These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Application of Municipal Sewage Sludge to Forest and Degraded Land  

SciTech Connect

The paper summarizes research done over a decade at the Savannah River Site and elsewhere in the South evaluating the benefits of land application of municipal wastes. Studies have demonstrated that degraded lands, ranging from borrow pits to mine spoils can be successfully revegetated using a mixture of composed municipal sewage sludge and other amendments. The studies have demonstrated a practical approach to land application and restoration.

D.H. Marx, C. R. Berry, and P. P. Kormanik

1995-09-30

2

Simulation of substrate degradation in composting of sewage sludge  

SciTech Connect

To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k{sub 20} (the first-order rate constant at 20 {sup o}C). After comparison with experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k{sub 20}, k{sub 20s} (first-order rate coefficient of slow fraction of BVS at 20 {sup o}C) of the sewage sludge were estimated as 0.082 and 0.015 d{sup -1}, respectively.

Zhang Jun [Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Beijing 100101 (China); Gao Ding, E-mail: gaod@igsnrr.ac.c [Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Beijing 100101 (China); Chen Tongbin; Zheng Guodi; Chen Jun; Ma Chuang; Guo Songlin [Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Beijing 100101 (China); Du Wei [Beijing GreenTech Environmental Engineering Company, Beijing 100080 (China)

2010-10-15

3

Enhancement of pentachlorophenol degradation in soil through induced anaerobiosis and bioaugmentation with anaerobic sewage sludge  

Microsoft Academic Search

The addition of biologically active anaerobic sewage sludge, previously shown to dechlorinate chlorophenols, to soil contaminated with pentachlorophenol (PCP) resulted in greatly enhanced rates of PCP degradation. The sludge was added to a soil at a rate of 5 g kg⁻¹ (dry weight basis) and the mixture incubated anaerobically. Initial PCP concentrations of 10-30 mg kg⁻¹ (ppm) were completely degraded

Mark D. Mikesell; Stephen A. Boyd

1988-01-01

4

Enhancement of pentachlorophenol degradation in soil through induced anaerobiosis and bioaugmentation with anaerobic sewage sludge  

SciTech Connect

The addition of biologically active anaerobic sewage sludge, previously shown to dechlorinate chlorophenols, to soil contaminated with pentachlorophenol (PCP) resulted in greatly enhanced rates of PCP degradation. The sludge was added to a soil at a rate of 5 g kg/sup -1/ (dry weight basis) and the mixture incubated anaerobically. Initial PCP concentrations of 10-30 mg kg/sup -1/ (ppm) were completely degraded within 28-35 days. In anaerobic soil without sludge or aerobic soil with or without sludge, PCP persisted, 55% and 90%, respectively, remaining after 56 days. Higher rates of sludge addition gave small differences in PCP degradation. PCP was degraded by sequential dechlorination, and the products of PCP degradation in soil-sludge mixtures were the same as observed in sludge alone. The sequence of products was PCP ..-->.. 2,3,4,5-tetrachlorophenol ..-->.. 3,4,5-trichlorophenol ..-->.. 3,5-dichlorophenol ..-->.. 3-chlorophenol; 3,4-dichlorophenol was also observed. These results clearly demonstrate that the dechlorinating activity present in sludge could be transferred to soil through bioaugmentation.

Mikesell, M.D.; Boyd, S.A.

1988-12-01

5

Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation  

E-print Network

; Methanobacteriales; naphthalene; PAH; sewage sludge; thermodynamic Introduction In Europe, treatment of wastewater for treatment in EU, followed by spreading on land, which accounted for 37% of the sewage sludge produced will diminish the use of artificial fertilizer. Sewage sludge is usually treated in wastewater treatment plants

6

Anaerobic degradation of brominated flame retardants in sewage sludge  

Microsoft Academic Search

Tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD), and decabromodiphenyl ether (DecaBDE) are high production volume chemicals used as flame retardants in plastics for products such as electronic equipment, insulation panels, and textiles. The environmental safety of brominated flame retardants, especially their persistence, bioaccumulation, and toxicity is a controversial topic. Here, we studied and compared the degradation of TBBPA, HBCD, and DecaBDE under

Andreas C. Gerecke; Walter Giger; Paul C. Hartmann; Norbert V. Heeb; Hans-Peter E. Kohler; Peter Schmid; Markus Zennegg; Martin Kohler

2006-01-01

7

TRANSPORT OF SEWAGE SLUDGE  

EPA Science Inventory

This project was initiated with the overall objective of developing organized information pertaining to the costs of various sewage sludge transport systems. Transport of liquid and dewatered sludge by truck and rail and liquid sludge by barge and pipeline is included. The report...

8

Sewage sludge effects on soil and plant quality in a degraded, semiarid grassland. [Bouteloua gracilis; Hilaria jamesii; Sitanion hystrix (Nutt. )  

Microsoft Academic Search

A major problem affecting grassland productivity in the semiarid southwestern USA is the low quantity of soil organic matter and plant-available N. In this study, dried, anaerobically digested sewage sludge was applied at three rates (22.5, 45, and 90 Mg Ha⁻¹) to a degraded semiarid grassland site to determine the effects of sludge on soil chemical and heavy metal properties,

P. R. Fresquez; R. E. Francis; G. L. Dennis

2009-01-01

9

COMPARISON OF ORGANIC EMISSIONS FROM LABORATORY AND FULL-SCALE THERMAL DEGRADATION OF SEWAGE SLUDGE  

EPA Science Inventory

Samples of sewage sludge burned at one fluidized-bed and three multiple-hearth incinerators were subjected to laboratory flow reactor thermal decomposition testing under both pyrolytic and oxidative atmospheres. he laboratory test results indicated that biomass decomposition prod...

10

Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge.  

PubMed

The anaerobic degradation of each amino acid that could be generated through the hydrolysis of sewage sludge was evaluated. Stickland reaction as an intermediate reaction between two kinds of amino acids was restricted in order to evaluate each amino acid. Changes in the chemical oxygen demand (COD), T-N, NH4(+)-N, biogas, and CH4 were analysed for the anaerobic digestion process. The initial nitrogen concentration of all amino acids is adjusted as 1000 mg/L. The degradation rate of the amino acids was determined based on the ammonia form of nitrogen, which is generated by the deamination of amino acids. Among all amino acids, such as alpha-alanine, beta-alanine, lysine, arginine, glycine, histidine, cysteine, methionine, and leucine, deamination rates of cysteine, leucine, and methionine were just 61.55%, 54.59%, and 46.61%, respectively, and they had low removal rates of organic matter and showed very low methane production rates of 13.55, 71.04, and 80.77 mL CH4/g CODin, respectively. Especially for cysteine, the methane content was maintained at approximately 7% during the experiment. If wastewater contains high levels of cysteine, leucine, and methionine and Stickland reaction is not prepared, these amino acids may reduce the efficiency of the anaerobic digestion. PMID:24701908

Park, Junghoon; Park, Seyong; Kim, Moonil

2014-01-01

11

Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS)  

Microsoft Academic Search

Anaerobic degradation of sludge amended with linear alkylbenzene sulfonates (LAS) was tested in a one stage continuous stirred tank reactor (CSTR) and a two stage reactor system consisting of a CSTR as first step and upflow anaerobic sludge bed (UASB) reactor as the second step. Anaerobic removal of LAS was only observed at the second step but not at the

I. Angelidaki; L. Torng; C. M. Waul; J. E. Schmidt

12

Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation  

Microsoft Academic Search

Due to the hydrophobic nature of the polyaromatic hydrocarbons (PAHs) they are mostly bound to the sludge and escape aerobic treatment in a wastewater treatment plant. They therefore proceed directly to the anaerobic post treatment, terminate in the sludge, and can be released to the environment if land spreading is used. PAH degradation in anaerobic methanogenic systems has only recently

N. Christensen; D. J. Batstone; Z. He; I. Angelidaki; J. E. Schmidt

2004-01-01

13

Re-inoculation strategies enhance the degradation of emerging pollutants in fungal bioaugmentation of sewage sludge.  

PubMed

The use of Trametes versicolor has been partially successful in the removal of some pharmaceuticals from sewage sludge in laboratory-scale biopile systems. The application of two strategies for the re-inoculation of biomass was assessed during the fungal bioaugmentation of non-sterile sludge (42-d treatment) as an approach to improve the elimination of pharmaceuticals and other groups of emerging pollutants. Globally, the re-inoculation of biopiles with blended mycelium exerted a major effect on the removal of pharmaceuticals (86%), brominated-flame-retardants (81%) and UV filters (80%) with respect to the re-inoculation with additional lignocellulosic substrate colonized by the fungus (69-67-22%). The performance was better than that of the analogous non-re-inoculated systems that were assayed previously for the removal of pharmaceuticals. The results demonstrate the ability of T. versicolor to remove a wide spectrum of emerging micropollutants under non-sterile conditions, while re-inoculation appears to be a useful step to improve the fungal treatment of sludge. PMID:24582425

Rodrguez-Rodrguez, Carlos E; Lucas, Daniel; Barn, Enrique; Gago-Ferrero, Pablo; Molins-Delgado, Daniel; Rodrguez-Mozaz, Sara; Eljarrat, Ethel; Daz-Cruz, M Silvia; Barcel, Dami; Caminal, Glria; Vicent, Teresa

2014-09-01

14

Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation.  

PubMed

Due to the hydrophobic nature of the polyaromatic hydrocarbons (PAHs) they are mostly bound to the sludge and escape aerobic treatment in a wastewater treatment plant. They therefore proceed directly to the anaerobic post treatment, terminate in the sludge, and can be released to the environment if land spreading is used. PAH degradation in anaerobic methanogenic systems has only recently been shown to occur. In this study we have assessed several factors of anaerobic PAH degradation by evaluating thermodynamic feasibility of degradation, assessing degradation at different temperatures, and investigating the enriched cultures using fluorescent in-situ hybridization (FISH). Thermodynamic calculations indicated that PAH degradation was possible under methanogenic conditions, in the presence of hydrogen utilizing methanogens. Removal of naphthalene and 1-methyl naphthalene depended both on temperature and the initial inoculum. Inocula sourced from contaminated land sites were the most effective. The enrichments were all a mixture of Bacteria, and Archaea, and the Archaea were generally identified as Methanobacteriales, using an order-specific probe. The bacteria were not specifically identified. The results indicate a syntrophic culture, with the bacteria oxidizing the naphthalene, and the Archaea converting the hydrogen produced by oxidation, to methane. PMID:15581018

Christensen, N; Batstone, D J; He, Z; Angelidaki, I; Schmidt, J E

2004-01-01

15

1988 NATIONAL SEWAGE SLUDGE SURVEY  

EPA Science Inventory

Resource Purpose: Originally developed to support Phase I regulation for use or disposal of biosolids (sewage sludge). Data collected were used to estimate risks, potential regulatory limits, and the cost of regulation. This is currently the only statistically designed surv...

16

Effect of sulfur-containing compounds on anaerobic degradation of cellulose to methane by mixed cultures obtained from sewage sludge.  

PubMed Central

Tests were made to determine the effects of inorganic and organic sulfur sources on the degradation of cellulose to methane in a chemically defined medium with sulfur-poor inoculum prepared from sewage sludge. The results show that a sulfur source of about a 0.85 mM concentration is essential for the degradation of cellulose to CH4. However, the production of CH4 from CO2 and H2 provided in the headspace occurred with 0.1 mM sulfate or sulfide. At a 9 mM concentration, all inorganic sulfur compounds other than sulfate inhibited both cellulose degradation and methane formation, and this inhibition increased in the order thiosulfate less than sulfite less than sulfide less than H2S. It appears that the degradation of cellulose to CH4 in a sulfate-free medium by inoculum maintained in a low-sulfur medium is inhibited because of the lack of availability of sulfur for growth of bacteria and synthesis of cell materials and sulfur-containing cofactors involved in cellulose degradation and methanogenesis. The reduction of methanogenesis by higher levels of sulfate probably occurs as a result of stimulation of reactions converting acetate and H2 to end products other than CH4. PMID:677869

Khan, A W; Trottier, T M

1978-01-01

17

Complete survey of German sewage sludge ash.  

PubMed

The amount of sewage sludge produced worldwide is expected to further increase due to rising efforts in wastewater treatment. There is a growing concern against its direct use as fertilizer due to contamination of the sludge with heavy metals and organic pollutants. Incinerating the sludge degrades organic compounds almost completely and concentrates heavy metals and phosphorus. However, the sewage sludge ash (SSA) is almost completely disposed of and with it all resources are removed from the economic cycle. Comprehensive knowledge of the composition of SSA is crucial to assess the resource recovery potentials. We conducted a survey of all SSA emerging in Germany and determined the respective mass fractions of 57 elements over a period of one year. The median content of phosphorus was 7.9%, indicating an important recovery potential. Important trace elements were Zn (2.5 g/kg), Mn (1.3 g/kg), and Cu (0.9 g/kg). Mass fractions of technology metals such as V, Cr, Ga, Nb, and rare earths were comparatively low. Considering the possible use of SSA as secondary raw material for fertilizer production it should be noted that its Cd and U content (2.7 mg/kg and 4.9 mg/kg respectively) is significantly lower than that of rock phosphate based mineral fertilizers. PMID:25265150

Krger, Oliver; Grabner, Angela; Adam, Christian

2014-10-21

18

A Family Physician's Guide to Sewage Sludge  

PubMed Central

The potential environmental and personal health effects from the agricultural uses of domestic sewage sludge may increasingly require the guidance of the family physician, especially in farming communities. This article summarizes the potential health hazards and outlines the tripartite risk phenomenonhazard identification, risk assessment, and social evaluation. For the agricultural use of dewatered sewage sludge, strict adherence to regulated procedures should not increase risk beyond that of agriculture generally. Confirmation by prospective epidemiological studies is recommended. PMID:21283298

Connop, Peter J.

1983-01-01

19

VALORATION ADDITION DRY SLUDGE SEWAGE IN CONCRETE  

Microsoft Academic Search

The great amount of dry sewage sludge that is generated and the need to stabilize, solidify and, whenever possible, reuse it has led us to attempt the application of new approaches to its treatment. The search for recycling alternatives for this dry sludge has given rise to the possibility of their use addition in concrete with Portland cement. Portland cement

A. Yage; S. Valls; E. Vzquez

20

COMPARISON OF THE MUTAGENICITY OF SEWAGE SLUDGES  

EPA Science Inventory

Samples of five municipal sewage sludges from Illinois cities have been subjected to a multiorganism testing program to determine the presence or absence of mutagenic activity. Chicago sludge has been the most extensively tested by using the Salmonella/microsome reverse mutation ...

21

Sewage sludge dewatering using flowing liquid metals  

DOEpatents

This invention relates generally to the dewatering of sludge, and more particularly to the dewatering of a sewage sludge having a moisture content of about 50 to 80% in the form of small cellular micro-organism bodies having internally confined water.

Carlson, L.W.

1985-08-30

22

Management of sewage sludge and ash containing radioactive materials.  

SciTech Connect

Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

2007-01-01

23

Dechlorination of pentachlorophenol in anaerobic sewage sludge  

Microsoft Academic Search

Dechlorination of pentachlorophenol (PCP) in municipal sewage sludge by a chlorophenols (CPs)-adapted consortium was investigated. Results of a batch experiment showed no significant differences in PCP dechlorination following treatment with inoculum at densities ranging from 10% to 50%, but a significant delay following treatment with inoculum at 5% density. Results also show that the higher the PCP concentration, the slower

Bea-Ven Chang; Chen-Wei Chiang; Shaw-Ying Yuan

1998-01-01

24

SEWAGE SLUDGE PATHOGEN TRANSPORT MODEL PROJECT  

EPA Science Inventory

The sewage sludge pathogen transport model predicts the number of Salmonella, Ascaris, and polioviruses which might be expected to occur at various points in the environment along 13 defined pathways. These pathways describe the use of dried or liquid, raw or anaerobically digest...

25

Plasma chemical gasification of sewage sludge.  

PubMed

The possibility for plasma gasification of sewage sludge is investigated. Water steam is used as the plasma generating gas and as a chemical reagent. The experiments are carried out at a sludge to water steam ratio of 1 to 1.5 by weight, and at a plasma torch temperature of up to 2600 degrees C. The calculated average temperature in the reactor after mixing with the sludge particles is up to 1700 degrees C. Proximate and ultimate analyses of the sludge are given. The resulting gases are analysed by gas chromatography. High calorific gas containing mainly carbon monoxide (48% volume) and hydrogen (46% volume), as well as glass-like slag, is obtained. No water-soluble substances are detected within it. The amount of carbon dioxide produced is under 4% mass. No hydrocarbons are observed within the gas. The investigated process is environmentally safe, compact and shows a high rate of conversion. PMID:12667017

Balgaranova, Janetta

2003-02-01

26

Radioactivity in municipal sewage and sludge.  

PubMed Central

OBJECTIVE: To determine the environmental consequences of discharges of radioactivity from a large medical research facility into municipal sewage, specifically 131I activity in sewage sludge, and the radiation exposures to workers and the public when sludges are incinerated. METHODS: The authors measured radioactivity levels in the sludge at the Ann Arbor, Michigan, Waste Water Treatment Plant following radioiodine treatments of two patients at the University of Michigan hospital complex and performed a series of calculations to estimate potential radiation doses due to releases of 131I from incineration of sewage sludge. RESULTS: Approximately 1.1% of the radioactive 131I administered therapeutically to patients was measured in the primary sludge. Radiation doses from incineration of sludge were calculated to be 0.048 millirem (mrem) for a worker during a period in which the incinerator filtration system failed, a condition that could be considered to represent maximum exposure conditions, for two nine-hour days. Calculated results for a more typically exposed worker (with the filtration system in operation and a 22-week period of incineration) yielded a committed effective dose equivalent of 0.066 mrem. If a worker were exposed to both conditions during the period of incineration, the dose was calculated to be 0.11 mrem. For a member of the public, the committed effective dose equivalent was calculated as 0.003 mrem for a 22-week incineration period. Exposures to both workers and the public were a very small fraction of a typical annual dose (about 100 mrem excluding radon, or 300 mrem with radon) due to natural background radiation. Transport time to the treatment plant for radioiodine was found to be much longer than that of a normal sewage, possibly due to absorption of iodine by organic material in the sewer lines. The residence time of radioiodine in the sewer also appears to be longer than expected. CONCLUSION: 131I in land-applied sludge presents few health concerns because sufficient decay occurs before it can reach the public however, incineration, which is done in winter months, directly releases the 131I from sewage sludge to the atmosphere, and even though exposures to both workers and the public were found to be considerably lower than 1% of natural background, incineration of sludge in a pathway for public exposure. Although 131I was readily measurable in sewage sludge, only about 1% of the radioione administered to patients was found in the sludge. The fate of the remaining radioactivity has not been established; some may be in secondary and tertiary residuals, but it is quite likely that most passed through the plant and was discharged in dilute concentrations in plant emissions. The behavior of radioiodine and other radioactive materials released into municipal seweage systems, such as those from large medical facilities, is not yet well understood. PMID:9258296

Martin, J E; Fenner, F D

1997-01-01

27

Metal partitioning and toxicity in sewage sludge  

SciTech Connect

Over 20 years of research has failed to provide an unequivocal correlation between chemically extracted metals in sewage sludge applied to agricultural soil and either metal toxicity to soil organisms or crop uptake. Partitioning of metals between phases and species can provide a better estimation of mobility and potential bioavailability. Partition coefficients, K{sub D} for Cd, Cu, Pb and Zn in a sludge/water solution were determined considering the sludge/water solution as a three-phase system (particulate, colloidal and electrochemically available) over a range of pH values, ionic strengths, contact times and sludge/water ratios and compared with the KD values for sludge/water solution as a two-phase system (aqueous phase and particulate phase). Partitioning results were interpreted in terms of metal mobility from sludge to colloids and in terms of potential bioavailability from colloids to electrochemically available. The results show that both mobility and potential bioavailability are high for Zn, while Cu partitions into the mobile colloidal phase which is relatively non-bioavailable. Lead is almost completely bound to the solid phase, and is neither mobile nor bioavailable. A comparison between K, values and toxicity shows that Zn in sludge is more toxic than can be accounted for in the aqueous phase, which can be due to synergistic effects between sludge organics and Zn. Copper demonstrates clear synergism which can be attributed to the formation of lipid-soluble Cu complexes with known sludge components such as LAS, caffeine, myristic acid and nonylphenol.

