Science.gov

Sample records for severe hemodynamic alteration

  1. Congenital heart malformations induced by hemodynamic altering surgical interventions

    PubMed Central

    Midgett, Madeline; Rugonyi, Sandra

    2014-01-01

    Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load. PMID:25136319

  2. Hemodynamic alterations in chronically conscious unrestrained diabetic rats

    SciTech Connect

    Carbonell, L.F.; Salmon, M.G.; Garcia-Estan, J.; Salazar, F.J.; Ubeda, M.; Quesada, T.

    1987-05-01

    Important cardiovascular dysfunctions have been described in streptozotocin (STZ)-diabetic rats. To determine the influence of these changes on the hemodynamic state and whether insulin treatment can avoid them, different hemodynamic parameters, obtained by the thermodilution method, were studied in STZ-induced (65 mg/kg) diabetic male Wistar rats, as well as in age-control, weight-control, and insulin-treated diabetic ones. Plasma volume was measured by dilution of radioiodinated (/sup 125/I) human serum albumin. All rats were examined in the conscious, unrestrained state 12 wk after induction of diabetes or acidified saline (pH 4.5) injection. At 12 wk of diabetic state most important findings were normotension, high blood volume, bradycardia, increase in stroke volume, cardiac output, and cardiosomatic ratio, and decrease in total peripheral resistance and cardiac contractility and relaxation (dP/dt/sub max/ and dP/dt/sub min/ of left ventricular pressure curves). The insulin-treated diabetic rats did not show any hemodynamic differences when compared with the control animals. These results suggest that important hemodynamic alterations are present in the chronic diabetic states, possibly conditioning congestive heart failure. These alterations can be prevented by insulin treatment.

  3. Computational Hemodynamic Simulation of Human Circulatory System under Altered Gravity

    NASA Technical Reports Server (NTRS)

    Kim. Chang Sung; Kiris, Cetin; Kwak, Dochan

    2003-01-01

    A computational hemodynamics approach is presented to simulate the blood flow through the human circulatory system under altered gravity conditions. Numerical techniques relevant to hemodynamics issues are introduced to non-Newtonian modeling for flow characteristics governed by red blood cells, distensible wall motion due to the heart pulse, and capillary bed modeling for outflow boundary conditions. Gravitational body force terms are added to the Navier-Stokes equations to study the effects of gravity on internal flows. Six-type gravity benchmark problems are originally presented to provide the fundamental understanding of gravitational effects on the human circulatory system. For code validation, computed results are compared with steady and unsteady experimental data for non-Newtonian flows in a carotid bifurcation model and a curved circular tube, respectively. This computational approach is then applied to the blood circulation in the human brain as a target problem. A three-dimensional, idealized Circle of Willis configuration is developed with minor arteries truncated based on anatomical data. Demonstrated is not only the mechanism of the collateral circulation but also the effects of gravity on the distensible wall motion and resultant flow patterns.

  4. Dietary melatonin alters uterine artery hemodynamics in pregnant Holstein heifers.

    PubMed

    Brockus, K E; Hart, C G; Gilfeather, C L; Fleming, B O; Lemley, C O

    2016-04-01

    The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor-mediated responses in steroid metabolism were examined using a bovine endometrial epithelial culture system. Twenty singleton pregnant Holstein heifers were supplemented with 20 mg of melatonin (n = 10) or no melatonin supplementation (control; n = 10) from days 190 to 262 of gestation. Maternal measurements were recorded on days 180 (baseline), 210, 240, and 262 of gestation. Total uterine blood flow was increased by 25% in the MEL-treated heifers compared with the CON. Concentrations of progesterone were decreased in MEL vs CON heifers. Total serum antioxidant capacity was increased by 43% in MEL-treated heifers when compared with CON. Activity of cytochrome P450 1A, 2C, and superoxide dismutase was increased in bovine endometrial epithelial cells treated with melatonin, whereas the melatonin receptor antagonist, luzindole, negated the increase in cytochrome P450 2C activity. Moreover, estradiol or progesterone treatment altered bovine uterine melatonin receptor expression, which could potentiate the melatonin-mediated responses during late gestation. The observed increase in total uterine blood flow during melatonin supplementation could be related to its antioxidant properties. Compromised pregnancies are typically accompanied by increased oxidative stress; therefore, melatonin could serve as a therapeutic supplementation strategy. This could lead to further fetal programming implications in conjunction with offspring growth and development postnatally. PMID:26641925

  5. Dietary melatonin alters uterine artery hemodynamics in pregnant holstein heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor–mediated responses in steroid metabolism were examined using a bovine endometrial epithelial...

  6. Altering hemodynamics leads to congenital heart defects (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ford, Stephanie M.; McPheeters, Matthew T.; Wang, Yves T.; Gu, Shi; Doughman, Yong Qiu; Strainic, James P.; Rollins, Andrew M.; Watanabe, Michiko; Jenkins, Michael W.

    2016-03-01

    The role of hemodynamics in early heart development is poorly understood. In order to successfully assess the impact of hemodynamics on development, we need to monitor and perturb blood flow, and quantify the resultant effects on morphology. Here, we have utilized cardiac optical pacing to create regurgitant flow in embryonic hearts and OCT to quantify regurgitation percentage and resultant morphology. Embryonic quail in a shell-less culture were optically paced at 3 Hz (well above the intrinsic rate or 1.33-1.67 Hz) on day 2 of development (3-4 weeks human) for 5 minutes. The pacing fatigued the heart and led to a prolonged period (> 1 hour) of increased regurgitant flow. Embryos were kept alive until day 3 (cardiac looping - 4-5 weeks human) or day 8 (4 chambered heart - 8 weeks human) to quantify resultant morphologic changes with OCT. All paced embryos imaged at day 3 displayed cardiac defects. The extent of regurgitant flow immediately after pacing was correlated with cardiac cushion size 24-hours post pacing (p-value < 0.01) with higher regurgitation leading to smaller cushions. Almost all embryos (16/18) surviving to day 8 exhibited congenital heart defects (CHDs) including 11/18 with valve defects, 5/18 with ventricular septal defects and 5/18 with hypoplastic right ventricles. Our data suggests that regurgitant flow leads to smaller cushions, which develop into abnormal valves and septa. Our model produces similar phenotypes as found in our fetal alcohol syndrome and velo-cardio-facial/DiGeorge syndrome models suggesting that hemodynamics plays a role in these syndromes as well. Utilizing OCT and optical pacing to understand hemodynamics in development is an important step towards determining CHD mechanisms and ultimately developing earlier treatments.

  7. Hemodynamics.

    PubMed

    Secomb, Timothy W

    2016-04-01

    A review is presented of the physical principles governing the distribution of blood flow and blood pressure in the vascular system. The main factors involved are the pulsatile driving pressure generated by the heart, the flow characteristics of blood, and the geometric structure and mechanical properties of the vessels. The relationship between driving pressure and flow in a given vessel can be understood by considering the viscous and inertial forces acting on the blood. Depending on the vessel diameter and other physical parameters, a wide variety of flow phenomena can occur. In large arteries, the propagation of the pressure pulse depends on the elastic properties of the artery walls. In the microcirculation, the fact that blood is a suspension of cells strongly influences its flow properties and leads to a nonuniform distribution of hematocrit among microvessels. The forces acting on vessel walls include shear stress resulting from blood flow and circumferential stress resulting from blood pressure. Biological responses to these forces are important in the control of blood flow and the structural remodeling of vessels, and also play a role in major disease processes including hypertension and atherosclerosis. Consideration of hemodynamics is essential for a comprehensive understanding of the functioning of the circulatory system. PMID:27065172

  8. Vascular tracers alter hemodynamics and airway pressure in anesthetized sheep

    SciTech Connect

    Albertine, K.H.; Staub, N.C.

    1986-11-01

    The technique of vascular labeling was developed to mark sites of increased microvascular permeability. We used the vascular labeling technique in anesthetized sheep and found that hemodynamics and airway pressure were adversely affected by intraarterial infusions of two vascular tracers. Monastral blue (nine sheep) immediately caused systemic arterial hypotension, pulmonary arterial hypertension, and bronchoconstriction. All three physiological responses were partially blocked by a cyclooxygenase inhibitor (indomethacin) but not by an H1-antihistamine (chlorpheniramine). Colloidal gold (nine sheep) caused immediate, but less dramatic, pulmonary arterial hypertension which was not attenuated by the blocking agents. We conclude that these two vascular tracers caused detrimental physiological side effects in sheep at the usual doses used to label injured microvessels in other species.

  9. Persistent vascular collagen accumulation alters hemodynamic recovery from chronic hypoxia

    PubMed Central

    Tabima, Diana M.; Roldan-Alzate, Alejandro; Wang, Zhijie; Hacker, Timothy A.; Molthen, Robert C.; Chesler, Naomi C.

    2011-01-01

    Pulmonary arterial hypertension (PAH) is caused by narrowing and stiffening of the pulmonary arteries that increase pulmonary vascular impedance (PVZ). In particular, small arteries narrow and large arteries stiffen. Large pulmonary artery (PA) stiffness is the best current predictor of mortality from PAH. We have previously shown that collagen accumulation leads to extralobar PA stiffening at high strain (Ooi, Wang et al. 2010). We hypothesized that collagen accumulation would increase PVZ, including total pulmonary vascular resistance (Z0), characteristic impedance (ZC), pulse wave velocity (PWV), and index of global wave reflections (Pb/Pf), which contribute to increased right ventricular afterload. We tested this hypothesis by exposing mice unable to degrade type I collagen (Col1a1R/R) to 21 days of hypoxia (hypoxia), some of which were allowed to recover for 42 days (recovery). Littermate wild-type mice (Col1a1+/+) were used as controls. In response to hypoxia, mean PA pressure (mPAP) increased in both mouse genotypes with no changes in cardiac output (CO) or PA inner diameter (ID); as a consequence, Z0 (mPAP/CO) increased by ~100% in both genotypes (p<0.05). Contrary to our expectations, ZC, PWV and Pb/Pf did not change. However, with recovery, ZC and PWV decreased in the Col1a1+/+ mice and remained unchanged in the Col1a1R/R mice. Z0 decreased with recovery in both genotypes. Microcomputed tomography measurements of large PAs did not show evidence of stiffness changes as a function of hypoxia exposure or genotype. We conclude that hypoxia-induced PA collagen accumulation does not affect the pulsatile components of pulmonary hemodynamics but that excessive collagen accumulation does prevent normal hemodynamic recovery, which may have important consequences for right ventricular function. PMID:22183202

  10. A Novel Ex Ovo Banding Technique to Alter Intracardiac Hemodynamics in an Embryonic Chicken System.

    PubMed

    Menon, Vinal; Junor, Lorain; Balhaj, Marwa; Eberth, John F; Potts, Jay D

    2016-01-01

    The new model presented here can be used to understand the influence of hemodynamics on specific cardiac developmental processes, at the cellular and molecular level. To alter intracardiac hemodynamics, fertilized chicken eggs are incubated in a humidified chamber to obtain embryos of the desired stage (HH17). Once this developmental stage is achieved, the embryo is maintained ex ovo and hemodynamics in the embryonic heart are altered by partially constricting the outflow tract (OFT) with a surgical suture at the junction of the OFT and ventricle (OVJ). Control embryos are also cultured ex ovo but are not subjected to the surgical intervention. Banded and control embryos are then incubated in a humidified incubator for the desired period of time, after which 2D ultrasound is employed to analyze the change in blood flow velocity at the OVJ as a result of OFT banding. Once embryos are maintained ex ovo, it is important to ensure adequate hydration in the incubation chamber so as to prevent drying and eventually embryo death. Using this new banded model, it is now possible to perform analyses of changes in the expression of key players involved in valve development and to understand the role of hemodynamics on cellular responses in vivo, which could not be achieved previously. PMID:27213265

  11. Premedication with oral dexmedetomidine alters hemodynamic actions of intravenous anesthetic agents in chronically instrumented dogs.

    PubMed

    Proctor, L T; Schmeling, W T; Warltier, D C

    1992-09-01

    Dexmedetomidine (the D-stereoisomer of medetomidine), a highly selective alpha 2-adrenoceptor agonist, has been demonstrated to produce analgesia and sedation and attenuate hemodynamic responses to emergence from inhalational anesthetics, which suggests a potential use for this drug as a premedicant for general anesthesia. The authors examined hemodynamic interactions between dexmedetomidine and three commonly used intravenous anesthetic agents with markedly different hemodynamic effects. Conscious, chronically instrumented dogs received intravenous induction doses of ketamine, propofol, or etomidate, followed by continuous infusions of each drug at four different doses for 15-min intervals on different days. Studies in six separate groups (range, 9-12 dogs/group) with and without pretreatment with oral dexmedetomidine (20 micrograms/kg) were completed. Heart rate, arterial pressure, left ventricular pressure, rate of increase of left ventricular pressure at 50 mmHg (dP/dt50), and cardiac output were continuously recorded. Dexmedetomidine administration caused a significant (P less than 0.05) decrease in heart rate, rate-pressure product, left ventricular dP/dt50, and cardiac output. Dexmedetomidine abolished or attenuated the increase in heart rate, rate-pressure product, cardiac output, and arterial pressure produced during induction of anesthesia with ketamine. After the dexmedetomidine pretreatment, continuous infusion of ketamine caused no increase in heart rate or rate-pressure product. However, ketamine significantly reduced left ventricular dP/dt50 compared to control in dogs premedicated with dexmedetomidine. Except for a significant reduction in systemic vascular resistance, dexmedetomidine did not significantly affect the hemodynamic response to induction of anesthesia with propofol. Similarly, dexmedetomidine did little to alter the hemodynamic response to induction of anesthesia with etomidate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1355639

  12. Hemodynamic Response Alteration As a Function of Task Complexity and Expertise-An fNIRS Study in Jugglers.

    PubMed

    Carius, Daniel; Andrä, Christian; Clauß, Martina; Ragert, Patrick; Bunk, Michael; Mehnert, Jan

    2016-01-01

    Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS) adapts as a function of task complexity and the level of the juggling expertise. We asked expert jugglers to perform different juggling tasks with different levels of complexity such as a 2-ball juggling, 3- and 5-ball juggling cascades. We here demonstrate that expert jugglers show an altered neurovascular response with increasing task complexity, since a 5-ball juggling cascade showed enhanced hemodynamic responses for oxygenated hemoglobin as compared to less complex tasks such as a 3- or 2-ball juggling pattern. Moreover, correlations between the hemodynamic response and the level of the juggling expertise during the 5-ball juggling cascade, acquired by cinematographic video analysis, revealed only a non-significant trend in primary motor cortex, indicating that a higher level of expertise might be associated with lower hemodynamic responses. PMID:27064925

  13. Hemodynamic Response Alteration As a Function of Task Complexity and Expertise—An fNIRS Study in Jugglers

    PubMed Central

    Carius, Daniel; Andrä, Christian; Clauß, Martina; Ragert, Patrick; Bunk, Michael; Mehnert, Jan

    2016-01-01

    Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS) adapts as a function of task complexity and the level of the juggling expertise. We asked expert jugglers to perform different juggling tasks with different levels of complexity such as a 2-ball juggling, 3- and 5-ball juggling cascades. We here demonstrate that expert jugglers show an altered neurovascular response with increasing task complexity, since a 5-ball juggling cascade showed enhanced hemodynamic responses for oxygenated hemoglobin as compared to less complex tasks such as a 3- or 2-ball juggling pattern. Moreover, correlations between the hemodynamic response and the level of the juggling expertise during the 5-ball juggling cascade, acquired by cinematographic video analysis, revealed only a non-significant trend in primary motor cortex, indicating that a higher level of expertise might be associated with lower hemodynamic responses. PMID:27064925

  14. A theoretical analysis of hemodynamic and biomechanical alterations in intracranial AVMs after radiosurgery

    SciTech Connect

    Lo, E.H. )

    1993-09-20

    Stereotactic radiosurgery is being increasingly used to treat intracranial arteriovenous malformations (AVMs). However, successful radiosurgery may involve latent periods of 1-2 years prior to AVM obliteration. This latent period include states of altered flow patterns that may not influence hemorrhage probabilities. The probability of hemorrhage is likely to be related to the degree of biomechanical stress across the AVM shunt walls. This paper describes a theoretical analysis of the altered hemodynamics and biomechanical stresses within AVM shunts post-radiosurgery. The mathematical model is comprised of linked flow compartments that represent the AVM and adjacent normal vasculature. As obliteration of the irradiated shunts occurs, changes in flow rates and pressure gradients are calculated based on first order fluid dynamics. Stress on the AVM shunt walls is calculated based on tangential forces due to intramural pressure. Two basic models are presented: a distribution of shunts with fixed thin walls subject to step-function obliteration, and a distribution of shunts subject to luminal obliteration from slowly thickening walls. Variations on these models are analyzed, including sequential, selective and random shunt obliteration, and uniform or Poisson distributions of shunt radii. Model I reveals that the range of pressure alterations in the radiosurgically-treated AVM include the possibility of transient increases in the total biomechanical stress within the shunt walls prior to obliteration. Model II demonstrates that uniform luminal narrowing via thickened walls should lead to reduced transmural stresses. The precise temporal pattern of AVM flow decrease and biomechanical stress reduction depends on the selection of shunts that are obliterated. 34 refs., 5 figs., 1 tab.

  15. Pathogenic alteration in severe burn wounds.

    PubMed

    Fu, Yang; Xie, Bing; Ben, DaoFeng; Lv, KaiYang; Zhu, ShiHui; Lu, Wei; Tang, HongTai; Cheng, DaSheng; Ma, Bing; Wang, GuangYi; Xiao, ShiChu; Wang, GuangQing; Xia, ZhaoFan

    2012-02-01

    The present study aims to define the trend of time related changes with local bacterial alteration of bacterial resistance in severe burns in our burn center during a 12-year period. Retrospective analysis of microbiological results on severely burned wounds between 1998 and 2009 was carried out. A study of 3615 microbial isolates was performed. Staphylococcus aureus was the most commonly isolated pathogen (38.2%) followed by A. baumannii (16.2%), Streptococcus viridans (11.4%), Pseudomonas aeruginosa (10.4%), coagulase-negative staphylococci (CNS, 9.2%). The species ratios of S. aureus and A. baumannii increased significantly from 1st to 8th week of hospitalization, while those of Streptococcus viridans, P. aeruginosa and coagulase-negative staphylococci decreased during the same period. Bacterial resistance rates were compared between the periods 1998-2003 and 2004-2009. Vancomycin remained as the most sensitive antibiotic in S. aureus including methicillin-resistant S. aureus (MRSA). It was very likely that the majority of infections caused by Streptococcus viridans, P. aeruginosa and coagulase-negative staphylococci occurred in the early stage of burn course and the majority of infections caused by A. baumannii occurred 4 weeks after admission. The use of different antibiotics was probably the major contributor to these trends. PMID:22100426

  16. Altered Hemodynamic Activity in Conduct Disorder: A Resting-State fMRI Investigation

    PubMed Central

    Zhou, Jiansong; Yao, Nailin; Fairchild, Graeme; Zhang, Yingdong; Wang, Xiaoping

    2015-01-01

    Background Youth with conduct disorder (CD) not only inflict serious physical and psychological harm on others, but are also at greatly increased risk of sustaining injuries, developing depression or substance abuse, and engaging in criminal behaviors. The underlying neurobiological basis of CD remains unclear. Objective The present study investigated whether participants with CD have altered hemodynamic activity under resting-state conditions. Methods Eighteen medication-naïve boys with CD and 18 age- and sex- matched typically developing (TD) controls underwent functional magnetic resonance imaging (MRI) scans in the resting state. The amplitude of low-frequency fluctuations (ALFF) was measured and compared between the CD and TD groups. Results Compared with the TD participants, the CD participants showed lower ALFF in the bilateral amygdala/parahippocampus, right lingual gyrus, left cuneus and right insula. Higher ALFF was observed in the right fusiform gyrus and right thalamus in the CD participants compared to the TD group. Conclusions Youth with CD displayed widespread functional abnormalities in emotion-related and visual cortical regions in the resting state. These results suggest that deficits in the intrinsic activity of resting state networks may contribute to the etiology of CD. PMID:25816069

  17. Cerebral Hemodynamics and Vascular Reactivity in Mild and Severe Ischemic Rodent Middle Cerebral Artery Occlusion Stroke Models

    PubMed Central

    Sim, Jeongeun; Jo, Areum; Kang, Bok-Man; Lee, Sohee; Bang, Oh Young; Heo, Chaejeong; Jhon, Gil-Ja; Lee, Youngmi

    2016-01-01

    Ischemia can cause decreased cerebral neurovascular coupling, leading to a failure in the autoregulation of cerebral blood flow. This study aims to investigate the effect of varying degrees of ischemia on cerebral hemodynamic reactivity using in vivo real-time optical imaging. We utilized direct cortical stimulation to elicit hyper-excitable neuronal activation, which leads to induced hemodynamic changes in both the normal and middle cerebral artery occlusion (MCAO) ischemic stroke groups. Hemodynamic measurements from optical imaging accurately predict the severity of occlusion in mild and severe MCAO animals. There is neither an increase in cerebral blood volume nor in vessel reactivity in the ipsilateral hemisphere (I.H) of animals with severe MCAO. The pial artery in the contralateral hemisphere (C.H) of the severe MCAO group reacted more slowly than both hemispheres in the normal and mild MCAO groups. In addition, the arterial reactivity of the I.H in the mild MCAO animals was faster than the normal animals. Furthermore, artery reactivity is tightly correlated with histological and behavioral results in the MCAO ischemic group. Thus, in vivo optical imaging may offer a simple and useful tool to assess the degree of ischemia and to understand how cerebral hemodynamics and vascular reactivity are affected by ischemia. PMID:27358581

  18. Hemodynamic Alterations after Stent Implantation in 15 Cases of Intracranial Aneurysms

    PubMed Central

    Wang, Chao; Tian, Zhongbin; Liu, Jian; Jing, Linkai; Paliwal, Nikhil; Wang, Shengzhang; Zhang, Ying; Xiang, Jianping; Siddiqui, Adnan H; Meng, Hui; Yang, Xinjian

    2016-01-01

    Background Stent-assisted coiling technology has been widely used in the treatment of intracranial aneurysms. In current study, we investigated the intra-aneurysmal hemodynamic alterations after stent implantation and its association with aneurysm location. Methods We first retrospectively studied 15 aneurysm cases (8 internal carotid artery-ophthalmic artery (ICA-OphA) aneurysms and 7 posterior communicating artery (PcoA) aneurysms) treated with Enterprise stents and coils. Then based on patient-specific geometries before and after stenting, we built virtual stenting computational fluid dynamics (CFD) simulation models. Results Before and after stent deployment, the average Wall Shear Stress (WSS) on the aneurysmal sac at systolic peak changed from 7.04 Pa (4.14 Pa, 15.77 Pa) to 6.04 Pa (3.86 Pa, 11.13 Pa), P = 0.001; and the spatially averaged value of flow velocity in the perpendicular plane of aneurysm dropped from 0.5 m/s (0.28 m/s, 0.7 m/s) to 0.33 m/s (0.25 m/s, 0.49 m/s), P = 0.001, respectively. Post-stent implantation, WSS in ICA-OphA aneurysms and PcoA aneurysms decreased by 14.4% (P = 0.012) and 16.6% (P = 0.018) respectively, and flow velocity also reduced by 10.3% (P = 0.029) and 10.5% (P = 0.013), respectively. Changes in WSS, flow velocity, and pressure were not significantly different between ICA-OphA aneurysms and PcoA aneurysms (P > 0.05). Stent implantation did not significantly change the peak systolic pressure in both aneurysm types. Conclusion After stent implantation, intra-aneurysmal flow velocity and WSS decreased independent of aneurysm type (ICA-OphA and PcoA). Little change was observed on peak systolic pressure. PMID:26746828

  19. Iliac arteriovenous fistula due to spinal disk surgery. Causes severe hemodynamic repercussion with pulmonary hypertension.

    PubMed Central

    Machado-Atías, I; Fornés, O; González-Bello, R; Machado-Hernández, I

    1993-01-01

    We present a case of a 46-year-old man with a pulsatile mass in the left inferior abdominal quadrant that irradiated a continuous murmur extending to the left lumbar region. Despite an 8-year history of cardiomegaly, he appeared to be asymptomatic except for the mass and could recollect no traumatic injury or surgery that might have caused it. Near the vertebral column, we found a small scar, the result of spinal disk surgery 11 years before. Following chest radiography and electrocardiography, we located the suspected arteriovenous fistula by selective angiography of the aorta and its branches: a communication of the left iliac artery with the left iliac vein had resulted in a very large left-to-right shunt and a severely dilated inferior vena cava. We then divided and isolated the arterial segment containing the fistula, but left this segment in continuity with the left iliac vein by over-sewing both ends. To avoid injury to surrounding structures, dissection was limited to the area of maximal thrill. Hemodynamic improvement was immediate, and the postoperative course was uneventful. At the present time, almost 3 years postoperatively, the patient is asymptomatic. Images PMID:8508067

  20. Study of severe scorpion envenoming following subcutaneous venom injection into dogs: Hemodynamic and concentration/effect analysis.

    PubMed

    Elatrous, Souheil; Ouanes-Besbes, Lamia; Ben Sik-Ali, Habiba; Hamouda, Zineb; BenAbdallah, Saoussen; Tilouche, Nejla; Jalloul, Faten; Fkih-Hassen, Mohamed; Dachraoui, Fahmi; Ouanes, Islem; Abroug, Fekri

    2015-09-15

    To evaluate the dose-effects of Androctonus australis hector (Aah) venom injected subcutaneously on hemodynamics and neurohormonal secretions, 10 anesthetized and ventilated mongrel dogs, were split in two groups (n = 5/group). Subcutaneous injection was done with either 0.2 mg/kg or 0.125 mg/kg of the purified G50 scorpion toxic fraction. Hemodynamic parameters using right heart catheter were recorded and plasma concentrations of catecholamine, troponin, and serum toxic fraction were measured sequentially from baseline to 120 min. We identified the dose of toxic fraction evoking characteristic hemodynamic perturbation of severe envenomation, the time-lapse to envenomation, and the associated plasma level. The injection of 0.125 mg/kg toxic fraction was not associated with significant variations in hemodynamic parameters, whereas the 0.2 mg/kg dose caused envenomation characterized by significant increase in plasma catecholamines, increased pulmonary artery occluded pressure, mean arterial pressure, and systemic vascular resistance (p < 0.05), in association with sustained decline in cardiac output (p < 0.001). Envenomation occurred by the 30th minute, and the corresponding concentration of toxic fraction was 1.14 ng/ml. The current experiment allowed the identification of the sub-lethal dose (0.2 mg/kg) of the toxic fraction of Aah administered by the subcutaneous route. Two parameters with potential clinical relevance were also uncovered: the time-lapse to envenomation and the corresponding concentration of toxic fraction. PMID:26166304

  1. A NO way to BOLD? Dietary nitrate alters the hemodynamic response to visual stimulation.

    PubMed

    Aamand, Rasmus; Dalsgaard, Thomas; Ho, Yi-Ching Lynn; Møller, Arne; Roepstorff, Andreas; Lund, Torben E

    2013-12-01

    Neurovascular coupling links neuronal activity to vasodilation. Nitric oxide (NO) is a potent vasodilator, and in neurovascular coupling NO production from NO synthases plays an important role. However, another pathway for NO production also exists, namely the nitrate-nitrite-NO pathway. On this basis, we hypothesized that dietary nitrate (NO3-) could influence the brain's hemodynamic response to neuronal stimulation. In the present study, 20 healthy male participants were given either sodium nitrate (NaNO3) or sodium chloride (NaCl) (saline placebo) in a crossover study and were shown visual stimuli based on the retinotopic characteristics of the visual cortex. Our primary measure of the hemodynamic response was the blood oxygenation level dependent (BOLD) response measured with high-resolution functional magnetic resonance imaging (0.64×0.64×1.8 mm) in the visual cortex. From this response, we made a direct estimate of key parameters characterizing the shape of the BOLD response (i.e. lag and amplitude). During elevated nitrate intake, corresponding to the nitrate content of a large plate of salad, both the hemodynamic lag and the BOLD amplitude decreased significantly (7.0±2% and 7.9±4%, respectively), and the variation across activated voxels of both measures decreased (12.3±4% and 15.3±7%, respectively). The baseline cerebral blood flow was not affected by nitrate. Our experiments demonstrate, for the first time, that dietary nitrate may modulate the local cerebral hemodynamic response to stimuli. A faster and smaller BOLD response, with less variation across local cortex, is consistent with an enhanced hemodynamic coupling during elevated nitrate intake. These findings suggest that dietary patterns, via the nitrate-nitrite-NO pathway, may be a potential way to affect key properties of neurovascular coupling. This could have major clinical implications, which remain to be explored. PMID:23827330

  2. Alteration of Intra-Aneurysmal Hemodynamics for Flow Diversion Using Enterprise and Vision Stents

    PubMed Central

    Tremmel, Markus; Xiang, Jianping; Natarajan, Sabareesh K.; Hopkins, L. Nelson; Siddiqui, Adnan H.; Levy, Elad I.; Meng, Hui

    2010-01-01

    Objective Flow diversion is a novel concept for intracranial aneurysm treatment. The recently developed Enterprise Vascular Reconstruction Device (Codman Neurovascular, Raynham MA) provides easy delivery and repositioning. Although designed specifically for restraining coils within an aneurysm, this stent has theoretical effects on modifying flow dynamics, which have not been studied. The goal of this study was to quantify the effect of single and multiple self-expanding Enterprise stents alone or in combination with balloon-mounted stents on aneurysm hemodynamics using computational fluid dynamics (CFD). Methods The geometry of a wide-necked, saccular, basilar trunk aneurysm was reconstructed from computed tomographic angiography images. Various combinations of 1–3 stents were “virtually” conformed to fit into the vessel lumen and placed across the aneurysm orifice. CFD analysis was performed to calculate hemodynamic parameters considered important in aneurysm pathogenesis and thrombosis for each model. Results The complex aneurysmal flow pattern was suppressed by stenting. Stent placement lowered average flow velocity in the aneurysm; further reduction was achieved by additional stent deployment. Aneurysmal flow turnover time, an indicator of stasis, was increased to 114-117% for single-stent, 127-128% for double-stent, and 141% for triple-stent deployment. Furthermore, aneurysmal wall shear stress (WSS) decreased with increasing number of deployed stents. Conclusion This is the first study analyzing flow modifications associated with placement of Enterprise stents for aneurysm occlusion. Placement of 2-3 stents significantly reduced intra-aneurysmal hemodynamic activities, thereby increasing the likelihood of inducing aneurysm thrombotic occlusion. PMID:21197155

  3. Alteration of podocyte protein expression and localization in the early stage of various hemodynamic conditions.

    PubMed

    Li, Kai; Wang, Juan; Yin, Xiaohui; Zhai, Xiaoyue; Li, Zilong

    2013-01-01

    Given that podocalyxin (PCX) and nestin play important roles in podocyte morphogenesis and the maintenance of structural integrity, we examined whether the expression and localization of these two podocyte proteins were influenced in the early stage of various hemodynamic conditions. Mice kidney tissues were prepared by in vivo cryotechnique (IVCT). The distribution of glomeruli and podocyte proteins was visualized with DAB staining, confocal laser scanning microscopy and immunoelectron microscopy. The mRNA levels were examined by real-time quantitative PCR. The results showed the following: Under the normal condition, PCX stained intensely along glomerular epithelial cells, whereas nestin was clearly staining in the endothelial cells and appeared only weakly in the podocytes. Under the acute hypertensive and cardiac arrest conditions, PCX and nestin staining was not clear, with a disarranged distribution, but the colocalization of PCX and nestin was apparent under this condition. In addition, under the acute hypertensive and cardiac arrest conditions, the mRNA levels of PCX and nestin were significantly decreased. Collectively, the abnormal redistribution and decreased mRNA expressions of PCX and nestin are important molecular events at the early stage of podocyte injury during hemodynamic disorders. IVCT may have more advantages for morphological analysis when researching renal diseases. PMID:23502465

  4. Impact of altered venous hemodynamic conditions on the formation of platelet layers in thromboemboli.

    PubMed

    Bajd, Franci; Vidmar, Jernej; Fabjan, Andrej; Blinc, Aleš; Kralj, Eduard; Bizjak, Nina; Serša, Igor

    2012-02-01

    Although it is generally believed that the structure of venous thromboemboli is a homogeneous red blood cell-fibrin clot, their structure may be heterogeneous, with non-uniformly distributed platelet layers, known as the lines of Zahn. We tested (a) whether venous thromboemboli ex vivo contained platelet layers, i.e. the lines of Zahn, and (b) whether, according to mathematical modeling, eddies can arise in the venous system, possibly contributing to platelet aggregation. The structure of venous thromboemboli ex vivo was determined by high-resolution magnetic resonance imaging (MRI) and by immunohistochemistry (IHC). High-resolution ultrasound (US) imaging was employed to determine the popliteal vein geometry and hemodynamics in healthy subjects and in subjects with previous venous thrombosis. The US data were then used as input for numerical simulations of venous hemodynamics. MRI and IHC confirmed that 42 of 49 ex vivo venous thromboemboli were structurally heterogeneous with platelet layers. The peak venous flow velocity was higher in patients with partly recanalized deep vein thrombosis than in healthy subjects in the prone position (46±4cm/s vs. 16±3cm/s). Our numerical simulation showed that partial venous obstruction with stenosis or malfunctioning venous valves creates the conditions for eddy blood flow. Our experimental results and computer simulation confirmed that the heterogeneous structure of venous thromboemboli with twisted platelet layers may be associated with eddy flow at the sites of their formation. PMID:21962985

  5. Altered Resting-State Cortical EEG Oscillations in Patients With Severe Asymptomatic Carotid Stenosis.

    PubMed

    Hsiao, Fu-Jung; Hsieh, Fang-Yuh; Chen, Wei-Ta; Chu, Da-Chen; Lin, Yung-Yang

    2016-04-01

    Asymptomatic carotid stenosis is characterized by altered cerebral hemodynamics and cognitive impairment, but the underlying neurophysiological mechanism remains unclear. To elucidate the alterations of cortical activities, resting-state electrophysiological activities were recorded from patients with mild (<30%; n=10; age 57-85 years), moderate (30% to 50%; n=11; age 66-88 years), and severe (>50%; n=8; age 67-91 years) carotid stenosis. The current density and oscillatory power of the cortical sources were analyzed using the minimum norm estimates method combined with fast Fourier transform analysis. Our results indicate that the cortical current density among regions of the brain was similar, irrespective of the degree of carotid stenosis. With regard to the cortical oscillations, augmented theta activities in the bilateral parietal, left temporal, and left occipital regions and attenuated alpha activities in the bilateral frontal and right central regions were obtained in patients with severe asymptomatic carotid stenosis. We suggest that the source-based cortical oscillations at theta and alpha bands might reflect the alterations of the brain activities and characterize the altered neurophysiological mechanism of the brain with at least 50% occlusion of the carotid artery. Further longitudinal studies with larger populations are warranted to verify the present findings. PMID:25465434

  6. [Anesthetic Induction in a Patient with Giant Ovarian Tumor Who Developed Severe Hemodynamic Instability].

    PubMed

    Aoi, Ryota; Ishihara, Mariko; Soh, Mirei; Kohno, Michihiko; Soga, Mayumi; Kohata, Hisakazu; Takahashi, Kan

    2015-08-01

    A 45 year-old woman underwent a laparotomy for a giant ovarian tumor under general anesthesia. Preoperative CT scan revealed a 30 cm-diameter tumor compressing IVC. She had slight respiratory discomfort on supine position, but respiratory function test showed no abnormalities. In the operating room, after oxygenation for 3 minutes, general anesthesia was induced with fentanyl 100 μg, propofol 90 mg and rocuronium 40 mg on supine position. Immediately after the induction, her systolic blood pressure and heart rate fell to 45 mmHg and 40 beats per minute, respectively. We considered that her hemodynamic instability was supine hypotensive syndrome due to giant ovarian tumor. Therefore we placed her 30 degree right side up and pushed her tumor to the left so as not to compress the IVC. We rapidly injected acetated Ringer's solution 500 ml, ephedrine 12 mg and phenylephrine 0.1 mg, and her hemodynamic status soon recovered to normal ranges. The anesthetic induction of a patient with a giant ovarian tumor is challenging. Some reports recommend strategies such as induction on lateral position or suctioning tumor contents before induction. Careful induction of general anesthesia is required for these patients. PMID:26442415

  7. Glomerular hemodynamic alterations during acute hyperinsulinemia in normal and diabetic rats

    NASA Technical Reports Server (NTRS)

    Tucker, B. J.; Anderson, C. M.; Thies, R. S.; Collins, R. C.; Blantz, R. C.

    1992-01-01

    Treatment of insulin dependent diabetes invariably requires exogenous insulin to control blood glucose. Insulin treatment, independent of other factors associated with insulin dependent diabetes, may induce changes that affect glomerular function. Due to exogenous delivery of insulin in insulin dependent diabetes entering systemic circulation prior to the portal vein, plasma levels of insulin are often in excess of that observed in non-diabetics. The specific effects of hyperinsulinemia on glomerular hemodynamics have not been previously examined. Micropuncture studies were performed in control (non-diabetic), untreated diabetic and insulin-treated diabetic rats 7 to 10 days after administration of 65 mg/kg body weight streptozotocin. After the first period micropuncture measurements were obtained, 5 U of regular insulin (Humulin-R) was infused i.v., and glucose clamped at euglycemic values (80 to 120 mg/dl). Blood glucose concentration in non-diabetic controls was 99 +/- 6 mg/dl. In control rats, insulin infusion and glucose clamp increased nephron filtration rate due to decreases in both afferent and efferent arteriolar resistance (afferent greater than efferent) resulting in increased plasma flow and increased glomerular hydrostatic pressure gradient. However, insulin infusion and glucose clamp produced the opposite effect in both untreated and insulin-treated diabetic rats with afferent arteriolar vasoconstriction resulting in decreases in plasma flow, glomerular hydrostatic pressure gradient and nephron filtration rate. Thromboxane A2 (TX) synthetase inhibition partially decreased the vasoconstrictive response due to acute insulin infusion in diabetic rats preventing the decrease in nephron filtration rate.(ABSTRACT TRUNCATED AT 250 WORDS).

  8. Alterations in uterine hemodynamics caused by uterine fibroids and their impact on in vitro fertilization outcomes

    PubMed Central

    Moon, Jei-Won; Kim, Jun-Bum; Kim, Sung-Hoon; Chae, Hee-Dong; Kang, Byung-Moon

    2015-01-01

    Objective To investigate the impact of fibroids on the blood flow of the uterine and subendometrial arteries and in vitro fertilization (IVF) outcomes. Methods In this study, we analyzed 86 IVF/intracytoplasmic sperm injection (ICSI) cycles in which a gonadotropin-releasing hormone antagonist protocol was used for controlled ovarian stimulation between January 2008 and March 2009. The subjects comprised 86 infertile women with (fibroid group, n=43) or without (control group, n=43) uterine fibroids. Results Patient characteristics were similar between the fibroid and control groups. The IVF/ICSI outcomes in patients with fibroids were similar to those of patients in the control group. The resistance index (RI) and pulsatile index (PI) of the uterine and subendometrial arteries on the day of embryo transfer were also comparable between the two groups. IVF outcomes and uterine hemodynamics in patients with multiple (≥2) fibroids were similar to those of patients with a single fibroid. However, clinical pregnancy and implantation rates were significantly lower in patients with fibroids who experienced uterine cavity distortion than in patients with fibroids who had a normal uterine cavity (both p<0.05). The RI and PI of the subendometrial artery were significantly higher on the day of embryo transfer in patients with fibroids who experienced uterine cavity distortion than in patients with fibroids who had a normal uterine cavity (both p<0.05). Conclusion Fibroids which distorting the uterine cavity might impair the subendometrial artery blood flow clinical pregnancy rate and embryo implantation rate in infertile patients undergoing IVF. Otherwise, IVF outcomes were not influenced by the presence of uterine fibroids. PMID:26816875

  9. Hemodynamic and metabolic basis of impaired exercise tolerance in patients with severe left ventricular dysfunction

    SciTech Connect

    Roubin, G.S.; Anderson, S.D.; Shen, W.F.; Choong, C.Y.; Alwyn, M.; Hillery, S.; Harris, P.J.; Kelly, D.T. )

    1990-04-01

    Hemodynamic and metabolic changes were measured at rest and during exercise in 23 patients with chronic heart failure and in 6 control subjects. Exercise was limited by leg fatigue in both groups and capacity was 40% lower in the patients with failure. At rest, comparing patients with control subjects, heart rate and right atrial and pulmonary wedge pressure were higher; cardiac output, stroke volume and work indexes and ejection fraction were lower; mean arterial and right atrial pressure and systemic resistance were similar. During all phases of exercise in patients with heart failure, pulmonary wedge pressure and systemic vascular resistance were higher and pulmonary vascular resistance remained markedly elevated compared with values in control subjects. Cardiac output was lower in the patients with failure, but appeared to have the same physiologic distribution in both groups during exercise. Although arterial-femoral venous oxygen content difference was higher in patients with heart failure, this increase did not compensate for the reduced blood flow. Even though the maximal oxygen consumption was significantly reduced, femoral venous lactate and pH values were higher than values in control subjects, but femoral venous pH was similar in both groups at their respective levels of maximal exercise. Ejection fraction was lower in those with heart failure at rest and did not increase with exercise. Ventilation in relation to oxygen consumption was higher in patients with failure than in control subjects.

  10. Alterations in hemodynamics and Kf,c during lung mass resection.

    PubMed

    Townsley, M I; Parker, J C; Korthuis, R J; Taylor, A E

    1987-12-01

    The effects of progressive lung mass reduction on total pulmonary vascular resistance (RT), compliance (CT), arterial (Pa), venous (PV), and capillary (Pc) pressures, and the capillary filtration coefficient (Kf,c) were evaluated in whole isolated dog lungs perfused with autologous blood. RT increased (P less than 0.05) in a nonlinear fashion when mass was reduced by greater than 35% in zone 3 lungs (Pa greater than PV greater than airway pressure) perfused at constant pressure (CP, n = 9), a finding predicted by a model of rigid parallel flow channels subjected to loss of cross-sectional area. Furthermore, these findings were not altered by pretreatment with ibuprofen or diphenhydramine (n = 7). In contrast, in zone 3 lungs perfused with constant flow (CF, n = 4), RT did not increase until at least 60-75% of mass was removed. Since Pa and Pc were constant in the former group, but increased in the latter group (P less than 0.05), the attenuation of RT by CF is best explained by vascular distension. This is supported by the finding that microvascular C, as a fraction of CT, decreased significantly with CF, but not with CP. Kf,c and CT (referenced to the initial lung mass) decreased linearly with reductions in lung mass % delta Kf,c = 1.26-0.98% mass removed (r = 0.90, P less than 0.01) and % delta CT = -3.99-0.98% mass removed (r = 0.82, P less than 0.01) relationships that were not altered by blocker pretreatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3436877

  11. Hemodynamic evaluation of suspected severe aortic stenosis leads to a diagnosis of renal cell carcinoma.

    PubMed

    Lake, Mikhailia; Tanawuttiwat, Tanyanan; Bilsker, Martin; De Marchena, Eduardo

    2015-02-01

    The evaluation of aortic stenosis is not always straightforward. When symptoms of severe aortic stenosis are present with supporting Doppler echocardiographic or cardiac catheterization data, replacement of the aortic valve is recommended. Occasionally, Doppler- and catheter-derived data are discordant; appropriate treatment in such cases becomes less clear. We report a case in which a 66-year-old man's symptoms and Doppler data suggested severe aortic stenosis. However, heart catheterization data suggested otherwise, and ultimately it led to the diagnosis of a highly vascular renal tumor. Shunting within the tumor resulted in high cardiac output, which, in combination with a small aortic root, masqueraded as severe aortic stenosis. PMID:25873807

  12. Computational representation and hemodynamic characterization of in vivo acquired severe stenotic renal artery geometries using turbulence modeling.

