Science.gov

Sample records for severe metabolic acidosis

  1. Severe metabolic acidosis following assault chemical burn.

    PubMed

    Roock, Sophie D; Deleuze, Jean-Paul; Rose, Thomas; Jennes, Serge; Hantson, Philippe

    2012-04-01

    Assault chemical burns are uncommon in northern Europe. Besides local toxicity, systemic manifestations are possible after strong acid exposure. A 40-year-old woman was admitted 1 h after a criminal assault with sulfuric acid. The total burned surface area was 35%, third degree. Injury was due to sulfuric acid (measured pH 0.9) obtained from a car battery. Immediate complications were obstructive dyspnea and metabolic acidosis. The admission arterial pH was 6.92, with total bicarbonate 8.6 mEq/l and base deficit 23.4 mEq/l. The correction of metabolic acidosis was achieved after several hours by the administration of bicarbonate and lactate buffers. The patient developed several burns-related complications (sepsis and acute renal failure). Cutaneous projections of strong acids may cause severe metabolic acidosis, particularly when copious irrigation and clothes removal cannot be immediately performed at the scene. PMID:22787349

  2. Safe delivery of two parturient women in severe metabolic acidosis

    PubMed Central

    Shariffuddin, Ina Ismiarti; Rai, Vineya; Chan, Y K; Muniandy, Rajesh Kumar

    2014-01-01

    Care of an acutely ill parturient is particularly difficult when we have to balance the needs of both mother and the fetus to survive. The literature suggests there should be emphasis on stabilising the mother's condition. In dealing with metabolic acidosis, however, we believe delivering the baby early might not only relieve the threat of the acidosis on the mother, it may be the only way to deliver a live baby. We report two parturient women with severe metabolic acidosis which was considerably reduced very soon after the delivery and how our timely delivery resulted in the birth of two neurologically intact babies. PMID:24862427

  3. An unusual case of severe high anion gap metabolic acidosis

    PubMed Central

    Bavakunji, Riaz V.; Turner, Jake D.; Jujjavarapu, Sagar; Taal, Maarten W.; Fluck, Richard J.; Leung, Janson C.; Kolhe, Nitin V.

    2011-01-01

    We present a case of high anion gap metabolic acidosis with an unusual aetiology in a 75-year-old lady with hypoglycaemia, encephalopathy and relatively preserved renal function. Full toxicology and biochemical analysis suggested that she had an inborn error of metabolism, riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency that can predispose to severe acidosis in situations where calorific intake is reduced. We believe this to be one of the few published cases and is remarkable for the presentation in late adulthood in addition to the requirement for emergency haemodialysis due to the severity of the metabolic disturbance. PMID:25984120

  4. Metabolic acidosis

    MedlinePlus

    ... diabetes Hyperchloremic acidosis: Results from excessive loss of sodium bicarbonate from the body. This can occur with severe ... aimed at the underlying condition. In some cases, sodium bicarbonate (the chemical in baking soda) may be given ...

  5. Severe metabolic acidosis and "muti" (traditional herbal medicine) ingestion in young children.

    PubMed

    Nkrumah, F K; Nathoo, K J; Gomo, Z A; Pirie, D J

    1990-01-01

    Twenty infants and young children admitted with severe metabolic acidosis and a positive history of 'muti' ingestion were investigated. All had accompanying gastroenteritis and significant dehydration. Biochemical data was diagnostic of high anion/gap metabolic acidosis in the majority (70 per cent). Further biochemical data indicated that lactic acidosis and pre-renal azotaemia resulting from severe hypovolaemia were likely causes of the high anion GAP metabolic acidosis. There was no evidence to suggest that the ingested muti per se was associated directly with the acidosis or acute renal failure seen in these children. PMID:2397494

  6. Metabolic acidosis

    MedlinePlus

    ... diarrhea. Lactic acidosis results from a buildup of lactic acid. It can be caused by: Alcohol Cancer Exercising ... functions) Urine pH Urine ketones or blood ketones Lactic acid test Arterial blood gas analysis Other tests may ...

  7. Drug-Induced Metabolic Acidosis

    PubMed Central

    Pham, Amy Quynh Trang; Xu, Li Hao Richie; Moe, Orson W.

    2015-01-01

    Metabolic acidosis could emerge from diseases disrupting acid-base equilibrium or from drugs that induce similar derangements. Occurrences are usually accompanied by comorbid conditions of drug-induced metabolic acidosis, and clinical outcomes may range from mild to fatal. It is imperative that clinicians not only are fully aware of the list of drugs that may lead to metabolic acidosis but also understand the underlying pathogenic mechanisms. In this review, we categorized drug-induced metabolic acidosis in terms of pathophysiological mechanisms, as well as individual drugs’ characteristics. PMID:26918138

  8. Drug-Induced Metabolic Acidosis.

    PubMed

    Pham, Amy Quynh Trang; Xu, Li Hao Richie; Moe, Orson W

    2015-01-01

    Metabolic acidosis could emerge from diseases disrupting acid-base equilibrium or from drugs that induce similar derangements. Occurrences are usually accompanied by comorbid conditions of drug-induced metabolic acidosis, and clinical outcomes may range from mild to fatal. It is imperative that clinicians not only are fully aware of the list of drugs that may lead to metabolic acidosis but also understand the underlying pathogenic mechanisms. In this review, we categorized drug-induced metabolic acidosis in terms of pathophysiological mechanisms, as well as individual drugs' characteristics. PMID:26918138

  9. Severe hypernatremic dehydration and metabolic acidosis due to neonatal intestinal microvillus inclusion disease.

    PubMed

    Shahid, Shaneela; Fraser, Douglas D; Driman, David K; Bax, Kevin C

    2012-01-01

    Neonatal microvillus inclusion disease (MID) is a congenital secretory diarrhea diagnosed by morphological enterocyte abnormalities on histology. The secretory diarrhea associated with MID occurs within the first few hours of birth and is exacerbated by enteral feeding. Affected newborns will die of dehydration and acid-base disturbances if MID is not rapidly recognized and treated with massive intravenous fluid replacement and gut rest. We report a case of a 4-day-old neonate presenting with 18% weight loss, hypernatremic dehydration and metabolic acidosis. Despite aggressive fluid resuscitation (206 ml/kg for the first 24 h), the dehydration and metabolic acidosis were only minimally improved. The diapers were found soaked with clear, non-odorous fluid on repeated examinations. Persistent secretory diarrhea was suspected. Stool electrolytes analyses showed a high NaCl content typical of secretory diarrhea and intestinal biopsy with electron microscopy was diagnostic of MID. PMID:21968248

  10. Metabolic acidosis may be as protective as hypercapnic acidosis in an ex-vivo model of severe ventilator-induced lung injury: a pilot study

    PubMed Central

    2011-01-01

    Background There is mounting experimental evidence that hypercapnic acidosis protects against lung injury. However, it is unclear if acidosis per se rather than hypercapnia is responsible for this beneficial effect. Therefore, we sought to evaluate the effects of hypercapnic (respiratory) versus normocapnic (metabolic) acidosis in an ex vivo model of ventilator-induced lung injury (VILI). Methods Sixty New Zealand white rabbit ventilated and perfused heart-lung preparations were used. Six study groups were evaluated. Respiratory acidosis (RA), metabolic acidosis (MA) and normocapnic-normoxic (Control - C) groups were randomized into high and low peak inspiratory pressures, respectively. Each preparation was ventilated for 1 hour according to a standardized ventilation protocol. Lung injury was evaluated by means of pulmonary edema formation (weight gain), changes in ultrafiltration coefficient, mean pulmonary artery pressure changes as well as histological alterations. Results HPC group gained significantly greater weight than HPMA, HPRA and all three LP groups (P = 0.024), while no difference was observed between HPMA and HPRA groups regarding weight gain. Neither group differ on ultrafiltration coefficient. HPMA group experienced greater increase in the mean pulmonary artery pressure at 20 min (P = 0.0276) and 40 min (P = 0.0012) compared with all other groups. Histology scores were significantly greater in HP vs. LP groups (p < 0.001). Conclusions In our experimental VILI model both metabolic acidosis and hypercapnic acidosis attenuated VILI-induced pulmonary edema implying a mechanism other than possible synergistic effects of acidosis with CO2 for VILI attenuation. PMID:21486492

  11. Metabolic acidosis: neo-considerations for general surgeons.

    PubMed

    Martin, L C E; Abah, U; Bean, E; Gupta, S

    2012-11-01

    Hyperchloraemic metabolic acidosis is a documented complication of neobladder formation. However, it usually improves with time and is mild. Severe and persistent metabolic acidosis may manifest when patients undergo further surgery for other reasons. Neobladder formation following radical cystectomy or cystoprostatectomy is becoming increasingly common, and surgeons treating patients with neobladders should recognise and treat metabolic acidosis with intravenous fluids and bicarbonate. PMID:23131216

  12. Diagnostic Challenge in a Patient with Severe Anion Gap Metabolic Acidosis.

    PubMed

    Tan, Eugene M; Kalimullah, Ejaaz; Sohail, M Rizwan; Ramar, Kannan

    2015-01-01

    The approach to the patient with acute renal failure and elevated anion and osmolal gap is difficult. Differential diagnoses include toxic alcohol ingestion, diabetic or starvation ketoacidosis, or 5-oxoproline acidosis. We present a 76-year-old female with type 2 diabetes mellitus, who was found at home in a confused state. Laboratory analysis revealed serum pH 6.84, bicarbonate 5.8 mmol/L, pCO2 29 mmHg, anion gap 22.2 mmol/L, osmolal gap 17.4 mOsm/kg, elevated beta-hydroxybutyrate (4.2 mmol/L), random blood sugar 213 mg/dL, creatinine 2.1 mg/dL, and potassium 7.5 mmol/L with no electrocardiogram (EKG) changes. Fomepizole and hemodialysis were initiated for presumed ethylene glycol or methanol ingestion. Drug screens returned negative for ethylene glycol, alcohols, and acetaminophen, but there were elevated urine levels of acetone (11 mg/dL). The acetaminophen level was negative, and 5-oxoproline was not analyzed. After 5 days in the intensive care unit (ICU), her mental status improved with supportive care. She was discharged to a nursing facility. Though a diagnosis was not established, our patient's presentation was likely due to starvation ketosis combined with chronic acetaminophen ingestion. Acetone ingestion is less likely. Overall, our case illustrates the importance of systematically approaching an elevated osmolal and anion gap metabolic acidosis. PMID:26113997

  13. Trimethoprim/Sulfamethoxazole-Induced Severe Lactic Acidosis

    PubMed Central

    Bulathsinghala, Marie; Keefer, Kimberly; Van de Louw, Andry

    2016-01-01

    Abstract Propylene glycol (PG) is used as a solvent in numerous medications, including trimethoprim/sulfamethoxazole (TMP/SMX) and lorazepam, and is metabolized in the liver to lactic acid. Cases of lactic acidosis related to PG toxicity have been described and always involved large doses of benzodiazepines and PG. We present the first case of severe lactic acidosis after a 3-day course of TMP/SMX alone, involving allegedly safe amounts of PG. A 31-year-old female with neurofibromatosis and pilocytic astrocytoma, receiving temozolomide and steroids, was admitted to the intensive care unit for pneumonia and acute respiratory failure requiring intubation. Her initial hemodynamic and acid–base statuses were normal. She was treated with intravenous TMP/SMX for possible Pneumocystis jirovecii pneumonia and was successfully extubated on day 2. On day 3, she developed tachypnea and arterial blood gas analysis revealed a severe metabolic acidosis (pH 7.2, PCO2 19 mm Hg, bicarbonates 8 mEq/L) with anion gap of 25 mEq/L and lactate of 12.1 mmol/L. TMP/SMX was discontinued and the lactate decreased to 2.9 mmol/L within 24 hours while her plasma bicarbonates normalized, without additional intervention. The patient never developed hypotension or severe hypoxia, and her renal and liver functions were normal. No other cause for lactic acidosis was identified and it resolved after TMP/SMX cessation alone, suggesting PG toxicity. Although PG-related lactic acidosis is well recognized after large doses of lorazepam, clinicians should bear in mind that TMP/SMX contains PG as well and should suspect PG toxicity in patients developing unexplained metabolic acidosis while receiving TMP/SMX. PMID:27124045

  14. Acidosis

    MedlinePlus

    ... Severe dehydration Lactic acidosis is a buildup of lactic acid . Lactic acid is mainly produced in muscle cells and red ... prevented, including diabetic ketoacidosis and some causes of lactic ... with healthy kidneys and lungs do not have serious acidosis.

  15. Sodium Bicarbonate Therapy in Patients with Metabolic Acidosis

    PubMed Central

    Adeva-Andany, María M.; Fernández-Fernández, Carlos; Mouriño-Bayolo, David; Castro-Quintela, Elvira; Domínguez-Montero, Alberto

    2014-01-01

    Metabolic acidosis occurs when a relative accumulation of plasma anions in excess of cations reduces plasma pH. Replacement of sodium bicarbonate to patients with sodium bicarbonate loss due to diarrhea or renal proximal tubular acidosis is useful, but there is no definite evidence that sodium bicarbonate administration to patients with acute metabolic acidosis, including diabetic ketoacidosis, lactic acidosis, septic shock, intraoperative metabolic acidosis, or cardiac arrest, is beneficial regarding clinical outcomes or mortality rate. Patients with advanced chronic kidney disease usually show metabolic acidosis due to increased unmeasured anions and hyperchloremia. It has been suggested that metabolic acidosis might have a negative impact on progression of kidney dysfunction and that sodium bicarbonate administration might attenuate this effect, but further evaluation is required to validate such a renoprotective strategy. Sodium bicarbonate is the predominant buffer used in dialysis fluids and patients on maintenance dialysis are subjected to a load of sodium bicarbonate during the sessions, suffering a transient metabolic alkalosis of variable severity. Side effects associated with sodium bicarbonate therapy include hypercapnia, hypokalemia, ionized hypocalcemia, and QTc interval prolongation. The potential impact of regular sodium bicarbonate therapy on worsening vascular calcifications in patients with chronic kidney disease has been insufficiently investigated. PMID:25405229

  16. Metabolic acidosis-induced insulin resistance and cardiovascular risk.

    PubMed

    Souto, Gema; Donapetry, Cristóbal; Calviño, Jesús; Adeva, Maria M

    2011-08-01

    Microalbuminuria has been conclusively established as an independent cardiovascular risk factor, and there is evidence of an association between insulin resistance and microalbuminuria, the former preceding the latter in prospective studies. It has been demonstrated that even the slightest degree of metabolic acidosis produces insulin resistance in healthy humans. Many recent epidemiological studies link metabolic acidosis indicators with insulin resistance and systemic hypertension. The strongly acidogenic diet consumed in developed countries produces a lifetime acidotic state, exacerbated by excess body weight and aging, which may result in insulin resistance, metabolic syndrome, and type 2 diabetes, contributing to cardiovascular risk, along with genetic causes, lack of physical exercise, and other factors. Elevated fruits and vegetables consumption has been associated with lower diabetes incidence. Diseases featuring severe atheromatosis and elevated cardiovascular risk, such as diabetes mellitus and chronic kidney failure, are typically characterized by a chronic state of metabolic acidosis. Diabetic patients consume particularly acidogenic diets, and deficiency of insulin action generates ketone bodies, creating a baseline state of metabolic acidosis worsened by inadequate metabolic control, which creates a vicious circle by inducing insulin resistance. Even very slight levels of chronic kidney insufficiency are associated with increased cardiovascular risk, which may be explained at least in part by deficient acid excretory capacity of the kidney and consequent metabolic acidosis-induced insulin resistance. PMID:21352078

  17. Metabolic Acidosis-Induced Insulin Resistance and Cardiovascular Risk

    PubMed Central

    Souto, Gema; Donapetry, Cristóbal; Calviño, Jesús

    2011-01-01

    Abstract Microalbuminuria has been conclusively established as an independent cardiovascular risk factor, and there is evidence of an association between insulin resistance and microalbuminuria, the former preceding the latter in prospective studies. It has been demonstrated that even the slightest degree of metabolic acidosis produces insulin resistance in healthy humans. Many recent epidemiological studies link metabolic acidosis indicators with insulin resistance and systemic hypertension. The strongly acidogenic diet consumed in developed countries produces a lifetime acidotic state, exacerbated by excess body weight and aging, which may result in insulin resistance, metabolic syndrome, and type 2 diabetes, contributing to cardiovascular risk, along with genetic causes, lack of physical exercise, and other factors. Elevated fruits and vegetables consumption has been associated with lower diabetes incidence. Diseases featuring severe atheromatosis and elevated cardiovascular risk, such as diabetes mellitus and chronic kidney failure, are typically characterized by a chronic state of metabolic acidosis. Diabetic patients consume particularly acidogenic diets, and deficiency of insulin action generates ketone bodies, creating a baseline state of metabolic acidosisworsened by inadequate metabolic control, which creates a vicious circle by inducing insulin resistance. Even very slight levels of chronic kidney insufficiency are associated with increased cardiovascular risk, which may be explained at least in part by deficient acid excretory capacity of the kidney and consequent metabolic acidosis-induced insulin resistance. PMID:21352078

  18. Metabolic Acidosis of CKD: An Update.

    PubMed

    Kraut, Jeffrey A; Madias, Nicolaos E

    2016-02-01

    The kidney has the principal role in the maintenance of acid-base balance. Therefore, a decrease in renal ammonium excretion and a positive acid balance often leading to a reduction in serum bicarbonate concentration are observed in the course of chronic kidney disease (CKD). The decrease in serum bicarbonate concentration is usually absent until glomerular filtration rate decreases to <20 to 25mL/min/1.73 m(2), although it can develop with lesser degrees of decreased kidney function. Non-anion gap acidosis, high-anion gap acidosis, or both can be found at all stages of CKD. The acidosis can be associated with muscle wasting, bone disease, hypoalbuminemia, inflammation, progression of CKD, and increased mortality. Administration of base may decrease muscle wasting, improve bone disease, and slow the progression of CKD. Base is suggested when serum bicarbonate concentration is <22 mEq/L, but the target serum bicarbonate concentration is unclear. Evidence that increments in serum bicarbonate concentration > 24 mEq/L might be associated with worsening of cardiovascular disease adds complexity to treatment decisions. Further study of the mechanisms through which metabolic acidosis contributes to the progression of CKD, as well as the pathways involved in mediating the benefits and complications of base therapy, is warranted. PMID:26477665

  19. Approach to the Treatment of Chronic Metabolic Acidosis in CKD.

    PubMed

    Raphael, Kalani L

    2016-04-01

    Chronic metabolic acidosis is not uncommon in patients with chronic kidney disease (CKD). Clinical practice guidelines suggest that clinicians administer alkali to maintain serum bicarbonate level at a minimum of 22 mEq/L to prevent the effects of acidosis on bone demineralization and protein catabolism. Small interventional studies support the notion that correcting acidosis slows CKD progression as well. Furthermore, alkaline therapy in persons with CKD and normal bicarbonate levels may also preserve kidney function. Observational studies suggest that targeting a serum bicarbonate level near 28 mEq/L may improve clinical outcomes above and beyond targeting a value ≥ 22 mEq/L, yet values > 26 mEq/L have been reported to be associated with incident heart failure and mortality in the CRIC (Chronic Renal Insufficiency Cohort) Study. Furthermore, correcting acidosis may provoke vascular calcification. This teaching case discusses several uncertainties regarding the management of acidosis in CKD, such as when to initiate alkali treatment, potential side effects of alkali, and the optimum serum bicarbonate level based on current evidence in CKD. Suggestions regarding the maximum sodium bicarbonate dose to administer to patients with CKD to achieve the target serum bicarbonate concentration are offered. PMID:26776539

  20. Metabolic acidosis during parenteral nutrition: Pathophysiological mechanisms

    PubMed Central

    Dounousi, Evangelia; Zikou, Xanthi; Koulouras, Vasilis; Katopodis, Kostas

    2015-01-01

    Total parenteral nutrition (TPN) is associated with metabolic complications including metabolic acidosis (MA), one of the main disorders of acid-base balance. The main causes involved in the appearance of MA during TPN administration are the metabolism of cationic amino acids and amino acids containing sulfuric acid (exogenous addition), the titratable acidity of the infused parenteral solution, the addition of acidificant agents (hydrochloric acid, acetic acid), thiamine deficiency, disruption of carbohydrate and lipid metabolic pathways and D-fructose administration. Moreover, hypophosphatemia that appears during TPN therapy contributes significantly to the maintenance of MA. This review describes in a comprehensive way the pathophysiological mechanisms involved in the appearance of MA induced by intravenous administration of TPN products most commonly used in critically ill-patients. PMID:25983433

  1. Late Metabolic Acidosis Caused by Renal Tubular Acidosis in Acute Salicylate Poisoning.

    PubMed

    Sakai, Norihiro; Hirose, Yasuo; Sato, Nobuhiro; Kondo, Daisuke; Shimada, Yuko; Hori, Yasushi

    2016-01-01

    A 16-year-old man was transferred to our emergency department seven hours after ingesting 486 aspirin tablets. His blood salicylate level was 83.7 mg/dL. He was treated with fluid resuscitation and sodium bicarbonate infusion, and his condition gradually improved, with a decline in the blood salicylate level. However, eight days after admission, he again reported nausea, a venous blood gas revealed metabolic acidosis with a normal anion gap. The blood salicylate level was undetectable, and a urinalysis showed glycosuria, proteinuria and elevated beta-2 microglobulin and n-acetyl glucosamine levels, with a normal urinary pH despite the acidosis. We diagnosed him with relapse of metabolic acidosis caused by renal tubular acidosis. PMID:27181539

  2. Intractable metabolic acidosis in a child with propionic acidemia undergoing liver transplantation -a case report-

    PubMed Central

    Ryu, Jiyoung; Shin, Young Hee; Gwak, Mi Sook; Kim, Gaab-Soo

    2013-01-01

    Propionic acidemia (PA) is a rare autosomal recessive disorder of metabolism caused by deficient activity of the mitochondrial enzyme propionyl-CoA carboxylase. The clinical manifestations are metabolic acidosis, poor feeding, lethargy, vomiting, osteoporosis, neurological dysfunction, pancytopenia, developmental retardation and cardiomyopathy. Liver transplantation has recently been considered as one of the treatment options for patients with PA. This case report describes several anesthetic considerations for patients with PA undergoing liver transplantation. Understanding the patient's status and avoiding events that may precipitate metabolic acidosis are important for anesthetic management of patients with PA. In conclusion, anesthesia should be focused on minimizing the severity of metabolic acidosis with following considerations: (1) maintaining optimal tissue perfusion by avoiding hypotension, (2) preventing hypoglycemia, and (3) providing bicarbonate to compensate for the acidosis. PMID:24101962

  3. Intractable metabolic acidosis in a child with propionic acidemia undergoing liver transplantation -a case report-.

    PubMed

    Ryu, Jiyoung; Shin, Young Hee; Ko, Justin Sangwook; Gwak, Mi Sook; Kim, Gaab-Soo

    2013-09-01

    Propionic acidemia (PA) is a rare autosomal recessive disorder of metabolism caused by deficient activity of the mitochondrial enzyme propionyl-CoA carboxylase. The clinical manifestations are metabolic acidosis, poor feeding, lethargy, vomiting, osteoporosis, neurological dysfunction, pancytopenia, developmental retardation and cardiomyopathy. Liver transplantation has recently been considered as one of the treatment options for patients with PA. This case report describes several anesthetic considerations for patients with PA undergoing liver transplantation. Understanding the patient's status and avoiding events that may precipitate metabolic acidosis are important for anesthetic management of patients with PA. In conclusion, anesthesia should be focused on minimizing the severity of metabolic acidosis with following considerations: (1) maintaining optimal tissue perfusion by avoiding hypotension, (2) preventing hypoglycemia, and (3) providing bicarbonate to compensate for the acidosis. PMID:24101962

  4. Acidosis

    MedlinePlus

    ... Respiratory acidosis develops when there is too much carbon dioxide (an acid) in the body. This type of ... when the body is unable to remove enough carbon dioxide through breathing. Other names for respiratory acidosis are ...

  5. Severe lactic acidosis in a diabetic patient after ethanol abuse and floor cleaner intake.

    PubMed

    Hendrikx, Jeroen J M A; Lagas, Jurjen S; Daling, Ratana; Hooijberg, Jan Hendrik; Schellens, Jan H M; Beijnen, Jos H; Brandjes, Desiderius P M; Huitema, Alwin D R

    2014-11-01

    An intoxication with drugs, ethanol or cleaning solvents may cause a complex clinical scenario if multiple agents have been ingested simultaneously. The situation can become even more complex in patients with (multiple) co-morbidities. A 59-year-old man with type 2 diabetes mellitus (without treatment two weeks before the intoxication) intentionally ingested a substantial amount of ethanol along with ~750 mL of laminate floor cleaner containing citric acid. The patient was admitted with severe metabolic acidosis (both ketoacidosis and lactic acidosis, with serum lactate levels of 22 mM). He was treated with sodium bicarbonate, insulin and thiamine after which he recovered within two days. Diabetic ketoacidosis and lactic acidosis aggravated due to ethanol intoxication, thiamine deficiency and citrate. The high lactate levels were explained by excessive lactate formation caused by the combination of untreated diabetes mellitus, thiamine deficiency and ethanol abuse. Metabolic acidosis in diabetes is multi-factorial, and the clinical situation may be further complicated, when ingestion of ethanol and toxic agents are involved. Here, we reported a patient in whom diabetic ketoacidosis was accompanied by severe lactic acidosis as a result of citric acid and mainly ethanol ingestion and a possible thiamine deficiency. In the presence of lactic acidosis in diabetic ketoacidosis, physicians need to consider thiamine deficiency and ingestion of ethanol or other toxins. PMID:24717115

  6. Metabolic acidosis in an infant associated with permethrin toxicity.

    PubMed

    Goksugur, Sevil B; Karatas, Zehra; Goksugur, Nadir; Bekdas, Mervan; Demircioglu, Fatih

    2015-01-01

    Pyrethroids are broad-spectrum insecticides. Permethrin intoxication due to topical application has not been documented in humans. We report a 20-month-old infant who had used 5% permethrin lotion topically for scabies treatment. Approximately 60 mL (20 mL/day) was used and after the third application he developed agitation, nausea, vomiting, respiratory distress, tachycardia, and metabolic acidosis. His clinical symptoms and metabolic acidosis normalized within 20 hours. His follow-up was unremarkable. Toxicity of permethrin is rare, and although permethrin is a widely and safely used topical agent in the treatment of scabies and lice, inappropriate use may rarely cause toxicity. Moreover, in cases of unexplained metabolic acidosis, topically applied medications should be carefully investigated. PMID:25487692

  7. Metabolic Acidosis with Ophthalmic Dorzolamide in a Neonate

    PubMed Central

    Capino, Amanda C.; Dannaway, Douglas C.

    2016-01-01

    Carbonic anhydrase inhibitors are a common cause of normal anion gap metabolic acidosis; however, development is less commonly associated with ophthalmic administration of these agents. We report a case of a premature neonate who was being treated at our institution with betaxolol, dorzolamide, and latanoprost ophthalmic products for suspected bilateral congenital glaucoma. In addition, the patient was also receiving caffeine, ursodiol, and acidified liquid human milk fortifier. The patient developed a normal anion gap metabolic acidosis, and both dorzolamide ophthalmic solution and the acidified human milk fortifier were considered potential causes. Upon discontinuation of the dorzolamide ophthalmic solution and the switching of liquid human milk fortifiers, the normal anion gap metabolic acidosis gradually resolved. As a result of the pH and acidity, the acidified liquid human milk fortifier is thought to be associated with an anion gap acidosis; therefore, dorzolamide is suspected to be the primary cause of a normal gap acidosis. This case demonstrates that systemic effects can occur with ophthalmic administration of dorzolamide in a premature neonate. Ophthalmic agents should not be overlooked as a potential cause of systemic toxicity. PMID:27453705

  8. Metabolic Acidosis with Ophthalmic Dorzolamide in a Neonate.

    PubMed

    Capino, Amanda C; Dannaway, Douglas C; Miller, Jamie L

    2016-01-01

    Carbonic anhydrase inhibitors are a common cause of normal anion gap metabolic acidosis; however, development is less commonly associated with ophthalmic administration of these agents. We report a case of a premature neonate who was being treated at our institution with betaxolol, dorzolamide, and latanoprost ophthalmic products for suspected bilateral congenital glaucoma. In addition, the patient was also receiving caffeine, ursodiol, and acidified liquid human milk fortifier. The patient developed a normal anion gap metabolic acidosis, and both dorzolamide ophthalmic solution and the acidified human milk fortifier were considered potential causes. Upon discontinuation of the dorzolamide ophthalmic solution and the switching of liquid human milk fortifiers, the normal anion gap metabolic acidosis gradually resolved. As a result of the pH and acidity, the acidified liquid human milk fortifier is thought to be associated with an anion gap acidosis; therefore, dorzolamide is suspected to be the primary cause of a normal gap acidosis. This case demonstrates that systemic effects can occur with ophthalmic administration of dorzolamide in a premature neonate. Ophthalmic agents should not be overlooked as a potential cause of systemic toxicity. PMID:27453705

  9. Trimethoprim/Sulfamethoxazole-Induced Severe Lactic Acidosis: A Case Report and Review of the Literature.

    PubMed

    Bulathsinghala, Marie; Keefer, Kimberly; Van de Louw, Andry

    2016-04-01

    Propylene glycol (PG) is used as a solvent in numerous medications, including trimethoprim/sulfamethoxazole (TMP/SMX) and lorazepam, and is metabolized in the liver to lactic acid. Cases of lactic acidosis related to PG toxicity have been described and always involved large doses of benzodiazepines and PG. We present the first case of severe lactic acidosis after a 3-day course of TMP/SMX alone, involving allegedly safe amounts of PG.A 31-year-old female with neurofibromatosis and pilocytic astrocytoma, receiving temozolomide and steroids, was admitted to the intensive care unit for pneumonia and acute respiratory failure requiring intubation. Her initial hemodynamic and acid-base statuses were normal. She was treated with intravenous TMP/SMX for possible Pneumocystis jirovecii pneumonia and was successfully extubated on day 2. On day 3, she developed tachypnea and arterial blood gas analysis revealed a severe metabolic acidosis (pH 7.2, PCO2 19 mm Hg, bicarbonates 8 mEq/L) with anion gap of 25 mEq/L and lactate of 12.1 mmol/L. TMP/SMX was discontinued and the lactate decreased to 2.9 mmol/L within 24 hours while her plasma bicarbonates normalized, without additional intervention. The patient never developed hypotension or severe hypoxia, and her renal and liver functions were normal. No other cause for lactic acidosis was identified and it resolved after TMP/SMX cessation alone, suggesting PG toxicity.Although PG-related lactic acidosis is well recognized after large doses of lorazepam, clinicians should bear in mind that TMP/SMX contains PG as well and should suspect PG toxicity in patients developing unexplained metabolic acidosis while receiving TMP/SMX. PMID:27124045

  10. Coagulopathy induced by acidosis, hypothermia and hypocalcaemia in severe bleeding.

    PubMed

    De Robertis, E; Kozek-Langenecker, S A; Tufano, R; Romano, G M; Piazza, O; Zito Marinosci, G

    2015-01-01

    Acidosis, hypothermia and hypocalcaemia are determinants for morbidity and mortality during massive hemorrhages. However, precise pathological mechanisms of these environmental factors and their potential additive or synergistic anticoagulant and/or antiplatelet effects are not fully elucidated and are at least in part controversial. Best available evidences from experimental trials indicate that acidosis and hypothermia progressively impair platelet aggregability and clot formation. Considering the cell-based model of coagulation physiology, hypothermia predominantly prolongs the initiation phase, while acidosis prolongs the propagation phase of thrombin generation. Acidosis increases fibrinogen breakdown while hypothermia impairs its synthesis. Acidosis and hypothermia have additive effects. The effect of hypocalcaemia on coagulopathy is less investigated but it appears that below the cut-off of 0.9 mmol/L, several enzymatic steps in the plasmatic coagulation system are blocked while above that cut-off effects remain without clinical sequalae. The impact of environmental factor on hemostasis is underestimated in clinical practice due to our current practice of using routine coagulation laboratory tests such as partial thromboplastin time or prothrombin time, which are performed at standardized test temperature, after pH correction, and upon recalcification. Temperature-adjustments are feasible in viscoelastic point-of-care tests such as thrombelastography and thromboelastometry which may permit quantification of hypothermia-induced coagulopathy. Rewarming hypothermic bleeding patients is highly recommended because it improves patient outcome. Despite the absence of high-quality evidence, calcium supplementation is clinical routine in bleeding management. Buffer administration may not reverse acidosis-induced coagulopathy but may be essential for the efficacy of coagulation factor concentrates such as recombinant activated factor VII. PMID:24608516

  11. Propylene Glycol Poisoning From Excess Whiskey Ingestion: A Case of High Osmolal Gap Metabolic Acidosis.

    PubMed

    Cunningham, Courtney A; Ku, Kevin; Sue, Gloria R

    2015-01-01

    In this report, we describe a case of high anion gap metabolic acidosis with a significant osmolal gap attributed to the ingestion of liquor containing propylene glycol. Recently, several reports have characterized severe lactic acidosis occurring in the setting of iatrogenic unintentional overdosing of medications that use propylene glycol as a diluent, including lorazepam and diazepam. To date, no studies have explored potential effects of excess propylene glycol in the setting of alcohol intoxication. Our patient endorsed drinking large volumes of cinnamon flavored whiskey, which was likely Fireball Cinnamon Whisky. To our knowledge, this is the first case of propylene glycol toxicity from an intentional ingestion of liquor containing propylene glycol. PMID:26904700

  12. Chronic metabolic acidosis increases the serum concentration of 1,25-dihydroxyvitamin D in humans by stimulating its production rate. Critical role of acidosis-induced renal hypophosphatemia.

    PubMed Central

    Krapf, R; Vetsch, R; Vetsch, W; Hulter, H N

    1992-01-01

    Chronic metabolic acidosis results in metabolic bone disease, calcium nephrolithiasis, and growth retardation. The pathogenesis of each of these sequelae is poorly understood in humans. We therefore investigated the effects of chronic extrarenal metabolic acidosis on the regulation of 1,25-(OH)2D, parathyroid hormone, calcium, and phosphate metabolism in normal humans. Chronic extrarenal metabolic acidosis was induced by administering two different doses of NH4Cl [2.1 (low dose) and 4.2 (high dose) mmol/kg body wt per d, respectively] to four male volunteers each during metabolic balance conditions. Plasma [HCO3-] decreased by 4.5 +/- 0.4 mmol/liter in the low dose and by 9.1 +/- 0.3 mmol/liter (P < 0.001) in the high dose group. Metabolic acidosis induced renal hypophosphatemia, which strongly correlated with the severity of acidosis (Plasma [PO4] on plasma [HCO3-]; r = 0.721, P < 0.001). Both metabolic clearance and production rates of 1,25-(OH)2D increased in both groups. In the high dose group, the percentage increase in production rate was much greater than the percentage increase in metabolic clearance rate, resulting in a significantly increased serum 1,25-(OH)2D concentration. A strong inverse correlation was observed for serum 1,25-(OH)2D concentration on both plasma [PO4] (r = -0.711, P < 0.001) and plasma [HCO3-] (r = -0.725, P < 0.001). Plasma ionized calcium concentration did not change in either group whereas intact serum parathyroid hormone concentration decreased significantly in the high dose group. In conclusion, metabolic acidosis results in graded increases in serum 1,25-(OH)2D concentration by stimulating its production rate in humans. The increased production rate is explained by acidosis-induced hypophosphatemia/cellular phosphate depletion resulting at least in part from decreased renal tubular phosphate reabsorption. The decreased serum intact parathyroid hormone levels in more severe acidosis may be the consequence of hypophosphatemia and

  13. Metabolic Acidosis Without Clinical Signs of Dehydration in Young Calves

    PubMed Central

    Kasari, T. R.; Naylor, J. M.

    1984-01-01

    Metabolic acidosis without clinical signs of dehydration was diagnosed in four calves between nine and 21 days of age. In each calf either coma or depression with weakness and ataxia was observed. Two calves had slow deep respirations. Treatment with intravenous administration of solutions of sodium bicarbonate was accompanied by a rise in blood pH and a return to normal demeanor, ambulation and appetites, allowing these calves to return to their respective herds. ImagesFigure 1. PMID:17422463

  14. Regulation of renal amino acid transporters during metabolic acidosis.

    PubMed

    Moret, Caroline; Dave, Mital H; Schulz, Nicole; Jiang, Jean X; Verrey, Francois; Wagner, Carsten A

    2007-02-01

    The kidney plays a major role in acid-base homeostasis by adapting the excretion of acid equivalents to dietary intake and metabolism. Urinary acid excretion is mediated by the secretion of protons and titratable acids, particularly ammonia. NH(3) is synthesized in proximal tubule cells from glutamine taken up via specific amino acid transporters. We tested whether kidney amino acid transporters are regulated in mice in which metabolic acidosis was induced with NH(4)Cl. Blood gas and urine analysis confirmed metabolic acidosis. Real-time RT-PCR was performed to quantify the mRNAs of 16 amino acid transporters. The mRNA of phosphoenolpyruvate carboxykinase (PEPCK) was quantified as positive control for the regulation and that of GAPDH, as internal standard. In acidosis, the mRNA of kidney system N amino acid transporter SNAT3 (SLC38A3/SN1) showed a strong induction similar to that of PEPCK, whereas all other tested mRNAs encoding glutamine or glutamate transporters were unchanged or reduced in abundance. At the protein level, Western blotting and immunohistochemistry demonstrated an increased abundance of SNAT3 and reduced expression of the basolateral cationic amino acid/neutral amino acid exchanger subunit y(+)-LAT1 (SLC7A7). SNAT3 was localized to the basolateral membrane of the late proximal tubule S3 segment in control animals, whereas its expression was extended to the earlier S2 segment of the proximal tubule during acidosis. Our results suggest that the selective regulation of SNAT3 and y(+)LAT1 expression may serve a major role in the renal adaptation to acid secretion and thus for systemic acid-base balance. PMID:17003226

  15. Outcome of severe lactic acidosis associated with metformin accumulation

    PubMed Central

    2010-01-01

    Introduction Metformin associated lactic acidosis (MALA) may complicate metformin therapy, particularly if metformin accumulates due to renal dysfunction. Profound lactic acidosis (LA) generally predicts poor outcome. We aimed to determine if MALA differs in outcome from LA of other origin (LAOO). Methods We conducted a retrospective analysis of all patients admitted with LA to our medical ICU of a tertiary referral center during a 5-year period. MALA patients and LAOO patients were compared with respect to parameters of acid-base balance, serum creatinine, hospital outcome, Simplified Acute Physiology Score II (SAPS II) and Sequential Organ Failure Assessment (SOFA) score, using Pearson's Chi-square or the Mann-Whitney U-test. Results Of 197 patients admitted with LA, 10 had been diagnosed with MALA. With MALA, median arterial blood pH was significantly lower (6.78 [range 6.5 to 6.94]) and serum lactate significantly higher (18.7 ± 5.3 mmol/L) than with LAOO (pH 7.20 [range 6.46 to 7.35], mean serum lactate 11.2 ± 6.1 mmol/L). Overall mortality, however, was comparable (MALA 50%, LAOO 74%). Furthermore, survival of patients with arterial blood pH < 7.00 (N = 41) was significantly better (50% vs. 0%) if MALA (N = 10) was the underlying condition compared to LAOO (N = 31). Conclusions Compared to similarly severe lactic acidosis of other origin, the prognosis of MALA is significantly better. MALA should be considered in metformin-treated patients presenting with lactic acidosis. PMID:21171991

  16. Risk Factors for Developing Metabolic Acidosis after Radical Cystectomy and Ileal Neobladder

    PubMed Central

    Yoon, Hyun Suk; Yoon, Hana; Chung, Woo Sik; Sim, Bong Suk; Ryu, Dong-Ryeol; Lee, Dong Hyeon

    2016-01-01

    Purpose To investigate the serial changes of metabolic acidosis and identify associated risk factors in patients who underwent radical cystectomy and ileal neobladder. Material and Methods From January 2010 to August 2014, 123 patients who underwent radical cystectomy and ileal neobladder reconstruction for bladder cancer were included in this study. Metabolic acidosis was defined as a serum bicarbonate level less than 22 mEq/L and impaired renal function was defined as a GFR <50ml/min. The presence of metabolic acidosis was evaluated at 1 month, 1 year, and 2 years after surgery. Multivariate logistic regression analysis was conducted to identify risk factors associated with development of metabolic acidosis. Results Metabolic acidosis was observed in 52%, 19.5%, and 7.3% of patients at 1 month, 1 year, and 2 years after surgery, respectively. At 1 month after surgery, impaired renal function was the only independent risk factor associated with metabolic acidosis (OR 3.87, P = 0.046). At 1 year after surgery, diabetes was the only independent risk factor associated with metabolic acidosis (OR 5.68, P = 0.002). At 2 years post-surgery, both age and diabetes were significant risk factors associated with metabolic acidosis. Conclusion Approximately, half of patients experienced metabolic acidosis one month after ileal neobladder reconstruction. Preoperative impaired renal function was the most significant risk factor for developing metabolic acidosis in the early postoperative period. However, the incidence of metabolic acidosis decreased to less than 20% 1 year after surgery, and diabetes was an independent risk factor during this period. PMID:27384686

  17. High anion gap refractory metabolic acidosis as a critical presentation of endosulfan poisoning

    PubMed Central

    Sharma, Raj Kumar; Kaul, Anupama; Gupta, Anurag; Bhadauria, Dharmendra; Prasad, Narayan; Jain, Apoorva; Gurjar, M.; Rao, Bhaskar P.