Carlson-Ekvall, C.E.A.; Morrison, G.M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Sanitary Engineering

1995-12-31

28

IRRADIATION EFFECTS ON THE PHYSICAL CHARACTERISTICS OF SEWAGE SLUDGE  

SciTech Connect

The radiation effects on the physical characteristic of the sewage sludge were studied in order to obtain information which will be used for study on the enhancement of the sludge's dewaterability. Water contents, capillary suction time, zeta potential, irradiation dose, sludge acidity, total solid concentration, sludge particle size and microbiology before and after irradiation were investigated. Irradiation gave an effect on physical characteristics sludge. Water content in sludge cake could be reduced by irradiation at the dose of 10kGy.

Lee, M-J.; Lee, J-K.; Yoo, D-H.; Ho, K.

2004-10-05

29

Sono-alkalization pretreatment of sewage sludge containing phthalate acid esters.  

PubMed

This work experimentally elucidates the efficiencies of sono-alkalization treatment on municipal sewage sludge. The total solids (TS) concentration of the sewage sludge was pre-adjusted at 29.7 g/L. Two parameters such as sodium hydroxide (NaOH) dosage and sonication time were considered by the central composite design (CCD) program to investigate the effect on the degradation of phthalate acid esters (PAEs) and solubilization of soluble chemical oxygen demand (SCOD). The mean concentrations of dibutyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP) and butyl benzyl phthalate (BBP) in the sewage sludge were 718, 41 and 8 mg/kg dry weight sludge, respectively. Sono-alkalization process was effective on the degradation of DBP but worthless for DEHP and BBP. Overall degradation of DBP in sewage sludge was estimated to be 100% at the NaOH dosage of 68 m Mand sonication time of 2.2 min. Sono-alkalization was responsible for 6,000 mg/L increase of SCOD based on the decrease of volatile solids in sewage sludge. PMID:21847788

Ma, Ying-Shih; Lin, Jih-Gaw

2011-01-01

30

Rapid thermal conditioning of sewage sludge  

NASA Astrophysics Data System (ADS)

Rapid thermal conditioning (RTC) is a developing technology recently applied to sewage sludge treatment. Sludge is heated rapidly to a reaction temperature (up to about 220spC) under sufficient pressure to maintain the liquid phase. Reaction is quenched after 10 to 30 seconds when the mixture of sludge and steam pass through a pressure let-down valve. This process reduces the amount of sludge requiring land disposal, eliminates the need for polymer coagulant, improves dewaterability, increases methane production, and further reduces the concentration of pathogens. The odor problem associated with traditional thermal conditioning processes is largely minimized. Ammonia removal is readily integrated with the process. For this research, a pilot unit was constructed capable of processing 90 liters of sludge per hour. Over 22 runs were made with this unit using sludge from New York City Water Pollution Control Plants (WPCP). Sludges processed in this equipment were tested to determine the effect of RTC operating conditions on sludge dewaterability, biodegradability, and other factors affecting the incorporation of RTC into wastewater treatment plants. Dewaterability of thermally conditioned sludge was assessed for cetrifugeability and filterability. Bench scale centrifugation was used for evaluating centrifugeability, pressure filtration and capillary suction time (CST) for filterability. A mathematical model developed for centrifuge dewatering was used to predict the effect of RTC on full scale centrifuge performance. Particle size distribution and solids density of raw and treated PDS were also analyzed. An observed increase in sludge solids density at least partially explains its improved centrifugeability. An investigation of thermally conditioned amino acids showed that the L-isomer is highly biodegradable while the D-isomers are generally less so. Glucose is highly biodegradable, but rapidly becomes refractory as thermal conditioning time is lengthened. This shows the fundamental importance of rapid processing. Rapid thermal conditioning may be incorporated into a wastewater treatment plant where biological treatment is used. For purposes of a concrete example, flow-sheets for the incorporation of the RTC process into the New York City Wards Island WPCP were prepared, and experimental data from the laboratory scale RTC test facility were used to set design parameters. A design incorporating nitrogen removal into the RTC flow sheet was also examined. ASPEN software was used to design the proposed processes and perform economic analyses. Cost estimates for these alternatives show a substantial advantage to implement RTC in comparison to present plant operation. About one third of the current sludge processing cost can be saved by incorporation of RTC into the Wards Island Plant. With nitrogen removal, the economics are even more attractive.

Zheng, Jianhong

31

APPLICATION OF SEWAGE SLUDGES AND COMPOSTS BPG NOTE 6  

E-print Network

APPLICATION OF SEWAGE SLUDGES AND COMPOSTS BPG NOTE 6 Best Practice Guidance for Land Regeneration harmful organisms (plant, animal and human pathogens) in insufficiently composted materials · If C NOTE 6 PAGE 2 Applications of sewage sludges and composts Forestry Tree growth on nutrient

32

FUEL EFFICIENT INCINERATION FOR DISPOSAL OF SEWAGE SLUDGE  

EPA Science Inventory

The City of Indianapolis, Indiana, demonstrated that 34 to 70 percent of the fuel used for sewage sludge incineration could be saved. These savings were the result of study of how sewage sludge incineration in a multiple hearth incinerator works, adding instrumentation and contro...

33

Vitrification as an alternative to landfilling of tannery sewage sludge.  

PubMed

Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to increased hardness of the vitrificates and reduced leaching of some heavy metals. PMID:25242604

Celary, Piotr; Sobik-Szo?tysek, Jolanta

2014-12-01

34

Monitoring sewage sludge using heterotrophic nitrogen fixing microorganisms  

Microsoft Academic Search

Sewage sludge was studied using free-living N2-fixing bacteria in two types of soil amended with six types of municipal sewage sludges and cow and pig manures, respectively. Sludge and manure treatments were as follows: no addition, Swedish recommended rates of 5 t dry wt ha?1, twice the standard rate of addition (2RR), and 10 times the standard rate (10RR). The

A. M. Mrtensson; L. Torstensson

1996-01-01

35

Effects of various pretreatments on biohydrogen production from sewage sludge  

Microsoft Academic Search

The sewage sludge of wastewater treatment plant is a kind of biomass which contains many organics, mainly carbohydrates and\\u000a proteins. Four pretreatments, acid pretreatment, alkaline pretreatment, thermal pretreatment and ultrasonic pretreatment,\\u000a were used to enhance biohydrogen production from sewage sludge. The experimental results showed that the four pretreatments\\u000a could all increase the soluble chemical oxygen demand (SCOD) of sludge and

BenYi Xiao; JunXin Liu

2009-01-01

36

Stabilization of primary sewage sludge during vermicomposting.  

PubMed

In India, over the last few decades, there has been a remarkable increase in sewage sludge production due to population increase and unplanned urbanization. The aim of the present study was to investigate the ability of an epigeic earthworm Eisenia foetida to transform primary sewage sludge (PSS) amended with cow dung (CD) into value added product, i.e., vermicompost in laboratory scale experiments. Two approaches investigated in the study were: (1) evaluation of vermistabilization of PSS and CD mixtures after 15 weeks in terms of fertilizer quality of the products and; (2) growth and reproduction of Eisenia foetida up to 11 weeks in different vermireactors. In all the PSS and CD mixtures, a decrease in pH, TOC and C:N ratio, but increase in EC, TKN, TK and TP was recorded. The heavy metals' content in the vermicomposts was higher than initial mixtures. Maximum worm biomass was attained in 10% PSS+90% CD mixture while, the worm growth rate was highest in 30% PSS+70% CD feed mixture. It was inferred from the study that addition of 30-40% of PSS with CD had no adverse effect on the fertilizer value of the vermicompost as well as growth of Eisenia foetida. The results indicated that PSS could be converted into good quality manure by vermicomposting if mixed in appropriate ratio (30-40%) with cow dung. PMID:17950995

Gupta, Renuka; Garg, V K

2008-05-30

37

PRELIMINARY RISK ASSESSMENT FOR PATHOGENS IN LANDFILLED MUNICIPAL SEWAGE SLUDGE  

EPA Science Inventory

A methodology and accompanying model, SLDGFILL (sludge monofill), have been developed to assess the risk to human health posed by parasites, bacteria and viruses in municipal sewage sludge disposed of in sludge-only landfills (monofills). he following information is required for ...

38

Enhanced compositing of radiation disinfected sewage sludge  

NASA Astrophysics Data System (ADS)

Studies on isothermal composting of radiation disinfected sewage sludge and liquid chromatography of water extracts of the products were carried out. The optimum temperature and pH were around 50 C and 7-8, respectively. The repeated use of products as seeds increased the rate of CO 2 evolution. The rate reached a maximum within 10 hours and decreased rapidly, and the CO 2 evolution ceased after about 3 days. The conversion of organic carbon to carbon dioxide attained to about 40% for the repeated use of products as seeds at the optimum conditions. As long as seeds in available were used, no remarkable difference was found in the composting of unirradiated and irradiated sludges. The composting process using radiation, however, can be carried out at the optimum conditions and is expected to shorten the composting period, because it is not necessary to keep fermentation temperature higher to reduce pathogen in sludge. Liquid chromatographic studies of the products showed that low molecular components decreased and higher molecular ones increased with fermentation. An index expressing the degree of reduction of easily decomposable organics was presented. The index also showed that the optimum temperature for fermentation was 50 C, and that the easily decomposable organics disappeared above 30% of the conversion of organic carbon.

Kawakami, W.; Hashimoto, S.

39

Effects of chemically contaminated sewage sludge on an aphid population  

SciTech Connect

Survival and fecundity of green peach aphids, Myzus persicae, were markedly reduced when they were fed on collard plants grown in pots of soil treated with chemically contaminated sewage sludge, as compared to populations on potted plants grown in uncontaminated sludge or on fertilized soil (control). Calculated demographic parameters differed significantly between the contaminated sludge and uncontaminated sludge populations and between the contaminated sludge and control populations. No significant differences were detected between the uncontaminated sludge and control populations. The ecological effects on the aphids suggest that plant uptake and translocation of chemicals from the contaminated sludge affected aphid fitness through direct toxicity and/or reduced nutritional value of the plant. These results indicate that phytophagous insects may be affected by chemical contaminants in sewage sludge used in agriculture.

Culliney, T.W.; Pimentel, D.

1986-12-01

40

Batchwise mesophilic anaerobic co-digestion of secondary sludge from pulp and paper industry and municipal sewage sludge.  

PubMed

Residues from forest-industry wastewater-treatment systems are treated as waste at many pulp and paper mills. These organic substances have previously been shown to have potential for production of large quantities of biogas. There is concern, however, that the process would require expensive equipment because of the slow degradation of these substances. Pure non-fibrous sludge from forest industry showed lower specific methane production during mesophilic digestion for 19days, 5326 Nml/g of volatile solids as compared to municipal sewage sludge, 8424 Nml/g of volatile solids. This paper explores the possibility of using anaerobic co-digestion with municipal sewage sludge to enhance the potential of methane production from secondary sludge from a pulp and paper mill. It was seen in a batch anaerobic-digestion operation of 19 days that the specific methane production remained largely the same for municipal sewage sludge when up to 50% of the volatile solids were replaced with forest-industry secondary sludge. It was also shown that the solid residue from anaerobic digestion of the forest-industry sludge should be of suitable quality to use for improving soil quality on lands that are not used for food production. PMID:23294534

Hagelqvist, Alina

2013-04-01

41

A New Process for the Drying and Gasification of Sewage Sludge SLUDGE DISPOSAL  

Microsoft Academic Search

n recent years, methods formerly used for the disposal of sewage sludge, including landfill, incin- eration, ocean dumping and disposal on agricultural land have become much less acceptable. Ocean dumping of sewage sludge has been outlawed in the United States since 1998. Space for agricultural land disposal is not available in many urban areas and is meeting with increased opposition

Brendan McAuley; Julie Kunkel; Stanley E. Manahan

2001-01-01

42

USE OF SEWAGE SLUDGE FOR FOREST-TREE SEEDLING PRODUCTION  

EPA Science Inventory

Research was undertaken to determine the beneficial and harmful effects of using dewatered, digested sewage sludge in: (1) containerized production of forest tree seedlings, (2) tree seedling production in a conventional outdoor nursery, (3) establishment and growth of transplant...

43

WINDROW AND STATIC PILE COMPOSTING OF MUNICIPAL SEWAGE SLUDGES  

EPA Science Inventory

Research was conducted on composting anaerobically digested and centrifuge dewatered sewage sludge from 1975 through 1980. Windrow and static pile composting processes were evaluated; new methods were employed using deeper windrows and aerated static piles were constructed withou...

44

Biogas production from Sludge of Sewage Treatment Plant at Haridwar (Uttarakhand)  

Microsoft Academic Search

Biogas, a source of non-conventional energy is produced by fermentation of sludges. The sewage have collected through sewage pumping stations and treated in the primary and secondary treatment steps in sewage treatment plant at Jagjitpur, Hardwar. The Sewage Treatment Plant receives approximately 40 mld sewage from different pumping stations and 18 mld sewage is used for treatment at sewage treatment

D. S. Malik; Umesh Bharti

45

Combustion kinetics of sewage sludge and combustible wastes  

Microsoft Academic Search

This study estimated the kinetics of the mono- and co-combustion of sewage sludge pellets and combustible wastes such as municipal\\u000a solid waste (MSW) and refuse-derived fuel (RDF). Sewage sludge was manufactured into pellets with a diameter of 8, 12, or\\u000a 16 mm and a length of 30 mm. The RDF was composed of paper and plastics and was formed into

Ho-Soo Lee; Sung-Keun Bae

2009-01-01

46

Effect of biodegradation on the consolidation properties of a dewatered municipal sewage sludge.  

PubMed

The effect of biodegradation on the consolidation characteristics of an anaerobically digested, dewatered municipal sewage sludge was studied. Maintained-load oedometer consolidation tests that included measurement of the pore fluid pressure response were conducted on moderately degraded sludge material and saturated bulk samples that had been stored under static conditions and allowed to anaerobically biodegrade further (simulating what would happen in an actual sewage sludge monofill or lagoon condition). Strongly degraded sludge material was produced after a storage period of 13 years at ambient temperatures of 5-15 degrees C, with the total volatile solids reducing from initially 70% to 55%. The sludge materials were highly compressible, although impermeable for practical purposes. Primary consolidation generally occurred very slowly, which was attributed to the microstructure of the solid phase, the composition and viscosity of the pore fluid, ongoing biodegradation and the high organic contents. The coefficient of primary consolidation values decreased from initially about 0.35m2/yr to 0.003-0.03m2/yr with increasing effective stress (sigmav'=3-100kPa). Initially, the strongly degraded sludge material was slightly more permeable, although both the moderately and strongly degraded materials became impermeable for practical purposes (k=10(-9)-10(-12)m/s) below about 650% and 450% water contents, respectively. Secondary compression became more dominant with increasing effective stress with a mean secondary compression index (Calphae) value of 0.9 measured for both the moderately and strongly degraded materials. PMID:17936608

O'Kelly, Brendan C

2008-01-01

47

Biological Aspects of Metal Waste Reclamation With Sewage Sludge  

Technology Transfer Automated Retrieval System (TEKTRAN)

Smelter waste deposits pose an environmental threat worldwide. Sewage sludges are potentialy useful in reclamation of such sites. Biological aspects of revegetation of Zn and Pb smelter wastelands are discussed in a paper. The goal of the studies was to asses to what extent sludge treatment would...

48

EVALUATION OF THE MUTAGENICITY OF MUNICIPAL SEWAGE SLUDGE  

EPA Science Inventory

Samples of five municipal sewage sludges from Illinois cities have been subjected to a multiorganism testing program to determine the presence or absence of mutagenic activity. Chicago sludge has been the most extensively tested using the Salmonella/microsomal activation assay, t...

49

Disinfection of sewage wastewater and sludge by electron treatment  

NASA Astrophysics Data System (ADS)

The use of machine-accelerated electrons to disinfect sewage waterwaste and sludge is discussed. The method is shown to be practical and energy-efficient for the broad spectrum disinfection of pathogenic organisms in municipal wastewaters and sludge removed from them. Studies of biological, chemical and physical effects are reported. Electron treatment is suggested as an alternative to chlorination of municipal liquid wastes after electron treatment to provide disinfection. Disposal of sewage sludge is recommended as an agricultural resource by subsurface land injection, or as a nutrient for fish populations by widespread ocean dispersal.

Trump, J. G.; Merrill, E. W.; Wright, K. A.

50

Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability.  