    PubMed

    Kagadis, George C; Skouras, Eugene D; Bourantas, George C; Paraskeva, Christakis A; Katsanos, Konstantinos; Karnabatidis, Dimitris; Nikiforidis, George C

    2008-06-01

    The present study reports on computational fluid dynamics in the case of severe renal artery stenosis (RAS). An anatomically realistic model of a renal artery was reconstructed from CT scans, and used to conduct CFD simulations of blood flow across RAS. The recently developed shear stress transport (SST) turbulence model was pivotally applied in the simulation of blood flow in the region of interest. Blood flow was studied in vivo under the presence of RAS and subsequently in simulated cases before the development of RAS, and after endovascular stent implantation. The pressure gradients in the RAS case were many orders of magnitude larger than in the healthy case. The presence of RAS increased flow resistance, which led to considerably lower blood flow rates. A simulated stent in place of the RAS decreased the flow resistance at levels proportional to, and even lower than, the simulated healthy case without the RAS. The wall shear stresses, differential pressure profiles, and net forces exerted on the surface of the atherosclerotic plaque at peak pulse were shown to be of relevant high distinctiveness, so as to be considered potential indicators of hemodynamically significant RAS. PMID:17714975

  13. Awake cardiopulmonary bypass to prevent hemodynamic collapse and loss of airway in a severely symptomatic patient with a mediastinal mass.

    PubMed

    Said, Sameh M; Telesz, Brian J; Makdisi, George; Quevedo, Fernando J; Suri, Rakesh M; Allen, Mark S; Mauermann, William J

    2014-10-01

    Management of a large mediastinal mass causing respiratory and hemodynamic compromise represents a major challenge during induction of anesthesia and surgical resection. The hemodynamic changes associated with anesthetic induction and initiation of positive-pressure ventilation can lead to acute hemodynamic collapse or inability to ventilate, or both. Initiation of cardiopulmonary bypass before anesthetic induction represents a safe alternative. We present a 37-year-old woman who underwent successful resection of a large anterior mediastinal mass through sternotomy. Cardiopulmonary bypass was instituted using the right femoral vessels under local analgesia to allow safe anesthetic induction. Her postoperative course was uneventful. This represents an example of a team approach to the management of a complex patient to achieve a successful outcome. PMID:25282247

  14. Causal connectivity alterations of cortical-subcortical circuit anchored on reduced hemodynamic response brain regions in first-episode drug-naïve major depressive disorder

    PubMed Central

    Gao, Qing; Zou, Ke; He, Zongling; Sun, Xueli; Chen, Huafu

    2016-01-01

    Some efforts were done to investigate the disruption of brain causal connectivity networks involved in major depressive disorder (MDD) using Granger causality (GC) analysis. However, the homogenous hemodynamic response function (HRF) assumption over the brain may disturb the inference of temporal precedence. Here we applied a blind deconvolution approach to examine the altered HRF shape in first-episode, drug-naïve MDD patients. The regions with abnormal HRF shape in patients were chosen as seeds to detect the GC alterations in MDD. The results demonstrated significantly decreased magnitude of spontaneous hemodynamic response of the orbital frontal cortex (OFC) and the caudate nucleus (CAU) in MDD comparing to healthy controls, suggesting MDD patients likely had alterations in neurovascular coupling and cerebrovascular physiology in these two regions. GC mapping showed increased/decreased GC in OFC-/CAU centered networks in MDD. The outgoing GC values from OFC to anterior cingulate cortex and occipital regions were positively correlated with Hamilton Depression Scale (HAMD) scores, while the incoming GC from insula, middle and superior temporal gyrus to CAU were negatively correlated with HAMD scores of MDD. The abnormalities of directional connections in the cortico-subcortico-cerebellar network may lead to unbalanced integrating the emotional-related information for MDD, and further exacerbating depressive symptoms. PMID:26911651

  15. Causal connectivity alterations of cortical-subcortical circuit anchored on reduced hemodynamic response brain regions in first-episode drug-naïve major depressive disorder.

    PubMed

    Gao, Qing; Zou, Ke; He, Zongling; Sun, Xueli; Chen, Huafu

    2016-01-01

    Some efforts were done to investigate the disruption of brain causal connectivity networks involved in major depressive disorder (MDD) using Granger causality (GC) analysis. However, the homogenous hemodynamic response function (HRF) assumption over the brain may disturb the inference of temporal precedence. Here we applied a blind deconvolution approach to examine the altered HRF shape in first-episode, drug-naïve MDD patients. The regions with abnormal HRF shape in patients were chosen as seeds to detect the GC alterations in MDD. The results demonstrated significantly decreased magnitude of spontaneous hemodynamic response of the orbital frontal cortex (OFC) and the caudate nucleus (CAU) in MDD comparing to healthy controls, suggesting MDD patients likely had alterations in neurovascular coupling and cerebrovascular physiology in these two regions. GC mapping showed increased/decreased GC in OFC-/CAU centered networks in MDD. The outgoing GC values from OFC to anterior cingulate cortex and occipital regions were positively correlated with Hamilton Depression Scale (HAMD) scores, while the incoming GC from insula, middle and superior temporal gyrus to CAU were negatively correlated with HAMD scores of MDD. The abnormalities of directional connections in the cortico-subcortico-cerebellar network may lead to unbalanced integrating the emotional-related information for MDD, and further exacerbating depressive symptoms. PMID:26911651

  16. Hyperoxia causes oxygen free radical-mediated membrane injury and alters myocardial function and hemodynamics in the newborn.

    PubMed

    Bandali, K S; Belanger, M P; Wittnich, C

    2004-08-01

    Newborn children can be exposed to high oxygen levels (hyperoxia) for hours to days during their medical and/or surgical management, and they also can have poor myocardial function and hemodynamics. Whether hyperoxia alone can compromise myocardial function and hemodynamics in the newborn and whether this is associated with oxygen free radical release that overwhelms naturally occurring antioxidant enzymes leading to myocardial membrane injury was the focus of this study. Yorkshire piglets were anesthetized with pentobarbital sodium (65 mg/kg), intubated, and ventilated to normoxia. Once normal blood gases were confirmed, animals were randomly allocated to either 5 h of normoxia [arterial Po(2) (Pa(O(2))) = 83 +/- 5 mmHg, n = 4] or hyperoxia (Pa(O(2)) = 422 +/- 33 mmHg, n = 6), and myocardial functional and hemodynamic assessments were made hourly. Left ventricular (LV) biopsies were taken for measurements of antioxidant enzyme activities [superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT)] and malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) as an indicator of oxygen free radical-mediated membrane injury. Hyperoxic piglets suffered significant reductions in contractility (P < 0.05), systolic blood pressure (P < 0.03), and mean arterial blood pressure (P < 0.05). Significant increases were seen in heart rate (P < 0.05), whereas a significant 11% (P < 0.05) and 61% (P < 0.001) reduction was seen in LV SOD and GPx activities, respectively, after 5 h of hyperoxia. Finally, MDA and 4-HNE levels were significantly elevated by 45% and 38% (P < 0.001 and P = 0.02), respectively, in piglets exposed to hyperoxia. Thus, in the newborn, hyperoxia triggers oxygen free radical-mediated membrane injury together with an inability of the newborn heart to upregulate its antioxidant enzyme defenses while impairing myocardial function and hemodynamics. PMID:15277198

  17. Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: data from the prospective observational FINNAKI study

    PubMed Central

    2013-01-01

    Introduction Knowledge of the association of hemodynamics with progression of septic acute kidney injury (AKI) is limited. However, some recent data suggest that mean arterial pressure (MAP) exceeding current guidelines (60–65 mmHg) may be needed to prevent AKI. We hypothesized that higher MAP during the first 24 hours in the intensive care unit (ICU), would be associated with a lower risk of progression of AKI in patients with severe sepsis. Methods We identified 423 patients with severe sepsis and electronically recorded continuous hemodynamic data in the prospective observational FINNAKI study. The primary endpoint was progression of AKI within the first 5 days of ICU admission defined as new onset or worsening of AKI by the Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We evaluated the association of hemodynamic variables with this endpoint. We included 53724 10-minute medians of MAP in the analysis. We analysed the ability of time-adjusted MAP to predict progression of AKI by receiver operating characteristic (ROC) analysis. Results Of 423 patients, 153 (36.2%) had progression of AKI. Patients with progression of AKI had significantly lower time-adjusted MAP, 74.4 mmHg [68.3-80.8], than those without progression, 78.6 mmHg [72.9-85.4], P < 0.001. A cut-off value of 73 mmHg for time-adjusted MAP best predicted the progression of AKI. Chronic kidney disease, higher lactate, higher dose of furosemide, use of dobutamine and time-adjusted MAP below 73 mmHg were independent predictors of progression of AKI. Conclusions The findings of this large prospective multicenter observational study suggest that hypotensive episodes (MAP under 73 mmHg) are associated with progression of AKI in critically ill patients with severe sepsis. PMID:24330815

  18. Effects of Phosphodiesterase Type 5 Inhibition on Systemic and Pulmonary Hemodynamics and Ventricular Function in Patients with Severe Symptomatic Aortic Stenosis

    PubMed Central

    Lindman, Brian R.; Zajarias, Alan; Madrazo, José A.; Shah, Jay; Gage, Brian F.; Novak, Eric; Johnson, Stephanie N.; Chakinala, Murali M.; Hohn, Tara A.; Saghir, Mohammed; Mann, Douglas L.

    2012-01-01

    Background Pressure overload due to aortic stenosis (AS) causes maladaptive ventricular and vascular remodeling that can lead to pulmonary hypertension, heart failure symptoms, and adverse outcomes. Retarding or reversing this maladaptive remodeling and its unfavorable hemodynamic consequences has potential to improve morbidity and mortality. Preclinical models of pressure overload have shown that phosphodiesterase type 5 (PDE5) inhibition is beneficial, however the use of PDE5 inhibitors in patients with AS is controversial because of concerns about vasodilation and hypotension. Methods and Results We evaluated the safety and hemodynamic response of 20 subjects with severe symptomatic AS (mean aortic valve area 0.7±0.2 cm2, ejection fraction 60±14%) who received a single oral dose of sildenafil (40mg or 80mg). Compared to baseline, after 60 minutes sildenafil reduced systemic (−12%, p<0.001) and pulmonary (−29%, p=0.002) vascular resistance, mean pulmonary artery (−25%, p<0.001) and wedge (−17%, p<0.001) pressure, and increased systemic (+13%, p<0.001) and pulmonary (+45%, p<0.001) vascular compliance and stroke volume index (+8%, p=0.01). These changes were not dose dependent. Sildenafil caused a modest decrease in mean systemic arterial pressure (−11%, p<0.001), but was well-tolerated with no episodes of symptomatic hypotension. Conclusions This study shows for the first time that a single dose of a PDE5 inhibitor is safe and well-tolerated in patients with severe AS and is associated with acute improvements in pulmonary and systemic hemodynamics resulting in biventricular unloading. These findings support the need for longer-term studies to evaluate the role of PDE5 inhibition as adjunctive medical therapy in patients with AS. PMID:22447809

  19. Hemodynamic and clinical response to three-day infusion of sulmazol (AR-L 115 BS) in severe congestive heart failure.

    PubMed

    Renard, M; Jacobs, P; Dechamps, P; Dresse, A; Bernard, R

    1983-10-01

    Sulmazol (AR-L 115 BS) is a new positively inotropic drug with arterial and venous vasodilating properties. We studied the effects of sulmazol (three-day infusion) on clinical tolerance, hemodynamics, and blood gas levels in ten patients with severe chronic heart failure. The hemodynamic monitoring included a Swan-Ganz catheter in the pulmonary artery and a radial catheter. Blood gas levels were determined on samples of arterial and mixed venous blood. After 24 hours of infusion, there was a significant increase in cardiac index (2 to 2.5 L/min/sq m; p less than 0.005) and a significant decrease in pulmonary wedge pressure (28 to 19 mm Hg; p less than 0.001) and in right atrial pressure (7 to 4 mm Hg; p less than 0.001) without significant changes in heart rate and systolic blood pressure. These beneficial effects lasted during the three days of infusion. Oxygen delivery was significantly increased (350 to 443 ml/min/sq m; p less than 0.005) without significant change in arterial oxygen tension. The side effects included nausea, vomiting, anorexia, and mild thrombocytopenia. We conclude that sulmazol is a potent drug which may improve severely deteriorated left and right ventricular function in patients with chronic refractory heart failure without affecting the heart rate and the systolic blood pressure. PMID:6413136

  20. [Cerebral hemodynamics in children of 8-12 years old with alterations of the motor activity of central origin].

    PubMed

    Holovchenko, I V; Haĭdaĭ, M I

    2013-01-01

    In children with altered physical activity there is a lack of brain blood supply, which is the most pronounced in the system of the vertebral arteries right hemisphere, and a low volume speed of blood flow in the internal carotid artery and in the system of the vertebral arteries. Children of the main group have a decreased venous outflow from the cavity of the skull, which is accompanied by altered venous circulation in the sinuses of the brain. It is established that in the system of the vertebral arteries a hemispheric asymmetry of growth in the right hemisphere is observed, in contrast to the left hemisphere, indicators of vascular tone of arterial and venous type of small caliber. Children with altered physical activity have higher values of indicators of venous outflow, than the children of the control group, and they have better venous outflow from the carotid system and a slightly worse with vertebro-basilar. PMID:24400562

  1. Angiotensin inhibition in severe heart failure: acute central and limb hemodynamic effects of captopril with observations on sustained oral therapy.

    PubMed

    Faxon, D P; Halperin, J L; Creager, M A; Gavras, H; Schick, E C; Ryan, T J

    1981-05-01

    The systemic, pulmonary, and limb circulatory responses to the angiotensin-converting enzyme inhibitor, captopril, were determined in 10 patients with severe, chronic heart failure. Immediate effects include sustained reductions in arterial pressure and pulmonary capillary wedge pressure and improvement in cardiac output, as reported with other vasodilator drugs. Calf vascular resistance did not change despite substantial lowering of total systemic vascular resistance, indicating that arteriolar dilatation occurred on a selective basis. Transient reduction in mean right atrial pressure paralleled slight calf venodilatation, but effects upon the resistance vasculature predominated. Plasma renin activity and norepinephrine concentrations increased after therapy in the acute phase as plasma aldosterone levels consistently fell. During maintenance oral treatment over 7 to 15 months (median, 11.5 months), patients displayed symptomatic benefit, improved functional capacity, and greater exercise tolerance. No major adverse reactions developed. These findings suggest that angiotensin converting enzyme inhibition with captopril in congestive heart failure patients improved cardiocirculatory function through selective arteriolar dilatation. The reordering of regional blood flow which appears to result from release of angiotensin-mediated vasoconstriction, as well as the suppression of aldosterone, may underlie the prolonged benefit observed in these patients. This oral vasodilator appears to represent an effective adjunct for the treatment of advanced, chronic heart failure refractory to conventional measures. PMID:7013458

  2. Effects of Moderate-to-Severe Impairment of the Estimated Glomerular Filtration Rate and of Proteinuria on the Central Hemodynamics and Arterial Stiffness in Middle-Aged Healthy Japanese Men

    PubMed Central

    Tomiyama, Hirofumi; Odaira, Mari; Matsumoto, Chisa; Yamada, Jiko; Yoshida, Masanobu; Shiina, Kazuki; Yamashina, Akira

    2011-01-01

    We evaluated the effects of moderate-to-severe impairment of the estimated glomerular filtration rate (eGFR: 15 to 59 mL/min per 1.73 m2) and of proteinuria on the central hemodynamics and the pulse wave velocity (PWV) in 2244 middle-aged healthy Japanese men who were not receiving any medications for cardiovascular diseases or cardiovascular risk factors. The adjusted value of the radial augmentation index was higher in the subjects with proteinuria than in those without proteinuria. On the other hand, this value was similar between the subjects with and without moderate-to-severe impairment of the eGFR. Not only proteinuria but also moderate-to-severe impairment of the eGFR was associated with increase in the adjusted value of the brachial-ankle PWV. Thus, proteinuria was found to be an independent risk factor for abnormal central hemodynamics and increased stiffness of the large- to middle-sized arteries, while moderate-to-severe impairment of the eGFR was associated with an increase of the arterial stiffness, but not with abnormality of the central hemodynamics. PMID:21423551

  3. Correlations of Flow Structure and Particle Deposition with Structural Alterations in Severe Asthmatic Lungs

    NASA Astrophysics Data System (ADS)

    Choi, Sanghun; Miyawaki, Shinjiro; Choi, Jiwoong; Hoffman, Eric A.; Wenzel, Sally; Lin, Ching-Long

    2014-11-01

    Severe asthmatics are characterized by alterations of bifurcation angle, hydraulic diameter, circularity of the airways, and local shift of air-volume functional change. The characteristics altered against healthy human subjects can affect flow structure and particle deposition. A large-eddy-simulation (LES) model for transitional and turbulent flows is utilized to study flow characteristics and particle deposition with representative healthy and severe asthmatic lungs. For the subject-specific boundary condition, local air-volume changes are derived with two computed tomography images at inspiration and expiration. Particle transport simulations are performed on LES-predicted flow fields. In severe asthmatics, the elevated air-volume changes of apical lung regions affect the increased particle distribution toward upper lobes, especially for small particles. The constricted airways are significantly correlated with high wall shear stress, leading to the increased pressure drop and particle deposition. The structural alterations of bifurcation angle, circularity and hydraulic diameter in severe asthmatics are associated with the increase of particle deposition, wall shear stress and wall thickness. NIH Grants: U01-HL114494, R01-HL094315 and S10-RR022421. Computer time: XSEDE.

  4. Interleukin-1 receptor blockade improves survival and hemodynamic performance in Escherichia coli septic shock, but fails to alter host responses to sublethal endotoxemia.

    PubMed Central

    Fischer, E; Marano, M A; Van Zee, K J; Rock, C S; Hawes, A S; Thompson, W A; DeForge, L; Kenney, J S; Remick, D G; Bloedow, D C

    1992-01-01

    The present study was undertaken to evaluate the extent to which an endogenous interleukin-1 (IL-1) response contributes to the hemodynamic and metabolic consequences of sublethal endotoxemia or lethal Gram-negative septic shock. Young, healthy baboons received either a sublethal dose of lipopolysaccharide (LPS) or an LD100 of live Escherichia coli bacteria, and one half of the animals in each group were continuously infused with IL-1 receptor antagonist (IL-1ra). Plasma IL-1 beta was not detected in this model of endotoxemia. Administration of IL-1ra had only minimal effects on the modest hemodynamic and metabolic responses to sublethal endotoxemia, and did not attenuate the plasma cytokine response. In contrast, high circulating levels of IL-1 beta (range 300-800 pg/ml) were seen during lethal E. coli septic shock. IL-1ra treatment significantly attenuated the decrease in mean arterial blood pressure (MAP) (from -72 +/- 8 to -43 +/- 6 mm Hg; P less than 0.05) and cardiac output (from -0.81 +/- 0.17 to -0.48 +/- 0.15 liter/min; P less than 0.05), and significantly improved survival from 43 to 100% at 24 h (P less than 0.05). The plasma IL-1 beta and IL-6 responses to lethal E. coli septic shock were also significantly diminished by IL-1ra treatment (P less than 0.05), whereas tumor necrosis factor-alpha (TNF alpha) concentrations were unaffected. We conclude that an exaggerated systemic IL-1 beta response is characteristic of lethal E. coli septic shock, and contributes significantly to the hemodynamic and metabolic consequences of E. coli septic shock. IL-1ra can significantly attenuate the cytokine cascade and improve survival. PMID:1533231

  5. Prevalence and severity of foot pad alterations in German turkey poults during the early rearing phase.

    PubMed

    Bergmann, S; Ziegler, N; Bartels, T; Hübel, J; Schumacher, C; Rauch, E; Brandl, S; Bender, A; Casalicchio, G; Krautwald-Junghanns, M-E; Erhard, M H

    2013-05-01

    In the previously performed field study from 2007 to 2009, it became evident that foot pad alterations were already commonly found in turkeys at the age of 6 wk. At this early age, 45% of the clinically examined birds were diagnosed with epithelial necrosis. Therefore, it became important to specifically analyze the situation during the early rearing phase. The present study reflects the prevalence and severity of foot pad alterations of turkey poults up to the age of 35 d (5 wk), starting as early as the age of 3 d. From 24 turkey farms throughout Germany, in general 5,531 turkeys [3,131 male and 2,400 female] of the British United Turkeys 6 strain from 46 flocks, were examined to that effect. Prevalence and severity increased within the duration of stay in the stable, and the prevalence was higher (P < 0.001) during the second visit between d 22 to 35 (factor: 0.94). Therefore, 27.3% (d 3 to 5; male/female: 39.1/25.0%) and 63.3% (d 22 to 35: 61.3/65.7%) of the examined poults had alterations of the foot pads, such as hyperkeratosis (d 3 to 5: 20.4/14.2%; d 22 to 35: 17.6/17.1%), high-grade hyperkeratosis with adhesive dirt (d 3 to 5: 8.7/10.7%; d 22 to 35: 29.2/39.3%), and epithelial necrosis (d 3 to 5: 0.1/0.1%; d 22 to 35: 14.6/9.3%). Female poults showed a higher risk (P < 0.001) of developing food pad alterations (factor: 0.76) than male poults. Male poults developed a higher percentage of epithelial necrosis than hens shortly before relocation. A higher stocking density during the very early rearing phase (d 3 to 5) led to a worse foot pad health status (P < 0.001). Because even mild alterations in the foot pad condition can be indicators for suboptimal design of the rearing environment and are to be seen as a pre-state for severe cases of foot pad dermatitis, it is important to set the main focus on the early rearing phase. PMID:23571325

  6. Airway glutathione homeostasis is altered in children with severe asthma: Evidence for oxidant stress

    PubMed Central

    Fitzpatrick, Anne M.; Teague, W. Gerald; Holguin, Fernando; Yeh, Mary; Brown, Lou Ann S.

    2009-01-01

    Background Severe asthma is characterized by persistent airway inflammation and increased formation of reactive oxygen species. Objectives Glutathione (GSH) is an important antioxidant in the epithelial lining fluid (ELF). We hypothesized that airway GSH homeostasis was altered in children with severe asthma and was characterized by decreased GSH and increased glutathione disulfide (GSSG) concentrations. Methods Bronchoalveolar lavage was obtained from 65 children with severe asthma, including 35 children with baseline airway obstruction evidenced by FEV1 <80%. Control data were obtained from 6 children with psychogenic (habit) cough or vocal cord dysfunction undergoing diagnostic bronchoscopy and 35 healthy adult controls. GSH, GSSG, and other determinants of airway oxidative stress including glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), malondialdehyde, 8-isoprostane, and H2O2 were measured in the ELF. The ELF redox potential was calculated from GSH and GSSG by using the Nernst equation. Results: Compared with controls, subjects with severe asthma had lower airway GSH with increased GSSG despite no differences in GST, GR, and GPx activities between groups. This was accompanied by increased malondialdehyde, 8-isoprostane, and H2O2 concentrations in the ELF. GSH oxidation was most apparent in subjects with severe asthma with airway obstruction and was supported by an upward shift in the ELF GSH redox potential. Conclusion Children with severe asthma have increased biomarkers of oxidant stress in the ELF that are associated with increased formation of GSSG and a shift in the GSH redox potential toward the more oxidized state. PMID:19130935

  7. Altered hypothalamic inflammatory gene expression correlates with heat stroke severity in a conscious rodent model.

    PubMed

    Audet, Gerald N; Dineen, Shauna M; Quinn, Carrie M; Leon, Lisa R

    2016-04-15

    It has been suggested that heat-induced hypothalamic damage mediates core temperature (Tc) disturbances during heat stroke (HS) recovery; this is significant as hypothermia and/or fever have been linked to severity and overall pathological insult. However, to date there has been a lack of histological evidence in support of these claims. We hypothesized that local hypothalamic cytokines and/or chemokines, known regulators of Tc, are mediating the elevation in Tc during HS recovery even in the absence of histological damage. In experiment 1, the hypothalamus of Fischer 344 rats was examined for 84 cytokine/chemokine genes (real-time PCR) at multiple time points (Tc,Max, 1, 3, and 10 days) during mild HS recovery. In experiment 2, the hypothalamus of three different HS severities (MILD, moderate [MOD], and severe [SEV]) in rats were examined for the same genes as experiment 1 as well as six oxidative damage markers, at a single intermediate time point (1 day). Systemic cytokines were also analyzed in experiment 2 across the three severities. There were significant alterations in 25 cytokines/chemokines expression at Tc,Max, but little or no changes in expression at longer time points in experiment 1. In experiment 2 there were significant changes in gene expression in SEV rats only, with MILD and MOD rats showing baseline expression at 1 day, despite an absence of systemic cytokine expression in any severity. There was also no change in any oxidative marker of damage at 1 day, regardless of severity. In conclusion, we show only limited changes during long term recovery from HS, but demonstrate differences in hypothalamic gene expression patterns that may be driving HS pathology and morbidity. These findings contribute to our overall understanding of HS pathology in the CNS, as well as providing avenues for future pharmacological intervention. PMID:26876741

  8. Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling.

    PubMed

    Naviglio, Samuele; Arrigo, Serena; Martelossi, Stefano; Villanacci, Vincenzo; Tommasini, Alberto; Loganes, Claudia; Fabretto, Antonella; Vignola, Silvia; Lonardi, Silvia; Ventura, Alessandro

    2014-08-01

    Transforming growth factor beta is a pleiotropic cytokine which plays a central role in the homeostasis of the immune system. A complex dysregulation of its signaling occurs in Loeys-Dietz syndrome, a monogenic disorder caused by mutations of transforming growth factor beta receptors type 1 or type 2, characterized by skeletal involvement, craniofacial abnormalities, and arterial tortuosity with a strong predisposition for aneurysm and dissection. In addition, several immunologic abnormalities have been described in these patients, including an increased risk of allergic disorders as well as eosinophilic gastrointestinal disorders. The occurrence of inflammatory bowel disorders has been also reported, but it is poorly documented. We describe two unrelated children with Loeys-Dietz syndrome affected by severe chronic inflammatory colitis appearing at an early age. The intestinal disease presented similar features in both patients, including a histopathological picture of non-eosinophilic chronic ulcerative colitis, striking elevation of inflammatory markers, and a distinctly severe clinical course leading to failure to thrive, with resistance to multiple immunosuppressive treatments. One of the patients also presented autoimmune thyroiditis. Our report confirms that chronic ulcerative colitis may be associated with Loeys-Dietz syndrome. This finding suggests that an alteration of transforming growth factor beta signaling may by itself predispose to inflammatory colitis in humans, and represent an invaluable model to understand inflammatory bowel diseases. PMID:24486179

  9. Hemodynamic Intervention of Cerebral Aneurysms

    NASA Astrophysics Data System (ADS)

    Meng, Hui

    2005-11-01

    Cerebral aneurysm is a pathological vascular response to hemodynamic stimuli. Endovascular treatment of cerebral aneurysms essentially alters the blood flow to stop them from continued growth and eventual rupture. Compared to surgical clipping, endovascular methods are minimally invasive and hence rapidly gaining popularity. However, they are not always effective with risks of aneurysm regrowth and various complications. We aim at developing a Virtual Intervention (VI) platform that allows: patient-specific flow calculation and risk prediction as well as recommendation of tailored intervention based on quantitative analysis. This is a lofty goal requiring advancement in three areas of research: (1). Advancement of image-based CFD; (2) Understanding the biological/pathological responses of tissue to hemodynamic factors in the context of cerebral aneurysms; and (3) Capability of designing and testing patient-specific endovascular devices. We have established CFD methodologies based on anatomical geometry obtained from 3D angiographic or CT images. To study the effect of hemodynamics on aneurysm development, we have created a canine model of a vascular bifurcation anastomosis to provide the hemodynamic environment similar to those in CA. Vascular remodeling was studied using histology and compared against the flow fields obtained from CFD. It was found that an intimal pad, similar to those frequently seen clinically, developed at the flow impingement site, bordering with an area of `groove' characteristic of an early stage of aneurysm, where the micro environment exhibits an elevated wall shear stresses. To further address the molecular mechanisms of the flow-mediated aneurysm pathology, we are also developing in vitro cell culture systems to complement the in vivo study. Our current effort in endovascular device development focuses on novel stents that alters the aneurysmal flow to promote thrombotic occlusion as well as favorable remodeling. Realization of an

  10. Caudal anesthesia in a patient with severe pulmonary hypertension.

    PubMed

    Ly, Doanh T

    2010-06-01

    Delivery of anesthesia to patients with severe pulmonary hypertension can be extremely challenging. The profound hemodynamic alterations of the disease can often be exacerbated by alterations in circulatory function brought about by anesthetic and surgical interventions. High perioperative morbidity and mortality rates have been reported. Minimizing adverse outcomes in these patients requires careful perioperative evaluation and planning. Selection of an anesthetic technique suitable for the surgery without causing major hemodynamic alterations, which can lead to cardiac failure and death, is a unique consideration of the anesthesia provider. As shown in this case report, caudal anesthesia, when appropriate, can offer a safe anesthetic for these patients. PMID:20572406

  11. Alterations of diaphragm and rib cage morphometry in severe COPD patients by CT analysis.

    PubMed

    Salito, C; Luoni, E; Aliverti, A

    2015-08-01

    Although it is known that in patients with COPD acute hyperinflation determines shortening of the inspiratory muscles, its effects on both diaphragm and rib cage morphology are still to be investigated. In this preliminary study the relationships between hyperinflation, emphysema, diaphragm and rib cage geometry were studied in 5 severe COPD patients and 5 healthy subjects. An automatic software was developed to obtain the 3-D reconstruction of diaphragm and rib cage from CT scans taken at total lung capacity (TLC) and residual volume (RV). Dome surface area (Ado), radius of curvature, length (Ld) and position (referred to xiphoid level) of the diaphragm and antero-posterior (A-P) and transverse (T) diameters of rib cage were calculated at both volumes. Ado and Ld were similar in COPD and controls when compared at similar absolute lung volumes. Radius of curvature was significantly higher in COPD than in controls only at TLC. In COPD, the range of diaphragm position was invariantly below the xiphoid level, while in controls the top of diaphragm dome was always above it. Rib cage diameters were not different at TLC. A-P diameter was greater in COPD than in controls at RV, while T diameters were similar. In conclusion, in severe COPD diaphragm and rib cage geometry is altered at RV. The lower position of diaphragm is associated to smaller A-P but not transversal rib cage diameters, such that rib cage adopts a more circular shape. PMID:26737755

  12. Altered invertase activities of symptomatic tissues on Beet severe curly top virus (BSCTV) infected Arabidopsis thaliana.

    PubMed

    Park, Jungan; Kim, Soyeon; Choi, Eunseok; Auh, Chung-Kyun; Park, Jong-Bum; Kim, Dong-Giun; Chung, Young-Jae; Lee, Taek-Kyun; Lee, Sukchan

    2013-09-01

    Arabidopsis thaliana infected with Beet severe curly top virus (BSCTV) exhibits systemic symptoms such as stunting of plant growth, callus induction on shoot tips, and curling of leaves and shoot tips. The regulation of sucrose metabolism is essential for obtaining the energy required for viral replication and the development of symptoms in BSCTV-infected A. thaliana. We evaluated the changed transcript level and enzyme activity of invertases in the inflorescence stems of BSCTV-infected A. thaliana. These results were consistent with the increased pattern of ribulose-1,5-bisphosphate carboxylase/oxygenase activity and photosynthetic pigment concentration in virus-infected plants to supply more energy for BSCTV multiplication. The altered gene expression of invertases during symptom development was functionally correlated with the differential expression patterns of D-type cyclins, E2F isoforms, and invertase-related genes. Taken together, our results indicate that sucrose sensing by BSCTV infection may regulate the expression of sucrose metabolism and result in the subsequent development of viral symptoms in relation with activation of cell cycle regulation. PMID:23589148

  13. Altered plasma pharmacokinetics of ceftiofur hydrochloride in cows affected with severe clinical mastitis.

    PubMed

    Gorden, P J; Kleinhenz, M D; Wulf, L W; KuKanich, B; Lee, C J; Wang, C; Coetzee, J F

    2016-01-01

    Mastitis is a frequent problem among dairy cows, reducing milk yield and increasing cull rates. Systemic therapy with the cephalosporin antimicrobial ceftiofur hydrochloride (CEF) may improve therapeutic outcomes, but the incidence of CEF violative residues has increased annually since 2011. One potential explanation is that disease status may alter the pharmacokinetics (PK) of CEF. To test this hypothesis, we compared the plasma PK of CEF in healthy cows with those with severe endotoxic mastitis. Eight cows with naturally occurring mastitis and 8 clinically healthy cows were treated with 2.2 mg of CEF per kilogram of body weight once daily for 5d via the intramuscular route. Blood was collected at 0, 0.33, 0.67, 1, 1.5, 2, 3, 4, 8, 16, and 24h after the first CEF administration and every 8h thereafter until 120 h after the final dose. Plasma samples were analyzed for CEF concentrations using liquid chromatography coupled with mass spectrometry. With the exception of time 0, CEF was detected at all time points. The disease group had a significantly higher plasma CEF concentration at t=3h after the first injection and a significantly lower plasma concentration from 40 to 152 h following the first injection, with the exception of the t=64 h time point. Data following the first injection (time 0-24 h) were fit to a single-dose, noncompartmental PK model. This model indicated that the disease group had a shorter plasma half-life. A multidose, noncompartmental model was used to determine steady-state PK. Compared with control cows, the disease group had an initially higher peak concentration and a higher volume of distribution and drug clearance rates. The disease group also had a lower area under the curve per dosing interval, steady-state concentration maximum, and dose-adjusted peak steady-state concentration. All other PK parameters were not different between the 2 groups. Altered PK, as suggested by this trial, may contribute to an increased risk for the

  14. Loss of Bace1 in Mice Does Not Alter the Severity of Caerulein Induced Pancreatitis

    PubMed Central

    Heindl, Mario; Tuennemann, Jan; Sommerer, Ines; Mössner, Joachim; Hoffmeister, Albrecht

    2015-01-01

    Context Beta-site alpha-amyloid protein cleaving enzyme1 (BACE1) plays a key role in the pathogenesis of Alzheimer’s disease. Additional to its moderate expression in the brain, high levels of BACE1 mRNA were found in the pancreas. Murine Bace1 has been immunohistochemicaly detected at the apical pole of acinar cells within the exocrine pancreas of mice and Bace1 activity was observed in pancreatic juice. In vitro experiments revealed enteropeptidase as a putative substrate for Bace1 suggesting a role in acute pancreatitis. Objective The aim of this study was to address a protective mechanism of Bace1 in acute experimental pancreatitis in mice. Methods Acute experimental pancreatitis was induced by intraperitoneal injection of caerulein in homozygote Bace1-/- mice and wild type mice. Serum and tissue analyses were carried out after 4 h, 8 h and 24 h. Measurement of plasma amylase and lipase was performed to confirm pancreatitis induction. In order to assess the severity of pancreatitis H&E stained pancreatic sections were examined regarding edema, inflammation and apoptosis. Immunohistochemical detection of myeloperoxidase (MPO) positive cells was carried out to further quantify the extent of inflammation. Expression of Bace2 within the pancreas was analyzed by immunohistochemistry and RT-qPCR. Results We demonstrate that total loss of Bace1 in mice leads to no alterations in the course of acute experimental caerulein-pancreatitis. Bace1-/- mice develop a moderate pancreatitis that is comparable in histomorphological and serological features with those seen in wild type mice. Discussion We discuss the results in the context of the applied caerulein induced edematous pancreatitis model and possible compensatory mechanisms via Bace2 that might be responsible for the observed results. PMID:25961820

  15. Invasive hemodynamics of constrictive pericarditis

    PubMed Central

    Doshi, Shrenik; Ramakrishnan, Sivasubramanian; Gupta, Saurabh Kumar

    2015-01-01

    Cardiac catheterization and hemodynamic study is the gold standard for the diagnosis of pericardial constriction. Careful interpretation of the hemodynamic data is essential to differentiate it from other diseases with restrictive physiology. In this hemodynamic review we shall briefly discuss the physiologic basis of various hemodynamic changes seen in a patient with constrictive pericarditis. PMID:26071303

  16. Effect of ultra-fast mild hypothermia using total liquid ventilation on hemodynamics and respiratory mechanics.

    PubMed

    Sage, Michaël; Nadeau, Mathieu; Kohlhauer, Matthias; Praud, Jean-Paul; Tissier, Renaud; Robert, Raymond; Walti, Hervé; Micheau, Philippe

    2016-08-01

    Ultra-fast cooling for mild therapeutic hypothermia (MTH) has several potential applications, including prevention of post-cardiac arrest syndrome. Ultra-fast MTH by total liquid ventilation (TLV) entails the sudden filling of the lungs with a cold perfluorocarbon liquid and its subsequent use to perform TLV. The present physiological study was aimed at assessing whether pulmonary and systemic hemodynamics as well as lung mechanics are significantly altered during this procedure. Pulmonary and systemic arterial pressures, cardiac output as well as airway resistance and respiratory system compliance were measured during ultra-fast MTH by TLV followed by rewarming and normothermia in six healthy juvenile lambs. Results show that none of the studied variables were altered upon varying the perfluorocarbon temperature from 12 to 41 °C. It is concluded that ultra-fast MTH by TLV does not have any deleterious effect on hemodynamics or lung mechanics in healthy juvenile lambs. PMID:27242031

  17. Functional hemodynamic monitoring

    PubMed Central

    Pinsky, Michael R; Payen, Didier

    2005-01-01

    Hemodynamic monitoring is a central component of intensive care. Patterns of hemodynamic variables often suggest cardiogenic, hypovolemic, obstructive, or distributive (septic) etiologies to cardiovascular insufficiency, thus defining the specific treatments required. Monitoring increases in invasiveness, as required, as the risk for cardiovascular instability-induced morbidity increases because of the need to define more accurately the diagnosis and monitor the response to therapy. Monitoring is also context specific: requirements during cardiac surgery will be different from those in the intensive care unit or emergency department. Solitary hemodynamic values are useful as threshold monitors (e.g. hypotension is always pathological, central venous pressure is only elevated in disease). Some hemodynamic values can only be interpreted relative to metabolic demand, whereas others have multiple meanings. Functional hemodynamic monitoring implies a therapeutic application, independent of diagnosis such as a therapeutic trial of fluid challenge to assess preload responsiveness. Newer methods for assessing preload responsiveness include monitoring changes in central venous pressure during spontaneous inspiration, and variations in arterial pulse pressure, systolic pressure, and aortic flow variation in response to vena caval collapse during positive pressure ventilation or passive leg raising. Defining preload responsiveness using these functional measures, coupled to treatment protocols, can improve outcome from critical illness. Potentially, as these and newer, less invasive hemodynamic measures are validated, they could be incorporated into such protocolized care in a cost-effective manner. PMID:16356240

  18. Alterations in the Composition of the Supramucosal Defense Barrier in Relation to Disease Severity of Ulcerative Colitis

    PubMed Central

    Longman, Rob J.; Poulsom, Richard; Corfield, Anthony P.; Warren, Bryan F.; Wright, Nicholas A.; Thomas, Michael G.

    2006-01-01

    Mucin glycoproteins and trefoil peptides play an important role in protection and repair of the gastrointestinal epithelium. This study investigates alterations in mucin and trefoil peptide gene expression and product localization in ulcerative colitis (UC). Product localization and message expression of mucin MUC1 to 6 and trefoil peptide TFF1 to 3 genes was analyzed in rectosigmoid tissue from a cohort of patients with active UC and compared with that of normal colorectal mucosa. MUC1 expression was upregulated in severe UC at the site of rupture of crypt abscesses. Reduction in MUC2 expression occurred in UC adjacent to ulceration. No alteration in MUC3 or MUC4 gene expression was detectable in UC compared with normal colorectal mucosa. No ectopic expression of MUC5AC, MUC5B, or MUC6 was identified in UC. Ectopic TFF1 expression was identified in tissues eliciting histological features of severe disease. Decreased TFF3 localization was demonstrated in UC tissues, but no TFF2 expression was detected in any colorectal specimens. Subtle alterations in composition of the supramucosal defense barrier exist in UC and vary in relation to clinical severity of disease. There is upregulation in mucin MUC1 at crypt abscesses and neo-expression of TFF1 trefoil peptide in severe disease. PMID:16924127

  19. Hemodynamics of Cerebral Aneurysms

    PubMed Central

    Sforza, Daniel M.; Putman, Christopher M.; Cebral, Juan Raul

    2009-01-01

    The initiation and progression of cerebral aneurysms are degenerative processes of the arterial wall driven by a complex interaction of biological and hemodynamic factors. Endothelial cells on the artery wall respond physiologically to blood-flow patterns. In normal conditions, these responses are associated with nonpathological tissue remodeling and adaptation. The combination of abnormal blood patterns and genetics predisposition could lead to the pathological formation of aneurysms. Here, we review recent progress on the basic mechanisms of aneurysm formation and evolution, with a focus on the role of hemodynamic patterns. PMID:19784385

  20. Exposure to ozone reduces influenza disease severity and alters distribution of influenza viral antigens in murine lungs.

    PubMed

    Wolcott, J A; Zee, Y C; Osebold, J W

    1982-09-01

    Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in viral antigen distribution was consistent with significantly reduced influenza disease mortality and prolonged survival time, but only when the oxidant was present during the course of infection. Reduced disease severity in ozone-exposed animals appeared to be independent of peak pulmonary virus titers, pulmonary interferon titers, and pulmonary and serum-neutralizing antibody titers. These studies suggested that the distribution of influenza virus in the murine lung was a key factor in disease severity. PMID:6182839

  1. Severe COPD Alters Muscle Fiber Conduction Velocity During Knee Extensors Fatiguing Contraction.

    PubMed

    Boccia, Gennaro; Coratella, Giuseppe; Dardanello, Davide; Rinaldo, Nicoletta; Lanza, Massimo; Schena, Federico; Rainoldi, Alberto

    2016-10-01

    The aim of this study was to assess the changes in muscle fiber conduction velocity (CV), as a sign of fatigue during knee extensor contraction in patients with chronic obstructive pulmonary disease (COPD) as compared with healthy controls. Eleven male patients (5 with severe and 6 with moderate COPD; age 67 ± 5 years) and 11 age-matched healthy male controls (age 65 ± 4 years) volunteered for the study. CV was obtained by multichannel surface electromyography (EMG) from the vastus lateralis (VL) and medialis (VM) of the quadriceps muscle during isometric, 30-second duration knee extension at 70% of maximal voluntary contraction. The decline in CV in both the VL and VM was steeper in the severe COPD patients than in healthy controls (for VL: severe COPD vs. controls -0.45 ± 0.07%/s; p < 0.001, and for VM: severe COPD vs. controls -0.54 ± 0.09%/s, p < 0.001). No difference in CV decline was found between the moderate COPD patients and the healthy controls. These findings suggest that severe COPD may impair muscle functions, leading to greater muscular fatigue, as expressed by CV changes. The results may be due to a greater involvement of anaerobic metabolism and a shift towards fatigable type II fibers in the muscle composition of the severe COPD patients. PMID:27007486

  2. Hemodynamic studies of the legs under weightlessness

    NASA Technical Reports Server (NTRS)

    Thornton, W. E.; Hoffler, G. W.

    1977-01-01

    Significant among the medical findings following prolonged space flight are reduced orthostatic tolerance and ergometric work capacity. Changes in hemodynamics of the legs with increased blood pooling and reduction in cardiac output must be considered one of the most probable causes of these effects. Concern for the above plus the observed marked tissue changes occurring in the legs during flight prompted the addition of several procedures to evaluate hemodynamic changes in the leg; resting arterial blood flow, venous compliance and muscle pumping were investigated. In so far as possible, the initial reaction to pressure in the smallest possible vein segment was examined.