    2011-01-01

    Organochloride insecticides are chlorinated cyclic hydrocarbons. One of such insecticides is endosulfan (6,7,8,9,10-10 hexachloro 1,5,5a,6,9,9a-hexahydro-6-methano-2,4,3-hexadithioxanthiep in 3-oxide) and it has been widely used in agriculture since 1960. The uncontrolled use of these compounds in developing countries has resulted in the deaths of animals and humans. Characteristic clinical signs following acute exposure are indicative of CNS disturbances or overstimulation. Mortality and morbidity rates are high and there is no specific antidote. We present an uncommon presentation of endosulfan poisoning in a 32-year-old male with high anion gap severe refractory metabolic acidosis. The patient was treated with continuous renal replacement therapy and was salvaged. Till date, there is no case report from India for endosulfan poisoning with severe metabolic acidosis and hypotension. Through this case report, we emphasize the role of continuous renal replacement therapy as a rescue therapy for endosulfan poisoning with severe refractory metabolic acidosis and hypotension, even though it is a non dialyzable poison. PMID:21845009

  18. Lentiform Fork Sign: a Magnetic Resonance Finding in a Case of Acute Metabolic Acidosis

    PubMed Central

    Grasso, Daniela; Borreggine, Carmela; Perfetto, Francesco; Bertozzi, Vincenzo; Trivisano, Marina; Specchio, Luigi Maria; Grilli, Gianpaolo; Macarini, Luca

    2014-01-01

    Summary We report a 33 year-old woman addicted to chronic unspecified solvents abuse with stupor, respiratory disorders, tetraplegia and severe metabolic acidosis. On admission an unenhanced cranial CT scan showed symmetrical hypodensities of both lentiform nuclei. MR imaging performed 12 hours after stupor demonstrates bilateral putaminal hemorrhagic necrosis, bilateral external capsule, corona radiata and deep cerebellar hyperintensities with right cingulate cortex involvement. DWI reflected bilateral putaminal hyperintensities with restricted water diffusion as to citotoxic edema and development of vasogenic edema in the external capsule recalling a fork. On day twenty, after specific treatments MRI demonstrated a bilateral putaminal marginal enhancement. Bilateral putaminal necrosis is a characteristic but non-specific radiological finding of methanol poisoning. Lentiform Fork sign is a rare MRI finding reported in literature in 22 patients with various conditions characterized by metabolic acidosis. Vasogenic edema may be due to the differences in metabolic vulnerability between neurons and astrocytes. We postulate that metabolic acidosis could have an important role to generate this sign. PMID:24976195

  19. Lentiform fork sign: a magnetic resonance finding in a case of acute metabolic acidosis.

    PubMed

    Grasso, Daniela; Borreggine, Carmela; Perfetto, Francesco; Bertozzi, Vincenzo; Trivisano, Marina; Specchio, Luigi Maria; Grilli, Gianpaolo; Macarini, Luca

    2014-06-01

    We report a 33 year-old woman addicted to chronic unspecified solvents abuse with stupor, respiratory disorders, tetraplegia and severe metabolic acidosis. On admission an unenhanced cranial CT scan showed symmetrical hypodensities of both lentiform nuclei. MR imaging performed 12 hours after stupor demonstrates bilateral putaminal hemorrhagic necrosis, bilateral external capsule, corona radiata and deep cerebellar hyperintensities with right cingulate cortex involvement. DWI reflected bilateral putaminal hyperintensities with restricted water diffusion as to citotoxic edema and development of vasogenic edema in the external capsule recalling a fork. On day twenty, after specific treatments MRI demonstrated a bilateral putaminal marginal enhancement. Bilateral putaminal necrosis is a characteristic but non-specific radiological finding of methanol poisoning. Lentiform Fork sign is a rare MRI finding reported in literature in 22 patients with various conditions characterized by metabolic acidosis. Vasogenic edema may be due to the differences in metabolic vulnerability between neurons and astrocytes. We postulate that metabolic acidosis could have an important role to generate this sign. PMID:24976195

  20. Approach to the evaluation of a patient with an increased serum osmolal gap and high-anion-gap metabolic acidosis.

    PubMed

    Kraut, Jeffrey A; Xing, Shelly Xiaolei

    2011-09-01

    An increase in serum osmolality and serum osmolal gap with or without high-anion-gap metabolic acidosis is an important clue to exposure to one of the toxic alcohols, which include methanol, ethylene glycol, diethylene glycol, propylene glycol, or isopropanol. However, the increase in serum osmolal gap and metabolic acidosis can occur either together or alone depending on several factors, including baseline serum osmolal gap, molecular weight of the alcohol, and stage of metabolism of the alcohol. In addition, other disorders, including diabetic or alcoholic ketoacidosis, acute kidney injury, chronic kidney disease, and lactic acidosis, can cause high-anion-gap metabolic acidosis associated with an increased serum osmolal gap and therefore should be explored in the differential diagnosis. It is essential for clinicians to understand the value and limitations of osmolal gap to assist in reaching the correct diagnosis and initiating appropriate treatment. In this teaching case, we present a systematic approach to diagnosing high serum osmolality and increased serum osmolal gap with or without high-anion-gap metabolic acidosis. PMID:21794966

  1. [5-0xoproline (pyroglutamic acid) acidosis and acetaminophen- a differential diagnosis in high anion gap metabolic acidosis].

    PubMed

    Weiler, Stefan; Bellmann, Romuald; Kullak-Ublick, Gerd A

    2015-12-01

    Rare cases of high anion gap metabolic acidosis during long-term paracetamol administration in therapeutic doses with causative 5-oxoproline (pyroglutamic acid} accumulation have been reported. Other concomitant risk factors such as malnutrition, alcohol abuse, renal or hepatic dysfunction, comedication with flue/oxacillin, vigabatrin, netilmicin or sepsis have been described. The etiology seems to be a drug-induced reversible inhibition of glutathione synthetase or 5-oxoprolinase leading to elevated serum and urine levels of 5-oxoproline. Other more frequent differential diagnoses, such as intoxications, ketoacidosis or lactic acidosis should be excluded. Causative substances should be stopped. 5-oxoproline concentrations in urine can be quantified to establish the diagnosis. Adverse drug reactions, which are not listed or insufficiently described in the respective Swiss product information, should be reported to the regional pharmacovigilance centres for early signal detection. 5-0 xoproline acidosis will be integrated as a potential adverse drug reaction in the Swiss product information for paracetamol. PMID:26654818

  2. Abnormalities of acid-base balance and predisposition to metabolic acidosis in Metachromatic Leukodystrophy patients.

    PubMed

    Lorioli, L; Cicalese, M P; Silvani, P; Assanelli, A; Salvo, I; Mandelli, A; Fumagalli, F; Fiori, R; Ciceri, F; Aiuti, A; Sessa, M; Roncarolo, M G; Lanzani, C; Biffi, A

    2015-05-01

    Metachromatic Leukodystrophy (MLD; MIM# 250100) is a rare inherited lysosomal storage disorder caused by the deficiency of Arylsulfatase A (ARSA). The enzymatic defect results in the accumulation of the ARSA substrate that is particularly relevant in myelin forming cells and leads to progressive dysmyelination and dysfunction of the central and peripheral nervous system. Sulfatide accumulation has also been reported in various visceral organs, although little is known about the potential clinical consequences of such accumulation. Different forms of MLD-associated gallbladder disease have been described, and there is one reported case of an MLD patient presenting with functional consequences of sulfatide accumulation in the kidney. Here we describe a wide cohort of MLD patients in whom a tendency to sub-clinical metabolic acidosis was observed. Furthermore in some of them we report episodes of metabolic acidosis of different grades of severity developed in acute clinical conditions of various origin. Importantly, we finally show how a careful acid-base balance monitoring and prompt correction of imbalances might prevent severe consequences of acidosis. PMID:25796965

  3. Metabolic acidosis mimicking diabetic ketoacidosis after use of calorie-free mineral water.

    PubMed

    Dahl, Gry T; Woldseth, Berit; Lindemann, Rolf

    2012-09-01

    A previously healthy boy was admitted with fever, tachycardia, dyspnea, and was vomiting. A blood test showed a severe metabolic acidosis with pH 7.08 and an anion gap of 36 mmol/L. His urine had an odor of acetone. The serum glucose was 5.6 mmol/L, and no glucosuria was found. Diabetic ketoacidosis could therefore be eliminated. Lactate level was normal. Tests for the most common metabolic diseases were negative. Because of herpes stomatitis, the boy had lost appetite and only been drinking Diet Coke and water the last days. Diet Coke or Coca-Cola Light is sweetened with a blend containing cyclamates, aspartame, and acesulfame potassium, all free of calories. The etiology of the metabolic acidosis appeared to be a catabolic situation exaggerated by fasting with no intake of calories. The elevated anion gap was due to a severe starvation ketoacidosis, mimicking a diabetic ketoacidosis. Pediatricians should recommend carbohydrate/calorie-containing fluids for rehydration of children with acute fever, diarrhea, or illness. PMID:22457081

  4. Citrate metabolism in blood transfusions and its relationship due to metabolic alkalosis and respiratory acidosis

    PubMed Central

    Li, Kai; Xu, Yuan

    2015-01-01

    Metabolic alkalosis commonly results from excessive hydrochloric acid (HCl), potassium (K+) and water (H2O) loss from the stomach or through the urine. The plasma anion gap increases in non-hypoproteinemic metabolic alkalosis due to an increased negative charge equivalent on albumin and the free ionized calcium (Ca++) content of plasma decreases. The mean citrate load in all patients was 8740±7027 mg from 6937±6603 mL of transfused blood products. The citrate load was significantly higher in patients with alkalosis (9164±4870 vs. 7809±3967, P < 0.05). The estimated mean total citrate administered via blood and blood products was calculated as 43.2±34.19 mg/kilogram/day. In non-massive and frequent blood transfusions, the elevated carbon dioxide output has been shown to occur. Due to citrate metabolism causes intracellular acidosis. As a result of intracellular acidosis compensation, decompensated metabolic alkalosis + respiratory acidosis and electrolyte imbalance may develop, blood transfusions may result in certain complications. PMID:26131288

  5. Prevalence of Metformin Use and the Associated Risk of Metabolic Acidosis in US Diabetic Adults With CKD

    PubMed Central

    Kuo, Chin-Chi; Yeh, Hung-Chieh; Chen, Bradley; Tsai, Ching-Wei; Lin, Yu-Sheng; Huang, Chiu-Ching

    2015-01-01

    Abstract The use of metformin in chronic kidney disease (CKD) population has been intensely debated with conflicting evidence. Large population studies are needed to inform risk assessment and therapeutic decision-making. We evaluated the associations among metformin, metabolic acidosis, and CKD in a 10-year nationally representative noninstitutionalized civilian population in the United States. In this cross-sectional study, a total of 2279 diabetic adults aged 20 years or older in the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2012 were included and had measurements of serum bicarbonate, sodium, potassium, and chloride. The exposure was metformin use. The outcome was subclinical and severe metabolic acidosis defined by serum bicarbonate <23 mEq/L and anion gap > 16mEq/L and by serum bicarbonate < 20 mEq/L, respectively. The prevalence of metformin use decreased from 67.2% among CKD-1 and -2, 40.6% among CKD-3, to 1.3% among advanced CKD-4 and -5. Across CKD stages up to CKD-3b, we observed a tendency of lower levels of serum bicarbonate that was significant in metformin users with CKD-2 and CKD-3a and marginally significant with CKD-3b compared to nonmetformin users. The corresponding tendency of higher anion gap in metformin users with the estimated glomerular filtration rate >60 mL/min/1.73 m2 was also observed. In multiple linear regression analysis, metformin was significantly associated with decreased serum bicarbonate levels (β = −0.45, 95% CI: −0.73, −0.17) and increased serum anion gap levels (β = 0.40, 95% CI: 0.19, 0.61). The adjusted odds ratio of subclinical high anion gap and severe metabolic acidosis for metformin users was 1.68 (95% CI: 1.11, 2.55) and 1.31 (0.49, 3.47), respectively. The association between metformin and serum bicarbonate was significantly modified by CKD status. No interaction was found between metformin and CKD stages for serum anion gap and acidosis. Metformin is associated

  6. Ionized alkaline water: new strategy for management of metabolic acidosis in experimental animals.

    PubMed

    Abol-Enein, Hassan; Gheith, Osama A; Barakat, Nashwa; Nour, Eman; Sharaf, Abd-Elhameed

    2009-06-01

    Metabolic acidosis can occur as a result of either the accumulation of endogenous acids or loss of bicarbonate from the gastrointestinal tract or the kidney, which represent common causes of metabolic acidosis. The appropriate treatment of acute metabolic acidosis has been very controversial. Ionized alkaline water was not evaluated in such groups of patients in spite of its safety and reported benefits. So, we aimed to assess its efficacy in the management of metabolic acidosis in animal models. Two models of metabolic acidosis were created in dogs and rats. The first model of renal failure was induced by ligation of both ureters; and the second model was induced by urinary diversion to gut (gastrointestinal bicarbonate loss model). Both models were subjected to ionized alkaline water (orally and by hemodialysis). Dogs with renal failure were assigned to two groups according to the type of dialysate utilized during hemodialysis sessions, the first was utilizing alkaline water and the second was utilizing conventional water. Another two groups of animals with urinary diversion were arranged to receive oral alkaline water and tap water. In renal failure animal models, acid-base parameters improved significantly after hemodialysis with ionized alkaline water compared with the conventional water treated with reverse osmosis (RO). Similar results were observed in urinary diversion models as there was significant improvement of both the partial pressure of carbon dioxide and serum bicarbonate (P = 0.007 and 0.001 respectively) after utilizing alkaline water orally. Alkaline ionized water can be considered as a major safe strategy in the management of metabolic acidosis secondary to renal failure or dialysis or urinary diversion. Human studies are indicated in the near future to confirm this issue in humans. PMID:19527469

  7. Endocrine and metabolic emergencies in children: hypocalcemia, hypoglycemia, adrenal insufficiency, and metabolic acidosis including diabetic ketoacidosis.

    PubMed

    Kim, Se Young

    2015-12-01

    It is important to fast diagnosis and management of the pediatric patients of the endocrine metabolic emergencies because the signs and symptoms of these disorders are nonspecific. Delayed diagnosis and treatment may lead to serious consequences of the pediatric patients, for example, cerebral dysfunction leading to coma or death of the patients with hypoglycemia, hypocalcemia, adrenal insufficiency, or diabetic ketoacidosis. The index of suspicion of the endocrine metabolic emergencies should be preceded prior to the starting nonspecific treatment. Importantly, proper diagnosis depends on the collection of blood and urine specimen before nonspecific therapy (intravenous hydration, electrolytes, glucose or calcium injection). At the same time, the taking of precise history and searching for pathognomonic physical findings should be performed. This review was described for fast diagnosis and proper management of hypoglycemic emergencies, hypocalcemia, adrenal insufficiency, and metabolic acidosis including diabetic ketoacidosis. PMID:26817004

  8. Endocrine and metabolic emergencies in children: hypocalcemia, hypoglycemia, adrenal insufficiency, and metabolic acidosis including diabetic ketoacidosis

    PubMed Central

    2015-01-01

    It is important to fast diagnosis and management of the pediatric patients of the endocrine metabolic emergencies because the signs and symptoms of these disorders are nonspecific. Delayed diagnosis and treatment may lead to serious consequences of the pediatric patients, for example, cerebral dysfunction leading to coma or death of the patients with hypoglycemia, hypocalcemia, adrenal insufficiency, or diabetic ketoacidosis. The index of suspicion of the endocrine metabolic emergencies should be preceded prior to the starting nonspecific treatment. Importantly, proper diagnosis depends on the collection of blood and urine specimen before nonspecific therapy (intravenous hydration, electrolytes, glucose or calcium injection). At the same time, the taking of precise history and searching for pathognomonic physical findings should be performed. This review was described for fast diagnosis and proper management of hypoglycemic emergencies, hypocalcemia, adrenal insufficiency, and metabolic acidosis including diabetic ketoacidosis. PMID:26817004

  9. Severity and Nature of Acidosis in Diarrheic Calves Over and Under One Week of Age

    PubMed Central

    Naylor, Jonathan M.

    1987-01-01

    A prospective study of the severity of dehydration and acidosis was carried out in 42 calves under 35 days of age presented for treatment of neonatal diarrhea. Clinically the mean level of dehydration was 8 to 10%. The plasma volume was 65% of that in the hydrated calf but the calves only gained 6.5% in weight during therapy. Calves under eight days of age often had a lactic acidosis. Blood pH was 7.118±0.026 (mean ± 1 standard error), bicarbonate concentration 18.8±1.3 mmol/L, base deficit 11.4±1.7 mmol/L and lactate of 3.6± 0.06 mmol/L. Calves over eight days usually had a nonlactic acidosis. Blood pH was 7.042±0.021, bicarbonate 10.8±1.0 mmol/L, base deficit 19.5±1.2 mmol/L and lactate 1.2±0.3 mmol/L. These values were all significantly different from those in younger calves. Over all calves there was a poor correlation between the severity of acidosis and dehydration(r=0.05). The severity of lactic acidosis was related to the severity of dehydration. Mean bicarbonate requirements to correct acidosis were calculated to be 200 mmol(17 g of sodium bicarbonate)and 450 mmol(37 g of sodium bicarbonate)in calves under and over eight days of age respectively. Both groups of calves required a mean volume of 4L of fluid to correct dehydration. PMID:17422754

  10. [Gastric emptying and metabolic acidosis. III. Study of gastric retention of a sodium citrate solution using an experimental model of metabolic acidosis in rats].

    PubMed

    Baracat, E C; Collares, E F

    1992-01-01

    The gastric emptying of sodium citrate solution 0.25 mEq/ml was studied in rats with metabolic acidosis induced by orogastric infusion of 0.5 M ammonium chloride solution. Two control groups were used: one infused with 0.5 M sodium chloride and the other with water. The 3 solutions content was 2 ml/100 g weight of the animal. Six hours after the infusion, there was a moderate metabolic acidosis in the group with ammonium citrate. This 6 hour interval marked the beginning of the gastric emptying study. The test meal (sodium citrate 0.25 mEq/ml) was utilized containing 6 mg% red fenol as a marker. The gastric emptying of sodium citrate was studied at 5, 10, 20 and 30 minutes after the infusion, and the results showed no differences between the 3 groups. The data suggest that the duodenal receptors to pH were more effective do determine the pattern of gastric response than the acidosis. PMID:1339143

  11. Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells

    PubMed Central

    Chano, Tokuhiro; Avnet, Sofia; Kusuzaki, Katsuyuki; Bonuccelli, Gloria; Sonveaux, Pierre; Rotili, Dante; Mai, Antonello; Baldini, Nicola

    2016-01-01

    The glycolytic-based metabolism of cancers promotes an acidic microenvironment that is responsible for increased aggressiveness. However, the effects of acidosis on tumour metabolism have been almost unexplored. By using capillary electrophoresis with time-of-flight mass spectrometry, we observed a significant metabolic difference associated with glycolysis repression (dihydroxyacetone phosphate), increase of amino acid catabolism (phosphocreatine and glutamate) and urea cycle enhancement (arginino succinic acid) in osteosarcoma (OS) cells compared with normal fibroblasts. Noteworthy, metabolites associated with chromatin modification, like UDP-glucose and N8-acetylspermidine, decreased more in OS cells than in fibroblasts. COBRA assay and acetyl-H3 immunoblotting indicated an epigenetic stability in OS cells than in normal cells, and OS cells were more sensitive to an HDAC inhibitor under acidosis than under neutral pH. Since our data suggest that acidosis promotes a metabolic reprogramming that can contribute to the epigenetic maintenance under acidosis only in tumour cells, the acidic microenvironment should be considered for future therapies. PMID:27186436

  12. Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells.

    PubMed

    Chano, Tokuhiro; Avnet, Sofia; Kusuzaki, Katsuyuki; Bonuccelli, Gloria; Sonveaux, Pierre; Rotili, Dante; Mai, Antonello; Baldini, Nicola

    2016-01-01

    The glycolytic-based metabolism of cancers promotes an acidic microenvironment that is responsible for increased aggressiveness. However, the effects of acidosis on tumour metabolism have been almost unexplored. By using capillary electrophoresis with time-of-flight mass spectrometry, we observed a significant metabolic difference associated with glycolysis repression (dihydroxyacetone phosphate), increase of amino acid catabolism (phosphocreatine and glutamate) and urea cycle enhancement (arginino succinic acid) in osteosarcoma (OS) cells compared with normal fibroblasts. Noteworthy, metabolites associated with chromatin modification, like UDP-glucose and N(8)-acetylspermidine, decreased more in OS cells than in fibroblasts. COBRA assay and acetyl-H3 immunoblotting indicated an epigenetic stability in OS cells than in normal cells, and OS cells were more sensitive to an HDAC inhibitor under acidosis than under neutral pH. Since our data suggest that acidosis promotes a metabolic reprogramming that can contribute to the epigenetic maintenance under acidosis only in tumour cells, the acidic microenvironment should be considered for future therapies. PMID:27186436

  13. Chronic metabolic acidosis reduces urinary oxalate excretion and promotes intestinal oxalate secretion in the rat.

    PubMed

    Whittamore, Jonathan M; Hatch, Marguerite

    2015-11-01

    Urinary oxalate excretion is reduced in rats during a chronic metabolic acidosis, but how this is achieved is not clear. In this report, we re-examine our prior work on the effects of a metabolic acidosis on urinary oxalate handling [Green et al., Am J Physiol Ren Physiol 289(3):F536-F543, 2005], offering a more detailed analysis and interpretation of the data, together with new, previously unpublished observations revealing a marked impact on intestinal oxalate transport. Sprague-Dawley rats were provided with 0.28 M ammonium chloride in their drinking water for either 4 or 14 days followed by 24 h urine collections, blood-gas and serum ion analysis, and measurements of (14)C-oxalate fluxes across isolated segments of the distal colon. Urinary oxalate excretion was significantly reduced by 75% after just 4 days compared to control rats, and this was similarly sustained at 14 days. Oxalate:creatinine clearance ratios indicated enhanced net re-absorption of oxalate by the kidney during a metabolic acidosis, but this was not associated with any substantive changes to serum oxalate levels. In the distal colon, oxalate transport was dramatically altered from net absorption in controls (6.20 ± 0.63 pmol cm(-2) h(-1)), to net secretion in rats with a metabolic acidosis (-5.19 ± 1.18 and -2.07 ± 1.05 pmol cm(-2) h(-1) at 4 and 14 days, respectively). Although we cannot rule out modifications to bi-directional oxalate movements along the proximal tubule, these findings support a gut-kidney axis in the management of oxalate homeostasis, where this shift in renal handling during a metabolic acidosis is associated with compensatory adaptations by the intestine. PMID:26162424

  14. Differential effects of acidosis, high potassium concentrations, and metabolic inhibition on noradrenaline release and its presynaptic muscarinic regulation.

    PubMed

    Haunstetter, Armin; Schulze Icking, Babette; Backs, Johannes; Krüger, Carsten; Haass, Markus

    2002-03-01

    It was the aim of the present study to characterize the effect of single components of ischaemia, such as inhibition of aerobic and anaerobic energy production by combined anoxic and glucose-free perfusion (metabolic inhibition), high extracellular potassium concentrations (hyperkalaemia), and acidosis, on (1). the stimulated release of noradrenaline from the in situ perfused guinea-pig heart and (2). its presynaptic modulation by the muscarinic agonist carbachol. The release of endogenous noradrenaline from efferent cardiac sympathetic nerve endings was induced by electrical stimulation of the left stellate ganglion (1 min, 5 V, 12 Hz) and quantified in the coronary venous effluent by high-performance liquid chromatography. Under control conditions, two consecutive electrical stimulations (S1, S2) elicited a similar noradrenaline overflow (S2/S1: 0.98 plus minus 0.05). After 10 min of global myocardial ischaemia overflow of endogenous noradrenaline was significantly reduced (S2/S1: 0.18 plus minus 0.03; P< 0.05). When studied separately, metabolic inhibition, hyperkalaemia (16 mM), and acidosis (pH 6.0) each markedly attenuated stimulated noradrenaline overflow (S2/S1: 0.65 plus minus 0.05, 0.43 plus minus 0.14, and 0.37 plus minus 0.09, respectively; P< 0.05). The muscarinic agonist carbachol (10 microM) inhibited stimulated noradrenaline release under normoxic conditions (S2/S1: 0.41 plus minus 0.07; P< 0.05). However, after 10 min of global myocardial ischaemia the inhibitory effect of carbachol on noradrenaline overflow was completely lost. Single components of ischaemia had a differential effect on presynaptic muscarinic modulation. Whereas hyperkalaemia (8-16 mM) did not affect muscarinic inhibition of noradrenaline release, carbachol lost its inhibitory effect during acidosis and metabolic inhibition. In conclusion, hyperkalaemia, metabolic inhibition, and severe acidosis each contribute to reduced overflow of noradrenaline after 10 min of myocardial

  15. An autopsy case of death due to metabolic acidosis after citric acid ingestion.

    PubMed

    Ikeda, Tomoya; Usui, Akihito; Matsumura, Takashi; Aramaki, Tomomi; Hosoya, Tadashi; Igari, Yui; Ohuchi, Tsukasa; Hayashizaki, Yoshie; Usui, Kiyotaka; Funayama, Masato

    2015-11-01

    A man in his 40s was found unconscious on a sofa in a communal residence for people with various disabilities. He appeared to have drunk 800 ml of undiluted citric acid from a commercial plastic bottle. The instructions on the label of the beverage specified that the beverage be diluted 20- to 30-fold before consumption. The patient was admitted to an emergency hospital with severe metabolic acidosis (pH, 6.70; HCO3(-), 3.6 mEq/L) and a low ionized calcium level (0.73 mmol/L). Although ionized calcium and catecholamines were continuously administered intravenously to correct the acidosis, the state of acidemia and low blood pressure did not improve, and he died 20 h later. Citric acid concentrations in the patient's serum drawn shortly after treatment in the hospital and from the heart at autopsy were 80.6 mg/ml and 39.8 mg/dl, respectively (normal range: 1.3-2.6 mg/dl). Autopsy revealed black discoloration of the mucosal surface of the esophagus. Microscopically, degenerated epithelium and neutrophilic infiltration in the muscle layer were observed. In daily life, drinking a large amount of concentrated citric acid beverage is rare as a cause of lethal poisoning. However, persons with mental disorders such as dementia may mistakenly drink detergent or concentrated fluids, as in our case. Family members or facility staff in the home or nursing facility must bear in mind that they should not leave such bottles in places where they are easily accessible to mentally handicapped persons. PMID:26594004

  16. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    SciTech Connect

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  17. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism.

    PubMed

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E; Lamers, Wouter H; Chaudhry, Farrukh A; Verlander, Jill W; Weiner, I David

    2016-06-01

    Glutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na(+)-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression. PMID:27009341

  18. Changes in bone sodium and carbonate in metabolic acidosis and alkalosis in the dog

    PubMed Central

    Burnell, James M.

    1971-01-01

    Metabolic acidosis and alkalosis were produced in adult dogs over 5- to 10-day periods. Midtibial cortical bone was analyzed for calcium, sodium, phosphorus, and carbonate. In acidosis bone CO3/Ca decreased 9.5% and bone Na/Ca decreased 6.3%. In alkalosis bone CO3/Ca increased 3.1% and bone Na/Ca increased 3.0%. Previous attempts to account for changes in net acid balance by summation of extra- and intracellular acid-base changes have uniformly resulted in about 40-60% of acid gained or lost being “unaccounted for.” If it is assumed that changes in tibial cortex reflect changes in the entire skeletal system, changes in bone CO3= are sufficiently large to account for the “unaccounted for” acid change without postulating changes in cellular metabolic acid production. PMID:5540172

  19. Hyperchloremic Metabolic Acidosis due to Cholestyramine: A Case Report and Literature Review

    PubMed Central

    Kamar, Fareed B.; McQuillan, Rory F.

    2015-01-01

    Cholestyramine is a bile acid sequestrant that has been used in the treatment of hypercholesterolemia, pruritus due to elevated bile acid levels, and diarrhea due to bile acid malabsorption. This medication can rarely cause hyperchloremic nonanion gap metabolic acidosis, a complication featured in this report of an adult male with concomitant acute kidney injury. This case emphasizes the caution that must be taken in prescribing cholestyramine to patients who may also be volume depleted, in renal failure, or taking spironolactone. PMID:26425378

  20. Hyperchloremic Metabolic Acidosis due to Cholestyramine: A Case Report and Literature Review.

    PubMed

    Kamar, Fareed B; McQuillan, Rory F

    2015-01-01

    Cholestyramine is a bile acid sequestrant that has been used in the treatment of hypercholesterolemia, pruritus due to elevated bile acid levels, and diarrhea due to bile acid malabsorption. This medication can rarely cause hyperchloremic nonanion gap metabolic acidosis, a complication featured in this report of an adult male with concomitant acute kidney injury. This case emphasizes the caution that must be taken in prescribing cholestyramine to patients who may also be volume depleted, in renal failure, or taking spironolactone. PMID:26425378

  1. Baking soda induced severe metabolic alkalosis in a haemodialysis patient.

    PubMed

    Solak, Yalcin; Turkmen, Kultigin; Atalay, Huseyin; Turk, Suleyman

    2009-08-01

    Metabolic alkalosis is a rare occurence in hemodialysis population compared to metabolic acidosis unless some precipitating factors such as nasogastric suction, vomiting and alkali ingestion or infusion are present. When metabolic alkalosis develops, it may cause serious clinical consequences among them are sleep apnea, resistent hypertension, dysrhythmia and seizures. Here, we present a 54-year-old female hemodialysis patient who developed a severe metabolic alkalosis due to baking soda ingestion to relieve dyspepsia. She had sleep apnea, volume overload and uncontrolled hypertension due to metabolic alkalosis. Metabolic alkalosis was corrected and the patient's clinical condition was relieved with negative-bicarbonate hemodialysis. PMID:25984015

  2. [Hypokalemic pareses secondary to renal tubular acidosis].

    PubMed

    Gøransson, L G; Apeland, T; Omdal, R

    2000-01-30

    A 24 year old woman presented with flaccid paralysis, severe hypokalaemia and hyperchloremia, metabolic acidosis. Immunological tests and labial glandular biopsy indicated primary Sjögren's syndrome as the underlying cause of her distal renal tubular acidosis. The patient recovered after alkali and potassium substitution and was put on oral treatment with potassium citrate. PMID:10827521

  3. A SYNDROME OF SEVERE HYPOGLYCEMIA AND ACIDOSIS IN YOUNG IMMUNOSUPPRESSED DIABETIC MONKEYS AND PIGS – ASSOCIATION WITH SEPSIS1

    PubMed Central

    Zhou, Hao; van der Windt, Dirk J.; Dons, Eefje M.; Rigatti, Lora H.; Echeverri, Gabriel J.; Bottino, Rita; Wijkstrom, Martin; Wagner, Robert; Cooper, David K.C.

    2012-01-01

    Background Large animals treated with immunosuppressive drugs for preclinical experiments of transplantation have increased risks of infection, which can be compounded by the induction of diabetes in these animals if islet transplantation is planned. Methods We report our experience with severe sepsis in two young cynomolgus monkeys and five pigs that were subjected to diabetes induction, immunosuppressive therapy +/− islet allotransplantation. Results In two monkeys and five pigs, infection was associated with a syndrome of profound hypoglycemia accompanied by severe acidosis, which was resistant to treatment. We do not believe this syndrome has been reported previously by others. Conclusions Despite treatment, this syndrome complicated the interpretation of blood glucose readings as a measure of islet graft function, and resulted in death or the need for euthanasia in all 7 animals. We tentatively suggest that the syndrome may be related to the presence of microorganisms that metabolize glucose and produce lactate. PMID:23128998

  4. Prevalence of Metformin Use and the Associated Risk of Metabolic Acidosis in US Diabetic Adults With CKD: A National Cross-Sectional Study.

    PubMed

    Kuo, Chin-Chi; Yeh, Hung-Chieh; Chen, Bradley; Tsai, Ching-Wei; Lin, Yu-Sheng; Huang, Chiu-Ching

    2015-12-01

    The use of metformin in chronic kidney disease (CKD) population has been intensely debated with conflicting evidence. Large population studies are needed to inform risk assessment and therapeutic decision-making. We evaluated the associations among metformin, metabolic acidosis, and CKD in a 10-year nationally representative noninstitutionalized civilian population in the United States.In this cross-sectional study, a total of 2279 diabetic adults aged 20 years or older in the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2012 were included and had measurements of serum bicarbonate, sodium, potassium, and chloride. The exposure was metformin use. The outcome was subclinical and severe metabolic acidosis defined by serum bicarbonate <23 mEq/L and anion gap > 16mEq/L and by serum bicarbonate < 20 mEq/L, respectively.The prevalence of metformin use decreased from 67.2% among CKD-1 and -2, 40.6% among CKD-3, to 1.3% among advanced CKD-4 and -5. Across CKD stages up to CKD-3b, we observed a tendency of lower levels of serum bicarbonate that was significant in metformin users with CKD-2 and CKD-3a and marginally significant with CKD-3b compared to nonmetformin users. The corresponding tendency of higher anion gap in metformin users with the estimated glomerular filtration rate >60 mL/min/1.73 m was also observed. In multiple linear regression analysis, metformin was significantly associated with decreased serum bicarbonate levels (β = -0.45, 95% CI: -0.73, -0.17) and increased serum anion gap levels (β = 0.40, 95% CI: 0.19, 0.61). The adjusted odds ratio of subclinical high anion gap and severe metabolic acidosis for metformin users was 1.68 (95% CI: 1.11, 2.55) and 1.31 (0.49, 3.47), respectively. The association between metformin and serum bicarbonate was significantly modified by CKD status. No interaction was found between metformin and CKD stages for serum anion gap and acidosis.Metformin is associated with subclinical

  5. Role of proton receptor OGR1 in bone response to metabolic acidosis?

    PubMed

    Jorgetti, Vanda; Drüeke, Tilman B; Ott, Susan M

    2016-03-01

    Chronic metabolic acidosis stimulates bone resorption, resulting in loss of calcium and bicarbonate from bone. Both osteoblasts and osteoclasts sense extracellular H(+) by the G-protein coupled receptor, OGR1, whose activation leads to increased bone resorption as well as decreased bone formation. Krieger et al. examined the effect of OGR1 knockout in mice. They found an unexpected increase in bone resorption, but nevertheless an increase in bone volume linked to enhanced bone formation. This discovery opens a window of opportunity to explore potential new anabolic treatments for patients with low bone mass. PMID:26880446

  6. Multiplexed Microneedle-based Biosensor Array for Characterization of Metabolic Acidosis

    PubMed Central

    Miller, Philip R.; Skoog, Shelby A.; Edwards, Thayne L.; Lopez, Deanna M.; Wheeler, David R.; Arango, Dulce C.; Xiao, Xiaoyin; Brozik, Susan M.; Wang, Joseph; Polsky, Ronen; Narayan, Roger J.

    2011-01-01

    The development of a microneedle-based biosensor array for multiplexed in situ detection of exercise-induced metabolic acidosis, tumor microenvironment, and other variations in tissue chemistry is described. Simultaneous and selective amperometric detection of pH, glucose, and lactate over a range of physiologically-relevant concentrations in complex media is demonstrated. Furthermore, materials modified with a cell-resistant (Lipidure®) coating were shown to inhibit macrophage adhesion; no signs of coating delamination were noted over a 48-hour period. PMID:22265568

  7. Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis.

    PubMed

    Miller, Philip R; Skoog, Shelby A; Edwards, Thayne L; Lopez, Deanna M; Wheeler, David R; Arango, Dulce C; Xiao, Xiaoyin; Brozik, Susan M; Wang, Joseph; Polsky, Ronen; Narayan, Roger J

    2012-01-15

    The development of a microneedle-based biosensor array for multiplexed in situ detection of exercise-induced metabolic acidosis, tumor microenvironment, and other variations in tissue chemistry is described. Simultaneous and selective amperometric detection of pH, glucose, and lactate over a range of physiologically relevant concentrations in complex media is demonstrated. Furthermore, materials modified with a cell-resistant (Lipidure(®)) coating were shown to inhibit macrophage adhesion; no signs of coating delamination were noted over a 48-h period. PMID:22265568

  8. Lanthanum carbonate versus sevelamer hydrochloride: improvement of metabolic acidosis and hyperkalemia in hemodialysis patients.

    PubMed

    Filiopoulos, Vassilis; Koutis, Ioannis; Trompouki, Sofia; Hadjiyannakos, Dimitrios; Lazarou, Dimitrios; Vlassopoulos, Dimosthenis

    2011-02-01

    Sevelamer hydrochloride (SH) has been reported to aggravate metabolic acidosis and hyperkalemia. This study was performed to evaluate acid-base status and serum potassium changes after replacing SH with lanthanum carbonate (LC) in hemodialysis patients. SH was prescribed for 24 weeks in 14 stable hemodialysis patients and replaced by LC in a similar treatment schedule. Laboratory tests, including indices of acid-base status, nutrition, bone/mineral metabolism, and dialysis adequacy, were performed monthly during the study. Dialysate bicarbonate, potassium and calcium concentrations remained constant. Serum bicarbonate and pH rose, and serum potassium dropped significantly under LC. Alkaline phosphatase also decreased significantly under LC. No significant differences were observed in the other studied parameters between the two treatment periods. Control of serum phosphate was similar under both phosphate-binders and no differences were observed in calcium, Ca × P product, CRP, or lipid levels. Dialysis adequacy was constantly kept within K/DOQI target-range. Although full compliance to treatment was reported, three patients on LC complained of gastrointestinal upset and/or a metallic taste, and four had difficulty chewing the LC tablet. LC improves metabolic acidosis and hyperkalemia in hemodialysis patients previously under SH. Although both medications are well-tolerated, the gastrointestinal side-effects appear to occur more frequently with LC; a fact that, together with difficulties in chewing the tablet, may result in decreased compliance. PMID:21272248

  9. Liquid chromatographic-mass spectrometric method for simultaneous determination of small organic acids potentially contributing to acidosis in severe malaria.