PubMed

Anaerobic codigestion (AcoD) is a proven option to significantly boost biogas production while utilizing existing digesters and infrastructure. The aim of the present research was to conduct an exhaustive study regarding anaerobic codigestion of mixed sewage sludge and crude glycerol considering impacts on organic load, hydraulic load, process performance and microbial community. The methane potential of crude glycerol varied from 370 mL CH4g(-1) VS to 483 mL CH4g(-1) VS for different samples tested. The half maximal inhibitory concentration of crude glycerol was 1.01 g VS L(-1), and the primary mechanism of inhibition was through overload from rapid fermentation rather than the presence of toxic compounds in the crude glycerol. In continuous operation over 200 days, feeding glycerol at up to 2% v/v, increased organic load by up to 70% and resulted in a 50% increase in methane production. Glycerol dosing resulted in no change in apparent dewaterability, with both codigestion and control reactors returning values of 22%-24%. Members of the phylum Thermotogae emerged as a niche population during AcoD of sewage sludge and glycerol; however there was no gross change in microbial community structure and only minimal changes in diversity. AcoD did not result in synergisms between sewage sludge and crude glycerol. Actually, at dose rate up to 2% v/v glycerol dosing is still an effective strategy to increase the organic loading rate of continuous anaerobic digesters with minimal impact of the hydraulic retention time. Nonetheless, the dose rate must be managed to: (i) prevent process inhibition and (ii) ensure sufficient degradation time to produce a stable biosolids product. PMID:25459224

Jensen, P D; Astals, S; Lu, Y; Devadas, M; Batstone, D J

2014-12-15

51

Sewage sludge fertiliser use: implications for soil and plant copper evolution in forest and agronomic soils.  

PubMed

Fertilisation with sewage sludge may lead to crop toxicity and environmental degradation. This study aims to evaluate the effects of two types of soils (forest and agronomic), two types of vegetation (unsown (coming from soil seed bank) and sown), and two types of fertilisation (sludge fertilisation and mineral fertilisation, with a no fertiliser control) in afforested and treeless swards and in sown and unsown forestlands on the total and available Cu concentration in soil, the leaching of this element and the Cu levels in plant. The experimental design was completely randomised with nine treatments and three replicates. Fertilisation with sewage sludge increased the concentration of Cu in soil and plant, but the soil values never exceeded the maximum set by Spanish regulations. Sewage sludge inputs increased both the total and Mehlich 3 Cu concentrations in agronomic soils and the Cu levels in plant developed in agronomic and forest soils, with this effect pronounced in the unsown swards of forest soils. Therefore, the use of high quality sewage sludge as fertiliser may improve the global productivity of forest, agronomic and silvopastoral systems without creating environmental hazards. PMID:22425275

Ferreiro-Domnguez, Nuria; Rigueiro-Rodrguez, Antonio; Mosquera-Losada, M Rosa

2012-05-01

52

40 CFR 60.4775 - What is a new sewage sludge incineration unit?  

...2014-07-01 2014-07-01 false What is a new sewage sludge incineration unit? 60.4775...CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Sewage Sludge Incineration Units...

2014-07-01

53

40 CFR 60.4780 - What sewage sludge incineration units are exempt from this subpart?  

Code of Federal Regulations, 2011 CFR

... This subpart exempts combustion units that incinerate sewage sludge and are not located at a wastewater treatment facility designed to treat domestic sewage sludge. These units may be subject to another subpart of this part (e.g.,...

2011-07-01

54

40 CFR 60.4780 - What sewage sludge incineration units are exempt from this subpart?  

... This subpart exempts combustion units that incinerate sewage sludge and are not located at a wastewater treatment facility designed to treat domestic sewage sludge. These units may be subject to another subpart of this part (e.g.,...

2014-07-01

55

40 CFR 60.4780 - What sewage sludge incineration units are exempt from this subpart?  

Code of Federal Regulations, 2012 CFR

... This subpart exempts combustion units that incinerate sewage sludge and are not located at a wastewater treatment facility designed to treat domestic sewage sludge. These units may be subject to another subpart of this part (e.g.,...

2012-07-01

56

40 CFR 60.4780 - What sewage sludge incineration units are exempt from this subpart?  

Code of Federal Regulations, 2013 CFR

... This subpart exempts combustion units that incinerate sewage sludge and are not located at a wastewater treatment facility designed to treat domestic sewage sludge. These units may be subject to another subpart of this part (e.g.,...

2013-07-01

57

40 CFR 60.4775 - What is a new sewage sludge incineration unit?  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false What is a new sewage sludge incineration unit? 60.4775...CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Sewage Sludge Incineration Units...

2011-07-01

58

The production, use and quality of sewage sludge in Denmark  

SciTech Connect

In Denmark, the production of municipal sewage sludge decreased from approximately 170,000 ton d.m. in 1994 to 140,000 ton d.m. in 2002. The sludge is handled and treated in a number of ways. The quality of Danish sludge has steadily improved since the middle of the 1980s, when the first set of quality criteria for heavy metals was introduced. In 1997, cut-off criteria for the organic pollutants, LAS, DEHP, nonylphenol and PAHs were introduced. Effective control from authorities, voluntary phasing out agreements with industry, improved source identification tools, better handling and after-care methods have in combination with higher waste duties led to a significant reduction in the sludge level of especially cadmium, mercury, chromium, LAS and nonylphenol. The increased quality demand has, nevertheless, also led to a minor reduction in the use of sewage sludge as organic fertiliser on agricultural land.

Jensen, John [National Environmental Research Institute, P.O. Box 314, Vejlsovej 25, DK-8600 Silkeborg (Denmark)]. E-mail: john.jensen@dmu.dk; Jepsen, Svend-Erik [Danish Environmental Protection Agency, Strandgade 29, DK-1401 Copenhagen K (Denmark)

2005-07-01

59

Municipal sewage sludge as fertilizer. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the use of sewage sludge as fertilizer. References study the effects of municipal sewage sludge on vegetation such as maize, beans, roadside plant life, and hardwood trees. Sewage sludge used as fertilizer to reclaim mined land is explored. Public attitudes are also considered. (Contains a minimum of 247 citations and includes a subject term index and title list.)

Not Available

1994-12-01

60

Municipal sewage sludge as fertilizer. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the use of sewage sludge as fertilizer. References study the effects of municipal sewage sludge on vegetation such as maize, beans, roadside plant life, and hardwood trees. Sewage sludge used as fertilizer to reclaim mined land is explored. Public attitudes are also considered. (Contains a minimum of 230 citations and includes a subject term index and title list.)

Not Available

1994-01-01

61

Municipal sewage sludge as fertilizer. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the use of sewage sludge as fertilizer. References study the effects of municipal sewage sludge on vegetation such as maize, beans, roadside plant life, and hardwood trees. Sewage sludge used as fertilizer to reclaim mined land is explored. Public attitudes are also considered. (Contains a minimum of 226 citations and includes a subject term index and title list.)

Not Available

1993-08-01

62

Impacts on groundwater due to land application of sewage sludge  

SciTech Connect

The project was designed to demonstrate the potential benefits of utilizing sewage sludge as a soil conditioner and fertilizer on Sassafras sandy loam soil. Aerobically digested, liquid sewage sludge was applied to the soil at rates of 0, 22.4, and 44.8 Mg of dry solids/ha for three consecutive years between 1978 and 1981. Groundwater, soil, and crop contamination levels were monitored to establish the maximum sewage solids loading rate that could be applied without causing environmental deterioration. The results indicate that application of 22.4 Mg of dry solids/ha of sludge is the upper limit to ensure protection of the groundwater quality on the site studied. Application rates at or slightly below 22.4 Mg of dry solids/ha are sufficient for providing plant nutrients for the dent corn and rye cropping system utilized in the study.

Higgins, A.J.

1984-06-01

63

Ecotoxicological evaluation of sewage sludge contaminated with zinc oxide nanoparticles.  

PubMed

The objective of this work was to evaluate the ecotoxicological qualitative risk associated with the use of sewage sludge containing Zn oxide nanoparticles (ZnO-NPs) as soil amendment. A sludge-untreated soil and two sludge-treated soils were spiked with ZnO-NPs (0-1,000 mg/kg soil). Soil ecotoxicity was assessed with Eisenia fetida (acute and sublethal end points), and the unfilterable and filterable (0.02 ?m) soil leachates were tested with a battery of biomarkers using Chlorella vulgaris, Daphnia magna, and the fish cell line RTG-2 (Oncorhynchus mykiss). The production of E. fetida cocoons in sludge-treated soils was lower than that in sludge-untreated soils. The highest effect in the algal growth inhibition test was detected in sludge-untreated soil, most likely caused by the loss of organic matter in these samples. The D. magna results were always negative. Toxic effects (lysosomal cell function and production of reactive oxygen species) in RTG-2 cells were only observed in sludge-treated soils. In general, the toxicity of ZnO-NPs in sludge-treated soils was similar to that of sludge-untreated soil, and the filterable leachate fraction [Zn salt (Zn(2+))] did not produce greater effects than the unfilterable fraction (ZnO-NPs). Thus, after the addition of ZnO-NP--enriched sewage sludge to agricultural soil, the risk of toxic effects for soil and aquatic organisms was shown to be low. These findings are important because repeated use of organic amendments such as sewage sludge may cause more and more increased concentrations of ZnO-NPs in soils over the long-term. PMID:25185842

Garca-Gmez, Concepcin; Fernndez, Mara Dolores; Babin, Mar

2014-11-01

64

Utilization of night-soil, sewage, and sewage sludge in agriculture  

PubMed Central

The author reviews the agricultural use of night-soil, sewage, and sewage sludge from two points of view: the purely agricultural and the sanitary. Knowledge of the chemistry and bacteriology of human faecal matter is still rather scant, and much further work has to be done to find practical ways of digesting night-soil in a short time into an end-product of high fertilizing value and free of pathogens, parasites, and weeds. More is known about sewage and sewage sludge, but expert opinion is not unanimous as to the manner or the value of their use in agriculture. The author reviews a number of studies and experiments made in many countries of the world on the content, digestion, composting, agricultural value, and epidemiological importance of sewage and sewage sludge, but draws from these the conclusion that the chemistry, biology, and bacteriology of the various methods of treatment and use of waste matter need further investigation. He also considers that standards of quality might be set up for sludge and effluents used in agriculture and for water conservation. PMID:13160760

Petrik, Milivoj

1954-01-01

65

Changes on sewage sludge stability after greenhouse drying  

NASA Astrophysics Data System (ADS)

The progressive implementation of the Urban Waste Water Treatment Directive 91/271/EEC in all the European member states is increasing the quantities of sewage sludge requiring disposal. Sludge application onto cultivated soils as organic fertilizers allows the recycling of nutrients. The application of only dehydrated sludges has generated many problems including unpleasant odours and difficult management (regarding transport and application) related to their high water content. One way to overcome these problems, in a cheap and clean way, is the drying of sludges using the energy of the sun under greenhouse conditions. This drying may affect sludge chemical characteristics including organic matter stability and nitrogen availability, parameters which have to be controlled for the proper management of dry sludge application onto soils. For this reason, the main aim of this work was to study the impact of greenhouse drying of different sewage sludges on their organic matter stability and nitrogen availability, assessed by biochemical fractionation and mineralization assays. Three sewage sludges were sampled before (dehydrated sludges) and after greenhouse drying (dried sludges). The analyses consisted of: humidity, organic matter, mineral and organic N contents, N and C mineralization during 91-day laboratory incubations in controlled conditions, and biochemical fractionation using the Van Soest procedure. Greenhouse drying decreased the water content from 70-80% to 10% and also the odours, both of which will improve the management of the final product from the perspective of application and transport. We also found that drying reduced the organic matter content of the sludges but not the biodegradability of the remaining carbon. Organic N mineralization occurred during greenhouse drying, explaining why mineral N content tended to increase and the potential mineralization of organic nitrogen decreased after greenhouse drying. The biochemical stability did not change so much except for the one of the sludges, which experienced an important reduction. According to the results, and from a point of view of future soil applications, the balance of the drying process could be considered as positive. It is using a free, renewable and clean energy, which reduces the water content and odours of sludge, thereby improving their management. Except for the water content, there was little modification of the behaviour in soil of greenhouse dried sludges compared to the dehydrated sludges, maintaining its large amount of available nitrogen after drying. Acknowledgements: Jose. M. Soriano-Disla gratefully acknowledges the Spanish Ministry of Innovation and Culture for a research fellowship (AP2005-0320).

Soriano-Disla, J. M.; Houot, S.; Imhoff, M.; Valentin, N.; Gmez, I.; Navarro-Pedreo, J.

2009-04-01

66

Per- and polyfluoroalkyl substances in selected sewage sludge in Nigeria.  

PubMed

Levels of seven major perfluoroalkyl carboxylates (PFCAs) and three perfluoroalkyl sulfonates (PFSAs) were analyzed for the first time in sludge from wastewater treatment plants from Nigeria. Measurements were performed using an analytical methodology using solid-phase extraction (SPE) and ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS-MS). The method detection limit and method quantification limit was 3pg/g and 9.5pg/g for both analytes (PFCAs and PFSAs) respectively. Typical recoveries ranged from 50% to 104% for spiked mass labeled internal standards of 1ng (absolute value) to 1g of sample. All sludge samples taken from industrial, domestic and hospital wastewater treatment plants contained measurable levels of PFASs. Levels of the quantified perfluoroalkyl carboxylates and perfluoroalkyl sulfonates concentrations ranged from 10 to 597 and 14 to 540pg/g, respectively. The concentrations were therefore lower compared to sewage sludge samples reported in other regions in the world. Perfluoroalkyl carboxylates with carbon chain having ?8 fluorinated carbons were detected in the analyzed sewage sludge samples at higher levels compared to carboxylates with <8 fluorinated carbon chain. The measured concentrations indicate that no PFAS point source for the 10 investigated sewage treatment plants existed. Furthermore the low levels in the four municipal sewage treatment plants in Lagos is a first indication that even in an African megacity like Lagos the PFASs release from households are low until now. The highest PFOS level was found in a hospital sewage sludge (539.6pg/g) possibly indicating (minor) release from medical equipment where some are known to contain PFOS. The PFASs in waste water sludge from a brewery warrant further investigations. PMID:23648329

Sindiku, Omotayo; Orata, Francis; Weber, Roland; Osibanjo, Oladele

2013-07-01

67

Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure  

Microsoft Academic Search

The performance of an anaerobic digestion process is much dependent on the type and the composition of the material to be digested. The effects on the degradation process of co-digesting different types of waste were examined in two laboratory-scale studies. In the first investigation, sewage sludge was co-digested with industrial waste from potato processing. The co-digestion resulted in a low

M Murto; L Bjrnsson; B Mattiasson

2004-01-01

68

PATHOGEN RISKS FROM APPLYING SEWAGE SLUDGE TO LAND  

EPA Science Inventory

Congress banned ocean dumping of municipal wastes in the late 1980s. In its place, EPA developed guidance (40 CFR Part 503) for land application of processed sewage sludge (biosolids), mainly for agricultural purposes (1). Public health and environmental concerns with processed...

69

Thermochemical treatment of sewage sludge ashes for phosphorus recovery.  

PubMed

Phosphorus (P) is an essential element for all living organisms and cannot be replaced. Municipal sewage sludge is a carrier of phosphorus, but also contains organic pollutants and heavy metals. A two-step thermal treatment is suggested, including mono-incineration of sewage sludge and subsequent thermochemical treatment of the ashes. Organic pollutants are completely destroyed by mono-incineration. The resulting sewage sludge ashes contain P, but also heavy metals. P in the ashes exhibits low bioavailability, a disadvantage in farming. Therefore, in a second thermochemical step, P is transferred into mineral phases available for plants, and heavy metals are removed as well. The thermochemical treatment was investigated in a laboratory-scale rotary furnace by treating seven different sewage sludge ashes under systematic variation of operational parameters. Heavy metal removal and the increase of the P-bioavailability were the focus of the investigation. The present experimental study shows that these objectives have been achieved with the proposed process. The P-bioavailability was significantly increased due to the formation of new mineral phases such as chlorapatite, farringtonite and stanfieldite during thermochemical treatment. PMID:19036571

Adam, C; Peplinski, B; Michaelis, M; Kley, G; Simon, F-G

2009-03-01

70

SEWAGE SLUDGE INCINERATOR FUEL REDUCTION AT NASHVILLE, TENNESSEE  

EPA Science Inventory

This is a report on the sewage sludge incineration fuel reduction program at the Nashville-Davidson County Metropolitan Government wastewater treatment plant in Nashville, Tennessee. Fuel usage was reduced over 40 percent by reprogramming the methods used for operating the incine...

71

Gaseous fuels production from dried sewage sludge via air gasification.  

PubMed

Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic. PMID:24938297

Werle, Sebastian; Dudziak, Mariusz

2014-06-17

72

FACTORS AFFECTING DISINFECTION AND STABILIZATION OF SEWAGE SLUDGE  

EPA Science Inventory

Effective disinfection and stabilization of sewage sludge prior to land application is essential to not only protect human health, but also to convince the public of its benefits and safety. A basic understanding of the key factors involved in producing a stable biosolid product ...

73

Hydrogen and syngas production from sewage sludge via steam gasification  

Microsoft Academic Search

High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for

Nimit Nipattummakul; Islam I. Ahmed; Somrat Kerdsuwan; Ashwani K. Gupta

2010-01-01

74

Evaluation of nitrogen availability in irradiated sewage sludge, sludge compost and manure compost  

SciTech Connect

A field experiment was conducted during 2 yr to determine plant availability of organic N from organic wastes, and effects of gamma irradiation on organic N availability in sewage sludge. The wastes investigated were: digested, dewatered sewage sludge (DSS), irradiated sewage sludge (DISS), irradiated, composted sewage sludge (DICSS), and composted livestock manure (CLM). The annual application rates were: 10, 20, 30, and 40 Mg solids ha{sup {minus}1}. Fertilizer N was added to the control, to which no waste was applied, as well as to the waste applications to ensure approximately equal amounts of available N (110 kg N ha{sup {minus}1}) for all treatments. Lettuce, petunias, and beans were grown in 1990 and two cuts of lettuce were harvested in 1991. Crop yields and plant N concentrations were measured. Assuming that crop N harvested/available N applied would be approximately equal for the control and the waste treatments, the N from organic fraction of the wastes, which is as available as that in fertilizer, was estimated. With petunia in 1990 and the combination of first and second cut of lettuce in 1991, the percentage ranged from 11.2 to 29.7 in nonirradiated sludge, 10.1 to 14.0 in irradiated sludge, 10.5 to 32.1 in sludge compost and 10.0 to 19.7 in manure compost. Most often, the highest values were obtained with the lowest application rates. Yields of petunia and N concentrations in second cut lettuce in 1991 were lower with irradiated sludge than with nonirradiated sludge suggest that the availability of organic N in digested sludge may have been reduced after irradiation. Irradiation of sludge appears to have released NH{sub 4}{sup +}-N. The availability of organic N, however, appears to have been reduced by irradiation by greater amount than the increase in NH{sub 4}{sup +}-N. 41 refs., 2 figs., 6 tabs.

Wen, Guang; Bates, T.E.; Voroney, R.P. [Univ. of Guelph, Ontario (Canada)

1995-05-01

75

PROCESS DESIGN MANUAL: LAND APPLICATION OF SEWAGE SLUDGE AND DOMESTIC SEPTAGE  

EPA Science Inventory

Land application of sewage sludge generated by domestic sewage treatment is performed in an environmentally safe and cost?effective manner in many communities. Land application involves taking advantage of the fertilizing and soil conditioning properties of sewage sludge by sp...

