thus in this study, we performed multiple analysis such as MTT assay, Hoechst 33258 staining, flow cytometry, foci formation, RT-PCR, Western blot, and transfection to explore the selective lethality of PEITC to malignant glioma cells and the underlying mechanisms. We found that PEITC induced a selective apoptosis and suppressed tumorigenicity and migration of malignant glioma cells. Furthermore, we found PEITC significantly induced GSH depletion, ROS production, caspase-9 and caspase-3 activation, and miR-135a upregulation in malignant glioma cells but not in normal cells. Moreover, PEITC activated the miR-135a-mitochondria dependent apoptosis pathway as demonstrated by downregulation of STAT6, SMAD5 and Bcl-xl while upregulation of Bax expression and Cytochrome-C release in malignant glioma cell lines but not in the immortalized human normal glial HEB cells. Correspondingly, the above PEITC-induced activation of the ROS-MiR-135a-Mitochondria dependent apoptosis pathways in malignant glioma was attenuated by pre-transfection with miR-135a inhibitor, pre-treatment with multidrug resistance-associated protein 1 (MRP1) inhibitor Sch B, or combination with glutathione (GSH). These results revealed that PEITC selectively induced apoptosis of malignant glioma cells through MRP1-mediated export of GSH to activate ROS-MiR-135a-Mitochondria dependent apoptosis pathway, suggesting a potential application of PEITC for treating glioma. PMID:27293991

  17. Cytotoxicity, Antioxidant and Apoptosis Studies of Quercetin-3-O Glucoside and 4-(β-D-Glucopyranosyl-1→4-α-L-Rhamnopyranosyloxy)-Benzyl Isothiocyanate from Moringa oleifera.

    PubMed

    Maiyo, Fiona C; Moodley, Roshila; Singh, Moganavelli

    2016-01-01

    Moringa oleifera, from the family Moringaceae, is used as a source of vegetable and herbal medicine and in the treatment of various cancers in many African countries, including Kenya. The present study involved the phytochemical analyses of the crude extracts of M.oleifera and biological activities (antioxidant, cytotoxicity and induction of apoptosis in-vitro) of selected isolated compounds. The compounds isolated from the leaves and seeds of the plant were quercetin-3-O-glucoside (1), 4-(β-D-glucopyranosyl-1→4-α-L-rhamnopyranosyloxy)-benzyl isothiocyanate (2), lutein (3), and sitosterol (4). Antioxidant activity of compound 1 was significant when compared to that of the control, while compound 2 showed moderate activity. The cytotoxicity of compounds 1 and 2 were tested in three cell lines, viz. liver hepatocellular carcinoma (HepG2), colon carcinoma (Caco-2) and a non-cancer cell line Human Embryonic Kidney (HEK293), using the MTT cell viability assay and compared against a standard anticancer drug, 5-fluorouracil. Apoptosis studies were carried out using the acridine orange/ethidium bromide dual staining method. The isolated compounds showed selective in vitro cytotoxic and apoptotic activity against human cancer and non-cancer cell lines, respectively. Compound 1 showed significant cytotoxicity against the Caco-2 cell line with an IC50 of 79 μg mL(-1) and moderate cytotoxicity against the HepG2 cell line with an IC50 of 150 μg mL(-1), while compound 2 showed significant cytotoxicity against the Caco- 2 and HepG2 cell lines with an IC50 of 45 μg mL(-1) and 60 μg mL(-1), respectively. Comparatively both compounds showed much lower cytotoxicity against the HEK293 cell line with IC50 values of 186 μg mL(-1) and 224 μg mL(-1), respectively. PMID:26428271

  18. Unexpected side products in the conjugation of an amine-derivatized morpholino oligomer with p-isothiocyanate benzyl DTPA and their removal.