  3. Altered interhemispheric and temporal lobe white matter microstructural organization in severe chronic schizophrenia.

    PubMed

    Holleran, Laurena; Ahmed, Mohamed; Anderson-Schmidt, Heike; McFarland, John; Emsell, Louise; Leemans, Alexander; Scanlon, Cathy; Dockery, Peter; McCarthy, Peter; Barker, Gareth J; McDonald, Colm; Cannon, Dara M

    2014-03-01

    Diffusion MRI investigations in schizophrenia provide evidence of abnormal white matter (WM) microstructural organization as indicated by reduced fractional anisotropy (FA) primarily in interhemispheric, left frontal and temporal WM. Using tract-based spatial statistics (TBSS), we examined diffusion parameters in a sample of patients with severe chronic schizophrenia. Diffusion MRI data were acquired on 19 patients with chronic severe schizophrenia and 19 age- and gender-matched healthy controls using a 64 gradient direction sequence, (b=1300 s/mm(2)) collected on a Siemens 1.5T MRI scanner. Diagnosis of schizophrenia was determined by Diagnostic and Statistical Manual for Mental Disorders 4th Edition (DSM-IV) Structured Clinical Interview for DSM disorder (SCID). Patients were treatment resistance, having failed to respond to at least two antipsychotic medications, and had prolonged periods of moderate to severe positive or negative symptoms. Analysis of diffusion parameters was carried out using TBSS. Individuals with chronic severe schizophrenia had significantly reduced FA with corresponding increased radial diffusivity in the genu, body, and splenium of the corpus callosum, the right posterior limb of the internal capsule, right external capsule, and the right temporal inferior longitudinal fasciculus. There were no voxels of significantly increased FA in patients compared with controls. A decrease in splenium FA was shown to be related to a longer illness duration. We detected widespread abnormal diffusivity properties in the callosal and temporal lobe WM regions in individuals with severe chronic schizophrenia who have not previously been exposed to clozapine. These deficits can be driven by a number of factors that are indistinguishable using in vivo diffusion-weighted imaging, but may be related to reduced axonal number or packing density, abnormal glial cell arrangement or function, and reduced myelin. PMID:24150571

  4. Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation.

    PubMed

    Monk, Jennifer M; Lepp, Dion; Zhang, Claire P; Wu, Wenqing; Zarepoor, Leila; Lu, Jenifer T; Pauls, K Peter; Tsao, Rong; Wood, Geoffrey A; Robinson, Lindsay E; Power, Krista A

    2016-02-01

    Common beans are rich in phenolic compounds and nondigestible fermentable components, which may help alleviate intestinal diseases. We assessed the gut health priming effect of a 20% cranberry bean flour diet from two bean varieties with differing profiles of phenolic compounds [darkening (DC) and nondarkening (NDC) cranberry beans vs. basal diet control (BD)] on critical aspects of gut health in unchallenged mice, and during dextran sodium sulfate (DSS)-induced colitis (2% DSS wt/vol, 7 days). In unchallenged mice, NDC and DC increased (i) cecal short-chain fatty acids, (ii) colon crypt height, (iii) crypt goblet cell number and mucus content and (iv) Muc1, Klf4, Relmβ and Reg3γ gene expression vs. BD, indicative of enhanced microbial activity and gut barrier function. Fecal 16S rRNA sequencing determined that beans reduced abundance of the Lactobacillaceae (Ruminococcus gnavus), Clostridiaceae (Clostridium perfringens), Peptococcaceae, Peptostreptococcaceae, Rikenellaceae and Pophyromonadaceae families, and increased abundance of S24-7 and Prevotellaceae. During colitis, beans reduced (i) disease severity and colonic histological damage, (ii) increased gene expression of barrier function promoting genes (Muc1-3, Relmβ, and Reg3γ) and (iii) reduced colonic and circulating inflammatory cytokines (IL-1β, IL-6, IFNγ and TNFα). Therefore, prior to disease induction, bean supplementation enhanced multiple concurrent gut health promoting parameters that translated into reduced colitis severity. Moreover, both bean diets exerted similar effects, indicating that differing phenolic content did not influence the endpoints assessed. These data demonstrate a proof-of-concept regarding the gut-priming potential of beans in colitis, which could be extended to mitigate the severity of other gut barrier-associated pathologies. PMID:26878790

  5. Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome.

    PubMed

    de Paiva, Cintia S; Jones, Dan B; Stern, Michael E; Bian, Fang; Moore, Quianta L; Corbiere, Shani; Streckfus, Charles F; Hutchinson, Diane S; Ajami, Nadim J; Petrosino, Joseph F; Pflugfelder, Stephen C

    2016-01-01

    There is mounting evidence that the microbiome has potent immunoregulatory functions. We assessed the effects of intestinal dysbiosis in a model of Sjögren syndrome (SS) by subjecting mice to desiccating stress (DS) and antibiotics (ABX). We characterized the conjunctival, tongue and fecal microbiome profiles of patients with SS. Severity of ocular surface and systemic disease was graded. 16S ribosomal RNA gene sequencing characterized the microbiota. ABX + DS mice had a significantly worse dry eye phenotype compared to controls, a decrease in Clostridium and an increase in Enterobacter, Escherichia/Shigella, and Pseudomonas in stool after ABX + DS for 10 days. Goblet cell density was significantly lower in ABX treated groups compared to controls. Stool from SS subjects had greater relative abundances of Pseudobutyrivibrio, Escherichia/Shigella, Blautia, and Streptococcus, while relative abundance of Bacteroides, Parabacteroides, Faecalibacterium, and Prevotella was reduced compared to controls. The severity of SS ocular and systemic disease was inversely correlated with microbial diversity. These findings suggest that SS is marked by a dysbiotic intestinal microbiome driven by low relative abundance of commensal bacteria and high relative abundance of potentially pathogenic genera that is associated with worse ocular mucosal disease in a mouse model of SS and in SS patients. PMID:27087247

  6. Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome

    PubMed Central

    de Paiva, Cintia S.; Jones, Dan B.; Stern, Michael E.; Bian, Fang; Moore, Quianta L.; Corbiere, Shani; Streckfus, Charles F.; Hutchinson, Diane S.; Ajami, Nadim J.; Petrosino, Joseph F.; Pflugfelder, Stephen C.

    2016-01-01

    There is mounting evidence that the microbiome has potent immunoregulatory functions. We assessed the effects of intestinal dysbiosis in a model of Sjögren syndrome (SS) by subjecting mice to desiccating stress (DS) and antibiotics (ABX). We characterized the conjunctival, tongue and fecal microbiome profiles of patients with SS. Severity of ocular surface and systemic disease was graded. 16S ribosomal RNA gene sequencing characterized the microbiota. ABX + DS mice had a significantly worse dry eye phenotype compared to controls, a decrease in Clostridium and an increase in Enterobacter, Escherichia/Shigella, and Pseudomonas in stool after ABX + DS for 10 days. Goblet cell density was significantly lower in ABX treated groups compared to controls. Stool from SS subjects had greater relative abundances of Pseudobutyrivibrio, Escherichia/Shigella, Blautia, and Streptococcus, while relative abundance of Bacteroides, Parabacteroides, Faecalibacterium, and Prevotella was reduced compared to controls. The severity of SS ocular and systemic disease was inversely correlated with microbial diversity. These findings suggest that SS is marked by a dysbiotic intestinal microbiome driven by low relative abundance of commensal bacteria and high relative abundance of potentially pathogenic genera that is associated with worse ocular mucosal disease in a mouse model of SS and in SS patients. PMID:27087247

  7. Optical imaging of neural and hemodynamic brain activity

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  8. Age-Related Alteration of Arginase Activity Impacts on Severity of Leishmaniasis

    PubMed Central

    Müller, Ingrid; Hailu, Asrat; Choi, Beak-San; Abebe, Tamrat; Fuentes, Jose M.; Munder, Markus; Modolell, Manuel; Kropf, Pascale

    2008-01-01

    Background The leishmaniases are a group of vector-borne parasitic diseases that represent a major international public health problem; they belong to the most neglected tropical diseases and have one of the highest rates of morbidity and mortality. The clinical outcome of infection with Leishmania parasites depends on a variety of factors such as parasite species, vector-derived products, genetics, behaviour, and nutrition. The age of the infected individuals also appears to be critical, as a significant proportion of clinical cases occur in children; this age-related higher prevalence of disease is most remarkable in visceral leishmaniasis. The mechanisms resulting in this higher incidence of clinical disease in children are poorly understood. We have recently revealed that sustained arginase activity promotes uncontrolled parasite growth and pathology in vivo. Here, we tested the hypothesis that arginase-mediated L-arginine metabolism differs with age. Methodology The age distribution of patients with visceral or cutaneous leishmaniasis was determined in cohorts of patients in our clinics in endemic areas in Ethiopia. To exclude factors that are difficult to control in patients, we assessed the impact of ageing on the manifestations of experimental leishmaniasis. We determined parasite burden, T cell responses, and macrophage effector functions in young and aged mice during the course of infection. Results Our results show that younger mice develop exacerbated lesion pathology and higher parasite burdens than aged mice. This aggravated disease development in younger individuals does not correlate with a change in T helper cytokine profile. To address the underlying mechanisms responsible for the more severe infections in younger mice, we investigated macrophage effector functions. Our results show that macrophages from younger mice do not have an impaired capacity to kill parasites; however, they express significantly higher levels of arginase 1 than aged mice

  9. A dose-responsive model of smoke inhalation injury. Severity-related alteration in cardiopulmonary function.

    PubMed Central

    Shimazu, T; Yukioka, T; Hubbard, G B; Langlinais, P C; Mason, A D; Pruitt, B A

    1987-01-01

    The dose responsiveness of selected physiologic indices was studied in a sheep model of smoke inhalation injury. In this model, graded severity of injury was achieved by changing the contact time with smoke (defined by "unit"), whereas other variables were kept constant. Blood gas and cardiopulmonary indices were measured in 70 sheep, including 12 controls, either 24 or 72 hours after exposure to 3, 6, 9, 12, 15, or 18 units of smoke. A 12-unit dose of smoke was fatal within 72 hours and an 18-unit dose was fatal within 24 hours. The best correlation between smoke dose and response was observed in arterial oxygen tension 24 hours after exposure. At 24 hours, most of the cardiopulmonary indices showed significant change only after a 12-unit exposure. Although the exact shape of the dose-response curve could not be defined, sigmoid or curved linear shape was suggested, reflecting the progressive deterioration. Images Fig. 3. Fig. 4A. Fig. 4B. PMID:3606236

  10. Altered cortical thickness related to clinical severity but not the untreated disease duration in schizophrenia.

    PubMed

    Xiao, Yuan; Lui, Su; Deng, Wei; Yao, Li; Zhang, Wenjing; Li, Shiguang; Wu, Min; Xie, Teng; He, Yong; Huang, Xiaoqi; Hu, Junmei; Bi, Feng; Li, Tao; Gong, Qiyong

    2015-01-01

    Although previous studies have reported deficits in the gray matter volume of schizophrenic patients, it remains unclear whether these deficits occur at the onset of the disease, before treatment, and whether they are progressive over the duration of untreated disease. Furthermore, the gray matter volume represents the combinations of cortical thickness and surface area; these features are believed to be influenced by different genetic factors. However, cortical thickness and surface area in antipsychotic-naive first-episode schizophrenic patients have seldom been investigated. Here, the cortical thicknesses and surface areas of 128 antipsychotic-naive first-episode schizophrenic patients were compared with 128 healthy controls. The patients exhibited significantly lower cortical thickness, primarily in the bilateral prefrontal and parietal cortex, and increased thickness in the bilateral anterior temporal lobes, left medial orbitofrontal cortex, and left cuneus. Furthermore, decreased cortical thickness was related to positive schizophrenia symptoms but not to the severity of negative symptoms and the untreated disease duration. No significant difference of surface area was observed between the 2 groups. Thus, without the confounding factors of medication and illness progression, this study provides further evidence to support anatomical deficits in the prefrontal and parietal cortex early in course of the illness. The increased thicknesses of the bilateral anterior temporal lobes may represent a compensatory factor or may be an early-course neuronal pathology caused by preapoptotic osmotic changes or hypertrophy. Furthermore, these anatomical deficits are crucial to the pathogenesis of positive symptoms and relatively stable instead of progressing during the early stages of the disease. PMID:24353097

  11. Altered lipid metabolism in Hfe-knockout mice promotes severe NAFLD and early fibrosis.

    PubMed

    Tan, Terrence C H; Crawford, Darrell H G; Jaskowski, Lesley A; Murphy, Therese M; Heritage, Mandy L; Subramaniam, V Nathan; Clouston, Andrew D; Anderson, Gregory J; Fletcher, Linda M

    2011-11-01

    The HFE protein plays a crucial role in the control of cellular iron homeostasis. Steatosis is commonly observed in HFE-related iron-overload disorders, and current evidence suggests a causal link between iron and steatosis. Here, we investigated the potential contribution of HFE mutations to hepatic lipid metabolism and its role in the pathogenesis of nonalcoholic fatty liver disease. Wild-type (WT) and Hfe knockout mice (Hfe(-/-)) were fed either standard chow, a monounsaturated low fat, or a high-fat, high-carbohydrate diet (HFD) and assessed for liver injury, body iron status, and markers of lipid metabolism. Despite hepatic iron concentrations and body weights similar to WT controls, Hfe(-/-) mice fed the HFD developed severe hypoxia-related steatohepatitis, Tnf-α activation, and mitochondrial respiratory complex and antioxidant dysfunction with early fibrogenesis. These features were associated with an upregulation in the expression of genes involved in intracellular lipid synthesis and trafficking, while transcripts for mitochondrial fatty acid β-oxidation and adiponectin signaling-related genes were significantly attenuated. In contrast, HFD-fed WT mice developed bland steatosis only, with no inflammation or fibrosis and no upregulation of lipogenesis-related genes. A HFD led to reduced hepatic iron in Hfe(-/-) mice compared with chow-fed mice, despite higher serum iron, decreased hepcidin expression, and increased duodenal ferroportin mRNA. In conclusion, our results demonstrate that Hfe(-/-) mice show defective hepatic-intestinal iron and lipid signaling, which predispose them toward diet-induced hepatic lipotoxicity, accompanied by an accelerated progression of injury to fibrosis. PMID:21817060

  12. Altered mean platelet volume in patients with polymyositis and its association with disease severity

    PubMed Central

    Peng, Y.-F.; Huang, Y.-X.; Wei, Y.-S.

    2016-01-01

    Polymyositis (PM) is an autoimmune disease characterized by chronic inflammation in skeletal muscle. Mean platelet volume (MPV), a marker in the assessment of systemic inflammation, is easily measured by automatic blood count equipment. However, to our knowledge, there are no data in the literature with respect to MPV levels in PM patients. Therefore, in this study we aimed to investigate MPV levels in patients with PM. This study included 92 newly diagnosed PM patients and 100 healthy individuals. MPV levels were found to be significantly lower compared with healthy controls (10.3±1.23 vs 11.5±0.74 fL, P<0.001). Interestingly, MPV was found to be positively correlated with manual muscle test (MMT) score and negatively correlated with erythrocyte sedimentation rate (ESR) in patients with PM (r=0.239, P=0.022; r=−0.268, P=0.010, respectively). In addition, MPV was significantly lower in active PM patients compared with inactive PM patients (9.9±1.39 vs 10.6±0.92 fL, P=0.010). MPV was independently associated with PM in multivariate regression analyses, when controlling for hemoglobin and ESR (OR=0.312, P=0.031, 95%CI=0.108 to 0.899). The ROC curve analysis for MPV in estimating PM patients resulted in an area under the curve of 0.800, with sensitivity of 75.0% and specificity of 67.4%. Our results suggest that MPV is inversely correlated with disease activity in patients with PM. MPV might be a useful tool for rapid assessment of disease severity in PM patients. PMID:27191605

  13. Hemodynamics in fetal arrhythmia.

    PubMed

    Sonesson, Sven-Erik; Acharya, Ganesh

    2016-06-01

    Fetal arrhythmias are among the few conditions that can be managed in utero. However, accurate diagnosis is essential for appropriate management. Ultrasound-based imaging methods can be used to study fetal heart structure and function noninvasively and help to understand fetal cardiovascular pathophysiology, and they remain the mainstay of evaluating fetuses with arrhythmias in clinical settings. Hemodynamic evaluation using Doppler echocardiography allows the elucidation of the electrophysiological mechanism and helps to make an accurate diagnosis. It can also be used as a tool to understand fetal cardiac pathophysiology, for assessing fetal condition and monitoring the effect of antiarrhythmic treatment. This narrative review describes Doppler techniques that are useful for evaluating fetal cardiac rhythms to refine diagnosis and provides an overview of hemodynamic changes observed in different types of fetal arrhythmia. PMID:26660845

  14. Functional Hemodynamic Monitoring

    PubMed Central

    Pinsky, Michael R.

    2014-01-01

    Functional hemodynamic monitoring is the assessment of the dynamic interactions of hemodynamic variables in response to a defined perturbation. Dynamic tissue O2 saturation (StO2) responses to complete stop flow conditions (vascular occlusion test), which can be created by measuring hand StO2 and occluding flow with a blood pressure cuff, assesses cardiovascular sufficiency and microcirculatory blood flow distribution. Recent interest in functional hemodynamic monitoring for the bedside assessment of cardiovascular insufficiency has heightened with the documentation of its accuracy in predicting volume responsiveness using a wide variety of monitoring devices both invasive and non-invasive and across multiple patient groups and clinical conditions. Accordingly, fluid responsiveness can be predicted in a quantities fashion by measuring as arterial pulse pressure variation, left ventricular stroke volume variation or their surrogates during positive pressure breathing or the change in cardiac output response to a passive leg raising maneuver. However, volume responsiveness, though important, reflects only part of the overall spectrum of functional physiological variables that can be measured to define physiologic state and monitor response to therapy. PMID:25435480

  15. Jogging Therapy for Hikikomori Social Withdrawal and Increased Cerebral Hemodynamics: A Case Report

    PubMed Central

    Nishida, Masaki; Kikuchi, Senichiro; Fukuda, Kazuhito; Kato, Satoshi

    2016-01-01

    Severe social withdrawal, called hikikomori, has drawn increased public attention. However, an optimal clinical approach and strategy of treatment has not been well established. Here, we report a case of hikikomori for which an exercise intervention using jogging therapy was effective, showing cerebral hemodynamic improvement. The patient was a 20 year old Japanese male who was hospitalized in order to evaluate and treat severe social withdrawal. Although depressive and anxiety symptoms partially subsided with sertraline alone, social withdrawal persisted due to a lack of self confidence. With his consent, we implemented exercise therapy with 30 minutes of jogging three times a week for three months. We did not change the pharmacotherapy, and his social withdrawal remarkably improved with continuous jogging exercise. Using near infrared spectroscopy to evaluate hemodynamic alteration, bilateral temporal hemodynamics considerably increased after the three-month jogging therapy. Regarding exercise therapy for mental illness, numerous studies have reported the effectiveness of exercise therapy for major depression. This case implied, however, that the applicability of exercise therapy is not limited to major depressive disorder. Jogging therapy may contribute to reinforcing self confidence associated with “resilience” in conjunction with neurophysiological modulation of neural networks. PMID:27346999

  16. Jogging Therapy for Hikikomori Social Withdrawal and Increased Cerebral Hemodynamics: A Case Report.

    PubMed

    Nishida, Masaki; Kikuchi, Senichiro; Fukuda, Kazuhito; Kato, Satoshi

    2016-01-01

    Severe social withdrawal, called hikikomori, has drawn increased public attention. However, an optimal clinical approach and strategy of treatment has not been well established. Here, we report a case of hikikomori for which an exercise intervention using jogging therapy was effective, showing cerebral hemodynamic improvement. The patient was a 20 year old Japanese male who was hospitalized in order to evaluate and treat severe social withdrawal. Although depressive and anxiety symptoms partially subsided with sertraline alone, social withdrawal persisted due to a lack of self confidence. With his consent, we implemented exercise therapy with 30 minutes of jogging three times a week for three months. We did not change the pharmacotherapy, and his social withdrawal remarkably improved with continuous jogging exercise. Using near infrared spectroscopy to evaluate hemodynamic alteration, bilateral temporal hemodynamics considerably increased after the three-month jogging therapy. Regarding exercise therapy for mental illness, numerous studies have reported the effectiveness of exercise therapy for major depression. This case implied, however, that the applicability of exercise therapy is not limited to major depressive disorder. Jogging therapy may contribute to reinforcing self confidence associated with "resilience" in conjunction with neurophysiological modulation of neural networks. PMID:27346999

  17. Two hemodynamic problems commonly associated with the microsphere technique for measuring regional blood flow in rats

    SciTech Connect

    Stanek, K.A.; Coleman, T.G.; Smith, T.L.; Murphy, W.R.

    1985-04-01

    The purpose of this study was to reevaluate two major steps associated with the radioactive microsphere technique in rats; the hemodynamic effects of the solutions used to inject the microspheres, and the hemodynamic effects of repeated blood withdrawals. With regard to the first, Flaim et al. have shown that 1.0 ml of 10% dextran injected into the rat may result in a severe pressure drop. The present study showed that even 0.1 ml of 10% dextran caused significant hypotension 46% of the time. Six other mediums were also tested as possible suspending media. It was concluded that a dextrose solution (sp gr 1.3) was the best microsphere injection medium based on the length of time the microspheres stayed mixed in the solution and the minimal hemodynamic alterations caused during injection. With regard to the second concern, cardiac output decreased approximately 7% with each reference sample withdrawal. When volume was replaced with a Ficoll-70 solution, cardiac output decreased less than 3%. These data show that repeated blood withdrawals are possible as long as the volume of blood is replaced. Thus, several isotopes can be injected in the same rat to allow measurement of regional blood flow under different experimental conditions.

  18. The Impact of the Geometric Characteristics on the Hemodynamics in the Stenotic Coronary Artery

    PubMed Central

    Xian, Zhanchao; Liu, Xin; Huang, Wenhua; Xu, Pengcheng; Wang, Jinyang

    2016-01-01

    The alterations of the hemodynamics in the coronary arteries, which result from patient-specific geometric significances are complex. The effect of the stenosis on the blood flow alteration had been wildly reported, but the combinational contribution from geometric factors required a comprehensive investigation to provide patient-specific information for diagnosis and assisting in the decision on the further treatment strategies. In the present study, we investigated the correlation between hemodynamic parameters and individual geometric factors in the patient-specific coronary arteries. Computational fluid dynamic simulations were performed on 22 patient-specific 3-dimensional coronary artery models that were reconstructed based on computed tomography angiography images. Our results showed that the increasing severity of the stenosis is associated with the increased maximum wall shear stress at the stenosis region (r = 0.752, P < 0.001). In contrast, the length of the recirculation zone has a moderate association with the curvature of the lesion segment (r = 0.505, P = 0.019) and the length of the lesions (r = 0.527, P = 0.064). Moreover, bifurcation in the coronary arteries is significantly correlated with the occurrence of recirculation, whereas the severity of distal stenosis demonstrated an effect on the alteration of the flow in the upstream bifurcation. These findings could serve as an indication for treatment planning and assist in prognosis evaluation. PMID:27310014

  19. Invasive hemodynamic monitoring.

    PubMed

    Magder, Sheldon

    2015-01-01

    Although invasive hemodynamic monitoring requires considerable skill, studies have shown a striking lack of knowledge of the measurements obtained with the pulmonary artery catheter (PAC). This article reviews monitoring using a PAC. Issues addressed include basic physiology that determines cardiac output and blood pressure; methodology in the measurement of data obtained from a PAC; use of the PAC in making a diagnosis and for patient management, with emphasis on a responsive approach to management; and uses of the PAC that are not indications by themselves for placing the catheter, but can provide useful information when a PAC is in place. PMID:25435479

  20. Growth and hemodynamics after early embryonic aortic arch occlusion*

    PubMed Central

    Lindsey, Stephanie E.; Menon, Prahlad G.; Kowalski, William J.; Shekhar, Akshay; Yalcin, Huseyin C.; Nishimura, Nozomi; Schaffer, Chris B.; Butcher, Jonathan T.; Pekkan, Kerem

    2015-01-01

    The majority of severe clinically significant forms of congenital heart disease (CHD) is associated with great artery lesions, including hypoplastic, double, right or interrupted aortic arch morphologies. While fetal and neonatal interventions are advancing, their potential ability to restore cardiac function, optimal timing, location, and intensity required for intervention remain largely unknown. We here combine computational fluid dynamics (CFD) simulations with in vivo experiments to test how individual pharyngeal arch artery hemodynamics alters as a result of local interventions to obstruct individual arch artery flow. Simulated isolated occlusions within each pharyngeal arch artery were created with image derived three-dimensional (3D) reconstructions of normal chick pharyngeal arch anatomy at Hamburger-Hamilton (HH) developmental stages HH18 and HH24. Acute flow redistributions were then computed using in vivo measured subject-specific aortic sinus inflow velocity profiles. A kinematic vascular growth-rendering algorithm was then developed and implemented to test the role of changing local wall shear stress patterns in downstream 3D morphogenesis of arch arteries. CFD simulations predicted that altered pressure gradients and flow redistributions were most sensitive to occlusion of the IVth arches. To evaluate these simulations experimentally, a novel in vivo experimental model of pharyngeal arch occlusion was developed and implemented using two-photon microscopy guided femtosecond laser based photodisruption surgery. The right IVth arch was occluded at HH18, and resulting diameter changes were followed for up to 24 hours. Pharyngeal arch diameter responses to acute hemodynamic changes were predicted qualitatively but poorly quantitatively. Chronic growth and adaptation to hemodynamic changes however were predicted in a subset of arches. Our findings suggest that this complex biodynamic process is governed through more complex forms of mechanobiological

  1. Functional Metabolomics Uncovers Metabolic Alterations Associated to Severe Oxidative Stress in MCF7 Breast Cancer Cells Exposed to Ascididemin

    PubMed Central

    Morvan, Daniel

    2013-01-01

    Marine natural products are a source of promising agents for cancer treatment. However, there is a need to improve the evaluation of their mechanism of action in tumors. Metabolomics of the response to anti-tumor agents is a tool to reveal candidate biomarkers and metabolic targets. We used two-dimensional high-resolution magic angle spinning proton-NMR spectroscopy-based metabolomics to investigate the response of MCF7 breast cancer cells to ascididemin, a marine alkaloid and lead molecule for anti-cancer treatment. Ascididemin induced severe oxidative stress and apoptosis within 48 h of exposure. Thirty-three metabolites were quantified. Metabolic response involved downregulation of glycolysis and the tricarboxylic acid cycle, and phospholipid metabolism alterations. Candidate metabolic biomarkers of the response of breast cancer cells to ascididemin were proposed including citrate, gluconate, polyunsaturated fatty acids, glycerophospho-choline and -ethanolamine. In addition, candidate metabolic targets were identified. Overall, the response to Asc could be related to severe oxidative stress and anti-inflammatory effects. PMID:24152560

  2. Global detection of molecular changes reveals concurrent alteration of several biological pathways in nonsmall cell lung cancer cells

    PubMed Central

    Ju, Z.; Kapoor, M.; Newton, K; Cheon, K.; Ramaswamy, A.; Lotan, R.; Strong, L. C.; Koo, J. S.

    2006-01-01

    To identify the molecular changes that occur in non-small cell lung carcinoma (NSCLC), we compared the gene expression profile of the NCI-H292 (H292) NSCLC cell line with that of normal human tracheobronchial epithelial (NHTBE) cells. The NHTBE cells were grown in a three-dimensional organotypic culture system that permits maintenance of the normal pseudostratified mucociliary phenotype characteristic of bronchial epithelium in vivo. Microarray analysis using the Affymetrix oligonucleotide chip U95Av2 revealed that 1,683 genes showed a > 1.5-fold change in expression in the H292 cell line relative to the NHTBE cells. Specifically, 418 genes were downregulated and 1,265 were upregulated in the H292 cells. The expression data for selected genes were validated in several different NSCLC cell lines using quantitative real-time PCR and Western analysis. Further analysis of the differentially expressed genes indicated that WNT responses, apoptosis, cell cycle regulation and cell proliferation were significantly altered in the H292 cells. Functional analysis using fluorescence-activated cell sorting confirmed concurrent changes in the activity of these pathways in the H292 line. These findings show that (1) NSCLC cells display deregulation of the WNT, apoptosis, proliferation and cell cycle pathways, as has been found in many other types of cancer cells, and (2) that organotypically cultured NHTBE cells can be used as a reference to identify genes and pathways that are differentially expressed in tumor cells derived from bronchogenic epithelium. PMID:16049682

  3. Review of diagnostic and therapeutic endoscopic retrograde cholangiopancreatography using several endoscopic methods in patients with surgically altered gastrointestinal anatomy

    PubMed Central

    Shimatani, Masaaki; Takaoka, Makoto; Tokuhara, Mitsuo; Miyoshi, Hideaki; Ikeura, Tsukasa; Okazaki, Kazuichi

    2015-01-01

    The endoscopic approach for biliary diseases in patients with surgically altered gastrointestinal anatomy (SAGA) had been generally deemed impractical. However, it was radically made feasible by the introduction of double balloon endoscopy (DBE) that was originally developed for diagnosis and treatments for small-bowel diseases. Followed by the subsequent development of single-balloon endoscopy (SBE) and spiral endoscopy (SE), interventions using several endoscopes for biliary disease in patients with SAGA widely gained an acceptance as a new modality. Many studies have been made on this new technique. Yet, some problems are to be solved. For instance, the mutual unavailability among devices due to different working lengths and channels, and unestablished standardization of procedural techniques can be raised. Additionally, in an attempt to standardize endoscopic procedures, it is important to evaluate biliary cannulating methods by case with existence of papilla or not. A full comprehension of the features of respective scope types is also required. However there are not many papers written as a review. In our manuscript, we would like to evaluate and make a review of the present status of diagnostic and therapeutic endoscopic retrograde cholangiopancreatography applying DBE, SBE and SE for biliary diseases in patients with SAGA for establishment of these modalities as a new technology and further improvement of the scopes and devices. PMID:26078830

  4. Hemodynamic monitoring devices: putting it all together.

    PubMed

    Naik, Bhiken I; Durieux, Marcel E

    2014-12-01

    Perioperative hemodynamic optimization of the high-risk surgical patient is associated with reduced postoperative morbidity and mortality. The hemodynamic parameters to be optimized (using goal-directed algorithms) encompass preload, contractility, afterload, volume responsiveness, and end-organ perfusion. Current hemodynamic monitors facilitate multi-modal monitoring of these macro-hemodynamic targets. This review focuses on the variety of invasive, minimally invasive, and noninvasive hemodynamic monitors available to the clinician. PMID:25480776

  5. Expression of Extracellular Matrix-Remodeling Proteins Is Altered in Vaginal Tissue of Premenopausal Women With Severe Pelvic Organ Prolapse

    PubMed Central

    Alarab, May; Kufaishi, Hala; Lye, Stephen; Drutz, Harold

    2014-01-01

    Aim: The molecular etiology of pelvic organ prolapse (POP) is complex and not well understood. We compared the expression/activity of extracellular matrix (ECM)-processing (procollagen I N-proteinase/ a disintegrin and metalloproteinase with thrombospondin motifs [ADAMTS]-2,-3,-14) and ECM-degrading (matrix metalloproteinase [MMP]-1, -2, -7, -8, -9, -12) enzymes and their natural tissue inhibitors (tissue inhibitors of metalloproteinase [TIMP]-1,-2,-3,-4) in vaginal tissues from premenopausal women with advanced POP (POP-Q stage ≥ 3) and asymptomatic controls (POP-Q = 0). Study Design: We sampled the anterior vaginal wall of 36 premenopausal women (17 patients with POP and 19 controls) undergoing total hysterectomy. Exclusion criteria include steroid therapy, malignancy, previous pelvic surgery, and connective tissue diseases. Total RNAs and proteins were quantified by real-time polymerase chain reaction, immunoblotting, and Luminex assay; MMPs activity was analyzed by zymography and tissue localization by immunohistochemistry. Results: The MMP-2 gelatinase activity as well as expression of 58-kDa isoform of ADAMTS-2 was upregulated in patients with POP, irrespective of menstrual phase status, secretory or proliferative, when compared to controls (P < .05). The TIMP-1-4 gene and TIMP-1 protein expression were significantly (P < .05) reduced, whereas protein expression of MMP-12 (pro and active forms) was significantly increased in vaginal biopsies of patients with POP in the proliferative phase of the menstrual cycle compared to corresponding controls. Analyses of MMP-12, TIMP-1, and ADAMTS-2 tissue immunostaining indicate similar localization in the vaginal specimens from control and patients with POP. Conclusion: Expression of ECM-remodeling proteins is altered in the vagina of premenopausal patients with severe POP. We speculate that dysregulation of MMP/TIMP complexes and ADAMTS-2 proteins may cause connective tissue defects, which result in weakened vaginal

  6. Hemodynamic and metabolic effects of cerebral revascularization.

    PubMed

    Leblanc, R; Tyler, J L; Mohr, G; Meyer, E; Diksic, M; Yamamoto, L; Taylor, L; Gauthier, S; Hakim, A

    1987-04-01

    Pre- and postoperative positron emission tomography (PET) was performed in six patients undergoing extracranial to intracranial bypass procedures for the treatment of symptomatic extracranial carotid occlusion. The six patients were all men, aged 52 to 68 years. Their symptoms included transient ischemic attacks (five cases), amaurosis fugax (two cases), and completed stroke with good recovery (one case). Positron emission tomography was performed within 4 weeks prior to surgery and between 3 to 6 months postoperatively, using oxygen-15-labeled CO, O2, and CO2 and fluorine-18-labeled fluorodeoxyglucose. Cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic rates for oxygen and glucose (CMRO2 and CMRGlu), and the oxygen extraction fraction (OEF) were measured in both hemispheres. Preoperatively, compared to five elderly control subjects, patients had increased CBV, a decreased CBF/CBV ratio, and decreased CMRO2, indicating reduced cerebral perfusion pressure and depressed oxygen metabolism. The CBF was decreased in only one patient who had bilateral carotid occlusions; the OEF, CMRGlu, and CMRO2/CMRGlu and CMRGlu/CBF ratios were not significantly different from control measurements. All bypasses were patent and all patients were asymptomatic following surgery. Postoperative PET revealed decreased CBV and an increased CBF/CBV ratio, indicating improved hemodynamic function and oxygen hypometabolism. This was associated with increased CMRO2 in two patients in whom the postoperative OEF was also increased. The CMRGlu and CMRGlu/CBF ratio were increased in five patients. Changes in CBF and the CMRO2/CMRGlu ratio were variable. One patient with preoperative progressive mental deterioration, documented by serial neuropsychological testing and decreasing CBF and CMRO2, had improved postoperative CBF and CMRO2 concomitant with improved neuropsychological functioning. It is concluded that symptomatic carotid occlusion is associated with altered

  7. Rapid Cerebral Hemodynamic Modulation during Set Shifting: Evidence of Time-Locked Associations with Cognitive Control in Females

    ERIC Educational Resources Information Center

    Schuepbach, Daniel; Huizinga, Mariette; Duschek, Stefan; Grimm, Simone; Boeker, Heinz; Hell, Daniel

    2009-01-01

    Set shifting provokes specific alterations of cerebral hemodynamics in basal cerebral arteries. However, no gender differences have been reported. In the following functional transcranial Doppler study, we introduced cerebral hemodynamic modulation to the aspects of set shifting during Wisconsin Card Sorting Test (WCST). Twenty-one subjects…

  8. Cue-Reactive Altered State of Consciousness Mediates the Relationship Between Problem-Gambling Severity and Cue-Reactive Urge in Poker-Machine Gamblers.

    PubMed

    Tricker, Christopher; Rock, Adam J; Clark, Gavin I

    2016-06-01

    In order to enhance our understanding of the nature of poker-machine problem-gambling, a community sample of 37 poker-machine gamblers (M age = 32 years, M PGSI = 5; PGSI = Problem Gambling Severity Index) were assessed for urge to gamble (responses on a visual analogue scale) and altered state of consciousness (assessed by the Altered State of Awareness dimension of the Phenomenology of Consciousness Inventory) at baseline, after a neutral cue, and after a gambling cue. It was found that (a) problem-gambling severity (PGSI score) predicted increase in urge (from neutral cue to gambling cue, controlling for baseline; sr (2) = .19, p = .006) and increase in altered state of consciousness (from neutral cue to gambling cue, controlling for baseline; sr (2) = .57, p < .001), and (b) increase in altered state of consciousness (from neutral cue to gambling cue) mediated the relationship between problem-gambling severity and increase in urge (from neutral cue to gambling cue; κ(2) = .40, 99 % CI [.08, .71]). These findings suggest that cue-reactive altered state of consciousness is an important component of cue-reactive urge in poker-machine problem-gamblers. PMID:26026986

  9. Proteomic analysis of Plasmodium falciparum induced alterations in humans from different endemic regions of India to decipher malaria pathogenesis and identify surrogate markers of severity.

    PubMed

    Ray, Sandipan; Kumar, Vipin; Bhave, Amruta; Singh, Vaidhvi; Gogtay, Nithya J; Thatte, Urmila M; Talukdar, Arunansu; Kochar, Sanjay K; Patankar, Swati; Srivastava, Sanjeeva

    2015-09-01

    India significantly contributes to the global malaria burden and has the largest population in the world at risk of malaria. This study aims to analyze alterations in the human serum proteome as a consequence of non-severe and severe infections by the malaria parasite Plasmodium falciparum to identify markers related to disease severity and to obtain mechanistic insights about disease pathogenesis and host immune responses. In discovery phase of the study, a comprehensive quantitative proteomic analysis was performed using gel-based (2D-DIGE) and gel-free (iTRAQ) techniques on two independent mass spectrometry platforms (ESI-Q-TOF and Q-Exactive mass spectrometry), and selected targets were validated by ELISA. Proteins showing altered serum abundance in falciparum malaria patients revealed the modulation of different physiological pathways including chemokine and cytokine signaling, IL-12 signaling and production in macrophages, complement cascades, blood coagulation, and protein ubiquitination pathways. Some muscle related and cytoskeletal proteins such as titin and galectin-3-binding protein were found to be up-regulated in severe malaria patients. Hemoglobin levels and platelet counts were also found to be drastically lower in severe malaria patients. Identified proteins including serum amyloid A, C-reactive protein, apolipoprotein E and haptoglobin, which exhibited sequential alterations in their serum abundance in different severity levels of malaria, could serve as potential predictive markers for disease severity. To the best of our information, we report here the first comprehensive analysis describing the serum proteomic alterations observed in severe P. falciparum infected patients from different malaria endemic regions of India. This article is part of a Special Issue entitled: Proteomics in India. PMID:25982387

  10. Lagrangian postprocessing of computational hemodynamics

    PubMed Central

    Shadden, Shawn C.; Arzani, Amirhossein

    2014-01-01

    Recent advances in imaging, modeling and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows. PMID:25059889

  11. Hemodynamic Influences on Abdominal Aortic Aneurysm Disease: Application of Biomechanics to Aneurysm Pathophysiology

    PubMed Central

    Dua, Monica M.; Dalman, Ronald L.

    2010-01-01

    “Atherosclerotic” abdominal aortic aneurysms (AAAs) occur with the greatest frequency in the distal aorta. The unique hemodynamic environment of this area predisposes it to site-specific degenerative changes. In this review, we summarize the differential hemodynamic influences present along the length of the abdominal aorta, and demonstrate how alterations in aortic flow and wall shear stress modify AAA progression in experimental models. Improved understanding of aortic hemodynamic risk profiles provides an opportunity to modify patient activity patterns to minimize risk of aneurysmal degeneration. PMID:20347049

  12. Hemodynamic studies of the legs under weightlessness

    NASA Technical Reports Server (NTRS)

    Thornton, W. E.; Hoffler, G. W.

    1974-01-01

    Following exposure to weightlessness, alterations in the return of blood from the legs play a crucial role in orthostatic tolerance and may be an important factor in work tolerance. To investigate some of the hemodynamic mechansism involved, an experiment was performed on the Skylab 3 and Skylab 4 missions to study arterial blood flow, venous compliance, and muscle pumping of blood. Skylab 4 results indicated that the most likely cause of increased blood flow was an increase in cardiac output secondary to increased central venous pressure caused by blood redistribution. Changes in venous compliance are thought to be primarily changes in somatic musculature which is postulated to primarily determine venous compliance of the legs. This was also thought to be demonstrated by the changes in muscle pumping. It is thought that these compliance changes, when taken with the decreased blood volume; provide a basis for the changes seen in orthostatic tolerance, work capacity and lower body negative pressure response.

  13. Pulmonary hemodynamics in children living at high altitudes.

    PubMed

    Penaloza, Dante; Sime, Francisco; Ruiz, Luis

    2008-01-01

    There are numerous publications on altitude-related diseases in adults. In addition, an International Consensus Statement published in 2001 deals with altitude-related illnesses occurring in lowland children who travel to high altitudes. However, despite the millions of children living permanently at high altitudes around the world, there are few publications on altitude-related diseases and pulmonary hemodynamics in this pediatric population. In this paper, we review the published literature on this subject. First, the pulmonary hemodynamics of healthy children (newborns, infants, children, and adolescents) residing at altitudes above 4000 m are summarized. Asymptomatic pulmonary hypertension, which slowly declines with increasing age, is found in these children. This is followed by a discussion of the functional closure of ductus arteriosus, which is delayed at high altitude. Then, the high prevalence of patent ductus arteriosus (PDA) in highland children and the pulmonary hemodynamics in these patients are described. Next, the pulmonary hemodynamics in highland children who suffer high altitude pulmonary edema (HAPE) after a short stay at lower levels is discussed, and the possible reasons for susceptibility to reentry HAPE in this pediatric population are postulated. The pulmonary hemodynamics in children with subacute mountain sickness (SMS) are then described. Moderate to severe pulmonary hypertension is a common finding in all these altitude-related diseases. Finally, the management of these clinical conditions is outlined. PMID:18800956

  14. Hemodynamic physiology and thermoregulation in liposuction.

    PubMed

    Kenkel, Jeffrey M; Lipschitz, Avron H; Luby, Maureen; Kallmeyer, Ian; Sorokin, Evan; Appelt, Eric; Rohrich, Rod J; Brown, Spencer A

    2004-08-01

    Little is known about the physiology of large-volume liposuction. Patients are exposed to prolonged procedures, general anesthesia, fluid shifts, and infusion of high doses of epinephrine and lidocaine. Consequently, the authors examined the thermoregulatory and cardiovascular responses to liposuction by assessing multiple physiologic factors. The aims of their study were to serially determine hemodynamic parameters perioperatively, to quantify perioperative and postoperative plasma epinephrine levels, and to chronologically document fluctuations in core body temperature. Five female volunteers with American Society of Anesthesiologists' physical status I and II underwent moderate- to large-volume liposuction. Heart rate, blood pressure, mean pulmonary arterial pressure, cardiac index, and central venous pressure were monitored. Serum epinephrine levels and core body temperature were assessed perioperatively. The hemodynamic responses to liposuction were characterized by an increase in cardiac index (57 percent), heart rate (47 percent), and mean pulmonary arterial pressure (44 percent) (p < 0.05). Central venous pressure was not significantly altered. Maximum epinephrine levels were observed 5 to 6 hours after induction. Significant correlations between cardiac index and epinephrine concentrations were shown intraoperatively (r = 0.75). All patients developed intraoperative low body temperatures (mean 35.5 degrees C). An overall enhanced cardiac function was observed in patients subsequent to large-volume liposuction. The etiology of the altered cardiac parameters was multifactorial but may have been attributable in part to the administration of epinephrine, which counters the effects of general anesthesia and operative hypothermia. Additional explanations for raised cardiac output may be hemodilution or emergence from general anesthesia. Elevated mean pulmonary arterial pressure may be a result of subclinical fat embolism demonstrated in previous porcine studies

  15. Review: hemodynamic response to carbon monoxide

    SciTech Connect

    Penney, D.G.