76

Physicochemical characteristics of full scale sewage sludges with implications to dewatering  

Microsoft Academic Search

An investigation was carried out for a variety of different sewage sludges in order to establish correlations between sludge composition, structure and dewatering properties. Results indicated that the fraction of extracellular polymeric substances (EPS) in sludges was the most important parameter with respect to sludge structure. With high EPS contents, sludges had a lower shear sensitivity and lower degree of

Lene Haugaard Mikkelsen; Kristian Keiding

2002-01-01

77

MICROBIAL ACTIVITY IN COMPOSTING MUNICIPAL SEWAGE SLUDGE  

EPA Science Inventory

Research was conducted to identify the most important operational parameters which limit the growth and decomposition activity of composting sludge microbiota. Sensitive and nonselective biochemical methods of monitoring microbial biomass and activity were tested and used to stud...

78

Potentials of using nanofiltration to recover phosphorus from sewage sludge.  

PubMed

Due to the depletion of mineral phosphorus resources there is an increasing demand for efficient phosphorus recovery technologies. In this study the potential of nanofiltration to recover phosphorus from pre-treated sewage sludge is investigated. The efficiency of three commercial nanofiltration membranes (Desal 5DK, NP030; MPF34) was tested using model solutions. Desal 5DK showed the best selectivity for phosphorus. A pH of lower than 1.5 was found to be most suitable. Desal 5DK was used on four different sewage sludge ash eluates and on one sewage sludge. In these experiments it was shown that a separation of phosphorus from undesired components such as heavy metals was possible with significant variations in the efficiency for the different ash and sludge types. Additionally the achievable product recovery was investigated with model solutions. A product recovery of 57.1% was attained for pH 1 and 41.4% for pH 1.5. PMID:18401142

Niewersch, C; Koh, C N; Wintgens, T; Melin, T; Schaum, C; Cornel, P

2008-01-01

79

Phytotoxicity of municipal sewage sludge composts related to physico-chemical properties, PAHs and heavy metals  

Microsoft Academic Search

The aim of the study was to determine the influence of the composting on the phytotoxicity of sewage sludge in relation to their physicalchemical properties, heavy metals and polycyclic aromatic hydrocarbons content. Four municipal sewage sludges were composted for 76 days. A Phytotoxkit Test and pot experiment with Lepidium sativum were used for bioassay. The total PAH content in sludges

Patryk Oleszczuk

2008-01-01

80

Evaluation of sludge properties in a pilot-scale UASB reactor for sewage treatment in a temperate region.  

PubMed

In this study, continuous operation of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor for sewage treatment was conducted for 630 days to investigate the physical and microbial characteristics of the retained sludge. The UASB reactor with a working volume of 20.2 m(3) was operated at ambient temperature (16-29 C) and seeded with digested sludge. After 180 days of operation, when the sewage temperature had dropped to 20 C or lower, the removal efficiency of both total suspended solids (TSS) and total biochemical oxygen demand (BOD) deteriorated due to washout of retained sludge. At low temperature, the cellulose concentration of the UASB sludge increased owing to the rate limitation of the hydrolytic reaction of suspended solids in the sewage. However, after an improvement in sludge retention (settleability and concentration) in the UASB reactor, the process performance stabilized and gave sufficient results (68% of TSS removal, 75% of total BOD removal) at an hydraulic retention time (HRT) of 9.7 h. The methanogenic activity of the retained sludge significantly increased after day 246 due to the accumulation of Methanosaeta and Methanobacterium following the improvement in sludge retention in the UASB reactor. Acid-forming bacteria from phylum Bacteroidetes were detected at high frequency; thus, these bacteria may have an important role in suspended solids degradation. PMID:22105115

Syutsubo, K; Yoochatchaval, W; Tsushima, I; Araki, N; Kubota, K; Onodera, T; Takahashi, M; Yamaguchi, T; Yoneyama, Y

2011-01-01

81

Form1ation and destruction of chlorinated pollutants during sewage sludge incineration.  

PubMed

The limitations facing land filling and recycling and the planned ban on sea disposal of sludge leads to the expectation that the role of sludge incineration will increase in the future. The expected increase in sludge incineration will also increase scrutiny of the main drawbackto sewage sludge incineration--the formation of hazardous air pollutants (HAPs). Despite the extensive body of knowledge available on sewage sludge combustion, very few studies have been conducted on the formation of HAPs during sludge combustion. In this work, the interactions between sewage sludge pyrolysis products and sludge ash were investigated using a dual chamber flow reactor system and a horizontal laboratory scale reactor. The results of this study shows that sludge ash can catalyze oxidation and chlorination of organics. In the absence of HCl in the gas stream, sludge ash acts as an oxidizing catalyst, but in the presence of HCl, sludge ash acts as a chlorination catalyst producing high yields of organochloride compounds. PMID:15212273

Fullana, Andrs; Conesa, Juan A; Font, Rafael; Sidhu, Sukh

2004-05-15

82

Thermochemical liquidization and anaerobic treatment of dewatered sewage sludge  

Microsoft Academic Search

Dewatered sewage sludge was thermochemically liquidized at 175C and the liquidized sludge was separated by centrifugation to 57.7% (w\\/w) supernatant [moisture, 92.3%; volatile solid (VS), 7.0%] and 42.3% precipitate (moisture, 71.6%; VS, 18.9%). The supernatant was successfully anaerobically digested. Biogas yield from the supernatant at organic loading concentrations of 1.92.2 g VS\\/l during 9 days' incubation was 440 ml\\/g-added VS

Shigeki Sawayama; Seiichi Inoue; Tatsuo Yagishita; Tomoko Ogi; Shin-Ya Yokoyama

1995-01-01

83

Landfarming of municipal sewage sludge at Oak Ridge, Tennessee  

SciTech Connect

The City of Oak Ridge, Tennessee, has been applying municipal sanitary sludge to 9 sites comprising 90 ha on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) since 1983. Approximately 13,000,000 L are applied annually by spraying sludge (2 to 3% solids) under pressure from a tanker. Under an ongoing monitoring program, both the sludge and the soil in the application areas are analyzed for organic, inorganic, and radioactive parameters on a regular basis. Organic pollutants are analyzed in sludge on a semiannual basis and in the soil application areas on an annual basis. Inorganic parameters are analyzed daily (e.g., pH, total solids) or monthly (e.g., nitrogen, manganese) in sludge and annually in soil in application areas. Radionuclides (Co-60, Cs-137, I-131, Be-7, K-40, Ra-228, U-235, U-238) are scanned daily during application by the sewage treatment plant and analyzed weekly in composite sludge samples and annually in soil. Additionally, data on radioactive body burden for maximally exposed workers who apply the sludge show no detectable exposures. This monitoring program is comprehensive and is one of the few in the United States that analyzes radionuclides. Results from the monitoring program show heavy metals and radionuclides are not accumulating to levels in the soil application areas.

Tischler, M.L.; Pergler, C.; Wilson, M.; Mabry, D.; Stephenson, M.

1995-12-01

84

Application of dried sewage sludge as phenol biosorbent  

Microsoft Academic Search

The aim of this work was to determine the potential application of dried sewage sludge as a biosorbent for removing phenol from aqueous solution. Results showed that biosorption capacity was strongly influenced by the pH of the aqueous solution with an observed maximum phenol removal at pH around 68. Biosorption capacity increased when initial phenol concentration was increased to 110mg\\/L

Usarat Thawornchaisit; Kesinee Pakulanon

2007-01-01

85

Distribution and levels of brominated flame retardants in sewage sludge  

Microsoft Academic Search

One hundred and sixteen sewage sludge samples from 22 municipal wastewater treatment plants in Sweden were analysed for brominated flame retardants. Polybrominated diphenyl ethers (PBDEs) were in the range n.d.450 ng\\/g wet weight, tetrabromobisphenol A (TBBPA) varied between n.d. and 220 ng\\/g wet weight, 2,4,6-tribromophenol was in the range n.d.0.9 ng\\/g wet weight and polybrominated biphenyls were not detected (except

Karin berg; Kristofer Warman; Tomas berg

2002-01-01

86

Selenium biomethylation products from soil and sewage sludge.  

PubMed

Inorganic selenium compounds are converted to volatile methylated species (dimethyl selenide, dimethyl diselenide, and dimethyl selenone or methyl methylselenite) by microorganisms in sewage sludge and soil. In the absence of added selenium, no volatile selenium compounds were detected. All samples were evaluated without the addition of nutrients and in the presence of air or nitrogen. The methylation process may be an important step in the detoxification process for microorganisms exposed to high concentrations of selenium. PMID:17744562

Reamer, D C; Zoller, W H

1980-05-01

87

Effect of the addition of rice straw on microbial community in a sewage sludge digester.  

PubMed

Rice straw was added to a sewage sludge digester and its effects on methane production, dewatering characteristics, and microbial communities in the digested sludge were examined by a continuous digestion experiment under mesophilic conditions (35 C). Stable gas generation was monitored in all digestion experiments. Methane yield from raw sludge, chopped rice straw and softened rice straw were estimated to be 0.27, 0.18 and 0.26 NL/g total solids load, respectively. The capillary suction time of digested sludge was decreased by the addition of rice straw. Archaeal and bacterial communities in the sludge were elucidated by PCR-DGGE (polymerase chain reaction - denaturing gradient gel electrophoresis) targeting 16S rRNA genes. The Shannon index of DGGE profiles indicated that bacterial diversity increased with the addition of softened rice straw. DNA sequences of significant bands of the digested sludge were most closely related to Methanosaeta concilii (97.4% identity) and Methanoculleus bourgensis (100% identity). Meanwhile, those in the co-digested sludge with rice straw were most closely related to Methanosarcina barkeri (98.4% identity) and Methanoculleus bourgensis (99.3% identity). Although both Methanosaeta spp. and Methanosarcina spp. metabolize acetate to methane, Methanosarcina spp. have a competitive advantage at acetate concentrations of >70 mg/L. Results suggested that the quantity of acetate produced during rice straw degradation may change the archaeal community. PMID:25225928

Nakakihara, E; Ikemoto-Yamamoto, R; Honda, R; Ohtsuki, S; Takano, M; Suetsugu, Y; Watanabe, H

2014-01-01

88

Sewage sludge does not induce genotoxicity and carcinogenesis  

PubMed Central

Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group. PMID:23055806

Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lcia Zaidan; Saldiva, Paulo Hilrio Nascimento

2012-01-01

89

Utilization and Conversion of Sewage Sludge as Metal Sorbent  

NASA Astrophysics Data System (ADS)

Most biosolids are disposed on land. With improvements in wastewater treatment processes and upgrading of treatment plants across Canada, biosolids generation will increase dramatically. These biosolids will need to be dealt with because they contain various contaminants, including heavy metals and several classes of emerging contaminants. A number of researchers have recently focused on preparation of sewage sludge-based adsorbents by carbonation, physical activation and chemical activation for decontamination of air and wastewater. These previous studies have indicated that sludge-based activated carbon can have good adsorption performance for organic substances in dye wastewater. The overall results suggest that activated carbon from sewage sludge can produce a useful adsorbent, while also reducing the amount of sewage sludge to be disposed. However, sludge-derived activated carbon has not been extensively studied, especially for adsorption of heavy metal ions in wastewater and for its capacity to remove emerging contaminants, such as poly-fluorinated compounds (PFCs). Previous research has indicated that commercial activated carbons adsorb organic compounds more efficiently than heavy metal ions. 45 Activated carbon can be modified to enhance its adsorption capacity for special heavy metal ions,46 e.g. by addition of inorganic and organic reagents. The modifications which are successful for commercial activated carbon should also be effective for sludge-derived activated carbon, but this needs to be confirmed. Our research focuses on (a) investigation of techniques for converting sewage sludge (SS) to activated carbon (AC) as sorbents; (b) exploration of possible modification of the activated carbon (MAC) to improve its sorption capacity; (c) examination of the chemical stability of the activated carbon and the leachability of contaminants from activated carbon,; (d) comparison of adsorptivity with that of other sorbents. Based on XRD and FT-IR, we successfully converted SS to AC and further modified it to improve absorption. SSMAC has large specific surface areas based on the BET technique. Batch adsorption results indicate that metal adsorption for SSMAC > SSAC, with adsorption occurring within the first 5 minutes of contact. Comparison of the adsorptivity of various sorbents such as commercial activated carbon (CAC), mineral sorbents such as perlite, clinoptilolite and illite indicates that SSMAC CAC clinoptilolite > kaolite.

Gong, Xu Dong; Li, Loretta Y.

2013-04-01

90

K-Area and Par Pond Sewage Sludge Application Sites groundwater monitoring reports, second quarter 1992  

SciTech Connect

During second quarter 1992, the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) were sampled for analyses required each quarter or annually by South Carolina Department of Health and Environmental Control Construction Permit 13, 173. This report includes the results of those analyses. None of the analyzed constituents exceeded the Primary Drinking Water Standard or the Savannah River Site Flag 2 criteria at either the K-Area Sewage Sludge Application Site or the Par Pond Sewage Sludge Application Site.

Not Available

1992-10-01

91

Temporal trends of persistent organic pollutants in digested sewage sludge (1993-2012).  

PubMed

The analysis of temporal trends is a key tool to assess the success of national and international regulations on chemical pollution. Persistent organic pollutants (POPs) are chemical pollutants, which are not only harmful, but also because of their slow environmental degradation they pose a long-time risk. In this study, concentrations of selected POPs were measured between 1993 and 2012 in digested sewage sludge from eight municipal waste water treatment plants. Polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-dioxins and furans (PCDD/Fs), which have been banned or restricted for decades, exhibited decreasing trends with apparent half-lives between 9 and 12years. Polybrominated diphenyl ethers (PBDEs) and long-chain perfluorinated acids showed no clear trend, which reflects the recent introduction of regulations. The analysis of octabromodiphenyl ethers did not reveal indications for reductive debromination of decabromodiphenyl ether; however the analysis of total bromine showed that up to 14% of the total bromine load in sewage sludge originated from PBDEs (average 2%). This is the first study to report temporal trends for more than 20years of series POPs in sewage sludge. PMID:24071021

Zennegg, Markus; Munoz, Maria; Schmid, Peter; Gerecke, Andreas C

2013-10-01

92

Anaerobic co-digestion of sewage and brewery sludge for biogas production and land application  

Microsoft Academic Search

In Thailand, sewage sludge production from the Bangkok metropolitan area can reach up to 63,000 ton\\/y by 2010. The Beer-Thai Company, Thailand, produces beer and generates lots of sludge as waste. Sewage sludge and brewery sludge can be used to generate energy which could be saved on the fossil fuels conventionally used as a source of energy. The possibility was

S. Babel; J. Sae-Tang

2009-01-01

93

Stability and activity of anaerobic sludge from UASB reactors treating sewage in subtropical regions  

Microsoft Academic Search

The production of small amounts of well-stabilized biological sludge is one of the main advantages of upflow anaerobic sludge bed (UASB) reactors over aerobic wastewater treatment systems. In this work, sludge produced in three pilot-scale UASB reactors used to treat sewage under subtropical conditions was assessed for both stability and specific methanogenic activity. Stability of primary sludge from settling tanks

L. Seghezzo; C. M. Cuevas; A. P. Trupiano; R. G. Guerra; S. M. Gonzalez; G. Zeeman; G. Lettinga

2006-01-01

94

Alterations in the fat body cells of Rhinocricus padbergi (Diplopoda) resulting from exposure to substrate containing sewage sludge.  

PubMed

The final disposal of residues generated at sewage treatment plants (STPs) has become a major problem for cities, due to the increase in the amount of treated sewage. One of the alternatives for the residue, labeled "sewage sludge," is its reuse in agriculture and in degraded soil. However, not all pathogens and metals present in it are eliminated during treatment. Diplopods have been used as bioindicators in ecotoxicological tests as they are constantly in close contact with the soil. Owing to this fact, the purpose of this study was to expose specimens of the diplopod Rhinocricus padbergi to substrate containing sewage sludge collected at STPs to analyze morphological alterations in their parietal and perivisceral fat body, where substances are stored. The exposures were held for 7, 15, or 90 days at different concentrations of sewage sludge (control, 1%, 10%, and 50%). The parietal fat body showed no alterations in any of the three exposure periods or concentrations. Alterations in the perivisceral fat body were observed for all exposure periods. According to the results, we suggest that the sludge used has toxic agents responsible for changing the animal's perivisceral fat body. PMID:22313521

de Souza, Raphael Basto; Fontanetti, Carmem Silvia

2012-04-01

95

Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States.  

PubMed

Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (?=0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2'-hydroxy-TCC (r=0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r=0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (?=0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37-74%), whereas its contribution to partial TCC dechlorination was limited (0.4-2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge. PMID:24932693

Pycke, Benny F G; Roll, Isaac B; Brownawell, Bruce J; Kinney, Chad A; Furlong, Edward T; Kolpin, Dana W; Halden, Rolf U

2014-07-15

96

40 CFR Table 3 to Subpart Llll of... - Operating Parameters for New Sewage Sludge Incineration Units a  

...2014-07-01 false Operating Parameters for New Sewage Sludge Incineration Units a 3 Table...CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Sewage Sludge Incineration Units Pt....

2014-07-01

97

40 CFR Table 1 to Subpart Llll of... - Emission Limits and Standards for New Fluidized Bed Sewage Sludge Incineration Units  

... false Emission Limits and Standards for New Fluidized Bed Sewage Sludge Incineration Units...CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Sewage Sludge Incineration Units Pt....

2014-07-01

98

40 CFR Table 5 to Subpart Llll of... - Summary of Reporting Requirements for New Sewage Sludge Incineration Units a  

...false Summary of Reporting Requirements for New Sewage Sludge Incineration Units a 5 Table...CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Sewage Sludge Incineration Units Pt....

2014-07-01

99

40 CFR Table 2 to Subpart Llll of... - Emission Limits and Standards for New Multiple Hearth Sewage Sludge Incineration Units  

... false Emission Limits and Standards for New Multiple Hearth Sewage Sludge Incineration Units...CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for New Sewage Sludge Incineration Units Pt....

2014-07-01

100

Bioproduction of ferric sulfate used during heavy metals removal from sewage sludge.  