    PubMed

    Liu, Guozheng; Dou, Shuping; Liu, Yuxia; Liang, Minmin; Chen, Ling; Cheng, Dengfeng; Greiner, Dale; Rusckowski, Mary; Hnatowich, Donald J

    2011-02-01

    In connection with pretargeting, an amine-derivatized morpholino phosphorodiamidate oligomer (NH(2)-cMORF) was conjugated conventionally with p-isothiocyanate benzyl-DTPA (p-SCN-Bn-DTPA). However, after (111)In radiolabeling, unexpected label instability was observed. To understand this instability, the NH(2)-cMORF and, as control, the native cMORF without the amine were conjugated in the conventional manner. Surprisingly, the (111)In labeling of the native cMORF conjugate was equally effective as that of the NH(2)-cMORF conjugate (>95%) despite the absence of the amine group. Furthermore, heating the radiolabeled NH(2)-cMORF and native cMORF conjugates resulted in a 35% loss and a complete loss of the label, respectively. Since the (111)In labeled DTPA is known to be stable, the instability in both cases must be due to some unstable association of DTPA to the cMORF, presumably unstable association to some endogenous sites in cMORF. Based on this assumption, a postconjugation-prepurification heating step was introduced, and labeling efficiency and stability were again investigated. By introducing the heating step, the side products were dissociated, and after purification and labeling, the NH(2)-cMORF conjugate provided a stable label and high labeling efficiency with no need for postlabeling purification. The biodistribution of this radiolabeled conjugate in normal mice showed significantly lower backgrounds compared with the labeled unstable native cMORF conjugate. In conclusion, the conventional conjugation procedure to attach the p-SCN-Bn-DTPA to NH(2)-cMORF resulted in side product(s) that were responsible for the (111)In label instability. Adding a postconjugation-prepurification heating step dissociated the side products, improved the label stability and lowered tissue backgrounds in mice. PMID:21315270

  19. Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells.

    PubMed

    Kasukabe, Takashi; Honma, Yoshio; Okabe-Kado, Junko; Higuchi, Yusuke; Kato, Nobuo; Kumakura, Shunichi

    2016-08-01

    The treatment of pancreatic cancer, one of the most aggressive gastrointestinal tract malignancies, with current chemotherapeutic drugs has had limited success due to its chemoresistance and poor prognosis. Therefore, the development of new drugs or effective combination therapies is urgently needed. Cotylenin A (CN-A) (a plant growth regulator) is a potent inducer of differentiation in myeloid leukemia cells and exhibits potent antitumor activities in several cancer cell lines. In the present study, we demonstrated that CN-A and phenethyl isothiocyanate (PEITC), an inducer of reactive oxygen species (ROS) and a dietary anticarcinogenic compound, synergistically inhibited the proliferation of MIAPaCa-2, PANC-1 and gemcitabine-resistant PANC-1 cells. A combined treatment with CN-A and PEITC also effectively inhibited the anchorage-independent growth of these cancer cells. The combined treatment with CN-A and PEITC strongly induced cell death within 1 day at concentrations at which CN-A or PEITC alone did not affect cell viability. A combined treatment with synthetic CN-A derivatives (ISIR-005 and ISIR-042) or fusicoccin J (CN-A-related natural product) and PEITC did not have synergistic effects on cell death. The combined treatment with CN-A and PEITC synergistically induced the generation of ROS. Antioxidants (N-acetylcysteine and trolox), ferroptosis inhibitors (ferrostatin-1 and liproxstatin), and the lysosomal iron chelator deferoxamine canceled the synergistic cell death. Apoptosis inhibitors (Z-VAD-FMK and Q-VD-OPH) and the necrosis inhibitor necrostatin-1s did not inhibit synergistic cell death. Autophagy inhibitors (3-metyladenine and chloroquine) partially prevented cell death. These results show that synergistic cell death induced by the combined treatment with CN-A and PEITC is mainly due to the induction of ferroptosis. Therefore, the combination of CN-A and PEITC has potential as a novel therapeutic strategy against pancreatic cancer. PMID:27375275

  20. Active packaging of fresh chicken breast, with allyl isothiocyanate (AITC) in combination with modified atmosphere packaging (MAP) to control the growth of pathogens.