    PubMed

    Sriboonvorakul, Natthida; Leepipatpiboon, Natchanun; Dondorp, Arjen M; Pouplin, Thomas; White, Nicholas J; Tarning, Joel; Lindegardh, Niklas

    2013-12-15

    Acidosis is an important cause of mortality in severe falciparum malaria. Lactic acid is a major contributor to metabolic acidosis, but accounts for only one-quarter of the strong anion gap. Other unidentified organic acids have an independent strong prognostic significance for a fatal outcome. In this study, a simultaneous bio-analytical method for qualitative and quantitative assessment in plasma and urine of eight small organic acids potentially contributing to acidosis in severe malaria was developed and validated. High-throughput strong anion exchange solid-phase extraction in a 96-well plate format was used for sample preparation. Hydrophilic interaction liquid chromatography (HILIC) coupled to negative mass spectroscopy was utilized for separation and detection. Eight possible small organic acids; l-lactic acid (LA), α-hydroxybutyric acid (aHBA), β-hydroxybutyric acid (bHBA), p-hydroxyphenyllactic acid (pHPLA), malonic acid (MA), methylmalonic acid (MMA), ethylmalonic acid (EMA) and α-ketoglutaric acid (aKGA) were analyzed simultaneously using a ZIC-HILIC column with an isocratic elution containing acetonitrile and ammonium acetate buffer. This method was validated according to U.S. Food and Drug Administration guidelines with additional validation procedures for endogenous substances. Accuracy for all eight acids ranged from 93.1% to 104.0%, and the within-day and between-day precisions (i.e. relative standard deviations) were lower than 5.5% at all tested concentrations. The calibration ranges were: 2.5-2500μg/mL for LA, 0.125-125μg/mL for aHBA, 7.5-375μg/mL for bHBA, 0.1-100μg/mL for pHPLA, 1-1000μg/mL for MA, 0.25-250μg/mL for MMA, 0.25-100μg/mL for EMA, and 30-1500μg/mL for aKGA. Clinical applicability was demonstrated by analyzing plasma and urine samples from five patients with severe falciparum malaria; five acids had increased concentrations in plasma (range LA=177-1169μg/mL, aHBA=4.70-38.4μg/mL, bHBA=7.70-38.0μg/mL, pHPLA=0.900-4.30

  10. Liquid chromatographic–mass spectrometric method for simultaneous determination of small organic acids potentially contributing to acidosis in severe malaria☆

    PubMed Central

    Sriboonvorakul, Natthida; Leepipatpiboon, Natchanun; Dondorp, Arjen M.; Pouplin, Thomas; White, Nicholas J.; Tarning, Joel; Lindegardh, Niklas

    2013-01-01

    Acidosis is an important cause of mortality in severe falciparum malaria. Lactic acid is a major contributor to metabolic acidosis, but accounts for only one-quarter of the strong anion gap. Other unidentified organic acids have an independent strong prognostic significance for a fatal outcome. In this study, a simultaneous bio-analytical method for qualitative and quantitative assessment in plasma and urine of eight small organic acids potentially contributing to acidosis in severe malaria was developed and validated. High-throughput strong anion exchange solid-phase extraction in a 96-well plate format was used for sample preparation. Hydrophilic interaction liquid chromatography (HILIC) coupled to negative mass spectroscopy was utilized for separation and detection. Eight possible small organic acids; l-lactic acid (LA), α-hydroxybutyric acid (aHBA), β-hydroxybutyric acid (bHBA), p-hydroxyphenyllactic acid (pHPLA), malonic acid (MA), methylmalonic acid (MMA), ethylmalonic acid (EMA) and α-ketoglutaric acid (aKGA) were analyzed simultaneously using a ZIC-HILIC column with an isocratic elution containing acetonitrile and ammonium acetate buffer. This method was validated according to U.S. Food and Drug Administration guidelines with additional validation procedures for endogenous substances. Accuracy for all eight acids ranged from 93.1% to 104.0%, and the within-day and between-day precisions (i.e. relative standard deviations) were lower than 5.5% at all tested concentrations. The calibration ranges were: 2.5–2500 μg/mL for LA, 0.125–125 μg/mL for aHBA, 7.5–375 μg/mL for bHBA, 0.1–100 μg/mL for pHPLA, 1–1000 μg/mL for MA, 0.25–250 μg/mL for MMA, 0.25–100 μg/mL for EMA, and 30–1500 μg/mL for aKGA. Clinical applicability was demonstrated by analyzing plasma and urine samples from five patients with severe falciparum malaria; five acids had increased concentrations in plasma (range LA = 177–1169 μg/mL, aHBA = 4.70–38.4

  11. Effect of chronic metabolic acidosis on bone density and bone architecture in vivo in rats.

    PubMed

    Gasser, Jürg A; Hulter, Henry N; Imboden, Peter; Krapf, Reto

    2014-03-01

    Chronic metabolic acidosis (CMA) might result in a decrease in vivo in bone mass based on its reported in vitro inhibition of bone mineralization, bone formation, or stimulation of bone resorption, but such data, in the absence of other disorders, have not been reported. CMA also results in negative nitrogen balance, which might decrease skeletal muscle mass. This study analyzed the net in vivo effects of CMA's cellular and physicochemical processes on bone turnover, trabecular and cortical bone density, and bone microarchitecture using both peripheral quantitative computed tomography and μCT. CMA induced by NH4Cl administration (15 mEq/kg body wt/day) in intact and ovariectomized (OVX) rats resulted in stable CMA (mean Δ[HCO3(-)]p = 10 mmol/l). CMA decreased plasma osteocalcin and increased TRAP5b in intact and OVX animals. CMA decreased total volumetric bone mineral density (vBMD) after 6 and 10 wk (week 10: intact normal +2.1 ± 0.9% vs. intact acidosis -3.6 ± 1.2%, P < 0.001), an effect attributable to a decrease in cortical thickness and, thus, cortical bone mass (no significant effect on cancellous vBMD, week 10) attributed to an increase in endosteal bone resorption (nominally increased endosteal circumference). Trabecular bone volume (BV/TV) decreased significantly in both CMA groups at 6 and 10 wk, associated with a decrease in trabecular number. CMA significantly decreased muscle cross-sectional area in the proximal hindlimb at 6 and 10 wk. In conclusion, chronic metabolic acidosis induces a large decrease in cortical bone mass (a prime determinant of bone fragility) in intact and OVX rats and impairs bone microarchitecture characterized by a decrease in trabecular number. PMID:24352505

  12. Fructose 1,6 biphosphate administration to rats prevents metabolic acidosis and oxidative stress induced by deep hypothermia and rewarming.

    PubMed

    Alva, Norma; Carbonell, Teresa; Roig, Teresa; Bermúdez, Jordi; Palomeque, Jesús

    2011-06-01

    Fructose 1,6 biphosphate (F1,6BP) exerts a protective effect in several in vitro models of induced injury and in isolated organs; however, few studies have been performed using in vivo hypothermia. Here we studied the effects of deep hypothermia (21ºC) and rewarming in anaesthetised rats after F1,6BP administration (2 g/kg body weight). Acid-base and oxidative stress parameters (plasma malondialdehyde and glutathione, and erythrocyte antioxidant enzymes) were evaluated. Erythrocyte and leukocyte numbers in blood and plasma nitric oxide were also measured 3 h after F1,6BP administration in normothermia animals. In the absence of F1,6BP metabolic acidosis developed after rewarming. Oxidative stress was also evident after rewarming, as shown by a decrease in thiol groups and in erythrocyte superoxide dismutase, catalase and GSH-peroxidase, which corresponded to an increase in AST in rewarmed animals. These effects were reverted in rats treated with F1,6BP. Blood samples of F1,6BP-treated animals showed a significant increase in plasma nitric oxide 3 h after administration, coinciding with a significant rise in leukocyte number. F1,6BP protection may be due to the decrease in oxidative stress and to the preservation of the antioxidant pool. In addition, we propose that the reduction in extracellular acidosis may be due to improved tissue perfusion during rewarming and that nitric oxide may play a central role. PMID:21463624

  13. A Rare Cause of Metabolic Acidosis: Fatal Transdermal Methanol Intoxication in an Infant.

    PubMed

    Sahbudak Bal, Zumrut; Can, Fulya Kamit; Anil, Ayse Berna; Bal, Alkan; Anil, Murat; Gokalp, Gamze; Yavascan, Onder; Aksu, Nejat

    2016-08-01

    Oral methanol intoxication is common, but dermal intoxication is rare. We report a previously healthy 19-month-old female infant admitted to the emergency department (ED) with vomiting and tonic-clonic seizure. On physical examination, she was comatose and presented signs of decompensated shock with Kussmaul breathing. Her left thigh was edematous, with purple coloration. Methanol intoxication was suspected due to high anion gap metabolic acidosis (pH, 6.89; HCO3, <3 meq/L) and exposure to spirit-soaked bandages (%96 methanol) for 24 hours and 3 days. The patient's serum methanol level was 20.4 mg/dL. She was treated with fomepizole and continuous venovenous hemodialysis (CVVHD) in the pediatric intensive care unit, and methanol levels decreased to 0 mg/dL after 12 hours. During follow-up, massive edema and subarachnoid hemorrhage in the occipital lobe were detected by computed tomography of the brain. The patient died after 7 days.Although methanol intoxication occurs predominantly in adults, it must be considered in children with high-anion gap metabolic acidosis. This case report demonstrates that fatal transdermal methanol intoxication can occur in children, and it is the second report in the English literature of transdermal methanol intoxication in an infant. PMID:26196361

  14. Metabolic acidosis in a patient with type 1 diabetes mellitus complicated by methanol and amitriptyline intoxication.

    PubMed

    Celik, Umit; Celik, Tamer; Avci, Akkan; Annagur, Ali; Yilmaz, Hayri Levent; Kucukosmanoglu, Osman; Topaloglu, Ali Kemal; Daglioglu, Nebile

    2009-02-01

    Diabetic ketoacidosis (DKA) is a widely known acute metabolic complication of diabetes mellitus (DM), which can be potentially fatal. It is not difficult to diagnose when a patient with DM comes with symptoms such as coma, fruity breath, hyperglycemia, acidosis, and tachypnea. If the patient has not been diagnosed with DM before, then other sicknesses characterized by an increased anion gap should be considered. A 12-year-old boy with type 1 DM and repeated earlier admissions for DKA was admitted to the emergency department in another apparent case of DKA with coma, hyperglycemia, and profound metabolic acidosis. When his condition did not improve with initial treatment, intoxication was suspected as an alternate cause of his condition. Further laboratory tests detected methanol and amitriptyline. The patient underwent hemodialysis and recovered completely. This case illustrates that a seemingly obvious medical condition can mask serious intoxication. This report is the only publication on two different entities characterized by an increased anion gap and at the end the patient has been cured completely without any complications. PMID:19106720

  15. Reversal of severe lactic acidosis with thiamine in a renal allograft recipient

    PubMed Central

    Kumar, K. Nanda; Shah, Veena R.; Parikh, Beena K.; Sonde, Sumedha

    2015-01-01

    A 48-year-old female patient with end-stage renal failure developed unexplained severe lactic acidosis (LA) associated with hyperglycemia during robotic-assisted laparoscopic renal transplantation. Initial treatment with sodium bicarbonate and insulin infusion were ineffective in treating acidemia. Postoperatively, intravenous administration of thiamine resulted in rapid improvement of LA and blood sugar levels. Uremia and chronic hemodialysis might be the causes behind the quantitative/qualitative deficiency of thiamine unmasked during the surgical stress. Though a rare entity, acute thiamine deficiency should be considered in the differential diagnosis of unexplained severe LA in patients with chronic kidney disease and hemodialysis who undergo major surgery or admitted to critical illness care units. PMID:26180438

  16. Insulin sensitivity of muscle protein metabolism is altered in patients with chronic kidney disease and metabolic acidosis

    PubMed Central

    Garibotto, Giacomo; Sofia, Antonella; Russo, Rodolfo; Paoletti, Ernesto; Bonanni, Alice; Parodi, Emanuele L; Viazzi, Francesca; Verzola, Daniela

    2015-01-01

    An emergent hypothesis is that a resistance to the anabolic drive by insulin may contribute to loss of strength and muscle mass in patients with chronic kidney disease (CKD). We tested whether insulin resistance extends to protein metabolism using the forearm perfusion method with arterial insulin infusion in 7 patients with CKD and metabolic acidosis (bicarbonate 19 mmol/l) and 7 control individuals. Forearm glucose balance and protein turnover (2H-phenylalanine kinetics) were measured basally and in response to insulin infused at different rates for 2 h to increase local forearm plasma insulin concentration by approximately 20 and 50 μU/ml. In response to insulin, forearm glucose uptake was significantly increased to a lesser extent (−40%) in patients with CKD than controls. In addition, whereas in the controls net muscle protein balance and protein degradation were decreased by both insulin infusion rates, in patients with CKD net protein balance and protein degradation were sensitive to the high (0.035 mU/kg per min) but not the low (0.01 mU/kg per min) insulin infusion. Besides blunting muscle glucose uptake, CKD and acidosis interfere with the normal suppression of protein degradation in response to a moderate rise in plasma insulin. Thus, alteration of protein metabolism by insulin may lead to changes in body tissue composition which may become clinically evident in conditions characterized by low insulinemia. PMID:26308671

  17. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate.

    PubMed

    Goraya, Nimrit; Simoni, Jan; Jo, Chan-Hee; Wesson, Donald E

    2014-11-01

    Alkali therapy of metabolic acidosis in patients with chronic kidney disease (CKD) with plasma total CO2 (TCO2) below 22 mmol/l per KDOQI guidelines appears to preserve estimated glomerular filtration rate (eGFR). Since angiotensin II mediates GFR decline in partial nephrectomy models of CKD and even mild metabolic acidosis increases kidney angiotensin II in animals, alkali treatment of CKD-related metabolic acidosis in patients with plasma TCO2 over 22 mmol/l might preserve GFR through reduced kidney angiotensin II. To test this, we randomized 108 patients with stage 3 CKD and plasma TCO2 22-24 mmol/l to Usual Care or interventions designed to reduce dietary acid by 50% using sodium bicarbonate or base-producing fruits and vegetables. All were treated to achieve a systolic blood pressure below 130 mm Hg with regimens including angiotensin converting enzyme inhibition and followed for 3 years. Plasma TCO2 decreased in Usual Care but increased with bicarbonate or fruits and vegetables. By contrast, urine excretion of angiotensinogen, an index of kidney angiotensin II, increased in Usual Care but decreased with bicarbonate or fruits and vegetables. Creatinine-calculated and cystatin C-calculated eGFR decreased in all groups, but loss was less at 3 years with bicarbonate or fruits and vegetables than Usual Care. Thus, dietary alkali treatment of metabolic acidosis in CKD that is less severe than that for which KDOQI recommends therapy reduces kidney angiotensin II activity and preserves eGFR. PMID:24694986

  18. Sodium bicarbonate use and the risk of hypernatremia in thoracic aortic surgical patients with metabolic acidosis following deep hypothermic circulatory arrest

    PubMed Central

    Ghadimi, Kamrouz; Gutsche, Jacob T.; Ramakrishna, Harish; Setegne, Samuel L.; Jackson, Kirk R.; Augoustides, John G.; Ochroch, E. Andrew; Weiss, Stuart J.; Bavaria, Joseph E.; Cheung, Albert T.

    2016-01-01

    Objective: Metabolic acidosis after deep hypothermic circulatory arrest (DHCA) for thoracic aortic operations is commonly managed with sodium bicarbonate (NaHCO3). The purpose of this study was to determine the relationships between total NaHCO3 dose and the severity of metabolic acidosis, duration of mechanical ventilation, duration of vasoactive infusions, and Intensive Care Unit (ICU) or hospital length of stay (LOS). Methods: In a single center, retrospective study, 87 consecutive elective thoracic aortic operations utilizing DHCA, were studied. Linear regression analysis was used to test for the relationships between the total NaHCO3 dose administered through postoperative day 2, clinical variables, arterial blood gas values, and short-term clinical outcomes. Results: Seventy-five patients (86%) received NaHCO3. Total NaHCO3 dose averaged 136 ± 112 mEq (range: 0.0–535 mEq) per patient. Total NaHCO3 dose correlated with minimum pH (r = 0.41, P < 0.0001), minimum serum bicarbonate (r = −0.40, P < 0.001), maximum serum lactate (r = 0.46, P = 0.007), duration of metabolic acidosis (r = 0.33, P = 0.002), and maximum serum sodium concentrations (r = 0.29, P = 0.007). Postoperative hypernatremia was present in 67% of patients and peaked at 12 h following DHCA. Eight percent of patients had a serum sodium ≥ 150 mEq/L. Total NaHCO3 dose did not correlate with anion gap, serum chloride, not the duration of mechanical ventilator support, vasoactive infusions, ICU or hospital LOS. Conclusion: Routine administration of NaHCO3 was common for the management of metabolic acidosis after DHCA. Total dose of NaHCO3 was a function of the severity and duration of metabolic acidosis. NaHCO3 administration contributed to postoperative hypernatremia that was often severe. The total NaHCO3 dose administered was unrelated to short-term clinical outcomes. PMID:27397449

  19. [A case of metabolic acidosis and tetany after ileal neobladder replacement].

    PubMed

    Nomura, Hironori; Kou, Yohko; Kinjyo, Takanori; Nonomura, Daichi; Yoneda, Suguru; Yamamoto, Yoshiyuki; Tei, Norihide; Takada, Shingo; Matsumiya, Kiyomi

    2013-08-01

    A 64-year-old man visited our hospital with the complaint of macrohematuria and bilateral hydronephrosis. He had undergone total cystectomy and ileal neobladder replacement under the diagnosis of muscle invasive bladder cancer (cT2bN0M0). Tetany due to hyperventilation syndrome appeared on postoperative day 42. Blood gas analysis showed metabolic acidosis (pH 7.260, pO2 148.1 mmHg, pCO2 20.7 mmHg, HCO3 9.1 mmHg, BE -16.0 mmol/l). His condition was immediately improved after a urethral catheter was placed and sodium bicarbonate was administered. After re-removal of the urethral catheter, however, hyperventilation syndrome recurred. He was discharged from the hospital with the urethral catheter placed. PMID:23995533

  20. Gene expression profile of duodenal epithelial cells in response to chronic metabolic acidosis.

    PubMed

    Wongdee, Kannikar; Teerapornpuntakit, Jarinthorn; Riengrojpitak, Suda; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2009-01-01

    Chronic metabolic acidosis (CMA) affects ion transport, permeability, and metabolism of the intestinal absorptive cells. Most effects of CMA on the intestine are long-term adaptations at genomic level. To identify the CMA-regulated genes, the Illumina's microarray featuring high-performance BeadArray technology was performed on RNA samples from the rat duodenal epithelial cells exposed to long-standing acidemia. After 21 days of CMA, we found 423 transcripts upregulated and 261 transcripts downregulated. Gene ontology analysis suggested effects of CMA on cellular processes, such as cell adhesion, proliferation, fuel metabolism, and biotransformation. Interestingly, 27 upregulated transcripts (e.g., Aqp1, Cacnb1, Atp1a2, Kcnab2, and Slc2a1) and 13 downregulated transcripts (e.g., Slc17a7, Slc9a4, and Slc30a3) are involved in the absorption of water, ions, and nutrients. Some upregulated genes, such as Slc38a5 and Slc1a7 encoding glutamine transporters, may be parts of the total body adaptation to alleviate negative nitrogen balance. Therefore, the present results provided a novel genome-wide information for further investigations of the mechanism of CMA effect on the intestine. PMID:18979233

  1. Respiratory acidosis

    MedlinePlus

    Ventilatory failure; Respiratory failure; Acidosis - respiratory ... Causes of respiratory acidosis include: Diseases of the airways (such as asthma and chronic obstructive lung disease ) Diseases of the chest ( ...

  2. Intra-operative correction of acidosis, coagulopathy and hypothermia in combat casualties with severe haemorrhagic shock.

    PubMed

    Morrison, J J; Ross, J D; Poon, H; Midwinter, M J; Jansen, J O

    2013-08-01

    We assessed acidosis, coagulopathy and hypothermia, before and after surgery in 51 combat troops operated on for severe blast injury. Patients were transfused a median (IQR [range]) of 27 (17-38 [5-84]) units of red cell concentrate, 27 (16-38 [4-83]) units of plasma, 2.0 (0.5-3.5 [0-13.0]) units of cryoprecipitate and 4 (2-6 [0-17]) pools of platelets. The pH, base excess, prothrombin time and temperature increased: from 7.19 (7.10-7.29 [6.50-7.49]) to 7.45 (7.40-7.51 [7.15-7.62]); from -9.0 (-13.5 to -4.5 [-28 to -2]) mmol.l⁻¹ to 4.5 (1.0-8.0 [-7 to +11]) mmol.l⁻¹; from 18 (15-21 [9-24]) s to 14 (11-18 [9-21]) s; and from 36.1 (35.1-37.1 [33.0-38.1]) °C to 37.4 (37.0-37.9 [36.0-38.0]) °C, respectively. Contemporary intra-operative resuscitation strategies can normalise the physiological derangements caused by haemorrhagic shock. PMID:23724784

  3. Recent Advances in Targeting Tumor Energy Metabolism with Tumor Acidosis as a Biomarker of Drug Efficacy

    PubMed Central

    Akhenblit, Paul J; Pagel, Mark D

    2016-01-01

    Cancer cells employ a deregulated cellular metabolism to leverage survival and growth advantages. The unique tumor energy metabolism presents itself as a promising target for chemotherapy. A pool of tumor energy metabolism targeting agents has been developed after several decades of efforts. This review will cover glucose and fatty acid metabolism, PI3K/AKT/mTOR, HIF-1 and glutamine pathways in tumor energy metabolism, and how they are being exploited for treatments and therapies by promising pre-clinical or clinical drugs being developed or investigated. Additionally, acidification of the tumor extracellular microenvironment is hypothesized to be the result of active tumor metabolism. This implies that tumor extracellular pH (pHe) can be a biomarker for assessing the efficacy of therapies that target tumor metabolism. Several translational molecular imaging methods (PET, MRI) for interrogating tumor acidification and its suppression are discussed as well. PMID:26962408

  4. Metabolic acidosis induced by Plasmodium falciparum intraerythrocytic stages alters blood–brain barrier integrity

    PubMed Central

    Zougbédé, Sergine; Miller, Florence; Ravassard, Philippe; Rebollo, Angelita; Cicéron, Liliane; Couraud, Pierre-Olivier; Mazier, Dominique; Moreno, Alicia

    2011-01-01

    The pathogenesis of cerebral malaria (CM) remains largely unknown. There is growing evidence that combination of both parasite and host factors could be involved in blood–brain barrier (BBB) breakdown. However, lack of adequate in vitro model of human BBB so far hampered molecular studies. In this article, we propose the use of hCMEC/D3 cells, a well-established human cerebral microvascular endothelial cell (EC) line, to study BBB breakdown induced by Plasmodium falciparum-parasitized red blood cells and environmental conditions. We show that coculture of parasitized erythrocytes with hCMEC/D3 cells induces cell adhesion and paracellular permeability increase, which correlates with disorganization of zonula occludens protein 1 expression pattern. Permeability increase and modification of tight junction proteins distribution are cytoadhesion independent. Finally, we show that permeability of hCMEC/D3 cell monolayers is mediated through parasite induced metabolic acidosis, which in turns correlates with apoptosis of parasitized erythrocytes. This new coculture model represents a very useful tool, which will improve the knowledge of BBB breakdown and the development of adjuvant therapies, together with antiparasitic drugs. PMID:20683453

  5. Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation.

    PubMed

    Corbet, Cyril; Pinto, Adán; Martherus, Ruben; Santiago de Jesus, João Pedro; Polet, Florence; Feron, Olivier

    2016-08-01

    Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted cancer cells. FA-derived acetyl-CoA not only fuels the tricarboxylic acid (TCA) cycle and supports tumor cell respiration under acidosis, but also contributes to non-enzymatic mitochondrial protein hyperacetylation, thereby restraining complex I activity and ROS production. Also, while oxidative metabolism of glutamine supports the canonical TCA cycle in acidic conditions, reductive carboxylation of glutamine-derived α-ketoglutarate sustains FA synthesis. Concomitance of FA oxidation and synthesis is enabled upon sirtuin-mediated histone deacetylation and consecutive downregulation of acetyl-CoA carboxylase ACC2 making mitochondrial fatty acyl-CoA degradation compatible with cytosolic lipogenesis. Perturbations of these regulatory processes lead to tumor growth inhibitory effects further identifying FA metabolism as a critical determinant of tumor cell proliferation under acidosis. PMID:27508876

  6. Perinatal inflammation/infection and its association with correction of metabolic acidosis in hypoxic-ischemic encephalopathy

    PubMed Central

    Johnson, CT; Burd, I; Raghunathan, R; Northington, FJ; Graham, EM

    2016-01-01

    OBJECTIVE To investigate the decreased response to hypothermia in neonates with hypoxic-ischemic encephalopathy (HIE) and infection, we sought to determine the association of fetal inflammation/infection with perinatal metabolic acidosis. STUDY DESIGN We performed a retrospective cohort study of neonates with suspected HIE started on whole-body hypothermia within 6 h of birth that had a cord gas at delivery and placental pathology performed. Neonates were compared based on the presence of clinical and histologic chorioamnionitis. The cord gas at delivery was compared with the initial arterial gas after birth. RESULTS In all, 50 out of 67 (74.6%) neonates admitted for therapeutic hypothermia met inclusion criteria. Chorioamnionitis did not affect the cord gas at delivery, but both clinical and histologic chorioamnionitis were associated with a significantly increased metabolic acidosis on the initial neonatal arterial gas. CONCLUSION Chorioamnionitis, diagnosed both clinically and histologically, is associated with a persistent state of acidosis in neonates with HIE that may contribute to worse neurologic outcomes. PMID:26796123

  7. Effect of intercalated cell-specific Rh C glycoprotein deletion on basal and metabolic acidosis-stimulated renal ammonia excretion

    PubMed Central

    Lee, Hyun-Wook; Verlander, Jill W.; Bishop, Jesse M.; Nelson, Raoul D.; Handlogten, Mary E.

    2010-01-01

    Rh C glycoprotein (Rhcg) is an NH3-specific transporter expressed in both intercalated cells (IC) and principal cells (PC) in the renal collecting duct. Recent studies show that deletion of Rhcg from both intercalated and principal cells inhibits both basal and acidosis-stimulated renal ammonia excretion. The purpose of the current studies was to better understand the specific role of Rhcg expression in intercalated cells in basal and metabolic acidosis-stimulated renal ammonia excretion. We generated mice with intercalated cell-specific Rhcg deletion (IC-Rhcg-KO) using Cre-loxP techniques; control (C) mice were floxed Rhcg but Cre negative. Under basal conditions, IC-Rhcg-KO and C mice excreted urine with similar ammonia content and pH. Mice were then acid loaded by adding HCl to their diet. Ammonia excretion after acid loading increased similarly in IC-Rhcg-KO and C mice during the first 2 days of acid loading but on day 3 was significantly less in IC-Rhcg-KO than in C mice. During the first 2 days of acid loading, urine was significantly more acidic in IC-Rhcg-KO mice than in C mice; there was no difference on day 3. In IC-Rhcg-KO mice, acid loading increased principal cell Rhcg expression in both the cortex and outer medulla as well as expression of another ammonia transporter, Rh glycoprotein B (Rhbg), in principal cells in the outer medulla. We conclude that 1) Rhcg expression in intercalated cells is necessary for the normal renal response to metabolic acidosis; 2) principal cell Rhcg contributes to both basal and acidosis-stimulated ammonia excretion; and 3) adaptations in Rhbg expression occur in response to acid-loading. PMID:20462967

  8. Severe lactic acidosis and multiorgan failure due to thiamine deficiency during total parenteral nutrition

    PubMed Central

    Ramsi, Musaab; Mowbray, Claire; Hartman, Gary; Pageler, Natalie

    2014-01-01

    A 16-year-old perioperative paediatric patient presented with refractory lactic acidosis and multiorgan failure due to thiamine-deficient total parenteral nutrition during a recent national multivitamin shortage. Urgent empiric administration of intravenous thiamine resulted in prompt recovery from this life-threatening condition. Despite readily available treatment, a high index of suspicion is required to prevent cardiovascular collapse and mortality. PMID:24895398

  9. Lactic acidosis

    MedlinePlus

    Lactic acidosis is when lactic acid builds up in the bloodstream faster than it can be removed. Lactic acid ... The most common cause of lactic acidosis is intense exercise. ... as: AIDS Cancer Kidney failure Respiratory failure Sepsis A ...

  10. Sympathetic activation in exercise is not dependent on muscle acidosis. Direct evidence from studies in metabolic myopathies

    NASA Technical Reports Server (NTRS)

    Vissing, J.; Vissing, S. F.; MacLean, D. A.; Saltin, B.; Quistorff, B.; Haller, R. G.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    Muscle acidosis has been implicated as a major determinant of reflex sympathetic activation during exercise. To test this hypothesis we studied sympathetic exercise responses in metabolic myopathies in which muscle acidosis is impaired or augmented during exercise. As an index of reflex sympathetic activation to muscle, microneurographic measurements of muscle sympathetic nerve activity (MSNA) were obtained from the peroneal nerve. MSNA was measured during static handgrip exercise at 30% of maximal voluntary contraction force to exhaustion in patients in whom exercise-induced muscle acidosis is absent (seven myophosphorylase deficient patients; MD [McArdle's disease], and one patient with muscle phosphofructokinase deficiency [PFKD]), augmented (one patient with mitochondrial myopathy [MM]), or normal (five healthy controls). Muscle pH was monitored by 31P-magnetic resonance spectroscopy during handgrip exercise in the five control subjects, four MD patients, and the MM and PFKD patients. With handgrip to exhaustion, the increase in MSNA over baseline (bursts per minute [bpm] and total activity [%]) was not impaired in patients with MD (17+/-2 bpm, 124+/-42%) or PFKD (65 bpm, 307%), and was not enhanced in the MM patient (24 bpm, 131%) compared with controls (17+/-4 bpm, 115+/-17%). Post-handgrip ischemia studied in one McArdle patient, caused sustained elevation of MSNA above basal suggesting a chemoreflex activation of MSNA. Handgrip exercise elicited an enhanced drop in muscle pH of 0.51 U in the MM patient compared with the decrease in controls of 0.13+/-0.02 U. In contrast, muscle pH increased with exercise in MD by 0.12+/-0.05 U and in PFKD by 0.01 U. In conclusion, patients with glycogenolytic, glycolytic, and oxidative phosphorylation defects show normal muscle sympathetic nerve responses to static exercise. These findings indicate that muscle acidosis is not a prerequisite for sympathetic activation in exercise.

  11. Acute but not chronic metabolic acidosis potentiates the acetylcholine-induced reduction in blood pressure: an endothelium-dependent effect

    PubMed Central

    Celotto, A.C.; Ferreira, L.G.; Capellini, V.K.; Albuquerque, A.A.S.; Rodrigues, A.J.; Evora, P.R.B.

    2015-01-01

    Metabolic acidosis has profound effects on vascular tone. This study investigated the in vivo effects of acute metabolic acidosis (AMA) and chronic metabolic acidosis (CMA) on hemodynamic parameters and endothelial function. CMA was induced by ad libitum intake of 1% NH4Cl for 7 days, and AMA was induced by a 3-h infusion of 6 M NH4Cl (1 mL/kg, diluted 1:10). Phenylephrine (Phe) and acetylcholine (Ach) dose-response curves were performed by venous infusion with simultaneous venous and arterial blood pressure monitoring. Plasma nitrite/nitrate (NOx) was measured by chemiluminescence. The CMA group had a blood pH of 7.15±0.03, which was associated with reduced bicarbonate (13.8±0.98 mmol/L) and no change in the partial pressure of arterial carbon dioxide (PaCO2). The AMA group had a pH of 7.20±0.01, which was associated with decreases in bicarbonate (10.8±0.54 mmol/L) and PaCO2 (47.8±2.54 to 23.2±0.74 mmHg) and accompanied by hyperventilation. Phe or ACh infusion did not affect arterial or venous blood pressure in the CMA group. However, the ACh infusion decreased the arterial blood pressure (ΔBP: -28.0±2.35 mm Hg [AMA] to -4.5±2.89 mmHg [control]) in the AMA group. Plasma NOx was normal after CMA but increased after AMA (25.3±0.88 to 31.3±0.54 μM). These results indicate that AMA, but not CMA, potentiated the Ach-induced decrease in blood pressure and led to an increase in plasma NOx, reinforcing the effect of pH imbalance on vascular tone and blood pressure control. PMID:26648089

  12. Acute but not chronic metabolic acidosis potentiates the acetylcholine-induced reduction in blood pressure: an endothelium-dependent effect.

    PubMed

    Celotto, A C; Ferreira, L G; Capellini, V K; Albuquerque, A A S; Rodrigues, A J; Evora, P R B

    2016-02-01

    Metabolic acidosis has profound effects on vascular tone. This study investigated the in vivo effects of acute metabolic acidosis (AMA) and chronic metabolic acidosis (CMA) on hemodynamic parameters and endothelial function. CMA was induced by ad libitum intake of 1% NH4Cl for 7 days, and AMA was induced by a 3-h infusion of 6 M NH4Cl (1 mL/kg, diluted 1:10). Phenylephrine (Phe) and acetylcholine (Ach) dose-response curves were performed by venous infusion with simultaneous venous and arterial blood pressure monitoring. Plasma nitrite/nitrate (NOx) was measured by chemiluminescence. The CMA group had a blood pH of 7.15±0.03, which was associated with reduced bicarbonate (13.8±0.98 mmol/L) and no change in the partial pressure of arterial carbon dioxide (PaCO2). The AMA group had a pH of 7.20±0.01, which was associated with decreases in bicarbonate (10.8±0.54 mmol/L) and PaCO2 (47.8±2.54 to 23.2±0.74 mmHg) and accompanied by hyperventilation. Phe or ACh infusion did not affect arterial or venous blood pressure in the CMA group. However, the ACh infusion decreased the arterial blood pressure (ΔBP: -28.0±2.35 mm Hg [AMA] to -4.5±2.89 mmHg [control]) in the AMA group. Plasma NOx was normal after CMA but increased after AMA (25.3±0.88 to 31.3±0.54 μM). These results indicate that AMA, but not CMA, potentiated the Ach-induced decrease in blood pressure and led to an increase in plasma NOx, reinforcing the effect of pH imbalance on vascular tone and blood pressure control. PMID:26648089

  13. A Comparison of Treating Metabolic Acidosis in CKD Stage 4 Hypertensive Kidney Disease with Fruits and Vegetables or Sodium Bicarbonate

    PubMed Central

    Goraya, Nimrit; Simoni, Jan; Jo, Chan-Hee

    2013-01-01

    Summary Background and objectives Current guidelines recommend Na+-based alkali for CKD with metabolic acidosis and plasma total CO2 (PTCO2) < 22 mM. Because diets in industrialized societies are typically acid-producing, we compared base-producing fruits and vegetables with oral NaHCO3 (HCO3) regarding the primary outcome of follow-up estimated GFR (eGFR) and secondary outcomes of improved metabolic acidosis and reduced urine indices of kidney injury. Design, setting, participants, & measurements Individuals with stage 4 (eGFR, 15–29 ml/min per 1.73 m2) CKD due to hypertensive nephropathy, had a PTCO2 level < 22 mM, and were receiving angiotensin-converting enzyme inhibition were randomly assigned to 1 year of daily oral NaHCO3 at 1.0 mEq/kg per day (n=35) or fruits and vegetables dosed to reduce dietary acid by half (n=36). Results Plasma cystatin C–calculated eGFR did not differ at baseline and 1 year between groups. One-year PTCO2 was higher than baseline in the HCO3 group (21.2±1.3 versus 19.5±1.5 mM; P<0.01) and the fruits and vegetables group (19.9±1.7 versus 19.3±1.9 mM; P<0.01), consistent with improved metabolic acidosis, and was higher in the HCO3 than the fruits and vegetable group (P<0.001). One-year urine indices of kidney injury were lower than baseline in both groups. Plasma [K+] did not increase in either group. Conclusions One year of fruits and vegetables or NaHCO3 in individuals with stage 4 CKD yielded eGFR that was not different, was associated with higher-than-baseline PTCO2, and was associated with lower-than-baseline urine indices of kidney injury. The data indicate that fruits and vegetables improve metabolic acidosis and reduce kidney injury in stage 4 CKD without producing hyperkalemia. PMID:23393104

  14. Dichloroacetate attenuates myocardial acidosis and metabolic changes induced by partial occlusion of the coronary artery in dogs.

    PubMed

    Sakai, K; Ichihara, K; Nasa, Y; Kamigaki, M; Abiko, Y

    1990-01-01

    The present study was undertaken to examine whether dichloroacetate, which inhibits pyruvate dehydrogenase kinase and, therefore, increases the activity of pyruvate dehydrogenase, attenuates myocardial acidosis and metabolic changes induced by coronary occlusion. In dogs anesthetized with pentobarbital, the left anterior descending coronary artery was incompletely occluded to reduce the left anterior descending flow to a half to one third of the original flow (partial occlusion) to produce myocardial (regional) ischemia. Partial occlusion was continued for 90 min, and a bolus injection of saline or dichloroacetate was made intravenously 30 min after the onset of occlusion. Partial occlusion decreased myocardial pH significantly. An injection of dichloroacetate (150 mg/kg) increased myocardial pH that had been lowered by partial occlusion. Myocardial metabolites were measured in other dogs. Partial occlusion decreased the myocardial levels of adenosine triphosphate, creatine phosphate and energy charge potential, and increased that of lactate significantly, without affecting the myocardial levels of pyruvate and nonesterified fatty acids. Dichloroacetate attenuated the ischemia-induced changes in the myocardial levels of adenosine triphosphate, creatine phosphate, energy charge potential and lactate. These results indicate that dichloroacetate attenuates the myocardial acidosis and metabolic changes during coronary partial occlusion. PMID:2095718

  15. Hypokalemic quadriparesis and rhabdomyolysis as a rare presentation of distal renal tubular acidosis.

    PubMed

    Ahmad Bhat, Manzoor; Ahmad Laway, Bashir; Mustafa, Farhat; Shafi Kuchay, Mohammad; Mubarik, Idrees; Ahmad Palla, Nazir

    2014-01-01

    Distal renal tubular acidosis is a syndrome of abnormal urine acidification and is characterized by hyperchloremic metabolic acidosis, hypokalemia, hypercalciurea, nephrocalcinosis and nephrolithiasis. Despite the presence of persistent hypokalemia, acute muscular paralysis is rarely encountered in males. Here, we will report an eighteen year old male patient who presented with flaccid quadriparesis and was subsequently found to have rhabdomyolysis, severe short stature, skeletal deformities and primary distal renal tubular acidosis. PMID:25250276

  16. Atypical distal renal tubular acidosis confirmed by mutation analysis.

    PubMed

    Weber, S; Soergel, M; Jeck, N; Konrad, M

    2000-12-01

    In autosomal dominant distal renal tubular acidosis type I (dRTA) impaired hydrogen ion secretion is associated with metabolic acidosis, hyperchloremic hypokalemia, hypercalciuria, nephrocalcinosis, and/or nephrolithiasis. A retardation of growth is commonly observed. In this report we present a family with autosomal dominant dRTA with an atypical and discordant clinical picture. The father presented with severe nephrocalcinosis, nephrolithiasis, and isosthenuria but metabolic acidosis was absent. His 6-year-old daughter, however, suffered from metabolic acidosis, hypokalemia, and hypercalciuria. In addition, sonography revealed multiple bilateral renal cysts but no nephrocalcinosis. Mutation analysis of the AE1 gene coding for the renal Cl-/HCO3(-)-exchanger AE1 displayed a heterozygous Arg589Cys exchange in both patients but not in the healthy family members. This point mutation is frequently associated with autosomal dominant dRTA. Diagnosis of autosomal dominant dRTA is supported in this family by results of AE1 mutation analysis. PMID:11149111

  17. Extracorporeal treatment with high-volume continuous venovenous hemodiafiltration and charcoal-based sorbent hemoperfusion for severe metformin-associated lactic acidosis

    PubMed Central

    Garg, Suneel Kumar; Singh, Omender; Deepak, Desh; Singh, Akhilesh; Yadav, Rohit; Vashist, Kirti

    2016-01-01

    We present a case of a 49-year-old female with an alleged history of ingestion of approximately 100 tablets of metformin (850 mg each). Investigations revealed severe lactic acidosis with lactate levels of 13.5 mmol/L and pH of 7.17. This indicates severe toxicity and is associated with a high mortality. Charcoal-based sorbent hemoperfusion was done as a desperate effort, as patient continued to deteriorate despite supportive care and high-volume continuous venovenous hemodiafiltration. The patient survived despite metformin-associated lactic acidosis related to severe metformin toxicity. PMID:27275079

  18. Extracorporeal treatment with high-volume continuous venovenous hemodiafiltration and charcoal-based sorbent hemoperfusion for severe metformin-associated lactic acidosis.