PubMed

Toxic metals removal from wastewater sewage sludge can be achieved through microbial processes involving Acidithiobacillus ferrooxidans. The oxidation of ferrous ions by A. ferrooxidans, cultured in sewage sludge filtrate, was studied in both batch and continuous flow stirred tank reactors. Sewage sludge filtrate containing natural nutrients (phosphorus and nitrogen) was recovered as effluent following the dehydration of a primary and secondary sludge mixture. Batch and continuous flow stirred tank reactor tests demonstrated that A. ferrooxidans were able to grow and completely oxidize ferrous iron in a culture medium containing more than 80% (v v(-1)) sewage sludge filtrate with 10 g Fe(II) L(-1) added. Toxic levels were reached when total organic carbon in the sewage sludge filtrate exceeded 250 mg L(-1). The ferric iron solution produced in the sludge filtrate by A. ferrooxidans was used to solubilize heavy metals in primary and secondary sludge. The solubilization of Cu, Cr, and Zn yielded 71, 49, and 80%, respectively. This is comparable with the yield percentages obtained using a FeCl(3) solution. The cost of treating wastewater sewage sludge by bioproducing a ferric ion solution from sewage sludge is three times less expensive than the conventional method requiring a commercial ferric chloride solution. PMID:15843644

Drogui, Patrick; Mercier, Guy; Blais, Jean-Franois

2005-01-01

101

Gasification of sewage sludge and other biomass for hydrogen production in supercritical water  

Microsoft Academic Search

Digested sewage sludge and other biomass such as wood sawdust can be mixed with a corn starch gel to form a viscous paste. The paste can be delivered to a supercritical flow reactor by means of a cement pump. Different types of feedstocks are used in this work sewage sludge (up to 7.69 wt%) mixed in the corn starch paste.

Xiadong Xu; Michael Jerry Antal

1998-01-01

102

NEAR-BOTTOM PELAGIC BACTERIA AT A DEEP-WATER SEWAGE SLUDGE DISPOSAL SITE  

EPA Science Inventory

The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. ixed cultures and bacterial...

103

WET SEWAGE SLUDGE APPLICATION EFFECT ON SOIL PROPERTIES AND ELEMENT CONTENT OF LEAF AND ROOT VEGETABLES  

Microsoft Academic Search

Pot experiments were conducted in a heated greenhouse to study the effects of increasing doses of sewage sludge application on vegetables grown for leaves (lettuce, endive, spinach) and roots (radish, carrots, beets), and on some soil properties. Results showed that sewage sludge application increased or decreased soil pH in cases of lower or higher values respectively, increased soil organic matter,

Efstathios Tamoutsidis; Ioannis Papadopoulos; Ioannis Tokatlidis; Stilianos Zotis; Theophilactos Mavropoulos

2002-01-01

104

LONG-TERM USE OF SEWAGE SLUDGE ON AGRICULTURAL AND DISTURBED LANDS  

EPA Science Inventory

This report presents results from the last 2 years of a 15-year study of the long term use of sewage sludge on agricultural and disturbed lands. The three field studies discussed here include (1) the response of corn to repeated annual applications of sewage sludge, (2) the diffe...

105

Influence of different bulking agents on the disappearance of polycyclic aromatic hydrocarbons (PAHs) during sewage sludge composting  

Microsoft Academic Search

In order to improve properties of compost produced from sewage sludge, a wide range of additives is used. The aim of the present study has been to determine the influence of fly ash and sawdust on the range of losses of 16 PAHs (US EPA). Composting was carried out in containers in which there was sewage sludge (100%), sewage sludge

Patryk Oleszczuk

2006-01-01

106

Pathway of radioisotopes from land surface to sewage sludge  

NASA Astrophysics Data System (ADS)

Radioactive surface contaminations will only partially remain at the original location - a fraction of the inventory will take part in (mainly terrestrial and aquatic) environmental transport processes. The probably best known and most important process comprises the food chain. Besides, the translocation of dissolved and particle-bound radioisotopes with surface waters plays an important role. These processes can have the effect of displacing large radioisotope amounts over considerable distances and of creating new sinks and hot spots, as it is already known for sewage sludge. We are reporting on a combined modeling and experimental project concerning the transport of I-131 and Cs-134/Cs-137 FDNPP 2011 depositions in the Fukushima Prefecture. Well-documented experimental data sets are available for surface deposition and sewage sludge concentrations. The goal is to model the pathway in between, involving surface runoff, transport in the sewer system and processes in the sewage treatment plant. Watershed runoff and sewer transport will be treated with models developed recently by us in other projects. For sewage treatment processes a new model is currently being constructed. For comparison and further validation, historical data from Chernobyl depositions and tracer data from natural and artificial, e.g. medical, isotopes will be used. First results for 2011 data from Fukushima Prefecture will be presented. The benefits of the study are expected to be two-fold: on one hand, the abundant recent and historical data will help to develop and improve environmental transport models; on the other hand, both data and models will help in identifying the most critical points in the envisaged transport pathways in terms of radiation protection and waste management.

Fischer, Helmut W.; Yokoo, Yoshiyuki

2014-05-01

107

Sewage sludge effects on soil: heavy metal accumulation and movement  

SciTech Connect

Treated municipal sewage sludge at 0, 11.2, 33.6, and 67.2 metric tons/ha was applied each year for two consecutive years and incorporated into a Byler loam soil (Typic Fragiudalf) having an initial pH of 5.6. Sorghum (Sorghum vulgare L.) was grown in replicated plots (6.1m x 4.6m). Soil samples were taken at 0 to 20 cm and 20 to 40 cm depth at the end of each year and analyzed for DTPA-extractable Cu, Zn, Cd, and Ni. Surface soil exhibited significant increases in heavy metal concentrations in the first year at the 67.2 metric tons/ha rates. Heavy metal concentrations increased with continued sludge application. However, this increase was not in proportion to the amount of sludge applied, suggesting some immobilization of metals with time. After two years, downward movement and significiant increases in Cu, Zn, and Ni levels were noted at the 20 to 40 cm depth at the higher rates. Heavy metal levels in the surface soil did not appear to be phytotoxic as judged from sorghum grain and dry matter yields and comparisons with other similar studies. Sludge applications had little effect on soil pH.

Taylor, R.W.; Duseja, D.R.; Thangudu, P.R.

1982-01-01

108

Experimental Study on Thermal Hydrolysis and Dewatering Characteristics of Mechanically Dewatered Sewage Sludge  

Microsoft Academic Search

After mechanical dewatering, sewage sludge has a moisture content of around 80wt% and further disposal is required. A new sewage sludge semi-drying (dewatering) process is proposed and verified. It combines thermal hydrolysis and subsequent mechanical dewatering, with less energy consumption than traditional thermal drying. Sludge treated using this new process satisfies further disposal requirements (e.g., landfill or autothermal incineration). In

Honglei Ma; Yong Chi; Jianhua Yan; Mingjiang Ni

2011-01-01

109

Conditioning of sewage sludge by Fenton's reagent combined with skeleton builders.  

PubMed

Physical conditioners, often known as skeleton builders, are commonly used to improve the dewaterability of sewage sludge. This study evaluated a novel joint usage of Fenton's reagent and skeleton builders, referred to as the F-S inorganic composite conditioner, focusing on their efficacies and the optimization of the major operational parameters. The results demonstrate that the F-S composite conditioner for conditioning sewage sludge is a viable alternative to conventional organic polymers, especially when ordinary Portland cement (OPC) and lime are used as the skeleton builders. Experimental investigations confirmed that Fenton reaction required sufficient time (80 min in this study) to degrade organics in the sludge. The optimal condition of this process was at pH=5, Fe(2+)=40 mg g(-1) (dry solids), H(2)O(2)=32 mg g(-1), OPC=300 mg g(-1) and lime=400 mg g(-1), in which the specific resistance to filtration reduction efficiency of 95% was achieved. PMID:22459420

Liu, Huan; Yang, Jiakuan; Shi, Yafei; Li, Ye; He, Shu; Yang, Changzhu; Yao, Hong

2012-06-01

110

Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece.  

PubMed

For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a 'zero waste' solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated. PMID:24290971

Samolada, M C; Zabaniotou, A A

2014-02-01

111

Enhancement in characteristics of sewage sludge and anaerobic treatability by electron beam pre-treatment  

NASA Astrophysics Data System (ADS)

Electron beam was studied to enhance the biodegradability of sewage sludge. Changes in physicochemical characteristics of the sludge were examined with various irradiation doses, sludge thicknesses and exposure times. Irradiation thickness was suggested as the key factor affecting the efficiency of solublization of solid organic matter, whereas exposure time would be the most critical parameter in inducing cell lysis in sewage sludge. In addition, biogas production was improved as much as 22% when the sludge thickness was 0.5 cm with a dose of 7 kGy.

Park, Wooshin; Hwang, Moon-Hyun; Kim, Tak-Hyun; Lee, Myun-Joo; Kim, In S.

2009-02-01

112

Methods for the treatment of organic material and particularly sewage sludge  

Microsoft Academic Search

Anaerobic digestion of organic material, particularly biological sludge, such as sewage sludge, is carried out in a closed system having a first digestion tank and a second concentration and partial digestion tank. The concentrated and partially digested sludge is fed to the first tank where it is maintained under vacuum such that an active zone of organic material undergoing digestion

Schimel

1983-01-01

113

Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost  

Microsoft Academic Search

A major limitation of land application of sewage sludge compost is the potential high heavy metal content due to the metal content of the original sludge. Zeolites may be useful as metal scavengers in metal-rich sludges. The natural zeolite, clinoptilolite has the ability to take up heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn). The aim of the

A. A Zorpas; T Constantinides; A. G Vlyssides; I Haralambous; M Loizidou

2000-01-01

114

The Growth of Corn Seedlings in Alkaline Coal Fly Ash Stabilized Sewage Sludge  

Microsoft Academic Search

The aim of the present study was to determine the amount ofcoal fly ash required to stabilize sewage sludge, without causing an adverse effect on the growth of Zea mays L. seedlings (corn) in a loamy soil receiving the ash-sludge mixtures amendment. Sludge was stabilized by mixing with fly ash at an amendment rate of 0, 5, 10, 35 and

D. C. Su; J. W. C. Wong

2002-01-01

115

Plants grown on sewage sludge in South China and its relevance to sludge stabilization and metal removal.  

PubMed

The production of sewage sludge in China has been increasing sharply in order to treat 40% of the municipal sewage in 2005 as planned by central government. The main sludge disposal method is landfill owing to heavy metal contamination, but it presents an attractive potential for agricultural land application. Experiments were carried out to study the simultaneous metal removal and sludge stabilization by plants. The sludge samples were collected from Datansha Wastewater Treatment Plant of Guangzhou, it contained excessive Cu and Zn compared with the Chinese National Standard for Agricultural Use of Sewage Sludge. Plants growing on sludge beds were investigated to follow their growth and metal uptake. 30 sludge plants were identified during 1 year's observation. A Zn high-accumulating and high growth rate plant(Alocasia macrorrhiza) was selected and grown on sludge beds in plots. The water, organic matter, heavy metals and nutrients contents, the E. coli number and the cress seed germination index were monitored for the sludge samples collected monthly. The plant growth parameters and its heavy metals contents were also determined. The sewage sludge treated by plants could be stabilized at about 5 months, the E. coli number was significantly decreased and the cress seed germination index attained 100%. Crop on sludge could ameliorate the sludge drying. The experiments are continuing to find out the appropriate plant combination for simultaneous sludge stabilization and metal removal for an acceptable period. Comparisons between the proposed processes and other methods for treating produced sludge such as composting, chemical andbacterial leaching were discussed. PMID:14562922

Samake, Moussa; Wu, Qi-Tang; Mo, Ce-Hui; Morel, Jean-Louis

2003-09-01

116

Nitrogen transformations and losses during composting of sewage sludge with acidified sawdust in a laboratory reactor.  

PubMed

Composting is one of the cost-saving ways for sewage sludge treatment to produce a ?nal product that is stable, and free of pathogens and plant seeds. However, the loss of nitrogen through ammonia emission not only reduces the agronomic value of the composting product, but also leads to air pollution and is potentially health threatening. Five mixtures of sewage sludge and acidified sawdust were co-composted for 22?days with different initial pH values (3.51, 4.45, 5.51, 6.48 and 7.56). Acidified sawdust was used as a pH regulator and also bulking agent during composting. Changes in physicochemical properties were characterised by the temperature, organic matter degradation, carbon dioxide emission and pH value. The results showed that regulating the initial pH of composting materials to 5.51~6.48 was the most effective way in reducing ammonia emissions. Compared with the control group, the cumulative ammonia emission was reduced by 52.1% and the nitrogen loss decreased from 44.7% to 24.8% with no adverse effects on organic matter degradation and microbial activity. PMID:25649403

Li, Yunbei; Li, Weiguang

2015-02-01

117

Qualitative and Quantitative Assessment of Sewage Sludge by Gamma Irradiation with Pasteurization as a Tool for Hygienization  

NASA Astrophysics Data System (ADS)

In this research work, management of sewage sludge disposal on agricultural soils is addressed. The increasing amount of sewage sludge and more legislative regulation of its disposal have stimulated the need for developing new technologies to recycle sewage sludge efficiently. The research was structured along two main avenues, namely, the efficacy of the irradiation process for removing enteric pathogenic microorganisms and the potential of irradiated sludge as a soil amendment. This study investigated how application of irradiation with heat treatment reduced pathogens in sewage sludge. Raw and pasteurised Sewage sludge was treated at different dose treatment of 1.5, 3 and 5 kilogray (kGy) gamma irradiation individually and for 3 kGy sufficiency was achieved. Decrease in irradiation dose from 5 to 3 kGy was observed for pasteurised sludge resulting in saving of radiation energy. The presence of heavy metals in untreated sewage sludge has raised concerns, which decreases after irradiation.

Priyadarshini, J.; Roy, P. K.; Mazumdar, A.

2014-01-01

118

Laboratory measurements of radiance and reflectance spectra of dilute secondary-treated sewage sludge  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA), in cooperation with the Environmental Protection Agency (EPA) and the National Oceanic and Atmospheric Administration (NOAA), conducted a research program to evaluate the feasibility of remotely monitoring ocean dumping of waste products such as acid and sewage sludge. One aspect of the research program involved the measurements of upwelled spectral signatures for sewage-sludge mixtures of different concentrations in an 11600-liter tank. This paper describes the laboratory arrangement and presents radiance and reflectance spectra in the visible and near-infrared ranges for concentrations ranging from 9.7 to 180 ppm of secondary-treated sewage sludge mixed with two types of base water. Results indicate that upwelled radiance varies in a near-linear manner with concentration and that the sludge has a practically flat signal response between 420 and 970 nm. Reflectance spectra were obtained for the sewage-sludge mixtures at all wavelengths and concentrations.

Witte, W. G.; Usry, J. W.; Whitlock, C. H.; Gurganus, E. A.

1977-01-01

119

Modeling the Radiological Impact of Tritium in Sewage Sludge Being Used as Fertilizer  

SciTech Connect

A study was undertaken to assess the radiological impact on humans via the foodchain resulting from the presence of tritium and C-14 in sewage sludge being used as fertilizer on agricultural land. The key endpoint of the assessment was the annual individual dose to an average member of potential critical groups. As part of the assessment, a model was developed to simulate the distribution of tritium between sewage sludge and effluent in the sewage treatment plant, the release of tritium upon sludge decomposition and subsequent uptake by plants and animals. The modeling assumptions, as well as key parameters and parameter values will be discussed in this paper.

Venter, A.; Smith, G

2005-07-15

120

Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant  

Microsoft Academic Search

The feasibility of co-digesting grease trap sludge from a meat-processing plant and sewage sludge was studied in batch and reactor experiments at 35C. Grease trap sludge had high methane production potential (918m3\\/tVSadded), but methane production started slowly. When mixed with sewage sludge, methane production started immediately and the potential increased with increasing grease trap sludge content. Semi-continuous co-digestion of the

S. Luostarinen; S. Luste; M. Sillanp

2009-01-01

121

Interpreting the synergistic effect in combined ultrasonication-ozonation sewage sludge pre-treatment.  

PubMed

The sequential combination of ultrasonication and ozonation as sewage sludge treatment prior to anaerobic digestion was investigated. Synergistic volatile suspended solids (VSS) solubilization was observed when low energy ultrasonication (?12kJg(-1) TS) was followed by ozonation. 0.048gO3g(-1) TS ozonation induced the maximum VSS solubilization of 41.3% when the sludge was pre-ultrasonicated at 9kJg(-1) TS; while, the same ozone dosage applied without prior ultrasonication only induced 21.1% VSS solubilization. High molecular weight (MW) components (MW>500kDa) were found to be the main solubilization products when sludge was only ozonated. However, solubilization products by ozone were mainly in the form of low MW components (MW<27kDa) when sludge was pre-ultrasonicated. The high MW products generated by ultrasound were effectively degraded in the subsequent ozonation. Anaerobic biodegradability increased by 34.7% when ultrasonication (9kJg(-1) TS) and ozonation (0.036gO3g(-1) TS) were combined sequentially. The maximum methane production rate increased from 3.53 to 4.32, 4.21 and 4.54mL CH4d(-1) after ultrasonication, ozonation and ultrasonication-ozonation pre-treatments, respectively. PMID:25282627

Tian, Xinbo; Wang, Chong; Trzcinski, Antoine Prandota; Lin, Leonard; Ng, Wun Jern

2014-10-01

122

Survivorship of meadow voles, Microtus pennsylvanicus, from sewage sludge-treated fields  

SciTech Connect

A long-term field study was begun in 1977 at Miami University to evaluate the effects of land application of sewage sludge on experimental old-field communities. The effects of sludge application on toxic metal concentrations in meadow vole (Microtus pennsylvanicus) organs during the first two years of the study have been reported. During the first two years of sludge application, no detrimental effects were observed in vole survivorship as a result of sludge treatment.

Maly, M.S.

1984-06-01

123

Agronomic value of sewage sludge and corn cob biochar in an infertile Oxisol  

NASA Astrophysics Data System (ADS)

Disposal of sewage sludge and other agricultural waste materials has become increasingly difficult in urban environments with limited land space. Carbonization of the hazardous waste produces biochar as a soil amendment with potential to improve soil quality and productivity. A series of greenhouse pot experiments were conducted to assess the agrnomic value of two biochars made from domestic wastewater sludge and corn cob waste. The ash component of the sewage sludge biochar was very high (65.5%) and high for the corn cob (11.4%) biochars. Both biochars contained low concentrations of heavy metals and met EPA land application criteria. The sewage sludge biochar was a better liming material and source of mineral nutrients than the corn cob biochar, but the corn cob biochar showed the greatest increase in soil carbon and total nitrogen. Both biochar materials increased soil pH compared with soils not receiving biochar, but the sewage sludge biochar was a more effective liming material maintaining elevated soil pH throughout the 3 planting cycles. The sewage sludge biochar also showed the greatest increase in extractable soil P and base cations. In the first planting cycle, both biochars in combination with conventional fertilizers produced significantly higher corn seedling growth than the fertilized control. However, the sewage sludge biochar maintained beneficial effects corn seedling growth through the third planting cycle showing 3-fold increases in biomass production compared with the control in the third planting. The high ash content and associated liming properties and mineral nutrient contributions in the sewage sludge biochar explain benefits to plant growth. Conversion of sewage sludge waste into biochar has the potential to effectively address several environmental issues: 1) convert a hazardous waste into a valuable soil amendment, 2) reduce land and water contamination, and 3) improve soil quality and productivity.