    1988-04-01

    Historically, and at present, carbon monoxide is a major gaseous poison responsible for widespread morbidity and mortality. From threshold to maximal nonlethal levels, a variety of cardiovascular changes occur, both immediately and in the long term, whose homeostatic function it is to renormalize tissue oxygen delivery. However, notwithstanding numerous studies over the past century, the literature remains equivocal regarding the hemodynamic responses in animals and humans, although CO hypoxia is clearly different in several respects from hypoxic hypoxia. Factors complicating interpretation of experimental findings include species, CO dose level and rate, route of CO delivery, duration, level of exertion, state of consciousness, and anesthetic agent used. Augmented cardiac output usually observed with moderate COHb may be compromised in more sever poisoning for the same reasons, such that regional or global ischemia result. The hypotension usually seen in most animal studies is thought to be a primary cause of CNS damage resulting from acute CO poisoning, yet the exact mechanism(s) remains unproven in both animals and humans, as does the way in which CO produces hypotension. This review briefly summarizes the literature relevant to the short- and long-term hemodynamic responses reported in animals and humans. It concludes by presenting an overview using data from a single species in which the most complete work has been done to date.

  16. Systemic and Ocular Hemodynamic Risk Factors in Glaucoma

    PubMed Central

    Choi, Jaewan; Kook, Michael S.

    2015-01-01

    Primary open angle glaucoma (POAG) is a multifactorial disease characterized by progressive retinal ganglion cell death and visual field loss. It is known that alterations in intraocular pressure (IOP), blood pressure (BP), and ocular perfusion pressure (OPP) can play a significant role in the pathogenesis of the disease. Impaired autoregulatory capacity of ocular blood vessels may render tissues vulnerable to OPP changes and potentially harmful tissue ischemia-reperfusion damage. Vascular risk factors should be considered more important in a subgroup of patients with POAG, and especially in patients with normal tension glaucoma (NTG) with evidence of unphysiological BP response. For example, reduction of BP during the nighttime has an influence on OPP, and increased circadian OPP fluctuation, which might stand for unstable ocular blood flow, has been found to be the consistent risk factor for NTG development and progression. Central visual field may be affected more severely than peripheral visual field in NTG patients with higher 24-hour fluctuation of OPP. This review will discuss the current understanding of allegedly major systemic and ocular hemodynamic risk factors for glaucoma including systemic hypertension, arterial stiffness, antihypertensive medication, exaggerated nocturnal hypotension, OPP, and autonomic dysregulation. PMID:26557650

  17. Alterations of T helper lymphocyte subpopulations in sepsis, severe sepsis, and septic shock: a prospective observational study.

    PubMed

    Li, Jia; Li, Ming; Su, Longxiang; Wang, Huijuan; Xiao, Kun; Deng, Jie; Jia, Yanhong; Han, Gencheng; Xie, Lixin

    2015-01-01

    Circulating lymphocyte number was significantly decreased in patients with sepsis. However, it remains unknown which severity phase (sepsis, severe sepsis, and septic shock) does it develop and what happen on each subpopulation. Eight patients with differing severities of sepsis (31 sepses, 33 severe sepses, and 16 septic shocks) were enrolled. Quantitative real-time polymerase chain reaction (RT-PCR) of Th1, Th2, and Th17; regulatory T (Treg) cell-specific transcription factor T-bet; GATA-3; RORgammat (RORγt); forkhead box P3 (FOXP3); and IL-17 mRNA were performed, and the enzyme-linked immunosorbent assay (ELISA) was used to detect serum interferon (IFN)-γ, IL-4, and IL-10. In this study, the Th1, Th2, Treg transcription factors, and related cytokines IFN-γ, IL-4, and IL-10 levels of sepsis and severe sepsis patients in peripheral blood were significantly higher than those of the normal controls. Except for IL-17, the T-bet, GATA-3, and IFN-γ levels of septic shock patients were lower than those of sepsis patients. We also observed that the proportions of Th17/Treg in the sepsis and septic shock groups were inversed. From the above, the inflammatory response especially the adaptive immune response is still activated in sepsis and severe sepsis, but significant immunosuppression was developed in septic shock. In addition, the proportion of Th17/Treg inversed may be associated with the illness aggravation of patients with sepsis. PMID:25403265

  18. Overexpression of Dyrk1A Is Implicated in Several Cognitive, Electrophysiological and Neuromorphological Alterations Found in a Mouse Model of Down Syndrome

    PubMed Central

    García-Cerro, Susana; Martínez, Paula; Vidal, Verónica; Corrales, Andrea; Flórez, Jesús; Vidal, Rebeca; Rueda, Noemí; Arbonés, María L.; Martínez-Cué, Carmen

    2014-01-01

    Down syndrome (DS) phenotypes result from the overexpression of several dosage-sensitive genes. The DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A) gene, which has been implicated in the behavioral and neuronal alterations that are characteristic of DS, plays a role in neuronal progenitor proliferation, neuronal differentiation and long-term potentiation (LTP) mechanisms that contribute to the cognitive deficits found in DS. The purpose of this study was to evaluate the effect of Dyrk1A overexpression on the behavioral and cognitive alterations in the Ts65Dn (TS) mouse model, which is the most commonly utilized mouse model of DS, as well as on several neuromorphological and electrophysiological properties proposed to underlie these deficits. In this study, we analyzed the phenotypic differences in the progeny obtained from crosses of TS females and heterozygous Dyrk1A (+/−) male mice. Our results revealed that normalization of the Dyrk1A copy number in TS mice improved working and reference memory based on the Morris water maze and contextual conditioning based on the fear conditioning test and rescued hippocampal LTP. Concomitant with these functional improvements, normalization of the Dyrk1A expression level in TS mice restored the proliferation and differentiation of hippocampal cells in the adult dentate gyrus (DG) and the density of GABAergic and glutamatergic synapse markers in the molecular layer of the hippocampus. However, normalization of the Dyrk1A gene dosage did not affect other structural (e.g., the density of mature hippocampal granule cells, the DG volume and the subgranular zone area) or behavioral (i.e., hyperactivity/attention) alterations found in the TS mouse. These results suggest that Dyrk1A overexpression is involved in some of the cognitive, electrophysiological and neuromorphological alterations, but not in the structural alterations found in DS, and suggest that pharmacological strategies targeting this gene

  19. Overexpression of Dyrk1A is implicated in several cognitive, electrophysiological and neuromorphological alterations found in a mouse model of Down syndrome.

    PubMed

    García-Cerro, Susana; Martínez, Paula; Vidal, Verónica; Corrales, Andrea; Flórez, Jesús; Vidal, Rebeca; Rueda, Noemí; Arbonés, María L; Martínez-Cué, Carmen

    2014-01-01

    Down syndrome (DS) phenotypes result from the overexpression of several dosage-sensitive genes. The DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A) gene, which has been implicated in the behavioral and neuronal alterations that are characteristic of DS, plays a role in neuronal progenitor proliferation, neuronal differentiation and long-term potentiation (LTP) mechanisms that contribute to the cognitive deficits found in DS. The purpose of this study was to evaluate the effect of Dyrk1A overexpression on the behavioral and cognitive alterations in the Ts65Dn (TS) mouse model, which is the most commonly utilized mouse model of DS, as well as on several neuromorphological and electrophysiological properties proposed to underlie these deficits. In this study, we analyzed the phenotypic differences in the progeny obtained from crosses of TS females and heterozygous Dyrk1A (+/-) male mice. Our results revealed that normalization of the Dyrk1A copy number in TS mice improved working and reference memory based on the Morris water maze and contextual conditioning based on the fear conditioning test and rescued hippocampal LTP. Concomitant with these functional improvements, normalization of the Dyrk1A expression level in TS mice restored the proliferation and differentiation of hippocampal cells in the adult dentate gyrus (DG) and the density of GABAergic and glutamatergic synapse markers in the molecular layer of the hippocampus. However, normalization of the Dyrk1A gene dosage did not affect other structural (e.g., the density of mature hippocampal granule cells, the DG volume and the subgranular zone area) or behavioral (i.e., hyperactivity/attention) alterations found in the TS mouse. These results suggest that Dyrk1A overexpression is involved in some of the cognitive, electrophysiological and neuromorphological alterations, but not in the structural alterations found in DS, and suggest that pharmacological strategies targeting this gene may

  20. Tacrolimus does not alter the production of several cytokines and antimicrobial peptide in Malassezia furfur-infected-keratinocytes.

    PubMed

    Balato, Anna; Paoletti, Iole; De Gregorio, Vincenza; Cantelli, Mariateresa; Ayala, Fabio; Donnarumma, Giovanna

    2014-03-01

    Topical immunosuppressant therapy is widely used in the treatment of inflammatory skin diseases, such as atopic dermatitis and psoriasis. Besides its beneficial therapeutic effects, application of topical anti-inflammatory drugs may render the epidermis more vulnerable to invading pathogens by suppressing innate immune responses in keratinocytes (KCs). Cytokines, chemokines and antimicrobial peptides (AMPs) produced by epithelial cells enable them to participate in innate and acquired immune responses. The aim of the present work was to study the influence of tacrolimus (FK506) on KCs infected with Malassezia furfur (M. furfur), evaluating the expression of pro-inflammatory cytokines IL-1α and IL-6, chemokine IL-8, anti-inflammatory cytokines transforming growth factor beta1 (TGF-β1) and IL-10 and AMP β-defensin-2. Human KCs were obtained from surgical specimens of normal adult skin. The expression of mRNAs in KCs: FK506-treated, FK506-treated and M. furfur-infected as well as only M. furfur-infected was quantified by real-time quantitative polymerase chain reaction. Next, the production of the AMP β-defensin-2 and of the above-mentioned pro-inflammatory and anti-inflammatory cytokines was evaluated using enzyme-linked immunosorbent assay. In this study, FK506 did not alter cytokine and AMP production by KCs; this led us to hypothesise that it may not enhance the risk of mycotic skin infections. PMID:24512536

  1. Hemodynamics of Mechanical Circulatory Support.

    PubMed

    Burkhoff, Daniel; Sayer, Gabriel; Doshi, Darshan; Uriel, Nir

    2015-12-15

    An increasing number of devices can provide mechanical circulatory support (MCS) to patients with acute hemodynamic compromise and chronic end-stage heart failure. These devices work by different pumping mechanisms, have various flow capacities, are inserted by different techniques, and have different sites from which blood is withdrawn and returned to the body. These factors result in different primary hemodynamic effects and secondary responses of the body. However, these are not generally taken into account when choosing a device for a particular patient or while managing a patient undergoing MCS. In this review, we discuss fundamental principles of cardiac, vascular, and pump mechanics and illustrate how they provide a broad foundation for understanding the complex interactions between the heart, vasculature, and device, and how they may help guide future research to improve patient outcomes. PMID:26670067

  2. Hemodynamic and Tubular Changes Induced by Contrast Media

    PubMed Central

    Caiazza, Antonella; Russo, Luigi; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI. PMID:24678510

  3. Hemodynamic and tubular changes induced by contrast media.

    PubMed

    Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI. PMID:24678510

  4. A Model System for Mapping Vascular Responses to Complex Hemodynamics at Arterial Bifurcations In Vivo

    PubMed Central

    Meng, Hui; Swartz, Daniel D.; Wang, Zhijie; Hoi, Yiemeng; Kolega, John; Metaxa, Eleni M.; Szymanski, Michael P.; Yamamoto, Junichi; Sauvageau, Eric; Levy, Elad I.

    2009-01-01

    Objective Cerebral aneurysms are preferentially located at arterial bifurcation apices with complex hemodynamics. To understand disease mechanisms associated with aneurysm initiation, we attempted to establish a causal relationship between local hemodynamics and vascular responses. Methods Arterial bifurcations were surgically created from native common carotid arteries in two dogs, angiographically imaged 2 weeks and 2 months later, and then excised. We characterized local morphological changes in response to specifically manipulated hemodynamics. Computational fluid dynamics simulations were performed on the in vivo images and results mapped onto histological images. Results Local flow conditions, such as high wall shear stress and high wall shear stress gradient, were found to be associated with vascular changes, including an intimal pad in the flow impingement region and a “groove” bearing the characteristics of an early aneurysm. Conclusion This novel method of histohemodynamic micromapping reveals a direct correlation between an altered hemodynamic microenvironment and vascular responses consistent with aneurysm development. PMID:17143243

  5. Hemodynamics of Cerebral Aneurysms: Computational Analyses of Aneurysm Progress and Treatment

    PubMed Central

    Jeong, Woowon; Rhee, Kyehan

    2012-01-01

    The progression of a cerebral aneurysm involves degenerative arterial wall remodeling. Various hemodynamic parameters are suspected to be major mechanical factors related to the genesis and progression of vascular diseases. Flow alterations caused by the insertion of coils and stents for interventional aneurysm treatment may affect the aneurysm embolization process. Therefore, knowledge of hemodynamic parameters may provide physicians with an advanced understanding of aneurysm progression and rupture, as well as the effectiveness of endovascular treatments. Progress in medical imaging and information technology has enabled the prediction of flow fields in the patient-specific blood vessels using computational analysis. In this paper, recent computational hemodynamic studies on cerebral aneurysm initiation, progress, and rupture are reviewed. State-of-the-art computational aneurysmal flow analyses after coiling and stenting are also summarized. We expect the computational analysis of hemodynamics in cerebral aneurysms to provide valuable information for planning and follow-up decisions for treatment. PMID:22454695

  6. Altered Levels of Zinc and N-methyl-D-aspartic Acid Receptor Underlying Multiple Organ Dysfunctions After Severe Trauma

    PubMed Central

    Wang, Guanghuan; Yu, Xiaojun; Wang, Dian; Xu, Xiaohu; Chen, Guang; Jiang, Xuewu

    2015-01-01

    Background Severe trauma can cause secondary multiple organ dysfunction syndrome (MODS) and death. Oxidative stress and/or excitatory neurotoxicity are considered as the final common pathway in nerve cell injuries. Zinc is the cofactor of the redox enzyme, and the effect of the excitatory neurotoxicity is related to N-methyl-D-aspartic acid receptor (NMDAR). Material/Methods We investigated the levels of zinc and brainstem NMDAR in a rabbit model of severe trauma. Zinc and serum biochemical profiles were determined. Immunohistochemistry was used to detect brainstem N-methyl-D-aspartic acid receptor 1 (NR1), N-methyl-D-aspartic acid receptor 2A (NR2A), and N-methyl-D-aspartic acid receptor 2B (NR2B) expression. Results Brain and brainstem Zn levels increased at 12 h, but serum Zn decreased dramatically after the trauma. NR1 in the brainstem dorsal regions increased at 6 h after injury and then decreased. NR2A in the dorsal regions decreased to a plateau at 12 h after trauma. The levels of NR2B were lowest in the death group in the brainstem. Serum zinc was positively correlated with NR2A and 2B and negatively correlated with zinc in the brain. Correlations were also found between the brainstem NR2A and that of the dorsal brainstem, as well as between brainstem NR2A and changes in NR2B. There was a negative correlation between zinc and NR2A. Conclusions Severe trauma led to an acute reduction of zinc enhancing oxidative stress and the changes of NMDAR causing the neurotoxicity of the nerve cells. This may be a mechanism for the occurrence of MODS or death after trauma. PMID:26335029

  7. Cerebral venous hemodynamic abnormalities in episodic and chronic migraine

    PubMed Central

    Petolicchio, Barbara; Viganò, Alessandro; di Biase, Lazzaro; Tatulli, Doriana; Toscano, Massimiliano; Vicenzini, Edoardo; Passarelli, Francesco; Di Piero, Vittorio

    2016-01-01

    Summary Alterations of cerebral venous drainage have been demonstrated in chronic migraine (CM), suggesting that cerebral venous hemodynamic abnormalities (CVHAs) play a role in this condition. The aim of the present study was to look for a correlation between CM and CVHAs. We recruited 33 subjects suffering from CM with or without analgesic overuse, 29 episodic migraine (EM) patients with or without aura, and 21 healthy subjects as controls (HCs). CVHAs were evaluated by transcranial and extracranial echo-color Doppler evaluation of five venous hemodynamic parameters. CVHAs were significantly more frequent in the CM and EM patients than in the HCs. In the migraine patients, CVHAs were not correlated with clinical features. The significantly greater frequency of CVHAs observed in the migraineurs may reflect a possible relationship between migraine and these abnormalities. Prospective longitudinal studies are needed to investigate whether CVHAs have a role in the processes of migraine chronification. PMID:27358220

  8. The hippocampi of children with chromosome 22q11.2 deletion syndrome have localized anterior alterations that predict severity of anxiety

    PubMed Central

    Scott, Julia A.; Goodrich-Hunsaker, Naomi; Kalish, Kristopher; Lee, Aaron; Hunsaker, Michael R.; Schumann, Cynthia M.; Carmichael, Owen T.; Simon, Tony J.

    2016-01-01

    Background Individuals with 22q11.2 deletion syndrome (22q11.2DS) have an elevated risk for schizophrenia, which increases with history of childhood anxiety. Altered hippocampal morphology is a common neuroanatomical feature of 22q11.2DS and idiopathic schizophrenia. Relating hippocampal structure in children with 22q11.2DS to anxiety and impaired cognitive ability could lead to hippocampus-based characterization of psychosis-proneness in this at-risk population. Methods We measured hippocampal volume using a semiautomated approach on MRIs collected from typically developing children and children with 22q11.2DS. We then analyzed hippocampal morphology with Localized Components Analysis. We tested the modulating roles of diagnostic group, hippocampal volume, sex and age on local hippocampal shape components. Lastly, volume and shape components were tested as covariates of IQ and anxiety. Results We included 48 typically developing children and 69 children with 22q11.2DS in our study. Hippocampal volume was reduced bilaterally in children with 22q11.2DS, and these children showed greater variation in the shape of the anterior hippocampus than typically developing children. Children with 22q11.2DS had greater inward deformation of the anterior hippocampus than typically developing children. Greater inward deformation of the anterior hippocampus was associated with greater severity of anxiety, specifically fear of physical injury, within the 22q11.2DS group. Limitations Shape alterations are not specific to hippocampal subfields. Conclusion Alterations in the structure of the anterior hippocampus likely affect function and may impact limbic circuitry. We suggest these alterations potentially contribute to anxiety symptoms in individuals with 22q11.2DS through modulatory pathways. Altered hippocampal morphology may be uniquely linked to anxiety risk factors for schizophrenia, which could be a powerful neuroanatomical marker of schizophrenia risk and hence protection

  9. Pharmacological Modulation of Hemodynamics in Adult Zebrafish In Vivo

    PubMed Central

    Brönnimann, Daniel; Dellenbach, Christian; Saveljic, Igor; Rieger, Michael; Rohr, Stephan; Filipovic, Nenad; Djonov, Valentin

    2016-01-01

    Introduction Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo. Materials and Methods Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations. Results Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001). Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01) and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03). Discussion In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic

  10. Hemodynamic Correlates of Cognition in Human Infants

    PubMed Central

    Aslin, Richard N.; Shukla, Mohinish; Emberson, Lauren L.

    2015-01-01

    Over the past 20 years, the field of cognitive neuroscience has relied heavily on hemodynamic measures of blood oxygenation in local regions of the brain to make inferences about underlying cognitive processes. These same functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) techniques have recently been adapted for use with human infants. We review the advantages and disadvantages of these two neuroimaging methods for studies of infant cognition, with a particular emphasis on their technical limitations and the linking hypotheses that are used to draw conclusions from correlational data. In addition to summarizing key findings in several domains of infant cognition, we highlight the prospects of improving the quality of fNIRS data from infants to address in a more sophisticated way how cognitive development is mediated by changes in underlying neural mechanisms. PMID:25251480

  11. Spatiotemporal hemodynamic response functions derived from physiology.

    PubMed

    Aquino, K M; Robinson, P A; Drysdale, P M

    2014-04-21

    Probing neural activity with functional magnetic resonance imaging (fMRI) relies upon understanding the hemodynamic response to changes in neural activity. Although existing studies have extensively characterized the temporal hemodynamic response, less is understood about the spatial and spatiotemporal hemodynamic responses. This study systematically characterizes the spatiotemporal response by deriving the hemodynamic response due to a short localized neural drive, i.e., the spatiotemporal hemodynamic response function (stHRF) from a physiological model of hemodynamics based on a poroelastic model of cortical tissue. In this study, the model's boundary conditions are clarified and a resulting nonlinear hemodynamic wave equation is derived. From this wave equation, damped linear hemodynamic waves are predicted from the stHRF. The main features of these waves depend on two physiological parameters: wave propagation speed, which depends on mean cortical stiffness, and damping which depends on effective viscosity. Some of these predictions were applied and validated in a companion study (Aquino et al., 2012). The advantages of having such a theory for the stHRF include improving the interpretation of spatiotemporal dynamics in fMRI data; improving estimates of neural activity with fMRI spatiotemporal deconvolution; and enabling wave interactions between hemodynamic waves to be predicted and exploited to improve the signal to noise ratio of fMRI. PMID:24398024

  12. Transmediastinal and Transcardiac Gunshot Wound with Hemodynamic Stability

    PubMed Central

    Al-Lal, Yusef Mohamed; de Tomás Palacios, Jorge; Amunategui Prats, Iñaki; Turégano Fuentes, Fernando

    2014-01-01

    Cardiac injuries caused by knives and firearms are slightly increasing in our environment. We report the case of a 43-year-old male patient with a transmediastinal gunshot wound (TGSW) and a through-and-through cardiac wound who was hemodynamically stable upon his admission. He had an entrance wound below the left clavicle, with no exit wound, and decreased breath sounds in the right hemithorax. Chest X-ray showed the bullet in the right hemithorax and large right hemothorax. The ultrasound revealed pericardial effusion, and a chest tube produced 1500 cc. of blood, but he remained hemodynamically stable. Considering these findings, a median sternotomy was carried out, the through-and-through cardiac wounds were suture-repaired, lung laceration was sutured, and a pacemaker was placed in the right ventricle. The patient had uneventful recovery and was discharged home on the twelfth postoperative day. The management and prognosis of these patients are determined by the hemodynamic situation upon arrival to the Emergency Department (ED), as well as a prompt surgical repair if needed. Patients with a TGSW have been divided into three groups according to the SBP: group I, with SBP >100 mmHg; group II, with SBP 60–100 mmHg; and group III, with SBP <60 mmHg. The diagnostic workup and management should be tailored accordingly, and several series have confirmed high chances of success with conservative management when these patients are hemodynamically stable. PMID:25197606

  13. Antisense Suppression of the Small Chloroplast Protein CP12 in Tobacco Alters Carbon Partitioning and Severely Restricts Growth1[W

    PubMed Central

    Howard, Thomas P.; Fryer, Michael J.; Singh, Prashant; Metodiev, Metodi; Lytovchenko, Anna; Obata, Toshihiro; Fernie, Alisdair R.; Kruger, Nicholas J.; Quick, W. Paul; Lloyd, Julie C.; Raines, Christine A.

    2011-01-01

    The thioredoxin-regulated chloroplast protein CP12 forms a multienzyme complex with the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). PRK and GAPDH are inactivated when present in this complex, a process shown in vitro to be dependent upon oxidized CP12. The importance of CP12 in vivo in higher plants, however, has not been investigated. Here, antisense suppression of CP12 in tobacco (Nicotiana tabacum) was observed to impact on NAD-induced PRK and GAPDH complex formation but had little effect on enzyme activity. Additionally, only minor changes in photosynthetic carbon fixation were observed. Despite this, antisense plants displayed changes in growth rates and morphology, including dwarfism and reduced apical dominance. The hypothesis that CP12 is essential to separate oxidative pentose phosphate pathway activity from Calvin-Benson cycle activity, as proposed in cyanobacteria, was tested. No evidence was found to support this role in tobacco. Evidence was seen, however, for a restriction to malate valve capacity, with decreases in NADP-malate dehydrogenase activity (but not protein levels) and pyridine nucleotide content. Antisense repression of CP12 also led to significant changes in carbon partitioning, with increased carbon allocation to the cell wall and the organic acids malate and fumarate and decreased allocation to starch and soluble carbohydrates. Severe decreases were also seen in 2-oxoglutarate content, a key indicator of cellular carbon sufficiency. The data presented here indicate that in tobacco, CP12 has a role in redox-mediated regulation of carbon partitioning from the chloroplast and provides strong in vivo evidence that CP12 is required for normal growth and development in plants. PMID:21865489

  14. Microstructural alterations in trigeminal neuralgia determined by diffusion tensor imaging are independent of symptom duration, severity, and type of neurovascular conflict.

    PubMed

    Lutz, Juergen; Thon, Niklas; Stahl, Robert; Lummel, Nina; Tonn, Joerg-Christian; Linn, Jennifer; Mehrkens, Jan-Hinnerk

    2016-03-01

    OBJECT In this prospective study diffusion tensor imaging (DTI) was used to evaluate the influence of clinical and anatomical parameters on structural alterations within the fifth cranial nerve in patients with trigeminal neuralgia (TN) due to neurovascular compression. METHODS Overall, 81 patients (40 men and 41 women; mean age 60 ± 5 years) with typical TN were included who underwent microsurgical decompression. Preoperative 3.0-T high-resolution MRI and DTI were analyzed in a blinded fashion. The respective fractional anisotropy (FA) and apparent diffusion coefficient values were compared with the clinical, imaging, and intraoperative data. This study was approved by the institutional review board, and written informed consent was obtained from all patients. RESULTS DTI analyses revealed significantly lower FA values within the vulnerable zone of the affected trigeminal nerve compared with the contralateral side (p = 0.05). The DTI analyses also included 3 patients without clear evidence of neurovascular conflict on preoperative MRI. No differences were seen between arterial and venous compression. Lower FA values were found 5 months after symptom onset; however, no correlation was found with the duration of symptoms or severity of compression. CONCLUSIONS DTI analysis allows the quantification of structural alterations, even in those patients without any discernible neurovascular contact on MRI. Moreover, our findings support the hypothesis that both the arteries and veins can cause structural alterations that lead to TN. These aspects can be useful for making treatment decisions. PMID:26406792

  15. Comparing hemodynamic models with DCM

    PubMed Central

    Stephan, Klaas Enno; Weiskopf, Nikolaus; Drysdale, Peter M.; Robinson, Peter A.; Friston, Karl J.

    2007-01-01

    The classical model of blood oxygen level-dependent (BOLD) responses by Buxton et al. [Buxton, R.B., Wong, E.C., Frank, L.R., 1998. Dynamics of blood flow and oxygenation changes during brain activation: the Balloon model. Magn. Reson. Med. 39, 855–864] has been very important in providing a biophysically plausible framework for explaining different aspects of hemodynamic responses. It also plays an important role in the hemodynamic forward model for dynamic causal modeling (DCM) of fMRI data. A recent study by Obata et al. [Obata, T., Liu, T.T., Miller, K.L., Luh, W.M., Wong, E.C., Frank, L.R., Buxton, R.B., 2004. Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the Balloon model to the interpretation of BOLD transients. NeuroImage 21, 144–153] linearized the BOLD signal equation and suggested a revised form for the model coefficients. In this paper, we show that the classical and revised models are special cases of a generalized model. The BOLD signal equation of this generalized model can be reduced to that of the classical Buxton model by simplifying the coefficients or can be linearized to give the Obata model. Given the importance of hemodynamic models for investigating BOLD responses and analyses of effective connectivity with DCM, the question arises which formulation is the best model for empirically measured BOLD responses. In this article, we address this question by embedding different variants of the BOLD signal equation in a well-established DCM of functional interactions among visual areas. This allows us to compare the ensuing models using Bayesian model selection. Our model comparison approach had a factorial structure, comparing eight different hemodynamic models based on (i) classical vs. revised forms for the coefficients, (ii) linear vs. non-linear output equations, and (iii) fixed vs. free parameters, ε, for region-specific ratios of intra- and extravascular signals. Using fMRI data

  16. MAOA Alters the Effects of Heavy Drinking and Childhood Physical Abuse on Risk for Severe Impulsive Acts of Violence Among Alcoholic Violent Offenders

    PubMed Central

    Tikkanen, Roope; Ducci, Francesca; Goldman, David; Holi, Matti; Lindberg, Nina; Tiihonen, Jari; Virkkunen, Matti

    2011-01-01

    Background A polymorphism in the promoter region of the monoamine oxidase A gene (MAOA) has been shown to alter the effect of persistent drinking and childhood maltreatment on the risk for violent and antisocial behaviors. These findings indicate that MAOA could contribute to inter-individual differences in stress resiliency. Methods Recidivism in severe violent crimes was assessed after 8 years of nonincarcerated follow-up in a male sample of 174 impulsive Finnish alcoholic violent offenders, the majority of whom exhibited antisocial (ASPD) or borderline personality disorder (BPD) or both. We examined whether MAOA genotype alters the effects of heavy drinking and childhood physical abuse (CPA) on the risk for committing impulsive recidivistic violent crimes. Results Logistic regression analyses showed that both heavy drinking and CPA were significant independent predictors of recidivism in violent behavior (OR 5.2, p = 0.004 and OR 5.3, p = 0.003) among offenders having the high MAOA activity genotype (MAOA-H), but these predictors showed no effect among offenders carrying the low MAOA activity genotype (MAOA-L). Conclusion Carriers of the MAOA-H allele have a high risk to commit severe recidivistic impulsive violent crimes after exposure to heavy drinking and CPA. PMID:20201935

  17. Hemodynamic instability following intentional nadolol overdose.

    PubMed

    Ehgartner, G R; Zelinka, M A

    1988-04-01

    Hemodynamic compromise developed following intentional overdose with nadolol in a 57-year-old woman. Nadolol is a nonselective beta-adrenergic blocking agent. Intravenous infusion of glucagon hydrochloride was effective in restoring hemodynamic stability after intravenous fluid loading and catecholamine infusions had failed. To our knowledge, this is the first reported case of nadolol overdose. PMID:3355299

  18. Hemodynamics of focal choroidal excavations.

    PubMed

    Soma, Ryoko; Moriyama, Muka; Ohno-Matsui, Kyoko

    2015-04-01

    The purpose of this study was to investigate the hemodynamics of focal choroidal excavations (FCEs). Four eyes of four patients with a FCE were studied. Indocyanine green angiography (ICGA), laser speckle flowgraphy (LSFG), optical coherence tomography (OCT), and multi-focal electroretinography (mfERG) were performed to investigate the choroidal hemodynamics and the morphological and functional changes. The mean depth of the FCE determined by OCT was 222.5 ± 49.5 μm with a range of 164-272 μm. In one case, subretinal fluid was observed in the excavation, and in three cases, subretinal fluid was not observed. ICGA showed hypofluorescence, and laser flowgraphy (LSFG) showed decreased choroidal blood flow at the excavation in all cases. Three cases were symptomatic, and the amplitudes of the mfERGs were reduced. FCEs cause a decrease of choroidal blood flow. In three of four cases, the mfERGs were depressed over the FCEs leading to symptoms. PMID:25626897

  19. Early Altered Resting-State Functional Connectivity Predicts the Severity of Post-Traumatic Stress Disorder Symptoms in Acutely Traumatized Subjects

    PubMed Central

    Qin, Ling-di; Wan, Jie-qing; Sun, Ya-wen; Su, Shan-shan; Ding, Wei-na; Xu, Jian-rong

    2012-01-01

    The goal of this study was to investigate the relationship between resting-state functional connectivity and the severity of post-traumatic stress disorder (PTSD) symptoms in 15 people who developed PTSD following recent trauma. Fifteen participants who experienced acute traumatic events underwent a 7.3-min resting functional magnetic resonance imaging scan within 2 days post-event. All the patients were diagnosed with PTSD within 1 to 6 months after trauma. Brain areas in which activity was correlated with that of the posterior cingulate cortex (PCC) were assessed. To assess the relationship between the severity of PTSD symptoms and PCC connectivity, contrast images representing areas positively correlated with the PCC were correlated with the subject’s Clinician-Administered PTSD Scale scores (CAPS) when they were diagnosed. Furthermore, the PCC, medial prefrontal cortex and bilateral amygdala were selected to assess the correlation of the strength of functional connectivity with the CAPS. Resting state connectivity with the PCC was negatively correlated with CAPS scores in the left superior temporal gyrus and right hippocampus/amygdala. Furthermore, the strength of connectivity between the PCC and bilateral amygdala, and even between the bilateral amygdala could predict the severity of PTSD symptoms later. These results suggest that early altered resting-state functional connectivity of the PCC with the left superior temporal gyrus, right hippocampus and amygdala could predict the severity of the disease and may be a major risk factor that predisposes patients to develop PTSD. PMID:23056477

  20. Vestibular stimulation leads to distinct hemodynamic patterning

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; Emanuel, B. A.; Yates, B. J.

    2000-01-01

    Previous studies demonstrated that responses of a particular sympathetic nerve to vestibular stimulation depend on the type of tissue the nerve innervates as well as its anatomic location. In the present study, we sought to determine whether such precise patterning of vestibulosympathetic reflexes could lead to specific hemodynamic alterations in response to vestibular afferent activation. We simultaneously measured changes in systemic blood pressure and blood flow (with the use of Doppler flowmetry) to the hindlimb (femoral artery), forelimb (brachial artery), and kidney (renal artery) in chloralose-urethane-anesthetized, baroreceptor-denervated cats. Electrical vestibular stimulation led to depressor responses, 8 +/- 2 mmHg (mean +/- SE) in magnitude, that were accompanied by decreases in femoral vasoconstriction (23 +/- 4% decrease in vascular resistance or 36 +/- 7% increase in vascular conductance) and increases in brachial vascular tone (resistance increase of 10 +/- 6% and conductance decrease of 11 +/- 4%). Relatively small changes (<5%) in renal vascular tone were observed. In contrast, electrical stimulation of muscle and cutaneous afferents produced pressor responses (20 +/- 6 mmHg) that were accompanied by vasoconstriction in all three beds. These data suggest that vestibular inputs lead to a complex pattern of cardiovascular changes that is distinct from that which occurs in response to activation of other types of somatic afferents.

  1. The utility of novel non-invasive technologies for remote hemodynamic monitoring in chronic heart failure.

    PubMed

    Mabote, Thato; Wong, Kenneth; Cleland, John G F

    2014-08-01

    Monitoring a patient's hemodynamic status may be a revolutionary way to aid a 'health maintenance' strategy in which the physician strives to therapeutically keep the patient in an ideal hemodynamic range. Currently, home telemonitoring employs a 'crisis-prevention' approach. This strategy is still based on easily acquired measures such as heart rate, weight and blood pressure--measurements that are useful to help implement guideline-directed therapy but provide little information about impending decompensation or the risk of hospitalisation. Current systems provide limited information to personalize and adapt medication therapy for heart failure. Several innovative technologies that can remotely monitor estimates of cardiovascular hemodynamics, such as cardiac index, systemic vascular resistance, augmentation index and added heart sounds may enable earlier detection of heart failure decompensation. This editorial presents an overview of the innovative technologies that are available for non-invasive hemodynamic monitoring and maybe adapted for home telemonitoring for chronic heart failure. PMID:25026973

  2. A simulation model to study the role of the extracranial venous drainage pathways in intracranial hemodynamics.

    PubMed

    Gadda, G; Taibi, A; Sisini, F; Gambaccini, M; Sethi, S K; Utriainen, D; Haacke, E M; Zamboni, P; Ursino, M

    2015-08-01

    Alterations in the extracranial venous circulation due to posture changes, and/or extracranial venous obstructions in patients with vascular diseases, can have important implications on cerebral hemodynamics. A hemodynamic model for the study of cerebral venous outflow was developed to investigate the correlations between extracranial blood redistributions and changes in the intracranial environment. Flow data obtained with both magnetic resonance (MR) and Echo-Color Doppler (ECD) technique are used to validate the model. The very good agreement between simulated supine and upright flows and experimental results means that the model can correctly reproduce the main factors affecting the extracranial venous circulation. PMID:26738101

  3. Artifact reduction in long-term monitoring of cerebral hemodynamics using near-infrared spectroscopy

    PubMed Central

    Vinette, Sarah A.; Dunn, Jeff F.; Slone, Edward; Federico, Paolo

    2015-01-01

    Abstract. Near-infrared spectroscopy (NIRS) is a noninvasive neuroimaging technique used to assess cerebral hemodynamics. Its portability, ease of use, and relatively low operational cost lend itself well to the long-term monitoring of hemodynamic changes, such as those in epilepsy, where events are unpredictable. Long-term monitoring is associated with challenges including alterations in behaviors and motion that can result in artifacts. Five patients with epilepsy were assessed for interictal hemodynamic changes and alterations in behavior or motion. Based on this work, visual inspection was used to identify NIRS artifacts during a period of interest, specifically prior to seizures, in four patients. A motion artifact reduction algorithm (MARA, also known as the spline interpolation method) was tested on these data. Alterations in the NIRS measurements often occurred simultaneously with changes in motion and behavior. Occasionally, sharp shift artifacts were observed in the data. When artifacts appeared as sustained baseline shifts in the data, MARA reduced the standard deviation of the data and the appearance improved. We discussed motion and artifacts as challenges associated with long-term monitoring of cerebral hemodynamics in patients with epilepsy and our group’s approach to circumvent these challenges and improve the quality of the data collected. PMID:26158008

  4. Hemodynamic Segmentation of Brain Perfusion Images with Delay and Dispersion Effects Using an Expectation-Maximization Algorithm

    PubMed Central

    Lu, Chia-Feng; Guo, Wan-Yuo; Chang, Feng-Chi; Huang, Shang-Ran; Chou, Yen-Chun; Wu, Yu-Te

    2013-01-01

    Automatic identification of various perfusion compartments from dynamic susceptibility contrast magnetic resonance brain images can assist in clinical diagnosis and treatment of cerebrovascular diseases. The principle of segmentation methods was based on the clustering of bolus transit-time profiles to discern areas of different tissues. However, the cerebrovascular diseases may result in a delayed and dispersed local perfusion and therefore alter the hemodynamic signal profiles. Assessing the accuracy of the segmentation technique under delayed/dispersed circumstance is critical to accurately evaluate the severity of the vascular disease. In this study, we improved the segmentation method of expectation-maximization algorithm by using the results of hierarchical clustering on whitened perfusion data as initial parameters for a mixture of multivariate Gaussians model. In addition, Monte Carlo simulations were conducted to evaluate the performance of proposed method under different levels of delay, dispersion, and noise of signal profiles in tissue segmentation. The proposed method was used to classify brain tissue types using perfusion data from five normal participants, a patient with unilateral stenosis of the internal carotid artery, and a patient with moyamoya disease. Our results showed that the normal, delayed or dispersed hemodynamics can be well differentiated for patients, and therefore the local arterial input function for impaired tissues can be recognized to minimize the error when estimating the cerebral blood flow. Furthermore, the tissue in the risk of infarct and the tissue with or without the complementary blood supply from the communicating arteries can be identified. PMID:23894386

  5. Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy.

    PubMed

    Safonova, Larisa P; Michalos, Antonios; Wolf, Ursula; Wolf, Martin; Hueber, Dennis M; Choi, Jee H; Gupta, Rajarsi; Polzonetti, Chiara; Mantulin, William W; Gratton, Enrico

    2004-01-01

    Cerebral hemodynamic responses due to normal aging may interfere with hormonal changes, drug therapy, diseases, life style, and other factors. Age-correlated alterations in cerebral vasculature and autoregulatory mechanisms are the subject of interest in many studies. Near-infrared spectroscopy (NIRS) is widely used for monitoring cerebral hemodynamics and oxygenation changes at the level of small vessels. We believe that the compensatory ability of cerebral arterioles under hypoxic conditions and the dilatatory ability of cerebral vessels due to vasomotion may decline with normal aging. To test this hypothesis we used frequency-domain NIRS to measure changes in cerebral tissue oxygenation and oxy- and deoxy-hemoglobin concentrations caused by hypoxia during breath holding. We also assessed cerebral vasomotion during profound relaxation. Thirty seven healthy volunteers, 12 females and 25 males, ranging from 22 to 56 years of age (mean age 35 +/- 11 years) participated in the study. We observed age-correlated changes in the cerebral hemodynamics of normal subjects: diminished cerebral hemodynamic response to hypoxia due to breath holding in middle-aged subjects (38-56 years) and reduced amplitude of cerebral hemodynamic changes due to vasomotion during rest. Snoring related changes in cerebral hemodynamics did not allow us to observe the effect of age in a group of snorers. The prolonged supine position influenced measured changes due to hypoxia. In this investigation NIRS methodology allowed detection of age-correlated changes in cerebral oxygenation and hemodynamics. Other variables, such as snoring or posture impacted the observations in our group of healthy volunteers. PMID:15381340

  6. Simultaneous hemodynamic and echocardiographic changes during abdominal gas insufflation.

    PubMed

    Myre, K; Buanes, T; Smith, G; Stokland, O

    1997-10-01

    The purpose of this study was to investigate cardiovascular changes during CO2 pneumoperitoneum. We performed simultaneous hemodynamic recordings and transesophageal echocardiographic measurements of possible alterations in cardiac dimensions. Seven patients scheduled for elective laparoscopic cholecystectomy were investigated. With an intraabdominal pressure of 15 mm Hg, mean arterial pressure increased from 75 to 93 mm Hg (p < 0.05). Despite the increase in pulmonary capillary wedge pressure (PCWP) from 10 (9.5-12) to 17 (16-19.9) mm Hg (p < 0.05), left ventricular end-diastolic area index (EDAI) did not change significantly. The cardiac index remained unchanged. Thus abdominal gas insufflation substantially alters the PCWP/EDAI relation. During pneumoperitoneum, left ventricular filling pressure, estimated by PCWP, cannot be used as an indicator of left ventricular dilation. PMID:9348623

  7. Dysregulation of oxygen hemodynamic responses to synaptic train stimulation in a rat hippocampal model of subarachnoid hemorrhage.

    PubMed

    Galeffi, Francesca; Degan, Simone; Britz, Gavin; Turner, Dennis A

    2016-04-01

    We investigated microvascular reactivity to synaptic train stimulation after induction of subarachnoid hemorrhage in adult rats, analyzing tissue oxygen levels [pO2] in intact hippocampus. In control rats, hippocampal pO2averaged 11.4 mm Hg whereas hemodynamic responses averaged 13.1 mm Hg (to a 25 s train). After subarachnoid hemorrhage (at 2 days), we recorded a dramatic elevation in baseline pO2in the hippocampus (to 68.4 mm Hg) accompanied by inverted pO2responses to synaptic train stimulation (-9.46 mm Hg). These significant changes in baseline hippocampal pO2and inverted pO2responses after subarachnoid hemorrhage indicate severe alterations of neurovascular coupling and neuronal viability. PMID:26721394

  8. Effects of the inlet conditions and blood models on accurate prediction of hemodynamics in the stented coronary arteries

    NASA Astrophysics Data System (ADS)

    Jiang, Yongfei; Zhang, Jun; Zhao, Wanhua

    2015-05-01

    Hemodynamics altered by stent implantation is well-known to be closely related to in-stent restenosis. Computational fluid dynamics (CFD) method has been used to investigate the hemodynamics in stented arteries in detail and help to analyze the performances of stents. In this study, blood models with Newtonian or non-Newtonian properties were numerically investigated for the hemodynamics at steady or pulsatile inlet conditions respectively employing CFD based on the finite volume method. The results showed that the blood model with non-Newtonian property decreased the area of low wall shear stress (WSS) compared with the blood model with Newtonian property and the magnitude of WSS varied with the magnitude and waveform of the inlet velocity. The study indicates that the inlet conditions and blood models are all important for accurately predicting the hemodynamics. This will be beneficial to estimate the performances of stents and also help clinicians to select the proper stents for the patients.

  9. Perioperative cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle physiology

    PubMed Central

    Dehaes, Mathieu; Cheng, Henry H.; Buckley, Erin M.; Lin, Pei-Yi; Ferradal, Silvina; Williams, Kathryn; Vyas, Rutvi; Hagan, Katherine; Wigmore, Daniel; McDavitt, Erica; Soul, Janet S.; Franceschini, Maria Angela; Newburger, Jane W.; Ellen Grant, P.