    PubMed

    Garg, Suneel Kumar; Singh, Omender; Deepak, Desh; Singh, Akhilesh; Yadav, Rohit; Vashist, Kirti

    2016-05-01

    We present a case of a 49-year-old female with an alleged history of ingestion of approximately 100 tablets of metformin (850 mg each). Investigations revealed severe lactic acidosis with lactate levels of 13.5 mmol/L and pH of 7.17. This indicates severe toxicity and is associated with a high mortality. Charcoal-based sorbent hemoperfusion was done as a desperate effort, as patient continued to deteriorate despite supportive care and high-volume continuous venovenous hemodiafiltration. The patient survived despite metformin-associated lactic acidosis related to severe metformin toxicity. PMID:27275079

  19. Lactic acidosis associated with cerebellar vermal atrophy and cardiomyopathy.

    PubMed

    Challa, V R; Markesbery, W R; Baumann, R J; Noonan, J A

    1978-08-01

    The association of fluctuating neurological signs and congestive cardiomyopathy with chronic lactic acidosis is described in a 5 1/2 year-old-boy who ultimately succumbed to congestive heart failure. The autopsy findings included severe atrophy of the anterior cerebellar vermis and a hypertrophied heart with left sided endocardial fibroelastosis. Skeletal and cardial muscle calcification was prominent and probably due to the effect of intracellular metabolic alterations associated with lactic acidosis. A review of the literature shows that the combination of cardiomyopathy, isolated atrophy of cerebellar vermis and muscle fiber calcification have not been reported in association with idiopathic lactic acidosis previously. PMID:152418

  20. Glucocorticoid activity and metabolism with NaCl-induced low-grade metabolic acidosis and oral alkalization: results of two randomized controlled trials.

    PubMed

    Buehlmeier, Judith; Remer, Thomas; Frings-Meuthen, Petra; Maser-Gluth, Christiane; Heer, Martina

    2016-04-01

    Low-grade metabolic acidosis (LGMA), as induced by high dietary acid load or sodium chloride (NaCl) intake, has been shown to increase bone and protein catabolism. Underlying mechanisms are not fully understood, but from clinical metabolic acidosis interactions of acid-base balance with glucocorticoid (GC) metabolism are known. We aimed to investigate GC activity/metabolism under alkaline supplementation and NaCl-induced LGMA. Eight young, healthy, normal-weight men participated in two crossover designed interventional studies. In Study A, two 10-day high NaCl diet (32 g/d) periods were conducted, one supplemented with 90 mmol KHCO3/day. In Study B, participants received a high and a low NaCl diet (31 vs. 3 g/day), each for 14 days. During low NaCl, the diet was moderately acidified by replacement of a bicarbonate-rich mineral water (consumed during high NaCl) with a non-alkalizing drinking water. In repeatedly collected 24-h urine samples, potentially bioactive-free GCs (urinary-free cortisol + free cortisone) were analyzed, as well as tetrahydrocortisol (THF), 5α-THF, and tetrahydrocortisone (THE). With supplementation of 90 mmol KHCO3, the marker of total adrenal GC secretion (THF + 5α-THF + THE) dropped (p = 0.047) and potentially bioactive-free GCs were reduced (p = 0.003). In Study B, however, GC secretion and potentially bioactive-free GCs did not exhibit the expected fall with NaCl-reduction as net acid excretion was raised by 30 mEq/d. Diet-induced acidification/alkalization affects GC activity and metabolism, which in case of long-term ingestion of habitually acidifying western diets may constitute an independent risk factor for bone degradation and cardiometabolic diseases. PMID:26349936

  1. Respiratory acidosis

    MedlinePlus

    ... when the lungs cannot remove all of the carbon dioxide the body produces. This causes body fluids, especially ... Acute respiratory acidosis is a condition in which carbon dioxide builds up very quickly, before the kidneys can ...

  2. Endothelin-1/endothelin-B receptor–mediated increases in NHE3 activity in chronic metabolic acidosis

    PubMed Central

    Laghmani, Kamel; Preisig, Patricia A.; Moe, Orson W.; Yanagisawa, Masashi; Alpern, Robert J.

    2001-01-01

    Decreases in blood pH activate NHE3, the proximal tubular apical membrane Na/H antiporter. In cultured renal epithelial cells, activation of the endothelin-B (ETB) receptor increases NHE3 activity. To examine the role of the ETB receptor in the response to acidosis in vivo, the present studies examined ETB receptor–deficient mice, rescued from neonatal lethality by expression of a dopamine β-hydroxylase promoter/ETB receptor transgene (Tg/Tg:ETB–/– mice). In proximal tubule suspensions from Tg/Tg:ETB+/– mice, 10–8 M endothelin-1 (ET-1) increased NHE3 activity, but this treatment had no effect on tubules from Tg/Tg:ETB–/– mice. Acid ingestion for 7 days caused a greater decrease in blood HCO3– concentration in Tg/Tg:ETB–/– mice compared with Tg/Tg:ETB+/+ and Tg/Tg:ETB+/– mice. Whereas acid ingestion increased apical membrane NHE3 by 42–46% in Tg/Tg:ETB+/+ and Tg/Tg:ETB+/– mice, it had no effect on NHE3 in Tg/Tg:ETB–/– mice. In C57BL/6 mice, excess acid ingestion increased renal cortical preproET-1 mRNA expression 2.4-fold and decreased preproET-3 mRNA expression by 37%. On a control diet, Tg/Tg:ETB–/– mice had low rates of ammonium excretion, which could not be attributed to an inability to acidify the urine, as well as hypercitraturia, with increased titratable acid excretion. Acid ingestion increased ammonium excretion, citrate absorption, and titratable acid excretion to the same levels in Tg/Tg:ETB–/– and Tg/Tg:ETB+/+ mice. In conclusion, metabolic acidosis increases ET-1 expression, which increases NHE3 activity via the ETB receptor. PMID:11413164

  3. Rumen microbial abundance and fermentation profile during severe subacute ruminal acidosis and its modulation by plant derived alkaloids in vitro.

    PubMed

    Mickdam, Elsayed; Khiaosa-Ard, Ratchaneewan; Metzler-Zebeli, Barbara U; Klevenhusen, Fenja; Chizzola, Remigius; Zebeli, Qendrim

    2016-06-01

    Rumen microbiota have important metabolic functions for the host animal. This study aimed at characterizing changes in rumen microbial abundances and fermentation profiles using a severe subacute ruminal acidosis (SARA) in vitro model, and to evaluate a potential modulatory role of plant derived alkaloids (PDA), containing quaternary benzophenanthridine and protopine alkaloids, of which sanguinarine and chelerythrine were the major bioactive compounds. Induction of severe SARA strongly affected the rumen microbial composition and fermentation variables without suppressing the abundance of total bacteria. Protozoa and fungi were more sensitive to the low ruminal pH condition than bacteria. Induction of severe SARA clearly depressed degradation of fiber (P < 0.001), which came along with a decreased relative abundance of fibrolytic Ruminococcus albus and Fibrobacter succinogenes (P < 0.001). Under severe SARA conditions, the genus Prevotella, Lactobacillus group, Megasphaera elsdenii, and Entodinium spp. (P < 0.001) were more abundant, whereas Ruminobacter amylophilus was less abundant. SARA largely suppressed methane formation (-70%, P < 0.001), although total methanogenic 16S rRNA gene abundance was not affected. According to principal component analysis, Methanobrevibacter spp. correlated to methane concentration. Addition of PDA modulated ruminal fermentation under normal conditions such as enhanced (P < 0.05) concentration of total SCFA, propionate and valerate, and increased (P < 0.05) degradation of crude protein compared with the unsupplemented control diet. Our results indicate strong shifts in the microbial community during severe SARA compared to normal conditions. Supplementation of PDA positively modulates ruminal fermentation under normal ruminal pH conditions. PMID:26868619

  4. Tonometry revisited: perfusion-related, metabolic, and respiratory components of gastric mucosal acidosis in acute cardiorespiratory failure.

    PubMed

    Jakob, Stephan M; Parviainen, Ilkka; Ruokonen, Esko; Kogan, Alexander; Takala, Jukka

    2008-05-01

    Mucosal pH (pHi) is influenced by local perfusion and metabolism (mucosal-arterial pCO2 gradient, DeltapCO2), systemic metabolic acidosis (arterial bicarbonate), and respiration (arterial pCO2). We determined these components of pHi and their relation to outcome during the first 24 h of intensive care. We studied 103 patients with acute respiratory or circulatory failure (age, 63+/-2 [mean+/-SEM]; Acute Physiology and Chronic Health Evaluation II score, 20+/-1; Sequential Organ Failure Assessment score, 8+/-0). pHi, and the effects of bicarbonate and arterial and mucosal pCO2 on pHi, were assessed at admission, 6, and 24 h. pHi was reduced (at admission, 7.27+/-0.01) due to low arterial bicarbonate and increased DeltapCO2. Low pHi (<7.32) at admission (n=58; mortality, 29% vs. 13% in those with pHi>or=7.32 at admission; P=0.061) was associated with an increased DeltapCO2 in 59% of patients (mortality, 47% vs. 4% for patients with low pHi and normal DeltapCO2; P=0.0003). An increased versus normal DeltapCO2, regardless of pHi, was associated with increased mortality at admission (51% vs. 5%; P<0.0001; n=39) and at 6 h (34% vs. 13%; P=0.016; n=45). A delayed normalization or persistently low pHi (n=47) or high DeltapCO2 (n=25) was associated with high mortality (low pHi [34%] vs. high DeltapCO2 [60%]; P=0.046). In nonsurvivors, hypocapnia increased pHi at baseline, 6, and 24 h (all Pacidosis. Inadequate tissue perfusion may persist despite stable hemodynamics and contributes to poor outcome. PMID:18004228

  5. Metabolic multianalyte microphysiometry reveals extracellular acidosis is an essential mediator of neuronal preconditioning.

    PubMed

    McKenzie, Jennifer R; Palubinsky, Amy M; Brown, Jacquelynn E; McLaughlin, Bethann; Cliffel, David E

    2012-07-18

    Metabolic adaptation to stress is a crucial yet poorly understood phenomenon, particularly in the central nervous system (CNS). The ability to identify essential metabolic events which predict neuronal fate in response to injury is critical to developing predictive markers of outcome, for interpreting CNS spectroscopic imaging, and for providing a richer understanding of the relevance of clinical indices of stress which are routinely collected. In this work, real-time multianalyte microphysiometry was used to dynamically assess multiple markers of aerobic and anaerobic respiration through simultaneous electrochemical measurement of extracellular glucose, lactate, oxygen, and acid. Pure neuronal cultures and mixed cultures of neurons and glia were compared following a 90 min exposure to aglycemia. This stress was cytotoxic to neurons yet resulted in no appreciable increase in cell death in age-matched mixed cultures. The metabolic profile of the cultures was similar in that aglycemia resulted in decreases in extracellular acidification and lactate release in both pure neurons and mixed cultures. However, oxygen consumption was only diminished in the neuron enriched cultures. The differences became more pronounced when cells were returned to glucose-containing media upon which extracellular acidification and oxygen consumption never returned to baseline in cells fated to die. Taken together, these data suggest that lactate release is not predictive of neuronal survival. Moreover, they reveal a previously unappreciated relationship of astrocytes in maintaining oxygen uptake and a correlation between metabolic recovery of neurons and extracellular acidification. PMID:22860220

  6. Metabolic Multianalyte Microphysiometry Reveals Extracellular Acidosis is an Essential Mediator of Neuronal Preconditioning

    PubMed Central

    2012-01-01

    Metabolic adaptation to stress is a crucial yet poorly understood phenomenon, particularly in the central nervous system (CNS). The ability to identify essential metabolic events which predict neuronal fate in response to injury is critical to developing predictive markers of outcome, for interpreting CNS spectroscopic imaging, and for providing a richer understanding of the relevance of clinical indices of stress which are routinely collected. In this work, real-time multianalyte microphysiometry was used to dynamically assess multiple markers of aerobic and anaerobic respiration through simultaneous electrochemical measurement of extracellular glucose, lactate, oxygen, and acid. Pure neuronal cultures and mixed cultures of neurons and glia were compared following a 90 min exposure to aglycemia. This stress was cytotoxic to neurons yet resulted in no appreciable increase in cell death in age-matched mixed cultures. The metabolic profile of the cultures was similar in that aglycemia resulted in decreases in extracellular acidification and lactate release in both pure neurons and mixed cultures. However, oxygen consumption was only diminished in the neuron enriched cultures. The differences became more pronounced when cells were returned to glucose-containing media upon which extracellular acidification and oxygen consumption never returned to baseline in cells fated to die. Taken together, these data suggest that lactate release is not predictive of neuronal survival. Moreover, they reveal a previously unappreciated relationship of astrocytes in maintaining oxygen uptake and a correlation between metabolic recovery of neurons and extracellular acidification. PMID:22860220

  7. Lactate Clearance and Vasopressor Seem to Be Predictors for Mortality in Severe Sepsis Patients with Lactic Acidosis Supplementing Sodium Bicarbonate: A Retrospective Analysis

    PubMed Central

    Kim, Eun Bin; Jeong, Hyo Jin; Son, Young Ki; An, Won Suk

    2015-01-01

    Introduction Initial lactate level, lactate clearance, C-reactive protein, and procalcitonin in critically ill patients with sepsis are associated with hospital mortality. However, no study has yet discovered which factor is most important for mortality in severe sepsis patients with lactic acidosis. We sought to clarify this issue in patients with lactic acidosis who were supplementing with sodium bicarbonate. Materials and Methods Data were collected from a single center between May 2011 and April 2014. One hundred nine patients with severe sepsis and lactic acidosis who were supplementing with sodium bicarbonate were included. Results The 7-day mortality rate was 71.6%. The survivors had higher albumin levels and lower SOFA, APACHE II scores, vasopressor use, and follow-up lactate levels at an elapsed time after their initial lactate levels were checked. In particular, a decrement in lactate clearance of at least 10% for the first 6 hours, 24 hours, and 48 hours of treatment was more dominant among survivors than non-survivors. Although the patients who were treated with broad-spectrum antibiotics showed higher illness severity than those who received conventional antibiotics, there was no significant mortality difference. 6-hour, 24-hour, and 48-hour lactate clearance (HR: 4.000, 95% CI: 1.309–12.219, P = 0.015) and vasopressor use (HR: 4.156, 95% CI: 1.461–11.824, P = 0.008) were significantly associated with mortality after adjusting for confounding variables. Conclusions Lactate clearance at a discrete time point seems to be a more reliable prognostic index than initial lactate value in severe sepsis patients with lactic acidosis who were supplementing with sodium bicarbonate. Careful consideration of vasopressor use and the initial application of broad-spectrum antibiotics within the first 48 hours may be helpful for improving survival, and further study is warranted. PMID:26692209

  8. Anorexia nervosa, laxative abuse, hypopotassemia and distal renal tubular acidosis.

    PubMed

    Pines, A; Kaplinsky, N; Olchovsky, D; Frankl, O; Goldfarb, D; Iaina, A

    1985-01-01

    A case of anorexia nervosa in a 28-year-old woman with laxative abuse, hypopotassemia and severe metabolic acidosis, is described. The diagnosis of classical renal tubular acidosis, Type I, was confirmed by our inability to decrease urinary pH beyond 5.5 and to increase ammonia excretion during an ammonium chloride loading test. A bicarbonate loading test and normal plasma aldosterone with high renin activity excluded proximal renal tubular acidosis, hyporeninemic-hypoaldosteronemic renal tubular acidosis and Bartter's syndrome. The inability to increase ammonium excretion during severe metabolic acidosis following ammonium chloride loading did not favor the possibility of a transient physiological adaptation of ammoniagenesis at the tubular cell level, related to potassium depletion. Although mental disorder, laxative abuse, abstinence from food intake and severe potassium depletion intermingled in a vicious cycle, we assume that one of the following possibilities may explain the clinical presentation in our patient: either two separated and unrelated disorders, or laxative abuse as the cause of renal tubular acidification impairment. PMID:3972559

  9. Evaluation of the systemic innate immune response and metabolic alterations of nonlactating cows with diet-induced subacute ruminal acidosis.

    PubMed

    Rodríguez-Lecompte, J C; Kroeker, A D; Ceballos-Márquez, A; Li, S; Plaizier, J C; Gomez, D E

    2014-12-01

    Subacute ruminal acidosis (SARA) increases lipopolysaccharide endotoxin in the rumen, which might translocate into the systemic circulation, triggering a cascade of clinical and immunological alterations. The objective of this study was to characterize the clinical immune and metabolic responses to ruminal-derived lipopolysaccharide in nonlactating cows induced with SARA using 2 challenges, a grain-based SARA challenge (GBSC) or an alfalfa-pellet SARA challenge (APSC). Six dry, nonlactating Holstein cows were used in a 3 × 3 Latin square arrangement of treatments with 4-wk experimental cycles. All cows received the control diet containing 70% forage and 30% mixed concentrates (dry matter basis) for 3 wk. In wk 4, cows received a control diet, GBSC (38% wheat-barley pellets, 32% other mixed concentrate, and 30% forages), or APSC (45% mixed concentrate, 32% alfalfa pellets, and 23% other forages). Total plasma proteins and immunology-related proteins, acute phase proteins, blood cells, serum chemistry, mRNA gene expression of peripheral blood cell surface markers, and selected proinflammatory cytokines were evaluated. Ruminal pH was lower in both groups with induced SARA compared with a control group. Ruminal endotoxins were higher in GBSC; however, plasma endotoxin was not detected in any study group. No significant differences in feed intake, rectal temperature, white blood cell counts, or differentials were found between control and SARA challenge groups; changes in glucose, urea, Ca, and Mg were observed in SARA groups. Total plasma proteins were lower in both SARA groups, and acute phase proteins were higher in GBSC. The expression of CD14, MD2, and TLR4 mRNA in peripheral blood leukocytes was not affected by SARA induction. The induction of SARA as a result of GBSC or APSC challenge was successful; however, LPS was not detected in plasma. Changes in clinical, metabolic, and inflammatory responses were not observed in the SARA-challenged cows, suggesting that

  10. [An autopsy case of neonatal lactic acidosis].

    PubMed

    Giordano, G; Corradi, D; D'Adda, T; Melissari, M

    2001-02-01

    Defects in mitochondrial enzymes, such as pyruvate dehydrogenase and cytochrome oxidase, cause hereditary disorders which lead to modifications in cellular pH due to the accumulation of pyruvate and lactic acid. Mitochondrial diseases include severe neonatal diseases and less severe forms of adult diseases. We report the case of lactic acidosis in a newborn girl who was delivered at 36 weeks of gestation and who died 3 months after birth. Her family history revealed a relative with tetraparesis and mental retardation. Her clinical findings, such as tonic-clonic convulsions and accumulation of pyruvate and lactic acid in blood, urine and cerebrospinal fluid, were refractory to treatment and developed soon after birth. Ultrasound scans of the brain some days before death revealed cerebral atrophy with ventricular dilatation and thinning of the corpus callosum and septum pellucidum. The clinical diagnosis of metabolic lactic acidosis was confirmed by macroscopic, microscopic and ultrastructural findings seen at autopsy. On macroscopic examination, the heart was hypertrophic, and the brain was atrophic with ventricular dilatation and thinning of corpus callosum. Small cystic lesions were present in the basal ganglia. On microscopic examination, the latter were characterized by loss of neurons, gliosis and capillary proliferation. Ultrastructural examination of the heart and skeletal muscle showed lysis of myofibrils, mitochondrial pleomorphism and hyperplasia, and crystalline inclusion in mitochondria and in the matrix compartment. In reporting this case, we emphasize the importance of accurate postmortem examination and clinical data for the diagnosis of metabolic lactic acidosis. PMID:11294018

  11. Proximal renal tubular acidosis

    MedlinePlus

    Renal tubular acidosis - proximal; Type II RTA; RTA - proximal; Renal tubular acidosis type II ... by alkaline substances, mainly bicarbonate. Proximal renal tubular acidosis (Type II RTA) occurs when bicarbonate is not ...

  12. Transient feeding of a concentrate-rich diet increases the severity of subacute ruminal acidosis in dairy cattle.

    PubMed

    Pourazad, P; Khiaosa-Ard, R; Qumar, M; Wetzels, S U; Klevenhusen, F; Metzler-Zebeli, B U; Zebeli, Q

    2016-02-01

    The objective of this study was to investigate the effect of the pattern of concentrate-rich feeding on subacute ruminal acidosis (SARA), its severity, and the corresponding changes in VFA concentration. Eight rumen-cannulated Holstein cows were assigned to a 2 × 2 crossover design with 2 SARA challenge models and 2 experimental runs ( = 8 per treatment). Each run lasted for 40 d, consisting of a 6-d baseline, a 6-d gradual grain adaptation, and a 28-d SARA challenge period. The 2 SARA challenge models were transient (TRA) and persistent (PER) SARA. Initially, all cows were subjected to a forage-only diet (baseline) and gradually switched to 60% concentrate (DM basis). Then, cows in the PER model were continuously challenged for 28 d, whereas cows in the TRA model had a 7-d break from the SARA diet and were fed the forage-only diet after the first 7 d of SARA challenge. Thereafter, the TRA cows were rechallenged with the SARA diet. Wireless ruminal pH sensors were used to obtain ruminal pH profiles and temperature over the experimental period. For the determination of VFA, free ruminal liquid (FRL) and particle-associated ruminal liquid (PARL) were collected once for the baseline and twice (d 20 and 40 for the PER model) or 3 times (d 13, 30, and 40 for the TRA model) during SARA, each time at 0, 4, and 8 h after the morning feeding. Cows in both models experienced SARA albeit with day-to-day variation. From the start until the first 7-d SARA, cows of both models had similar pH profiles, but during the rechallenge, SARA was more severe in the TRA model than in the PER model based on lower daily mean ruminal pH (5.93 vs. 6.15; SEM 0.058) and double the amount of time at pH < 5.8 (497 vs. 278 min; SEM 68.61, < 0.05). Mean ruminal temperature was raised during SARA compared with the baseline (38.9 vs. 38.7°C; SEM 0.057, < 0.001). Concentrations of VFA increased with increasing time after feeding ( < 0.001). In general, SARA challenge (d 40 vs. the baseline), but not

  13. Lactic acidosis induced by metformin: incidence, management and prevention.

    PubMed

    Lalau, Jean-Daniel

    2010-09-01

    Lactic acidosis associated with metformin treatment is a rare but important adverse event, and unravelling the problem is critical. First, this potential event still influences treatment strategies in type 2 diabetes mellitus, particularly in the many patients at risk of kidney failure, in those presenting contraindications to metformin and in the elderly. Second, the relationship between metformin and lactic acidosis is complex, since use of the drug may be causal, co-responsible or coincidental. The present review is divided into three parts, dealing with the incidence, management and prevention of lactic acidosis occurring during metformin treatment. In terms of incidence, the objective of this article is to counter the conventional view of the link between metformin and lactic acidosis, according to which metformin-associated lactic acidosis is rare but is still associated with a high rate of mortality. In fact, the direct metformin-related mortality is close to zero and metformin may even be protective in cases of very severe lactic acidosis unrelated to the drug. Metformin has also inherited a negative class effect, since the early biguanide, phenformin, was associated with more frequent and sometimes fatal lactic acidosis. In the second part of this review, the objective is to identify the most efficient patient management methods based on our knowledge of how metformin acts on glucose/lactate metabolism and how lactic acidosis may occur (at the organ and cellular levels) during metformin treatment. The liver appears to be a key organ for both the antidiabetic effect of metformin and the development of lactic acidosis; the latter is attributed to mitochondrial impairment and subsequent adenosine triphosphate depletion, acceleration of the glycolytic flux, increased glucose uptake and the generation of lactate, which effluxes into the circulation rather than being oxidized further. Haemodialysis should systematically be performed in severe forms of lactic

  14. (Uncommon) Mechanisms of Branchial Ammonia Excretion in the Common Carp (Cyprinus carpio) in Response to Environmentally Induced Metabolic Acidosis.

    PubMed

    Wright, Patricia A; Wood, Chris M; Hiroi, Junya; Wilson, Jonathan M

    2016-01-01

    Freshwater fishes generally increase ammonia excretion in acidic waters. The new model of ammonia transport in freshwater fish involves an association between the Rhesus (Rh) protein Rhcg-b, the Na(+)/H(+) exchanger (NHE), and a suite of other membrane transporters. We tested the hypothesis that Rhcg-b and NHE3 together play a critical role in branchial ammonia excretion in common carp (Cyprinus carpio) chronically exposed to a low-pH environment. Carp were exposed to three sequential environmental treatments-control pH 7.6 water (24 h), pH 4.0 water (72 h), and recovery pH 7.6 water (24 h)-or in a separate series were simply exposed to either control (72 h) or pH 4.0 (72 h) water. Branchial ammonia excretion was increased by ∼2.5-fold in the acid compared with the control period, despite the absence of an increase in the plasma-to-water partial pressure NH3 gradient. Alanine aminotransferase activity was higher in the gills of fish exposed to pH 4 versus control water, suggesting that ammonia may be generated in gill tissue. Gill Rhcg-b and NHE3b messenger RNA levels were significantly elevated in acid-treated relative to control fish, but at the protein level Rhcg-b decreased (30%) and NHE3b increased (2-fold) in response to water of pH 4.0. Using immunofluorescence microscopy, NHE3b and Rhcg-b were found to be colocalized to ionocytes along the interlamellar space of the filament of control fish. After 72 h of acid exposure, Rhcg-b staining almost disappeared from this region, and NHE3b was more prominent along the lamellae. We propose that ammoniagenesis within the gill tissue itself is responsible for the higher rates of branchial ammonia excretion during chronic metabolic acidosis. Unexpectedly, gill Rhcg-b does not appear to be important in gill ammonia transport in low-pH water, but the strong induction of NHE3b suggests that some NH4(+) may be eliminated directly in exchange for Na(+). These findings contrast with previous studies in larval zebrafish

  15. Endolymphatic sac enlargement in a girl with a novel mutation for distal renal tubular acidosis and severe deafness.

    PubMed

    Nikki, Rink; Martin, Bitzan; Gus, O'Gorman; Mato, Nagel; Elena, Torban; Paul, Goodyer

    2012-01-01

    Hereditary distal renal tubular acidosis (dRTA) is caused by mutations of genes encoding subunits of the H(+)-ATPase (ATP6V0A4 and ATP6V1B1) expressed in α-intercalated cells of the distal renal tubule and in the cochlea. We report on a 2-year-old girl with distal RTA and profound speech delay which was initially misdiagnosed as autism. Genetic analysis showed compound heterozygous mutations with one known and one novel mutation of the ATP6V1B1 gene; cerebral magnetic resonance imaging (MRI) revealed bilateral enlargement of the endolymphatic sacs of the inner ear. With improved cooperation, audiometric testing showed that hearing loss was most profound on the right, where endolymphatic sac enlargement was greatest, demonstrating a clear link between the degree of deafness and the degree of inner ear abnormality. This case indicates the value of MRI for diagnosis of inner ear involvement in very young children with distal RTA. Although citrate therapy quickly corrects the acidosis and restores growth, early diagnosis of deafness is crucial so that hearing aids can be used to assist acquisition of speech and to provide enough auditory nerve stimulation to assure the affected infants remain candidates for cochlear implantation. PMID:22966473

  16. Atypical presentation of distal renal tubular acidosis in two siblings.

    PubMed

    Tasic, Velibor; Korneti, Petar; Gucev, Zoran; Hoppe, Bernd; Blau, Nenad; Cheong, Hae Il

    2008-07-01

    Primary distal renal tubular acidosis (dRTA) is an inherited disease characterized by the inability of the distal tubule to lower urine pH <5.50 during systemic acidosis. We report two male siblings who presented with severe hyperchloremic metabolic acidosis, high urinary pH, nephrocalcinosis, growth retardation, sensorineural hearing loss, and hypokalemic paralysis. Laboratory investigations revealed proximal tubular dysfunction (low molecular weight proteinuria, generalized hyperaminoaciduria, hypophosphatemia with hyperphosphaturia, and hypouricemia with hyperuricosuria). There was significant hyperoxaluria and laboratory evidence for mild rhabdomyolysis. Under potassium and alkali therapy, proximal tubular abnormalities, muscular enzymes, and oxaluria normalized. A homozygous mutation in the ATP6V1B1 gene, which is responsible for dRTA with early hearing loss, was detected in both siblings. In conclusion, proximal tubular dysfunction and hyperoxaluria may be found in children with dRTA and are reversible under appropriate therapy. PMID:18386070

  17. Bone Density Is Directly Associated With Glomerular Filtration and Metabolic Acidosis but Do Not Predict Fragility Fractures in Men With Moderate Chronic Kidney Disease.

    PubMed

    Lima, Guilherme Alcantara Cunha; de Paula Paranhos-Neto, Francisco; Silva, Luciana Colonese; de Mendonça, Laura Maria Carvalho; Delgado, Alvimar Gonçalves; Leite, Maurilo; Gomes, Carlos Perez; Farias, Maria Lucia Fleiuss

    2016-01-01

    Hyperparathyroidism, vitamin D deficiency, increased fibroblast growth factor-23 (FGF-23), and metabolic acidosis promote bone fragility in chronic kidney disease (CKD). Although useful in predicting fracture risk in the general population, the role of dual-energy X-ray absorptiometry (DXA) in CKD remains uncertain. This cross-sectional study included 51 men aged 50-75 yr with moderate CKD. The stage 4 CKD patients had higher levels of parathyroid hormone (p<0.001), FGF-23 (p=0.029), and lowest 25-hydroxyvitamin D (p=0.016), bicarbonate (p<0.001), total femur (p=0.003), and femoral neck (p=0.011) T-scores compared with stage 3 CKD patients. Total femur and femoral neck T-scores were directly correlated with serum bicarbonate (p=0.003, r=0.447 and p=0.005, r=0.427, respectively) and estimated glomerular filtration rate (p=0.024, r=0.325 and p=0.003, r=0.313, respectively) but were not significantly associated with parathyroid hormone, 25-hydroxyvitamin D, or FGF-23. Only 3.9% of the participants had osteoporosis on DXA scan, whereas 31.4% reported a low-impact fracture. Our data point to a pivotal role of metabolic acidosis for bone impairment and to the inadequacy of DXA to evaluate bone fragility in CKD patients. PMID:24709549

  18. [Gastric emptying and metabolic acidosis. II. Study, in an experimental model in rats, of gastric retention of a sodium bicarbonate solution].

    PubMed

    Belangero, V M; Collares, E F

    1992-01-01

    The gastric emptying of a 0.25 M sodium bicarbonate solution was studied in rats with metabolic acidosis induced by a previous (6 hours) orogastric infusion of a 0.5 M ammonium chloride solution. Two control groups were used: one previously infused with 0.5 M sodium chloride and the other with water, in the same volume that further solutions. Every animal was fed with 2 ml/100 g of its weight of these solutions. The test meal (bicarbonate solution) was utilized containing 6 mg% red fenol as a marker. The gastric retentions were determined 6 hours after those first meals at 5, 10, 20 and 30 minutes. The results demonstrated that the gastric retentions of the bicarbonate solution were significantly lower in the acidotic group than that one of water group (at 20 minutes) and that one of the sodium chloride (at 10, 20 and 30 minutes). The data here presented suggest that metabolic acidosis accelerates the gastric emptying of a sodium bicarbonate solution. PMID:1339142

  19. The Association Between Admission Magnesium Concentrations and Lactic Acidosis in Critical Illness

    PubMed Central

    Moskowitz, Ari; Lee, Joon; Donnino, Michael W.; Mark, Roger; Celi, Leo Anthony; Danziger, John

    2016-01-01

    Introduction Although magnesium plays an important role in aerobic metabolism and magnesium deficiency is a common phenomenon in critical illness, the association between magnesium deficiency and lactic acidosis in the intensive care unit (ICU) has not been defined. Methods This was a retrospective, cross-sectional study conducted at a 77 ICU bed tertiary medical center. Data pertaining to the first unique admission of any ICU patient between 2001 and 2008 were extracted from the Multiparameter Intelligent Monitoring in Intensive Care database. Hypomagnesemia was defined as serum magnesium <1.6 mg/dL. Mild and severe lactic acidosis were defined as lactate concentrations of >2 and > 4 mmol/L, respectively. Multivariate modeling was used to explore the association between magnesium and lactate concentrations. Results Of 8922 critically ill patients, 22.6% were hypomagnesemic. Hypomagnesemia was associated with an increased adjusted risk of mild lactic acidosis (odds ratio [OR] 1.71, 95% confidence interval [95%CI] 1.51–1.94, P < .001) and severe lactic acidosis (OR 1.56, 95%CI 1.32–1.84, P < .001) than the reference quartile. The association between hypomagnesemia and mild lactic acidosis was stronger in those at risk of magnesium deficiency, including diabetics (OR 2.02, 95%CI 1.51–2.72, P < .001) and alcoholics (OR 1.92, 95%CI 1.16–3.19, P = .01). As an internal model control, hypokalemia was not associated with an increased risk of lactic acidosis. Conclusions Magnesium deficiency is a common finding in patients admitted to the ICU and is associated with lactic acidosis. Our findings support the biologic role of magnesium in metabolism and raise the possibility that hypomagnesemia is a correctable risk factor for lactic acidosis in critical illness. PMID:24733810

  20. Phenylbutyrate Therapy for Pyruvate Dehydrogenase Complex Deficiency and Lactic Acidosis

    PubMed Central

    Ferriero, Rosa; Manco, Giuseppe; Lamantea, Eleonora; Nusco, Edoardo; Ferrante, Mariella I.; Sordino, Paolo; Stacpoole, Peter W.; Lee, Brendan; Zeviani, Massimo; Brunetti-Pierri, Nicola

    2014-01-01

    Lactic acidosis is a build-up of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57B6/L wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noam631 zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis. PMID:23467562

  1. A Homozygous Mutation in LYRM7/MZM1L Associated with Early Onset Encephalopathy, Lactic Acidosis, and Severe Reduction of Mitochondrial Complex III Activity

    PubMed Central

    Invernizzi, Federica; Tigano, Marco; Dallabona, Cristina; Donnini, Claudia; Ferrero, Ileana; Cremonte, Maurizio; Ghezzi, Daniele; Lamperti, Costanza; Zeviani, Massimo

    2013-01-01

    Mutations in nuclear genes associated with defective complex III (cIII) of the mitochondrial respiratory chain are rare, having been found in only two cIII assembly factors and, as private changes in single families, three cIII structural subunits. Recently, human LYRM7/MZM1L, the ortholog of yeast MZM1, has been identified as a new assembly factor for cIII. In a baby patient with early onset, severe encephalopathy, lactic acidosis and profound, isolated cIII deficiency in skeletal muscle, we identified a disease-segregating homozygous mutation (c.73G>A) in LYRM7/MZM1L, predicting a drastic change in a highly conserved amino-acid residue (p.Asp25Asn). In a mzm1Δ yeast strain, the expression of a mzm1D25N mutant allele caused temperature-sensitive respiratory growth defect, decreased oxygen consumption, impaired maturation/stabilization of the Rieske Fe–S protein, and reduced complex III activity and amount. LYRM7/MZM1L is a novel disease gene, causing cIII-defective, early onset, severe mitochondrial encephalopathy. PMID:24014394

  2. The Use of Sodium Bicarbonate in the Treatment of Acidosis in Sepsis: A Literature Update on a Long Term Debate

    PubMed Central

    Velissaris, Dimitrios; Karamouzos, Vasilios; Ktenopoulos, Nikolaos; Pierrakos, Charalampos; Karanikolas, Menelaos

    2015-01-01

    Introduction. Sepsis and its consequences such as metabolic acidosis are resulting in increased mortality. Although correction of metabolic acidosis with sodium bicarbonate seems a reasonable approach, there is ongoing debate regarding the role of bicarbonates as a therapeutic option. Methods. We conducted a PubMed literature search in order to identify published literature related to the effects of sodium bicarbonate treatment on metabolic acidosis due to sepsis. The search included all articles published in English in the last 35 years. Results. There is ongoing debate regarding the use of bicarbonates for the treatment of acidosis in sepsis, but there is a trend towards not using bicarbonate in sepsis patients with arterial blood gas pH > 7.15. Conclusions. Routine use of bicarbonate for treatment of severe acidemia and lactic acidosis due to sepsis is subject of controversy, and current opinion does not favor routine use of bicarbonates. However, available evidence is inconclusive, and more studies are required to determine the potential benefit, if any, of bicarbonate therapy in the sepsis patient with acidosis. PMID:26294968

  3. Fuel metabolism during severe rowing exercise

    SciTech Connect

    Hoyt, R.W.; Lubowitz, J.; Asakura, T.; Stein, T.P.

    1986-03-01

    Eight elite oarsmen were studied during and after six min of severe ergometer exercise. Power output averaged 380 +/- 28 watts. Serial venous blood samples and gas exchange measurements were obtained during exercise. In 4 of the 8 subjects, a primed periodic oral dose of the tracer (6,6-/sup 2/H/sub 2/)glucose was used to determine the effects of severe exercise on glucose metabolism. During exercise, the levels of lactate progressively increased to 12.2 +/- 1.3 mM (SE). There was little change in isotopic glucose enrichment during exercise (from 2.95 +/- 0.30 to 2.55 +/- 0.23 atom percent excess, APE). During recovery, isotopic glucose enrichment decreased significantly to 1.40 +/- 0.14 APE, indicating a substantial post-exercise plasma glucose flux. There were significant post-exercise increases in plasma glucose accumulation (from 84 +/- 5 to 131 +/- 3 mg/dl) and insulin concentration (0.57 +/- 0.08 to 1.34 +/- 0.15 ng/ml). These results suggest that muscle glycogen is the primary source of fuel during six minutes of maximal rowing exercise.