Deenik, J. L.; Cooney, M. J.; Antal, M. J., Jr.

2013-12-01

124

Mechanism of red mud combined with Fenton's reagent in sewage sludge conditioning.  

PubMed

Red mud was evaluated as an alternative skeleton builder combined with Fenton's reagent in sewage sludge conditioning. The results show that red mud combined with Fenton's reagent showed good conditioning capability with the pH of the filtrate close to neutrality, indicating that red mud acted as a neutralizer as well as a skeleton builder when jointly used with Fenton's reagent. Through response surface methodology (RSM), the optimal dosages of Fe(2+), H2O2 and red mud were proposed as 31.9, 33.7 and 275.1mg/g DS (dry solids), respectively. The mechanism of the composite conditioner could be illuminated as follows: (1) extracellular polymeric substances (EPS), including loosely bound EPS and tightly bound EPS, were degraded into dissolved organics, e.g., proteins and polysaccharides; (2) bound water was released and converted into free water due to the degradation of EPS; and (3) morphology of the conditioned sludge exhibited a porous structure in contrast with the compact structure of raw sludge, and the addition of red mud formed new mineral phases and a rigid lattice structure in sludge, allowing the outflow of free water. Thus, sludge dewatering performance was effectively improved. The economic assessment for a wastewater treatment plant of 370,000 equivalent inhabitants confirms that using red mud conditioning, combined with Fenton's reagent, leads to a saving of approximately 411,000 USD/y or 50.8 USD/t DS comparing with using lime and ordinary Portland cement combined with Fenton's reagent, and approximately 612,000 USD/y or 75.5 USD/t DS comparing with the traditional treatment. PMID:24810740

Zhang, Hao; Yang, Jiakuan; Yu, Wenbo; Luo, Sen; Peng, Li; Shen, Xingxing; Shi, Yafei; Zhang, Shinan; Song, Jian; Ye, Nan; Li, Ye; Yang, Changzhu; Liang, Sha

2014-08-01

125

Phosphorus recovery from sewage sludge ash through an electrodialytic process.  

PubMed

The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB). Both samples were ED treated as stirred suspensions in sulphuric acid for 3, 7 and 14 days. After 14 days, phosphorus was mainly mobilized towards the anode end (approx. 60% in the SA and 70% in the SB), whereas heavy metals mainly electromigrated towards the cathode end. The anolyte presented a composition of 98% of P, mainly as orthophosphate, and 2% of heavy metals. The highest heavy metal removal was achieved for Cu (ca. 80%) and the lowest for Pb and Fe (between 4% and 6%). The ED showed to be a viable method for phosphorus recovery from SSA, as it promotes the separation of P from the heavy metals. PMID:24656469

Guedes, Paula; Couto, Nazar; Ottosen, Lisbeth M; Ribeiro, Alexandra B

2014-05-01

126

Proper Sanitization of Sewage Sludge: a Critical Issue for a Sustainable Society  

Microsoft Academic Search

To attain the global goal of an environmentally sustainable society in which organic material is successfully recycled back to arable land, it is crucial to develop effective procedures for the treatment of sewage sludge. The term \\

Veronica Arthurson

2008-01-01

127

EVALUATION OF METHODS TO MEASURE THE ACUTE TOXICITY OF SEWAGE SLUDGE  

EPA Science Inventory

Research was undertaken to determine whether improvements were needed to increase the reliability of acute toxicity methodologies for mysid and juvenile Atlantic silverside waste characterization tests for municipal sewage sludge. Three new acute bioassays using mysids, larval fi...

128

Improved volatile fatty acids production from proteins of sewage sludge with anthraquinone-2,6-disulfonate (AQDS) under anaerobic condition.  

PubMed

Organic matters in sewage sludge can be converted into volatile fatty acids (VFAs) as renewable carbon sources. This work for the first time applied anthraquinone-2,6-disulfonate (AQDS) for enhancing VFA production from sewage sludge. With 0.066 or 0.33 g AQDS g(-1) dried solids (DS), the yields for VFAs peak at 403 or 563 mg l(-1), 1.9- or 2.7-fold to the control. The accumulated VFAs were principally composed of acetate and propionate. The AQDS enhances degradation rates of model proteins (bovine serum albumin), but had little enhancement on that of model polysaccharides (dextrans). The acidification step is proposed the rate-limiting step for VFA production from sewage sludge, in which the AQDS molecules shuttle electrons to accelerate the redox reactions associated with amino acid degradation. Methanogenic activities are inhibited in the presence of AQDS. The AQDS-assisted VFAs are renewable organic carbon sources, although their direct use for anaerobic digestion is not advised. PMID:22047658

Yang, Xue; Du, Maoan; Lee, Duu-Jong; Wan, Chunli; Zheng, Lina; Wan, Fang

2012-01-01

129

Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production  

Microsoft Academic Search

Environmental problems associated with sewage sludge disposal have prompted strict legislative actions over the past few years. At the same time, the upgrading and expansion of wastewater treatment plants have greatly increased the volume of sludge generated. The major limitation of land application of sewage sludge compost is the potential for high heavy metal content in relation to the metal

Antonis A Zorpas; Dimitris Arapoglou; Karlis Panagiotis

2003-01-01

130

Bioavailability and crop uptake of trace elements in soil columns amended with sewage sludge products  

Microsoft Academic Search

In order to assess the potential impact of long-term sewage sludge application on soil health, the equivalent of about 25years of agronomic applications of low-metal (`EQ') sewage sludge products were made to greenhouse soil columns. After a 6-year period of `equilibration', during which time successive crops were grown with irrigation by simulated acid rain, the plant-available quantities of trace elements

M. B. McBride; B. K. Richards; T. Steenhuis

2004-01-01

131

K-Area and Par Pond Sewage Sludge Application Sites groundwater monitoring report, Third quarter 1992  

SciTech Connect

During third quarter 1992, the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) were sampled for analyses required each quarter or annually by South Carolina Department of Health and Environmental Control Construction Permit 13,173 and for base-neutral/acid semivolatile constituents. None of the analytical results exceeded standards.

Thompson, C.Y.

1993-01-01

132

Concentrations and specific loads of brominated flame retardants in sewage sludge  

Microsoft Academic Search

Many substances related to human activities end up in wastewater and accumulate in sewage sludge. The present study focuses on two classes of brominated flame retardants: polybrominated diphenyl ethers (BDE28, BDE47, BDE49, BDE66, BDE85, BDE99, BDE100, BDE119, BDE138, BDE153, BDE154, BDE183, BDE209) and hexabromocyclododecane (HBCD) detected in sewage sludge collected from a monitoring network in Switzerland. Mean concentrations (n=16 wastewater

Thomas Kupper; Luiz Felippe de Alencastro; Revocat Gatsigazi; Reinhard Furrer; Dominique Grandjean; Joseph Tarradellas

2008-01-01

133

Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis  

Microsoft Academic Search

The most important objectives to gasify sewage sludge are to produce a clean gas of acceptable composition for synthesis or combustion, and to convert this solid resource into combustible-clean gas at high efficiency. The experiments of the gasification were conducted using a 5 kWe-throated downdraft gasifier. It was concluded that sewage sludge can be gasified to produce low-quality combustible gas,

Murat Dogru; Adnan Midilli; Colin R Howarth

2002-01-01

134

Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge  

Microsoft Academic Search

Anaerobic co-digestion of food waste and sewage sludge for hydrogen production was performed in serum bottles under various volatile solids (VS) concentrations (0.55.0%) and mixing ratios of two substrates (0:100100:0, VS basis). Through response surface methodology, empirical equations for hydrogen evolution were obtained. The specific hydrogen production potential of food waste was higher than that of sewage sludge. However, hydrogen

Sang-Hyoun Kim; Sun-Kee Han; Hang-Sik Shin

2004-01-01

135

Investigation into emissions of gaseous pollutants during sewage sludge composting with wood waste  

Microsoft Academic Search

The main environmental problem of sewage sludge treatment and storing processes is unpleasant smell caused by emitted gases, such as NH3, H2S etc.; which are released during organic matter decomposition process. The second environmental problem is that during sewage sludge composting process global warming gases, such as CO2, CH4, and N2O are emitted, the emissions of these gases can be

Aura Zigmontiene; Egle Zuokaite

2010-01-01

136

The fate of radionuclides in sewage sludge applied to land  

SciTech Connect

Municipal sewage sludge containing up to 12 pCi/g {sup 137}Cs, 20 pCi/g {sup 60}Co, and 300 ppm U was injected in a pasture (43 Mg/ha) and sprayed over a young pine plantation (34 Mg/ha). In the pasture, radionuclides were largely retained in the upper 15 cm of the soil, and only about 15% moved below 15 cm. Sludge rapidly infiltrated the soil on the pine plantation. One year after application, at least 85% of the {sup 137}Cs, {sup 60}Co, and U were found in the upper 7 cm of the pine plantation, with only about 15% moving into the 7- to 15-cm strata. On-site total added radiation dose was 2 to 6 mrem/year. Radionuclides were not detected above background in soil solutions at {approximately}50 cm depth or in shallow down-gradient groundwater wells. Surface runoff from application areas did not have elevated radionuclide concentrations. Concentrations of these radionuclides increased slightly in vegetation on treated sites, and uranium was notably higher in earthworms. 9 refs., 2 tabs.

Boston, H.L.; Van Miegroet, H.; Larsen, I.L.; Walzer, A.E. (Oak Ridge National Lab., TN (USA)); Carlton, J.E. (Oak Ridge Associated Universities, Inc., TN (USA))

1990-01-01

137

Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation  

PubMed Central

Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H) were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications. PMID:25170681

Fr?c, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

2014-01-01

138

Soil microbial functional and fungal diversity as influenced by municipal sewage sludge accumulation.  

PubMed

Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H) were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications. PMID:25170681

Fr?c, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

2014-09-01

139

ISCORS ASSESSMENT OF RADIOACTIVITY IN SEWAGE SLUDGE: MODELING TO ASSESS RADIATION DOSES  

EPA Science Inventory

The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible tran...

140

Sludge dewatering: Sewage treatment. (Latest citations from the EI Compendex*plus database). Published Search  

SciTech Connect

The bibliography contains citations concerning dewatering techniques and equipment for sewage treatment. Sewage sludge dewatering design, development, and evaluation are discussed. Essential types of dewatering equipment such as centrifuges, filters, presses, and drums are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-01-01

141

Sludge dewatering: Sewage treatment. (Latest citations from the COMPENDEX database). Published Search  

SciTech Connect

The bibliography contains citations concerning dewatering techniques and equipment for sewage treatment. Sewage sludge dewatering design, development, and evaluation are discussed. Essential types of dewatering equipment such as centrifuges, filters, presses, and drums are considered. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-05-01

142

KINETIC AND BIODEGRADABILITY ASSAY OF ACCLIMATED ANAEROBIC MICROBES DIGESTING PRIMARY SLUDGE IN SEWAGE TREATMENT PLANTS  

Microsoft Academic Search

Sanitary sewer systems and sewage treatment plants have been under construction aggressively in Taiwan. Interceptive sewer systems are popular in municipal areas to collect the wastewater from the existing sewage channels. The collected primary sludge (PS) attains special characteristics in the sewage treatment plant. The low volatile suspended solids\\/suspended solids ratio of only 0.4 to 0.5 is attributed to the

Sheng-Shung Cheng; Akiyoshi Ohashi; Horisawa Kotaro; Yu-Min Tien; Keng-Hao Yang

143

Influence of earthworms and leaf litter on edaphic variables in sewage-sludge-treated soil microcosms  

Microsoft Academic Search

A series of 48 greenhouse soil microcosms were established and treated with combinations of sewage sludge, Acer saccharum leaves, and the earthworms Eisenia fetida and Lumbricus terrestris. The microcosms were incubated at constant moisture for 110 days. Samples were then taken and analysed for sludge depth, organic-matter content, and waterstable soil aggregates. Weights of surface leaves and weights and numbers

W. E. Hamilton; D. L. Dindal

1989-01-01

144

Sludge dewatering: Sewage and industrial wastes. (Latest citations from pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning sewage sludge dewatering techniques and equipment in industrial and municipal waste treatment systems. Topics include dewatering processes and control, activated sludge systems, fluidized bed systems, biological treatment, heavy metal recovery, and economic aspects. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-11-01

145

Sewage sludge pretreatment and disposal. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning techniques and equipment used in the pretreatment and disposal of sewage sludges. Citations discuss sludge digestion, dewatering, disinfection, stabilization, chlorination, and desulfurization. Topics include pretreatment programs, land disposal, incineration, and waste utilization. Environmental monitoring and protection, federal regulations, and legal aspects are examined. (Contains 50-250 citations and includes a subject term index and title list.)

NONE

1995-06-01

146

Inactivation by Ionizing Radiation of Salmonella enteritidis Serotype montevideo Grown in Composed Sewage Sludge  

PubMed Central

S. enteritidis ser. montevideo were grown in composted sewage sludge to levels of approximately 109/g. These bacteria were found to be inactivated by ionizing radiation at approximately the same rate (30 krads/log) as Salmonella species in liquid digested sludge. PMID:326182

Brandon, J. R.; Burge, W. D.; Enkiri, N. K.

1977-01-01

147

IMPACT OF HEAVY METALS IN SEWAGE SLUDGE ON SOIL AND PLANTS (COLZA and WHEAT)  

E-print Network

IMPACT OF HEAVY METALS IN SEWAGE SLUDGE ON SOIL AND PLANTS (COLZA and WHEAT) Najla LASSOUED1@emse.fr Abstract We are testing the impact of heavy metals in sludge from urban and industrial wastewater treatment of heavy metals, however rape (colza) is a plant of the family Brassica napus, is an excellent bio

Paris-Sud XI, Université de

148

Organic matter transformations and kinetics during sewage sludge composting in a two-stage system.  

PubMed

The use of different proportions of rape straw and grass as amendments in the composting of dewatered sewage sludge from a municipal wastewater treatment plant was tested in a two-stage system (first stage, an aerated bioreactor and second stage, a periodically turned windrow). The composition of feedstock affected the temperature and organic matter degradation in the bioreactor and the formation of humic substances, especially humic acids (HA), during compost maturation in the windrow. The total HA content (the sum of labile and stable HA) increased according to first-order kinetics, whereas labile HA content was constant and did not exceed 12% of total HA. ?logK of 1.0-1.1 indicated that HA was of R-type, indicating a low degree of humification. Temperature during composting was the main factor affecting polymerization of fulvic acids to HA and confirmed the value of the degree of polymerization, which increased only when thermophilic conditions were obtained. PMID:21978622

Kulikowska, Dorota; Klimiuk, Ewa

2011-12-01

149

Stabilization of Mine Tailings Using Fly Ash and Sewage Sludge Planted with Phalaris arundinacea L  

Microsoft Academic Search

The impact of plants (Phalaris arundinacea L.) on the leakage of ammonium, cadmium, copper, nitrate, phosphate, and zinc from sulfidic mine tailings covered with wood\\u000a fly ash and sewage sludge was investigated. Either ash or sludge was placed in contact with the tailings, and ash layers of\\u000a either low or high compactness were used. It was revealed that an ash\\/sludge

Clara Neuschtz; Maria Greger

2010-01-01

150

Ecotoxicological evaluation of sewage sludge using bioluminescent marine bacteria and rotifer  

Microsoft Academic Search

Bioassay using the marine bacteria,Vibrio fischeri and rotifer,Brachionus plicatilis, and chemical analyses were conducted to assess the toxicity of the various sewage sludges, one of the major ocean dumped\\u000a materials in the Yellow Sea of Korea. Sludge elutriates extracted by filtered seawater were used to estimate the ecotoxicity\\u000a of the sludge. Chemical characterization included the analyses of organic contents, heavy

Gyung Soo Park; Sang Hee Lee; Soung Yun Park; Seong Jin Yoon; Seung Min Lee; Chang Soo Chung; Gi-Hoon Hong; Suk Hyun Kim

2005-01-01

151

Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation  

Microsoft Academic Search

Due to richness in proteins and carbohydrates, the sewage sludge produced from the wastewater treatment processes is becoming a potential substrate for biological hydrogen production. In this study, sterilized sludge was employed to produce hydrogen by batch anaerobic self-fermentation without any extra-feeds and extra-seeds. Sterilization can screen hydrogen-producing microorganisms from sludge microflora and release organic materials from microbial cells of

Benyi Xiao; Junxin Liu

2009-01-01

152

Investigating the levels and trends of organochlorine pesticides and polychlorinated biphenyl in sewage sludge.  

PubMed

A study was completed to investigate temporal trends of organochlorine pesticides (OCPs; aldrin, chlordane, dieldrin, heptachlor, hexachlorbenzene, and DDT) and polychlorinated biphenyls (PCBs) in sewage sludge. Between 2004 and 2006 the concentration of OCPs and PCBs in Australian sewage sludge (n=829) was consistently <1000mugkg(-1) dry solids DS. Dieldrin, chlordane and DDE were detected in 68%, 27% and 13% at maximum concentrations of 770, 290 and 270 microgkg(-1) DS, respectively. Time series analysis (1995-2006) of OCPs and PCBs sewage sludge concentrations (n=2266) taken from six wastewater treatment plants (WWTPs) of the same geographic region found that lindane, aldrin HCB, heptachlor, DDT, DDD and PCBs were infrequently detected (<8%). A correlation between dieldrin and chlordane levels was found (P<0.05) which provides evidence of similar environmental mechanisms facilitating movement of dieldrin and chlordane through environment compartments. It has taken more than 10years for dieldrin and chlordane to reduce to less than detectable concentrations in freshly generated sewage sludge in Australia following government restrictions. Internationally, reported sewage sludge OCP concentrations were consistently low and often less than detection limits. Therefore, OCPs are not considered to be a contaminant of regulatory concern for countries that phased out OCP use several decades ago. Concentrations of PCBs in sewage sludge were also consistently low and rarely exceeded European contaminant limits and therefore, regulatory limits may warrant review. The authors recommend that Australian authorities revise regulatory requirements for OCP and PCBs contaminant levels in sewage sludge destined for beneficial reuse as biosolids. PMID:20171737

Clarke, Bradley O; Porter, Nichola A; Marriott, Philip J; Blackbeard, Judy R

2010-05-01

153

Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece  

SciTech Connect

Highlights: The high output of MSS highlights the need for alternative routes of valorization. Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. Pyrolysis is an energy and material recovery process resulting to zero waste. Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a zero waste solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.

Samolada, M.C. [Dept. Secretariat of Environmental and Urban Planning Decentralized Area Macedonian Thrace, Taki Oikonomidi 1, 54008 Thessaloniki (Greece); Zabaniotou, A.A., E-mail: azampani@auth.gr [Aristotle University of Thessaloniki, Dept. of Chemical Engineering, University Box 455, University Campus, 541 24 Thessaloniki (Greece)

2014-02-15

154

Improving material and energy recovery from the sewage sludge and biomass residues.  