    2015-01-01

    Congenital heart disease (CHD) patients are at risk for neurodevelopmental delay. The etiology of these delays is unclear, but abnormal prenatal cerebral maturation and postoperative hemodynamic instability likely play a role. A better understanding of these factors is needed to improve neurodevelopmental outcome. In this study, we used bedside frequency-domain near infrared spectroscopy (FDNIRS) and diffuse correlation spectroscopy (DCS) to assess cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle (SV) CHD undergoing surgery and compared them to controls. Our goals were 1) to compare cerebral hemodynamics between unanesthetized SV and healthy neonates, and 2) to determine if FDNIRS-DCS could detect alterations in cerebral hemodynamics beyond cerebral hemoglobin oxygen saturation (SO2). Eleven SV neonates were recruited and compared to 13 controls. Preoperatively, SV patients showed decreased cerebral blood flow (CBFi), cerebral oxygen metabolism (CMRO2i) and SO2; and increased oxygen extraction fraction (OEF) compared to controls. Compared to preoperative values, unstable postoperative SV patients had decreased CMRO2i and CBFi, which returned to baseline when stable. However, SO2 showed no difference between unstable and stable states. Preoperative SV neonates are flow-limited and show signs of impaired cerebral development compared to controls. FDNIRS-DCS shows potential to improve assessment of cerebral development and postoperative hemodynamics compared to SO2 alone. PMID:26713191

  10. Saturation thresholds of evoked neural and hemodynamic responses in awake and asleep rats

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer L.; Van Nortwick, Amy S.; Meighan, Peter C.; Rector, David M.

    2011-03-01

    Neural activation generates a hemodynamic response to the localized region replenishing nutrients to the area. Changes in vigilance state have been shown to alter the vascular response where the vascular response is muted during wake compared to quiet sleep. We tested the saturation thresholds of the neurovascular response in the auditory cortex during wake and sleep by chronically implanting rats with an EEG electrode, a light emitting diode (LED, 600 nm), and photodiode to simultaneously measure evoked response potentials (ERPs) and evoked hemodynamic responses. We stimulated the cortex with a single speaker click delivered at random intervals 2-13 s at varied stimulus intensities ranging from 45-80 dB. To further test the potential for activity related saturation, we sleep deprived animals for 2, 4, or 6 hours and recorded evoked responses during the first hour recovery period. With increasing stimulus intensity, integrated ERPs and evoked hemodynamic responses increased; however the hemodynamic response approached saturation limits at a lower stimulus intensity than the ERP. With longer periods of sleep deprivation, the integrated ERPs did not change but evoked hemodynamic responses decreased. There may be physical limits in cortical blood delivery and vascular compliance, and with extended periods of neural activity during wake, vessels may approach these limits.

  11. Venous hemodynamic changes in lower limb venous disease: the UIP consensus according to scientific evidence.

    PubMed

    Lee, Byung B; Nicolaides, Andrew N; Myers, Kenneth; Meissner, Mark; Kalodiki, Evi; Allegra, Claudio; Antignani, Pier L; Bækgaard, Niels; Beach, Kirk; Belcaro, Giovanni; Black, Stephen; Blomgren, Lena; Bouskela, Eliete; Cappelli, Massimo; Caprini, Joseph; Carpentier, Patrick; Cavezzi, Attilio; Chastanet, Sylvain; Christenson, Jan T; Christopoulos, Demetris; Clarke, Heather; Davies, Alun; Demaeseneer, Marianne; Eklöf, Bo; Ermini, Stefano; Fernández, Fidel; Franceschi, Claude; Gasparis, Antonios; Geroulakos, George; Sergio, Gianesini; Giannoukas, Athanasios; Gloviczki, Peter; Huang, Ying; Ibegbuna, Veronica; Kakkos, Stavros K; Kistner, Robert; Kölbel, Tilo; Kurstjens, Ralph L; Labropoulos, Nicos; Laredo, James; Lattimer, Christopher R; Lugli, Marzia; Lurie, Fedor; Maleti, Oscar; Markovic, Jovan; Mendoza, Erika; Monedero, Javier L; Moneta, Gregory; Moore, Hayley; Morrison, Nick; Mosti, Giovanni; Nelzén, Olle; Obermayer, Alfred; Ogawa, Tomohiro; Parsi, Kurosh; Partsch, Hugo; Passariello, Fausto; Perrin, Michel L; Pittaluga, Paul; Raju, Seshadri; Ricci, Stefano; Rosales, Antonio; Scuderi, Angelo; Slagsvold, Carl E; Thurin, Anders; Urbanek, Tomasz; M VAN Rij, Andre; Vasquez, Michael; Wittens, Cees H; Zamboni, Paolo; Zimmet, Steven; Ezpeleta, Santiago Z

    2016-06-01

    thrombosis indicating their pathophysiological and clinical significance. Chapter 3 describes the hemodynamic changes that occur in different classes of chronic venous disease and their relation to the anatomic extent of disease in the macrocirculation and microcirculation. The next four chapters (Chapters 4-7) describe the hemodynamic changes resulting from treatmen by compression using different materials, intermittent compression devices, pharmacological agents and finally surgical or endovenous ablation. Chapter 8 discusses the unique hemodynamic features associated with alternative treatment techniques used by the CHIVA and ASVAL. Chapter 9 describes the hemodynamic effects following treatment to relieve pelvic reflux and obstruction. Finally, Chapter 10 demonstrates that contrary to general belief there is a moderate to good correlation between certain hemodynamic measurements and clinical severity of chronic venous disease. The authors believe that this document will be a timely asset to both clinicians and researchers alike. It is directed towards surgeons and physicians who are anxious to incorporate the conclusions of research into their daily practice. It is also directed to postgraduate trainees, vascular technologists and bioengineers, particularly to help them understand the hemodynamic background to pathophysiology, investigations and treatment of patients with venous disorders. Hopefully it will be a platform for those who would like to embark on new research in the field of venous disease. PMID:27013029

  12. Hemodynamics of a hydrodynamic injection

    PubMed Central

    Kanefuji, Tsutomu; Yokoo, Takeshi; Suda, Takeshi; Abe, Hiroyuki; Kamimura, Kenya; Liu, Dexi

    2014-01-01

    The hemodynamics during a hydrodynamic injection were evaluated using cone beam computed tomography (CBCT) and fluoroscopic imaging. The impacts of hydrodynamic (5 seconds) and slow (60 seconds) injections into the tail veins of mice were compared using 9% body weight of a phase-contrast medium. Hydrodynamically injected solution traveled to the heart and drew back to the hepatic veins (HV), which led to liver expansion and a trace amount of spillover into the portal vein (PV). The liver volumes peaked at 165.6 ± 13.3% and 165.5 ± 11.9% of the original liver volumes in the hydrodynamic and slow injections, respectively. Judging by the intensity of the CBCT images at the PV, HV, right atrium, liver parenchyma (LP), and the inferior vena cava (IVC) distal to the HV conjunction, the slow injection resulted in the higher intensity at PV than at LP. In contrast, a significantly higher intensity was observed in LP after hydrodynamic injection in comparison with that of PV, suggesting that the liver took up the iodine from the blood flow. These results suggest that the enlargement speed of the liver, rather than the expanded volume, primarily determines the efficiency of hydrodynamic delivery to the liver. PMID:26015971

  13. Hemodynamics driven cardiac valve morphogenesis.

    PubMed

    Steed, Emily; Boselli, Francesco; Vermot, Julien

    2016-07-01

    Mechanical forces are instrumental to cardiovascular development and physiology. The heart beats approximately 2.6 billion times in a human lifetime and heart valves ensure that these contractions result in an efficient, unidirectional flow of the blood. Composed of endocardial cells (EdCs) and extracellular matrix (ECM), cardiac valves are among the most mechanically challenged structures of the body both during and after their development. Understanding how hemodynamic forces modulate cardiovascular function and morphogenesis is key to unraveling the relationship between normal and pathological cardiovascular development and physiology. Most valve diseases have their origins in embryogenesis, either as signs of abnormal developmental processes or the aberrant re-expression of fetal gene programs normally quiescent in adulthood. Here we review recent discoveries in the mechanobiology of cardiac valve development and introduce the latest technologies being developed in the zebrafish, including live cell imaging and optical technologies, as well as modeling approaches that are currently transforming this field. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26608609

  14. Hemodynamic Shear Stress and Endothelial Dysfunction in Hemodialysis Access

    PubMed Central

    Fitts, Michelle K.; Pike, Daniel B.; Anderson, Kasey; Shiu, Yan-Ting

    2014-01-01

    Surgically-created blood conduits used for chronic hemodialysis, including native arteriovenous fistulas (AVFs) and synthetic AV grafts (AVGs), are the lifeline for kidney failure patients. Unfortunately, each has its own limitations: AVFs often fail to mature to become useful for dialysis and AVGs often fail due to stenosis as a result of neointimal hyperplasia, which preferentially forms at the graft-venous anastomosis. No clinical therapies are currently available to significantly promote AVF maturation or prevent neointimal hyperplasia in AVGs. Central to devising strategies to solve these problems is a complete mechanistic understanding of the pathophysiological processes. The pathology of arteriovenous access problems is likely multi-factorial. This review focuses on the roles of fluid-wall shear stress (WSS) and endothelial cells (ECs). In arteriovenous access, shunting of arterial blood flow directly into the vein drastically alters the hemodynamics in the vein. These hemodynamic changes are likely major contributors to non-maturation of an AVF vein and/or formation of neointimal hyperplasia at the venous anastomosis of an AVG. ECs separate blood from other vascular wall cells and also influence the phenotype of these other cells. In arteriovenous access, the responses of ECs to aberrant WSS may subsequently lead to AVF non-maturation and/or AVG stenosis. This review provides an overview of the methods for characterizing blood flow and calculating WSS in arteriovenous access and discusses EC responses to arteriovenous hemodynamics. This review also discusses the role of WSS in the pathology of arteriovenous access, as well as confounding factors that modulate the impact of WSS. PMID:25309636

  15. Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers

    PubMed Central

    Son, Taeyoon; Wang, Benquan; Thapa, Damber; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2016-01-01

    Blood flow changes are highly related to neural activities in the retina. It has been reported that neural activity increases when flickering light stimulation of the retina is used. It is known that blood flow changes with flickering light stimulation can be altered in patients with vascular disease and that measurement of flicker-induced vasodilatation is an easily applied tool for monitoring functional microvascular alterations. However, details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood due to the limitation of existing techniques. In this study, flickering light stimulation was applied to mouse retinas to investigate stimulus evoked hemodynamic responses in individual retinal layers. A spectral domain optical coherence tomography (OCT) angiography imaging system was developed to provide dynamic mapping of hemodynamic responses in the ganglion cell layer, inner plexiform layer, outer plexiform layer and choroid layer before, during and after flickering light stimulation. Experimental results showed hemodynamic responses with different magnitudes and time courses in individual retinal layers. We anticipate that the dynamic OCT angiography of stimulus evoked hemodynamic responses can greatly foster the study of neurovascular coupling mechanisms in the retina, promising new biomarkers for retinal disease detection and diagnosis. PMID:27570706

  16. Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers.

    PubMed

    Son, Taeyoon; Wang, Benquan; Thapa, Damber; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2016-08-01

    Blood flow changes are highly related to neural activities in the retina. It has been reported that neural activity increases when flickering light stimulation of the retina is used. It is known that blood flow changes with flickering light stimulation can be altered in patients with vascular disease and that measurement of flicker-induced vasodilatation is an easily applied tool for monitoring functional microvascular alterations. However, details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood due to the limitation of existing techniques. In this study, flickering light stimulation was applied to mouse retinas to investigate stimulus evoked hemodynamic responses in individual retinal layers. A spectral domain optical coherence tomography (OCT) angiography imaging system was developed to provide dynamic mapping of hemodynamic responses in the ganglion cell layer, inner plexiform layer, outer plexiform layer and choroid layer before, during and after flickering light stimulation. Experimental results showed hemodynamic responses with different magnitudes and time courses in individual retinal layers. We anticipate that the dynamic OCT angiography of stimulus evoked hemodynamic responses can greatly foster the study of neurovascular coupling mechanisms in the retina, promising new biomarkers for retinal disease detection and diagnosis. PMID:27570706

  17. Hormones and Hemodynamics in Pregnancy

    PubMed Central

    Tkachenko, Oleksandra; Shchekochikhin, Dmitry; Schrier, Robert W.

    2014-01-01

    Context: Normal pregnancy is associated with sodium and water retention, which results in plasma volume expansion prior to placental implantation. The explanation offered for these events is that pregnancy ‘resets’ both volume and osmoreceptors. Evidence Acquisition: The mechanisms for such an enigmatic ‘resetting’ in pregnancy have not previously been explained. However, recent human pregnancy studies have demonstrated that the earliest hemodynamic change in pregnancy is primary systemic arterial vasodilation. This arterial underfilling is associated with a secondary increase in cardiac output and activation of the neurohumoral axis, including stimulation of the renin-angiotensin-aldosterone, sympathetic, and non-osmotic vasopressin systems. Resistance to the pressor effects of angiotensin and sympathetic stimulation in pregnancy is compatible with an increase in endothelial nitric oxide synthase activity. Results: In contrast to the sodium and water retention which occur secondary to the primary arterial vasodilation in cirrhosis, glomerular filtration and renal blood flow are significantly increased in normal pregnancy. A possible explanation for this difference in arterial vasodilation states is that relaxin, an arterial vasodilator which increases during pregnancy, has a potent effect on both systemic and renal circulation. Endothelial damage in pregnancy is pivotal in the pathogenesis of preeclampsia in pregnancy. Conclusions: Against a background of the primary arterial vasodilation hypothesis, it is obvious that reversal of the systemic vasodilatation in pregnancy, without subsequent activation of the renin-angiotensin-aldosterone system (78), will evoke a reversal of all the links in the chain of events in normal pregnancy adaptation, thus, it may cause preeclampsia. Namely, a decrease of renal vasodilation will decrease glomerular filtration rate. PMID:24803942

  18. Hemodynamic response patterns to mental stress: diagnostic and therapeutic implications.

    PubMed

    Rüddel, H; Langewitz, W; Schächinger, H; Schmieder, R; Schulte, W

    1988-08-01

    Stress has been identified as contributing to the development of cardiovascular disease. The pathophysiologic link between stress and disease still remains unclear. Because experimental stress testing in the laboratory permits the examination of the underlying mechanism for stress-induced blood pressure, analyses of cardiovascular reactivity during emotional stress could be of particular clinical importance. The analyses of pooled data during the past 6 years (n = 298, age from 20 to 60 years, normotensive subjects as well as patients with borderline and mild essential hypertension) reveal that stress-induced changes in stroke volume and especially in total peripheral resistance are crucial parameters to analyze the hemodynamic stress response. However, neither those simple nor complex response patterns such as "hot reactor" describe clinically distinct subgroups of persons. When physiologic testing was repeated in hypertensive patients after effective long-term antihypertensive therapy with clonidine, oxprenolol, nitrendipine, or enalapril, no attenuation of the stress-induced increase in blood pressure was found in any of these groups. However, heart rate reactivity and stress-induced changes in total peripheral resistance were altered significantly by oxprenolol and nitrendipine. The beta-adrenoceptor blocker decreased heart rate reactivity and increased reactivity of peripheral resistance; the calcium antagonist decreased stress-induced changes in peripheral resistance and increased the heart rate response. The centrally acting sympatholytic regimen and the angiotensin-converting enzyme inhibitor had no impact on the hemodynamic response pattern during emotional challenge. PMID:3394640

  19. Severe sepsis during pregnancy.

    PubMed

    Pacheco, Luis D; Saade, George R; Hankins, Gary D V

    2014-12-01

    Severe sepsis is a major cause of mortality among critically ill patients. Early recognition accompanied by early initiation of broad-spectrum antibiotics with source control and fluid resuscitation improves outcomes. Hemodynamic resuscitation starts with fluid therapy followed by vasopressors if necessary. Cases refractory to first-line vasopressors (norepinephrine) will require second-line vasopressors (epinephrine or vasopressin) and low-dose steroid therapy. Resuscitation goals should include optimization of central venous oxygenation and serum lactate. PMID:25286297

  20. Combined Effects of Flow Diverting Strategies and Parent Artery Curvature on Aneurysmal Hemodynamics: A CFD Study

    PubMed Central

    Yu, Ying; Lv, Nan; Wang, Shengzhang; Karmonik, Christof; Liu, Jian-Min; Huang, Qinghai

    2015-01-01

    Purpose Flow diverters (FD) are increasingly being considered for treating large or giant wide-neck aneurysms. Clinical outcome is highly variable and depends on the type of aneurysm, the flow diverting device and treatment strategies. The objective of this study was to analyze the effect of different flow diverting strategies together with parent artery curvature variations on altering intra-aneurysmal hemodynamics. Methods Four ideal intracranial aneurysm models with different parent artery curvature were constructed. Computational fluid dynamics (CFD) simulations of the hemodynamics before and after applying five types of flow diverting strategies (single FD, single FD with 5% and 10% packing density of coils, two FDs with 25% and 50% overlapping rate) were performed. Changes in pressure, wall shear stress (WSS), relative residence time (RRT), inflow velocity and inflow volume rate were calculated and compared. Results Each flow diverting strategy resulted in enhancement of RRT and reduction of normalized mean WSS, inflow volume rate and inflow velocity in various levels. Among them, 50% overlapped FD induced most effective hemodynamic changes in RRT and inflow volume rate. The mean pressure only slightly decreased after treatment. Regardless of the kind of implantation of FD, the mean pressure, inflow volume rate and inflow velocity increased and the RRT decreased as the curvature of the parent artery increased. Conclusions Of all flow diverting strategies, overlapping FDs induced most favorable hemodynamic changes. Hemodynamics alterations post treatment were substantially influenced by parent artery curvature. Our results indicate the need of an individualized flow diverting strategy that is tailored for a specific aneurysm. PMID:26398847

  1. Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Peterson, Lindsy; Gu, Shi; Gargesha, Madhusudhana; Wilson, David L.; Watanabe, Michiko; Rollins, Andrew M.

    2010-11-01

    Hemodynamics is thought to play a major role in heart development, yet tools to quantitatively assess hemodynamics in the embryo are sorely lacking. The especially challenging analysis of hemodynamics in the early embryo requires new technology. Small changes in blood flow could indicate when anomalies are initiated even before structural changes can be detected. Furthermore, small changes in the early embryo that affect blood flow could lead to profound abnormalities at later stages. We present a demonstration of 4-D Doppler optical coherence tomography (OCT) imaging of structure and flow, and present several new hemodynamic measurements on embryonic avian hearts at early stages prior to the formation of the four chambers. Using 4-D data, pulsed Doppler measurements could accurately be attained in the inflow and outflow of the heart tube. Also, by employing an en-face slice from the 4-D Doppler image set, measurements of stroke volume and cardiac output are obtained without the need to determine absolute velocity. Finally, an image plane orthogonal to the blood flow is used to determine shear stress by calculating the velocity gradient normal to the endocardium. Hemodynamic measurements will be crucial to identifying genetic and environmental factors that lead to congenital heart defects.

  2. Exploration of the Rapid Effects of Personal Fine Particulate Matter Exposure on Hemodynamics and Vascular Function during the Same Day

    EPA Science Inventory

    Background: Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure–response relationships remain unclear. Object...

  3. Shoshin Beriberi With Low Cardiac Output and Hemodynamic Deterioration Treated Dramatically by Thiamine Administration.

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro

    2015-01-01

    "Shoshin beriberi", which is a fulminant form of cardiovascular beriberi accompanied by hemodynamic deterioration with high cardiac output and decreased systemic blood pressure, caused by thiamine deficiency due to alcoholic abuse or malnutrition, is often difficult to address because of its rarity and non-specific symptoms. We here present a patient with a history of alcoholic abuse who had suffered hemodynamic deterioration with extremely low cardiac output refractory to extracorporeal membrane oxygenation and intravenous catecholamine support, which was improved dramatically by bolus intravenous thiamine administration. Such a type with low cardiac output would be the most severe form of Shoshin beriberi, and cannot be rescued without diagnostic administration of thiamine. PMID:26346515

  4. The influence of stenosis degrees and graft suture position on local hemodynamics of coronary bypass

    NASA Astrophysics Data System (ADS)

    Totorean, A. F.; Bernad, S. I.; Susan-Resiga, R. F.

    2016-06-01

    Bypass graft failure is mainly caused by intimal hyperplasia (IH) that occurs at the graft anastomosis after coronary artery bypass grafting (CABG) surgery. It has been shown that local hemodynamics influences the process of IH initiation and progression. A main concern at this type of surgery is to increase the graft patency, respectively to improve the local hemodynamics. This paper analyzes the influence of different degree of stenosis severity and graft suture position on graft patency, taking into consideration the local hemodynamics. Bypass configurations with anastomosis angle of 45° were numerically investigated, with respect to wall shear stress and pressure variation. We can assume that in the conditions of our study, different stenosis degrees and position of the graft suture influence the local blood flow conditions, and, nevertheless, the graft patency.

  5. Basic Perforator Flap Hemodynamic Mathematical Model

    PubMed Central

    Tao, Youlun; Ding, Maochao; Wang, Aiguo; Zhuang, Yuehong; Chang, Shi-Min; Mei, Jin; Hallock, Geoffrey G.

    2016-01-01

    Background: A mathematical model to help explain the hemodynamic characteristics of perforator flaps based on blood flow resistance systems within the flap will serve as a theoretical guide for the future study and clinical applications of these flaps. Methods: There are 3 major blood flow resistance network systems of a perforator flap. These were defined as the blood flow resistance of an anastomosis between artery and artery of adjacent perforasomes, between artery and vein within a perforasome, and then between vein and vein corresponding to the outflow of that perforasome. From this, a calculation could be made of the number of such blood flow resistance network systems that must be crossed for all perforasomes within a perforator flap to predict whether that arrangement would be viable. Results: The summation of blood flow resistance networks from each perforasome in a given perforator flap could predict which portions would likely survive. This mathematical model shows how this is directly dependent on the location of the vascular pedicle to the flap and whether supercharging or superdrainage maneuvers have been added. These configurations will give an estimate of the hemodynamic characteristics for the given flap design. Conclusions: This basic mathematical model can (1) conveniently determine the degree of difficulty for each perforasome within a perforator flap to survive; (2) semiquantitatively allow the calculation of basic hemodynamic parameters; and (3) allow the assessment of the pros and cons expected for each pattern of perforasomes encountered clinically based on predictable hemodynamic observations.

  6. Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation

    SciTech Connect

    Ortega, J; Hartman, J; Rodriguez, J; Maitland, D

    2008-01-16

    Aneurysm re-growth and rupture can sometimes unexpectedly occur following treatment procedures that were initially considered to be successful at the time of treatment and post-operative angiography. In some cases, this can be attributed to surgical clip slippage or endovascular coil compaction. However, there are other cases in which the treatment devices function properly. In these instances, the subsequent complications are due to other factors, perhaps one of which is the post-treatment hemodynamic stress. To investigate whether or not a treatment procedure can subject the parent artery to harmful hemodynamic stresses, computational fluid dynamics simulations are performed on a patient-specific basilar aneurysm and bifurcation before and after a virtual endovascular treatment. The simulations demonstrate that the treatment procedure produces a substantial increase in the wall shear stress. Analysis of the post-treatment flow field indicates that the increase in wall shear stress is due to the impingement of the basilar artery flow upon the aneurysm filling material and to the close proximity of a vortex tube to the artery wall. Calculation of the time-averaged wall shear stress shows that there is a region of the artery exposed to a level of wall shear stress that can cause severe damage to endothelial cells. The results of this study demonstrate that it is possible for a treatment procedure, which successfully excludes the aneurysm from the vascular system and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to the immediately adjacent vessel wall.

  7. Echocardiographic and Hemodynamic Predictors of Mortality in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Rivera-Lebron, Belinda N.; Forfia, Paul R.; Kreider, Maryl; Lee, James C.; Holmes, John H.

    2013-01-01

    Background: Idiopathic pulmonary fibrosis (IPF) can lead to the development of pulmonary hypertension, which is associated with an increased risk of death. In pulmonary arterial hypertension, survival is directly related to the capacity of the right ventricle to adapt to elevated pulmonary vascular load. The relative importance of right ventricular function in IPF is not well understood. Our objective was to evaluate right ventricular echocardiographic and hemodynamic predictors of mortality in a cohort of patients with IPF referred for lung transplant evaluation. Methods: We performed a retrospective cohort study of 135 patients who met 2011 American Thoracic Society/European Respiratory Society criteria for IPF and who were evaluated for lung transplantation at the Hospital of the University of Pennsylvania. Results: Right ventricle:left ventricle diameter ratio (hazard ratio [HR], 4.5; 95% CI, 1.7-11.9), moderate to severe right atrial and right ventricular dilation (HR, 2.9; 95% CI, 1.4-5.9; and HR, 2.7; 95% CI, 1.4-5.4, respectively) and right ventricular dysfunction (HR, 5.5; 95% CI, 2.6-11.5) were associated with an increased risk of death. Higher pulmonary vascular resistance was also associated with increased mortality (HR per 1 Wood unit, 1.3; 95% CI, 1.1-1.5). These risk factors were independent of age, sex, race, height, weight, FVC, and lung transplantation status. Other hemodynamic indices, such as mean pulmonary artery pressure and cardiac index, were not associated with outcome. Conclusions: Right-sided heart size and right ventricular dysfunction measured by echocardiography and higher pulmonary vascular resistance by invasive hemodynamic assessment predict mortality in patients with IPF evaluated for lung transplantation. PMID:23450321

  8. Phonocardiographic Assessment of Hemodynamic Response to Balloon Aortic Valvuloplasty

    PubMed Central

    Bush, Howard S.; Ferguson, James J.

    1990-01-01

    The time to systolic murmur peak is a clinical index that is useful in assessing the severity of valvular aortic stenosis. To determine whether phonocardiography could be used to detect a change in the timing of the murmur and thus to measure hemodynamic improvements in elderly balloon aortic valvuloplasty patients, we retrospectively reviewed phonocardiographic tracings of 18 patients taken before and after the procedure. Ten men and 8 women were included in the study; the mean age was 80.7 ± 11.2 years (range, 64 to 90). Phonocardiographic signals were digitized, and the R-wave to murmur peak interval (R-MP) was measured. In 11 patients, the R-MP decreased (mean decrease, 16% ± 11%): of these, 10 had a significant (> 25%) decrease in mean gradient; 10 had a significant (> 25%) decrease in peak-to-peak gradient; and the average increase in aortic valve area was 38%. Seven patients had an increase in R-MP (mean increase, 10% ± 9%): of these, 6 had a decrease in mean gradient of less than 25%; 6 had a decrease in peak-to-peak gradient of less than 25%; and the average increase in aortic valve area was 21%. Pre- and post-balloon aortic valvuloplasty heart rates were not significantly different (71 ± 8 beats/min versus 73 ± 5 beats/min). In this study, hemodynamic improvements after valvuloplasty were manifested by a reduction in the R-MP interval. We conclude that phonocardiography may be a practical, noninvasive method of assessing the hemodynamic response to balloon aortic valvuloplasty. (Texas Heart Institute Journal 1990;17:42-7) PMID:15227188

  9. Acute effects of ferumoxytol on regulation of renal hemodynamics and oxygenation.

    PubMed

    Cantow, Kathleen; Pohlmann, Andreas; Flemming, Bert; Ferrara, Fabienne; Waiczies, Sonia; Grosenick, Dirk; Niendorf, Thoralf; Seeliger, Erdmann

    2016-01-01

    The superparamagnetic iron oxide nanoparticle ferumoxytol is increasingly used as intravascular contrast agent in magnetic resonance imaging (MRI). This study details the impact of ferumoxytol on regulation of renal hemodynamics and oxygenation. In 10 anesthetized rats, a single intravenous injection of isotonic saline (used as volume control) was followed by three consecutive injections of ferumoxytol to achieve cumulative doses of 6, 10, and 41 mg Fe/kg body mass. Arterial blood pressure, renal blood flow, renal cortical and medullary perfusion and oxygen tension were continuously measured. Regulation of renal hemodynamics and oxygenation was characterized by dedicated interventions: brief periods of suprarenal aortic occlusion, hypoxia, and hyperoxia. None of the three doses of ferumoxytol resulted in significant changes in any of the measured parameters as compared to saline. Ferumoxytol did not significantly alter regulation of renal hemodynamics and oxygenation as studied by aortic occlusion and hypoxia. The only significant effect of ferumoxytol at the highest dose was a blunting of the hyperoxia-induced increase in arterial pressure. Taken together, ferumoxytol has only marginal effects on the regulation of renal hemodynamics and oxygenation. This makes ferumoxytol a prime candidate as contrast agent for renal MRI including the assessment of renal blood volume fraction. PMID:27436132

  10. Acute effects of ferumoxytol on regulation of renal hemodynamics and oxygenation

    PubMed Central

    Cantow, Kathleen; Pohlmann, Andreas; Flemming, Bert; Ferrara, Fabienne; Waiczies, Sonia; Grosenick, Dirk; Niendorf, Thoralf; Seeliger, Erdmann

    2016-01-01

    The superparamagnetic iron oxide nanoparticle ferumoxytol is increasingly used as intravascular contrast agent in magnetic resonance imaging (MRI). This study details the impact of ferumoxytol on regulation of renal hemodynamics and oxygenation. In 10 anesthetized rats, a single intravenous injection of isotonic saline (used as volume control) was followed by three consecutive injections of ferumoxytol to achieve cumulative doses of 6, 10, and 41 mg Fe/kg body mass. Arterial blood pressure, renal blood flow, renal cortical and medullary perfusion and oxygen tension were continuously measured. Regulation of renal hemodynamics and oxygenation was characterized by dedicated interventions: brief periods of suprarenal aortic occlusion, hypoxia, and hyperoxia. None of the three doses of ferumoxytol resulted in significant changes in any of the measured parameters as compared to saline. Ferumoxytol did not significantly alter regulation of renal hemodynamics and oxygenation as studied by aortic occlusion and hypoxia. The only significant effect of ferumoxytol at the highest dose was a blunting of the hyperoxia-induced increase in arterial pressure. Taken together, ferumoxytol has only marginal effects on the regulation of renal hemodynamics and oxygenation. This makes ferumoxytol a prime candidate as contrast agent for renal MRI including the assessment of renal blood volume fraction. PMID:27436132

  11. Experimental Comparison of the Hemodynamic Effects of Bifurcating Coronary Stent Implantation Techniques

    NASA Astrophysics Data System (ADS)

    Brindise, Melissa; Vlachos, Pavlos; AETheR Lab Team

    2015-11-01

    Stent implantation in coronary bifurcations imposes unique effects to the blood flow patterns and currently there is no universally accepted stent deployment approach. Despite the fact that stent-induced changes can greatly alter clinical outcomes, no concrete understanding exists regarding the hemodynamic effects of each implantation method. This work presents an experimental evaluation of the hemodynamic differences between implantation techniques. We used four common stent implantation methods including the currently preferred one-stent provisional side branch (PSB) technique and the crush (CRU), Culotte (CUL), and T-stenting (T-PR) two-stent techniques, all deployed by a cardiologist in coronary models. Particle image velocimetry was used to obtain velocity and pressure fields. Wall shear stress (WSS), oscillatory shear index, residence times, and drag and compliance metrics were evaluated and compared against an un-stented case. The results of this study demonstrate that while PSB is preferred, both it and T-PR yielded detrimental hemodynamic effects such as low WSS values. CRU provided polarizing and unbalanced results. CUL demonstrated a symmetric flow field, balanced WSS distribution, and ultimately the most favorable hemodynamic environment.

  12. Effect of the serotonin antagonist ketanserin on the hemodynamic and morphological consequences of thrombotic infarction

    SciTech Connect

    Dietrich, W.D.; Busto, R.; Ginsberg, M.D. )

    1989-12-01

    The effect of the serotonin (5-hydroxytryptamine, 5-HT) antagonist ketanserin on the remote hemodynamic consequences of thrombotic brain infarction was studied in rats. Treated rats received an injection of 1 mg/kg ketanserin 30 min before and 1 h following photochemically induced cortical infarction. Local CBF (LCBF) was assessed autoradiographically with ({sup 14}C)iodoantipyrine 4 h following infarction, and chronic infarct size was documented at 5 days. Thrombotic infarction led to significant decreases in LCBF within noninfarcted cortical regions. For example, mean LCBF was decreased to 63, 55, and 65% of control (nontreated normal rats) in ipsilateral frontal, lateral, and auditory cortices, respectively. In rats treated with ketanserin, significant decreases in LCBF were not documented within remote cortical areas compared with controls. In contrast to these hemodynamic effects, morphological analysis of chronic infarct size demonstrated no differences in infarct volume between treated (27 +/- 3 mm3) and nontreated (27 +/- 6 mm3) rats. These data are consistent with the hypothesis that 5-HT is involved in the widespread hemodynamic consequences of experimentally induced thrombotic infarction. Remote hemodynamic consequences of acute infarction can be inhibited without altering final infarct size.

  13. Noninvasive high-speed photoacoustic tomography of cerebral hemodynamics in awake-moving rats

    PubMed Central

    Tang, Jianbo; Xi, Lei; Zhou, Junli; Huang, Hua; Zhang, Tao; Carney, Paul R; Jiang, Huabei

    2015-01-01

    We present a noninvasive method of photoacoustic tomography (PAT) for imaging cerebral hemodynamics in awake-moving rats. The wearable PAT (wPAT) system has a size of 15 mm in height and 33 mm in diameter, and a weight of ~8 g (excluding cabling). The wPAT achieved an imaging rate of 3.33 frames/s with a lateral resolution of 243 μm. Animal experiments were designed to show wPAT feasibility for imaging cerebral hemodynamics on awake-moving animals. Results showed that the cerebral oxy-hemoglobin and deoxy-hemoglobin changed significantly in response to hyperoxia; and, after the injection of pentylenetetrazol (PTZ), cerebral blood volume changed faster over time and larger in amplitude for rats in awake-moving state compared with rats under anesthesia. By providing a light-weight, high-resolution technology for in vivo monitoring of cerebral hemodynamics in awake-behaving animals, it will be possible to develop a comprehensive understanding on how activity alters hemodynamics in normal and diseased states. PMID:26082016

  14. Multi-scale modeling of hemodynamics in the cardiovascular system

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Liang, Fuyou; Wong, Jasmin; Fujiwara, Takashi; Ye, Wenjing; Tsubota, Ken-iti; Sugawara, Michiko

    2015-08-01

    The human cardiovascular system is a closed-loop and complex vascular network with multi-scaled heterogeneous hemodynamic phenomena. Here, we give a selective review of recent progress in macro-hemodynamic modeling, with a focus on geometrical multi-scale modeling of the vascular network, micro-hemodynamic modeling of microcirculation, as well as blood cellular, subcellular, endothelial biomechanics, and their interaction with arterial vessel mechanics. We describe in detail the methodology of hemodynamic modeling and its potential applications in cardiovascular research and clinical practice. In addition, we present major topics for future study: recent progress of patient-specific hemodynamic modeling in clinical applications, micro-hemodynamic modeling in capillaries and blood cells, and the importance and potential of the multi-scale hemodynamic modeling.

  15. Hemodynamic variables and mortality in cardiogenic shock: a retrospective cohort study

    PubMed Central

    2009-01-01

    Introduction Despite the key role of hemodynamic goals, there are few data addressing the question as to which hemodynamic variables are associated with outcome or should be targeted in cardiogenic shock patients. The aim of this study was to investigate the association between hemodynamic variables and cardiogenic shock mortality. Methods Medical records and the patient data management system of a multidisciplinary intensive care unit (ICU) were reviewed for patients admitted because of cardiogenic shock. In all patients, the hourly variable time integral of hemodynamic variables during the first 24 hours after ICU admission was calculated. If hemodynamic variables were associated with 28-day mortality, the hourly variable time integral of drops below clinically relevant threshold levels was computed. Regression models and receiver operator characteristic analyses were calculated. All statistical models were adjusted for age, admission year, mean catecholamine doses and the Simplified Acute Physiology Score II (excluding hemodynamic counts) in order to account for the influence of age, changes in therapies during the observation period, the severity of cardiovascular failure and the severity of the underlying disease on 28-day mortality. Results One-hundred and nineteen patients were included. Cardiac index (CI) (P = 0.01) and cardiac power index (CPI) (P = 0.03) were the only hemodynamic variables separately associated with mortality. The hourly time integral of CI drops <3, 2.75 (both P = 0.02) and 2.5 (P = 0.03) L/min/m2 was associated with death but not that of CI drops <2 L/min/m2 or lower thresholds (all P > 0.05). The hourly time integral of CPI drops <0.5-0.8 W/m2 (all P = 0.04) was associated with 28-day mortality but not that of CPI drops <0.4 W/m2 or lower thresholds (all P > 0.05). Conclusions During the first 24 hours after intensive care unit admission, CI and CPI are the most important hemodynamic variables separately associated with 28-day

  16. [Minimally invasive hemodynamic monitoring with esophageal echoDoppler].

    PubMed

    Monge, M I; Estella, A; Díaz, J C; Gil, A

    2008-01-01

    Hemodynamic monitoring is a key element in the care of the critical patients, providing an unquestionable aid in the attendance to diagnosis and the choice of the adequate treatment. Minimally invasive devices have been emerging over the past few years as an effective alternative to classic monitoring tools. The esophageal echoDoppler is among these. It makes it possible to obtain continuous and minimally invasive monitoring of the cardiac output in addition to other useful parameters by measuring the blood flow rate and the diameter of the thoracic descending aorta, which provides a sufficiently extensive view of the hemodynamic state of the patient and facilitates early detection of the changes produced by a sudden clinical derangement. Although several studies have demonstrated the usefulness of the esophageal Doppler in the surgical scene, there is scarce and dispersed evidence in the literature on its benefits in critical patients. Nevertheless, its advantages make it an attractive element to take into account within the diagnostic arsenal in the intensive care. The purpose of the following article is to describe how it works, its degree of validation with other monitoring methods and the role of esophageal echoDoppler as a minimally invasive monitoring tool for measuring cardiac output in the daily clinical practice, contributing with our own experience in the critical patient. PMID:18221711

  17. Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods

    NASA Astrophysics Data System (ADS)

    Durduran, Turgut

    Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility

  18. Automatic coronary lumen segmentation with partial volume modeling improves lesions' hemodynamic significance assessment

    NASA Astrophysics Data System (ADS)

    Freiman, M.; Lamash, Y.; Gilboa, G.; Nickisch, H.; Prevrhal, S.; Schmitt, H.; Vembar, M.; Goshen, L.

    2016-03-01

    The determination of hemodynamic significance of coronary artery lesions from cardiac computed tomography angiography (CCTA) based on blood flow simulations has the potential to improve CCTA's specificity, thus resulting in improved clinical decision making. Accurate coronary lumen segmentation required for flow simulation is challenging due to several factors. Specifically, the partial-volume effect (PVE) in small-diameter lumina may result in overestimation of the lumen diameter that can lead to an erroneous hemodynamic significance assessment. In this work, we present a coronary artery segmentation algorithm tailored specifically for flow simulations by accounting for the PVE. Our algorithm detects lumen regions that may be subject to the PVE by analyzing the intensity values along the coronary centerline and integrates this information into a machine-learning based graph min-cut segmentation framework to obtain accurate coronary lumen segmentations. We demonstrate the improvement in hemodynamic significance assessment achieved by accounting for the PVE in the automatic segmentation of 91 coronary artery lesions from 85 patients. We compare hemodynamic significance assessments by means of fractional flow reserve (FFR) resulting from simulations on 3D models generated by our segmentation algorithm with and without accounting for the PVE. By accounting for the PVE we improved the area under the ROC curve for detecting hemodynamically significant CAD by 29% (N=91, 0.85 vs. 0.66, p<0.05, Delong's test) with invasive FFR threshold of 0.8 as the reference standard. Our algorithm has the potential to facilitate non-invasive hemodynamic significance assessment of coronary lesions.

  19. Altered miRNA Signature of Developing Germ-cells in Infertile Patients Relates to the Severity of Spermatogenic Failure and Persists in Spermatozoa

    PubMed Central

    Muñoz, Xavier; Mata, Ana; Bassas, Lluís; Larriba, Sara

    2015-01-01

    The aim of this study was to assess the cellular miRNA expression behaviour in testes with spermatogenic failure (SpF). We performed a high-throughput screen of 623 mature miRNAs by a quantitative RT-qPCR-based approach in histologically well-defined testicular samples with spermatogenic disruption at different germ-cell stages, which revealed altered patterns of miRNA expression. We focussed on the differentially expressed miRNAs whose expression correlated with the number of testicular mature germ-cells and described the combined expression values of a panel of three miRNAs (miR-449a, miR-34c-5p and miR-122) as a predictive test for the presence of mature germ-cells in testicular biopsy. Additionally, we determined decreased cellular miRNA content in developing germ-cells of SpF testis; this was more noticeable the earlier the stage of germ-cell differentiation was affected by maturation failure. Furthermore, we showed that the miRNA expression profile in mature sperm from mild SpF patients was widely altered. Our results suggest that the cellular miRNA content of developed germ-cells depends heavily on the efficacy of the spermatogenic process. What is more, spermatozoa that have fulfilled the differentiation process still retain the dysregulated miRNA pattern observed in the developing SpF germ-cells. This altered miRNA molecular signature may have functional implications for the male gamete. PMID:26648257

  20. Oral Contraceptive Use, Muscle Sympathetic Nerve Activity, and Systemic Hemodynamics in Young Women.

    PubMed

    Harvey, Ronee E; Hart, Emma C; Charkoudian, Nisha; Curry, Timothy B; Carter, Jason R; Fu, Qi; Minson, Christopher T; Joyner, Michael J; Barnes, Jill N

    2015-09-01

    Endogenous female sex hormones influence muscle sympathetic nerve activity (MSNA), a regulator of arterial blood pressure and important factor in hypertension development. Although ≈80% of American women report using hormonal contraceptives sometime during their life, the influence of combined oral contraceptives (OCs) on MSNA and systemic hemodynamics remains equivocal. The goal of this study was to determine whether women taking OCs have altered MSNA and hemodynamics (cardiac output and total peripheral resistance) at rest during the placebo phase of OC use compared with women with natural menstrual cycles during the early follicular phase. We retrospectively analyzed data from studies in which healthy, premenopausal women (aged 18-35 years) participated. We collected MSNA values at rest and hemodynamic measurements in women taking OCs (n=53; 25±4 years) and women with natural menstrual cycles (n=74; 25±4 years). Blood pressure was higher in women taking OCs versus those with natural menstrual cycles (mean arterial pressure, 89±1 versus 85±1 mm Hg, respectively; P=0.01), although MSNA was similar in both groups (MSNA burst incidence, 16±1 versus 18±1 bursts/100 heartbeats, respectively; P=0.19). In a subset of women in which detailed hemodynamic data were available, those taking OCs (n=33) had similar cardiac output (4.9±0.2 versus 4.7±0.2 L/min, respectively; P=0.47) and total peripheral resistance (19.2±0.8 versus 20.0±0.9 U, respectively; P=0.51) as women with natural menstrual cycles (n=22). In conclusion, women taking OCs have higher resting blood pressure and similar MSNA and hemodynamics during the placebo phase of OC use when compared with naturally menstruating women in the early follicular phase. PMID:26101348

  1. Oral contraceptive use, muscle sympathetic nerve activity, and systemic hemodynamics in young women

    PubMed Central

    Harvey, Ronee E.; Hart, Emma C.; Charkoudian, Nisha; Curry, Timothy B.; Carter, Jason R.; Fu, Qi; Minson, Christopher T.; Joyner, Michael J.; Barnes, Jill N.

    2015-01-01

    Endogenous female sex hormones influence muscle sympathetic nerve activity (MSNA), a regulator of arterial blood pressure and important factor in hypertension development. While nearly 80% of American women report using hormonal contraceptives sometime during their life, the influence of combined oral contraceptives (OCs) on MSNA and systemic hemodynamics remains equivocal. The goal of this study was to determine if women taking OCs have altered MSNA and hemodynamics (cardiac output and total peripheral resistance) at rest during the placebo phase of OC use compared to women with natural menstrual cycles during the early follicular phase. We retrospectively analyzed data from studies in which healthy, premenopausal women (ages 18–35 years old) participated. We collected MSNA values at rest and hemodynamic measurements in women taking OCs (n=53, 25±4 yr) and women with natural menstrual cycles (n=74, 25±4 yr). Blood pressure was higher in women taking OCs versus those with natural menstrual cycles (mean arterial pressure: 89±1 vs. 85±1 mmHg, respectively; p=0.01), although MSNA was similar in both groups (MSNA burst incidence: 16±1 vs. 18±1 bursts/100 heartbeats, respectively, p=0.19). In a subset of women in which detailed hemodynamic data were available, those taking OCs (n=33) had similar cardiac output (4.9±0.2 vs. 4.7±0.2 L/min, respectively; p=0.47) and total peripheral resistance (19.2±0.8 vs. 20.0±0.9 units, respectively; p=0.51) as women with natural menstrual cycles (n=22). In conclusion, women taking OCs have higher resting blood pressure and similar MSNA and hemodynamics during the placebo phase of OC use compared to naturally menstruating women in the early follicular phase. PMID:26101348

  2. The impact of hemodynamic stress on sensory signal processing in the rodent lateral geniculate nucleus

    PubMed Central

    Zitnik, Gerard A.; Clark, Brain D.; Waterhouse, Barry D.