  4. Hypokalemic periodic paralysis in Sjogren's syndrome secondary to distal renal tubular acidosis.

    PubMed

    Yılmaz, Hakkı; Kaya, Mustafa; Özbek, Mustafa; ÜUreten, Kemal; Safa Yıldırım, İ

    2013-07-01

    We report a 53-year-old Turkish female presented with progressive weakness and mild dyspnea. Laboratory results demonstrated severe hypokalemia with hyperchloremic metabolic acidosis. The urinary anion gap was positive in the presence of acidemia, thus she was diagnosed with hypokalemic paralysis from a severe distal renal tubular acidosis (RTA). Immunologic work-up showed a strongly positive ANA of 1:3,200 and positive antibodies to SSA and SSB. Schirmer's test was abnormal. Autoimmune and other tests revealed Sjögren syndrome as the underlying cause of the distal renal tubular acidosis. Renal involvement in Sjogren's syndrome (SS) is not uncommon and may precede sicca complaints. The pathology in most cases is a tubulointerstitial nephritis causing among other things, distal RTA, and, rarely, hypokalemic paralysis. Treatment consists of potassium repletion, alkali therapy, and corticosteroids. Primary SS could be a differential in women with acute weakness and hypokalemia. PMID:22212410

  5. Lactate clearance and metabolic aspects of continuous high-volume hemofiltration

    PubMed Central

    Cheungpasitporn, Wisit; Zand, Ladan; Dillon, John J.; Qian, Qi; Leung, Nelson

    2015-01-01

    Lactic acidosis is associated with high morbidity and mortality in hospitalized patients. Treatment of lactic acidosis is targeted on correcting the underlying causes and optimizing adequate oxygen delivery to the tissues. Even though evidence is lacking, continuous renal replacement therapy (CRRT) and dialysis have been advocated as treatments for lactic acidosis. We report a 28-year-old Caucasian male with a history of hemophagocytic lymphohistiocytosis who presented with septic shock, severe lactic acidosis and multiple organ failure. Metabolic acidosis was corrected after bicarbonate therapy and CRRT with a hemofiltration rate of 7 L/h (58 mL/kg/h). Lactate clearance was calculated to be 79 mL/min. Compared with reported rates of lactate overproduction in septic shock, the rate of lactate clearance is quite small. Our case suggests that CRRT with high-volume hemofiltration is not effective for severe lactic acidosis. Lactic acidosis alone should not be considered as a nonrenal indication for CRRT. PMID:26251702

  6. Renal tubular acidosis due to the milk-alkali syndrome.

    PubMed

    Rochman, J; Better, O S; Winaver, J; Chaimowitz, C; Barzilai, A; Jacobs, R

    1977-06-01

    A 60-year-old man with a history of excessive ingestion of calcium carbonate presented with azotemia, hypercalcemia and hyperphosphatemia. His acid-base status was initially normal. Following the cessation of calcium carbonate treatment, the hypercalcemia and azotemia disappeared, and the patient was found to be in metabolic acidosis with blunted acid excretion and a urine pH of 6.1. Kidney biopsy showed focal tubular calcification; the tubular damage was apparently caused by hypercalcemia and had resulted in renal tubular acidosis. During the three months of observation since that time there has been a tendecy for spontaneous remission of the renal tubular acidosis. Impaired renal hydrogen ion excretion prevented the development of metabolic alkalosis despite ingestion of alkali initially, and was later responsible for the metabolic acidosis. Renal tubular acidosis occurring as a sequel to the milk-alkali syndrome may aggravate the danger of nephrocalcinosis in this syndrome. PMID:885714

  7. Blood glucose threshold and the metabolic responses to incremental exercise tests with and without prior lactic acidosis induction.

    PubMed

    Simões, Herbert Gustavo; Campbell, Carmen S G; Kushnick, Michael R; Nakamura, Akiko; Katsanos, Christos S; Baldissera, Vilmar; Moffatt, Robert J

    2003-08-01

    This study compared the metabolic-ventilatory responses and the glycemic threshold identified during lactate minimum (LM) and individual anaerobic threshold (IAT) tests. In addition, the ability to determine the anaerobic power, aerobic-anaerobic transition (Trans) (e.g. ventilatory threshold; VT) and the maximal oxygen consumption (VO(2max)) all within a single incremental treadmill test (IT) was investigated. Fifteen physically fit men [25.9 (5.5) years; 77.4 (6.5) kg] performed the following: test 1, IT for IAT; and test 2, LM: 30-s Wingate test followed by 8 min rest and then an IT that was the same as test 1. Blood lactate concentration [lac], glucose concentration [gluc], pH, PO(2), PCO(2), base excess (BE) and ventilatory variables were measured. At the beginning of the IT for LM, the ventilation, PO(2) and VO(2) were higher and the pH, BE and PCO(2) were lower in relation to IAT ( P<0.05), while no differences were observed after reaching LM intensity during IT. Moreover, the Trans could be identified by [lac] (IAT, LM), minute ventilation [V(E;) VT identified during IAT protocol (VT-IAT) and VT identified during LM protocol (VT-LM)], and [gluc] (IGT, GM) during the IT for IAT and LM. The velocities (kilometers per hour) corresponding to IAT (12.6+/-1.6), VT-IAT (12.5+/-1.7), IGT (12.6+/-1.6), LM (12.5+/-1.5), VT-LM (12.3+/-1.5), and GM (12.6+/-1.9) were not different from each other and the LM and IAT protocols resulted in the similar VO(2max). We concluded that: (1) after reaching the LM the metabolic responses during IT are similar to IAT; (2) performing a Wingate test prior to an IT does not interfere with the Trans and VO(2max) attainment; (3) and the IGT and GM can predict the Trans. PMID:12759761

  8. The use of dichloroacetate in the treatment of overwhelming hypoxic acidosis.

    PubMed

    Wahr, J A; Ullrich, K; Bolling, S F

    1994-02-01

    Overwhelming hypoxic acidosis due to poor tissue oxygen delivery from low cardiac output, pulmonary failure, and other causes has devastating effects postoperatively on patient outcome. Whereas conventional therapeutics often can not reverse the downward spiral of these patients, dichloroacetate (DCA) has been shown to be beneficial. This study investigated the metabolic and hemodynamic effects of DCA given after the onset of overwhelming hypoxic acidosis in a canine model. A hypoxically ventilated canine model of severe induced acidosis was established and dogs surviving the development of acidosis were randomized to receive DCA or sodium chloride (NaCl) treatment. Dogs receiving DCA after development of hypoxic lactic acidosis showed no further change in metabolic parameters during the 90-minute treatment period (pH, 7.24 to 7.23; HCO3, 17.7 to 18 mmol/L; lactate, 2.04 to 1.05 mM/L); whereas animals receiving an equivalent sodium load showed progressive, significant deterioration in all parameters (pH, 7.24 to 7.12; HCO3, 16.8 to 13.2 mM/L; lactate, 2.05 to 3.55 mM/L). Myocardial blood flow was significantly increased by hypoxia in all dogs. Finally, cardiac output and stroke volume were significantly increased at 90 minutes by DCA versus control. Myocardial oxygen utilization efficiency (LV work/M VO2) was improved during DCA treatment. DCA, a carboxylic acid, increases pyruvate dehydrogenase activity, thereby enhancing lactate use a metabolic substrate. DCA had an ameliorative metabolic effect, and benefitted myocardial performance without a direct inotropic effect. DCA treatment appears to enhance myocardial performance on a metabolic and not primarily inotropic basis, does not increase the "cost" of myocardial work, and warrants further study. PMID:8167289

  9. Protein metabolism in severe childhood malnutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major clinical syndromes of severe childhood malnutrition (SCM) are marasmus (non-oedematous SCM), kwashiorkor and marasmic-kwashiorkor (oedematous SCM). Whereas treatment of marasmus is straightforward and the associated mortality is low, kwashiorkor and marasmic-kwashiorkor are difficult to tr...

  10. Distal renal tubular acidosis and amelogenesis imperfecta: A rare association.

    PubMed

    Ravi, P; Ekambaranath, T S; Arasi, S Ellil; Fernando, E

    2013-11-01

    Renal tubular acidosis (RTA) is characterized by a normal anion gap with hyperchloremic metabolic acidosis. Primary distal RTA (type I) is the most common RTA in children. Childhood presentation of distal RTA includes vomiting, failure to thrive, metabolic acidosis, and hypokalemia. Amelogenesis imperfecta (AI) represents a condition where the dental enamel and oral tissues are affected in an equal manner resulting in the hypoplastic or hypopigmented teeth. We report a 10-year-old girl, previously asymptomatic presented with the hypokalemic paralysis and on work-up found out to have type I RTA. The discoloration of teeth and enamel was diagnosed as AI. PMID:24339526

  11. Metabolic syndrome in patients with severe mental illness in Gorgan

    PubMed Central

    Kamkar, Mohammad Zaman; Sanagoo, Akram; Zargarani, Fatemeh; Jouybari, Leila; Marjani, Abdoljalal

    2016-01-01

    Background: Metabolic syndrome is commonly associated with cardiovascular diseases and psychiatric mental illness. Hence, we aimed to assess the metabolic syndrome among severe mental illness (SMI). Materials and Methods: The study included 267 patients who were referred to the psychiatric unit at 5th Azar Education Hospital of Golestan University of Medical Sciences in Gorgan, Iran. Results: The mean waist circumference, systolic and diastolic blood pressure, triglyceride and fasting blood glucose levels were significantly higher in the SMI with metabolic syndrome, but the high density lipoprotein (HDL)-cholesterol was significantly lower. The prevalence of metabolic syndrome in SMI patients was 20.60%. There were significant differences in the mean of waist circumference, systolic (except for women) and diastolic blood pressure, triglyceride, HDL-cholesterol and fasting blood glucose in men and women with metabolic syndrome when compared with subjects without metabolic syndrome. The prevalence of metabolic syndrome in SMI women was higher than men. The most age distribution was in range of 30-39 years old. The most prevalence of metabolic syndrome was in age groups 50-59 years old. The prevalence of metabolic syndrome was increased from 30 to 59 years old. Conclusion: The prevalence of metabolic syndrome in patients with SMI in Gorgan is almost similar to those observed in Asian countries. The prevalence of metabolic syndrome was lower than western countries. These observations may be due to cultural differences in the region. It should be mention that the families of mental illness subjects in our country believe that their patients must be cared better than people without mental illness. These findings of this study suggest that mental illness patients are at risk of metabolic syndrome. According to our results, risk factors such as age and gender differences may play an important role in the presence of metabolic syndrome. In our country, women do less

  12. Thiamine Deficiency in a Developed Country: Acute Lactic Acidosis in Two Neonates Due to Unsupplemented Parenteral Nutrition.

    PubMed

    Salvatori, Guglielmo; Mondì, Vito; Piersigilli, Fiammetta; Capolupo, Irma; Pannone, Veronica; Vici, Carlo Dionisi; Rizzo, Cristiano; Dotta, Andrea

    2016-08-01

    Thiamine is a water-soluble vitamin implicated in several metabolic processes. Its deficiency, due to prolonged parenteral nutrition without adequate vitamin supplementation, can lead to multiorgan failure characterized by cardiovascular impairment and metabolic acidosis refractory to bicarbonate administration. Only thiamine administration allows the remission of symptoms. We report 2 preterm infants with acute thiamine deficiency due to prolonged parenteral nutrition without adequate vitamin supplementation. PMID:25591974

  13. SDF1 induction by acidosis from principal cells regulates intercalated cell subtype distribution

    PubMed Central

    Schwartz, George J.; Gao, XiaoBo; Tsuruoka, Shuichi; Purkerson, Jeffrey M.; Peng, Hu; D’Agati, Vivette; Picard, Nicolas; Eladari, Dominique; Al-Awqati, Qais

    2015-01-01

    The nephron cortical collecting duct (CCD) is composed of principal cells, which mediate Na, K, and water transport, and intercalated cells (ICs), which are specialized for acid-base transport. There are two canonical IC forms: acid-secreting α-ICs and HCO3-secreting β-ICs. Chronic acidosis increases α-ICs at the expense of β-ICs, thereby increasing net acid secretion by the CCD. We found by growth factor quantitative PCR array that acidosis increases expression of mRNA encoding SDF1 (or CXCL12) in kidney cortex and isolated CCDs from mouse and rabbit kidney cortex. Exogenous SDF1 or pH 6.8 media increased H+ secretion and decreased HCO3 secretion in isolated perfused rabbit CCDs. Acid-dependent changes in H+ and HCO3 secretion were largely blunted by AMD3100, which selectively blocks the SDF1 receptor CXCR4. In mice, diet-induced chronic acidosis increased α-ICs and decreased β-ICs. Additionally, IC-specific Cxcr4 deletion prevented IC subtype alterations and magnified metabolic acidosis. SDF1 was transcriptionally regulated and a target of the hypoxia-sensing transcription factor HIF1α. IC-specific deletion of Hif1a produced no effect on mice fed an acid diet, as α-ICs increased and β-ICs decreased similarly to that observed in WT littermates. However, Hif1a deletion in all CCD cells prevented acidosis-induced IC subtype distribution, resulting in more severe acidosis. Cultured principal cells exhibited an HIF1α-dependent increase of Sdf1 transcription in response to media acidification. Thus, our results indicate that principal cells respond to acid by producing SDF1, which then acts on adjacent ICs. PMID:26517693

  14. [Primary distal renal tubular acidosis: a case report].

    PubMed

    Abdallah, Jihene Ben; Charfeddine, Bassem; Braham, Imen; Neffati, Souhir; Othmen, Leila Ben; Letaief, Affef; Smach, Mohamed Ali; Bourfifa, Zoheier; Dridi, Hedi; Limem, Khalifa

    2011-01-01

    The primary distal renal tubular acidosis is characterized biochemically by the inability of the kidney to produce appropriately acid urine in the presence of systemic metabolic acidosis or after acid loading (e.g. ammonium chloride). It is secondary to defective excretion of H(+) by the cells of the collecting duct. We report the observation of the child MC, 4-year-old, for whom the association of polyuria-polydipsia syndrome, a failure to thrive, nephrolithiasis, hypercalciuria, and especially a high urine pH in the presence of metabolic acidosis did evoke diagnosis of distal renal tubular acidosis. An urine acidification test with ammonium chloride was performed, the urinary pH was always higher than 5.5, thus confirming the diagnosis. PMID:21464016

  15. Acquired distal renal tubular acidosis in man.

    PubMed

    Better, O S

    1982-10-01

    Distal renal tubular acidosis (dRTA) may complicate renal transplantation, liver cirrhosis, and obstructive uropathy. Indeed, its occurrence may be an early clue to an episode of rejection of the graft or to obstructive uropathy. The mechanism in most patients with dRTA is impaired distal secretion of protons. In some patients, however, back leak of protons from tubular lumen to blood may abolish distal tubular ability to maintain urine to blood proton gradients. In patients with obstructive uropathy the spectrum of tubular acidosis is widened by the occurrence of additional defects in tubular secretion of potassium and impairment of hydrogen ion secretion secondary to hypoaldosteronism. Hyperkalemia is also seen in "voltage dependent" states such as following the administration of lithium and amiloride. Hyperkalemia per se is conducive to acidosis by a combination of extrarenal and several intrarenal mechanisms. PMID:6755051

  16. Positive Correlation between Severity of Blepharospasm and Thalamic Glucose Metabolism.

    PubMed

    Murai, Hideki; Suzuki, Yukihisa; Kiyosawa, Motohiro; Wakakura, Masato; Mochizuki, Manabu; Ishiwata, Kiichi; Ishii, Kenji

    2011-01-01

    A 43-year-old woman with drug-related blepharospasm was followed up for 22 months. She had undergone etizolam treatment for 19 years for indefinite complaints. We examined her cerebral glucose metabolism 5 times (between days 149 and 688 since presentation), using positron emission tomography, and identified regions of interest in the thalamus, caudate nucleus, putamen, and primary somatosensory area on both sides. The severity of the blepharospasm was evaluated by PET scanning using the Wakakura classification. Sixteen women (mean age 42.4 ± 11.7 years) were examined as normal controls. The thalamic glucose metabolism in our patient was significantly increased on days 149, 212, and 688. The severity of the blepharospasm was positively correlated with the thalamic glucose metabolism, suggesting that the severity of blepharospasms reflects thalamic activity. PMID:22110436

  17. Positive Correlation between Severity of Blepharospasm and Thalamic Glucose Metabolism

    PubMed Central

    Murai, Hideki; Suzuki, Yukihisa; Kiyosawa, Motohiro; Wakakura, Masato; Mochizuki, Manabu; Ishiwata, Kiichi; Ishii, Kenji

    2011-01-01

    A 43-year-old woman with drug-related blepharospasm was followed up for 22 months. She had undergone etizolam treatment for 19 years for indefinite complaints. We examined her cerebral glucose metabolism 5 times (between days 149 and 688 since presentation), using positron emission tomography, and identified regions of interest in the thalamus, caudate nucleus, putamen, and primary somatosensory area on both sides. The severity of the blepharospasm was evaluated by PET scanning using the Wakakura classification. Sixteen women (mean age 42.4 ± 11.7 years) were examined as normal controls. The thalamic glucose metabolism in our patient was significantly increased on days 149, 212, and 688. The severity of the blepharospasm was positively correlated with the thalamic glucose metabolism, suggesting that the severity of blepharospasms reflects thalamic activity. PMID:22110436

  18. Trauma triggering thyrotoxic crisis with lactic acidosis

    PubMed Central

    Prosser, Jennifer S.; Quan, Dan K.

    2015-01-01

    Thyrotoxic crisis (TC) is defined as a life-threatening exacerbation of the hyperthyroid state that causes multiple autonomic and metabolic disturbances. It is considered to be an endocrine emergency that must be urgently diagnosed and treated. We describe a case of TC precipitated by trauma with a resultant lactic acidosis. The patient is a 24-year-old male with a history of hyperthyroidism who presented to the emergency department following a motor vehicle accident. The patient was initially tachycardic and hypertensive, however, was afebrile. Initial laboratory analysis showed an anion gap of 26, lactic acid 7.6, free T4 5.61 and thyroid stimulating hormone < 0.015. A diagnosis of TC was made, and he was treated with intravenous fluids, propranolol, and methimazole with improvement of tachycardia and lactic acidosis. We discuss the features of this case, which reviews the presentations of TC as well as its metabolic sequelae. PMID:26604530

  19. Absence of acidosis in the initial presentation of propionic acidaemia.

    PubMed

    Walter, J H; Wraith, J E; Cleary, M A

    1995-05-01

    The clinical presentation and results of the initial biochemical and haematological investigations in 11 newborn term infants with propionic acidaemia are described. All patients had neurological symptoms. Only four had clinically important acidosis, but all had a raised blood ammonia. A diagnosis of propionic acidaemia should be considered in all newborn infants with unexplained neurological deterioration even in the absence of a metabolic acidosis. PMID:7796239

  20. [Ischemic myocardial metabolism and antianginal drugs].

    PubMed

    Ichihara, K

    1986-12-01

    The effect of several kinds of antianginal drugs: nitrates, coronary vasodilators, beta-adrenergic blocking agents and calcium entry blocking agents on the myocardial metabolism and myocardial acidosis during ischemia was studied in the dog heart in vivo. Ischemia was induced by ligating the left anterior descending coronary artery. Ischemia accelerated anaerobic metabolism in the myocardium, in which glycogen breakdown, accumulation of glycolytic intermediates, loss of high energy phosphate and tissue acidosis occurred. Nitroglycerin, beta-adrenergic blocking agents such as propranolol, and some calcium entry blocking agents such as diltiazem and flunarizine prevented the myocardial metabolism from shifting to an anaerobic metabolism in spite of ischemia. However, coronary vasodilators and the dihydropyridine type of calcium entry blocking agents were not capable of reducing changes in the myocardial metabolism and myocardial acidosis during ischemia. The author makes a point in the present review that all the drugs which dilate coronary artery are not always effective on the ischemic myocardium. PMID:3549484

  1. Klinefelter's syndrome with renal tubular acidosis: impact on height.

    PubMed

    Jebasingh, F; Paul, T V; Spurgeon, R; Abraham, S; Jacob, J J

    2010-02-01

    A 19-year-old Indian man presented with a history of proximal muscle weakness, knock knees and gynaecomastia. On examination he had features of rickets and bilateral small testes. Karyotyping revealed a chromosomal pattern of 47,XXX, confirming the diagnosis of Klinefelter's syndrome. He was also found to have hyperchloraemic metabolic acidosis with hypokalaemia, hypophosphataemia, phosphaturia and glycosuria, which favoured a diagnosis of proximal renal tubular acidosis. Patients with Klinefelter's syndrome typically have a tall stature due to androgen deficiency, resulting in unfused epiphyses and an additional X chromosome. However, this patient had a short stature due to associated proximal renal tubular acidosis. To the best of our knowledge, this is the second case of Klinefelter's syndrome with short stature due to associated renal tubular acidosis reported in the literature. This report highlights the need to consider other causes when patients with Klinefelter's syndrome present with a short stature. PMID:20358137

  2. [Cure of experimental hyperlactatemia and lactic acidosis by sodium dichloroacetate].

    PubMed

    Loubatières, A; Ribes, G; Rondot, A M

    1976-12-20

    Sodium dichloroacetate prevents and fights against the severe hyperlactatemia and lactic acidosis induced by phenformin, intense muscular work, hypoxia and by adrenalin perfusion. The beneficent effects of sodium dichloroacetate and insulin are additive. PMID:828559

  3. [Correction of experimental hyperlactatemia and lactic acidosis by sodium dischloroacetate].

    PubMed

    Loubatières, A; Ribes, G; Valette, G; Rondot, A M

    1976-10-18

    Sodium dichloroacetate prevents and fights against the severe hyperlactatemia and lactic acidosis induced by phenformin, intense muscular work, hypoxia and by adrenalin perfusion. The beneficent effects of sodium dichloroacetate and insulin are additive. PMID:826352

  4. Lactic Acidosis: Current Treatments and Future Directions.

    PubMed

    Kraut, Jeffrey A; Madias, Nicolaos E

    2016-09-01

    Mortality rates associated with severe lactic acidosis (blood pH<7.2) due to sepsis or low-flow states are high. Eliminating the triggering conditions remains the most effective therapy. Although recommended by some, administration of sodium bicarbonate does not improve cardiovascular function or reduce mortality. This failure has been attributed to both reduction in serum calcium concentration and generation of excess carbon dioxide with intracellular acidification. In animal studies, hyperventilation and infusion of calcium during sodium bicarbonate administration improves cardiovascular function, suggesting that this approach could allow expression of the positive aspects of sodium bicarbonate. Other buffers, such as THAM or Carbicarb, or dialysis might also provide base with fewer untoward effects. Examination of these therapies in humans is warranted. The cellular injury associated with lactic acidosis is partly due to activation of NHE1, a cell-membrane Na(+)/H(+) exchanger. In animal studies, selective NHE1 inhibitors improve cardiovascular function, ameliorate lactic acidosis, and reduce mortality, supporting future research into their possible use in humans. Two main mechanisms contribute to lactic acid accumulation in sepsis and low-flow states: tissue hypoxia and epinephrine-induced stimulation of aerobic glycolysis. Targeting these mechanisms could allow for more specific therapy. This Acid-Base and Electrolyte Teaching Case presents a patient with acute lactic acidosis and describes current and future approaches to treatment. PMID:27291485

  5. Reversible lactic acidosis associated with repeated intravenous infusions of sorbitol and ethanol.

    PubMed Central

    Batstone, G. F.; Alberti, K. G.; Dewar, A. K.

    1977-01-01

    Infusions of fructose or sorbitol are used commonly in parenteral nutrition and may cause lactic acidosis. A case is reported in whom blood lactate concentration was monitored frequently over a 5-day period during intravenous feeding with a sorbitol-ethanol-amino acid mixture. During the first five infusions blood lactate rose only moderately, but with the final infusion lactate rose to 11-1 mmol/l and the patient had a severe metabolic acidosis. In retrospect the patient had shown deterioration in renal and hepatic function tests during the preceding 24 hr. On terminating the infusions the blood lactate concentration fell rapidly. It is suggested that great care should be exercised when using such infusions in ill patients and acid base status and renal and hepatic function should be monitored frequently. PMID:22069

  6. D-lactic acidosis: an unusual cause of encephalopathy in a patient with short bowel syndrome.

    PubMed

    Dahlqvist, G; Guillen-Anaya, M A; Vincent, M F; Thissen, J P; Hainaut, P

    2013-01-01

    A 24-year-old woman with a short bowel syndrome following post-ischemic small bowel resection, developed several episodes of lethargy, echolalia and ataxia. D-lactic acidosis was identified as the cause of neurological disturbances. This infrequent disorder can be precipitated by intake of a large amount of sugars, in patients with short bowel syndrome. It should be suspected in the presence of metabolic acidosis with increased anion gap and a normal level of L-lactic acid. The diagnosis relies on the specific dosage of D-lactic stereoisomer. Proper management involves rehydration, diet adaptation and oral administration of poorly absorbed antibiotics in order to modify the colonic flora responsible for D-lactic production. PMID:24156228

  7. Phaeochromocytoma presenting with pseudo-intestinal obstruction and lactic acidosis

    PubMed Central

    Kek, Peng Chin; Ho, Emily Tse Lin; Loh, Lih Ming

    2015-01-01

    Phaeochromocytomas are rare neuroendocrine tumours with variable clinical signs and symptoms. Hypertension, tachycardia, sweating and headaches are cardinal manifestations. Although nausea and abdominal pain are the more common gastrointestinal features, rare gastrointestinal spectrums have been reported that can mimic abdominal emergencies. Metabolic effects of hypercatecholaminaemia are vast and one such rare presentation is lactic acidosis. We describe a case of phaeochromocytoma presenting with both intestinal pseudo-obstruction as well as lactic acidosis. This case report highlights the importance of having a high index of suspicion for and early recognition of the gastrointestinal and metabolic manifestations of phaeochromocytomas. PMID:26311913

  8. Maternal inheritance of severe hypertriglyceridemia impairs glucose metabolism in offspring.

    PubMed

    Ma, Ya-Hong; Yu, Caiguo; Kayoumu, Abudurexiti; Guo, Xin; Ji, Zhili; Liu, George

    2015-04-01

    Maternally inherited familial hypercholesterolemia (FH) impairs glucose metabolism and increases cardiovascular risks in the offspring to a greater degree than paternal inherited FH. However, it remains unknown whether hypertriglyceridemia affects glucose metabolism via inheritance. In this study, we sought to compare the impact of maternally and paternally inherited hypertriglyceridemia on glucose and lipid metabolism in mice. ApoCIII transgenic mice with severe hypertriglyceridemia were mated with non-transgenic control mice to obtain 4 types of offspring: maternal non-transgenic control and maternal transgenic offspring, and paternal control and paternal transgenic offspring. Plasma triglycerides (TG), total cholesterol (TC), fasting plasma glucose (FPG) and fasting insulin (FINS) were measured. ApoCIII overexpression caused severe hypertriglyceridemia, but the transgenic female mice had unaltered fertility with normal pregnancy and birth of pups. The 4 groups of offspring had similar birth weight and growth rate. The plasma TG of maternal and paternal transgenic offspring were nearly 40-fold higher than maternal and paternal control mice, but there was no difference in plasma TG between maternal and paternal transgenic offspring. Although the FPG of the 4 groups of animals had no difference, the maternal transgenic mice showed impaired glucose tolerance, increased FINS levels and higher homeostasis model assessment insulin resistance index (HOMA-IR) than the other 3 groups. In conclusion, maternally inherited hypertriglyceridemia in ApoCIII transgenic mice displayed impaired glucose tolerance, hyperinsulinemia and increased HOMA-R, while paternally inherited hypertriglyceridemia did not have such impacts. PMID:25859267

  9. The dental management of troublesome twos: renal tubular acidosis and rampant caries

    PubMed Central

    B, Sandhyarani; Huddar, Dayanand; Patil, Anil; Sankeshwari, Banashree

    2013-01-01

    Renal tubular acidosis is a group of disorders in which there is metabolic acidosis due to defect in renal tubular acidification mechanism to maintain normal plasma bicarbonate and blood pH. Irrespective of organ system involved, oral cavity often reflects the disease occurring anywhere in the body. Thus congenital chronic renal diseases, causing acid–base disturbances affects development and structure of the teeth. Chronic renal tubular acidosis causes enamel defects, dental caries, oral candidiasis, angular cheilitis, etc. We hereby present an unusual case report of a 4-year-old boy suffering from renal tubular acidosis associated with rampant caries, whose full mouth rehabilitation has been done. PMID:23667245

  10. A metabolic syndrome severity score: A tool to quantify cardio-metabolic risk factors.

    PubMed

    Wiley, Joshua F; Carrington, Melinda J

    2016-07-01

    Metabolic syndrome is a cluster of cardio-metabolic risk factors and is associated with increased mortality. There is no standard, validated way to assess the severity of aggregated metabolic syndrome risk factors. Cardiovascular and diabetes risk factor data came from two studies conducted in Australia from 2006 to 2010 in adults aged 18 or above. In medication free adults, sex-specific clinical thresholds and Principal Component Analysis were used to develop a formula to calculate a metabolic syndrome severity score (MetSSS). These scores were compared to scores derived using the same process in subgroups by sex, age, medication status, and time. We also examined the MetSSS in relation to other known risk factors. In 2125 adults (57.6±14.7years of age), the MetSSS ranged from 0 to 8.7 with a mean of 2.6. There were strong correlations (.95-.99) between the MetSSS in medication free adults and the MetSSS calculated from subgroups. MetSSS predicted medication initiation for hypertension, hyperlipidemia and hyperglycemia over six months (OR=1.31, 95% CI [1.00-1.70], per MetSSS unit, p=.043). Lower education, medication prescription, history of smoking and age were associated with higher MetSSS (all p<.05). Higher physical but not mental health quality of life was associated with lower MetSSS (p<.001). A standardized formula to measure cardio-metabolic risk factor severity was constructed and demonstrated expected relations with known risk factors. The use of the MetSSS is recommended as a measure of change within individuals in cardio-metabolic risk factors and to guide treatment and management. PMID:27095322

  11. Haploinsufficiency of the Ammonia Transporter Rhcg Predisposes to Chronic Acidosis

    PubMed Central

    Bourgeois, Soline; Bounoure, Lisa; Christensen, Erik I.; Ramakrishnan, Suresh K.; Houillier, Pascal; Devuyst, Olivier; Wagner, Carsten A.

    2013-01-01

    Ammonia secretion by the collecting duct (CD) is critical for acid-base homeostasis and, when defective, causes distal renal tubular acidosis (dRTA). The Rhesus protein RhCG mediates NH3 transport as evident from cell-free and cellular models as well as from Rhcg-null mice. Here, we investigated in a Rhcg mouse model the metabolic effects of Rhcg haploinsufficiency, the role of Rhcg in basolateral NH3 transport, and the mechanisms of adaptation to the lack of Rhcg. Both Rhcg+/+ and Rhcg+/− mice were able to handle an acute acid load, whereas Rhcg−/− mice developed severe metabolic acidosis with reduced ammonuria and high mortality. However, chronic acid loading revealed that Rhcg+/− mice did not fully recover, showing lower blood HCO3− concentration and more alkaline urine. Microperfusion studies demonstrated that transepithelial NH3 permeability was reduced by 80 and 40%, respectively, in CDs from Rhcg−/− and Rhcg+/− mice compared with controls. Basolateral membrane permeability to NH3 was reduced in CDs from Rhcg−/− mice consistent with basolateral Rhcg localization. Rhcg−/− responded to acid loading with normal expression of enzymes and transporters involved in proximal tubular ammoniagenesis but reduced abundance of the NKCC2 transporter responsible for medullary accumulation of ammonium. Consequently, tissue ammonium content was decreased. These data demonstrate a role for apical and basolateral Rhcg in transepithelial NH3 transport and uncover an incomplete dRTA phenotype in Rhcg+/− mice. Haploinsufficiency or reduced expression of RhCG may underlie human forms of (in)complete dRTA. PMID:23281477

  12. Type 4 renal tubular acidosis in a kidney transplant recipient.

    PubMed

    Kulkarni, Manjunath

    2016-02-01

    We report a case of a 66-year-old diabetic patient who presented with muscle weakness 2 weeks after kidney transplantation. Her immunosuppressive regimen included tacrolimus, mycophenolate mofetil, and steroids. She was found to have hyperkalemia and normal anion gap metabolic acidosis. Tacrolimus levels were in therapeutic range. All other drugs such as beta blockers and trimethoprim - sulfamethoxazole were stopped. She did not respond to routine antikalemic measures. Further evaluation revealed type 4 renal tubular acidosis. Serum potassium levels returned to normal after starting sodium bicarbonate and fludrocortisone therapy. Though hyperkalemia is common in kidney transplant recipients, determining exact cause can guide specific treatment. PMID:27105603

  13. Acidosis Promotes Bcl-2 Family-mediated Evasion of Apoptosis

    PubMed Central

    Ryder, Christopher; McColl, Karen; Zhong, Fei; Distelhorst, Clark W.

    2012-01-01

    Acidosis arises in solid and lymphoid malignancies secondary to altered nutrient supply and utilization. Tumor acidosis correlates with therapeutic resistance, although the mechanism behind this effect is not fully understood. Here we show that incubation of lymphoma cell lines in acidic conditions (pH 6.5) blocks apoptosis induced by multiple cytotoxic metabolic stresses, including deprivation of glucose or glutamine and treatment with dexamethasone. We sought to examine the role of the Bcl-2 family of apoptosis regulators in this process. Interestingly, we found that acidic culture causes elevation of both Bcl-2 and Bcl-xL, while also attenuating glutamine starvation-induced elevation of p53-up-regulated modulator of apoptosis (PUMA) and Bim. We confirmed with knockdown studies that these shifts direct survival decisions during starvation and acidosis. Importantly, the promotion of a high anti- to pro-apoptotic Bcl-2 family member ratio by acidosis renders cells exquisitely sensitive to the Bcl-2/Bcl-xL antagonist ABT-737, suggesting that acidosis causes Bcl-2 family dependence. This dependence appears to be mediated, in part, by the acid-sensing G protein-coupled receptor, GPR65, via a MEK/ERK pathway. PMID:22685289

  14. Neurological damage arising from intrapartum hypoxia/acidosis.

    PubMed

    Rei, M; Ayres-de-Campos, D; Bernardes, J

    2016-01-01

    Complications occurring at any level of foetal oxygen supply will result in hypoxaemia, and this may ultimately lead to hypoxia/acidosis and neurological damage. Hypoxic-ischaemic encephalopathy (HIE) is the short-term neurological dysfunction caused by intrapartum hypoxia/acidosis, and this diagnosis requires the presence of a number of findings, including the confirmation of newborn metabolic acidosis, low Apgar scores, early imaging evidence of cerebral oedema and the appearance of clinical signs of neurological dysfunction in the first 48 h of life. Cerebral palsy (CP) consists of a heterogeneous group of nonprogressive movement and posture disorders, frequently accompanied by cognitive and sensory impairments, epilepsy, nutritional deficiencies and secondary musculoskeletal lesions. Although CP is the most common long-term neurological complication associated with intrapartum hypoxia/acidosis, >80% of cases are caused by other phenomena. Data on minor long-term neurological deficits are scarce, but they suggest that less serious intellectual and motor impairments may result from intrapartum hypoxia/acidosis. This chapter focuses on the existing evidence of neurological damage associated with poor foetal oxygenation during labour. PMID:26148854

  15. Oxidative stress in a novel model of chronic acidosis in LLC-PK1 cells.

    PubMed

    Rustom, Rana; Wang, Bohan; McArdle, Frank; Shalamanova, Liliana; Alexander, John; McArdle, Anne; Thomas, Carol E; Bone, J Michael; Shenkin, Alan; Jackson, Malcolm J

    2003-01-01

    Chronic metabolic acidosis occurs commonly in chronic renal failure (CRF). The proximal renal tubular cell is the site in the kidney of high oxidative metabolic activity and in CRF is associated with adaptive hypertrophy and hypermetabolism. We hypothesised that chronic acidosis may lead to increased generation of reactive oxygen species due to increased oxidative activity. We developed a novel model of chronic acidosis in LLC-PK1 cells and measured markers of oxidative stress and metabolism. Acidosis led to a reduction in cellular total glutathione and protein thiol content and an increase in glutathione peroxidase activity and NH3 generation. The expression of constitutively expressed heat stress protein (HSP) HSC70 and HSP60 increased at pH 7.0. PMID:14520010

  16. Plasma First Resuscitation Reduces Lactate Acidosis, Enhances Redox Homeostasis, Amino Acid and Purine Catabolism in a Rat Model of Profound Hemorrhagic Shock.

    PubMed

    D'Alessandro, Angelo; Moore, Hunter B; Moore, Ernest E; Wither, Matthew J; Nemkov, Travis; Morton, Alexander P; Gonzalez, Eduardo; Chapman, Michael P; Fragoso, Miguel; Slaughter, Anne; Sauaia, Angela; Silliman, Christopher C; Hansen, Kirk C; Banerjee, Anirban

    2016-08-01

    The use of aggressive crystalloid resuscitation to treat hypoxemia, hypovolemia, and nutrient deprivation promoted by massive blood loss may lead to the development of the blood vicious cycle of acidosis, hypothermia, and coagulopathy and, utterly, death. Metabolic acidosis is one of the many metabolic derangements triggered by severe trauma/hemorrhagic shock, also including enhanced proteolysis, lipid mobilization, as well as traumatic diabetes. Appreciation of the metabolic benefit of plasma first resuscitation is an important concept. Plasma resuscitation has been shown to correct hyperfibrinolysis secondary to severe hemorrhage better than normal saline. Here, we hypothesize that plasma first resuscitation corrects metabolic derangements promoted by severe hemorrhage better than resuscitation with normal saline. Ultra-high-performance liquid chromatography-mass spectrometry-based metabolomics analyses were performed to screen plasma metabolic profiles upon shock and resuscitation with either platelet-free plasma or normal saline in a rat model of severe hemorrhage. Of the 251 metabolites that were monitored, 101 were significantly different in plasma versus normal saline resuscitated rats. Plasma resuscitation corrected lactate acidosis by promoting glutamine/amino acid catabolism and purine salvage reactions. Plasma first resuscitation may benefit critically injured trauma patients by relieving the lactate burden and promoting other non-clinically measured metabolic changes. In the light of our results, we propose that plasma resuscitation may promote fueling of mitochondrial metabolism, through the enhancement of glutaminolysis/amino acid catabolism and purine salvage reactions. The treatment of trauma patients in hemorrhagic shock with plasma first resuscitation is likely not only to improve coagulation, but also to promote substrate-specific metabolic corrections. PMID:26863033

  17. Type B Lactic Acidosis Associated With Venlafaxine Overdose.

    PubMed

    Iragavarapu, Chaitanya; Gupta, Tanush; Chugh, Savneek S; Aronow, Wilbert S; Frishman, William H

    2016-01-01

    Lactic acidosis that is not secondary to tissue hypoperfusion or hypoxemia (type B lactic acidosis) is a rare but potentially fatal condition that has been associated with drugs like metformin, linezolid, and nucleoside reverse-transcriptase inhibitors in patients with HIV. We report the first case of type B lactic acidosis caused by overdose of the serotonin-norepinephrine reuptake inhibitor, venlafaxine. A 55-year-old man with no significant medical history was brought to the emergency department after intentional ingestion of around 80 capsules of venlafaxine (a total dose of over 6000 mg) in an attempt to commit suicide. Complete blood count and comprehensive metabolic panel were unremarkable except for a bicarbonate level of 13 mEq/L and an anion gap of 22 mEq/L. An arterial blood gas revealed a pH of 7.39, partial pressure of CO2 of 19 mm Hg, calculated bicarbonate of 11.5 mEq/L, and a lactate level of 8.6 mmol/L. The patient was started on aggressive intravenous hydration with normal saline along with oral activated charcoal with sorbitol. Repeat laboratory work after 4 hours showed an improvement in anion gap (15 mEq/L) and serum lactate (5.6 mmol/L). The patient remained stable throughout the hospital stay and lactic acidosis resolved in 24 hours. In the absence of hypotension, hypoxemia, kidney or liver dysfunction, myopathy, malignancy, or use of other medications, venlafaxine was the most likely cause of lactic acidosis in our case. Rapid improvement of acidosis was probably related to clearance of the drug. PMID:25405896

  18. Cadmium induces acidosis in maize root cells.

    PubMed

    Nocito, Fabio Francesco; Espen, Luca; Crema, Barbara; Cocucci, Maurizio; Sacchi, Gian Attilio

    2008-01-01

    * Cadmium (Cd) stress increases cell metabolic demand for sulfur, reducing equivalents, and carbon skeletons, to sustain phytochelatin biosynthesis for Cd detoxification. In this condition the induction of potentially acidifying anaplerotic metabolism in root tissues may be expected. For these reasons the effects of Cd accumulation on anaplerotic metabolism, glycolysis, and cell pH control mechanisms were investigated in maize (Zea mays) roots. * The study compared root apical segments, excised from plants grown for 24 h in a nutrient solution supplemented, or not, with 10 microM CdCl(2), using physiological, biochemical and (31)P-nuclear magnetic resonance (NMR) approaches. * Cadmium exposure resulted in a significant decrease in both cytosolic and vacuolar pH of root cells and in a concomitant increase in the carbon fluxes through anaplerotic metabolism leading to malate biosynthesis, as suggested by changes in dark CO2 fixation, metabolite levels and enzyme activities along glycolysis, and mitochondrial alternative respiration capacity. This scenario was accompanied by a decrease in the net H(+) efflux from the roots, probably related to changes in plasma membrane permeability. * It is concluded that anaplerotic metabolism triggered by Cd detoxification processes might lead to an imbalance in H(+) production and consumption, and then to cell acidosis. PMID:18537888

  19. [Traumatic disease and metabolism].