PubMed

Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10-40mm) of pre-composted materials - sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25MJkg(-1) of the net calorific value, about 23% were composted, the rest - evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning, comparison analysis with widely used bio-fuel-sawdust and conclusions made are presented. PMID:25481696

Kliopova, Irina; Makarskien?, Kristina

2015-02-01

155

Synthetic zeolites as amendments for sewage sludge-based compost.  

PubMed

The effects of incorporating a synthetic zeolite (Zeolite P) in a range of concentrations (0.1-1.0 w:w) into an experimental horticultural compost, derived from sewage sludge, have been investigated. The impact of zeolite treatment on time-related changes of the labile zinc, copper, iron and manganese pools within the compost was compared to lime incorporation (5% w:w) and to a proprietary unamended peat-based compost. Addition of 0.5% and 1.0% zeolite significantly reduced labile zinc over a 90 day period. The highest zeolite treatment was more effective than liming; 0.5% zeolite was as effective as lime. Plant growth trials measuring transfer of metals to ryegrass (Lolium perenne L. cv Elka) in successive harvests demonstrated that both 1.0% zeolite and 5% lime treatment caused significant reduction in total metal transfer from soil-plant over a 116 day growth period. It is concluded that the use of synthetic zeolite as an amendment for compost of this type significantly reduces potential for soil metal mobility and soil-plant transfer. PMID:10819210

Nissen, L R; Lepp, N W; Edwards, R

2000-07-01

156

Anaerobic co-digestion of coffee waste and sewage sludge.  

PubMed

The feasibility of the anaerobic co-digestion of coffee solid waste and sewage sludge was assessed. Five different solid wastes with different chemical properties were studied in mesophilic batch assays, providing basic data on the methane production, reduction of total and volatile solids and hydrolysis rate constant. Most of the wastes had a methane yield of 0.24-0.28 m3 CH4(STP)/kg VS(initial) and 76-89% of the theoretical methane yield was achieved. Reduction of 50-73% in total solids and 75-80% in volatile solids were obtained and the hydrolysis rate constants were in the range of 0.035-0.063 d(-1). One of the solid wastes, composed of 100% barley, achieved a methane yield of 0.02 m3 CH4(STP)/kg VS(initial), reductions of 31% in total solids, 40% in volatile solids and achieved only 11% of the theoretical methane yield. However, this waste presented the highest hydrolysis rate constant. Considering all the wastes, an inverse linear correlation was obtained between methane yield and the hydrolysis rate constant, suggesting that hydrolysis was not the limiting factor in the anaerobic biodegradability of this type of waste. PMID:16310117

Neves, L; Oliveira, R; Alves, M M

2006-01-01

157

Transformation of phosphorus during drying and roasting of sewage sludge.  

PubMed

Sewage sludge (SS), a by-product of wastewater treatment, consists of highly concentrated organic and inorganic pollutants, including phosphorus (P). In this study, P with different chemical fractions in SS under different drying and roasting temperatures was investigated with the use of appropriate standards, measurements, and testing protocol. The drying and roasting treatment of SS was conducted in a laboratory-scale furnace. Two types of SS samples under different treatment temperatures were analyzed by (31)P NMR spectroscopy. These samples were dried by a vacuum freeze dryer at -50C and a thermoelectric thermostat drying box at 105C. Results show that the inorganic P (IP) content increased as the organic P content decreased, and the bio-availability of P increased because IP is a form of phosphorousthat can be directly absorbed by plants. (31)P NMR analysis results indicate the change in P fractions at different temperatures. Non-apatite P was the dominant form of P under low-temperature drying and roasting, whereas apatite P was the major one under high-temperature drying and roasting. Results indicate that temperature affects the transformation of P. PMID:24810201

Li, Rundong; Yin, Jing; Wang, Weiyun; Li, Yanlong; Zhang, Ziheng

2014-07-01

158

Effects on Ni and Cd speciation in sewage sludge during composting and co-composting with steel slag.  

PubMed

Sewage sludge and industrial steel slag (SS) pose threats of serious pollution to the environment. The experiments aimed to improve the stabilizing effects of heavy metal Ni and Cd morphology in composting sludge. The total Ni and Cd species distribution and chemical forms in the compost sewage sludge were investigated with the use of compost and co-compost with SS, including degradation. The carbon/nitrogen ratio of piles was regulated with the use of sawdust prior to batch aerobic composting experiments. Results indicated that the co-composting with SS and organic matter humification can contribute to the formation of Fe and Mn hydroxides and that the humus colloid significantly changed Ni and Cd species distribution. The decreased content of Ni and Cd in an unstable state inhibited their biological activity. Conclusions were drawn that an SS amount equal to 7% of the dry sludge mass was optimal value to guarantee the lowest amount of Cd in an unstable state, whereas the amount was 14% for Ni. PMID:24616342

Zeng, Zheng-Zhong; Wang, Xiao-Li; Gou, Jian-Feng; Zhang, He-Fei; Wang, Hou-Cheng; Nan, Zhong-Ren

2014-03-01

159

Modeling human off-site aerosol exposures to polybrominated flame retardants emitted during the land application of sewage sludge.  

PubMed

Elevated sewage sludge concentrations of polybrominated diphenyl ethers (PBDEs) are due to their broad utilization in textiles and polymers, their resistance to biological degradation, and also their hydrophobic nature-which drives partitioning into wastewater solids. This study estimated the total U.S. emissions of PBDE due to sewage sludge land application and then determined the human inhalation exposure to sludge-associated PBDEs as a function meteorological conditions and downwind distances from an application site. These aerosol exposures have also been incorporated into pharmacokinetic models to predict contributions to steady-state body burden. Our results suggest that while the amount of PBDEs aerosolized during the land application process is small compared to aerosol emissions associated with product use, the application of sludges onto U.S. soils constitutes a major source of PBDEs entering the outdoor environment. Regarding aerosol exposure to nearby residents, the maximum daily inhalation dosages from a common land application scenario occur immediately after sewage sludges are applied and were 137, 27, 1.9, and 81pg/day for significant congeners PBDE-47, -99, -153 and 209 respectively. These doses are 1-2 orders of magnitude less than the standard daily inhalation exposure to the same PBDEs associated with home indoor air and are similar to doses from inhalation of urban and rural outdoor air. Under the worst-case atmospheric transport scenario, the dosages are reduced by approximately 1 order of magnitude when the setback distance between the sludge aerosolization source and human receptor is increased to 200m. Though the health implications of low-level exposures are not well-understood, these sludge-derived PBDE dosages contribute less than a tenth of 1% to the estimated total body burden of PBDE produced from inhalation of indoor and outdoor air, exposure to house dust, and exposure to PBDE from food and water intake. Overall, the inhalation of PBDE aerosols from sludge-applied fields does not represent a significant contribution to human exposure compared to other common indoor exposures. However, land application is a major environmental source of PBDEs and sludge health impact analyses should focus on the practice's impacts on other exposures, such as biomagnification in aquatic and terrestrial food webs. PMID:24157584

Ziemba, Chris; Yang, Wulin; Peccia, Jordan

2013-10-01

160

Toxic effects of sewage sludges on freshwater edible fish Cirrhina mrigala  

SciTech Connect

Municipal sewage sludges have been advocated by several investigators as a suitable dietary supplement in aquaculture because of the protein contained in it. Other researchers discourage their usage for a variety of reasons, the most common being the presence of heavy metals and pesticides that accumulate in various organs, thereby hampering growth in fish. Settled sewage, if palatable however, would prove to be an excellent low-cost nutrient in intensive aquaculture farms. Sludges may be administered in the aqueous or dehydrated condition, and in either case would be suitable for even fry and fingerlings, if consumed soon after application because of the small particle size. The absence of reports on the effect of sewage sludges from the wastewater treatment plant on animals prompted this investigation, though heavy metal analysis revealed the presence of appreciable quantities of Zn, Cu, Pb and moderate amounts of Ni, Cr, Cd in aqueous activate-sludge. In this study the effect of activated sludge (AcS), raw sludge (RS) in acute and chronic bioassays and hydrated digested sludge (DS) and dehydrated (sun-dried) digested sludge (KS) in chronic feeding experiment on survival, behavior and whole body acetylcholinesterase (AchE) activity of Cirrhina mrigala, a freshwater edible fish, were investigated.

Pereira, L.; Coutinho, C.; Rao, C.V. [St. Xavier`s College, Bombay (India)] [St. Xavier`s College, Bombay (India)

1996-03-01

161

Occurrence of hexabromocyclododecane (HBCD) in sewage sludge from Shanghai: implications for source and environmental burden.  

PubMed

Sewage sludge is regarded as one important sink for hydrophobic pollutants, including hexabromocyclododecane (HBCD), but the current pollution situation of HBCD in sludge from China is unknown, despite that many studies have reported its occurrence in other environmental compartments across China. In this study, we collected 27 sludge samples from Shanghai to investigate the occurrence and distribution, to examine the diastereoisomer profile and sources, and to provide advice for future pollution control. HBCD is ubiquitous in sludge with a mean concentration of 4.7ngg(-1) dry weight (dw) (range: 0.10-37.2ngg(-1) dw), lower than data from European countries and the United States. Sludge from wastewater treatment plants (WWTPs) treating industrial wastewater contained high levels of HBCD. However, no significant relationships were found between HBCD and four parameters (total organic carbon, the percentage of industrial wastewater, capacity and sludge production of WWTPs). ?- and ?-HBCD were two main components with the corresponding contributions of 47.9% and 48.0%. Comparing with the annual production of HBCD in China, its storage in sewage sludge is extremely low (less than 0.002%), indicating future release of HBCD from waste polystyrene foam will be significant, and careful considerations should be taken during waste disposal. To our knowledge, this is the first report on HBCD in sewage sludge from China. PMID:25240774

Xiang, Nan; Chen, Ling; Meng, Xiang-Zhou; Dai, Xiaohu

2015-01-01

162

Effect of fly ash/sewage sludge mixtures and application rates on biomass production  

SciTech Connect

A greenhouse study was conducted to assess the use of a sewage sludge/fly ash mixture in soils for increased growth and uptake of nutrients by Sorghum vulgaris var. sudanense Hitchc. (`sorgrass`), a sorghum-sundangrass hybrid plant. This experiment was conducted by using four sewage sludge-to-fly ash ratios (4:1, 4:2, 4:3, and 4:4) and six application rates of sewage sludge/fly ash mixtures to soil (0, 50, 100, 150, 200, and 400 tons/acre). The data in this study indicated that the availability of elements to plants varied depending on the mixture ratios and the application rates. All ratios of sewage sludge amended with fly ash generally improved plant growth and enhanced yield at application rates of 50-100 tons/acre but showed reduced growth and yield at higher application rates. The decrease in yield at higher application rates was probably due to the assimilation of high levels of boron which is phytotoxic. These various treatments of sewage sludge/fly ash ratios and rates of application often resulted in elevated concentrations of N, P, K, Ca, Mg, Mn, Fe, B, Cu, and Zn in both soil and plants. 19 refs., 4 tabs.

Sajwan, K.S. [Savannah State College, GA (United States); Ornes, W.H.; Youngblood, T. [Univ. of South Carolina, Aiken, SC (United States)

1995-07-01

163

Modeling of the reburning process using sewage sludge-derived syngas  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Gasification provides an attractive method for sewage sludges treatment. Black-Right-Pointing-Pointer Gasification generates a fuel gas (syngas) which can be used as a reburning fuel. Black-Right-Pointing-Pointer Reburning potential of sewage sludge gasification gases was defined. Black-Right-Pointing-Pointer Numerical simulation of co-combustion of syngases in coal fired boiler has been done. Black-Right-Pointing-Pointer Calculation shows that analysed syngases can provide higher than 80% reduction of NO{sub x}. - Abstract: Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). A numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200 K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process.

Werle, Sebastian, E-mail: sebastian.werle@polsl.pl [Institute of Thermal Technology, Silesian University of Technology at Gliwice, 44-100 Gliwice, Konarskiego 22 (Poland)

2012-04-15

164

Assessment of toxicity reduction after metal removal in bioleached sewage sludge.  

PubMed

Sewage sludge can be applied to land to supply and recycle organic matter and nutrients. Trace elements in sludge, however, may accumulate in the soil with repeated sludge applications. Reducing metal content may therefore reduce the adverse effects of sludge application. The objective of this study was to evaluate the efficiency of bioleaching technology in reducing metal content and toxicity as measured by a battery of terrestrial and liquid-phase bioassays. Sludge-soil mixtures simulating the application of sludge to land were tested by means of terrestrial bioassays, barley (Hordeum vulgare L.) seed germination (5 d) and sprout growth (14 d), lettuce (Lactuca sativa) seed germination (5 d), and worm (Eisenia andrei) mortality (14 d). Liquid-phase bioassays, Microtox (Vibrio fischeri, 15 min), lettuce root elongation (L. sativa, 5 d), cladoceran mortality (Daphnia magna, 48 h), and SOS Chromotest (Escherichia coli) were used after elutriation of the sludge. Comparison of the bioassay results (except for D. magna) before and after treatment demonstrated that this bioleaching process reduced both sludge toxicity and metal content. In addition, lower Cu and Zn concentrations found in barley sprouts following treatment supported the assumption that the bioleaching process, by decreasing metal content and bioavailability, reduced sewage sludge toxicity. This study also emphasized the interest of using ecotoxicological bioassays for testing biosolids. In particular, the terrestrial bioassays after simulation of land application and the Microtox test after sludge elutriation proved to be the most appropriate procedures. PMID:11317888

Renoux, A Y; Tyagi, R D; Samson, R

2001-04-01

165

Ecotoxicological evaluation of the bioleaching treatment of sewage sludges contaminated with heavy metals  

SciTech Connect

A new decontamination technology of sewage sludge, the bioleaching of heavy metals, was assessed using ecotoxicity bioassays. Sewage sludges, treated or non-treated, were mixed with a non-contaminated soil used as a negative control at a rate of 1 to 100 g per liter of soil. Aqueous elutriates (TCLP) of the sludges were used for the aqueous bioassays. The bioleaching of metals reduced the toxic effects associated with sludge for most of the bioassays, although the sludge after treatment exhibited an inherent level of toxicity at high loading rates. With respect to seed germination, bioleached sludge was less toxic (EC50 barley: 53 g/L; lettuce: 13.6) than the non-treated (72; 16.8 g/L). The treated sludge stimulated the barley growth at > 5 6 g/L. The non-treated causes an inhibition at 100 g/L. Earthworms survived in up to 56 g/L of bioleached sludge, compared to 32 g/L of the non-treated. The Microtox{reg_sign} EC50s were 4.0% and 8.4% for nontreated and treated sludges respectively. No genotoxicity (SOS Chromotest) in the sludge elutriates was detected, and no significant treatment effects were noticeable using the lettuce root elongation bioassay. The Daphnia magna mortality of the elutriate was increased with sludge treatment. However, the lettuce root elongation and D. magna mortality bioassay results were difficult to interpret due to variability in standard deviations. This study demonstrated that the ecotoxicological battery of bioassays, and particularly direct contact bioassays, can be used to assess sewage sludge remediation technologies.

Renoux, A.Y. [BRI, Montreal, Quebec (Canada); Tyagi, R.D. [INRS-Eau, Ste-Foy, Quebec (Canada); Paquette, L. [Analex, Laval, Quebec (Canada); Samson, R. [Ecole Polytechnique, Montreal, Quebec (Canada)

1995-12-31

166

Optimization of the hydrolytic-acidogenic anaerobic digestion stage (55 degrees C) of sewage sludge: influence of pH and solid content.  

PubMed

In conventional single-stage anaerobic digestion processes, hydrolysis is regarded as the rate-limiting step in the degradation of complex organic compounds, such as sewage sludge. Two-stage systems have been proposed to enhance this process. However, so far it is not clear which are the best conditions for a two-stage anaerobic digestion process of sewage sludge, in terms of temperature and hydraulic retention time of each stage. The aim of this work was to determine the optimal conditions for the hydrolytic-acidogenic stage treating real sludge with a high concentration of total solids (40-50gL(-1)) and volatile solids (25-30gL(-1)), named high concentration sludge. The variables considered for this first stage were: hydraulic retention time (1-4 days) and temperature (55 and 65 degrees C). Maximum volatile fatty acids generation was obtained at 4 days and 3 days hydraulic retention time for 55 degrees C and 65 degrees C, respectively. Consequently, 4 days hydraulic retention time and temperature of 55 degrees C were set as the working conditions for the hydrolytic-acidogenic stage treating high concentration sludge. The results obtained when operating with high concentration sludge were compared with a low concentration sludge consisting of 17-28gL(-1) total solids and 13-21gL(-1) volatile solids. The effect of decreasing the influent sludge pH, when working at the optimal conditions established, was also evaluated. PMID:18687452

Pons, Sergio; Ferrer, Ivet; Vzquez, Felcitas; Font, Xavier

2008-08-01

167

Influence of sewage sludge application on soil properties and on the distribution and availability of heavy metal fractions  

Microsoft Academic Search

The influence of sewage sludge application on some soil properties and on the growth of wheat and corn plants were studied with pot experiments. The distribution of heavy metals among the various soil fractions and their availability to plants were also investigated in relation to soil pH. The results showed that sewage sludge application significantly ifluenced pH, organic matter content,

C. D. Tsadilas; Theodora Matsi; N. Barbayiannis; D. Dimoyiannis

1995-01-01

168

Long-term study of palladium in road tunnel dust and sewage sludge ash.  

PubMed

The present work summarizes data about palladium contents of road tunnel dust from 1994 to 2007 and sewage sludge ash from 1972 to 2006. Since palladium is emitted from automotive catalytic converters as elemental particles, road dust is quiet useful to study traffic-related Pd emissions. Very high Pd values of up to 516 microg Pd kg(-1) were found in the road dust samples collected in 2007. Heavy metals of all urban emissions, also dental practice effluent, are enriched in sewage sludge ash and thus this matrix is useful for the documentation of palladium emission caused by the use of Pd alloys in dental medicine. In sewage sludge ash highest Pd contents of maximum 460 microg Pd kg(-1) were found in the years 1986-1997. In both matrices correlations of Pd content to Pd demand of industry are discussed. PMID:18355951

Leopold, K; Maier, M; Weber, S; Schuster, M

2008-11-01

169

Modeling of the reburning process using sewage sludge-derived syngas.  