    2013-01-01

    Hemodynamic stress via hypotensive challenge has been shown previously to cause a corticotropin-releasing factor (CRF)-mediated increase in tonic locus coeruleus (LC) activity and consequent release of norepinephrine (NE) in noradrenergic terminal fields. Although alterations in LC-NE can modulate the responsiveness of signal processing neurons along sensory pathways, little is understood regarding how continuous CRF-mediated activation of LC-NE output due to physiologically relevant stressor affects downstream target cell physiology. The goal of the present study was to investigate the effects of a physiological stressor [hemodynamic stress via sodium nitroprusside (SNP) i.v.] on stimulus evoked responses of sensory processing neurons that receive LC inputs. In rat, the dorsal lateral geniculate nucleus (dLGN) of the thalamus is the primary relay for visual information and is a major target of the LC-NE system. We used extracellular recording techniques in the anesthetized rat monitor single dLGN neuron activity during repeated presentation of light stimuli before and during hemodynamic stress. A significant decrease in magnitude occurred, as well as an increase in latency of dLGN stimulus-evoked responses were observed during hemodynamic stress. In another group of animals the CRF antagonist DpheCRF12–41 was infused onto the ipsilateral LC prior to SNP administration. This infusion blocked the hypotension-induced changes in dLGN stimulus-evoked discharge. These results show that CRF-mediated increases in LC-NE due to hemodynamic stress disrupts the transmission of information along thalamic-sensory pathways by: (1) initially reducing signal transmission during onset of the stressor and (2) decreasing the speed of stimulus evoked sensory transmission. PMID:23643838

  3. Single-Site Low-Flow Veno-Venous Extracorporeal Lung Support Does Not Influence Hemodynamic Monitoring by Transpulmonary Thermodilution.

    PubMed

    Redwan, Bassam; Ziegeler, Stephan; Freermann, Stefan; Meemann, Thomas; Semik, Michael; Dickgerber, Nicolas; Fischer, Stefan

    2016-01-01

    The application of extracorporeal lung support (ECLS) in patients with acute respiratory distress syndrome is a well-established concept. In patients receiving ECLS therapy, hemodynamic monitoring is often required. However, less is known about the effect of ECLS on hemodynamic measurements. In the present work, the influence of single-site low-flow veno-venous ECLS (LFVV-ECLS) on hemodynamic monitoring by transpulmonary thermodilution (TPTD) was prospectively investigated. Five consecutive patients undergoing single-site LFVV-ECLS for severe hypercapnic respiratory failure were included in this study. For single-site LFVV-ECLS, a 22 Fr twin-port double-lumen cannula was inserted percutaneously into the right jugular vein. Hemodynamic monitoring was performed using the Pulse index Continuous Cardiac Output system. Before ECLS initiation, baseline measurements of cardiac index, systemic vascular resistance, mean arterial pressure, and extravascular lung water (EVLW) were performed. During the first 3 days of ECLS therapy, repeated hemodynamic measurements at different ECLS flow rates were performed. No significant differences were seen in hemodynamic measurements. With respect to EVLW, a significant decrease over the duration of ECLS therapy was observed. This study demonstrates that LFVV-ECLS does not interfere with TPTD. It needs to be further studied if these findings also apply to other ECLS modes. PMID:27045969

  4. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism

    SciTech Connect

    Conde, Vanessa R.; Oliveira, Pedro F.; Ramalhosa, Elsa; Pereira, José A.; Alves, Marco G.; Silva, Branca M.

    2015-07-01

    Cancer cells present a particular metabolic behavior. We hypothesized that the progression of bladder cancer could be accompanied by changes in cells glycolytic profile. We studied two human bladder cancer cells, RT4 and TCCSUP, in which the latter represents a more invasive stage. The levels of glucose, pyruvate, alanine and lactate in the extracellular media were measured by Proton Nuclear Magnetic Resonance. The protein expression levels of glucose transporters 1 (GLUT1) and 3 (GLUT3), monocarboxylate transporter 4 (MCT4), phosphofructokinase-1 (PFK1), glutamic-pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) were determined. Our data showed that glucose consumption and GLUT3 levels were similar in both cell lines, but TCCSUP cells displayed lower levels of GLUT1 and PFK expression. An increase in pyruvate consumption, concordant with the higher levels of lactate and alanine production, was also detected in TCCSUP cells. Moreover, TCCSUP cells presented lower protein expression levels of GPT and LDH. These results illustrate that bladder cancer progression is associated with alterations in cells glycolytic profile, namely the switch from glucose to pyruvate consumption in the more aggressive stage. This may be useful to develop new therapies and to identify biomarkers for cancer progression. - Highlights: • Metabolic phenotype of less and high invasive bladder cancer cells was studied. • Bladder cancer progression involves alterations in cells glycolytic profile. • More invasive bladder cancer cells switch from glucose to pyruvate consumption. • Our results may help to identify metabolic biomarkers of bladder cancer progression.

  5. Obesity and major depression: Body-mass index (BMI) is associated with a severe course of disease and specific neurostructural alterations.

    PubMed

    Opel, Nils; Redlich, Ronny; Grotegerd, Dominik; Dohm, Katharina; Heindel, Walter; Kugel, Harald; Arolt, Volker; Dannlowski, Udo

    2015-01-01

    Obesity is one of the most prevalent somatic comorbidities of major depressive disorder (MDD). Both disorders rank among the leading challenges in public health and have been independently characterized by gray matter alterations in partly overlapping brain structures. Hence, it appears crucial to investigate the possibility of a shared neurostructural correlate of this frequent comorbidity as well as its clinical implications. One hundred and fourty-four patients suffering from acute MDD and 141 healthy control subjects underwent structural MRI. Imaging data were analyzed using voxel-based morphometry (VBM). Body-mass-index (BMI) as well as state and course of disease were assessed. Higher BMI was associated with a highly comparable pattern of gray matter reductions in the medial prefrontal cortex, the orbitofrontal cortex, the caudate nucleus and the thalamus in MDD patients and healthy controls alike. In MDD-patients, BMI was associated with a more chronic course of disease and both BMI and chronicity of disorder were related to similar morphometric anomalies in medial prefrontal areas. In MDD, obese subjects might be characterized by a more chronic course of disease. Moreover, obesity and chronicity of disorder seem to share overlapping neurostructural anomalies in prefrontal areas involved in emotion regulation and impulse control. Hence, our data provide evidence for specific morphological alterations underlying this prevalent comorbidity. It further underlines the clinical importance of preventive measures against obesity accompanying MDD treatment. PMID:25462895

  6. 4D subject-specific inverse modeling of the chick embryonic heart outflow tract hemodynamics.

    PubMed

    Goenezen, Sevan; Chivukula, Venkat Keshav; Midgett, Madeline; Phan, Ly; Rugonyi, Sandra

    2016-06-01

    Blood flow plays a critical role in regulating embryonic cardiac growth and development, with altered flow leading to congenital heart disease. Progress in the field, however, is hindered by a lack of quantification of hemodynamic conditions in the developing heart. In this study, we present a methodology to quantify blood flow dynamics in the embryonic heart using subject-specific computational fluid dynamics (CFD) models. While the methodology is general, we focused on a model of the chick embryonic heart outflow tract (OFT), which distally connects the heart to the arterial system, and is the region of origin of many congenital cardiac defects. Using structural and Doppler velocity data collected from optical coherence tomography, we generated 4D ([Formula: see text]) embryo-specific CFD models of the heart OFT. To replicate the blood flow dynamics over time during the cardiac cycle, we developed an iterative inverse-method optimization algorithm, which determines the CFD model boundary conditions such that differences between computed velocities and measured velocities at one point within the OFT lumen are minimized. Results from our developed CFD model agree with previously measured hemodynamics in the OFT. Further, computed velocities and measured velocities differ by [Formula: see text]15 % at locations that were not used in the optimization, validating the model. The presented methodology can be used in quantifications of embryonic cardiac hemodynamics under normal and altered blood flow conditions, enabling an in-depth quantitative study of how blood flow influences cardiac development. PMID:26361767

  7. In-vivo optical imaging and spectroscopy of cerebral hemodynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Chao

    Functional optical imaging techniques, such as diffuse optical imaging and spectroscopy and laser speckle imaging (LSI), were used in research and clinical settings to measure cerebral hemodynamics. In this thesis, theoretical and experimental developments of the techniques and their in-vivo applications ranging from small animals to adult humans are demonstrated. Near infrared diffuse optical techniques non-invasively measure hemoglobin concentrations, blood oxygen saturation (diffuse reflectance spectroscopy, DRS) and blood flow (diffuse correlation spectroscopy, DCS) in deep tissues, e.g. brain. A noise model was derived for DCS measurements. Cerebral blood flow (CBF) measured with DCS was validated with arterial-spin-labeling MRI. Three-dimensional CBF tomography was obtained during cortical spreading depression from a rat using the optimized diffuse correlation tomographic method. Cerebral hemodynamics in newborn piglets after traumatic brain injury were continuously monitored optically for six hours to demonstrate the feasibility of using diffuse optical techniques as bedside patient monitors. Cerebral autoregulation in piglets and human stroke patients was demonstrated to be non-invasively assessable via the continuous DCS measurement. Significant differences of CBF responses to head-of-bead maneuvers were observed between the peri- and contra-infarct hemispheres in human stroke patients. A significant portion of patient population showed paradoxical CBF responses, indicating the importance of individualized stroke management. The development of a speckle noise model revealed the source of noise for LSI. LSI was then applied to study the acute functional recovery of the rat brain following transient brain ischemia. The spatial and temporal cerebral blood flow responses to functional stimulation were statistically quantified. The area of activation, and the temporal response to stimulation were found significantly altered by the ischemic insult, while the

  8. Cooling and hemodynamic management in heatstroke: practical recommendations

    PubMed Central

    Bouchama, Abderrezak; Dehbi, Mohammed; Chaves-Carballo, Enrique

    2007-01-01

    Introduction Although rapid cooling and management of circulatory failure are crucial to the prevention of irreversible tissue damage and death in heatstroke, the evidence supporting the optimal cooling method and hemodynamic management has yet to be established. Methods A systematic review of all clinical studies published in Medline (1966 to 2006), CINAHL (Cumulative Index to Nursing & Allied Health Literature) (1982 to 2006), and Cochrane Database was performed using the OVID interface without language restriction. Search terms included heatstroke, sunstroke, and heat stress disorders. Results Fourteen articles reported populations subjected to cooling treatment for classic or exertional heatstroke and included data on cooling time, neurologic morbidity, or mortality. Five additional articles described invasive monitoring with central venous or pulmonary artery catheters. The four clinical trials and 15 observational studies covered a total of 556 patients. A careful analysis of the results obtained indicated that the cooling method based on conduction, namely immersion in iced water, was effective among young people, military personnel, and athletes with exertional heatstroke. There was no evidence to support the superiority of any one cooling technique in classic heatstroke. The effects of non-invasive, evaporative, or conductive-based cooling techniques, singly or combined, appeared to be comparable. No evidence of a specific endpoint temperature for safe cessation of cooling was found. The circulatory alterations in heatstroke were due mostly to a form of distributive shock associated with relative or absolute hypovolemia. Myocardial failure was found to be rare. Conclusion A systematic review of the literature failed to identify reliable clinical data on the optimum treatment of heatstroke. Nonetheless, the findings of this study could serve as a framework for preliminary recommendations in cooling and hemodynamic management of heatstroke until more

  9. [Hemodynamic basis for the development of varicose ulcers and their therapy].

    PubMed

    Recek, C

    2003-09-01

    The prevalence of leg ulcers is about 1%, approximately 75% of them are of venous origin. The precondition for the development of venous ulcers is ambulatory venous hypertension. It is assumed than a linear correlation exists between the severity of ambulatory venous hypertension and the incidence of venous ulcers. Venous ulcers caused by superficial vein reflux are called varicose ulcers and are more frequent than postthrombotic ones. Crossectomy removes the hemodynamic disorder responsible for the development of varicose ulcers and creates conditions for a quick and mostly definitive ulcer healing. In cases with simultaneous reflux in the saphenous and femoral veins the saphenous reflux is responsible for the severity of venous disorder, whereas femoral reflux is hemodynamically unimportant. Selective abolition of saphenous reflux restores normal hemodynamic conditions in such cases. Compressive therapy continues to be the most frequently used therapeutic procedure in the treatment of venous ulcers; it must be considered as a symptomatic measure, because it is not able to substantially affect the underlying venous disorder in spite of the fact that the correctly lying bandage positively influences venous hemodynamics. The diagnostic procedure in patients with leg ulcers should screen out cases with varicose ulcers; abolition of superficial vein reflux can deliver these patients from their annoying disease. PMID:14658257

  10. CHIVA: hemodynamic concept, strategy and results.

    PubMed

    Franceschi, Claude; Cappelli, Massimo; Ermini, Stefano; Gianesini, Sergio; Mendoza, Erika; Passariello, Fausto; Zamboni, Paolo

    2016-02-01

    The first part of this review article provides the physiologic background that sustained the CHIVA principles development. Then the venous networks anatomy and flow patterns are described with pertinent sonographic interpretations, leading to the shunt concept description and to the consequent CHIVA strategy application. An in depth explanation into the hemodynamic conservative cure approach follows, together with pertinent review of the relevant literature. PMID:26044838

  11. Hemodynamic Patterning of the Avian Atrioventricular Valve

    PubMed Central

    Yalcin, Huseyin C.; Shekhar, Akshay; McQuinn, Tim C.; Butcher, Jonathan T.

    2011-01-01

    In this study, we develop an innovative approach to rigorously quantify the evolving hemodynamic environment of the atrioventricular (AV) canal of avian embryos. Ultrasound generated velocity profiles were imported into Micro-Computed Tomography generated anatomically precise cardiac geometries between Hamburger-Hamilton (HH) stages 17 and 30. Computational fluid dynamic simulations were then conducted and iterated until results mimicked in vivo observations. Blood flow in tubular hearts (HH17) was laminar with parallel streamlines, but strong vortices developed simultaneous with expansion of the cushions and septal walls. For all investigated stages, highest wall shear stresses (WSS) are localized to AV canal valve forming regions. Peak WSS increased from 19.34 dynes/cm2 at HH17 to 287.18 dynes/cm2 at HH30, but spatiotemporally averaged WSS became 3.62 dynes/cm2 for HH17 to 9.11 dynes/cm2 for HH30. Hemodynamic changes often preceded and correlated with morphological changes. These results establish a quantitative baseline supporting future hemodynamic analyses and interpretations. PMID:21181939

  12. Chronic hemodynamic unloading regulates the morphologic development of newborn mouse hearts transplanted into the ear of isogeneic adult mice.

    PubMed Central

    Rossi, M. A.

    1992-01-01

    The morphologic development of newborn mouse hearts transplanted into the pinna of the ears of isogeneic adult mice was assessed in comparison to in situ ventricular myocardium of recipients. The grafted hearts became vascularized from the auricular artery at the base of the ear, and although these preparations appeared not to be intrinsically innervated, most of them showed grossly visible pulsatile activity. Since they were not subjected to hemodynamic load due to working against a pressure gradient, this technique provided an interesting experimental model for studies on the growth of chronically unloaded tissue. The ultrastructure of the myocardium from neonatal mouse hearts, which were fixed immediately after dissection, revealed no differences in comparison to previously published observations. By 2 months, there was virtually no change in the myocardial cell size as compared with newborn mouse cardiac tissue. The heterotopic hearts showed a mature ultrastructural appearance, with parallel bands of myofibrils alternating with rows of mitochondria and differentiated intercalated discs comparable to in situ myocardium. The interstitial space was widened due to fibrous tissue, with activated fibroblasts and a few mononuclear cells. In contrast, by 6 months after transplantation, the heterotopic myocardium showed a dispersion of the measured cell diameter of myocytes, with atrophy of a certain population of cells and hypertrophy in others; nevertheless, the mean cell diameter was similar to that observed in 2-month grafts. The myocytes showed significant dissociation from each other in fibrous tissue and a cellular infiltrate composed predominantly of mononuclear cells, and greater variability of the parallel arrangement of cells. They often contained myofibrils coursing in different directions rather than in parallel. Normal-sized or predominantly atrophic degenerated myocytes, characterized by a wide variety of ultrastructural alterations, were present. By 12

  13. Hemodynamic reactions to circulatory stress tests in patients with neurocirculatory dystonia.

    PubMed

    Mäntysaari, M

    1984-01-01

    The hemodynamic reactions of 30 patients with neurocirculatory dystonia (NCD, DaCosta's syndrome) were compared to those of 30 healthy controls during the isometric handgrip test, orthostatic test, Valsalva test and the cold pressor test. The effects of hyperventilation on the ability to hold the breath were studied in both groups using the hyperventilation test. The patients and controls were young men, who were doing their conscript service, and the average age was 20 years in both groups. The diagnosis of NCD was made using the criteria described by Friedman (1947). The patients had several symptoms related to the cardiorespiratory system, the intensity of which varied from time to time and were not closely related to physical effort. In order to exclude organic diseases that could have caused the symptoms the patients were required to have no history of chronic organic diseases. They were also required to have no infectious diseases nor to be convalescents when participating in this study and to have a normal ECG and a normal thorax x-ray. The controls were anamnestically free from chronic diseases. The changes in the blood pressure, heart rate, stroke volume, cardiac index, peripheral vascular resistance and the systolic time intervals during the four tests were measured noninvasively using sphygmomanometry, electro-, phono- and impedance cardiography. The ability to hold the breath after a deep inspiration was similar in the two groups. Immediately after hyperventilation the ability to hold the breath did not improve in the NCD group as much as in the control group. In the orthostatic test the rise in the mean blood pressure was only momentarily greater in the control group than in the NCD group, and the heart rate increased about equally in the two groups. The transthoracic impedance increased significantly more in the controls than in the patients in the head-up position. The alterations in the systolic time intervals immediately after the changes of

  14. Severe White Pine Blister Rust Infection in Whitebark Pine Alters Mountain Pine Beetle (Coleoptera: Curculionidae) Attack Density, Emergence Rate, and Body Size.

    PubMed

    Dooley, Edith M; Six, Diana L

    2015-10-01

    Exotic tree pathogens can cause devastating ecological effects on forests that can be exacerbated when infections increase the likelihood of attack by insects. Current high rates of mortality of whitebark pine (Pinus albicaulis Engelm.) are due to white pine blister rust caused by the exotic fungus, Cronartium ribicola J.C. Fisch, and the native mountain pine beetle (Dendroctonus ponderosae Hopkins). These two mortality agents interact in whitebark pine; mountain pine beetle preferentially selects white pine blister rust-infected whitebark pine over healthy trees, and likelihood of attack has been observed to increase with infection severity. We examined attack and emergence rates, and size and sex ratio of mountain pine beetle in whitebark pines exhibiting varying white pine blister rust infection severities. Mountain pine beetle attack density was lowest on the most severely infected trees, but emergence rates and size of beetles from these trees were greater than those from uninfected and less severely infected trees. Low attack rates on severely infected whitebark pine may indicate these trees have lower defenses and that fewer beetle attacks are needed to kill them. Higher beetle emergence rates from severely infected trees may be due to low intraspecific competition resulting from low attack rates or differences in nutrient quality. PMID:26314009

  15. Using ventilator and cardiovascular graphics in the patient who is hemodynamically unstable.

    PubMed

    Murphy, Bryant A; Durbin, Charles G

    2005-02-01

    The interaction of a mechanical ventilator and the human cardiovascular system is complex. One of the most important effects of positive-pressure ventilation (PPV) is that it can decrease venous return. PPV also alters right- and left-ventricular ejection. Increased lung volume increases right-ventricular size by increasing pulmonary vascular resistance, causing intraventricular cardiac-septum shift, and decreasing left-ventricular filling. Increased intrathoracic pressure reduces afterload on the LV and increases ejection of blood from the LV. Understanding and managing these complex and often opposing interactions in critically ill patients is facilitated by analysis of hemodynamic and ventilator waveforms at the bedside. The relationship of PPV to changes in the arterial pressure waveform gives important information regarding appropriate fluid and vasopressor treatment. This article focuses on effects of respiratory pressures on hemodynamics and considers how cardiac pressures can be transmitted to the airway and cause ventilator malfunction. PMID:15691395

  16. Noninvasive sensors in critical care medicine: near-infrared spectroscopy for the detection of altered microvascular blood flow in severe sepsis and septic shock

    NASA Astrophysics Data System (ADS)

    Walz, J. Matthias; Soller, Babs; Soyemi, Olusola; Yang, Ye; Landry, Michelle; Heard, Stephen O.

    2006-10-01

    It is estimated that 750,000 cases of severe sepsis occur in the United States annually, at least 225,000 of which are fatal, resulting in significant utilization of healthcare resources and expenses. Significant progress in the understanding of pathophysiology and treatment of this condition has been made lately. Among the newer treatment strategies for critically ill patients are the administration of early goal directed therapy, and Recombinant Human Activated Protein C (Drotrecogrin alfa (activated) [DTAA]) for severe sepsis. However, mortality remains unacceptably high.

  17. Computational Hemodynamics Involving Artificial Devices

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin; Feiereisen, William (Technical Monitor)

    2001-01-01

    This paper reports the progress being made towards developing complete blood flow simulation capability in human, especially, in the presence of artificial devices such as valves and ventricular assist devices. Devices modeling poses unique challenges different from computing the blood flow in natural hearts and arteries. There are many elements needed such as flow solvers, geometry modeling including flexible walls, moving boundary procedures and physiological characterization of blood. As a first step, computational technology developed for aerospace applications was extended in the recent past to the analysis and development of mechanical devices. The blood flow in these devices is practically incompressible and Newtonian, and thus various incompressible Navier-Stokes solution procedures can be selected depending on the choice of formulations, variables and numerical schemes. Two primitive variable formulations used are discussed as well as the overset grid approach to handle complex moving geometry. This procedure has been applied to several artificial devices. Among these, recent progress made in developing DeBakey axial flow blood pump will be presented from computational point of view. Computational and clinical issues will be discussed in detail as well as additional work needed.

  18. Effect of periodic alterations in shear on vascular macromolecular uptake.

    PubMed

    Friedman, M H; Henderson, J M; Aukerman, J A; Clingan, P A

    2000-01-01

    Experiments were carried out in swine to test the hypothesis that changes in the fluid dynamic environment of the arterial wall, with time constants of several minutes to perhaps a few hours, prompt adaptive responses that transiently increase endothelial permeability. After parenteral Evans Blue Dye (EBD) administration, the hemodynamics of the external iliac arteries of the experimental animals were altered using a reversible arteriovenous femoral shunt. For 3 h, the shunt was opened and closed with a period (tau) between 1-180 min. Subsequently, the animal was euthanized and the iliac vessels were photographed en face to obtain the distribution of EBD-bound albumin uptake by the tissue during its exposure to the dye. Albumin uptake increases with tau in a fashion that can be explained by an a priori model of the adaptive permeability response, with a time constant of about an hour. PMID:11145073

  19. Efficient hemodynamic event detection utilizing relational databases and wavelet analysis

    NASA Technical Reports Server (NTRS)

    Saeed, M.; Mark, R. G.

    2001-01-01

    Development of a temporal query framework for time-oriented medical databases has hitherto been a challenging problem. We describe a novel method for the detection of hemodynamic events in multiparameter trends utilizing wavelet coefficients in a MySQL relational database. Storage of the wavelet coefficients allowed for a compact representation of the trends, and provided robust descriptors for the dynamics of the parameter time series. A data model was developed to allow for simplified queries along several dimensions and time scales. Of particular importance, the data model and wavelet framework allowed for queries to be processed with minimal table-join operations. A web-based search engine was developed to allow for user-defined queries. Typical queries required between 0.01 and 0.02 seconds, with at least two orders of magnitude improvement in speed over conventional queries. This powerful and innovative structure will facilitate research on large-scale time-oriented medical databases.

  20. [Prediction of human orthostatic tolerance by changes in arterial and venous hemodynamics in the microgravity environment].

    PubMed

    Kotovskaia, A R; Fomin, G A

    2013-01-01

    The authors intentionally present exclusively the results of their recent studies of arterial and venous hemodynamics as predictors of human orthostatic tolerance (OT) during space flight and on return to Earth. There is a sufficient demonstration of the in-flight OT predictability by arterial hemodynamic reactions to LBNP and venous hemodynamic changes in response to the lower extremities occlusion. Three levels of cerebral blood flow deficits in the course of the lower body negative pressure test (LBNP) performed in microgravity were first defined. The authors offer quantitative arguments for the dependence of cerebral flow deficit on the degree of LBNP tolerance degradation. Patterns of arterial hemodynamics during LBNP were used successfully to diagnose the actual orthostatic tolerance and also to follow its trend as flight extended, which attests to the predictability of OT change in an individual cosmonaut on space flight. Occlusion plethysmography of legs revealed three levels of response of the most informative venous parameters (capacity, distensibility and rate of filling) correlating with severity of OT degradation. PMID:25509869

  1. Comparison of tricuspid and bicuspid aortic valve hemodynamics under steady flow conditions

    NASA Astrophysics Data System (ADS)

    Seaman, Clara; Ward, James; Sucosky, Philippe

    2011-11-01

    The bicuspid aortic valve (BAV), a congenital valvular defect consisting of two leaflets instead of three, is associated with a high prevalence of calcific aortic valve disease (CAVD). CAVD also develops in the normal tricuspid aortic valve (TAV) but its progression in the BAV is more severe and rapid. Although hemodynamic abnormalities are increasingly considered potential pathogenic contributor, the native BAV hemodynamics remain largely unknown. Therefore, this study aims at comparing experimentally the hemodynamic environments in TAV and BAV anatomies. Particle-image velocimetry was used to characterize the flow downstream of a native TAV and a model BAV mounted in a left-heart simulator and subjected to three steady flow rates characterizing different phases of the cardiac cycle. While the TAV developed a jet aligned along the valve axis, the BAV was shown to develop a skewed systolic jet with skewness decreasing with increasing flow rate. Measurement of the transvalvular pressure revealed a valvular resistance up to 50% larger in the BAV than in the TAV. The increase in velocity between the TAV and BAV leads to an increase in shear stress downstream of the valve. This study reveals strong hemodynamic abnormalities in the BAV, which may contribute to CAVD pathogenesis.

  2. Hemodynamic Consequences of Malignant Ascites in Epithelial Ovarian Cancer Surgery*: A Prospective Substudy of a Randomized Controlled Trial.

    PubMed

    Hunsicker, Oliver; Fotopoulou, Christina; Pietzner, Klaus; Koch, Mandy; Krannich, Alexander; Sehouli, Jalid; Spies, Claudia; Feldheiser, Aarne

    2015-12-01

    vasopressor and fluid demands, whereas the administration of artificial infusion solutions was related to opposite effects.Malignant ascites >500 mL implies increased fluid demands and substantial alterations in circulatory blood flow during cancer surgery. Fresh frozen plasma transfusion promotes recovering hemodynamic stability in patients with malignant ascites >500 mL, in whom artificial infusion solutions could not prevent from hemodynamic deterioration. PMID:26656336

  3. Cerebral Blood Flow Alterations as Assessed by 3D ASL in Cognitive Impairment in Patients with Subcortical Vascular Cognitive Impairment: A Marker for Disease Severity

    PubMed Central

    Sun, Yawen; Cao, Wenwei; Ding, Weina; Wang, Yao; Han, Xu; Zhou, Yan; Xu, Qun; Zhang, Yong; Xu, Jianrong

    2016-01-01

    Abnormal reductions in cortical cerebral blood flow (CBF) have been identified in subcortical vascular cognitive impairment (SVCI). However, little is known about the pattern of CBF reduction in relation with the degree of cognitive impairment. CBF measured with three-dimensional (3D) Arterial Spin Labeling (ASL) perfusion magnetic resonance imaging (MRI) helps detect functional changes in subjects with SVCI. We aimed to compare CBF maps in subcortical ischemic vascular disease (SIVD) subjects with and without cognitive impairment and to detect the relationship of the regions of CBF reduction in the brain with the degree of cognitive impairment according to the z-score. A total of 53 subjects with SVCI and 23 matched SIVD subjects without cognitive impairment (controls), underwent a whole-brain 3D ASL MRI in the resting state. Regional CBF (rCBF) was compared voxel wise by using an analysis of variance design in a statistical parametric mapping program, with patient age and sex as covariates. Correlations were calculated between the rCBF value in the whole brain and the z-score in the 53 subjects with SVCI. Compared with the control subjects, SVCI group demonstrated diffuse decreased CBF in the brain. Significant positive correlations were determined in the rCBF values in the left hippocampus, left superior temporal pole gyrus, right superior frontal orbital lobe, right medial frontal orbital lobe, right middle temporal lobe, left thalamus and right insula with the z-scores in SVCI group. The noninvasively quantified resting CBF demonstrated altered CBF distributions in the SVCI brain. The deficit brain perfusions in the temporal and frontal lobe, hippocampus, thalamus and insula was related to the degree of cognitive impairment. Its relationship to cognition indicates the clinical relevance of this functional marker. Thus, our results provide further evidence for the mechanisms underlying the cognitive deficit in patients with SVCI.

  4. Specific and Common Alterations in Host Gene Transcript Accumulation following Infection of the Chestnut Blight Fungus by Mild and Severe Hypoviruses

    PubMed Central

    Allen, Todd D.; Nuss, Donald L.

    2004-01-01

    We report the use of a cDNA microarray to monitor global transcriptional responses of the chestnut blight fungus, Cryphonectria parasitica, to infection by mild and severe isolates of virulence-attenuating hypoviruses that share 87 to 93% and 90 to 98% identity at the nucleotide and amino acid levels, respectively. Infection by the mild hypovirus isolate CHV1-Euro7 resulted in differential expression of 166 of the ca. 2,200 genes represented on the microarray (90 upregulated and 76 downregulated). This is roughly half the number of genes scored as differentially expressed after infection by the severe isolate, CHV1-EP713 (295 genes; 132 upregulated and 163 downregulated). Comparison of the lists of genes responsive to infection by the two hypovirus isolates revealed 80 virus-common responsive genes. Infection by CHV1-EP713 also caused changes in gene transcript accumulation that were, in general, of greater magnitude than those observed with CHV1-Euro7 infections. Thus, the host transcriptional response to infection by severe hypovirus CHV1-EP713 appears to be considerably more dynamic than the response to infection by the mild isolate CHV1-Euro7. Real-time reverse transcription-PCR was performed on 39 different clones, with false-positive rates of 3 and 8% observed for the microarray-predicted list of genes responsive to CHV1-EP713 and CHV1-Euro7 infections, respectively. This analysis has allowed an initial assignment for ca. 2,200 unique C. parasitica-expressed genes as being unresponsive to hypovirus infection, selectively responsive to a specific hypovirus, or generally responsive to hypovirus infection. PMID:15047830

  5. Very early posttraumatic serum alterations are significantly associated to initial massive RBC substitution, injury severity, multiple organ failure and adverse clinical outcome in multiple injured patients

    PubMed Central

    2009-01-01

    Background Multiple severe trauma frequently leads to massive dysbalances of the human immune system. This phenomenon is known as "Systemic Inflammatory Response Syndrome (SIRS)". SIRS is connected to multiple organ failure and thereby entails higher morbidity and mortality in trauma patients. Pro-and anti-inflammatory cytokines such as Il-6, Il-8 and Il-10 seem to play a superior role in the development of SIRS. Several studies support the hypothesis that the very early cytokine release pattern determines the patients' subsequent clinical course. Most data about interleukins in trauma patients however refer to serum concentrations assessed sometime in the first 24 h, but there is only little information about release dynamics in a small-meshed time frame in the very initial post-trauma period. Patients and methods 58 multiple injured patients (Injury Severity Score > 16 points) were included. Blood samples were drawn on patient admission (not later then 90 minutes after trauma) and at 6 h, 12 h, 24 h, 48 h and 72 h. Il-6, Il-8 and Il-10 were measured using an automated chemiluminescence assay (IMMULITE, Siemens Healthcare Diagnostics GmbH). Interleukin levels were correlated to distinct epidemiological and clinical parameters. Results Interleukin serum concentrations are thoroughly elevated after trauma. Patients with haemorrhagic shock and consecutive massive RBC substitution (n = 27) exhibit higher Il-6, Il-8 and Il-10 levels as compared to patients with minor RBC transfusion extent (n = 31). Interleukin levels also differentiate patients with MOF (n = 43) from such without MOF (n = 15) already at the earliest post trauma time (90 minutes). Il-6, Il-8 and Il-10 concentrations also significantly distinguish patients with adverse outcome (n = 11) from such with favourable outcome (n = 47). Exclusively Il-10 has significant correlation to injury severity (ISS > 35). Conclusion The current study presents an image of the serum Il-6, 8 and 10 releases in multiple

  6. A CACNB4 mutation shows that altered Ca(v)2.1 function may be a genetic modifier of severe myoclonic epilepsy in infancy.

    PubMed

    Ohmori, Iori; Ouchida, Mamoru; Miki, Takafumi; Mimaki, Nobuyoshi; Kiyonaka, Shigeki; Nishiki, Teiichi; Tomizawa, Kazuhito; Mori, Yasuo; Matsui, Hideki

    2008-12-01

    Mutations of SCN1A, encoding the voltage-gated sodium channel alpha1 subunit, represent the most frequent genetic cause of severe myoclonic epilepsy in infancy (SMEI). The purpose of this study was to determine if mutations in other seizure susceptibility genes are also present and could modify the disease severity. All coding exons of SCN1B, GABRG2, and CACNB4 genes were screened for mutations in 38 SCN1A-mutation-positive SMEI probands. We identified one proband who was heterozygous for a de novo SCN1A nonsense mutation (R568X) and another missense mutation (R468Q) of the CACNB4 gene. The latter mutation was inherited from his father who had a history of febrile seizures. An electrophysiological analysis of heterologous expression system exhibited that R468Q-CACNB4 showed greater Ba(2+) current density compared with the wild-type CACNB4. The greater Ca(v)2.1 currents caused by the R468Q-CACNB4 mutation may increase the neurotransmitter release in the excitatory neurons under the condition of insufficient inhibitory neurons caused primarily by the SCN1A mutation. PMID:18755274

  7. BRCA1 deficiency in ovarian cancer is associated with alteration in expression of several key regulators of cell motility – A proteomics study

    PubMed Central

    Gau, David M; Lesnock, Jamie L; Hood, Brian L; Bhargava, Rohit; Sun, Mai; Darcy, Kathleen; Luthra, Soumya; Chandran, Uma; Conrads, Thomas P; Edwards, Robert P; Kelley, Joseph L; Krivak, Thomas C; Roy, Partha

    2015-01-01

    Functional loss of expression of breast cancer susceptibility gene 1(BRCA1) has been implicated in genomic instability and cancer progression. There is emerging evidence that BRCA1 gene product (BRCA1) also plays a role in cancer cell migration. We performed a quantitative proteomics study of EOC patient tumor tissues and identified changes in expression of several key regulators of actin cytoskeleton/cell adhesion and cell migration (CAPN1, 14-3-3, CAPG, PFN1, SPTBN1, CFN1) associated with loss of BRCA1 function. Gene expression analyses demonstrate that several of these proteomic hits are differentially expressed between early and advanced stage EOC thus suggesting clinical relevance of these proteins to disease progression. By immunohistochemistry of ovarian tumors with BRCA1+/+ and BRCA1null status, we further verified our proteomic-based finding of elevated PFN1 expression associated with BRCA1 deficiency. Finally, we established a causal link between PFN1 and BRCA1-induced changes in cell migration thus uncovering a novel mechanistic basis for BRCA1-dependent regulation of ovarian cancer cell migration. Overall, findings of this study open up multiple avenues by which BRCA1 can potentially regulate migration and metastatic phenotype of EOC cells. PMID:25927284

  8. Comparison of Dexmedetomidine and Remifentanil on Airway Reflex and Hemodynamic Changes during Recovery after Craniotomy

    PubMed Central

    Kim, Hyunzu; Min, Kyeong Tae; Lee, Jeong Rim; Ha, Sang Hee; Lee, Woo Kyung; Seo, Jae Hee

    2016-01-01

    Purpose During emergence from anesthesia for a craniotomy, maintenance of hemodynamic stability and prompt evaluation of neurological status is mandatory. The aim of this prospective, randomized, double-blind study was to compare the effects of dexmedetomidine and remifentanil on airway reflex and hemodynamic change in patients undergoing craniotomy. Materials and Methods Seventy-four patients undergoing clipping of unruptured cerebral aneurysm were recruited. In the dexmedetomidine group, patients were administered dexmedetomidine (0.5 µg/kg) for 5 minutes, while the patients of the remifentanil group were administered remifentanil with an effect site concentration of 1.5 ng/mL until endotracheal extubation. The incidence and severity of cough and hemodynamic variables were measured during the recovery period. Hemodynamic variables, respiration rate, and sedation scale were measured after extubation and in the post-anesthetic care unit (PACU). Results The incidence of grade 2 and 3 cough at the point of extubation was 62.5% in the dexmedetomidine group and 53.1% in the remifentanil group (p=0.39). Mean arterial pressure (p=0.01) at admission to the PACU and heart rate (p=0.04 and 0.01, respectively) at admission and at 10 minutes in the PACU were significantly lower in the dexmedetomidine group. Respiration rate was significantly lower in the remifentanil group at 2 minutes (p<0.01) and 5 minutes (p<0.01) after extubation. Conclusion We concluded that a single bolus of dexmedetomidine (0.5 µg/kg) and remifentanil infusion have equal effectiveness in attenuating coughing and hemodynamic changes in patients undergoing cerebral aneurysm clipping; however, dexmedetomidine leads to better preservation of respiration. PMID:27189295

  9. Seizure Duration and Hemodynamic State during Electroconvulsive Therapy: Sodium Thiopental versus Propofol

    PubMed Central

    Jarineshin, Hashem; Kashani, Saeed; Fekrat, Fereydoon; Vatankhah, Majid; Golmirzaei, Javad; Alimolaee, Esmaeel; Zafarpour, Hamid

    2016-01-01

    Introduction: General anesthesia is required for Electroconvulsive Therapy (ECT) and it is usually provided by a hypnotic agent. The seizure duration is important for the treatment, and it is usually accompanied by severe hemodynamic changes. The aim of this study was to compare the effects of sodium thiopental versus Propofol on seizure duration and hemodynamic variables during ECT. Methods: A number of 100 patient-sessions of ECT were included in this randomized clinical trial. The initial hemodynamic state of each patient was recorded. Anesthesia was induced by Sodium thiopental in the 1st group and with Propofol in 2nd group. All the patients received the muscle relaxant succinylcholine. The hemodynamic variables after seizure and seizure duration were recorded. The data were analyzed through SPSS 20 and independent t-test. P<0.05 was considered significant. Results: The mean duration of seizure in the sodium thiopental group was significantly longer than the Propofol group (40.3±16.6 sec versus 32±11.3 sec) (P=0.001). There was no statistically significant difference between the mean energy level applied in the two groups (20.5±3.81 joules in the sodium thiopental versus 20.2±3.49 joules in the Propofol group). The mean systolic and diastolic blood pressure at all times after seizure and mean heart rate at 3 and 5 minutes after seizure were significantly lower in Propofol than sodium thiopental groups. Discussion and Conclusion: Propofol provides a more stable hemodynamic state for the ECT procedures, and its use is highly preferred over sodium thiopental in patients with cardiovascular disease. PMID:26383207

  10. Hemodynamic characterization of the diabetic Psammomys obesus--an animal model of type II diabetes mellitus.

    PubMed

    Hilzenrat, N; Sikuler, E; Yaari, A; Maislos, M

    1996-11-01

    The hemodynamic changes occurring early in the course of non-insulin-dependent diabetes mellitus (Type II, NIDDM) are not well understood. We applied the radioactive microspheres technique at an early stage of diabetes in Psammomys abesus (sand rat), an established animal model of spontaneous NIDDM. Ten diabetic and 7 control male animals were studied. Plasma glucose and insulin levels in the diabetic group were significantly higher than in the control group (21.3 +/- 2.1 vs. 6.2 +/- 1.1 mmol/l, and 2,650 +/- 480 vs. 770 +/- 120 pmol/l, respectively). Mean arterial blood pressure, heart rate, cardiac output, splanchnic blood flow, muscular blood flow, and total peripheral resistance were not statistically different between the two groups. Renal blood flow was significantly lower in the diabetic group (7.45 +/- 0.32 vs. 10.48 +/- 0.99 ml/min) and renal arterial resistance was higher (11.65 +/- 0.93 vs. 8.33 +/- 0.76 mm Hg.min/ml) compared with the control group. These results suggest that increased renal resistance and decreased renal blood flow may be the initial hemodynamic alterations in NIDDM. The combination of this animal model with the radioactive microspheres technique provides a new tool for studying the physiopathology, the natural history of hemodynamic changes, and possible therapeutic interventions of Type II diabetes. PMID:8960075

  11. The Influence of Normal and Early Vascular Aging on Hemodynamic Characteristics in Cardio- and Cerebrovascular Systems.