    PubMed

    Deriabin, I I; Nasonkin, O S; Nemchenko, N S; Gol'm, N P; Zimina, Z P

    1984-06-01

    The authors have established that the traumatic disease is accompanied by phasic nonspecific changes of metabolism correlating with the trauma severity as well as with its specific features and outcomes. Within the first 3-7 days catabolic processes are found to prevail and metabolic acidosis develop. Later, anabolic processes become activated in the non-complicated course of the disease. Normalization of most biochemical processes is accomplished within 15-21 days. More pronounced and prolonged disturbances of metabolism are observed in complications and lethal outcomes. PMID:6474706

  20. Acidosis in the critically ill - balancing risks and benefits to optimize outcome

    PubMed Central

    2014-01-01

    Acidosis is associated with poor outcome in critical illness. However, acidosis - both hypercapnic and metabolic - has direct effects that can limit tissue injury induced by many causes. There is also a clear potential for off-target harm with acute exposure (for example, raised intracranial pressure, pulmonary hypertension), and with exposure for prolonged periods (for example, increased risk of infection) or at high doses. Ongoing comprehensive determination of molecular, cellular and physiologic impact across a range of representative pathologies will allow us to understand better the risks and benefits of hypercapnia and acidosis during critical illness. PMID:25029442

  1. A patient with foot ulcer and severe metabolic alkalosis.

    PubMed

    John, Ruby Samuel; Simoes, Sonia; Reddi, Alluru S

    2012-01-01

    We report a case of triple acid-base disorder with metabolic alkalosis as the primary disorder in a 65-year-old man due to ingestion and application to leg ulcers of baking soda (calcium bicarbonate). The blood pH was 7.65 with hypochloremia, hypokalemia, and prerenal azotemia. He was treated with isotonic saline with K replacement, and the patient improved without any adverse clinical consequences. We discuss the causes, mechanisms, and management of Cl-responsive (depletion) metabolic alkalosis. PMID:21185672

  2. Treatment of lactic acidosis with dichloroacetate in dogs.

    PubMed

    Park, R; Arieff, A I

    1982-10-01

    Lactic acidosis is a clinical condition due to accumulation of H(+) ions from lactic acid, characterized by blood lactate levels >5 mM and arterial pH <7.25. In addition to supportive care, treatment usually consists of intravenous NaHCO(3), with a resultant mortality >60%. Dichloroacetate (DCA) is a compound that lowers blood lactate levels under various conditions in both man and laboratory animals. It acts to increase pyruvate oxidation by activation of pyruvate dehydrogenase. We evaluated the effects of DCA in the treatment of two different models of type B experimental lactic acidosis in diabetic dogs: hepatectomy-lactic acidosis and phenformin-lactic acidosis. The metabolic and systemic effects examined included arterial blood pH and levels of bicarbonate and lactate; the intracellular pH (pHi) in liver and skeletal muscle; cardiac index, arterial blood pressure and liver blood flow; liver lactate uptake and extrahepatic splanchnic (gut) lactate production; and mortality. Effects of DCA were compared with those of either NaCl or NaHCO(3). The infusion of DCA and NaHCO(3), delivered equal amounts of volume and sodium, although the quantity of NaHCO(3) infused (2.5 meq/kg per h) was insufficient to normalize arterial pH. In phenformin-lactic acidosis, DCA-treated animals had a mortality of 22%, vs. 89% in those treated with NaHCO(3). DCA therapy increased arterial pH and bicarbonate, liver pHi and cardiac index, with increased liver lactate uptake and a fall in blood lactate. With NaHCO(3) therapy, there were decrements of cardiac index and liver pHi, with an increase in venous pCO(2) and gut production of lactate. Dogs with hepatectomy-lactic acidosis were either treated or pretreated with DCA. Treatment with DCA resulted in stabilization of cardiac index, a fall in blood lactate, and 17% mortality. NaHCO(3) was associated with a continuous decline of cardiac index, rise in blood lactate, and 67% mortality. In dogs pretreated with NaCl, mortality was 33%, but

  3. Development of diabetes-induced acidosis in the rat retina.

    PubMed

    Dmitriev, Andrey V; Henderson, Desmond; Linsenmeier, Robert A

    2016-08-01

    We hypothesized that the retina of diabetic animals would be unusually acidic due to increased glycolytic metabolism. Acidosis in tumors and isolated retina has been shown to lead to increased VEGF. To test the hypothesis we have measured the transretinal distribution of extracellular H(+) concentration (H(+)-profiles) in retinae of control and diabetic dark-adapted intact Long-Evans rats with ion-selective electrodes. Diabetes was induced by intraperitoneal injection of streptozotocin. Intact rat retinae are normally more acidic than blood with a peak of [H(+)]o in the outer nuclear layer (ONL) that averages 30 nM higher than H(+) in the choroid. Profiles in diabetic animals were similar in shape, but diabetic retinae began to be considerably more acidic after 5 weeks of diabetes. In retinae of 1-3 month diabetics the difference between the ONL and choroid was almost twice as great as in controls. At later times, up to 6 months, some diabetics still demonstrated abnormally high levels of [H(+)]o, but others were even less acidic than controls, so that the average level of acidosis was not different. Greater variability in H(+)-profiles (both between animals and between profiles recorded in one animal) distinguished the diabetic retinae from controls. Within animals, this variability was not random, but exhibited regions of higher and lower H(+). We conclude that retinal acidosis begins to develop at an early stage of diabetes (1-3 months) in rats. However, it does not progress, and the acidity of diabetic rat retina was diminished at later stages (3-6 months). Also the diabetes-induced acidosis has a strongly expressed local character. As result, the diabetic retinas show much wider variability in [H(+)] distribution than controls. pH influences metabolic and neural processes, and these results suggest that local acidosis could play a role in the pathogenesis of diabetic retinopathy. PMID:27262608

  4. Changes in intermediary metabolism in severe surgical illness.

    PubMed

    Wolfe, R R; Martini, W Z

    2000-06-01

    Under normal circumstances there is a reciprocal relation between the availability of free fatty acids (FFAs) and glucose in plasma. In the fasted state, FFAs predominate in both availability and the relative contribution to energy production, whereas the same is true for glucose in the fed state. The extent of glucose oxidation is directly determined by its availability, whereas FFAs are normally available well in excess of their rate of oxidation. The rate of FFA oxidation is determined by the rate of transfer into the mitochondria via the carnitine palmitoyltransferase (CPT) enzyme system, which in turn is regulated by the metabolism of glucose. With critical illness the stress response involves mobilization of both plasma glucose and FFAs simultaneously in both the fed and fasted states. In the situation of excess availability of substrates, the metabolism of glucose limits the oxidation of FFAs, thereby channeling those fatty acids into triglyceride (TG) stores in the muscle and the liver. The high FFA concentrations and increased tissue TG stores can limit glucose clearance from the blood, thereby contributing to the development of hyperglycemia. Also, the excessive metabolism of glucose can result in lacticacidemia and can contribute to the depletion of muscle glutamine. The nutritional treatment of such patients must account for these underlying metabolic responses to avoid amplifying potentially detrimental responses to the excess availability of substrates already present in the fasting state. PMID:10773115

  5. Clinical profile of distal renal tubular acidosis.

    PubMed

    Jha, Ratan; Muthukrishnan, J; Shiradhonkar, Shekhar; Patro, Kiran; Harikumar, Kvs; Modi, K D

    2011-03-01

    To determine the clinical profile and progression of renal dysfunction in distal renal tubular acidosis (dRTA), we retrospectively studied 96 consecutive cases of dRTA diagnosed at our center. Patients with unexplained metabolic bone disease, short stature, hypokalemia, re-current renal stones, chronic obstructive uropathy or any primary autoimmune condition known to cause dRTA were screened. Distal RTA was diagnosed on the basis of systemic metabolic acidosis with urine pH >5.5 and positive urine anion gap. In those patients who had fasting urine pH >5.5 with normal baseline systemic pH and bicarbonate levels (incomplete RTA), acid load test with ammonium chloride was done. A cause of dRTA could be established in 53 (54%) patients. Urological defect in children (22/44) and autoimmune disease in adults (11/52) were the commonest causes. Hypokalemic paralysis, proximal muscle weakness and voiding difficulty were the common modes of presentation. Doubling of serum creatinine during the study period was noted in 13 out of 27 patients who had GFR <60 mL/min at presentation whereas in only one of the 70 with initial GFR >60 mL/min (P <0.005). In conclusion, urological disorders were the commonest cause of dRTA in children while autoimmune disorders were the commonest asso-ciation in adults. Worse baseline renal function, longer duration of disease and greater frequency of nephrolithiasis/nephrocalcinosis and urological disorders were noted in those who had wor-sening of renal dysfunction during the study period. PMID:21422623

  6. Severe malnutrition and metabolic complications of HIV-infected children in the antiretroviral era: clinical care and management in resource-limited settings.

    PubMed

    Musoke, Philippa M; Fergusson, Pamela

    2011-12-01

    More than 2 million children globally are living with HIV infection and >90% of these reside in sub-Saharan Africa. Severe acute malnutrition (SAM) remains a major problem for HIV-infected children who live in resource-limited settings (RLS), and SAM is an important risk factor for mortality. SAM in HIV-infected children is associated with complications including electrolyte disorders, micronutrient deficiencies, and severe infections, which contribute to the high mortality. Access to antiretroviral therapy (ART) has significantly improved the survival of HIV-infected children, although the response to ART of children with SAM remains undocumented in the literature. Immune and virologic responses to ART in RLS are similar to those of infected children in resource-rich settings, but delays in initiation of therapy have led to a high early mortality. Antiretroviral drug toxicities have been described in children who receive therapy and may affect their quality of life and long-term survival. Metabolic complications of ART include lipodystrophy, dyslipidemia, lactic acidosis, insulin resistance, and osteopenia. These complications have been well described in adults and children from developed countries, but data from RLS are limited, and these complications may be compounded by SAM. In this article we review the epidemiology, clinical presentation, and complications of SAM in HIV-infected children and the metabolic complications of HIV-infected children in the era of ART, and discuss future research priorities for RLS. PMID:22089437

  7. [The role of lactate besides the lactic acidosis].

    PubMed

    Brucculeri, S; Urso, C; Caimi, G

    2013-01-01

    Lactic acidosis (LA) is the most common form of metabolic acidosis defined by values of lactate greater than 5 mmol / l and by a pH <7.34. The pathogenesis of LA involves hypoxic (type A) and non hypoxic (type B) causes which are often coexisting. Lactic acidosis is usual in hospitalized population especially in subjects in intensive care units, in which lactate levels on admission could be predictors of mortality even in the absence of organ dysfunction or shock. The outcome is mainly dependent on the cardiovascular effects of acidosis. In subjects with cardiogenic shock, the increased lactate/pyruvate ratio, detectable at onset, is correladed with mortality. An early assessment of blood and tissue lactate levels could play a role in the therapeutic management as well as in outcome. LA could be a unfavorable prognostic factor in cancer. The lactate would act also as "signal molecule" and as a promoting factor in angiogenesis and tumor progression. In the presence of risk factors for LA the role of metformin may be overrated. Despite the doctrinal progress to understand the pathogenesis and pathophysiology, there is not univocal consensus on the therapeutic treatment of LA. The identification and the attempt to remove the cause of acidosis are main aims; treatment with sodium bicarbonate is a matter of debate as the data on the cardiovascular effects and mortality are unclear. The therapy with carbicarb, dichloroacetate or THAM has shown no specific advantages in terms of mortality. In experimental models of LA and shock the use of sodium-hydrogen exchanger-1 (NHE1) selective inhibitors reduces cell damage and inflammatory cytokines synthesis; it also improves cardiac performance and decreases mortality. PMID:23868642

  8. Fatal Tenofovir-Associateacd Lactic Acidosis: A Case Report

    PubMed Central

    Hashim, Hasriza; Sahari, Narisa Sulaiman; Sazlly Lim, Sazlyna Mohd; Hoo, Fan Kee

    2015-01-01

    Introduction: The introduction of highly active antiretroviral therapy (HAART), in 1996, has resulted in marked reductions in the rate of illness and death, due to HIV infection. The HAART has transformed HIV infection into a manageable chronic disease. However, although many regimens lower plasma viral load, to below the limit of detection, in most patients, maintaining viral load suppression remains challenging, because of adverse effects and toxicity in the long term, which can lead to non-adherence, virologic failure and drug resistance. Although rare, lactic acidosis often develops fatal complications, as reported in several human immunodeficiency virus infected patients treated with nucleoside reverse transcriptase inhibitors (NRTIs). The purpose of this paper is to report a case of tenofovir induced lactic acidosis and review the literature. Case Presentation: A 52-year-old Malay gentleman, with hepatitis C virus and HIV infection was admitted to the intensive care unit for severe lactic acidosis, with concurrent Escherichia coli bacteremia with multiorgan dysfunction. The patient was started on highly active antiretroviral therapy, which included tenofovir, 5 weeks before presentation. Antimicrobial therapy, continuous veno-venous hemofiltration, and other supportive treatments were instituted. However, the patient eventually succumbed to his illness. Conclusions: It is essential for clinicians to be able to recognize the signs and symptoms of lactic acidosis in NRTIs treated HIV patients, as an early diagnosis is important to institute treatment. PMID:26568856

  9. Metformin-induced lactic acidosis: a case series

    PubMed Central

    Silvestre, Joana; Carvalho, Susana; Mendes, Vitor; Coelho, Luis; Tapadinhas, Camila; Ferreira, Pedro; Povoa, Pedro; Ceia, Fatima

    2007-01-01

    Introduction Unlike other agents used in the treatment of type 2 diabetes mellitus, metformin has been shown to reduce mortality in obese patients. It is therefore being increasingly used in higher doses. The major concern of many physicians is a possible risk of lactic acidosis. The reported frequency of metformin related lactic acidosis is 0.05 per 1000 patient-years; some authors advocate that this rate is equal in those patients not taking metformin. Case presentation We present two case reports of metformin-associated lactic acidosis. The first case is a 77 year old female with a past medical history of hypertension and type 2 diabetes mellitus who had recently been prescribed metformin (3 g/day), perindopril and acetylsalicylic acid. She was admitted to the emergency department two weeks later with abdominal pain and psychomotor agitation. Physical examination revealed only signs of poor perfusion. Laboratory evaluation revealed hyperkalemia, elevated creatinine and blood urea nitrogen and mild leukocytosis. Arterial blood gases showed severe lactic acidemia. She was admitted to the intensive care unit. Vasopressor and ventilatory support was initiated and continuous venovenous hemodiafiltration was instituted. Twenty-four hours later, full clinical recovery was observed, with return to a normal serum lactate level. The patient was discharged from the intensive care unit on the sixth day. The second patient is a 69 year old male with a past medical history of hypertension, type 2 diabetes mellitus and ischemic heart disease who was on metformin (4 g/day), glycazide, acetylsalicylic acid and isosorbide dinitrate. He was admitted to the emergency department in shock with extreme bradycardia. Initial evaluation revealed severe lactic acidosis and elevated creatinine and urea. The patient was admitted to the Intensive Care Unit and commenced on continuous venovenous hemodiafiltration in addition to other supportive measures. A progressive recovery was observed

  10. Severe cow's milk protein allergy in a Chinese neonate.

    PubMed

    Siu, L Y; Tse, K; Lui, Y S

    2001-12-01

    Cow's milk protein allergy is a growing problem in developed countries. We report the case of a Chinese infant, born at term, who presented on day 28 with severe growth failure, chronic diarrhoea, and metabolic acidosis. Investigations supported a diagnosis of cow's milk protein allergy. This was confirmed by withdrawing and reintroducing the relevant infant formula under controlled clinical conditions. Both acidosis and diarrhoea were seen to resolve, and 'catch-up' growth was evident after introduction of an elemental infant formula. Early recognition of this problem leads to a rapid 'cure', as seen in this case. However, later presentation with other atopic conditions has been reported. PMID:11773683

  11. Metformin associated lactic acidosis in Auckland City Hospital 2005 to 2009

    PubMed Central

    Haloob, Imad; de Zoysa, Janak R

    2016-01-01

    AIM: To determine the incidence, clinical characteristics and outcomes of patients with metformin associated lactic acidosis (MALA). METHODS: Auckland City Hospital drains a population of just over 400000 people. All cases presenting with metabolic acidosis between July 2005 and July 2009 were identified using clinical coding. A retrospective case notes review identified patients with MALA. Prescribing data for metformin was obtained from the national pharmaceutical prescribing scheme. RESULTS: There were 42 cases of metabolic lactic acidosis over 1718000 patient years. There were 51000 patient years of metformin prescribed to patients over the study period. There were thirty two cases of lactic acidosis due to sepsis, seven in patients treated with metformin. Ten cases of MALA were identified. The incidence of MALA was estimated at 19.46 per 100000 patient year exposure to metformin. The relative risk of lactic acidosis in patients on metformin was 13.53 (95%CI: 7.88-21.66) compared to the general population. The mean age of patients with MALA was 63 years, range 40-83 years. A baseline estimated glomerular filtration rate was obtained in all patients and ranged from 23-130 mL/min per 1.73 m2. Only two patients had chronic kidney disease G4. Three patients required treatment with haemodialysis. Two patients died. CONCLUSION: Lactic acidosis is an uncommon but significant complication of use of metformin which carries a high risk of morbidity. PMID:27458565

  12. Acidosis and alkalosis impair brain functions through weakening spike encoding at cortical GABAergic neurons.

    PubMed

    Song, Rongrong; Zhang, Liming; Yang, Zichao; Tian, Xiaoyan

    2011-05-15

    Acidosis and alkalosis, associated with metabolic disorders, lead to the pathological changes of cognition and behaviors in clinical practices of neurology and psychology. Cellular mechanisms for these functional disorders in the central nervous system remain unclear. We have investigated the influences of acidosis and alkalosis on the functions of cortical GABAergic neurons. Both acidosis and alkalosis impair the ability of encoding sequential spikes at these GABAergic neurons. The impairments of their spiking are associated with the increases of refractory periods, threshold potential and afterhyperpolarization. Our studies reveal that acidosis and alkalosis impair cortical GABAergic neurons and in turn deteriorate brain functions, in which their final targets may be voltage-gated channels of sodium and potassium. PMID:21353681

  13. Seizure Termination by Acidosis Depends on ASIC1a

    PubMed Central

    Ziemann, Adam E.; Schnizler, Mikael K.; Albert, Gregory W.; Severson, Meryl A.; Howard, Matthew A.; Welsh, Michael J.; Wemmie, John A.

    2008-01-01

    SUMMARY Most seizures stop spontaneously. However, the molecular mechanisms remain unknown. Earlier observations that seizures reduce brain pH and that acidosis inhibits seizures indicated that acidosis halts epileptic activity. Because acid–sensing ion channel–1a (ASIC1a) shows exquisite sensitivity to extracellular pH and regulates neuron excitability, we hypothesized that acidosis might activate ASIC1a to terminate seizures. Disrupting mouse ASIC1a increased the severity of chemoconvulsant–induced seizures, whereas overexpressing ASIC1a had the opposite effect. ASIC1a did not affect seizure threshold or onset, but shortened seizure duration and prevented progression. CO2 inhalation, long known to lower brain pH and inhibit seizures, also required ASIC1a to interrupt tonic–clonic seizures. Acidosis activated inhibitory interneurons through ASIC1a, suggesting that ASIC1a might limit seizures by increasing inhibitory tone. These findings identify ASIC1a as a key element in seizure termination when brain pH falls. The results suggest a molecular mechanism for how the brain stops seizures and suggest new therapeutic strategies. PMID:18536711

  14. Lipoyltransferase 1 Gene Defect Resulting in Fatal Lactic Acidosis in Two Siblings

    PubMed Central

    Taché, Véronique; Bivina, Liga; White, Sophie; Gregg, Jeffrey; Deignan, Joshua; Boyadjievd, Simeon A.; Poulain, Francis R.

    2016-01-01

    A term male neonate developed severe intractable lactic acidosis on day of life 1 and died the same day at our institution. The family previously lost another term, female newborn on day of life 1 from suspected sepsis at an outside hospital. After performing an autopsy on the neonate who died at our institution, extensive and lengthy neonatal and parental genetic testing, as well as biochemical analyses, and whole exome sequencing analysis identified compound heterozygous mutations in the lipoyltransferase 1 (LIPT1) gene responsible for the lipoylation of the 2-keto dehydrogenase complexes in the proband. These mutations were also identified in the deceased sibling. The clinical manifestations of these two siblings are consistent with those recently described in two unrelated families with lactic acidosis due to LIPT1 mutations, an underrecognized and underreported cause of neonatal death. Conclusions. Our observations contribute to the delineation of a new autosomal recessive metabolic disorder, leading to neonatal death. Our case report also highlights the importance of an interdisciplinary team in solving challenging cases. PMID:27247813

  15. Lipoyltransferase 1 Gene Defect Resulting in Fatal Lactic Acidosis in Two Siblings.

    PubMed

    Taché, Véronique; Bivina, Liga; White, Sophie; Gregg, Jeffrey; Deignan, Joshua; Boyadjievd, Simeon A; Poulain, Francis R

    2016-01-01

    A term male neonate developed severe intractable lactic acidosis on day of life 1 and died the same day at our institution. The family previously lost another term, female newborn on day of life 1 from suspected sepsis at an outside hospital. After performing an autopsy on the neonate who died at our institution, extensive and lengthy neonatal and parental genetic testing, as well as biochemical analyses, and whole exome sequencing analysis identified compound heterozygous mutations in the lipoyltransferase 1 (LIPT1) gene responsible for the lipoylation of the 2-keto dehydrogenase complexes in the proband. These mutations were also identified in the deceased sibling. The clinical manifestations of these two siblings are consistent with those recently described in two unrelated families with lactic acidosis due to LIPT1 mutations, an underrecognized and underreported cause of neonatal death. Conclusions. Our observations contribute to the delineation of a new autosomal recessive metabolic disorder, leading to neonatal death. Our case report also highlights the importance of an interdisciplinary team in solving challenging cases. PMID:27247813

  16. Osteomalacia complicating renal tubular acidosis in association with Sjogren's syndrome.

    PubMed

    El Ati, Zohra; Fatma, Lilia Ben; Boulahya, Ghada; Rais, Lamia; Krid, Madiha; Smaoui, Wided; Maiz, Hedi Ben; Beji, Soumaya; Zouaghi, Karim; Moussa, Fatma Ben

    2014-09-01

    Renal involvement in Sjogren's syndrome (SS) is not uncommon and may precede other complaints. Tubulointerstitial nephritis is the most common renal disease in SS and may lead to renal tubular acidosis (RTA), which in turn may cause osteomalacia. Nevertheless, osteomalacia rarely occurs as the first manifestation of a renal tubule disorder due to SS. We herewith describe a 43-year-old woman who was admitted to our hospital for weakness, lumbago and inability to walk. X-ray of the long bones showed extensive demineralization of the bones. Laboratory investigations revealed chronic kidney disease with serum creatinine of 2.3 mg/dL and creatinine clearance of 40 mL/min, hypokalemia (3.2 mmol/L), hypophosphatemia (0.4 mmol/L), hypocalcemia (2.14 mmol/L) and hyperchloremic metabolic acidosis (chlorine: 114 mmol/L; alkaline reserve: 14 mmol/L). The serum alkaline phosphatase levels were elevated. The serum levels of 25-hydroxyvitamin D and 1,25-dihydroxy vitamin D were low and borderline low, respectively, and the parathyroid hormone level was 70 pg/L. Urinalysis showed inappropriate alkaline urine (urinary PH: 7), glycosuria with normal blood glucose, phosphaturia and uricosuria. These values indicated the presence of both distal and proximal RTA. Our patient reported dryness of the mouth and eyes and Schirmer's test showed xerophthalmia. An accessory salivary gland biopsy showed changes corresponding to stage IV of Chisholm and Masson score. Kidney biopsy showed diffuse and severe tubulo-interstitial nephritis with dense lymphoplasmocyte infiltrates. Sicca syndrome and renal interstitial infiltrates indicated SS as the underlying cause of the RTA and osteomalacia. The patient received alkalinization, vitamin D (Sterogyl ®), calcium supplements and steroids in an initial dose of 1 mg/kg/day, tapered to 10 mg daily. The prognosis was favorable and the serum creatinine level was 1.7 mg/dL, calcium was 2.2 mmol/L and serum phosphate was 0.9 mmol/L. PMID:25193912

  17. Association between pH-weighted endogenous amide proton chemical exchange saturation transfer MRI and tissue lactic acidosis during acute ischemic stroke.

    PubMed

    Sun, Phillip Zhe; Cheung, Jerry S; Wang, Enfeng; Lo, Eng H

    2011-08-01

    The ischemic tissue becomes acidic after initiation of anaerobic respiration, which may result in impaired tissue metabolism and, ultimately, in severe tissue damage. Although changes in the major cerebral metabolites can be studied using magnetic resonance (MR) spectroscopy (MRS)-based techniques, their spatiotemporal resolution is often not sufficient for routine examination of fast-evolving and heterogeneous acute stroke lesions. Recently, pH-weighted MR imaging (MRI) has been proposed as a means to assess tissue acidosis by probing the pH-dependent chemical exchange of amide protons from endogenous proteins and peptides. In this study, we characterized acute ischemic tissue damage using localized proton MRS and multiparametric imaging techniques that included perfusion, diffusion, pH, and relaxation MRI. Our study showed that pH-weighted MRI can detect ischemic lesions and strongly correlates with tissue lactate content measured by (1)H MRS, indicating lactic acidosis. Our results also confirmed the correlation between apparent diffusion coefficient and lactate; however, no significant relationship was found for perfusion, T(1), and T(2). In summary, our study showed that optimized endogenous pH-weighted MRI, by sensitizing to local tissue pH, remains a promising tool for providing a surrogate imaging marker of lactic acidosis and altered tissue metabolism, and augments conventional techniques for stroke diagnosis. PMID:21386856

  18. The Roles of Acidosis in Osteoclast Biology

    PubMed Central

    Yuan, Feng-Lai; Xu, Ming-Hui; Li, Xia; Xinlong, He; Fang, Wei; Dong, Jian

    2016-01-01

    The adverse effect of acidosis on the skeletal system has been recognized for almost a century. Although the underlying mechanism has not been fully elucidated, it appears that acidosis acts as a general stimulator of osteoclasts derived from bone marrow precursors cells and enhances osteoclastic resorption. Prior work suggests that acidosis plays a significant role in osteoclasts formation and activation via up-regulating various genes responsible for its adhesion, migration, survival and bone matrix degradation. Understanding the role of acidosis in osteoclast biology may lead to development of novel therapeutic approaches for the treatment of diseases related to low bone mass. In this review, we aim to discuss the recent investigations into the effects of acidosis in osteoclast biology and the acid-sensing molecular mechanism. PMID:27445831

  19. Early and Sustained Changes in Bone Metabolism After Severe Burn Injury.

    PubMed

    Muschitz, Gabriela Katharina; Schwabegger, Elisabeth; Kocijan, Roland; Baierl, Andreas; Moussalli, Hervé; Fochtmann, Alexandra; Nickl, Stefanie; Tinhofer, Ines; Haschka, Judith; Resch, Heinrich; Rath, Thomas; Pietschmann, Peter; Muschitz, Christian

    2016-04-01

    This study investigated serum burnover marker in male patients after severe burn injury. Ongoing changes suggest alterations in bone metabolism with a likely adverse influence on bone quality and structure. PMID:26789778

  20. Sulfur amino acid metabolism in children with severe childhood undernutrition: methionine kinetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Children with edematous but not nonedematous severe childhood undernutrition (SCU) have lower plasma and erythrocyte-free concentrations of cysteine and methionine, which suggests a decreased availability of methionine for cysteine synthesis. We propose that methionine production and metabolism will...

  1. [Dose dependent effects of dichloroacetate on lactic acidosis in dogs].

    PubMed

    Fujita, Y; Fukui, A; Yoshida, H; Ohsumi, A; Sakai, T; Takaori, M

    1989-08-01

    Dose dependent effects of DCA (dichloroacetate) on lactic acidosis were studied in 30 mongrel dogs under pentobarbital anesthesia. Lactic acidosis was induced by infusion of either lactate (n = 15) or pyruvate (n = 15) for 20 min. In each dog, saline or DCA (100 mg.kg-1 or 300 mg.kg-1) was given for ten min iv. at ten min after the beginning of lactate or pyruvate infusions. Reduction in serum pyruvate levels was more prominent than that in lactate levels in both the lactate and pyruvate infusion groups. DCA in a dose of 100 mg.kg-1 was more effective to reduce serum pyruvate levels and arterial pH than 300 mg.kg-1 of DCA. There were no differences between saline and DCA (100 mg.kg-1 or 300 mg.kg-1) administrations in mean arterial pressure and cardiac index. This study confirmed the hypothesis that DCA reduces serum lactate levels via acceleration of pyruvate metabolism. It was concluded that the ability of DCA to reduce serum lactate levels is dose-dependent and a large dose of DCA (300 mg.kg-1) would not be necessary for lactic acidosis. PMID:2810694

  2. Distal renal tubular acidosis associated with concurrent leptospirosis in a dog.

    PubMed

    Martinez, Stephen A; Hostutler, Roger A

    2014-01-01

    A 9 yr old spayed female boxer was presented for evaluation of vomiting, lethargy, anorexia, and weight loss. Initial laboratory evaluation revealed a hyperchloremic normal anion gap metabolic acidosis with alkaline urine that was consistent with a diagnosis of distal renal tubular acidosis (RTA). Targeted therapy was initiated with Na bicarbonate (HCO3) and potassium (K) gluconate. Leptospirosis was subsequently diagnosed with paired microagglutination testing (MAT), and doxycycline was added to the other treatments. Clinical signs resolved, and 6 mo after diagnosis, although the dog remained on alkali therapy (i.e., NaHCO3 and K gluconate) and a mild metabolic acidosis persisted, the dog remained otherwise healthy with a good quality of life. To the authors' knowledge, this is the first report to describe the concomitant association of those two disorders. Leptospirosis should be considered for any case of RTA in dogs. PMID:24659721

  3. Citric acid as the last therapeutic approach in an acute life-threatening metabolic decompensation of propionic acidaemia.

    PubMed

    Siekmeyer, Manuela; Petzold-Quinque, Stefanie; Terpe, Friederike; Beblo, Skadi; Gebhardt, Rolf; Schlensog-Schuster, Franziska; Kiess, Wieland; Siekmeyer, Werner

    2013-01-01

    The tricarboxylic acid (TCA) cycle represents the key enzymatic steps in cellular energy metabolism. Once the TCA cycle is impaired in case of inherited metabolic disorders, life-threatening episodes of metabolic decompensation and severe organ failure can arise. We present the case of a 6 ½-year-old girl with propionic acidaemia during an episode of acute life-threatening metabolic decompensation and severe lactic acidosis. Citric acid given as an oral formulation showed the potential to sustain the TCA cycle flux. This therapeutic approach may become a treatment option in a situation of acute metabolic crisis, possibly preventing severe disturbance of energy metabolism. PMID:23412866

  4. Acidosis, hypoxia and stress hormone release in response to one-minute inhalation of 80% CO2 in swine.

    PubMed

    Forslid, A; Augustinsson, O

    1988-02-01

    The study pertains to a series of investigations on the effects of CO2 inhalation as used for pre-slaughter anaesthesia in swine. Acid/base parameters, blood oxygen tension, plasma Na, K, Ca and stress hormone concentrations were monitored in Yorkshire swine before, during, and for 10 min after the animals were descended for 1 min into 80% CO2 in air. Severe respiratory acidosis (PaCO2 approximately 50 kPa, arterial pH approximately 6.6) and hypoxia (PaO2 approximately 4kPa) had developed after 45 s of the CO2 inhalation. The corresponding changes in venous blood were less drastic (PvCO2 approximately 17 kPa, pH 7.1, PvO2 approximately 4 kPa). Readjustment to PaCO2 approximately II kPa, arterial pH 7.2, and PaO2 approximately 13 kPa had occurred at 1 min post CO2. Four minutes later the respiratory acidosis had become converted into metabolic acidosis subjected to partial respiratory compensation (arterial pH 7.3 in the presence of moderate hypocapnia and hyperoxaemia). The cause of this metabolic acidosis (present also at 10 min post CO2) was apparently hypoxia-induced anaerobic metabolism (= lactic acid production). Apparently due to hydrogen ion transport into the cells in exchange for other cations, hyperkalaemia (K approximately 6.6 mmol l-1), and a 7 mmol l-1 increase in plasma Na had developed at 1.5 min later. The CO2 inhalation did not change the total plasma Ca significantly. The transport of the swine from the stable to the immediate pre-experimental situation induced a 3-fold increase in plasma cortisol concentration (PC, to approximately 130 mmol l-1). No further increase in PC occurred in response to the CO2 inhalation. It indicates that no additional emotional strain was imposed upon the animals during the CO2 exposure.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3147571

  5. Severe metabolic alkalosis due to pyloric obstruction: case presentation, evaluation, and management.

    PubMed

    McCauley, Meredith; Gunawardane, Manjula; Cowan, Mark J

    2006-12-01

    A 46-year-old man presented to the emergency room with severe metabolic alkalosis, hypokalemia, and respiratory failure requiring intubation and mechanical ventilation. The cause of his acid-base disorder was initially unclear. Although alkalosis is common in the intensive care unit, metabolic alkalosis of this severity is unusual, carries a very high mortality rate, and requires careful attention to the pathophysiology and differential diagnosis to effectively evaluate and treat the patient. A central concept in the diagnosis of metabolic alkalosis is distinguishing chloride responsive and chloride nonresponsive states. Further studies are then guided by the history and physical examination in most cases. By using a systematic approach to the differential diagnosis, we were able to determine that a high-grade gastric outlet obstruction was the cause of the patients' alkalosis and to offer effective therapy for his condition. A literature review and algorithm for the diagnosis and management of metabolic alkalosis are also presented. PMID:17170625

  6. [Keto acidosis and coma in 44-years old man with diabetes t1 in Internal Diseases Department in Dabrowa Tarnowska].

    PubMed

    Jasiński, Marcin; Radziszewski, Andrzej

    2015-01-01

    Diabetic ketoacidosis (DKA) is an acute complication metabolic occur- ring in patients with diabetes type-1 and much less likely to type 2 diabetes. This article shows clinical manifesta- tion, biochemical criteria and algorithm for the immediate assessment and management of diabetic acidosis in a 44 years old men. This specification describes a rare case of keto acidosis and coma therapy and the challenges that these disorders carry. PMID:27012135

  7. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis.

    PubMed

    Khafipour, Ehsan; Li, Shucong; Plaizier, Jan C; Krause, Denis O

    2009-11-01

    Subacute ruminal acidosis (SARA) is a metabolic disease in dairy cattle that occurs during early and mid-lactation and has traditionally been characterized by low rumen pH, but lactic acid does not accumulate as in acute lactic acid acidosis. It is hypothesized that factors such as increased gut permeability, bacterial lipopolysaccharides, and inflammatory responses may have a role in the etiology of SARA. However, little is known about the nature of the rumen microbiome during SARA. In this study, we analyzed the microbiome of 64 rumen samples taken from eight lactating Holstein dairy cattle using terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA genes and real-time PCR. We used rumen samples from two published experiments in which SARA had been induced with either grain or alfalfa pellets. The results of TRFLP analysis indicated that the most predominant shift during SARA was a decline in gram-negative Bacteroidetes organisms. However, the proportion of Bacteroidetes organisms was greater in alfalfa pellet-induced SARA than in mild or severe grain-induced SARA (35.4% versus 26.0% and 16.6%, respectively). This shift was also evident from the real-time PCR data for Prevotella albensis, Prevotella brevis, and Prevotella ruminicola, which are members of the Bacteroidetes. The real-time PCR data also indicated that severe grain-induced SARA was dominated by Streptococcus bovis and Escherichia coli, whereas mild grain-induced SARA was dominated by Megasphaera elsdenii and alfalfa pellet-induced SARA was dominated by P. albensis. Using discriminant analysis, the severity of SARA and degree of inflammation were highly correlated with the abundance of E. coli and not with lipopolysaccharide in the rumen. We thus suspect that E. coli may be a contributing factor in disease onset. PMID:19783747

  8. Founder p.Arg 446* mutation in the PDHX gene explains over half of cases with congenital lactic acidosis in Roma children.

    PubMed

    Ivanov, Ivan S; Azmanov, Dimitar N; Ivanova, Mariya B; Chamova, Teodora; Pacheva, Ilyana H; Panova, Margarita V; Song, Sharon; Morar, Bharti; Yordanova, Ralitsa V; Galabova, Fani K; Sotkova, Iglika G; Linev, Alexandar J; Bitchev, Stoyan; Shearwood, Anne-Marie J; Kancheva, Dalia; Gabrikova, Dana; Karcagi, Veronika; Guergueltcheva, Velina; Geneva, Ina E; Bozhinova, Veneta; Stoyanova, Vili K; Kremensky, Ivo; Jordanova, Albena; Savov, Aleksey; Horvath, Rita; Brown, Matthew A; Tournev, Ivailo; Filipovska, Aleksandra; Kalaydjieva, Luba

    2014-01-01

    Investigation of 31 of Roma patients with congenital lactic acidosis (CLA) from Bulgaria identified homozygosity for the R446* mutation in the PDHX gene as the most common cause of the disorder in this ethnic group. It accounted for around 60% of patients in the study and over 25% of all CLA cases referred to the National Genetic Laboratory in Bulgaria. The detection of a homozygous patient from Hungary and carriers among population controls from Romania and Slovakia suggests a wide spread of the mutation in the European Roma population. The clinical phenotype of the twenty R446* homozygotes was relatively homogeneous, with lactic acidosis crisis in the first days or months of life as the most common initial presentation (15/20 patients) and delayed psychomotor development and/or seizures in infancy as the leading manifestations in a smaller group (5/20 patients). The subsequent clinical picture was dominated by impaired physical growth and a very consistent pattern of static cerebral palsy-like encephalopathy with spasticity and severe to profound mental retardation seen in over 80% of cases. Most patients had a positive family history. We propose testing for the R446* mutation in PDHX as a rapid first screening in Roma infants with metabolic acidosis. It will facilitate and accelerate diagnosis in a large proportion of cases, allow early rehabilitation to alleviate the chronic clinical course, and prevent further affected births in high-risk families. PMID:25087164

  9. Distal renal tubular acidosis and hypokalemic paralysis in a patient with hypothyroidism.

    PubMed

    Koul, Parvaiz Ahmad; Wahid, A

    2011-09-01

    A 43- year- old woman on treatment for primary hypothyroidism presented with 1- day progressive weakness of all her limbs and history of similar episodes in the past. Clinical examination revealed grade 2 hyporeflexive weakness. Investigations revealed features of hypokalemia, metabolic acidosis, alkaline urine, and a fractional bicarbonate excretion of 3.5%, consistent with distal renal tubular acidosis. Antithyroid peroxidase and antithroglobulin antibodies were positive, suggesting an autoimmune basis for the pathogenesis of the functional tubular defect. Bicarbonate therapy resulted in a sustained clinical recovery. PMID:21912036

  10. [Regional vasoactive and metabolic therapy of patients with severe cranio-cerebral traumas].