    PubMed

    Shin, Joongmin; Harte, Bruce; Ryser, Elliot; Selke, Susan

    2010-03-01

    Listeria monocytogenes and Salmonella typhimurium are major bacterial pathogens associated with poultry products. Ally isothiocyanate (AITC), a natural antimicrobial compound, is reportedly effective against these pathogenic organisms. A device was designed for the controlled release of AITC with modified atmosphere packaging (MAP), and then evaluated for its ability to control the growth of L. monocytogenes and S. typhimurium on raw chicken breast during refrigerated storage. In order to obtain controlled release during the test period, a glass vial was filled with AITC and triglyceride. It was then sealed using high-density polyethylene film. The release of AITC was controlled by the concentration (mole fraction) of AITC in the triglyceride and by the AITC vapor permeability through the film. The fresh chicken samples were inoculated with one or the other of the pathogens at 10(4) CFU/g, and the packages (with and without AITC-controlled release device) were flushed with ambient air or 30% CO(2)/70% N(2) before sealing, and then stored at 4 degrees C for up to 21 d. The maximum reduction in MAP plus AITC (compared to MAP alone) was 0.77 log CFU/g for L. monocytogenes and 1.3 log CFU/g for S. typhimurium. The color of the chicken breast meat was affected by the concentration of AITC. Overall, a release rate of 0.6 microg/h of AITC was found to not affect the color, whereas at 1.2 microg/h of AITC the surface of the chicken was discolored. PMID:20492243

  1. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    SciTech Connect

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta; Watanabe, Tatsuo; Imai, Yasuyuki

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  2. Serum albumin: touchstone or totem?

    PubMed

    Margarson, M P; Soni, N

    1998-08-01

    A decrease in serum albumin concentrations is an almost inevitable finding in disease states, and is primarily mediated in the acute phase by alterations in vascular permeability and redistribution. This change is not disease specific but marked changes that persist are generally associated with a poorer prognosis. Critical appraisal of long-standing practices and the availability of alternative colloid solutions have led to a reduction in albumin replacement therapy, and a widespread tolerance of lower albumin concentrations in patients. The factors determining serum albumin concentrations, their measurement and the implications of hypoalbuminaemia are reviewed. The clinical value of serum albumin measurement is discussed. PMID:9797524

  3. Serum Uric Acid in Smokers

    PubMed Central

    Hanna, Bassam E.; Hamed, Jamal M.; Touhala, Luma M.

    2008-01-01

    Objectives To demonstrate the possible effect of smoking on serum uric acid. Methods Subjects enrolled in study were divided into two groups; nonsmokers and smokers, each with 60 male volunteers of the same social class and dietary habit without history of alcohol consumption, diabetes mellitus, hyperuricemia and gout, renal, joint, lung or heart diseases. Fasting blood and random urine samples were obtained from both groups for measurement of uric acid and creatinine. Calculation of both urine uric acid/urine creatinine ratio and fraction excretion of uric acid were done. The results were statistically evaluated by standard statistical methods. Results No significant differences in the age, serum creatinine, spot urine uric acid/urine creatinine ratio and fraction excretion of uric acid between the two groups, serum uric acid was significantly lower in smokers. In smokers there was significant negative correlation of smoking status (average number of cigarette smoked/day, duration of smoking and cumulative amount of smoking) with serum uric acid. Conclusion After exclusion of other factors affecting uric acid level, the significant low serum uric acid level in smokers was attributed to reduce endogenous production as a result of chronic exposure to cigarette smoke that is a significant source of oxidative stress. As this reduction is proportionate with smoking status and predisposes to cardiovascular disease, it is, therefore, recommended for smokers to stop or reduce smoking and introduce serum uric acid estimation as routine test since its cheap and simple to reflect their antioxidant level. Keywords Smokers; Uric acid; CVD. PMID:22334840

  4. New synthesis of phenyl-isothiocyanate C-functionalised cyclams. Bioconjugation and (64)Cu phenotypic PET imaging studies of multiple myeloma with the te2a derivative.