    PubMed

    Yu, Hongtao; Huang, George P; Yang, Zifeng; Liang, Fuyou; Ludwig, Bryan

    2016-06-01

    Age-associated alterations in cardiovascular structure and function induce cardiovascular disease in elderly subjects. To investigate the effects of normal vascular aging (NVA) and early vascular aging (EVA) on hemodynamic characteristics in the circle of Willis (CoW), a closed-loop one-dimensional computational model was developed based on fluid mechanics in the vascular system. The numerical simulations revealed that higher central pulse pressure and augmentation index (AIx) appear in the EVA subjects due to early arrival of reflected waves, resulted in the increase of cardiac afterload compared with the NVA subjects. Moreover, the hemodynamic characteristics in the CoW show that the EVA subjects in an older age display a higher blood pressure than that of the NVA with a complete CoW. Herein, the increased blood pressure and flow rate coexist in the subjects with an incomplete CoW. In conclusion, the hemodynamic characteristics in the aortic tree and CoW related to aging appear to play an important role in causing cardiovascular and intravascular disease. PMID:27019876

  12. Splanchnic and Systemic Hemodynamics in Cirrhotic Patients With Refractory Ascites. Effect of Peritoneovenous Shunting

    PubMed Central

    Vons, Corinne; Hadengue, Antoine; Lee, Samuel S.; Smadja, Claude; Franco, Dominique

    1991-01-01

    The splanchnic and systemic hemodynamics of 14 patients with refractory ascites were studied and were compared to those of 15 patients with ascites responding to medical treatment. Among the 14 patients, 10 were grade B and 4 C, according to the Pugh classification. Of the 15 patients, 5 were Pugh B and 10 C. In patients with refractory ascites, free hepatic venous pressure was significantly higher and hepatic venous pressure gradient was significantly lower than in patients with responsive ascites. Hepatic and azygos blood flows were not significantly different between the two groups. Cardiac output was lower in patients with refractory ascites (p < 0.05) than in those with responsive ascites. In patients with refractory ascites, six months after peritoneovenous shunting, there was a significant reduction of wedged and free hepatic venous pressures and azygos blood flow. Cardiac output increased by 20% (p < 0.02). This study shows that hemodynamic alterations in patients with refractory ascites is the consequence of increased intraabdominal pressure due to chronic ascites. Six months after peritoneovenous shunting splanchnic and systemic hemodynamics became similar to those observed in patients without ascites. PMID:1842670

  13. 2,3,7,8-Tetrachlorodibenzo-p-dioxin treatment alters eicosanoid levels in several organs of the mouse in an aryl hydrocarbon receptor-dependent fashion

    SciTech Connect

    Bui, Peter; Solaimani, Parrisa; Wu, Xiaomeng; Hankinson, Oliver

    2012-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) adversely affects many mammalian organs and tissues. These effects are mediated by the aryl hydrocarbon receptor (AHR). CYP1A1, CYP1A2 and CYP1B1 are upregulated by the liganded AHR. These (and other) cytochromes P450 can metabolize arachidonic acid into a variety of bioactive eicosanoids. Towards investigating a potential role of eicosanoids in TCDD toxicity, arachidonic acid, two other unsaturated long-chain fatty acids, and up to twenty-five eicosanoids were measured in five organs/tissues of male and female wild-type and Ahr null mice treated or untreated with TCDD. TCDD generally increased the levels of the four dihydroxyeicosatrienoic acids (DHETs) and (where measured) 5,6-epoxyeicosatrienoic acid and 18-, 19- and 20-hydroxyeicosatrienoic acids (HETEs) in the serum, liver, spleen and lungs, but not the heart, of both sexes, and increased the levels in the serum, liver and spleen of several metabolites that are usually considered products of lipoxygenase activity, but which may also be generated by cytochromes P450. TCDD also increased the levels of the esterified forms of these eicosanoids in the liver in parallel with the corresponding free forms. The levels of prostanoids were generally not affected by TCDD. The above changes did not occur in Ahr null mice, and are therefore mediated by the AHR. TCDD increased the mRNA levels of Cyp1a1, Cyp1a2, Cyp1b1 and the Pla2g12a form of phospholipase A{sub 2} to varying degrees in the different organs, and these increases correlated with some but not all the changes in eicosanoids levels in the organs, suggesting that other enzymes may also be involved. -- Highlights: ► TCDD treatment increases the levels of many eicosanoids in several mouse organs. ► Products of both the cytochrome P450 and classical lipoxygenase pathways are increased. ► These increases are dependent on the aryl hydrocarbon receptor. ► Cyp1a1, Cyp1a2 and Cyp1b1 appear to be responsible for much but

  14. A hemodynamic model for layered BOLD signals.

    PubMed

    Heinzle, Jakob; Koopmans, Peter J; den Ouden, Hanneke E M; Raman, Sudhir; Stephan, Klaas Enno

    2016-01-15

    High-resolution blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) at the sub-millimeter scale has become feasible with recent advances in MR technology. In principle, this would enable the study of layered cortical circuits, one of the fundaments of cortical computation. However, the spatial layout of cortical blood supply may become an important confound at such high resolution. In particular, venous blood draining back to the cortical surface perpendicularly to the layered structure is expected to influence the measured responses in different layers. Here, we present an extension of a hemodynamic model commonly used for analyzing fMRI data (in dynamic causal models or biophysical network models) that accounts for such blood draining effects by coupling local hemodynamics across layers. We illustrate the properties of the model and its inversion by a series of simulations and show that it successfully captures layered fMRI data obtained during a simple visual experiment. We conclude that for future studies of the dynamics of layered neuronal circuits with high-resolution fMRI, it will be pivotal to include effects of blood draining, particularly when trying to infer on the layer-specific connections in cortex--a theme of key relevance for brain disorders like schizophrenia and for theories of brain function such as predictive coding. PMID:26484827

  15. Hemodynamic Simulations in Dialysis Access Fistulae

    NASA Astrophysics Data System (ADS)

    McGah, Patrick; Leotta, Daniel; Beach, Kirk; Riley, James; Aliseda, Alberto

    2010-11-01

    Arteriovenous fistulae are created surgically to provide adequate access for dialysis in patients with End-Stage Renal Disease. It has long been hypothesized that the hemodynamic and mechanical forces (such as wall shear stress, wall stretch, or flow- induced wall vibrations) constitute the primary external influence on the remodeling process. Given that nearly 50% of fistulae fail after one year, understanding fistulae hemodynamics is an important step toward improving patency in the clinic. We perform numerical simulations of the flow in patient-specific models of AV fistulae reconstructed from 3D ultrasound scans with physiologically-realistic boundary conditions also obtained from Doppler ultrasound. Comparison of the flow features in different geometries and configurations e.g. end-to-side vs. side-to-side, with the in vivo longitudinal outcomes will allow us to hypothesize which flow conditions are conducive to fistulae success or failure. The flow inertia and pulsatility in the simulations (mean Re 700, max Re 2000, Wo 4) give rise to complex secondary flows and coherent vortices, further complicating the spatio- temporal variability of the wall pressure and shear stresses. Even in mature fistulae, the anastomotic regions are subjected to non-physiological shear stresses (>10.12pcPa) which may potentially lead to complications.

  16. The plasticizer benzyl butyl phthalate (BBP) alters the ecdysone hormone pathway, the cellular response to stress, the energy metabolism, and several detoxication mechanisms in Chironomus riparius larvae.

    PubMed

    Herrero, Óscar; Planelló, Rosario; Morcillo, Gloria

    2015-06-01

    Butyl benzyl phthalate (BBP) has been extensively used worldwide as a plasticizer in the polyvinyl chloride (PVC) industry and the manufacturing of many other products, and its presence in the aquatic environment is expected for decades. In the present study, the toxicity of BBP was investigated in Chironomus riparius aquatic larvae. The effects of acute 24-h and 48-h exposures to a wide range of BBP doses were evaluated at the molecular level by analysing changes in genes related to the stress response, the endocrine system, the energy metabolism, and detoxication pathways, as well as in the enzyme activity of glutathione S-transferase. BBP caused a dose and time-dependent toxicity in most of the selected biomarkers. 24-h exposures to high doses affected larval survival and lead to a significant response of several heat-shock genes (hsp70, hsp40, and hsp27), and to a clear endocrine disrupting effect by upregulating the ecdysone receptor gene (EcR). Longer treatments with low doses triggered a general repression of transcription and GST activity. Furthermore, delayed toxicity studies were specially relevant, since they allowed us to detect unpredictable toxic effects, not immediately manifested after contact with the phthalate. This study provides novel and interesting results on the toxic effects of BBP in C. riparius and highlights the suitability of this organism for ecotoxicological risk assessment, especially in aquatic ecosystems. PMID:25725395

  17. Conditioning with rabbit versus horse ATG dramatically alters clinical outcomes in identical twins with severe aplastic anemia transplanted with the same allogeneic donor.

    PubMed

    Vo, P T; Pantin, J; Ramos, C; Cook, L; Cho, E; Kurlander, R; Khuu, H; Barrett, J; Leitman, S; Childs, R W

    2015-01-01

    Severe aplastic anemia (SAA) is a rare disorder leading to bone marrow failure, which if left untreated, is invariably fatal. Conventional therapies with immunosuppressive therapy or allogeneic hematopoietic stem cell transplantation (HSCT) are highly effective. HSCT can offer a greater outcome in younger patients who have an available HLA match-related donor. Recent studies showing the addition of antithymocyte globulin (ATG) to the conditioning regimen improves engraftment and reduces the risk of graft-versus-host disease (GVHD).There are currently two ATG preparations in the USA, equine (or horse) and rabbit ATG. These agents are pharmacologically distinct, having significant differences in their pharmacokinetics and in vivo immunosuppressive effects [N Engl J Med 365(5):430-438, 2011]. Here, we report a case of two monozygotic twins with constitutional SAA that evolved to myelodysplastic syndrome (MDS) who both underwent allogeneic peripheral blood stem cell transplantation (PBSC) from the same single HLA antigen mismatched sibling donor with the only difference in the transplant regimen being the type of ATG used in the preparative regimen; one twin received horse ATG and the other received rabbit ATG during conditioning. This report emphasizes that dramatic differences in donor T cell chimerism and clinical outcomes including GVHD can occur as a consequence of the type of ATG that is utilized in the transplant conditioning regimen. These differences highlight that these agents should not be considered interchangeable drugs when used in this setting. PMID:26113077

  18. Inflammation severely alters thyroid hormone signaling in the central nervous system during experimental allergic encephalomyelitis in rat: Direct impact on OPCs differentiation failure.

    PubMed

    Fernández, Mercedes; Baldassarro, Vito A; Sivilia, Sandra; Giardino, Luciana; Calzà, Laura

    2016-09-01

    Differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes is severely impaired by inflammatory cytokines and this could lead to remyelination failure in inflammatory/demyelinating diseases. Due to the role of thyroid hormone in the maturation of OPCs and developmental myelination, in this study we investigated (i) the possible occurrence of dysregulation of thyroid hormone signaling in the CNS tissue during experimental neuroinflammation; (ii) the possible impact of inflammatory cytokines on thyroid hormone signaling and OPCs differentiation in vitro. The disease model is the experimental allergic encephalomyelitis in female Dark-Agouti rats, whereas in vitro experiments were carried out in OPCs derived from neural stem cells. The main results are the following: (i) a strong upregulation of cytokine mRNA expression level was found in the spinal cord during experimental allergic encephalomyelitis; (ii) thyroid hormone signaling in the spinal cord (thyroid hormone receptors; deiodinase; thyroid hormone membrane transporter) is substantially downregulated, due to the upregulation of the thyroid hormone inactivating enzyme deiodinase 3 and the downregulation of thyroid hormone receptors, as investigated at mRNA expression level; (iii) when exposed to inflammatory cytokines, deiodinase 3 is upregulated in OPCs as well, and OPCs differentiation is blocked; (iv) deiodinase 3 inhibition by iopanoic acid recovers OPCs differentiation in the presence on inflammatory cytokines. These data suggest that cellular hypothyroidism occurs during experimental allergic encephalomyelitis, possibly impacting on thyroid hormone-dependent cellular processes, including maturation of OPCs into myelinating oligodendrocytes. GLIA 2016;64:1573-1589. PMID:27404574

  19. Proteomic and Real-Time PCR analyses of Saccharomyces cerevisiae VL3 exposed to microcystin-LR reveals a set of protein alterations transversal to several eukaryotic models.

    PubMed

    Valério, Elisabete; Campos, Alexandre; Osório, Hugo; Vasconcelos, Vitor

    2016-03-15

    Some of the most common toxins present in freshwater, in particular microcystins (MCs), are produced by cyanobacteria. These toxins have a negative impact on human health, being associated with episodes of acute hepatotoxicity and being considered potentially carcinogenic to humans. To date the exact mechanisms of MC-induced toxicity and tumor promotion were not completely elucidated. To get new insights underlying microcystin-LR (MCLR) molecular mechanisms of toxicity we have performed the proteomic profiling using two-dimensional electrophoresis and MALDI-TOF/TOF of Saccharomyces cerevisiae cells exposed for 4 h-1 nM and 1 μM of MCLR, and compared them to the control (cells not exposed to MCLR). We identified 14 differentially expressed proteins. The identified proteins are involved in metabolism, genotoxicity, cytotoxicity and stress response. Furthermore, we evaluated the relative expression of yeast's PP1 and PP2A genes and also of genes from the Base Excision Repair (BER) DNA-repair system, and observed that three out of the five genes analyzed displayed dose-dependent responses. Overall, the different proteins and genes affected are related to oxidative stress and apoptosis, thus reinforcing that it is probably the main mechanism of MCLR toxicity transversal to several organisms, especially at lower doses. Notwithstanding these MCLR responsive proteins could be object of further studies to evaluate their suitability as biomarkers of exposure to the toxin. PMID:26806210

  20. Effects of 12 days exposure to simulated microgravity on central circulatory hemodynamics in the rhesus monkey

    NASA Astrophysics Data System (ADS)

    Convertino, V. A.; Koenig, S. C.; Krotov, V. P.; Fanton, J. W.; Korolkov, V. I.; Trambovetsky, E. V.; Ewert, D. L.; Truzhennikov, A.; Latham, R. D.

    Central circulatory hemodynamic responses were measured before and during the initial 9 days of a 12-day 10 ° head-down tilt (HDT) in 4 flight-sized juvenile rhesus monkeys who were surgically instrumented with a variety of intrathoracic catheters and blood flow sensors to assess the effects of simulated microgravity on central circulatory hemodynamics. Each subject underwent measurements of aortic and left ventricular pressures, and aortic flow before and during HDT as well as during a passive head-up postural test before and after HDT. Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure were measured, and dP/dt and left ventricular elastance was calculated from hemodynamic measurements. The postural test consisted of 5 min of supine baseline control followed by 5 minutes of 90 ° upright tilt (HUT). Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure showed no consistent alterations during HDT. Left ventricular elastance was reduced in all animals throughout HDT, indicating that cardiac compliance was increased. HDT did not consistently alter left ventricular +dP/dt, indicating no change in cardiac contractility. Heart rate during the post-HDT HUT postural test was elevated compared to pre-HDT while post-HDT cardiac output was decreased by 52% as a result of a 54% reduction in stroke volume throughout HUT. Results from this study using an instrumented rhesus monkey suggest that exposure to microgravity may increase ventricular compliance without alterating cardiac contractility. Our project supported the notion that an invasively-instrumented animal model should be viable for use in spaceflight cardiovascular experiments to assess potential changes in myocardial function and cardiac compliance.

  1. Effect of ocular shape and vascular geometry on retinal hemodynamics: a computational model.

    PubMed

    Dziubek, Andrea; Guidoboni, Giovanna; Harris, Alon; Hirani, Anil N; Rusjan, Edmond; Thistleton, William

    2016-08-01

    A computational model for retinal hemodynamics accounting for ocular curvature is presented. The model combines (i) a hierarchical Darcy model for the flow through small arterioles, capillaries and small venules in the retinal tissue, where blood vessels of different size are comprised in different hierarchical levels of a porous medium; and (ii) a one-dimensional network model for the blood flow through retinal arterioles and venules of larger size. The non-planar ocular shape is included by (i) defining the hierarchical Darcy flow model on a two-dimensional curved surface embedded in the three-dimensional space; and (ii) mapping the simplified one-dimensional network model onto the curved surface. The model is solved numerically using a finite element method in which spatial domain and hierarchical levels are discretized separately. For the finite element method, we use an exterior calculus-based implementation which permits an easier treatment of non-planar domains. Numerical solutions are verified against suitably constructed analytical solutions. Numerical experiments are performed to investigate how retinal hemodynamics is influenced by the ocular shape (sphere, oblate spheroid, prolate spheroid and barrel are compared) and vascular architecture (four vascular arcs and a branching vascular tree are compared). The model predictions show that changes in ocular shape induce non-uniform alterations of blood pressure and velocity in the retina. In particular, we found that (i) the temporal region is affected the least by changes in ocular shape, and (ii) the barrel shape departs the most from the hemispherical reference geometry in terms of associated pressure and velocity distributions in the retinal microvasculature. These results support the clinical hypothesis that alterations in ocular shape, such as those occurring in myopic eyes, might be associated with pathological alterations in retinal hemodynamics. PMID:26445874

  2. Local and global contributions to hemodynamic activity in mouse cortex

    PubMed Central

    Pisauro, M. Andrea; Benucci, Andrea

    2016-01-01

    Imaging techniques such as functional magnetic resonance imaging seek to estimate neural signals in local brain regions through measurements of hemodynamic activity. However, hemodynamic activity is accompanied by large vascular fluctuations of unclear significance. To characterize these fluctuations and their impact on estimates of neural signals, we used optical imaging in visual cortex of awake mice. We found that hemodynamic activity can be expressed as the sum of two components, one local and one global. The local component reflected presumed neural signals driven by visual stimuli in the appropriate retinotopic region. The global component constituted large fluctuations shared by larger cortical regions, which extend beyond visual cortex. These fluctuations varied from trial to trial, but they did not constitute noise; they correlated with pupil diameter, suggesting that they reflect variations in arousal or alertness. Distinguishing local and global contributions to hemodynamic activity may help understand neurovascular coupling and interpret measurements of hemodynamic responses. PMID:26984421

  3. Local and global contributions to hemodynamic activity in mouse cortex.

    PubMed

    Pisauro, M Andrea; Benucci, Andrea; Carandini, Matteo

    2016-06-01

    Imaging techniques such as functional magnetic resonance imaging seek to estimate neural signals in local brain regions through measurements of hemodynamic activity. However, hemodynamic activity is accompanied by large vascular fluctuations of unclear significance. To characterize these fluctuations and their impact on estimates of neural signals, we used optical imaging in visual cortex of awake mice. We found that hemodynamic activity can be expressed as the sum of two components, one local and one global. The local component reflected presumed neural signals driven by visual stimuli in the appropriate retinotopic region. The global component constituted large fluctuations shared by larger cortical regions, which extend beyond visual cortex. These fluctuations varied from trial to trial, but they did not constitute noise; they correlated with pupil diameter, suggesting that they reflect variations in arousal or alertness. Distinguishing local and global contributions to hemodynamic activity may help understand neurovascular coupling and interpret measurements of hemodynamic responses. PMID:26984421

  4. Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs.

    PubMed

    Siggers, Richard H; Siggers, Jayda; Boye, Mette; Thymann, Thomas; Mølbak, Lars; Leser, Thomas; Jensen, Bent B; Sangild, Per T

    2008-08-01

    Following preterm birth, bacterial colonization and enteral formula feeding predispose neonates to gut dysfunction and necrotizing enterocolitis (NEC), a serious gastrointestinal inflammatory disease. We hypothesized that administration of probiotics would beneficially influence early bacterial colonization, thereby reducing the susceptibility to formula-induced gut atrophy, dysfunction, and NEC. Caesarean-delivered preterm pigs were provided total parenteral nutrition (1.5 d) followed by enteral feeding (2 d) with porcine colostrum (COLOS; n = 5), formula (FORM; n = 9), or formula with probiotics (FORM-P; Bifidobacterium animalis and Lactobacillus: L. acidophilus, L. casei, L. pentosus, L. plantarum; n = 13). Clinical NEC scores were reduced (P < 0.05) in FORM-P (2.0 +/- 0.2) and COLOS groups (1.7 +/- 0.5) compared with FORM pigs (3.4 +/- 0.6). Lower NEC scores were associated with elevated intestinal weight, mucosa proportion, villus height, RNA integrity, and brush border aminopeptidase A and N activities, and lower gastric organic acid concentration in the FORM-P and COLOS groups (P < 0.05). Diversity of the mucosa-associated bacteria in the distal small intestine was similar among formula-fed pigs, yet the abundance of specific bacterial groups differed between FORM-P and FORM pigs. FORM-P pigs had lower colonization density of a potential pathogen, Clostridium perfringens, and had commensal Lactobacillus bacteria more closely associated with enterocytes along the villus-crypt axis relative to FORM pigs. These results suggest that probiotic administration immediately after birth promotes the colonization of a beneficial commensal microbiota capable of limiting the formula-induced mucosal atrophy, dysfunction, and pathogen load in preterm neonates, thereby reducing the incidence and severity of NEC. PMID:18641188

  5. 2,3,7,8- Te trachlorodibenzo-p-dioxin treatment alters eicosanoid levels in several organs of the mouse in an aryl hydrocarbon receptor-dependent fashion

    PubMed Central

    Bui, Peter; Solaimani, Parrisa; Wu, Xiaomeng; Hankinson, Oliver

    2012-01-01

    2,3,7,8- Te trachlorodibenzo- p-dioxin (TCDD) adversely affects many mammalian organs and tissues. These effects are mediated by the aryl hydrocarbon receptor (AHR). CYP1A1, CYP1A2 and CYP1B1 are upregulated by the liganded AHR. These (and other) cytochromes P450 can metabolize arachidonic acid into a variety of bioactive eicosanoids. Towards investigating a potential role of eicosanoids in TCDD toxicity, arachidonic acid, two other unsaturated long-chain fatty acids, and up to twenty-three eicosanoids were measured in five organs/tissues of male and female wild-type and Ahr null mice treated or untreated with TCDD. TCDD generally increased the levels of the four dihydroxyeicosatrienoic acids (DHETs) and (where measured) 5,6-epoxyeicosatrienoic acid and 18-, 19- and 20-hydroxyeicosatrienoic acids (HETEs) in the serum, liver, spleen and lungs, but not the heart, of both sexes, and increased the levels in the serum, liver and spleen of several metabolites that are usually considered products of lipoxygenase activity, but which may also be generated by cytochromes P450. TCDD also increased the levels of the esterified forms of these eicosanoids in the liver in parallel with the corresponding free forms. The levels of prostanoids were generally not affected by TCDD. The above changes did not occur in Ahr null mice, and are therefore mediated by the AHR. TCDD increased the mRNA levels of Cyp1a1, Cyp1a2, Cyp1b1 and the Pla2g12a form of phospholipase A2 to varying degrees in the different organs, and these increases correlated with some but not all the changes in eicosanoids levels in the organs, suggesting that other enzymes may also be involved. PMID:22230337

  6. Early Detection of Drug-Induced Renal Hemodynamic Dysfunction Using Sonographic Technology in Rats.

    PubMed

    Fisch, Sudeshna; Liao, Ronglih; Hsiao, Li-Li; Lu, Tzongshi

    2016-01-01

    The kidney normally functions to maintain hemodynamic homeostasis and is a major site of damage caused by drug toxicity. Drug-induced nephrotoxicity is estimated to contribute to 19- 25% of all clinical cases of acute kidney injury (AKI) in critically ill patients. AKI detection has historically relied on metrics such as serum creatinine (sCr) or blood urea nitrogen (BUN) which are demonstrably inadequate in full assessment of nephrotoxicity in the early phase of renal dysfunction. Currently, there is no robust diagnostic method to accurately detect hemodynamic alteration in the early phase of AKI while such alterations might actually precede the rise in serum biomarker levels. Such early detection can help clinicians make an accurate diagnosis and help in in decision making for therapeutic strategy. Rats were treated with Cisplatin to induce AKI. Nephrotoxicity was assessed for six days using high-frequency sonography, sCr measurement and upon histopathology of kidney. Hemodynamic evaluation using 2D and Color-Doppler images were used to serially study nephrotoxicity in rats, using the sonography. Our data showed successful drug-induced kidney injury in adult rats by histological examination. Color-Doppler based sonographic assessment of AKI indicated that resistive-index (RI) and pulsatile-index (PI) were increased in the treatment group; and peak-systolic velocity (mm/s), end-diastolic velocity (mm/s) and velocity-time integral (VTI, mm) were decreased in renal arteries in the same group. Importantly, these hemodynamic changes evaluated by sonography preceded the rise of sCr levels. Sonography-based indices such as RI or PI can thus be useful predictive markers of declining renal function in rodents. From our sonography-based observations in the kidneys of rats that underwent AKI, we showed that these noninvasive hemodynamic measurements may consider as an accurate, sensitive and robust method in detecting early stage kidney dysfunction. This study also

  7. Early Detection of Drug-Induced Renal Hemodynamic Dysfunction Using Sonographic Technology in Rats

    PubMed Central

    Fisch, Sudeshna; Liao, Ronglih; Hsiao, Li-Li; Lu, Tzongshi

    2016-01-01

    The kidney normally functions to maintain hemodynamic homeostasis and is a major site of damage caused by drug toxicity. Drug-induced nephrotoxicity is estimated to contribute to 19- 25% of all clinical cases of acute kidney injury (AKI) in critically ill patients. AKI detection has historically relied on metrics such as serum creatinine (sCr) or blood urea nitrogen (BUN) which are demonstrably inadequate in full assessment of nephrotoxicity in the early phase of renal dysfunction. Currently, there is no robust diagnostic method to accurately detect hemodynamic alteration in the early phase of AKI while such alterations might actually precede the rise in serum biomarker levels. Such early detection can help clinicians make an accurate diagnosis and help in in decision making for therapeutic strategy. Rats were treated with Cisplatin to induce AKI. Nephrotoxicity was assessed for six days using high-frequency sonography, sCr measurement and upon histopathology of kidney. Hemodynamic evaluation using 2D and Color-Doppler images were used to serially study nephrotoxicity in rats, using the sonography. Our data showed successful drug-induced kidney injury in adult rats by histological examination. Color-Doppler based sonographic assessment of AKI indicated that resistive-index (RI) and pulsatile-index (PI) were increased in the treatment group; and peak-systolic velocity (mm/s), end-diastolic velocity (mm/s) and velocity-time integral (VTI, mm) were decreased in renal arteries in the same group. Importantly, these hemodynamic changes evaluated by sonography preceded the rise of sCr levels. Sonography-based indices such as RI or PI can thus be useful predictive markers of declining renal function in rodents. From our sonography-based observations in the kidneys of rats that underwent AKI, we showed that these noninvasive hemodynamic measurements may consider as an accurate, sensitive and robust method in detecting early stage kidney dysfunction. This study also

  8. Hemodynamic and Biologic Determinates of Arteriovenous Fistula Outcomes in Renal Failure Patients

    PubMed Central

    Hammes, Mary

    2015-01-01

    The outcome of patients with end-stage renal disease on hemodialysis depends on a functioning vascular access. Although a variety of access options are available, the arteriovenous fistula remains the best vascular access. Unfortunately the success rate of mature fistula use remains poor. The creation of an arteriovenous fistula is followed by altered hemodynamic and biological changes that may result in neointimal hyperplasia and eventual venous stenosis. This review provides an overview of these changes and the needed research to provide a long lasting vascular access and hence improve outcomes for patients with end-stage renal disease. PMID:26495286

  9. Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.

    PubMed

    Sassaroli, Angelo; Kainerstorfer, Jana M; Fantini, Sergio

    2016-01-21

    In this work, we are proposing an extension of a recent hemodynamic model (Fantini, 2014a), which was developed within the framework of a novel approach to the study of tissue hemodynamics, named coherent hemodynamics spectroscopy (CHS). The previous hemodynamic model, from a signal processing viewpoint, treats the tissue microvasculature as a linear time-invariant system, and considers changes of blood volume, capillary blood flow velocity and the rate of oxygen diffusion as inputs, and the changes of oxy-, deoxy-, and total hemoglobin concentrations (measured in near infrared spectroscopy) as outputs. The model has been used also as a forward solver in an inversion procedure to retrieve quantitative parameters that assess physiological and biological processes such as microcirculation, cerebral autoregulation, tissue metabolic rate of oxygen, and oxygen extraction fraction. Within the assumption of "small" capillary blood flow velocity oscillations the model showed that the capillary and venous compartments "respond" to this input as low pass filters, characterized by two distinct impulse response functions. In this work, we do not make the assumption of "small" perturbations of capillary blood flow velocity by solving without approximations the partial differential equation that governs the spatio-temporal behavior of hemoglobin saturation in capillary and venous blood. Preliminary comparison between the linear time-invariant model and the extended model (here identified as nonlinear model) are shown for the relevant parameters measured in CHS as a function of the oscillation frequency (CHS spectra). We have found that for capillary blood flow velocity oscillations with amplitudes up to 10% of the baseline value (which reflect typical scenarios in CHS), the discrepancies between CHS spectra obtained with the linear and nonlinear models are negligible. For larger oscillations (~50%) the linear and nonlinear models yield CHS spectra with differences within typical

  10. Altered glucose metabolism rather than naive type 2 diabetes mellitus (T2DM) is related to vitamin D status in severe obesity

    PubMed Central

    2014-01-01

    Context The last decades have provided insights into vitamin D physiology linked to glucose homeostasis. Uncertainties remain in obesity due to its intrinsic effects on vitamin D and glucose tolerance. Objectives To assess the relationship between vitamin D and glucose abnormalities in severely obese individuals previously unknown to suffer from abnormal glucose metabolism. Setting Tertiary care centre. Patients 524 obese patients (50.3 ± 14.9 yrs; BMI, 47.7 ± 7.3 kg/m2) screened by OGTT, HbA1c and the lipid profile. Vitamin D status was assessed by 25(OH)D3, PTH and electrolyte levels. 25(OH)D3 deficiency/insufficiency were set at 20 and 30 ng/ml, respectively. All comparative and regression analyses were controlled for age, BMI and gender. Results The prevalence of vitamin D deficiency/insufficiency and secondary hyperparathyroidism were 95% and 50.8%, respectively. Normal glucose tolerance (NGT), impaired fasting glucose (IFG) or impaired glucose tolerance (IGT), and type 2 diabetes mellitus (T2DM) were found in 37.8%, 40.5% and 21.7% of cases, respectively. Large variations in metabolic parameters were seen across categories of vitamin D status, but the only significant differences were found for C-peptide, tryglicerides, LDL- and HDL-cholesterol levels (p < 0.05 for all). The prevalence of vitamin D deficiency was documented to be slightly but significantly more frequent in glucose-intolerant patients (IFG + IGT + T2DM) compared to the -normotolerant counterpart (87% vs. 80%, p < 0.05). In partial correlation analyses, there was no association between vitamin D levels and glucose-related markers but for HbA1c (r = −0.091, p < 0.05), and both basal and OGTT-stimulated insulin levels (r = 0.097 and r = 0.099; p < 0.05 for all). Vitamin D levels were also correlated to HDL-cholesterol (r = 0.13, p = 0.002). Multivariate regression analysis inclusive of vitamin D, age, BMI, gender and fat mass as

  11. Monitoring changes in hemodynamics following optogenetic stimulation

    NASA Astrophysics Data System (ADS)

    Frye, Seth

    The brain is composed of billions of neurons, all of which connected through a vast network. After years of study and applications of different technologies and techniques, there are still more questions than answers when it comes to the fundamental functions of the brain. This project aims to provide a new tool which can be used to gain a better understanding of the fundamental mechanisms that govern neurological processes inside the brain. In order for neural networks to operate, blood has to be supplied through neighboring blood vessels. As such, the increase or decrease in the blood supply has been used as an indicator of neural activity. The neural activity and blood supply relationship is known as neural vasculature coupling. Monitoring the hemodynamics is used as an indicator of neurological activity, but the causal relationship is an area of current research. Gaining a better understanding of the coupling of neural activity and the surrounding vasculature provides a more accurate methodology to evaluate regional neural activity. The new optical technology applied in this project provides a set of tools to both stimulate and monitor this coupling relationship. Optogenetics provides the capability of stimulating neural activity using specific wavelengths of light. Essentially this tool allows for the direct stimulation of networks of neurons by simply shining one color of light onto the brain. Optical Coherence Tomography (OCT), another new optical technology applied in this project, can record volumetric images of blood vessels and flow using only infrared light. The combination of the two optical technologies is then capable of stimulating neural activity and monitoring the hemodynamic response inside the brain using only light. As a result of this project we have successfully demonstrated the capability of both stimulating and imaging the brain using new optical technologies. The optical stimulation of neural activity has evoked a direct hemodynamic effect

  12. Early and late stimulus-evoked cortical hemodynamic responses provide insight into the neurogenic nature of neurovascular coupling

    PubMed Central

    Kennerley, Aneurin J; Harris, Sam; Bruyns-Haylett, Michael; Boorman, Luke; Zheng, Ying; Jones, Myles; Berwick, Jason

    2012-01-01

    Understanding neurovascular coupling is a prerequisite for the interpretation of results obtained from modern neuroimaging techniques. This study investigated the hemodynamic and neural responses in rat somatosensory cortex elicited by 16 seconds electrical whisker stimuli. Hemodynamics were measured by optical imaging spectroscopy and neural activity by multichannel electrophysiology. Previous studies have suggested that the whisker-evoked hemodynamic response contains two mechanisms, a transient ‘backwards' dilation of the middle cerebral artery, followed by an increase in blood volume localized to the site of neural activity. To distinguish between the mechanisms responsible for these aspects of the response, we presented whisker stimuli during normocapnia (‘control'), and during a high level of hypercapnia. Hypercapnia was used to ‘predilate' arteries and thus possibly ‘inhibit' aspects of the response related to the ‘early' mechanism. Indeed, hemodynamic data suggested that the transient stimulus-evoked response was absent under hypercapnia. However, evoked neural responses were also altered during hypercapnia and convolution of the neural responses from both the normocapnic and hypercapnic conditions with a canonical impulse response function, suggested that neurovascular coupling was similar in both conditions. Although data did not clearly dissociate early and late vascular responses, they suggest that the neurovascular coupling relationship is neurogenic in origin. PMID:22126914

  13. Stroke volume optimization: the new hemodynamic algorithm.

    PubMed

    Johnson, Alexander; Ahrens, Thomas

    2015-02-01

    Critical care practices have evolved to rely more on physical assessments for monitoring cardiac output and evaluating fluid volume status because these assessments are less invasive and more convenient to use than is a pulmonary artery catheter. Despite this trend, level of consciousness, central venous pressure, urine output, heart rate, and blood pressure remain assessments that are slow to be changed, potentially misleading, and often manifested as late indications of decreased cardiac output. The hemodynamic optimization strategy called stroke volume optimization might provide a proactive guide for clinicians to optimize a patient's status before late indications of a worsening condition occur. The evidence supporting use of the stroke volume optimization algorithm to treat hypovolemia is increasing. Many of the cardiac output monitor technologies today measure stroke volume, as well as the parameters that comprise stroke volume: preload, afterload, and contractility. PMID:25639574

  14. Large eddy simulation of powered Fontan hemodynamics.

    PubMed

    Delorme, Y; Anupindi, K; Kerlo, A E; Shetty, D; Rodefeld, M; Chen, J; Frankel, S

    2013-01-18

    Children born with univentricular heart disease typically must undergo three open heart surgeries within the first 2-3 years of life to eventually establish the Fontan circulation. In that case the single working ventricle pumps oxygenated blood to the body and blood returns to the lungs flowing passively through the Total Cavopulmonary Connection (TCPC) rather than being actively pumped by a subpulmonary ventricle. The TCPC is a direct surgical connection between the superior and inferior vena cava and the left and right pulmonary arteries. We have postulated that a mechanical pump inserted into this circulation providing a 3-5 mmHg pressure augmentation will reestablish bi-ventricular physiology serving as a bridge-to-recovery, bridge-to-transplant or destination therapy as a "biventricular Fontan" circulation. The Viscous Impeller Pump (VIP) has been proposed by our group as such an assist device. It is situated in the center of the 4-way TCPC intersection and spins pulling blood from the vena cavae and pushing it into the pulmonary arteries. We hypothesized that Large Eddy Simulation (LES) using high-order numerical methods are needed to capture unsteady powered and unpowered Fontan hemodynamics. Inclusion of a mechanical pump into the CFD further complicates matters due to the need to account for rotating machinery. In this study, we focus on predictions from an in-house high-order LES code (WenoHemo(TM)) for unpowered and VIP-powered idealized TCPC hemodynamics with quantitative comparisons to Stereoscopic Particle Imaging Velocimetry (SPIV) measurements. Results are presented for both instantaneous flow structures and statistical data. Simulations show good qualitative and quantitative agreement with measured data. PMID:23177085

  15. Effects of phacoemulsification surgery on ocular hemodynamics

    PubMed Central

    Turk, Adem; Mollamehmetoglu, Suleyman; Imamoglu, Halil Ibrahim; Kola, Mehmet; Erdol, Hidayet; Akyol, Nurettin

    2013-01-01

    AIM To evaluate the possible effects of phacoemulsification cataract surgery on ocular hemodynamics. METHODS In this prospective study, intraocular pressure (IOP), pulsatile ocular blood flow (POBF), and ocular pulse amplitude (OPA) were measured pre-operatively (baseline) and at 1 week and 3 weeks postoperation in 52 eyes of 26 patients (mean age 63.15±10.25 years) scheduled for unilateral phacoemulsification cataract surgery with intraocular lens implantation. In all of the eyes, a blood flow analyzer (Paradigm DICON; Paradigm Medical Industries Inc.; USA) was used to obtain measurements of IOP, POBF, and OPA. The data obtained from operated eyes were compared statistically to untreated fellow phakic eyes of the patients. RESULTS For operated eyes, the mean baseline IOP, POBF, and OPA values were 15.9±4.64mmHg, 17.41±4.84µL/s, and 2.91±1.12mmHg, respectively. The IOP, POBF, and OPA values were 17.19±4.34mmHg, 17.56±6.46µL/s, and 3.12±1.1mmHg, respectively, in the nonoperated control eyes. Statistically significant differences from baseline measurements were not observed 1 week and 3 weeks postoperation for the operated or nonoperated eyes. There were also no statistically significant differences in any measurements between the operated and nonoperated eyes in all the examination periods (P>0.05 for all). CONCLUSION Uncomplicated phacoemulsification surgery does not affect ocular hemodynamics in normotensive eyes with cataracts. PMID:23991393

  16. Time evolution and hemodynamics of cerebral aneurysms

    NASA Astrophysics Data System (ADS)

    Sforza, Daniel M.; Putman, Christopher; Tateshima, Satoshi; Viñuela, Fernando; Cebral, Juan

    2011-03-01

    Cerebral aneurysm rupture is a leading cause of hemorrhagic strokes. Because they are being more frequently diagnosed before rupture and the prognosis of subarachnoid hemorrhage is poor, clinicians are often required to judge which aneurysms are prone to progression and rupture. Unfortunately, the processes of aneurysm initiation, growth and rupture are not well understood. Multiple factors associated to these processes have been identified. Our goal is to investigate two of them, arterial hemodynamics (using computational fluid dynamics) and the peri-aneurysmal environment, by studying a group of growing cerebral aneurysms that are followed longitudinally in time. Six patients with unruptured untreated brain aneurysms which exhibited growth during the observation period were selected for the study. Vascular models of each aneurysm at each observation time were constructed from the corresponding computed tomography angiography (CTA) images. Subsequently, models were aligned, and geometrical differences quantified. Blood flow was modeled with the 3D unsteady incompressible Navier-Stokes equation for a Newtonian fluid, and wall shear stress distribution and flow patterns were calculated and visualized. Analysis of the simulations and changes in geometry revealed asymmetric growth patterns and suggests that areas subject to vigorous flows, i.e. relative high wall shear stress and concentrated streamlines patterns; correspond to regions of aneurysm growth. Furthermore, in some cases the geometrical evolution of aneurysms is clearly affected by contacts with bone structures and calcifications in the wall, and as a consequence the hemodynamics is greatly modified. Thus, in these cases the peri-aneurysmal environment must be considered when analyzing aneurysm evolution.

  17. Large Eddy Simulation of Powered Fontan Hemodynamics

    PubMed Central

    Delorme, Y.; Anupindi, K.; Kerlo, A.E.; Shetty, D.; Rodefeld, M.; Chen, J.; Frankel, S.

    2012-01-01

    Children born with univentricular heart disease typically must undergo three open heart surgeries within the first 2–3 years of life to eventually establish the Fontan circulation. In that case the single working ventricle pumps oxygenated blood to the body and blood returns to the lungs flowing passively through the Total Cavopulmonary Connection (TCPC) rather than being actively pumped by a subpulmonary ventricle. The TCPC is a direct surgical connection between the superior and inferior vena cava and the left and right pulmonary arteries. We have postulated that a mechanical pump inserted into this circulation providing a 3–5 mmHg pressure augmentation will reestablish bi-ventricular physiology serving as a bridge-to-recovery, bridge-to-transplant or destination therapy as a “biventricular Fontan” circulation. The Viscous Impeller Pump (VIP) has been proposed by our group as such an assist device. It is situated in the center of the 4-way TCPC intersection and spins pulling blood from the vena cavae and pushing it into the pulmonary arteries. We hypothesized that Large Eddy Simulation (LES) using high-order numerical methods are needed to capture unsteady powered and unpowered Fontan hemodynamics. Inclusion of a mechanical pump into the CFD further complicates matters due to the need to account for rotating machinery. In this study, we focus on predictions from an in-house high-order LES code (WenoHemo™) for unpowered and VIP-powered idealized TCPC hemodynamics with quantitative comparisons to Stereoscopic Particle Imaging Velocimetry (SPIV) measurements. Results are presented for both instantaneous flow structures and statistical data. Simulations show good qualitative and quantitative agreement with measured data. PMID:23177085

  18. Effects of 12 days exposure to simulated microgravity on central circulatory hemodynamics in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Koenig, S. C.; Krotov, V. P.; Fanton, J. W.; Korolkov, V. I.; Trambovetsky, E. V.; Ewert, D. L.; Truzhennikov, A.; Latham, R. D.

    1998-01-01

    Central circulatory hemodynamic responses were measured before and during the initial 9 days of a 12-day 10 degrees head-down tilt (HDT) in 4 flight-sized juvenile rhesus monkeys who were surgically instrumented with a variety of intrathoracic catheters and blood flow sensors to assess the effects of simulated microgravity on central circulatory hemodynamics. Each subject underwent measurements of aortic and left ventricular pressures, and aortic flow before and during HDT as well as during a passive head-up postural test before and after HDT. Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure were measured, and dP/dt and left ventricular elastance was calculated from hemodynamic measurements. The postural test consisted of 5 min of supine baseline control followed by 5 minutes of 90 degrees upright tilt (HUT). Heart rate, stroke volume, cardiac output, and left ventricular end-diastolic pressure showed no consistent alterations during HDT. Left ventricular elastance was reduced in all animals throughout HDT, indicating that cardiac compliance was increased. HDT did not consistently alter left ventricular +dP/dt, indicating no change in cardiac contractility. Heart rate during the post-HDT HUT postural test was elevated compared to pre-HDT while post-HDT cardiac output was decreased by 52% as a result of a 54% reduction in stroke volume throughout HUT. Results from this study using an instrumented rhesus monkey suggest that exposure to microgravity may increase ventricular compliance without alternating cardiac contractility. Our project supported the notion that an invasively-instrumented animal model should be viable for use in spaceflight cardiovascular experiments to assess potential changes in myocardial function and cardiac compliance.

  19. Spatial quantitative vectorcardiography in aortic stenosis: correlation with hemodynamic findings.

    PubMed

    Talwar, K K; Mohan, J C; Narula, J; Kaul, U; Bhatia, M L

    1988-02-01

    Thirty-four patients with hemodynamically documented valvar aortic stenosis without congestive heart failure were studied by the corrected Frank lead system vectorcardiography, with special emphasis on the angular characteristics of spatial R max to define the severity of the lesion. Spatial QRS-T angle demonstrated a highly significant correlation with the peak left ventricular systolic pressure (r = 0.72, P less than 0.001) and a significant correlation with peak transvalvar aortic gradient (r = 0.49, P less than 0.01). Furthermore, all patients with a QRS-T angle of more than 90 degrees had significant aortic stenosis (TVG greater than or equal to 50 mm Hg). The peak left ventricular systolic pressure and transvalvar aortic gradient also demonstrated a significant negative correlation with azimuth angle (r = -0.36 and -0.34, respectively; P less than 0.05) and a positive correlation with spatial R max magnitude (r = 0.38 and 0.41, respectively; P less than 0.05). There was no correlation between elevation angle of spatial R max and left ventricle systolic pressure or transvalvar aortic gradient. Our study indicates that spatial quantitative vectorcardiographic angular characteristics, particularly spatial QRS-T angle, may be a useful adjunct to other noninvasive techniques to assess the severity of valvar aortic stenosis. PMID:3343071

  20. A Shape Memory Polymer Dialysis Needle Adapter for the Reduction of Hemodynamic Stress within Arteriovenous Grafts

    SciTech Connect

    Ortega, J M; Small, W; Wilson, T S; Benett, W; Loge, J; Maitland, D J

    2006-08-16

    A deployable, shape memory polymer adapter is investigated for reducing the hemodynamic stress caused by a dialysis needle flow within an arteriovenous graft. Computational fluid dynamics simulations of dialysis sessions with and without the adapter demonstrate that the adapter provides a significant decrease in the wall shear stress. In vitro flow visualization measurements are made within a graft model following delivery and actuation of a prototype shape memory polymer adapter. Vascular access complications resulting from arteriovenous (AV) graft failures account for over $1 billion per year in the health care costs of dialysis patients in the U.S.[1] The primary mode of failure of arteriovenous fistulas (AVF's) and polytetrafluoroethylene (PTFE) grafts is the development of intimal hyperplasia (IH) and the subsequent formation of stenotic lesions, resulting in a graft flow decline. The hemodynamic stresses arising within AVF's and PTFE grafts play an important role in the pathogenesis of IH. Studies have shown that vascular damage can occur in regions where there is flow separation, oscillation, or extreme values of wall shear stress (WSS).[2] Nevaril et al.[3] show that exposure of red blood cells to WSS's on the order of 1500 dynes/cm2 can result in hemolysis. Hemodynamic stress from dialysis needle flow has recently been investigated for the role it plays in graft failure. Using laser Doppler velocimetry measurements, Unnikrishnan et al.[4] show that turbulence intensities are 5-6 times greater in the AV flow when the needle flow is present and that increased levels of turbulence exist for approximately 7-8cm downstream of the needle. Since the AVF or PTFE graft is exposed to these high levels of hemodynamic stress several hours each week during dialysis sessions, it is quite possible that needle flow is an important contributor to vascular access occlusion.[4] We present a method for reducing the hemodynamic stress in an AV graft by tailoring the fluid

  1. Eculizumab as a bridge to immunosuppressive therapy in severe cold agglutinin disease of anti-Pr specificity.

    PubMed

    Shapiro, Roman; Chin-Yee, Ian; Lam, Selay

    2015-11-01

    Severe cold agglutinin disease with hemodynamic compromise requires rapid stabilization of the autoimmune hemolytic anemia as a bridge to the immunosuppressive effect of rituximab. Herein, we describe eculizumab treatment of severe complement-mediated hemolysis in a patient whose hemodynamic status deteriorated in spite of supportive blood transfusions and therapeutic plasma exchange. PMID:26576277

  2. [Impact of aortic stiffness on central hemodynamics and cardiovascular system].