    PubMed

    Lapshin, V N; Shakh, B N; Teplov, V M; Smirnov, D B

    2012-01-01

    In patients with severe cranio-cerebral traumas an investigation was performed of the efficiency of using vasoactive therapy in complex treatment directed to earlier recovery of the microcirculatory blood flow and aerobic metabolism in ischemic parts of the brain. PMID:22880433

  11. Low Cerebral Glucose Metabolism: A Potential Predictor for the Severity of Vascular Parkinsonism and Parkinson's Disease.

    PubMed

    Xu, Yunqi; Wei, Xiaobo; Liu, Xu; Liao, Jinchi; Lin, Jiaping; Zhu, Cansheng; Meng, Xiaochun; Xie, Dongsi; Chao, Dongman; Fenoy, Albert J; Cheng, Muhua; Tang, Beisha; Zhang, Zhuohua; Xia, Ying; Wang, Qing

    2015-11-01

    This study explored the association between cerebral metabolic rates of glucose (CMRGlc) and the severity of Vascular Parkinsonism (VP) and Parkinson's disease (PD). A cross-sectional study was performed to compare CMRGlc in normal subjects vs. VP and PD patients. Twelve normal subjects, 22 VP, and 11 PD patients were evaluated with the H&Y and MMSE, and underwent 18F-FDG measurements. Pearson's correlations were used to identify potential associations between the severity of VP/PD and CMRGlc. A pronounced reduction of CMRGlc in the frontal lobe and caudate putamen was detected in patients with VP and PD when compared with normal subjects. The VP patients displayed a slight CMRGlc decrease in the caudate putamen and frontal lobe in comparison with PD patients. These decreases in CMRGlc in the frontal lobe and caudate putamen were significantly correlated with the VP patients' H&Y, UPDRS II, UPDRS III, MMSE, cardiovascular, and attention/memory scores. Similarly, significant correlations were observed in patients with PD. This is the first clinical study finding strong evidence for an association between low cerebral glucose metabolism and the severity of VP and PD. Our findings suggest that these changes in glucose metabolism in the frontal lobe and caudate putamen may underlie the pathophysiological mechanisms of VP and PD. As the scramble to find imaging biomarkers or predictors of the disease intensifies, a better understanding of the roles of cerebral glucose metabolism may give us insight into the pathogenesis of VP and PD. PMID:26618044

  12. The Severity of Fatty Liver Disease Relating to Metabolic Abnormalities Independently Predicts Coronary Calcification

    PubMed Central

    Lee, Ying-Hsiang; Wu, Yih-Jer; Liu, Chuan-Chuan; Hou, Charles Jia-Yin; Yeh, Hung-I.; Tsai, Cheng-Ho; Shih, Shou-Chuan; Hung, Chung-Lieh

    2011-01-01

    Background. Nonalcoholic fatty liver disease (NAFLD) is one of the metabolic disorders presented in liver. The relationship between severity of NAFLD and coronary atherosclerotic burden remains largely unknown. Methods and Materials. We analyzed subjects undergoing coronary calcium score evaluation by computed tomography (MDCT) and fatty liver assessment using abdominal ultrasonography. Framingham risk score (FRS) and metabolic risk score (MRS) were obtained in all subjects. A graded, semiquantitative score was established to quantify the severity of NAFLD. Multivariate logistic regression analysis was used to depict the association between NAFLD and calcium score. Results. Of all, 342 participants (female: 22.5%, mean age: 48.7 ± 7.0 years) met the sufficient information rendering detailed analysis. The severity of NAFLD was positively associated with MRS (X2 = 6.12, trend P < 0.001) and FRS (X2 = 5.88, trend P < 0.001). After multivariable adjustment for clinical variables and life styles, the existence of moderate to severe NAFLD was independently associated with abnormal calcium score (P < 0.05). Conclusion. The severity of NAFLD correlated well with metabolic abnormality and was independently predict coronary calcification beyond clinical factors. Our data suggests that NAFLD based on ultrasonogram could positively reflect the burden of coronary calcification. PMID:22254139

  13. [The characteristics of changes in lipid metabolism indices of patients with severe mechanical trauma].

    PubMed

    Moroz, V V; Bessekeev, A A; Molchanova, L V; Shcherbakova, L N

    2003-01-01

    The paper contains the study results of some lipid-metabolism indices in patients with severe mechanical injury. Changing concentrations of total cholesterol, triglycerides and of different lipoprotein fractions in blood plasma are demonstrated. It was established that the investigated lipid-metabolism indices reflect a degree of liver malfunction in severely impaired homeostasis. It can be stated on the basis of comparing the study results with the clinical outcome that the dynamic concentration of total cholesterol in blood plasma is an important prognostication factor. Changing ratios of high-density lipoproteins, low-density lipoproteins and extra-low-density lipoproteins were observed in survivors yet by day 15, which is indicative of a commencing dislipidemia. PMID:14991968

  14. Severe metabolic alkalosis due to baking soda ingestion: case reports of two patients with unsuspected antacid overdose.

    PubMed

    Fitzgibbons, L J; Snoey, E R

    1999-01-01

    Oral ingestion of baking soda (sodium bicarbonate) has been used for decades as a home remedy for acid indigestion. Excessive bicarbonate ingestion places patients at risk for a variety of metabolic derangements including metabolic alkalosis, hypokalemia, hypernatremia, and even hypoxia. The clinical presentation is highly variable but can include seizures, dysrhythmias, and cardiopulmonary arrest. We present two cases of severe metabolic alkalosis in patients with unsuspected antacid overdose. The presentation and pathophysiology of antacid-related metabolic alkalosis is reviewed. PMID:9950389

  15. Ruminal Acidosis in Feedlot: From Aetiology to Prevention

    PubMed Central

    Hernández, Joaquín; Benedito, José Luis; Abuelo, Angel; Castillo, Cristina

    2014-01-01

    Acute ruminal acidosis is a metabolic status defined by decreased blood pH and bicarbonate, caused by overproduction of ruminal D-lactate. It will appear when animals ingest excessive amount of nonstructural carbohydrates with low neutral detergent fiber. Animals will show ruminal hypotony/atony with hydrorumen and a typical parakeratosis-rumenitis liver abscess complex, associated with a plethora of systemic manifestations such as diarrhea and dehydration, liver abscesses, infections of the lung, the heart, and/or the kidney, and laminitis, as well as neurologic symptoms due to both cerebrocortical necrosis and the direct effect of D-lactate on neurons. In feedlots, warning signs include decrease in chewing activity, weight, and dry matter intake and increase in laminitis and diarrhea prevalence. The prognosis is quite variable. Treatment will be based on the control of systemic acidosis and dehydration. Prevention is the most important tool and will require normalization of ruminal pH and microbiota. Appropriate feeding strategies are essential and involve changing the dietary composition to increase neutral detergent fiber content and greater particle size and length. Appropriate grain processing can control the fermentation rate while additives such as prebiotics or probiotics can help to stabilize the ruminal environment. Immunization against producers of D-lactate is being explored. PMID:25489604

  16. Metabolite mapping reveals severe widespread perturbation of multiple metabolic processes in Huntington's disease human brain.

    PubMed

    Patassini, Stefano; Begley, Paul; Xu, Jingshu; Church, Stephanie J; Reid, Suzanne J; Kim, Eric H; Curtis, Maurice A; Dragunow, Mike; Waldvogel, Henry J; Snell, Russell G; Unwin, Richard D; Faull, Richard L M; Cooper, Garth J S

    2016-09-01

    Huntington's disease (HD) is a genetically-mediated neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein (Htt) through lengthening of its polyglutamine tract, thus initiating a cascade that ultimately leads to premature death. However, neurodegeneration typically manifests in HD only in middle age, and mechanisms linking the causative mutation to brain disease are poorly understood. Brain metabolism is severely perturbed in HD, and some studies have indicated a potential role for mutant Htt as a driver of these metabolic aberrations. Here, our objective was to determine the effects of HD on brain metabolism by measuring levels of polar metabolites in regions known to undergo varying degrees of damage. We performed gas-chromatography/mass spectrometry-based metabolomic analyses in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine matched controls. In each patient, we measured metabolite content in representative tissue-samples from eleven brain regions that display varying degrees of damage in HD, thus identifying the presence and abundance of 63 different metabolites from several molecular classes, including carbohydrates, amino acids, nucleosides, and neurotransmitters. Robust alterations in regional brain-metabolite abundances were observed in HD patients: these included changes in levels of small molecules that play important roles as intermediates in the tricarboxylic-acid and urea cycles, and amino-acid metabolism. Our findings point to widespread disruption of brain metabolism and indicate a complex phenotype beyond the gradient of neuropathologic damage observed in HD brain. PMID:27267344

  17. Metformin-Associated Lactic Acidosis in a Patient with Normal Renal Function.

    PubMed

    Omar, Ahmed; Ellen, Ruth; Sorisky, Alexander

    2016-08-01

    We report a case of metformin-associated lactic acidosis (MALA) in the setting of normal renal function and review the relevant medical literature. A 77-year-old female diagnosed with type 2 diabetes mellitus previously treated with insulin and gliclazide MR was started on metformin. A few weeks later, she was found to have lactic acidosis. Renal function was normal, and no severe underlying illness was identified. Metformin was discontinued, and lactate levels normalized within 4 days, suggesting metformin was a reversible precipitant of the lactic acidosis. MALA can occur in the absence of renal impairment, systemic hypoperfusion or severe liver disease. A possible mechanism is a genetically determined alteration in metformin pharmacokinetics. Metformin is beneficial and safe in patients with normal renal function, but the development of MALA, although rare, should be kept in mind to prevent potentially life-threatening toxicity. PMID:27197687

  18. Acidosis Activation of the Proton-Sensing GPR4 Receptor Stimulates Vascular Endothelial Cell Inflammatory Responses Revealed by Transcriptome Analysis

    PubMed Central

    Dong, Lixue; Li, Zhigang; Leffler, Nancy R.; Asch, Adam S.; Chi, Jen-Tsan; Yang, Li V.

    2013-01-01

    Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC) with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2) and stress response genes such as ATF3 and DDIT3 (CHOP). Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be suppressed by

  19. [The effect of subclinical and acute ante partum acidosis in cows on the course of pregnancy with regard to the steroid hormone profile].

    PubMed

    Raś, A; Janowski, T; Zduńczyk, S

    1996-08-01

    Experiment 1: In a field experiment in 19 of 87 cows being in day 260-265 of pregnancy subclinical metabolic acidosis was found. The control group included 10 healthy cows in the same stage of pregnancy. Blood samples from cows of both groups were collected once daily until day 2 post partum for determination of oestrogens, progesterone and cortisol. Dystocia was found in four and retained placenta in three cows having acidosis. These cows had lower oestrogens and markedly higher cortisol and progesterone concentrations during parturition. Course of pregnancy and delivery in control cows an without any difficulties and hormonal profiles in these cows were typical. Experiment 2: On day 265 of pregnancy experimental acute acidosis was evoked in five cows and five other cows served as control. Sampling of blood was the same as in experiment 1. Acidosis caused on day 269 in two cows premature birth with retained placenta. Moreover concentrations of studied steroids were atypical. In three other cows with acidosis course of pregnancy and delivery was without any trouble. Only cortisol was increased while progesterone and oestrogen values were in agreement with concentrations of control cows. Data suggest that metabolic acidosis can cause dystocia, premature birth and retained placenta. Furthermore, acidosis clearly affects the profile of steroid hormones. PMID:9012018

  20. Maple Bark Biochar Affects Rhizoctonia solani Metabolism and Increases Damping-Off Severity.

    PubMed

    Copley, Tanya R; Aliferis, Konstantinos A; Jabaji, Suha

    2015-10-01

    Many studies have investigated the effect of biochar on plant yield, nutrient uptake, and soil microbial populations; however, little work has been done on its effect on soilborne plant diseases. To determine the effect of maple bark biochar on Rhizoctonia damping-off, 11 plant species were grown in a soilless potting substrate amended with different concentrations of biochar and inoculated or not with Rhizoctonia solani anastomosis group 4. Additionally, the effect of biochar amendment on R. solani growth and metabolism in vitro was evaluated. Increasing concentrations of maple bark biochar increased Rhizoctonia damping-off of all 11 plant species. Using multivariate analyses, we observed positive correlations between biochar amendments, disease severity and incidence, abundance of culturable bacterial communities, and physicochemical parameters. Additionally, biochar amendment significantly increased R. solani growth and hyphal extension in vitro, and altered its primary metabolism, notably the mannitol and tricarboxylic acid cycles and the glycolysis pathway. One or several organic compounds present in the biochar, as identified by gas chromatography-mass spectrometry analysis, may be metabolized by R. solani. Taken together, these results indicate that future studies on biochar should focus on the effect of its use as an amendment on soilborne plant pathogens before applying it to soils. PMID:25938176

  1. Comparison of metabolic substrates in alligators and several birds of prey.

    PubMed

    Sweazea, Karen L; McMurtry, John P; Elsey, Ruth M; Redig, Patrick; Braun, Eldon J

    2014-08-01

    On average, avian blood glucose concentrations are 1.5-2 times those of mammals of similar mass and high concentrations of insulin are required to lower blood glucose. Whereas considerable data exist for granivorous species, few data are available for plasma metabolic substrate and glucoregulatory hormone concentrations for carnivorous birds and alligators. Birds and mammals with carnivorous diets have higher metabolic rates than animals consuming diets with less protein whereas alligators have low metabolic rates. Therefore, the present study was designed to compare substrate and glucoregulatory hormone concentrations in several birds of prey and a phylogenetically close relative of birds, the alligator. The hypothesis was that the combination of carnivorous diets and high metabolic rates favored the evolution of greater protein and fatty acid utilization leading to insulin resistance and high plasma glucose concentrations in carnivorous birds. In contrast, it was hypothesized that alligators would have low substrate utilization attributable to a low metabolic rate. Fasting plasma substrate and glucoregulatory hormone concentrations were compared for bald eagles (Haliaeetus leucocephalus), great horned owls (Bubo virginianus), red-tailed hawks (Buteo jamaicensis), and American alligators (Alligator mississippiensis). Avian species had high circulating β-hydroxybutyrate (10-21 mg/dl) compared to alligators (2.81 ± 0.16 mg/dl). In mammals high concentrations of this byproduct of fatty acid utilization are correlated with insulin resistance. Fasting glucose and insulin concentrations were positively correlated in eagles whereas no relationship was found between these variables for owls, hawks or alligators. Additionally, β-hydroxybutyrate concentrations were low in alligators. Similar to carnivorous mammals, ingestion of a high protein diet may have favored the utilization of fatty acids and protein for energy thereby promoting the development of insulin

  2. Renal tubular acidosis complicated with hypokalemic periodic paralysis.

    PubMed

    Chang, Y C; Huang, C C; Chiou, Y Y; Yu, C Y

    1995-07-01

    Three Chinese girls with hypokalemic periodic paralysis secondary to different types of renal tubular acidosis are presented. One girl has primary distal renal tubular acidosis complicated with nephrocalcinosis. Another has primary Sjögren syndrome with distal renal tubular acidosis, which occurs rarely with hypokalemic periodic paralysis in children. The third has an isolated proximal renal tubular acidosis complicated with multiple organ abnormalities, unilateral carotid artery stenosis, respiratory failure, and consciousness disturbance. The diagnostic evaluation and emergent and prophylactic treatment for these three types of renal tubular acidosis are discussed. PMID:7575850

  3. Genetic background of uric acid metabolism in a patient with severe chronic tophaceous gout.

    PubMed

    Petru, Lenka; Pavelcova, Katerina; Sebesta, Ivan; Stiburkova, Blanka

    2016-09-01

    Hyperuricemia depends on the balance of endogenous production and renal excretion of uric acid. Transporters for urate are located in the proximal tubule where uric acid is secreted and extensively reabsorbed: secretion is principally ensured by the highly variable ABCG2 gene. Enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) plays a central role in purine metabolism and its deficiency is an X-linked inherited metabolic disorder associated with clinical manifestations of purine overproduction. Here we report the case of a middle-aged man with severe chronic tophaceous gout with a poor response to allopurinol and requiring repeated surgical intervention. We identified the causal mutations in the HPRT1 gene, variant c.481G>T (p.A161S), and in the crucial urate transporter ABCG2, a heterozygous variant c.421C>A (p.Q141K). This case shows the value of an analysis of the genetic background of serum uric acid. PMID:27288985

  4. Morning cortisol levels and glucose metabolism parameters in moderate and severe obstructive sleep apnea patients.

    PubMed

    Bozic, Josko; Galic, Tea; Supe-Domic, Daniela; Ivkovic, Natalija; Ticinovic Kurir, Tina; Valic, Zoran; Lesko, Josip; Dogas, Zoran

    2016-09-01

    Obstructive sleep apnea (OSA) has been associated with dysregulation of the hypothalamic-pituitary-adrenal axis and alterations in glucose metabolism with increased risk for type 2 diabetes. The aim of the current study was to compare morning plasma cortisol levels and glucose metabolism parameters between moderate (apnea-hypopnea index (AHI): 15-30 events/h) and severe OSA patients (AHI >30 events/h), with respective controls. A total of 56 male OSA patients, 24 moderate (AHI = 21.1 ± 5.3) and 32 severe (AHI = 49.7 ± 18.1), underwent a full-night polysomnography, oral glucose tolerance test (OGTT), and measurement of morning plasma cortisol levels. These groups were compared to 20 matched subjects in a control group. Morning plasma cortisol levels were statistically lower in severe OSA group than in moderate OSA and control groups (303.7 ± 93.5 vs. 423.9 ± 145.1 vs. 417.5 ± 99.8 pmol/L, P < 0.001). Significant negative correlations were found between morning plasma cortisol levels and AHI (r = -0.444, P = 0.002), as well as oxygen desaturation index (r = -0.381, P = 0.011). Fasting plasma glucose (5.0 ± 0.5 vs. 5.4 ± 0.7 vs. 4.9 ± 0.6 mmol/L, P = 0.009) was higher in the severe OSA group compared to moderate OSA and controls. Homeostasis model assessment insulin resistance (HOMA-IR) was higher in the severe OSA group compared to moderate OSA and controls (4.6 ± 3.7 vs. 2.7 ± 2.0 and 2.2 ± 1.8, respectively, P = 0.006). In conclusion, our study showed that morning plasma cortisol levels measured at 8 a.m. were significantly lower in severe OSA patients than those in moderate OSA group and controls. Morning plasma cortisol levels showed a negative correlation with AHI and oxygen desaturation index. Additionally, this study confirmed the evidence of glucose metabolism impairment in moderate and severe OSA patients, with more pronounced effect in the severe OSA patients group. PMID:27000083

  5. [A case of mFOLFOX6-induced lactic acidosis in a patient with colon cancer].

    PubMed

    Ito, Atene; Kawamoto, Kazuyuki; Park, Taebun; Ito, Tadashi

    2014-11-01

    Leucovorin calcium, 5-fluorouracil, and oxaliplatin (FOLFOX) therapy is a standard chemotherapy regimen used to treat colorectal cancer. Peripheral nerve disorder and myelosuppression are frequently reported treatment-related adverse events. With modified FOLFOX6 (mFOLFOX6) therapy, adverse events of an altered mental state with reversible posterior leukoencephalopathy and hypoammonemia have been reported, while lactic acidosis is uncommon. We describe a case of mFOLFOX6 - induced lactic acidosis in a 64-year-old man with colorectal cancer who underwent pelvic exenteration following chemotherapy. Postoperative histopathological analysis revealed residual cancer. Following the commencement of mFOLFOX6 therapy, the patient experienced emesis, hiccupping, and an altered mental state. Laboratory testing revealed only severe lactic acidosis, while diagnostic imaging was unrevealing. All symptoms quickly improved upon the administration of intravenous infusion of sodium bicarbonate. PMID:25434453

  6. Neonatal onset propionic acidemia without acidosis: a case report.

    PubMed

    Akman, Ipek; Imamoğlu, Sebahat; Demirkol, Mübeccel; Alpay, Harika; Ozek, Eren

    2002-01-01

    Propionic acidemia is an inherited disorder of organic acid metabolism characterized by a spectrum of clinical and biochemical findings. The usual presentation is life-threatening ketoacidosis and hyperammonemia. In this report we present a neonate with propionic acidemia presenting with prominent neurologic problems without ketoacidosis. The patient had a serum ammonia level of 3,500 microg/dl which was effectively lowered to normal values in 48 hours by peritoneal dialysis, with remarkable improvement in neurologic status. However, she developed Candida albicans peritonitis, and sepsis and died of cardiorespiratory failure. Infants who have an early onset propionic acidemia have a high mortality and morbidity rate. In conclusion, propionic acidemia should be in the differential diagnosis of patients with neurologic symptoms and hyperammonemia with or without acidosis. PMID:12458812

  7. Severe Obesity Shifts Metabolic Thresholds but Does Not Attenuate Aerobic Training Adaptations in Zucker Rats

    PubMed Central

    Rosa, Thiago S.; Simões, Herbert G.; Rogero, Marcelo M.; Moraes, Milton R.; Denadai, Benedito S.; Arida, Ricardo M.; Andrade, Marília S.; Silva, Bruno M.

    2016-01-01

    Severe obesity affects metabolism with potential to influence the lactate and glycemic response to different exercise intensities in untrained and trained rats. Here we evaluated metabolic thresholds and maximal aerobic capacity in rats with severe obesity and lean counterparts at pre- and post-training. Zucker rats (obese: n = 10, lean: n = 10) were submitted to constant treadmill bouts, to determine the maximal lactate steady state, and an incremental treadmill test, to determine the lactate threshold, glycemic threshold and maximal velocity at pre and post 8 weeks of treadmill training. Velocities of the lactate threshold and glycemic threshold agreed with the maximal lactate steady state velocity on most comparisons. The maximal lactate steady state velocity occurred at higher percentage of the maximal velocity in Zucker rats at pre-training than the percentage commonly reported and used for training prescription for other rat strains (i.e., 60%) (obese = 78 ± 9% and lean = 68 ± 5%, P < 0.05 vs. 60%). The maximal lactate steady state velocity and maximal velocity were lower in the obese group at pre-training (P < 0.05 vs. lean), increased in both groups at post-training (P < 0.05 vs. pre), but were still lower in the obese group at post-training (P < 0.05 vs. lean). Training-induced increase in maximal lactate steady state, lactate threshold and glycemic threshold velocities was similar between groups (P > 0.05), whereas increase in maximal velocity was greater in the obese group (P < 0.05 vs. lean). In conclusion, lactate threshold, glycemic threshold and maximal lactate steady state occurred at similar exercise intensity in Zucker rats at pre- and post-training. Severe obesity shifted metabolic thresholds to higher exercise intensity at pre-training, but did not attenuate submaximal and maximal aerobic training adaptations. PMID:27148063

  8. The metabolic effects of moderately severe upper gastrointestinal haemorrhage in man.

    PubMed Central

    Foster, K. J.; Alberti, K. G.; Binder, C.; Holdstock, G.; Karran, S. J.; Smith, C. L.; Talbot, S.; Turnell, D. C.

    1982-01-01

    The metabolic effects of moderately severe gastrointestinal haemorrhage were investigated in man. Before resuscitation, patients had raised circulating concentrations of glucose, lactate, alanine, glycerol and cortisol. After urgent operation for haemorrhage, metabolite concentrations were similar to those of control patients having elective abdominal surgery, but insulin concentrations were higher and cortisol lower in haemorrhage patients. There were no significant differences in nitrogen excretion between haemorrhage patients and their controls, but urinary 3-methyl-histidine excretion by haemorrhage patients was lower indicating decreased muscle protein breakdown. Decreased amino acid release from muscle might account for previously reported imparied wound healing after haemorrhage. PMID:7045838

  9. Enkephalins and hormonal-metabolic reactions in experimental stress depending on its severity

    SciTech Connect

    Lishmanov, Y.B.; Alekminskaya, L.A.; Lasukova, T.V.

    1985-08-01

    The aim of this investigation was to study the action of enkephalins on changes in hormonal-metabolic constants in stress of varied severity. Catecholamine excretion with the urine was determined fluorometrically, serum cortisol and insulin concentrations were measured radioimmunologically and glucose was determined by the standard orthotoluidine method. The results of the investigation indicate that enkephalins have a modulating effect on various hormonal mechanisms of adaptation stress. The results confirm that the physiological action of the peptide regulator depends on the functional state of the biological systems and it may differ sharply, even to the extent of diametrically opposite effects.

  10. Lactic acidosis following intentional overdose by inhalation of salmeterol and fluticasone.

    PubMed

    Manara, Alessandro; Hantson, Philippe; Vanpee, Dominique; Thys, Frédéric

    2012-11-01

    Salmeterol, a long-acting β2-adrenergic receptor agonist used for the treatment of asthma and chronic obstructive pulmonary disease, has an adverse effects profile that is similar to that of salbutamol and other β2-agonists. We report a sympathomimetic syndrome with metabolic acidosis and hyperlactatemia after intentional inhalation of salmeterol in a suicide attempt. A 16-year-old female patient was admitted to the emergency department approximately 2 hours after having inhaled 60 puffs of a combination of salmeterol xinafoate 25 μg and fluticasone propionate 50 μg. She presented in an anxious state with complaints of palpitations and chest pain. The electrocardiogram demonstrated sinus tachycardia and ST-segment depression in the inferior and anterolateral leads. Laboratory findings showed hypokalemia, hypophosphatemia, and lactic acidosis. Cardiac troponin I and creatine kinase MB remained within the normal range. Treatment was supportive and included intravenous fluids and cautious potassium supplementation. The next day, electrocardiographic and laboratory findings returned to normal. We hypothesize that stimulation of β2-adrenergic receptors by inhalation of salmeterol caused this patient's lactic acidosis. This observation is consistent with the hypothesis that the hyperlactatemia observed during asthma attacks is due in part to the administration of high doses of β2-agonists. Salmeterol overdose by inhalation appears to be sufficient to cause lactic acidosis. PMID:23131487

  11. The effect of LLLT on bone metabolism in children with severe cerebral palsy (a secondary publication)

    PubMed Central

    2014-01-01

    Background and aims: It is said that the average frequency of bone fracture in hospitalized children with severe cerebral palsy (unable to remain seated) is 1% (0.2 to 2.0%). Cerebral palsy patients' bones are known to be vulnerable to fracture, and refractory bone atrophy may be observed. However, the effect of low level laser therapy (LLLT) on bone density or bone metabolism has not been fully investigated. In recent years, tests for bone density or bone metabolism markers have become available. Material and methods: In this study, we evaluated changes in bone density and bone metabolism markers in 4 children with severe cerebral palsy who underwent LLLT for an average of 22 days. Results: B-ALP, a marker of ossification, increased 1 month after the start of irradiation in 3 of the 4 subjects and returned to a level close to the pre-irradiation level 2 months after the start of irradiation. In the remaining subjects in whom B-ALP failed to increase, B-ALP had been low before irradiation. Urinary N-terminal telopeptide (NTx) levels, a marker of bone resorption, decreased in 3 of the 4 subjects after the start of irradiation and remained low even 10 months later. Serum NTx levels tended to decrease in 3 of the 4 subjects. The levels of serum NTx/Crea, Deoxy-Pyridinoline (DPd) and DPd/Crea (DPd/Crea) also decreased in 3 of the 4 subjects. Transient decreases in intact parathyroid hormone (PTH) levels were observed in all 4 cases. Changes were particularly apparent in 2 cases: one with high NTx levels, which showed enhanced bone resorption, and one with high PTH levels, probably due to a vitamin D (VitD) deficiency. Although the metacarpal bone density measured by DIP was found to be lower than in normal children, there were no changes due to LLLT. Conclusion: These results suggest that LLLT has a positive influence on bone metabolism in that it temporarily increases bone formation and suppresses bone resorption while also tending to improve secondary

  12. Dietary management of D-lactic acidosis in short bowel syndrome.

    PubMed Central

    Mayne, A J; Handy, D J; Preece, M A; George, R H; Booth, I W

    1990-01-01

    Manipulation of carbohydrate intake was used to treat severe, recurrent D-lactic acidosis in a patient with short bowel syndrome. Dietary carbohydrate composition was determined after assessment of D-lactic acid production from various carbohydrate substrates by faecal flora in vitro. This approach may be preferable to repeated courses of antibiotics. PMID:2317072

  13. Treatment of Severe Metabolic Alkalosis with Continuous Renal Replacement Therapy: Bicarbonate Kinetic Equations of Clinical Value.

    PubMed

    Yessayan, Lenar; Yee, Jerry; Frinak, Stan; Kwon, David; Szamosfalvi, Balazs

    2015-01-01

    Concomitant severe metabolic alkalosis, hypernatremia, and kidney failure pose a therapeutic challenge. Hemodialysis to correct azotemia and abnormal electrolytes results in rapid correction of serum sodium, bicarbonate, and urea but presents a risk for dialysis disequilibrium and brain edema. We describe a patient with Zollinger-Ellison syndrome with persistent encephalopathy, severe metabolic alkalosis (highest bicarbonate 81 mEq/L), hypernatremia (sodium 157 mEq/L), and kidney failure despite 30 hours of intravenous crystalloids and proton pump inhibitor. We used continuous renal replacement therapy (RRT) with delivered hourly urea clearance of ~3 L/hour (24 hour sustained low efficiency dialysis with regional citrate anticoagulation protocol at blood flow rate 60 ml/min and dialysate flow rate 400 ml/min). To mitigate a pronounced decrease in plasma osmolality while removing urea from this hypernatremic patient, dialysate sodium was set to start at 155 mEq/L then at 150 mEq/L after 6 hours. Serum bicarbonate, urea, and sodium were slowly corrected over 26 hours. This case demonstrates how to regulate and predict the systemic bicarbonate level using single pool kinetic modeling during convective or diffusive RRT. Kinetic modeling provides a valuable tool for systemic blood pH control in future combined use of extracorporeal CO2 removal and continuous RRT systems. PMID:25794247

  14. Glycolysis in energy metabolism during seizures.

    PubMed

    Yang, Heng; Wu, Jiongxing; Guo, Ren; Peng, Yufen; Zheng, Wen; Liu, Ding; Song, Zhi

    2013-05-15

    Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter γ-minobutyric acid, and changes in the intra- and extracellular environment. PMID:25206426

  15. Down-sizing of neuronal network activity and density of presynaptic terminals by pathological acidosis are efficiently prevented by Diminazene Aceturate.

    PubMed

    de Ceglia, Roberta; Chaabane, Linda; Biffi, Emilia; Bergamaschi, Andrea; Ferrigno, Giancarlo; Amadio, Stefano; Del Carro, Ubaldo; Mazzocchi, Nausicaa; Comi, Giancarlo; Bianchi, Veronica; Taverna, Stefano; Forti, Lia; D'Adamo, Patrizia; Martino, Gianvito; Menegon, Andrea; Muzio, Luca

    2015-03-01

    Local acidosis is associated with neuro-inflammation and can have significant effects in several neurological disorders, including multiple sclerosis, brain ischemia, spinal cord injury and epilepsy. Despite local acidosis has been implicated in numerous pathological functions, very little is known about the modulatory effects of pathological acidosis on the activity of neuronal networks and on synaptic structural properties. Using non-invasive MRI spectroscopy we revealed protracted extracellular acidosis in the CNS of Experimental Autoimmune Encephalomyelitis (EAE) affected mice. By multi-unit recording in cortical neurons, we established that acidosis affects network activity, down-sizing firing and bursting behaviors as well as amplitudes. Furthermore, a protracted acidosis reduced the number of presynaptic terminals, while it did not affect the postsynaptic compartment. Application of the diarylamidine Diminazene Aceturate (DA) during acidosis significantly reverted both the loss of neuronal firing and bursting and the reduction of presynaptic terminals. Finally, in vivo DA delivery ameliorated the clinical disease course of EAE mice, reducing demyelination and axonal damage. DA is known to block acid-sensing ion channels (ASICs), which are proton-gated, voltage-insensitive, Na(+) permeable channels principally expressed by peripheral and central nervous system neurons. Our data suggest that ASICs activation during acidosis modulates network electrical activity and exacerbates neuro-degeneration in EAE mice. Therefore pharmacological modulation of ASICs in neuroinflammatory diseases could represent a new promising strategy for future therapies aimed at neuro-protection. PMID:25499583

  16. Association of the ADRA1A gene and the severity of metabolic abnormalities in patients with schizophrenia.

    PubMed

    Cheng, Chin; Chiu, Hsien-Jane; Loh, El-Wui; Chan, Chin-Hong; Hwu, Tzong-Ming; Liu, Yun-Ru; Lan, Tsuo-Hung

    2012-01-10

    Patients with schizophrenia have a higher risk of developing metabolic abnormalities and their associated diseases. Some studies found that the accumulative number of metabolic syndrome components was associated with the severity of metabolic abnormalities. The purpose of this study was to examine the roles of the ADRA1A, ADRA2A, ADRB3, and 5HT2A genes in the risk of having more severe metabolic abnormalities among patients with schizophrenia. We studied a sample of 232 chronic inpatients with schizophrenia (120 males and 112 females) to explore the associations between the four candidate genes and the severity of metabolic syndrome by accumulative number of the components. Four single nucleotide polymorphisms in the candidate genes were genotyped, including the Arg347Cys in ADRA1A, the C1291G in ADRA2A, the Try64Arg in ADRB3, and the T102C in 5HT2A. An association between the accumulative number of metabolic syndrome components and the ADRA1A gene was found after adjusting age, sex, and other related variables (p-value=0.036). Presence of the Arg347 allele in the ADRA1A gene is a risk factor for having more severe metabolic abnormalities. These findings suggest a medical attention of closely monitoring metabolic risks for schizophrenia patients with high-risk genotypes. PMID:22037178

  17. Lactic Acidosis Induced by Linezolid Mimics Symptoms of an Acute Intracranial Bleed: A Case Report and Literature Review

    PubMed Central

    Zuccarini, Nichole Suzzanne; Yousuf, Tariq; Wozniczka, Daniel; Rauf, Anis Abdul

    2016-01-01

    Lactic acidosis is common and most often associated with disturbed acid-base balance. Rarely, it can be a life-threatening medication side effect. Hence, determining the etiology of lactic acidosis early in patients is paramount in choosing the correct therapeutic intervention. Although lactic acidosis as an adverse drug reaction of linezolid is a well-recognized and documented clinical entity, the occurrence of such mimicking an acute intracranial bleed has not been reported to our knowledge. The following case is presented as an example of such an occurrence. A 67-year-old woman presented to the emergency department for lethargy, nausea and syncope. The head CT did not demonstrate any bleeding or mass effect, but lab results were significant for elevated lactic acid. The patient recently underwent left total hip replacement surgery, which was complicated by a methicillin-resistant Staphylococcus aureus (MRSA) infection. She received 6 weeks of oral linezolid therapy. And upon learning that key part of her history, the linezolid was discontinued. Her lactic acid rapidly normalized and she was discharged home. Several publications demonstrate that linezolid induces lactic acidosis by disrupting crucial mitochondrial functions. It is essential that clinicians are aware that linezolid can cause lactic acidosis. And, the important reminder is that adverse drug reactions can often mimic common diseases. If it is not recognized early, ominous clinical consequences may occur. In conclusion, linezolid should be suspected and included in the differential diagnosis if lactic acidosis exists with an uncommon clinical picture.

  18. ASAS Centennial Paper: contributions in the Journal of Animal Science to understanding cattle metabolic and digestive disorders.

    PubMed

    Vasconcelos, J T; Galyean, M L

    2008-07-01

    Acute and subacute ruminal acidosis, bloat, liver abscesses, and polioencephalomalacia (PEM) were reviewed with respect to contributions published in the Journal of Animal Science (JAS) regarding these metabolic and digestive disorders in beef cattle. Increased grain feeding and expansion of the feedlot industry in the 1960s led to considerable research on acidosis, and early publications defined ruminal changes with acute acidosis. The concept of subacute acidosis was developed in the 1970s. Significant research was published during the 1980s and 1990s on adaptation to high-grain diets, effects of ionophores, and the development of model systems to study ruminal and metabolic changes in acidosis. Since 2000, JAS publications on acidosis have largely focused on individual animal variability in response to acid loads and the role of management strategies in controlling acidosis. Increased grain feeding also was associated with an increase in the incidence of liver abscesses, which were quickly linked to insults to the ruminal epithelium associated with acidosis. The role of antibiotics, particularly tylosin, in decreasing the incidence and severity of liver abscesses was a significant contribution of JAS publications during the 1970s and 1980s. Papers on bloat were among the earliest published in JAS related to metabolic and digestive disorders in cattle. Noteworthy accomplishments in bloat research chronicled in JAS include the nature of ruminal contents in legume and feedlot bloat, the role of plant fractions and microbial populations in the development of bloat, and the efficacy of poloxalene, ionophores, and, more recently, condensed tannins in decreasing the incidence and severity of bloat. Although less research has been published on PEM in JAS, early publications highlighting the association between PEM and ruminal acidity and the role of thiaminase in certain forms of the disorder, as well as more recent publications related to the role of sulfur in the

  19. A Heterozygous ZMPSTE24 Mutation Associated with Severe Metabolic Syndrome, Ectopic Fat Accumulation, and Dilated Cardiomyopathy.