    PubMed

    Halime, Zakaria; Frindel, Mathieu; Camus, Nathalie; Orain, Pierre-Yves; Lacombe, Marie; Chérel, Michel; Gestin, Jean-François; Faivre-Chauvet, Alain; Tripier, Raphaël

    2015-12-14

    Azamacrocyclic bifunctional chelating agents (BCAs) are essential for the development of radiopharmaceuticals in nuclear medicine and we wish to prove that their bioconjugation by a function present on a carbon atom of the macrocyclic skeleton is a solution of choice to maintain their in vivo inertness. Based on our very recent methodology using a bisaminal template and selective N-alkylation approach, a new synthesis of conjugable C-functionalised teta, te2a and cb-te2a has been developed. These chelators have indeed a growing interest in nuclear medicine for positron emission tomography (PET) and radioimmunotherapy (RIT) where they show in several cases better complexation properties than dota or dota-like macrocycles, especially with (64)Cu or (67)Cu radioisotopes. Chelators are bearing an isothiocyanate grafting function introduced by C-alkylation to avoid as much as possible a critical decrease of their chelating properties. The synthesis is very efficient and yields the targeted ligands, teta-Ph-NCS, te2a-Ph-NCS and cb-te2a-Ph-NCS without fastidious work-up and could be easily extended to other cyclam based-BCAs. The newly synthetised te2a-Ph-NCS has been conjugated to an anti mCD138 monoclonal antibody (mAb) to evaluate its in vivo behavior and potentiality as BCA and to explore a first attempt of PET-phenotypic imaging in multiple myeloma (MM). Mass spectrometry analysis of the immunoconjugate showed that up to 4 chelates were conjugated per 9E7.4 mAb. The radiolabeling yield and specific activity post-purification of the bioconjugate 9E7.4-CSN-Ph-te2a were 95 ± 2.8% and 188 ± 27 MBq mg(-1) respectively and the immunoreactivity of (64)Cu-9E7.4-CSN-Ph-te2a was 81 ± 7%. Animal experiments were carried out on 5T33-Luc(+) tumor bearing mice, either in subcutaneous or orthotopic. To achieve PET imaging, mice were injected with (64)Cu-9E7.4-CNS-Ph-te2a and acquisitions were conducted 2 and 20 h post-injection (PI). A millimetric bone uptake was localised in a

  5. Inhibition of Campylobacter jejuni on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized oriental mustard extract.

    PubMed

    Olaimat, Amin N; Fang, Yuan; Holley, Richard A

    2014-09-18

    Campylobacter species are common bacterial pathogens associated with human gastroenteritis worldwide. The objectives of this study were to determine the minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations of allyl isothiocyanate (AITC) against 4 Campylobacter jejuni strains in Mueller-Hinton (MH) broth at 4, 21, 37 and 42°C and to screen the C. jejuni strains for their ability to degrade sinigrin (which forms AITC) in pH7.0 MH broth at 35°C for 21d. Also evaluated was the antimicrobial activity of an edible 0.2% κ-carrageenan/2% chitosan-based coating containing AITC or deodorized oriental mustard extract against a 4 strain C. jejuni cocktail (6.2log10CFU/g) on vacuum-packaged fresh chicken breasts during 4°C storage. MIC values of AITC were 0.63 to 1.25ppm and 2.5 to 5ppm against tested strains at 37 and 42°C, respectively. However, the MBC was 2.5 and 5ppm at 37 and 42°C, respectively, and increased to a range of 40 to 160ppm at 4°C. κ-Carrageenan/chitosan-based coatings containing 50 or 100μl/g AITC reduced viable C. jejuni to undetectable levels on chicken breast after 5d at 4°C, while 25μl/g AITC or 200 to 300mg/g mustard extract in coatings reduced C. jejuni numbers by 1.75 to 2.78log10CFU/g more than control coatings without antimicrobial. Both oriental mustard extract (50 to 300mg/g) and AITC (≥25μl/g) reduced aerobic bacteria by 1.72 to 2.75log10CFU/g and lactic acid bacteria (LAB) by 0.94 to 3.36log10CFU/g by 21d compared to the control coating. κ-Carrageenan/chitosan coatings containing ≥50μl/g AITC or ≥300mg/g oriental mustard showed excellent potential to control C. jejuni viability on raw chicken. PMID:25058687

  6. Effects of Benzyl Isothiocyanate and Its N-Acetylcysteine Conjugate on Induction of Detoxification Enzymes in Hepa1c1c7 Mouse Hepatoma Cells