    PubMed

    Bulas, J; Potočárová, M; Filková, M; Simková, A; Murín, J

    2013-06-01

    Arterial stiffness increases as a result of degenerative processes accelerated by aging and many risk factors, namely arterial hypertension. Basic clinical examination reveals increased pulse pressure as its hemodynamic manifestation. The most serious consequence of increased vascular stiffness, which cannot be revealed by clinical examination, is a change of central hemodynamics leading to increased load of left ventricle, left ventricular hypertrophy, diastolic dysfunction and to overall increase of cardiovascular risk. This review aimed to point at some patophysiological mechanisms taking part in the development of vascular stiffness, vascular remodeling and hemodynamic consequences of these changes. This work also gives an overview of noninvasive examination methods and their characteristics enabling to evaluate the local, regional and systemic arterial stiffness and central pulse wave analysis and their meaning for central hemodynamics and heart workload. PMID:23808736

  3. Pulmonary hemodynamic profile in chronic obstructive pulmonary disease

    PubMed Central

    Portillo, Karina; Torralba, Yolanda; Blanco, Isabel; Burgos, Felip; Rodriguez-Roisin, Roberto; Rios, Jose; Roca, Josep; Barberà, Joan A

    2015-01-01

    Introduction Few data are available in regards to the prevalence of pulmonary hypertension (PH) in the broad spectrum of COPD. This study was aimed at assessing the prevalence of PH in a cohort of COPD patients across the severity of airflow limitation, and reporting the hemodynamic characteristics at rest and during exercise. Methods We performed a retrospective analysis on COPD patients who underwent right-heart catheterization in our center with measurements obtained at rest (n=139) and during exercise (n=85). PH was defined as mean pulmonary artery pressure (mPAP) ≥25 mmHg and pulmonary capillary wedge pressure <15 mmHg. Exercise-induced PH (EIPH) was defined by a ratio of ΔmPAP/Δcardiac output >3. Results PH was present in 25 patients (18%). According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification, PH prevalence in GOLD 2 was 7% (3 patients); 25% (14 patients) in GOLD 3; and 22% (8 patients) in GOLD 4. Severe PH (mPAP ≥35 mmHg) was identified in four patients (2.8%). Arterial partial oxygen pressure was the outcome most strongly associated with PH (r=−0.29, P<0.001). EIPH was observed in 60 patients (71%) and had a similar prevalence in both GOLD 2 and 3, and was present in all GOLD 4 patients. Patients with PH had lower cardiac index during exercise than patients without PH (5.0±1.2 versus 6.7±1.4 L/min/m2, respectively; P=0.001). Conclusion PH has a similar prevalence in COPD patients with severe and very-severe airflow limitation, being associated with the presence of arterial hypoxemia. In contrast, EIPH is highly prevalent, even in moderate COPD, and might contribute to limiting exercise tolerance. PMID:26203238

  4. Outcome of Acute Graft Rejection Associated with Hemodynamic Compromise in Pediatric Heart Transplant Recipients

    PubMed Central

    Tissot, Cecile; Buckvold, Shannon; Gralla, Jane; Ivy, D. Dunbar; Pietra, Biagio A.; Miyamoto, Shelley D.

    2011-01-01

    We sought to analyze the outcome of hemodynamically significant acute graft rejection in pediatric heart transplant recipients from a single-center experience. Acute graft rejection remains a major cause of morbidity and mortality for patients who undergo orthotopic heart transplantation and has been associated with the severity of the rejection episode. A retrospective review of all children experiencing a hemodynamically significant rejection episode after orthotopic heart transplantation was performed. Fifty-three patients with 54 grafts had 70 rejection episodes requiring intravenous inotropic support. Forty-one percent of these patients required high-dose inotropic support, with the remaining 59% of patients requiring less inotropic support. Overall graft survival to hospital discharge was 41% for patients in the high-dose group compared to 94% in the low-dose group. Six-month graft survival in patients who required high-dose inotropes remained at 41% compared to 44% in the low-dose group. Hemodynamically significant acute graft rejection in pediatric heart transplant recipients is a devastating problem with poor short- and long-term outcomes. Survival to hospital discharge is dismal in patients who require high-dose inotropic support. In contrast, survival to discharge is quite good in patients who require only low-dose inotropic support; however, six-month graft survival in this group is low secondary to a high incidence of graft failure related to worsening or aggressive transplant coronary artery disease. PMID:20963408

  5. Computational modeling of cardiac hemodynamics: Current status and future outlook

    NASA Astrophysics Data System (ADS)

    Mittal, Rajat; Seo, Jung Hee; Vedula, Vijay; Choi, Young J.; Liu, Hang; Huang, H. Howie; Jain, Saurabh; Younes, Laurent; Abraham, Theodore; George, Richard T.

    2016-01-01

    The proliferation of four-dimensional imaging technologies, increasing computational speeds, improved simulation algorithms, and the widespread availability of powerful computing platforms is enabling simulations of cardiac hemodynamics with unprecedented speed and fidelity. Since cardiovascular disease is intimately linked to cardiovascular hemodynamics, accurate assessment of the patient's hemodynamic state is critical for the diagnosis and treatment of heart disease. Unfortunately, while a variety of invasive and non-invasive approaches for measuring cardiac hemodynamics are in widespread use, they still only provide an incomplete picture of the hemodynamic state of a patient. In this context, computational modeling of cardiac hemodynamics presents as a powerful non-invasive modality that can fill this information gap, and significantly impact the diagnosis as well as the treatment of cardiac disease. This article reviews the current status of this field as well as the emerging trends and challenges in cardiovascular health, computing, modeling and simulation and that are expected to play a key role in its future development. Some recent advances in modeling and simulations of cardiac flow are described by using examples from our own work as well as the research of other groups.

  6. Computational Hemodynamics Framework for the Analysis of Cerebral Aneurysms

    PubMed Central

    Mut, Fernando; Löhner, Rainald; Chien, Aichi; Tateshima, Satoshi; Viñuela, Fernando; Putman, Christopher; Cebral, Juan

    2010-01-01

    Assessing the risk of rupture of intracranial aneurysms is important for clinicians because the natural rupture risk can be exceeded by the small but significant risk carried by current treatments. To this end numerous investigators have used image-based computational fluid dynamics models to extract patient-specific hemodynamics information, but there is no consensus on which variables or hemodynamic characteristics are the most important. This paper describes a computational framework to study and characterize the hemodynamic environment of cerebral aneurysms in order to relate it to clinical events such as growth or rupture. In particular, a number of hemodynamic quantities are proposed to describe the most salient features of these hemodynamic environments. Application to a patient population indicates that ruptured aneurysms tend to have concentrated inflows, concentrated wall shear stress distributions, high maximal wall shear stress and smaller viscous dissipation ratios than unruptured aneurysms. Furthermore, these statistical associations are largely unaffected by the choice of physiologic flow conditions. This confirms the notion that hemodynamic information derived from image-based computational models can be used to assess aneurysm rupture risk, to test hypotheses about the mechanisms responsible for aneurysm formation, progression and rupture, and to answer specific clinical questions. PMID:21643491

  7. The Effects of Renal Denervation on Renal Hemodynamics and Renal Vasculature in a Porcine Model

    PubMed Central

    Verloop, Willemien L.; Hubens, Lisette E. G.; Spiering, Wilko; Doevendans, Pieter A.; Goldschmeding, Roel; Bleys, Ronald L. A. W.; Voskuil, Michiel

    2015-01-01

    Rationale Recently, the efficacy of renal denervation (RDN) has been debated. It is discussed whether RDN is able to adequately target the renal nerves. Objective We aimed to investigate how effective RDN was by means of functional hemodynamic measurements and nerve damage on histology. Methods and Results We performed hemodynamic measurements in both renal arteries of healthy pigs using a Doppler flow and pressure wire. Subsequently unilateral denervation was performed, followed by repeated bilateral hemodynamic measurements. Pigs were terminated directly after RDN or were followed for 3 weeks or 3 months after the procedure. After termination, both treated and control arteries were prepared for histology to evaluate vascular damage and nerve damage. Directly after RDN, resting renal blood flow tended to increase by 29±67% (P = 0.01). In contrast, renal resistance reserve increased from 1.74 (1.28) to 1.88 (1.17) (P = 0.02) during follow-up. Vascular histopathology showed that most nerves around the treated arteries were located outside the lesion areas (8±7 out of 55±25 (14%) nerves per pig were observed within a lesion area). Subsequently, a correlation was noted between a more impaired adventitia and a reduction in renal resistance reserve (β: -0.33; P = 0.05) at three weeks of follow-up. Conclusion Only a small minority of renal nerves was targeted after RDN. Furthermore, more severe adventitial damage was related to a reduction in renal resistance in the treated arteries at follow-up. These hemodynamic and histological observations may indicate that RDN did not sufficiently target the renal nerves. Potentially, this may explain the significant spread in the response after RDN. PMID:26587981

  8. Can maternal-fetal hemodynamics influence prenatal development in dogs?

    PubMed

    Freitas, Luana Azevedo de; Mota, Gustavo Lobato; Silva, Herlon Victor Rodrigues; Carvalho, Cibele Figueira; Silva, Lúcia Daniel Machado da

    2016-09-01

    The goals of this study were to report embryonic and fetal ultrasound changes and compare blood flow of uteroplacental and umbilical arteries of normal and abnormal conceptus. Accordingly, from the day of mating or artificial insemination, all fetuses in 60 pregnancies were evaluated weekly. According to the ultrasound findings, the gestational age was determined and the conceptuses were divided into normal or abnormal (embryonic and fetal abnormalities). The two-dimensional ultrasound assessment consists of measuring and evaluating the echogenicity of conceptus and extra-fetal structures. Doppler velocimetry measured the resistivity index (RI) and pulsatility index (PI) of uteroplacental and umbilical arteries. Two-dimensional and Doppler measurements were expressed as mean and standard deviation. Differences between normal and abnormal groups were subject to Mann-Whitney test (P<0.05). Of 264 fetuses, 15.90% showed embryonic abnormalities (resorption) and 5.68% presented fetal abnormalities (congenital abnormalities, fetal underdevelopment and fetal death). We observed a reduced diameter and abnormalities in the contour of gestational vesicle, lack of viability, increased placental thickness, increased fluid echogenicity and increases in RI and PI of uteroplacental arteries of conceptuses with embryonic resorption between the 2nd and 4th weeks. Fetuses with abnormalities showed changes in the flow of uteroplacental and umbilical arteries prior to visualization of two-dimensional alterations and different vascular behavior according to the classification of the change. Results show that ultrasound is efficient for the detection of embryonic and fetal abnormalities. When combined with Doppler ultrasound, it allows early detection of gestational changes, as well as hemodynamic changes, in conceptuses with abnormalities, which may influence their development. PMID:27509872

  9. Hemodynamics in coronary arteries with overlapping stents.

    PubMed

    Rikhtegar, Farhad; Wyss, Christophe; Stok, Kathryn S; Poulikakos, Dimos; Müller, Ralph; Kurtcuoglu, Vartan

    2014-01-22

    Coronary artery stenosis is commonly treated by stent placement via percutaneous intervention, at times requiring multiple stents that may overlap. Stent overlap is associated with increased risk of adverse clinical outcome. While changes in local blood flow are suspected to play a role therein, hemodynamics in arteries with overlapping stents remain poorly understood. In this study we analyzed six cases of partially overlapping stents, placed ex vivo in porcine left coronary arteries and compared them to five cases with two non-overlapping stents. The stented vessel geometries were obtained by micro-computed tomography of corrosion casts. Flow and shear stress distribution were calculated using computational fluid dynamics. We observed a significant increase in the relative area exposed to low wall shear stress (WSS<0.5 Pa) in the overlapping stent segments compared both to areas without overlap in the same samples, as well as to non-overlapping stents. We further observed that the configuration of the overlapping stent struts relative to each other influenced the size of the low WSS area: positioning of the struts in the same axial location led to larger areas of low WSS compared to alternating struts. Our results indicate that the overlap geometry is by itself sufficient to cause unfavorable flow conditions that may worsen clinical outcome. While stent overlap cannot always be avoided, improved deployment strategies or stent designs could reduce the low WSS burden. PMID:24275438

  10. Wireless Monitoring of Liver Hemodynamics In Vivo

    SciTech Connect

    Akl, Tony; Wilson, Mark A.; Ericson, Milton Nance; Farquhar, Ethan; Cote, Gerard L.

    2014-01-01

    Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC) levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics.

  11. Effects of spaceflight on human calf hemodynamics

    NASA Technical Reports Server (NTRS)

    Watenpaugh, D. E.; Buckey, J. C.; Lane, L. D.; Gaffney, F. A.; Levine, B. D.; Moore, W. E.; Wright, S. J.; Blomqvist, C. G.

    2001-01-01

    Chronic microgravity may modify adaptations of the leg circulation to gravitational pressures. We measured resting calf compliance and blood flow with venous occlusion plethysmography, and arterial blood pressure with sphygmomanometry, in seven subjects before, during, and after spaceflight. Calf vascular resistance equaled mean arterial pressure divided by calf flow. Compliance equaled the slope of the calf volume change and venous occlusion pressure relationship for thigh cuff pressures of 20, 40, 60, and 80 mmHg held for 1, 2, 3, and 4 min, respectively, with 1-min breaks between occlusions. Calf blood flow decreased 41% in microgravity (to 1.15 +/- 0.16 ml x 100 ml(-1) x min(-1)) relative to 1-G supine conditions (1.94 +/- 0.19 ml x 100 ml(-1) x min(-1), P = 0.01), and arterial pressure tended to increase (P = 0.05), such that calf vascular resistance doubled in microgravity (preflight: 43 +/- 4 units; in-flight: 83 +/- 13 units; P < 0.001) yet returned to preflight levels after flight. Calf compliance remained unchanged in microgravity but tended to increase during the first week postflight (P > 0.2). Calf vasoconstriction in microgravity qualitatively agrees with the "upright set-point" hypothesis: the circulation seeks conditions approximating upright posture on Earth. No calf hemodynamic result exhibited obvious mechanistic implications for postflight orthostatic intolerance.

  12. Hemodynamics of Curved Vessels with Stenosis

    NASA Astrophysics Data System (ADS)

    Boghosian, Michael E.; Cassel, Kevin W.

    2007-11-01

    In hemodialysis access, the brachiocephalic or upper-arm fistula has less than optimal functional rates. The cause of this reduced patency is stenosis due to intimal hyperplasia in the cephalic vein. Stenosis typically leads to thrombosis and ultimately failure of the fistula. To increase our understanding of this process, numerical simulations of the unsteady, two-dimensional, incompressible Navier-Stokes equations are solved for the flow in an infinite channel having curvature and stenosis. Physiologically relevant Reynolds numbers ranging from 300 to 1500 and stenosis percentages of 0, 25, 50, and 75 are modeled. The post-stenotic flow is characterized by strong shear layers and recirculation regions. The largest shear stresses are found just upstream of the stenosis apex. The maximum shear stress increases with increasing Reynolds number and percent stenosis. The results indicate that hemodynamic conditions in the vein after fistula creation combined with curvature of the cephalic arch lead to shear stresses that exceed normal physiological values (both minimum and maximum). In some cases, the shear stresses are sufficiently large to cause damage to the endothelium and possibly denudation.

  13. Numerical predictions of hemodynamics following surgeries in cerebral aneurysms

    NASA Astrophysics Data System (ADS)

    Rayz, Vitaliy; Lawton, Michael; Boussel, Loic; Leach, Joseph; Acevedo, Gabriel; Halbach, Van; Saloner, David

    2014-11-01

    Large cerebral aneurysms present a danger of rupture or brain compression. In some cases, clinicians may attempt to change the pathological hemodynamics in order to inhibit disease progression. This can be achieved by changing the vascular geometry with an open surgery or by deploying a stent-like flow diverter device. Patient-specific CFD models can help evaluate treatment options by predicting flow regions that are likely to become occupied by thrombus (clot) following the procedure. In this study, alternative flow scenarios were modeled for several patients who underwent surgical treatment. Patient-specific geometries and flow boundary conditions were obtained from magnetic resonance angiography and velocimetry data. The Navier-Stokes equations were solved with a finite volume solver Fluent. A porous media approach was used to model flow-diverter devices. The advection-diffusion equation was solved in order to simulate contrast agent transport and the results were used to evaluate flow residence time changes. Thrombus layering was predicted in regions characterized by reduced velocities and shear stresses as well as increased flow residence time. The simulations indicated surgical options that could result in occlusion of vital arteries with thrombus. Numerical results were compared to experimental and clinical MRI data. The results demonstrate that image-based CFD models may help improve the outcome of surgeries in cerebral aneurysms. acknowledge R01HL115267.

  14. Multi-analyte profile analysis of plasma immune proteins: altered expression of peripheral immune factors is associated with neuropsychiatric symptom severity in adults with and without chronic hepatitis C virus infection.

    PubMed

    Huckans, Marilyn; Fuller, Bret E; Olavarria, Hannah; Sasaki, Anna W; Chang, Michael; Flora, Kenneth D; Kolessar, Michael; Kriz, Daniel; Anderson, Jeanne R; Vandenbark, Arthur A; Loftis, Jennifer M

    2014-03-01

    BackgroundThe purpose of this study was to characterize hepatitis C virus (HCV)-associated differences in the expression of 47 inflammatory factors and to evaluate the potential role of peripheral immune activation in HCV-associated neuropsychiatric symptoms-depression, anxiety, fatigue, and pain. An additional objective was to evaluate the role of immune factor dysregulation in the expression of specific neuropsychiatric symptoms to identify biomarkers that may be relevant to the treatment of these neuropsychiatric symptoms in adults with or without HCV. MethodsBlood samples and neuropsychiatric symptom severity scales were collected from HCV-infected adults (HCV+, n = 39) and demographically similar noninfected controls (HCV-, n = 40). Multi-analyte profile analysis was used to evaluate plasma biomarkers. ResultsCompared with HCV- controls, HCV+ adults reported significantly (P < 0.050) greater depression, anxiety, fatigue, and pain, and they were more likely to present with an increased inflammatory profile as indicated by significantly higher plasma levels of 40% (19/47) of the factors assessed (21%, after correcting for multiple comparisons). Within the HCV+ group, but not within the HCV- group, an increased inflammatory profile (indicated by the number of immune factors > the LDC) significantly correlated with depression, anxiety, and pain. Within the total sample, neuropsychiatric symptom severity was significantly predicted by protein signatures consisting of 4-10 plasma immune factors; protein signatures significantly accounted for 19-40% of the variance in depression, anxiety, fatigue, and pain. ConclusionsOverall, the results demonstrate that altered expression of a network of plasma immune factors contributes to neuropsychiatric symptom severity. These findings offer new biomarkers to potentially facilitate pharmacotherapeutic development and to increase our understanding of the molecular pathways associated with neuropsychiatric symptoms in

  15. Multi-analyte profile analysis of plasma immune proteins: altered expression of peripheral immune factors is associated with neuropsychiatric symptom severity in adults with and without chronic hepatitis C virus infection

    PubMed Central

    Huckans, Marilyn; Fuller, Bret E; Olavarria, Hannah; Sasaki, Anna W; Chang, Michael; Flora, Kenneth D; Kolessar, Michael; Kriz, Daniel; Anderson, Jeanne R; Vandenbark, Arthur A; Loftis, Jennifer M

    2014-01-01

    Background The purpose of this study was to characterize hepatitis C virus (HCV)-associated differences in the expression of 47 inflammatory factors and to evaluate the potential role of peripheral immune activation in HCV-associated neuropsychiatric symptoms—depression, anxiety, fatigue, and pain. An additional objective was to evaluate the role of immune factor dysregulation in the expression of specific neuropsychiatric symptoms to identify biomarkers that may be relevant to the treatment of these neuropsychiatric symptoms in adults with or without HCV. Methods Blood samples and neuropsychiatric symptom severity scales were collected from HCV-infected adults (HCV+, n = 39) and demographically similar noninfected controls (HCV−, n = 40). Multi-analyte profile analysis was used to evaluate plasma biomarkers. Results Compared with HCV− controls, HCV+ adults reported significantly (P < 0.050) greater depression, anxiety, fatigue, and pain, and they were more likely to present with an increased inflammatory profile as indicated by significantly higher plasma levels of 40% (19/47) of the factors assessed (21%, after correcting for multiple comparisons). Within the HCV+ group, but not within the HCV− group, an increased inflammatory profile (indicated by the number of immune factors > the LDC) significantly correlated with depression, anxiety, and pain. Within the total sample, neuropsychiatric symptom severity was significantly predicted by protein signatures consisting of 4–10 plasma immune factors; protein signatures significantly accounted for 19–40% of the variance in depression, anxiety, fatigue, and pain. Conclusions Overall, the results demonstrate that altered expression of a network of plasma immune factors contributes to neuropsychiatric symptom severity. These findings offer new biomarkers to potentially facilitate pharmacotherapeutic development and to increase our understanding of the molecular pathways associated with neuropsychiatric

  16. Hemodynamic monitoring in the intensive care unit: a Brazilian perspective

    PubMed Central

    Dias, Fernando Suparregui; Rezende, Ederlon Alves de Carvalho; Mendes, Ciro Leite; Silva Jr., João Manoel; Sanches, Joel Lyra

    2014-01-01

    Objective In Brazil, there are no data on the preferences of intensivists regarding hemodynamic monitoring methods. The present study aimed to identify the methods used by national intensivists, the hemodynamic variables they consider important, the regional differences, the reasons for choosing a particular method, and the use of protocols and continued training. Methods National intensivists were invited to answer an electronic questionnaire during three intensive care events and later, through the Associação de Medicina Intensiva Brasileira portal, between March and October 2009. Demographic data and aspects related to the respondent preferences regarding hemodynamic monitoring were researched. Results In total, 211 professionals answered the questionnaire. Private hospitals showed higher availability of resources for hemodynamic monitoring than did public institutions. The pulmonary artery catheter was considered the most trusted by 56.9% of the respondents, followed by echocardiograms, at 22.3%. Cardiac output was considered the most important variable. Other variables also considered relevant were mixed/central venous oxygen saturation, pulmonary artery occlusion pressure, and right ventricular end-diastolic volume. Echocardiography was the most used method (64.5%), followed by pulmonary artery catheter (49.3%). Only half of respondents used treatment protocols, and 25% worked in continuing education programs in hemodynamic monitoring. Conclusion Hemodynamic monitoring has a greater availability in intensive care units of private institutions in Brazil. Echocardiography was the most used monitoring method, but the pulmonary artery catheter remains the most reliable. The implementation of treatment protocols and continuing education programs in hemodynamic monitoring in Brazil is still insufficient. PMID:25607264

  17. Effects of Type II diabetes on capillary hemodynamics in skeletal muscle.

    PubMed

    Padilla, Danielle J; McDonough, Paul; Behnke, Brad J; Kano, Yutaka; Hageman, K Sue; Musch, Timothy I; Poole, David C

    2006-11-01

    Microcirculatory red blood cell (RBC) hemodynamics are impaired within skeletal muscle of Type I diabetic rats (Kindig CA, Sexton WL, Fedde MR, and Poole DC. Respir Physiol 111: 163-175, 1998). Whether muscle microcirculatory dysfunction occurs in Type II diabetes, the more prevalent form of the disease, is unknown. We hypothesized that Type II diabetes would reduce the proportion of capillaries supporting continuous RBC flow and RBC hemodynamics within the spinotrapezius muscle of the Goto-Kakizaki Type II diabetic rat (GK). With the use of intravital microscopy, muscle capillary diameter (d(c)), capillary lineal density, capillary tube hematocrit (Hct(cap)), RBC flux (F(RBC)), and velocity (V(RBC)) were measured in healthy male Wistar (control: n = 5, blood glucose, 105 +/- 5 mg/dl) and male GK (n = 7, blood glucose, 263 +/- 34 mg/dl) rats under resting conditions. Mean arterial pressure did not differ between groups (P > 0.05). Sarcomere length was set to a physiological length ( approximately 2.7 mum) to ensure that muscle stretching did not alter capillary hemodynamics; d(c) was not different between control and GK rats (P > 0.05), but the percentage of RBC-perfused capillaries (control: 93 +/- 3; GK: 66 +/- 5 %), Hct(cap), V(RBC), F(RBC), and O(2) delivery per unit of muscle were all decreased in GK rats (P < 0.05). This study indicates that Type II diabetes reduces both convective O(2) delivery and diffusive O(2) transport properties within muscle microcirculation. If these microcirculatory deficits are present during exercise, it may provide a basis for the reduced O(2) exchange characteristic of Type II diabetic patients. PMID:16844923

  18. Hemodynamics of left internal mammary artery bypass graft: Effect of anastomotic geometry, coronary artery stenosis, and postoperative time.

    PubMed

    Fan, Tingting; Lu, Yuan; Gao, Yan; Meng, Jie; Tan, Wenchang; Huo, Yunlong; Kassab, Ghassan S

    2016-03-21

    Although the left internal mammary artery (LIMA) bypass graft is the best choice for surgical revascularization, its hemodynamics are still complex and can result in long-term graft failure. Here, we performed a hemodynamic analysis of the LIMA-coronary artery with end-to-side/side-to-side anastomoses based on 15 patient-specific CTA images at various postoperative periods. We hypothesize that hemodynamic patterns are determined by the interplay of LIMA geometry, anastomotic configuration, and severity of native coronary artery stenosis, which are strongly affected by the postoperative time. A 3D finite volume method with the inlet pressure wave and outlet resistance boundary conditions was used to compute the distribution of pressure and flow, from which the time-averaged wall shear stress (TAWSS), oscillation shear index (OSI), time-averaged WSS gradient (TAWSSG), and transverse WSS (transWSS) were determined. To characterize the hemodynamic environment, we defined surface area ratios of low TAWSS (≤4dynes/cm(2)), high OSI (≥0.15), TAWSSG (≥500dynes/cm(3)), and transWSS (≥6dynes/cm(2)) in the LIMA graft and at the anastomosis between LIMA graft and coronary artery. These ratios were determined by the interplay of multiple morphometric parameters in the LIMA-coronary artery, but increased with postoperative time. These findings have significant implications for understanding LIMA graft patency. PMID:26900034

  19. Acute hemodynamic responses to weightlessness in humans.

    PubMed

    Lathers, C M; Charles, J B; Elton, K F; Holt, T A; Mukai, C; Bennett, B S; Bungo, M W

    1989-07-01

    As NASA designs space flights requiring prolonged periods of weightlessness for a broader segment of the population, it will be important to know the acute and sustained effects of weightlessness on the cardiovascular system since this information will contribute to understanding of the clinical pharmacology of drugs administered in space. Due to operational constraints on space flights, earliest effects of weightlessness have not been documented. We examined hemodynamic responses of humans to transitions from acceleration to weightlessness during parabolic flight on NASA's KC-135 aircraft. Impedance cardiography data were collected over four sets of 8-10 parabolas, with a brief rest period between sets. Each parabola included a period of 1.8 Gz, then approximately 20 seconds of weightlessness, and finally a period of 1.6 Gz; the cycle repeated almost immediately for the remainder of the set. Subjects were semi-supine (Shuttle launch posture) for the first set, then randomly supine, sitting and standing for each subsequent set. Transition to weightlessness while standing produced decreased heart rate, increased thoracic fluid content, and increased stroke index. Surprisingly, the onset of weightlessness in the semi-supine posture produced little evidence of a headward fluid shift. Heart rate, stroke index, and cardiac index are virtually unchanged after 20 seconds of weightlessness, and thoracic fluid content is slightly decreased. Semi-supine responses run counter to Shuttle crewmember reports of noticeable fluid shift after minutes to hours in orbit. Apparently, the headward fluid shift commences in the semi-supine posture before launch. is augmented by launch acceleration, but briefly interrupted immediately in orbit, then resumes and is completed over the next hours. PMID:2760255

  20. Wireless Monitoring of Liver Hemodynamics In Vivo

    PubMed Central

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. Nance; Farquhar, Ethan; Coté, Gerard L.

    2014-01-01

    Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC) levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics. PMID:25019160

  1. Cerebral hemodynamics during graded Valsalva maneuvers

    PubMed Central

    Perry, Blake G.; Cotter, James D.; Mejuto, Gaizka; Mündel, Toby; Lucas, Samuel J. E.

    2014-01-01

    The Valsalva maneuver (VM) produces large and abrupt changes in mean arterial pressure (MAP) that challenge cerebral blood flow and oxygenation. We examined the effect of VM intensity on middle cerebral artery blood velocity (MCAv) and cortical oxygenation responses during (phases I–III) and following (phase IV) a VM. Healthy participants (n = 20 mean ± SD: 27 ± 7 years) completed 30 and 90% of their maximal VM mouth pressure for 10 s (order randomized) whilst standing. Beat-to-beat MCAv, cerebral oxygenation (NIRS) and MAP across the different phases of the VM are reported as the difference from standing baseline. There were significant interaction (phase * intensity) effects for MCAv, total oxygenation index (TOI) and MAP (all P < 0.01). MCAv decreased during phases II and III (P < 0.01), with the greatest decrease during phase III (−5 ± 8 and −19 ± 15 cm·s−1 for 30 and 90% VM, respectively). This pattern was also evident in TOI (phase III: −1 ± 1 and −5 ± 4%, both P < 0.05). Phase IV increased MCAv (22 ± 15 and 34 ± 23 cm·s−1), MAP (15 ± 14 and 24 ± 17 mm Hg) and TOI (5 ± 6 and 7 ± 5%) relative to baseline (all P < 0.05). Cerebral autoregulation, indexed, as the %MCAv/%MAP ratio, showed a phase effect only (P < 0.001), with the least regulation during phase IV (2.4 ± 3.0 and 3.2 ± 2.9). These data illustrate that an intense VM profoundly affects cerebral hemodynamics, with a reactive hyperemia occurring during phase IV following modest ischemia during phases II and III. PMID:25309449

  2. Wireless monitoring of liver hemodynamics in vivo.

    PubMed

    Akl, Tony J; Wilson, Mark A; Ericson, M Nance; Farquhar, Ethan; Coté, Gerard L

    2014-01-01

    Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC) levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics. PMID:25019160

  3. Acute hemodynamic responses to weightlessness in humans

    NASA Technical Reports Server (NTRS)

    Lathers, C. M.; Charles, J. B.; Elton, K. F.; Holt, T. A.; Mukai, C.; Bennett, B. S.; Bungo, M. W.

    1989-01-01

    As NASA designs space flights requiring prolonged periods of weightlessness for a broader segment of the population, it will be important to know the acute and sustained effects of weightlessness on the cardiovascular system since this information will contribute to understanding of the clinical pharmacology of drugs administered in space. Due to operational constraints on space flights, earliest effects of weightlessness have not been documented. We examined hemodynamic responses of humans to transitions from acceleration to weightlessness during parabolic flight on NASA's KC-135 aircraft. Impedance cardiography data were collected over four sets of 8-10 parabolas, with a brief rest period between sets. Each parabola included a period of 1.8 Gz, then approximately 20 seconds of weightlessness, and finally a period of 1.6 Gz; the cycle repeated almost immediately for the remainder of the set. Subjects were semi-supine (Shuttle launch posture) for the first set, then randomly supine, sitting and standing for each subsequent set. Transition to weightlessness while standing produced decreased heart rate, increased thoracic fluid content, and increased stroke index. Surprisingly, the onset of weightlessness in the semi-supine posture produced little evidence of a headward fluid shift. Heart rate, stroke index, and cardiac index are virtually unchanged after 20 seconds of weightlessness, and thoracic fluid content is slightly decreased. Semi-supine responses run counter to Shuttle crewmember reports of noticeable fluid shift after minutes to hours in orbit. Apparently, the headward fluid shift commences in the semi-supine posture before launch. is augmented by launch acceleration, but briefly interrupted immediately in orbit, then resumes and is completed over the next hours.

  4. Hemodynamic Energy Dissipation in the Cardiovascular System: Generalized Theoretical Analysis on Disease States

    PubMed Central

    Dasi, Lakshmi P.; Pekkan, Kerem; de Zelicourt, Diane; Sundareswaran, Kartik S.; Krishnankutty, Resmi; Delnido, Pedro J.; Yoganathan, Ajit P.

    2010-01-01

    Background We present a fundamental theoretical framework for analysis of energy dissipation in any component of the circulatory system and formulate the full energy budget for both venous and arterial circulations. New indices allowing disease-specific subject-to-subject comparisons and disease-to-disease hemodynamic evaluation (quantifying the hemodynamic severity of one vascular disease type to the other) are presented based on this formalism. Methods and Results Dimensional analysis of energy dissipation rate with respect to the human circulation shows that the rate of energy dissipation is inversely proportional to the square of the patient body surface area and directly proportional to the cube of cardiac output. This result verified the established formulae for energy loss in aortic stenosis that was solely derived through empirical clinical experience. Three new indices are introduced to evaluate more complex disease states: (1) circulation energy dissipation index (CEDI), (2) aortic valve energy dissipation index (AV-EDI), and (3) total cavopulmonary connection energy dissipation index (TCPCEDI). CEDI is based on the full energy budget of the circulation and is the proper measure of the work performed by the ventricle relative to the net energy spent in overcoming frictional forces. It is shown to be 4.01 ± 0.16 for healthy individuals and above 7.0 for patients with severe aortic stenosis. Application of CEDI index on single-ventricle venous physiology reveals that the surgically created Fontan circulation, which is indeed palliative, progressively degrades in hemodynamic efficiency with growth (p <0.001), with the net dissipation in a typical Fontan patient (Body surface area = 1.0 m2) being equivalent to that of an average case of severe aortic stenosis. AV-EDI is shown to be the proper index to gauge the hemodynamic severity of stenosed aortic valves as it accurately reflects energy loss. It is about 0.28 ± 0.12 for healthy human valves. Moderate

  5. Hemodynamic monitoring and outcome-a physiological appraisal.

    PubMed

    Chan, Yoo-Kuen; Khan, Zahid Hussain

    2011-12-01

    Hemodynamic monitoring provides us with refined details about the cardiovascular system. In spite of increased availability of the monitoring process and monitoring equipment, hemodynamic monitoring has not significantly improved survival outcome. Care providers should be cognizant of the role of the cardiovascular system and its importance in oxygen delivery to the cells in order to sustain life. Effective hemodynamic monitoring should be able to delineate how well the system is performing in carrying out this role. Different hemodynamic monitors serve in this role to a different extent; some provide very little information on this. The cardiovascular system is only one of the many systems that need to function optimally for survival; others of equal importance include the integrity of the airway, the breathing process, the adequacy of hemoglobin level, and the health of the tissue bed, especially in the brain and the heart. Advances in hemodynamic monitoring with focus on oxygen delivery at the cellular level may ultimately provide the edge to effective monitoring that can impact outcome. PMID:22221689

  6. The effect of stress hormones on cerebral hemodynamics in patients with chronic posttraumatic stress disorder.

    PubMed

    Dikanović, Marinko; Kadojić, Dragutin; Demarin, Vida; Trkanjec, Zlatko; Mihaljević, Ivan; Bitunjac, Milan; Kadojić, Mira; Matić, Ivo; Sapina, Lidija; Vuletić, Vladimir; Cengić, Ljiljana

    2009-09-01

    The aim of the study was to assess the possible correlation between catecholamine and cortisol levels and changes in cerebral hemodynamics in patients with chronic posttraumatic stress disorder (PTSD). The study included 50 patients with chronic PTSD first ever hospitalized for psychiatric treatment and 50 healthy control subjects. All study subjects were aged 30-50. In PTSD patients, 24-h urine levels of the epinephrine and norepinephrine metabolites vanillylmandelic acid (VMA) and cortisol were determined and transcranial Doppler ultrasonography was performed on day 1 of hospital stay and repeated after 21-day psychiatric medicamentous treatment. On initial testing, increased level of 24-h VMA, decreased cortisol level and elevated mean blood flow velocity (MBFV) in the circle of Willis vessels were recorded in 25 (50.00%) patients. Repeat findings obtained after 21-day psychopharmaceutical therapy showed increased 24-h VMA, decreased cortisol and elevated MBFV in the circle of Willis vessels in seven (14.00%) patients (initial vs. repeat testing, P = 0.0002). Such parameters were not recorded in any of the control subjects (initial PTSD patient testing vs. control group, P = 0.0000). Study results pointed to a significant correlation between increased catecholamine levels, decreased cortisol level and elevated MBFV in the circle of Willis vessels caused by cerebral vasospasm. Psychiatric medicamentous therapy administered for three weeks significantly reduced the proportion of patients with concurrently altered cerebral hemodynamics, increased levels of catecholamine metabolites and decreased level of cortisol. PMID:20405635

  7. Hemodynamic monitoring and care of the patient of high risk for anesthesia.

    PubMed Central

    Pietak, S P; Teasdale, S J

    1979-01-01

    Hemodynamic monitoring and care of the patient at high risk for anesthesia require a careful and systematic approach. During preoperative evaluation the patient at increased risk must be identified and correctable problems must be solved. The patient's current medications must be reviewed because they may influence the choice of anesthetic approach and may alter the physiologic response to the stresses commonly associated with anesthesia. In addition to conventional clinical and electrocardiographic monitoring, perioperative hemodynamic monitoring may be desirable for patients at special risk, who are likely to have significant associated medical problems or to undergo complicated surgical procedures. No ideal induction agent exists, and hypotension secondary to peripheral vasodilation or myocardial depression, or both, is a potential problem. Patients with an inordinately high risk may benefit from mechanical circulatory assistance prior to induction of anesthesia. Attention to oxygenation, blood volume replacement and the prevention of hypertensive episodes are particularly important during anesthesia so that optimal cardiac performance is ensured and ischemia avoided. The stresses during emergence from anesthesia contribute to lability of the cardiovascular status and hypoxemia. The period of risk does not conclude with immediate recovery from anesthesia but extends through the postoperative phase. Careful monitoring and attention to the control of pain, prevention of hypotension and hypertension, adequate oxygenation, early mobilization and resumption of the administration of cardiac medications are important factors in a successful outcome. PMID:497983

  8. Mining data from hemodynamic simulations for generating prediction and explanation models.

    PubMed

    Bosnić, Zoran; Vračar, Petar; Radović, Milos D; Devedžić, Goran; Filipović, Nenad D; Kononenko, Igor

    2012-03-01

    One of the most common causes of human death is stroke, which can be caused by carotid bifurcation stenosis. In our work, we aim at proposing a prototype of a medical expert system that could significantly aid medical experts to detect hemodynamic abnormalities (increased artery wall shear stress). Based on the acquired simulated data, we apply several methodologies for1) predicting magnitudes and locations of maximum wall shear stress in the artery, 2) estimating reliability of computed predictions, and 3) providing user-friendly explanation of the model's decision. The obtained results indicate that the evaluated methodologies can provide a useful tool for the given problem domain. PMID:21846607

  9. Ventilatory, hemodynamic, sympathetic nervous system, and vascular reactivity changes after recurrent nocturnal sustained hypoxia in humans

    PubMed Central

    Gilmartin, Geoffrey S.; Tamisier, Renaud; Curley, Matthew; Weiss, J. Woodrow

    2008-01-01

    Recurrent and intermittent nocturnal hypoxia is characteristic of several diseases including chronic obstructive pulmonary disease, congestive heart failure, obesity-hypoventilation syndrome, and obstructive sleep apnea. The contribution of hypoxia to cardiovascular morbidity and mortality in these disease states is unclear, however. To investigate the impact of recurrent nocturnal hypoxia on hemodynamics, sympathetic activity, and vascular tone we evaluated 10 normal volunteers before and after 14 nights of nocturnal sustained hypoxia (mean oxygen saturation 84.2%, 9 h/night). Over the exposure, subjects exhibited ventilatory acclimatization to hypoxia as evidenced by an increase in resting ventilation (arterial Pco2 41.8 ± 1.5 vs. 37.5 ± 1.3 mmHg, mean ± SD; P < 0.05) and in the isocapnic hypoxic ventilatory response (slope 0.49 ± 0.1 vs. 1.32 ± 0.2 l/min per 1% fall in saturation; P < 0.05). Subjects exhibited a significant increase in mean arterial pressure (86.7 ± 6.1 vs. 90.5 ± 7.6 mmHg; P < 0.001), muscle sympathetic nerve activity (20.8 ± 2.8 vs. 28.2 ± 3.3 bursts/min; P < 0.01), and forearm vascular resistance (39.6 ± 3.5 vs. 47.5 ± 4.8 mmHg·ml−1·100 g tissue·min; P < 0.05). Forearm blood flow during acute isocapnic hypoxia was increased after exposure but during selective brachial intra-arterial vascular infusion of the alpha-blocker phentolamine it was unchanged after exposure. Finally, there was a decrease in reactive hyperemia to 15 min of forearm ischemia after the hypoxic exposure. Recurrent nocturnal hypoxia thus increases sympathetic activity and alters peripheral vascular tone. These changes may contribute to the increased cardiovascular and cerebrovascular risk associated with clinical diseases that are associated with chronic recurrent hypoxia. PMID:18539753

  10. Relationship Between Hemodynamically Significant Ductus Arteriosus and Ischemia-Modified Albumin in Premature Infants.

    PubMed

    Kahveci, Hasan; Tayman, Cüneyt; Laloğlu, Fuat; Kavas, Nazan; Ciftel, Murat; Yılmaz, Osman; Laloğlu, Esra; Erdil, Abdulah; Aksoy, Hülya; Aydemir, Salih

    2016-04-01

    Hemodynamically significant ductus arteriosus (hsPDA) may alter organ perfusion by interfering blood flow to the tissues. Therefore, in infants with hsPDA, hypoxia occurs in many tissues. In this study, we aimed to investigate the diagnostic significance of serum (ischemia-modified albumin) IMA levels as a screening tool for hsPDA, and its relation to the severity of the disease in the preterm neonates. For this purpose, seventy-two premature infants with gestation age <34 weeks were included in the study. Thirty premature infants with hsPDA were assigned as the study group and 42 premature infants without PDA were determined as the control group. Blood samples were collected before the treatment and 24 h after the treatment, and analyzed for IMA levels. IMA levels in the study group (1.26 ± 0.36 ABSU) were found to be significantly higher than control group (0.65 ± 0.12 ABSU) (p < 0.05). In infants with hsPDA, a positive correlation was found between IMA and PDA diameter (ρ = 0.876, p = 0.022), and LA/Ao ratio (ρ = 0.863, p = 0.014). The cut-off value of IMA for hsPDA was measured as 0.78 ABSU with 88.89 % sensitivity, and 90.24 % specificity, 85.71 % positive predictive, 92.5 % negative predictive value [area under the curve (AUC) = 0.96; p < 0.001]. The mean IMA value of the infants with hsPDA before treatment was 1.26 ± 0.36 ABSU, and the mean IMA value of infants after medical treatment was 0.67 ± 0.27 ABSU (p = 0.03). We concluded that IMA can be used as a marker for the diagnosis and monitoring of a successful treatment of hsPDA. PMID:27069332