    PubMed

    Galant, Damien; Gaborit, Bénédicte; Desgrouas, Camille; Abdesselam, Ines; Bernard, Monique; Levy, Nicolas; Merono, Françoise; Coirault, Catherine; Roll, Patrice; Lagarde, Arnaud; Bonello-Palot, Nathalie; Bourgeois, Patrice; Dutour, Anne; Badens, Catherine

    2016-01-01

    ZMPSTE24 encodes the only metalloprotease, which transforms prelamin into mature lamin A. Up to now, mutations in ZMPSTE24 have been linked to Restrictive Dermopathy (RD), Progeria or Mandibulo-Acral Dysplasia (MAD). We report here the phenotype of a patient referred for severe metabolic syndrome and cardiomyopathy, carrying a mutation in ZMPSTE24. The patient presented with a partial lipodystrophic syndrome associating hypertriglyceridemia, early onset type 2 diabetes, and android obesity with truncal and abdominal fat accumulation but without subcutaneous lipoatrophy. Other clinical features included acanthosis nigricans, liver steatosis, dilated cardiomyopathy, and high myocardial and hepatic triglycerides content. Mutated fibroblasts from the patient showed increased nuclear shape abnormalities and premature senescence as demonstrated by a decreased Population Doubling Level, an increased beta-galactosidase activity and a decreased BrdU incorporation rate. Reduced prelamin A expression by siRNA targeted toward LMNA transcripts resulted in decreased nuclear anomalies. We show here that a central obesity without subcutaneous lipoatrophy is associated with a laminopathy due to a heterozygous missense mutation in ZMPSTE24. Given the high prevalence of metabolic syndrome and android obesity in the general population, and in the absence of familial study, the causative link between mutation and phenotype cannot be formally established. Nevertheless, altered lamina architecture observed in mutated fibroblasts are responsible for premature cellular senescence and could contribute to the phenotype observed in this patient. PMID:27120622

  20. A Heterozygous ZMPSTE24 Mutation Associated with Severe Metabolic Syndrome, Ectopic Fat Accumulation, and Dilated Cardiomyopathy

    PubMed Central

    Galant, Damien; Gaborit, Bénédicte; Desgrouas, Camille; Abdesselam, Ines; Bernard, Monique; Levy, Nicolas; Merono, Françoise; Coirault, Catherine; Roll, Patrice; Lagarde, Arnaud; Bonello-Palot, Nathalie; Bourgeois, Patrice; Dutour, Anne; Badens, Catherine

    2016-01-01

    ZMPSTE24 encodes the only metalloprotease, which transforms prelamin into mature lamin A. Up to now, mutations in ZMPSTE24 have been linked to Restrictive Dermopathy (RD), Progeria or Mandibulo-Acral Dysplasia (MAD). We report here the phenotype of a patient referred for severe metabolic syndrome and cardiomyopathy, carrying a mutation in ZMPSTE24. The patient presented with a partial lipodystrophic syndrome associating hypertriglyceridemia, early onset type 2 diabetes, and android obesity with truncal and abdominal fat accumulation but without subcutaneous lipoatrophy. Other clinical features included acanthosis nigricans, liver steatosis, dilated cardiomyopathy, and high myocardial and hepatic triglycerides content. Mutated fibroblasts from the patient showed increased nuclear shape abnormalities and premature senescence as demonstrated by a decreased Population Doubling Level, an increased beta-galactosidase activity and a decreased BrdU incorporation rate. Reduced prelamin A expression by siRNA targeted toward LMNA transcripts resulted in decreased nuclear anomalies. We show here that a central obesity without subcutaneous lipoatrophy is associated with a laminopathy due to a heterozygous missense mutation in ZMPSTE24. Given the high prevalence of metabolic syndrome and android obesity in the general population, and in the absence of familial study, the causative link between mutation and phenotype cannot be formally established. Nevertheless, altered lamina architecture observed in mutated fibroblasts are responsible for premature cellular senescence and could contribute to the phenotype observed in this patient. PMID:27120622

  1. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy

    PubMed Central

    Risson, Valérie; Mazelin, Laetitia; Roceri, Mila; Sanchez, Hervé; Moncollin, Vincent; Corneloup, Claudine; Richard-Bulteau, Hélène; Vignaud, Alban; Baas, Dominique; Defour, Aurélia; Freyssenet, Damien; Tanti, Jean-François; Le-Marchand-Brustel, Yannick; Ferrier, Bernard; Conjard-Duplany, Agnès; Romanino, Klaas; Bauché, Stéphanie; Hantaï, Daniel; Mueller, Matthias; Kozma, Sara C.; Thomas, George; Rüegg, Markus A.; Ferry, Arnaud; Pende, Mario; Bigard, Xavier; Koulmann, Nathalie

    2009-01-01

    Mammalian target of rapamycin (mTOR) is a key regulator of cell growth that associates with raptor and rictor to form the mTOR complex 1 (mTORC1) and mTORC2, respectively. Raptor is required for oxidative muscle integrity, whereas rictor is dispensable. In this study, we show that muscle-specific inactivation of mTOR leads to severe myopathy, resulting in premature death. mTOR-deficient muscles display metabolic changes similar to those observed in muscles lacking raptor, including impaired oxidative metabolism, altered mitochondrial regulation, and glycogen accumulation associated with protein kinase B/Akt hyperactivation. In addition, mTOR-deficient muscles exhibit increased basal glucose uptake, whereas whole body glucose homeostasis is essentially maintained. Importantly, loss of mTOR exacerbates the myopathic features in both slow oxidative and fast glycolytic muscles. Moreover, mTOR but not raptor and rictor deficiency leads to reduced muscle dystrophin content. We provide evidence that mTOR controls dystrophin transcription in a cell-autonomous, rapamycin-resistant, and kinase-independent manner. Collectively, our results demonstrate that mTOR acts mainly via mTORC1, whereas regulation of dystrophin is raptor and rictor independent. PMID:20008564

  2. New insights into the metabolic and nutritional determinants of severe combined immunodeficiency

    PubMed Central

    Field, Martha S; Kamynina, Elena; Watkins, David; Rosenblatt, David S; Stover, Patrick J

    2015-01-01

    Human mutations in MTHFD1 have recently been identified in patients with severe combined immunodeficiency (SCID). SCID results from inborn errors of metabolism that cause impaired T- and B-cell proliferation and function. One of the most common causes of SCID is adenosine deaminase (ADA) deficiency, which ultimately inhibits DNA synthesis and cell division. MTHFD1 has been shown to translocate to the nucleus during S-phase of the cell cycle; this localization is critical for synthesis of thymidyate (dTMP or the “T” base in DNA) and subsequent progression through the cell cycle and cell proliferation. Identification of MTHFD1 mutations that are associated with SCID highlights the potential importance of adequate dTMP synthesis in the etiology of SCID. PMID:27123375

  3. Crassulacean acid metabolism under severe light limitation: a matter of plasticity in the shadows?

    PubMed

    Ceusters, Johan; Borland, Anne M; Godts, Christof; Londers, Elsje; Croonenborghs, Sarah; Van Goethem, Davina; De Proft, Maurice P

    2011-01-01

    Despite the increased energetic costs of CAM compared with C(3) photosynthesis, it is hypothesized that the inherent photosynthetic plasticity of CAM allows successful acclimation to light-limiting conditions. The present work sought to determine if CAM presented any constraints to short and longer term acclimation to light limitation and to establish if and how metabolic and photosynthetic plasticity in the deployment of the four phases of CAM might facilitate acclimation to conditions of deep shade. Measurements of leaf gas exchange, organic acids, starch and soluble sugar (glucose, fructose, and sucrose) contents were made in the leaves of the constitutive CAM bromeliad Aechmea 'Maya' over a three month period under severe light limitation. A. 'Maya' was not particularly tolerant of severe light limitation in the short term. A complete absence of net CO(2) uptake and fluctuations in key metabolites (i.e. malate, starch or soluble sugars) indicated a dampened metabolism whilst cell death in the most photosynthetically active leaves was attributed to an over-acidification of the cytoplasm. However, in the longer term, plasticity in the use of the different phases of gas exchange and different storage carbohydrate pools, i.e. a switch from starch to sucrose as the major carbohydrate source, ensured a positive carbon balance for this CAM species under extremely low levels of irradiance. As such, co-ordinated plasticity in the use of C(3) and C(4) carboxylases and different carbohydrate pools together with an increase in the abundance of light-harvesting complexes, appear to underpin the adaptive radiation of the energetically costly CAM pathway within light-limiting environments such as wet cloud forests and shaded understoreys of tropical forests. PMID:20861137

  4. Acidosis: A potential explanation for adverse fetal outcome in intrahepatic cholestasis of pregnancy. A case report

    PubMed Central

    Visser, W; Smit, LS; Cornette, J

    2014-01-01

    Background Intrahepatic cholestasis of pregnancy is a cholestatic disorder with an increased risk for adverse perinatal outcome. The mechanism underlying intrauterine demise is poorly understood. Case A nulliparous woman with gestational age of 36 plus 6 weeks presented with suspected intrahepatic cholestasis. Continuous CTG monitoring evolved from a normal pattern towards a non-reassuring pattern. A male neonate was delivered by caesarean section. Apgar scores 0, 1 and 4 at 1, 5 and 10 min. Fetal cord gas analysis showed pH 6.98, base deficit –15 mmol/L. Blood results showed maternal serum bile acid concentration of 220 µmol/L. Conclusion Our case suggests gradual evolution towards hypoxia and acidosis. It is unknown whether certain components in the bile acid concentrations might contribute to a fetal metabolic component of the acidosis.

  5. [Type B lactic acidosis associated with marginal lymphoma of the spleen: report of one case].

    PubMed

    Vega, Jorge; Rodríguez, María de los Ángeles; Peña, Armando; Vásquez, Alejadro

    2012-02-01

    Lactic acidosis in the absence of hypoxia or tissue hypoperfusion (type B) is very rare and is associated with the use of some drugs or malignancy. We report a 79-year-old woman, with a marginal non-Hodgkin's lymphoma of the spleen that was subjected to a splenectomy one year ago. She presented with unexplained tachypnea associated with pancytopenia and elevation of IgM to 10 times over the higher normal limit. Laboratory tests showed the presence of metabolic acidosis and high lactic acid levels in the absence of infection, tissue hypoxia or hypoperfusion. She was treated with sodium bicarbonate and steroids without obtaining a reduction in lactate levels. Twelve days after admission, a single dose of Rituximab quickly normalized lactate concentrations and platelet count. After the fourth dose of Rituximab, pancytopenia disappeared and IgM fell to 25% of its baseline concentration. PMID:22739955

  6. Distal Renal Tubular Acidosis and Calcium Nephrolithiasis

    NASA Astrophysics Data System (ADS)

    Moe, Orson W.; Fuster, Daniel G.; Xie, Xiao-Song

    2008-09-01

    Calcium stones are commonly encountered in patients with congenital distal renal tubular acidosis, a disease of renal acidification caused by mutations in either the vacuolar H+-ATPase (B1 or a4 subunit), anion exchanger-1, or carbonic anhydrase II. Based on the existing database, we present two hypotheses. First, heterozygotes with mutations in B1 subunit of H+-ATPase are not normal but may harbor biochemical abnormalities such as renal acidification defects, hypercalciuria, and hypocitraturia which can predispose them to kidney stone formation. Second, we propose at least two mechanisms by which mutant B1 subunit can impair H+-ATPase: defective pump assembly and defective pump activity.

  7. Altered lipid metabolism in Hfe-knockout mice promotes severe NAFLD and early fibrosis.

    PubMed

    Tan, Terrence C H; Crawford, Darrell H G; Jaskowski, Lesley A; Murphy, Therese M; Heritage, Mandy L; Subramaniam, V Nathan; Clouston, Andrew D; Anderson, Gregory J; Fletcher, Linda M

    2011-11-01

    The HFE protein plays a crucial role in the control of cellular iron homeostasis. Steatosis is commonly observed in HFE-related iron-overload disorders, and current evidence suggests a causal link between iron and steatosis. Here, we investigated the potential contribution of HFE mutations to hepatic lipid metabolism and its role in the pathogenesis of nonalcoholic fatty liver disease. Wild-type (WT) and Hfe knockout mice (Hfe(-/-)) were fed either standard chow, a monounsaturated low fat, or a high-fat, high-carbohydrate diet (HFD) and assessed for liver injury, body iron status, and markers of lipid metabolism. Despite hepatic iron concentrations and body weights similar to WT controls, Hfe(-/-) mice fed the HFD developed severe hypoxia-related steatohepatitis, Tnf-α activation, and mitochondrial respiratory complex and antioxidant dysfunction with early fibrogenesis. These features were associated with an upregulation in the expression of genes involved in intracellular lipid synthesis and trafficking, while transcripts for mitochondrial fatty acid β-oxidation and adiponectin signaling-related genes were significantly attenuated. In contrast, HFD-fed WT mice developed bland steatosis only, with no inflammation or fibrosis and no upregulation of lipogenesis-related genes. A HFD led to reduced hepatic iron in Hfe(-/-) mice compared with chow-fed mice, despite higher serum iron, decreased hepcidin expression, and increased duodenal ferroportin mRNA. In conclusion, our results demonstrate that Hfe(-/-) mice show defective hepatic-intestinal iron and lipid signaling, which predispose them toward diet-induced hepatic lipotoxicity, accompanied by an accelerated progression of injury to fibrosis. PMID:21817060

  8. Fatal neonatal encephalopathy and lactic acidosis caused by a homozygous loss-of-function variant in COQ9.

    PubMed

    Danhauser, Katharina; Herebian, Diran; Haack, Tobias B; Rodenburg, Richard J; Strom, Tim M; Meitinger, Thomas; Klee, Dirk; Mayatepek, Ertan; Prokisch, Holger; Distelmaier, Felix

    2016-03-01

    Coenzyme Q10 (CoQ10) has an important role in mitochondrial energy metabolism by way of its functioning as an electron carrier in the respiratory chain. Genetic defects disrupting the endogenous biosynthesis pathway of CoQ10 may lead to severe metabolic disorders with onset in early childhood. Using exome sequencing in a child with fatal neonatal lactic acidosis and encephalopathy, we identified a homozygous loss-of-function variant in COQ9. Functional studies in patient fibroblasts showed that the absence of the COQ9 protein was concomitant with a strong reduction of COQ7, leading to a significant accumulation of the substrate of COQ7, 6-demethoxy ubiquinone10. At the same time, the total amount of CoQ10 was severely reduced, which was reflected in a significant decrease of mitochondrial respiratory chain succinate-cytochrome c oxidoreductase (complex II/III) activity. Lentiviral expression of COQ9 restored all these parameters, confirming the causal role of the variant. Our report on the second COQ9 patient expands the clinical spectrum associated with COQ9 variants, indicating the importance of COQ9 already during prenatal development. Moreover, the rescue of cellular CoQ10 levels and respiratory chain complex activities by CoQ10 supplementation points to the importance of an early diagnosis and immediate treatment. PMID:26081641

  9. Genetic Variation Throughout the Folate Metabolic Pathway Influences Negative Symptom Severity in Schizophrenia

    PubMed Central

    Roffman, Joshua L.; Brohawn, David G.; Nitenson, Adam Z.; Macklin, Eric A.; Smoller, Jordan W.; Goff, Donald C.

    2013-01-01

    Low serum folate levels previously have been associated with negative symptom risk in schizophrenia, as has the hypofunctional 677C>T variant of the MTHFR gene. This study examined whether other missense polymorphisms in folate-regulating enzymes, in concert with MTHFR, influence negative symptoms in schizophrenia, and whether total risk allele load interacts with serum folate status to further stratify negative symptom risk. Medicated outpatients with schizophrenia (n = 219), all of European origin and some included in a previous report, were rated with the Positive and Negative Syndrome Scale. A subset of 82 patients also underwent nonfasting serum folate testing. Patients were genotyped for the MTHFR 677C>T (rs1801133), MTHFR 1298A>C (rs1801131), MTR 2756A>G (rs1805087), MTRR 203A>G (rs1801394), FOLH1 484T>C (rs202676), RFC 80A>G (rs1051266), and COMT 675G>A (rs4680) polymorphisms. All genotypes were entered into a linear regression model to determine significant predictors of negative symptoms, and risk scores were calculated based on total risk allele dose. Four variants, MTHFR 677T, MTR 2756A, FOLH1 484C, and COMT 675A, emerged as significant independent predictors of negative symptom severity, accounting for significantly greater variance in negative symptoms than MTHFR 677C>T alone. Total allele dose across the 4 variants predicted negative symptom severity only among patients with low folate levels. These findings indicate that multiple genetic variants within the folate metabolic pathway contribute to negative symptoms of schizophrenia. A relationship between folate level and negative symptom severity among patients with greater genetic vulnerability is biologically plausible and suggests the utility of folate supplementation in these patients. PMID:22021659

  10. Interrelation between compensation of carbohydrate metabolism and severity of manifestations of oxidative stress in type II diabetes mellitus.

    PubMed

    Nedosugova, L V; Lankin, V Z; Balabolkin, M I; Konovalova, G G; Lisina, M O; Antonova, K V; Tikhaze, A K; Belenkov, Yu N

    2003-08-01

    Glycosylation end-products formed during diabetes mellitus promoted atherogenic oxidative modification of low-density lipoproteins. We evaluated the effects of compensation of carbohydrate metabolism and therapy with antioxidant probucol on parameters of free radical oxidation in patients with type II diabetes mellitus. Compensation of carbohydrate metabolism reduced manifestations of oxidative stress, which was manifested in accelerated enzymatic utilization of reactive oxygen species and lipid peroxides and decreased content of free radical oxidation products in low-density lipoproteins. In patients with type II diabetes mellitus combination therapy with antioxidant probucol decreased the severity of oxidative stress and stabilized carbohydrate metabolism without increasing the dose of hypoglycemic preparations. PMID:14631491

  11. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain

    PubMed Central

    Fridman, Esteban A.; Beattie, Bradley J.; Broft, Allegra; Laureys, Steven; Schiff, Nicholas D.

    2014-01-01

    Although disorders of consciousness (DOCs) demonstrate widely varying clinical presentations and patterns of structural injury, global down-regulation and bilateral reductions in metabolism of the thalamus and frontoparietal network are consistent findings. We test the hypothesis that global reductions of background synaptic activity in DOCs will associate with changes in the pattern of metabolic activity in the central thalamus and globus pallidus. We compared 32 [18F]fluorodeoxyglucose PETs obtained from severely brain-injured patients (BIs) and 10 normal volunteers (NVs). We defined components of the anterior forebrain mesocircuit on high-resolution T1-MRI (ventral, associative, and sensorimotor striatum; globus pallidus; central thalamus and noncentral thalamus). Metabolic profiles for BI and NV demonstrated distinct changes in the pattern of uptake: ventral and association striatum (but not sensorimotor) were significantly reduced relative to global mean uptake after BI; a relative increase in globus pallidus metabolism was evident in BI subjects who also showed a relative reduction of metabolism in the central thalamus. The reversal of globus pallidus and central thalamus profiles across BIs and NVs supports the mesocircuit hypothesis that broad functional (or anatomic) deafferentation may combine to reduce central thalamus activity and release globus pallidus activity in DOCs. In addition, BI subjects showed broad frontoparietal metabolic down-regulation consistent with prior studies supporting the link between central thalamic/pallidal metabolism and down-regulation of the frontoparietal network. Recovery of left hemisphere frontoparietal metabolic activity was further associated with command following. PMID:24733913

  12. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain.

    PubMed

    Fridman, Esteban A; Beattie, Bradley J; Broft, Allegra; Laureys, Steven; Schiff, Nicholas D

    2014-04-29

    Although disorders of consciousness (DOCs) demonstrate widely varying clinical presentations and patterns of structural injury, global down-regulation and bilateral reductions in metabolism of the thalamus and frontoparietal network are consistent findings. We test the hypothesis that global reductions of background synaptic activity in DOCs will associate with changes in the pattern of metabolic activity in the central thalamus and globus pallidus. We compared 32 [(18)F]fluorodeoxyglucose PETs obtained from severely brain-injured patients (BIs) and 10 normal volunteers (NVs). We defined components of the anterior forebrain mesocircuit on high-resolution T1-MRI (ventral, associative, and sensorimotor striatum; globus pallidus; central thalamus and noncentral thalamus). Metabolic profiles for BI and NV demonstrated distinct changes in the pattern of uptake: ventral and association striatum (but not sensorimotor) were significantly reduced relative to global mean uptake after BI; a relative increase in globus pallidus metabolism was evident in BI subjects who also showed a relative reduction of metabolism in the central thalamus. The reversal of globus pallidus and central thalamus profiles across BIs and NVs supports the mesocircuit hypothesis that broad functional (or anatomic) deafferentation may combine to reduce central thalamus activity and release globus pallidus activity in DOCs. In addition, BI subjects showed broad frontoparietal metabolic down-regulation consistent with prior studies supporting the link between central thalamic/pallidal metabolism and down-regulation of the frontoparietal network. Recovery of left hemisphere frontoparietal metabolic activity was further associated with command following. PMID:24733913

  13. Severe Uncompensated Metabolic Alkalosis due to Plasma Exchange in a Patient with Pulmonary-Renal Syndrome: A Clinician's Challenge

    PubMed Central

    Ijaz, Mohsin; Abbas, Naeem; Lvovsky, Dmitry

    2015-01-01

    Metabolic alkalosis secondary to citrate toxicity from plasma exchange is very uncommon in patients with normal renal function. In patients with advanced renal disease this can be a fatal event. We describe a case of middle-aged woman with Goodpasture's syndrome treated with plasma exchange who developed severe metabolic alkalosis. High citrate load in plasma exchange fluid is the underlying etiology. Citrate metabolism generates bicarbonate and once its level exceeds the excretory capacity of kidneys, the severe metabolic alkalosis ensues. Our patient presented with generalized weakness, fever, and oliguria and developed rapidly progressive renal failure. Patient had positive serology for antineutrophilic cytoplasmic antibodies myeloperoxidase (ANCA-MPO) and anti-glomerular basement membrane antibodies (anti-GBM). Renal biopsy showed diffuse necrotizing and crescentic glomerulonephritis with linear glomerular basement membrane staining. Patient did not respond to intravenous steroids. Plasma exchange was started with fresh frozen plasma but patient developed severe metabolic alkalosis. This metabolic alkalosis normalized with cessation of plasma exchange and initiation of low bicarbonate hemodialysis. ANCA-MPO and anti-GBM antibodies levels normalized within 2 weeks and remained undetectable at 3 months. Patient still required maintenance hemodialysis. PMID:26167308

  14. Purine nucleoside metabolism in the erythrocytes of patients with adenosine deaminase deficiency and severe combined immunodeficiency.

    PubMed Central

    Agarwal, R P; Crabtree, G W; Parks, R E; Nelson, J A; Keightley, R; Parkman, R; Rosen, F S; Stern, R C; Polmar, S H

    1976-01-01

    Deficiency of erythrocytic and lymphocytic adenosine deaminase (ADA) occurs in some patients with severe combined immunodeficiency disease (SCID). SCID with ADA deficiency is inherited as an autosomal recessive trait. ADA is markedly reduced or undetectable in affected patients (homozygotes), and approximately one-half normal levels are found in individuals heterozygous for ADA deficiency. The metabolism of purine nucleosides was studied in erythrocytes from normal individuals, four ADA-deficiency patients, and two heterozygous individuals. ADA deficiency in intake erythrocytes was confirmed by a very sensitive ammonia-liberation technique. Erythrocytic ADA activity in three heterozygous individuals (0.07,0.08, and 0.14 mumolar units/ml of packed cells) was between that of the four normal controls (0.20-0.37 mumol/ml) and the ADA-deficient patients (no activity). In vitro, adenosine was incorporated principally into IMP in the heterozygous and normal individuals but into the adenosine nucleotides in the ADa-deficient patients. Coformycin (3-beta-D-ribofuranosyl-6,7,8-trihydroimidazo[4,5-4] [1,3] diazepin-8 (R)-ol), a potent inhibitor of ADA, made possible incorporation of adenosine nucleotides in the ADA-deficient patients... PMID:947948

  15. Evidence for a Detrimental Effect of Bicarbonate Therapy in Hypoxic Lactic Acidosis

    NASA Astrophysics Data System (ADS)

    Graf, Helmut; Leach, William; Arieff, Allen I.

    1985-02-01

    Lactic acidosis, a clinical syndrome caused by the accumulation of lactic acid, is characterized by lactate concentration in blood greater than 5 mM. Therapy usually consists of intravenous sodium bicarbonate (NaHCO3), but resultant mortality is greater than 60 percent. The metabolic and systemic effects of NaHCO3 therapy of hypoxic lactic acidosis in dogs were studied and compared to the effects of sodium chloride or no therapy. Sodium bicarbonate elevated blood lactate concentrations to a greater extent than did either sodium chloride or no treatment. Despite the infusion of NaHCO3, both arterial pH and bicarbonate concentration decreased by a similar amount in all three groups of dogs. Additional detrimental effects of NaHCO3 were observed on the cardiovascular system, including decreases in cardiac output and blood pressure that were not observed with either sodium chloride or no treatment. Thus there is evidence for a harmful effect of NaHCO3 in the treatment of hypoxic lactic acidosis.

  16. Effects of dichloroacetate in the treatment of hypoxic lactic acidosis in dogs.

    PubMed

    Graf, H; Leach, W; Arieff, A I

    1985-09-01

    The metabolic and systemic effects of dichloroacetate (DCA) in the treatment of hypoxic lactic acidosis were evaluated in the dog and compared with the infusion of equal quantities of volume and sodium. Hypoxic lactic acidosis was induced by ventilating dogs with an hypoxic gas mixture of 8% oxygen and 92% nitrogen, resulting in arterial PO2 of less than 30 mmHg, pH below 7.20, bicarbonate less than 15 mM, and lactate greater than 7 mM. After, the development of hypoxic lactic acidosis dogs were treated for 60 min with either DCA as sodium salt or NaCl at equal infusions of volume and sodium. Dogs treated with DCA showed a significant increase of arterial blood pH and bicarbonate, and steady levels of lactate, whereas NaCl resulted in further declines of blood pH and bicarbonate, and rising blood lactate levels. Overall lactate production decreased during therapy with either regimen, but hepatic lactate extraction increased significantly with DCA, while it remained unchanged with NaCl. Tissue lactate levels in liver and skeletal muscle decreased significantly with DCA treatment but were unchanged with NaCl. Additionally, an increase in muscle intracellular pH was observed only in DCA treated dogs. A possible mechanism for the observed actions of DCA might be related to a significant increase in oxygen delivery to tissues. Such an effect was found with DCA administration, but was not observed with NaCl therapy. In conclusion, DCA therapy in hypoxic lactic acidosis has beneficial systemic effects compared with therapy with NaCl. DCA administration is accompanied by increases of blood pH and bicarbonate, a decrease in lactate production, and enhanced liver lactate extraction, and a lowering of tissue lactate levels. PMID:4044835

  17. Severe hypoglycemic encephalopathy due to hypoallergenic formula in an infant.

    PubMed

    Ogawa, Erika; Ishige, Mika; Takahashi, Yuno; Kodama, Hiroko; Fuchigami, Tatsuo; Takahashi, Shori

    2016-08-01

    A 7-month-old girl was brought to hospital due to vomiting. Upon admission, she was in a convulsive state and stupor with extremely low blood glucose. Head computed tomography showed brain edema, and comprehensive treatment for acute encephalopathy was initiated immediately. Severe hypoglycemia, metabolic acidosis, elevation of ammonia and serum transaminases and creatine kinase suggested metabolic decompensation. Infusion of a high-glucose solution containing vitamins, biotin, and l-carnitine resolved the metabolic crisis quickly, but brain damage was irreversible. She was found to have been fed exclusively on a hypoallergenic formula (HF) for 7 months, although she was found later to be non-allergic. Evidence of inborn metabolic diseases was absent, therefore biotin deficiency and carnitine deficiency were concluded to be a consequence of reliance on a HF for a prolonged period. Health-care professionals should warn parents of the consequences of using HF. PMID:27324861

  18. Gingival overgrowth caused by vitamin C deficiency associated with metabolic syndrome and severe periodontal infection: a case report.

    PubMed

    Omori, Kazuhiro; Hanayama, Yoshihisa; Naruishi, Koji; Akiyama, Kentaro; Maeda, Hiroshi; Otsuka, Fumio; Takashiba, Shogo

    2014-12-01

    It has been suggested that vitamin C deficiency/scurvy is associated with gingival inflammatory changes; however, the disorder is very infrequently encountered in the modern era. Here, we report a case of extensive gingival overgrowth caused by vitamin C deficiency associated with metabolic syndrome and severe periodontal infection. PMID:25548632

  19. Anesthetic Management of a Patient with Sustained Severe Metabolic Alkalosis and Electrolyte Abnormalities Caused by Ingestion of Baking Soda

    PubMed Central

    Lim, Jeffrey

    2014-01-01

    The use of alternative medicine is prevalent worldwide. However, its effect on intraoperative anesthetic care is underreported. We report the anesthetic management of a patient who underwent an extensive head and neck cancer surgery and presented with a severe intraoperative metabolic alkalosis from the long term ingestion of baking soda and other herbal remedies. PMID:25180100

  20. Anesthetic management of a patient with sustained severe metabolic alkalosis and electrolyte abnormalities caused by ingestion of baking soda.

    PubMed

    Soliz, Jose; Lim, Jeffrey; Zheng, Gang

    2014-01-01

    The use of alternative medicine is prevalent worldwide. However, its effect on intraoperative anesthetic care is underreported. We report the anesthetic management of a patient who underwent an extensive head and neck cancer surgery and presented with a severe intraoperative metabolic alkalosis from the long term ingestion of baking soda and other herbal remedies. PMID:25180100

  1. Functional Metabolomics Uncovers Metabolic Alterations Associated to Severe Oxidative Stress in MCF7 Breast Cancer Cells Exposed to Ascididemin

    PubMed Central

    Morvan, Daniel

    2013-01-01

    Marine natural products are a source of promising agents for cancer treatment. However, there is a need to improve the evaluation of their mechanism of action in tumors. Metabolomics of the response to anti-tumor agents is a tool to reveal candidate biomarkers and metabolic targets. We used two-dimensional high-resolution magic angle spinning proton-NMR spectroscopy-based metabolomics to investigate the response of MCF7 breast cancer cells to ascididemin, a marine alkaloid and lead molecule for anti-cancer treatment. Ascididemin induced severe oxidative stress and apoptosis within 48 h of exposure. Thirty-three metabolites were quantified. Metabolic response involved downregulation of glycolysis and the tricarboxylic acid cycle, and phospholipid metabolism alterations. Candidate metabolic biomarkers of the response of breast cancer cells to ascididemin were proposed including citrate, gluconate, polyunsaturated fatty acids, glycerophospho-choline and -ethanolamine. In addition, candidate metabolic targets were identified. Overall, the response to Asc could be related to severe oxidative stress and anti-inflammatory effects. PMID:24152560

  2. Influence of 72% injury in one kidney on several organs involved in guanidino compound metabolism: a time course study.

    PubMed

    Levillain, O; Marescau, B; Possemiers, I; Al Banchaabouchi, M; De Deyn, P P

    2001-07-01

    Arginine (Arg) produced from citrulline originates mostly from kidneys. Arg is involved in guanidino compound biosynthesis, which requires interorgan co-operation. In renal insufficiency, citrulline accumulates in the plasma in proportion to renal damage. Thus, disturbances in Arg and guanidino compound metabolism are expected in several tissues. An original use of the model of nephrectomy based on ligating branches of the renal artery allowed us to investigate Arg and guanidino compound metabolism simultaneously in injured (left) and healthy (right) kidneys. The left kidney of adult rats was subjected to 72% nephrectomy. Non-operated, sham-operated and nephrectomized rats were studied for a period of 21 days. Constant renal growth was observed only in the healthy kidneys. Guanidino compound levels were modified transiently during the first 48 h. The metabolism and/or tissue content of several guanidino compounds were disturbed throughout the experimental period. Arg synthesis was greatly reduced in the injured kidney, while it increased in the healthy kidney. The renal production of guanidinoacetic acid decreased in the injured kidney and its urinary excretion was reduced. The experimentally proven toxins alpha-keto-delta-guanidinovaleric acid and guanidinosuccinic acid (GSA) accumulated only in the injured kidney. The urinary excretion of GSA and methylguanidine increased in nephrectomized rats. When the injured kidney grew again, the level of some guanidino compounds tended to normalize. Nephrectomy affected the guanidino compound levels and metabolism in muscles and liver. In conclusion, the specific accumulation of toxic guanidino compounds in the injured kidney reflects disturbances in renal metabolism and function. The healthy kidney compensates for the injured kidney's loss of metabolic functions (e.g. Arg: production). This model is excellent for investigating renal metabolism when a disease destroys a limited area in one kidney, as is observed in patients

  3. [The role of lactate acidosis in the development and treatment of various neurologic syndromes in children and adolescents].

    PubMed

    Arveladze, G A; Geladze, N M; Sanikidze, T B; Khachapuridze, N S; Bakhtadze, S Z

    2015-02-01

    The aim of the study was to detect the role of lactate acidosis, also to find the share of mitochondrial insufficiency in development of various neurologic syndromes in children and adolescents. The detection of cellular energetic metabolism and acid based imbalance is also important for finding the specific method of management. We have studied 200 patients with various degree of neurodevelopment delay with epilepsy and epileptic syndromes, headache, vertigo, early strokes, floppy infant syndrome, atrophy of ophthalmic nerve, cataracta, neurosensory deafness, systemic myopathy, cerebral palsy. In 27% of cases with various ages we have detected lactate acidosis and increase level of pyruvate. Mitochondrial insufficiency was seen in 8% of cases which gives us opportunity to find the specific method of treatment in this group of patients. Each patient with neurological symptoms requires correction of parameters of energetic and oxidative metabolism. PMID:25802453

  4. Normal liver enzymes are correlated with severity of metabolic syndrome in a large population based cohort

    PubMed Central

    Kälsch, Julia; Bechmann, Lars P.; Heider, Dominik; Best, Jan; Manka, Paul; Kälsch, Hagen; Sowa, Jan-Peter; Moebus, Susanne; Slomiany, Uta; Jöckel, Karl-Heinz; Erbel, Raimund; Gerken, Guido; Canbay, Ali

    2015-01-01

    Key features of the metabolic syndrome are insulin resistance and diabetes. The liver as central metabolic organ is not only affected by the metabolic syndrome as non-alcoholic fatty liver disease (NAFLD), but may contribute to insulin resistance and metabolic alterations. We aimed to identify potential associations between liver injury markers and diabetes in the population-based Heinz Nixdorf RECALL Study. Demographic and laboratory data were analyzed in participants (n = 4814, age 45 to 75y). ALT and AST values were significantly higher in males than in females. Mean BMI was 27.9 kg/m2 and type-2-diabetes (known and unkown) was present in 656 participants (13.7%). Adiponectin and vitamin D both correlated inversely with BMI. ALT, AST, and GGT correlated with BMI, CRP and HbA1c and inversely correlated with adiponectin levels. Logistic regression models using HbA1c and adiponectin or HbA1c and BMI were able to predict diabetes with high accuracy. Transaminase levels within normal ranges were closely associated with the BMI and diabetes risk. Transaminase levels and adiponectin were inversely associated. Re-assessment of current normal range limits should be considered, to provide a more exact indicator for chronic metabolic liver injury, in particular to reflect the situation in diabetic or obese individuals. PMID:26269425

  5. Normal liver enzymes are correlated with severity of metabolic syndrome in a large population based cohort.

    PubMed

    Kälsch, Julia; Bechmann, Lars P; Heider, Dominik; Best, Jan; Manka, Paul; Kälsch, Hagen; Sowa, Jan-Peter; Moebus, Susanne; Slomiany, Uta; Jöckel, Karl-Heinz; Erbel, Raimund; Gerken, Guido; Canbay, Ali

    2015-01-01

    Key features of the metabolic syndrome are insulin resistance and diabetes. The liver as central metabolic organ is not only affected by the metabolic syndrome as non-alcoholic fatty liver disease (NAFLD), but may contribute to insulin resistance and metabolic alterations. We aimed to identify potential associations between liver injury markers and diabetes in the population-based Heinz Nixdorf RECALL Study. Demographic and laboratory data were analyzed in participants (n = 4814, age 45 to 75 y). ALT and AST values were significantly higher in males than in females. Mean BMI was 27.9 kg/m(2) and type-2-diabetes (known and unkown) was present in 656 participants (13.7%). Adiponectin and vitamin D both correlated inversely with BMI. ALT, AST, and GGT correlated with BMI, CRP and HbA1c and inversely correlated with adiponectin levels. Logistic regression models using HbA1c and adiponectin or HbA1c and BMI were able to predict diabetes with high accuracy. Transaminase levels within normal ranges were closely associated with the BMI and diabetes risk. Transaminase levels and adiponectin were inversely associated. Re-assessment of current normal range limits should be considered, to provide a more exact indicator for chronic metabolic liver injury, in particular to reflect the situation in diabetic or obese individuals. PMID:26269425

  6. Severe Ketoacidosis Associated with Canagliflozin (Invokana): A Safety Concern

    PubMed Central

    Gelaye, Alehegn; Haidar, Abdallah; Kassab, Christina; Kazmi, Syed; Sinha, Prabhat

    2016-01-01

    Canagliflozin (Invokana) is a selective sodium glucose cotransporter-2 (SGLT-2) inhibitor that was first introduced in 2013 for the treatment of type 2 diabetes mellitus (DM). Though not FDA approved yet, its use in type 1 DM has been justified by the fact that its mechanism of action is independent of insulin secretion or action. However, some serious side effects, including severe anion gap metabolic acidosis and euglycemic diabetic ketoacidosis (DKA), have been reported. Prompt identification of the causal association and initiation of appropriate therapy should be instituted for this life threatening condition. PMID:27088018

  7. Severe Ketoacidosis Associated with Canagliflozin (Invokana): A Safety Concern.

    PubMed

    Gelaye, Alehegn; Haidar, Abdallah; Kassab, Christina; Kazmi, Syed; Sinha, Prabhat

    2016-01-01

    Canagliflozin (Invokana) is a selective sodium glucose cotransporter-2 (SGLT-2) inhibitor that was first introduced in 2013 for the treatment of type 2 diabetes mellitus (DM). Though not FDA approved yet, its use in type 1 DM has been justified by the fact that its mechanism of action is independent of insulin secretion or action. However, some serious side effects, including severe anion gap metabolic acidosis and euglycemic diabetic ketoacidosis (DKA), have been reported. Prompt identification of the causal association and initiation of appropriate therapy should be instituted for this life threatening condition. PMID:27088018

  8. Severe dietary lysine restriction affects growth and body composition and hepatic gene expression for nitrogen metabolism in growing rats.

    PubMed

    Kim, J; Lee, K S; Kwon, D-H; Bong, J J; Jeong, J Y; Nam, Y S; Lee, M S; Liu, X; Baik, M

    2014-02-01

    Dietary lysine restriction may differentially affect body growth and lipid and nitrogen metabolism, depending on the degree of lysine restriction. This study was conducted to examine the effect of dietary lysine restriction on growth and lipid and nitrogen metabolism with two different degree of lysine restriction. Isocaloric amino acid-defined diets containing 1.4% lysine (adequate), 0.70% lysine (50% moderate lysine restriction) and 0.35% lysine (75% severe lysine restriction) were fed from the age of 52 to 77 days for 25 days in male Sprague-Dawley rats. The 75% severe lysine restriction increased (p < 0.05) food intake, but retarded (p < 0.05) growth, increased (p < 0.05) liver and muscle lipid contents and abdominal fat accumulation, increased (p < 0.05) blood urea nitrogen levels and mRNA levels of the serine-synthesizing 3-phosphoglycerate dehydrogenase gene, but decreased (p < 0.05) urea cycle arginase gene mRNA levels. In contrast, the 50% lysine restriction did not significantly (p > 0.05) affect body growth and lipid and nitrogen metabolism. Our results demonstrate that severe 75% lysine restriction has detrimental effects on body growth and deregulate lipid and nitrogen metabolism. PMID:23441935

  9. Complex III deficiency due to an in-frame MT-CYB deletion presenting as ketotic hypoglycemia and lactic acidosis.

    PubMed

    Mori, Mari; Goldstein, Jennifer; Young, Sarah P; Bossen, Edward H; Shoffner, John; Koeberl, Dwight D

    2015-09-01

    Complex III deficiency due to a MT-CYB mutation has been reported in patients with myopathy. Here, we describe a 15-year-old boy who presented with metabolic acidosis, ketotic hypoglycemia and carnitine deficiency. Electron transport chain analysis and mitochondrial DNA sequencing on muscle tissue lead to the eventual diagnosis of complex III deficiency. This case demonstrates the critical role of muscle biopsies in a myopathy work-up, and the clinical efficacy of supplement therapy. PMID:26937408

  10. Distal Renal Tubular Acidosis in Infancy: A Bicarbonate Wasting State

    ERIC Educational Resources Information Center

    Rodriguez-Soriano, J.; And Others

    1975-01-01

    Studied were three unrelated infants with distal renal tubular acidosis (a condition characterized by an inability to acidify the urine to minimal pH levels resulting in the loss of bicarbonates). (DB)