    PubMed Central

    Hwang, Eun-Sun

    2014-01-01

    The induction of detoxification enzymes by benzyl isothiocyanate (BITC) and its synthetic N-acetyl-L-cysteine (NAC) conjugate (NAC-BITC) was examined in Hepa1c1c7 murine hepatoma cells. BITC and NAC-BITC inhibited Hepa1c1c7 cell growth in a dose-dependent manner. Cell growth was 4.5~57.2% lower in Hepa1c1c7 cells treated with 0.1~10 μM BITC than in control-treated Hepa1c1c7 cells. The NAC-BITC treatment had a similar inhibitory pattern on Hepa1c1c7 cell growth; 0.5 μM and 10 μM NAC-BITC decreased cell growth by 13.6% and 47.4%, respectively. Treatment of Hepa1c1c7 cells with 0.1~2.0 μM BITC also elicited a dose-response effect on the induction of quinone reductase quinone reductase (QR) activity and QR mRNA expression. Treatment with 1 μM and 2 μM BITC caused 1.8- and 2.8-fold inductions of QR mRNA, respectively. By comparison, treatment with 1 μM and 2 μM NAC-BITC caused 1.6- and 1.9-fold inductions of QR mRNA, respectively. Cytochrome P450 (CYP) 1A1 and CYP2E1 induction were lower in 0.1~2 μM BITC-treated cells than in control-treated cells. CYP2E1 activity was 1.2-fold greater in 0.1 μM NAC-BITC-treated cells than in control-treated cells. However, the CYP2E1 activity of cells treated with higher concentrations (i.e., 1~2 μM) of NAC-BITC was similar to the activity of control-treated cells. Considering the potential of isothiocyanatesto prevent cancer, these results provide support for the use of BITC and NAC-BITC conjugates as chemopreventive agents. PMID:25580390

  7. Metam sodium intoxication: the specific role of degradation products--methyl isothiocyanate and carbon disulphide--as a function of exposure.

    PubMed

    Bretaudeau Deguigne, Marie; Lagarce, Laurence; Boels, David; Harry, Patrick

    2011-06-01

    Introduction. The objective was to evaluate the toxicity of poisoning by metam sodium, a dithiocarbamate fumigant, the breakdown products of which are methyl isothiocyanate (MITC), carbon disulphide (CS2), and dihydrogen sulphide (H2S). Methods. This is a retrospective, observational case series of metam sodium exposure cases reported to the Angers Poison and Toxicovigilance Centre from 1992 through 2009. Results. A total of 106 cases of metam sodium exposure were recorded and 102 cases were included in this study. All cases of exposure were unintentional. Occupational poisoning occurred in eight cases. The most common route of exposure was inhalation (n = 96). In 79 cases, the patients were people living near fields where metam sodium had recently been applied. Most of the reported symptoms involved irritation of the eyes (n = 76), throat and nose (n = 65), attributable to MITC. Cough and dyspnoea occurred in four cases but no persistent, irritant-induced asthma or persistent exacerbation of asthma was observed. Sixteen patients at two different sites of pollution were exposed to emanations from the drainage system in their homes following the illicit discharge of metam sodium into the sewers. Most presented with nausea and headaches, but only four experienced eye or throat irritation. A breakdown product other than MITC was involved: air analysis at one site revealed the presence of CS2 (337 mg/m(3)) and no H2S. Two of these patients, who had consumed some alcohol, experienced dysgeusia but no disulfiram-like reaction. The only lethal case recorded was a truck driver who was found dead of acute lung injury after falling into a tank that had previously contained metam sodium. Two patients who ingested a dilute solution, presented with mild epigastric pain. Four skin exposures caused erythema (n = 2), moderate burns (n = 1), and urticaria (n = 1). According to the poisoning severity score, their symptoms were minor in 99% of cases. Conclusion. Acute metam sodium

  8. Effects of benzyl isothiocyanate and its N-acetylcysteine conjugate on induction of detoxification enzymes in hepa1c1c7 mouse hepatoma cells.

    PubMed

    Hwang, Eun-Sun

    2014-12-01

    The induction of detoxification enzymes by benzyl isothiocyanate (BITC) and its synthetic N-acetyl-L-cysteine (NAC) conjugate (NAC-BITC) was examined in Hepa1c1c7 murine hepatoma cells. BITC and NAC-BITC inhibited Hepa1c1c7 cell growth in a dose-dependent manner. Cell growth was 4.5~57.2% lower in Hepa1c1c7 cells treated with 0.1~10 μM BITC than in control-treated Hepa1c1c7 cells. The NAC-BITC treatment had a similar inhibitory pattern on Hepa1c1c7 cell growth; 0.5 μM and 10 μM NAC-BITC decreased cell growth by 13.6% and 47.4%, respectively. Treatment of Hepa1c1c7 cells with 0.1~2.0 μM BITC also elicited a dose-response effect on the induction of quinone reductase quinone reductase (QR) activity and QR mRNA expression. Treatment with 1 μM and 2 μM BITC caused 1.8- and 2.8-fold inductions of QR mRNA, respectively. By comparison, treatment with 1 μM and 2 μM NAC-BITC caused 1.6- and 1.9-fold inductions of QR mRNA, respectively. Cytochrome P450 (CYP) 1A1 and CYP2E1 induction were lower in 0.1~2 μM BITC-treated cells than in control-treated cells. CYP2E1 activity was 1.2-fold greater in 0.1 μM NAC-BITC-treated cells than in control-treated cells. However, the CYP2E1 activity of cells treated with higher concentrations (i.e., 1~2 μM) of NAC-BITC was similar to the activity of control-treated cells. Considering the potential of isothiocyanatesto prevent cancer, these results provide support for the use of BITC and NAC-BITC conjugates as chemopreventive agents. PMID:25580390

  9. [Serum resistance of Escherichia coli in chronic pyelonephritis. 1. Serum resistance in the human serum pool].

    PubMed

    Falkenhagen, U; Handschuck, I; Ulisko, I N; Ratiner YuA; Nimmich, W; Zingler, G; Naumann, G

    1984-07-01

    123 patients of the kidney department of the Clinic for Inner Medicine of Rostock University suffering from chronic pyelonephritis were taken into microbiological observation for between one and four years. 170 E. coli strains were bred from 59 patients with significant bacteriuria in the course of the disease and their serum resistence was determined with pooled human serum using Taylor's method. 78.24% of the strains examined were serum-sensitive, 11.18% intermediate and 10.59% serum-resistent. All strains were O-, K- and H-typed. 57.06% were successfully O-typed and were distributed over 40 O-serogroups. 24.12% were not typable and 18.82% were rough colonies. 86.50% of the resistent and intermediate strains strains were O-typable, 13.50% could not be typed. The significance of E. coli antigens (O, K, H) and serum resistence for the maintenance of a chronic infection is discussed. PMID:6385542

  10. Piezoelectric microcantilever serum protein detector

    NASA Astrophysics Data System (ADS)

    Capobianco, Joseph A.

    The development of a serum protein detector will provide opportunities for better screening of at-risk cancer patients, tighter surveillance of disease recurrence and better monitoring of treatment. An integrated system that can process clinical samples for a number of different types of biomarkers would be a useful tool in the early detection of cancer. Also, screening biomarkers such as antibodies in serum would provide clinicians with information regarding the patient's response to treatment. Therefore, the goal of this study is to develop a sensor which can be used for rapid, all-electrical, real-time, label-fee, in-situ, specific quantification of cancer markers, e.g., human epidermal receptor 2 (Her2) or antibodies, in serum. To achieve this end, piezoelectric microcantilever sensors (PEMS) were constructed using an 8 mum thick lead magnesium niobate-lead titanate (PMN-PT) freestanding film as the piezoelectric layer. The desired limit of detection is on the order of pg/mL. In order to achieve this goal the higher frequency lateral extension modes were used. Also, as the driving and sensing of the PEMS is electrical, the PEMS must be insulated in a manner that allows it to function in aqueous solutions. The insulation layer must also be compatible with standardized bioconjugation techniques. Finally, detection of both cancer antigens and antibodies in serum was carried out, and the results were compared to a standard commercialized protocol. PEMS have demonstrated the capability of detecting Her2 at a concentration of 5 pg/mL in diluted human serum (1:40) in less than 1 hour. The approach can be easily translated into the clinical setting because the sensitivity is more than sufficient for monitoring prognosis of breast cancer patients. In addition to Her2 detection, antibodies in serum were assayed in order to demonstrate the feasibility of monitoring the immune response for antibody-dependent cellular cytotoxicity (ADCC) in patients on antibody therapies