PubMed

Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). A numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process. PMID:22079251

Werle, Sebastian

2012-04-01

170

F- and H-Area Sewage Sludge Application Sites Groundwater Monitoring Report: Third quarter 1993  

SciTech Connect

Samples from the four wells at the F-Area Sewage Sludge Application Site (FSS wells) and the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076 and, as requested, for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. Currently, iron, lead, and manganese are the only permit-required analytes that exceed standards at the F- and H-Area Sewage Sludge Application Sites. Tritium and aluminum are the nonpermit constituents exceeding standards. Other constituents have exceeded standards at this site previously, but only sporadically.

Not Available

1994-01-01

171

Supercritical water gasification of sewage sludge: gas production and phosphorus recovery.  

PubMed

In this study, the feasibility of the gasification of dewatered sewage sludge in supercritical water (SCW) for energy recovery combined with P-recovery from the solid residue generated in this process was investigated. SCWG temperature (400C, 500C, 600C) and residence time (15min, 30min, 60min) were varied to investigate their effects on gas production and the P recovery by acid leaching. The results show that the dry gas composition for this uncatalyzed gasification of sewage sludge in SCW mainly comprised of CO2, CO, CH4, H2, and some C2-C3 compounds. Higher temperatures and longer residence times favored the production of H2 and CH4. After SCWG, more than 95% of the P could be recovered from the solid residue by leaching with acids. SCWG combined with acid leaching seems an effective method for both energy recovery and high P recovery from sewage sludge. PMID:25463796

Acelas, Nancy Y; Lpez, Diana P; Brilman, D W F Wim; Kersten, Sascha R A; Kootstra, A Maarten J

2014-12-01

172

Residual and cumulative effects of soil application of sewage sludge on corn productivity.  

PubMed

The objective of this study was to evaluate the effect of frequent and periodic applications of sewage sludge to the soil, on corn productivity. The experiment was carried out as part of an experiment that has been underway since 1999, using two types of sludge. One came from the Barueri Sewage Treatment Station (BS, which receives both household and industrial sludge) and the other came from the Franca Sewage Treatment Station (FS, which receives only household sludge). The Barueri sludge was applied from 1999 up to the agricultural year of 2003/2004. With the exception of the agricultural years of 2004/2005 and 2005/2006, the Franca sludge was applied up to 2008/2009. All the applications were made in November, with the exception of the first one which was made in April 1999. After harvesting the corn, the soil remained fallow until the next cultivation. The experiment was set up as a completely randomized block design with three replications and the following treatments: control without chemical fertilization or sludge application, mineral fertilization, and dose 1 and dose 2 of sludge (Franca and Barueri). The sludges were applied individually. Dose 1 was calculated by considering the recommended N application for corn. Dose 2 was twice dose 1. It was evident from this work that the successive application of sludge to the soil in doses sufficient to reach the productivity desired with the use of nitrogen fertilizers could cause environmental problems due to N losses to the environment and that the residual and cumulative effects should be considered when calculating the application of sludge to soil. PMID:24584586

Vieira, Rosana Faria; Moriconi, Waldemore; Pazianotto, Ricardo Antnio Almeida

2014-05-01

173

Phytotoxicity of municipal sewage sludge composts related to physico-chemical properties, PAHs and heavy metals.  

PubMed

The aim of the study was to determine the influence of the composting on the phytotoxicity of sewage sludge in relation to their physical-chemical properties, heavy metals and polycyclic aromatic hydrocarbons content. Four municipal sewage sludges were composted for 76 days. A Phytotoxkit Test and pot experiment with Lepidium sativum were used for bioassay. The total PAH content in sludges ranged from 3674.1 to 11236.3 microg kg(-1). Heavy metals content was in the range Cd (1.9-76 mg kg(-1)), Cr (27.6-120 mg kg(-1)), Cu (156-335 mg kg(-1)), Pb (37.5-59.5 mg kg(-1)), Ni (21.7-155 mg kg(-1)) and Zn (1015-1385 mg kg(-1)). The results showed a varied toxicity of sewage sludge in relation to the plant tested. In the case of two sludges a 100% inhibition of seed germination were noted. Sludge composting limited their negative influence on most of the phytotoxicity parameters. Only chlorophyll concentration was often lower than in the plant bred on compost obtained from sludge. PMID:17532468

Oleszczuk, Patryk

2008-03-01

174

[Oxidation buffer capacity of sewage sludge barrier for immobilization of heavy metals].  

PubMed

Benefit from the microbial activities especially the anaerobic sulfate reduction processes, sewage sludge could be used as a barrier to immobilize the heavy metals leached from tailings. With respect to the redox reaction between sewage sludge and acid mine drainage (AMD), oxidation titration test was carried out to study the effect of oxidation buffer capacity (OBC) of sewage sludge on the immobilization of heavy metals. Test results showed that OBC of sludge suspensions was decreased slightly with the solid-liquid ratio of the suspensions, but increased with the anaerobic incubation time, and that more than 50% of OBC was contributed by the sludge existed in strongly-reduction conditions (Eh < or = - 150 mV). During oxidation titration test, Zn was released obviously when Eh > or = - 150 mV, while Cu and Pb released obviously when Eh > or = 150 mV. According to the test results, a mathematical model was established to predict the OBC consumption of the sludge barrier under AMD penetrating conditions. The simulation results showed that a sludge barrier with 2m thickness, even undergone 38 787-years oxidation by AMD under 10m water head, keep in a strongly-reduced condition and, therefore, promote an immobilization of heavy metals from AMD in the barrier. PMID:21250455

Zhang, Hu-Yuan; Fan, Zhi-Ming; Wang, Bao; Ju, Yuan-Yuan

2010-11-01

175

The effect of sewage sludge on the physical properties of lignite overburden  

E-print Network

ground coverage of Ky-31 tall fescue (Festuca arundinacea) f 1t 1f I~Md' ti L. I. Th 1 dg ppli ti ~ cg ifi- cantly increased yields of plants grown on both agricultural soil and on strip-mine spoil. The percent of above ground coverage after two years... of heavy metals and trace elements in soil and tall fescue (Festuca arundinacea Schreb. ) after additions of sewage sludge and concluded that sewage sludge applications significantly increased the heavy metal content in fescue, although no toxic...

Cocke, Catherine Lynn

1985-01-01

176

Analytical and spectroscopic characterization of humic acids extracted from sewage sludge, manure, and worm compost  

SciTech Connect

Humic acids extracted from sewage sludges, manure, and worm compost have been characterized by chemical and spectroscopic methods. Meaningful differences in the composition were revealed by FTIR, {sup 1}H, {sup 13}C NMR, and visible spectroscopies. These differences allow a differentiation among the products depending on the source from which they were obtained. Humic acid extracted from sewage sludges contains the highest percentage of aliphatic carbon, associated with polysaccharides and proteinaceous structures, and has characteristics close to those of aquatic humic acids. On the other hand, humic acids from manure and worm compost are similar to the humic acids originating from soil.

Deiana, S.; Gessa, C.; Manunza, B.; Seeber, R. (Universita di Sassari (Italy)); Rausa, R. (Eniricerche S.p.A., Milanese (Italy))

1990-07-01

177

Sanitation ability of anaerobic digestion performed at different temperature on sewage sludge.  

PubMed

A small amount of ammonia is used in full-scale plants to partially sanitize sewage sludge, thereby allowing successive biological processes to enable the high biological stability of the organic matter. Nevertheless, ammonia and methane are both produced during the anaerobic digestion (AD) of sludge. This paper describes the evaluation of a lab-scale study on the ability of anaerobic process to sanitize sewage sludge and produce biogas, thus avoiding the addition of ammonia to sanitize sludge. According to both previous work and a state of the art full-scale plant, ammonia was added to a mixture of sewage sludge at a rate so that the pH values after stirring were 8.5, 9 and 9.5. This procedure determined an ammonia addition lower than that generally indicated in the literature. The same sludge was also subjected to an AD process for 60 days under psychrophilic, mesophilic and thermophilic conditions. The levels of fecal coliform, Salmonella spp. helmints ova, pH, total N, ammonia fractions and biogas production were measured at different times during each process. The results obtained suggested that sludge sanitation can be achieved using an AD process; however, the addition of a small amount of ammonia was not effective in sludge sanitation because the buffer ability of the sludge reduced the pH and thus caused ammonia toxicity. Mesophilic and thermophilic AD sanitized better than psychrophilic AD did, but the total free ammonia concentration under the thermophilic condition inhibited biogas production. The mesophilic condition, however, allowed for both sludge sanitation and significant biogas production. PMID:23973551

Scaglia, Barbara; D'Imporzano, Giuliana; Garuti, Gilberto; Negri, Marco; Adani, Fabrizio

2014-01-01

178

Land application of chemically treated sewage sludge. II. Effects on soil and plant heavy metal content  

SciTech Connect

Anaerobically digested sewage sludges resulting from treatment of sewage with Ca(OH)/sub 2/, Al/sub 2/(SO/sub 4/)/sub 3/, or FeCl/sub 3/ for phosphorus precipitation were applied to corn (Zea mays L.) and bromegrass (Bromus inermis Leyess) grown on a soil having an initial pH of 7.3. Rates of sludge supplied 200, 400, 800, and and 1,600 kg N/ha each year for 5 years. Treatments with NH/sub 4/NO/sub 3/ supplying 0, 100, 20, and 400 kg N/ha were included for comparison. Plant tissue was analyzed for Cu, Zn, Mn, Cd, Ni, Cr, and Pb. No toxicity or deficiency symptoms were noted. Soil Zn, Cd, and Ni extracted by NTA (nitrilotriacetic acid) were increased by continued sludge application. The NTA-extractable Zn and Cd were positively correlated with the Zn and Cd concentrations in corn stover. Soil pH was reduced by the Fe-sludge application, slightly affected by the Al-sludge, and increased by the Ca-sludge. Increases in Cu concentrations in bromegrass and corn stover were associated with increases in the N content rather than the source of N, and plant Cu concentrations remained relatively constant across years. Sewage sludge application increased Zn, Cd, and Ni concentrations in bromegrass and corn stover, and Zn and Ni concentrations in corn grain, particularly at the higher metal loadings from sludge application. Zinc and Cd concentrations, especially in corn stover, increased with continued sludge application during the 5-year period. The inclusion of soil pH as a factor, in addition to cummulative amounts of Zn or Cd added as a constituent of sludge, improved the regression equations predicting Zn or Cd uptake.

Soon, Y.K.; Bates, T.E.; Moyer, J.R.

1980-07-01

179

Use of Municipal Sewage Sludge for Improvement of Forest Sites in the Southeast  

SciTech Connect

In eight field experiments dried municipal sewage sludge was applied to forest sites before planting of seedlings. In all cases, tree growth was faster on sludge-amended plots than on plots that received fertilizer and lime or no amendment. In all studies, concentrations of total nitrogen in the soil were higher on sludge plots than on control or fertilizer plots, even on good forest sites. In seven of the eight studies, concentrations of phosphorus also were higher on sludge plots than on control or fertilizer plots. Nitrogen and phosphorus tended to be higher in foliage from trees growing on sludge plots. Deep subsoiling was beneficial regardless of soil amendment. Where weeds were plentiful at the outset, they became serious competitors on plots receiving sludge.

Charles R. Berry

1987-09-01

180

Sulfate disinfection, stabilisation and heavy metal removal from sewage sludge - process description and preliminary results  

Microsoft Academic Search

A new, closed loop process for the disinfection, stabilisation and removal of heavy metal from sewage sludge (consisting of a sludge\\/sulfuric acid reactor, hybrid H2S generator and H2S bioscrubber) is described. Preliminary results for total solids (TS), volatile suspended solids (VSS), chemical oxygen demand (COD), acetate and propionate destruction in the hybrid H2S generator have shown that digestion efficiency is

D. Lowrie; J. Hobson; D. C. Stuckey

181

Effect of linear alkylbenzene sulphonates (LAS) on the anaerobic digestion of sewage sludge  

Microsoft Academic Search

Batch anaerobic biodegradation tests with different alkylbenzene sulphonates (LAS) at increasing concentrations were performed in order to investigate the effect of LAS homologues on the anaerobic digestion process of sewage sludge. Addition of LAS homologues to the anaerobic digesters increased the biogas production at surfactant concentrations ?510g\\/kg dry sludge and gave rise to a partial or total inhibition of the

M. T. Garcia; E. Campos; J. Snchez-Leal; I. Ribosa

2006-01-01

182

Microbial dechlorination of 2,4,6?trichlorophenol in anaerobic sewage sludge  

Microsoft Academic Search

The dechlorination of 2,4,6?trichlorophenol (TCP) in municipal sewage sludge with a chlorophenol (CP)?adapted consortium was investigated. Results show that dechlorination rates differed according to the source of the sludge samples used in the batch experiments. No significant differences in 2,4,6?TCP dechlorination were observed following treatment with inoculum at densities ranging from 10% to 50% (V\\/V), but a significant delay was

B. V. Chang; C. W. Chiang; S. Y. Yuan

1999-01-01

183

Assessment of heavy metals in municipal sewage sludge: a case study of Limpopo province, South Africa.  

PubMed

Heavy metals in high concentrations can cause health and environmental damage. Nanosilver is an emerging heavy metal which has a bright future of use in many applications. Here we report on the levels of silver and other heavy metals in municipal sewage sludge. Five towns in Limpopo province of South Africa were selected and the sludge from their wastewater treatment plants (WWTPs) was collected and analysed. The acid digested sewage sludge samples were analysed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) methods. The concentrations of silver found were low, but significant, in the range 0.22 to 21.93 mg/kg dry mass. The highest concentration of silver was found in Louis Trichardt town with a concentration of 21.93 0.38 mg/kg dry mass while the lowest was Thohoyandou with a concentration of 6.13 0.12 mg/kg dry mass. A control sludge sample from a pit latrine had trace levels of silver at 0.22 0.01 mg/kg dry mass. The result showed that silver was indeed present in the wastewater sewage sludge and at present there is no DWAF guideline standard. The average Cd concentration was 3.10 mg/kg dry mass for Polokwane municipality. Polokwane and Louis Trichardt municipalities exhibited high levels of Pb, in excess DWAF guidelines, in sludge at 102.83 and 171.87 mg/kg respectfully. In all the WWTPs the zinc and copper concentrations were in excess of DWAF guidelines. The presence of heavy metals in the sewage sludge in excess of DWAF guidelines presents environmental hazards should the sludge be applied as a soil ameliorant. PMID:24595211

Shamuyarira, Kudakwashe K; Gumbo, Jabulani R

2014-03-01

184

Heavy metals in cottontail rabbits on mined lands treated with sewage sludge. [Sylvilagus floridanua  

Microsoft Academic Search

Levels of heavy metals in soils, vegetation, and tissues of cottontail rabbits (Sylvilagus floridanus) on a Pennsylvania strip-mined site treated with sewage sludge were compared with those from a non-treated mine site to determine increases due to treatment effect. Concentrations of Cd, Cu, and Zn were higher in vegetation on the sludge-treated site. Zinc was higher in femurs of cottontails

R. L. Dressler; G. L. Storm; W. M. Tzilkowski; W. E. Sopper

2009-01-01

185

Assessment of Heavy Metals in Municipal Sewage Sludge: A Case Study of Limpopo Province, South Africa  

PubMed Central

Heavy metals in high concentrations can cause health and environmental damage. Nanosilver is an emerging heavy metal which has a bright future of use in many applications. Here we report on the levels of silver and other heavy metals in municipal sewage sludge. Five towns in Limpopo province of South Africa were selected and the sludge from their wastewater treatment plants (WWTPs) was collected and analysed. The acid digested sewage sludge samples were analysed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) methods. The concentrations of silver found were low, but significant, in the range 0.22 to 21.93 mg/kg dry mass. The highest concentration of silver was found in Louis Trichardt town with a concentration of 21.93 0.38 mg/kg dry mass while the lowest was Thohoyandou with a concentration of 6.13 0.12 mg/kg dry mass. A control sludge sample from a pit latrine had trace levels of silver at 0.22 0.01 mg/kg dry mass. The result showed that silver was indeed present in the wastewater sewage sludge and at present there is no DWAF guideline standard. The average Cd concentration was 3.10 mg/kg dry mass for Polokwane municipality. Polokwane and Louis Trichardt municipalities exhibited high levels of Pb, in excess DWAF guidelines, in sludge at 102.83 and 171.87 mg/kg respectfully. In all the WWTPs the zinc and copper concentrations were in excess of DWAF guidelines. The presence of heavy metals in the sewage sludge in excess of DWAF guidelines presents environmental hazards should the sludge be applied as a soil ameliorant. PMID:24595211

Shamuyarira, Kudakwashe K.; Gumbo, Jabulani R.

2014-01-01

186

Dioxin-like compounds in Australian sewage sludge--review and national survey.  

PubMed

An Australian survey of dioxin-like compounds in sewage sludge was conducted in two parts (a) a national survey, and (b) a time-study. All sewage sludge samples analysed as part of these studies had low overall concentrations of dioxin-like compounds. Out of 37 samples, all except one, were within the reported concentration range of soil within the Australian environment. The mean concentration of dioxin-like compounds in the Australian sewage sludge survey of 2006 was found to be 5.6 (s.d. 4.5) ng WHO(05) TEQkg(-1) (n=14) and were within the range of 1.2-15.3 ng WHO(05) TEQ kg(-1). All the Australian sewage sludge samples cited in these studies were below the Victorian EPA "investigation limit" of 50 ng WHO(98) TEQ kg(-1), and well below the European proposed guidelines of 100 ng I-TEQ kg(-1). The burden of dioxin-like compounds in Australian sewage sludge is low and its land application as biosolids is not likely to pose a problem. A general positive relationship was found between population of the town producing the waste and both dioxin-like PCDD/Fs and dioxin-like PCBs. The one exception to this trend was sludge from a town that had a history of smelting and had a relatively high burden of dioxin-like compounds. Sludge from one rural WWTP also had a higher burden of dioxin-like compounds. The treatment plant services a geographically isolated town with a low population and no known emitters of dioxin-like compounds. However, this sample also had a relatively high burden of dioxin-like PCBs, which could be the source of the dioxin-like PCDD/Fs found in this sludge. The time study analyzing sludges from three WWTP from the same city between the years 2002 and 2006 found no apparent difference between WWTPs, but a statistically significant decline of 1.49 ng WHO(05) TEQ kg(-1) per year. Also, a comprehensive review of the scientific literature, presents typical levels and sources of dioxin-like compounds in international sewage sludges. PMID:18452969

Clarke, Bradley; Porter, Nichola; Symons, Robert; Blackbeard, Judy; Ades, Peter; Marriott, Philip

2008-07-01

187

[Preparation of adsorbent made from sewage sludge and its spectrum properties].  

PubMed

Biochemical sludges of sewage and petrochemistry and surplus sludge were taken as raw materials to prepare adsorbents for flue gas desulfurization by pyrolysis. To compare with active carbon, the abilities of adsorbents made from different sludges were studied by SEM, X-ray diffraction diagram, TG and DTA, pore characteristics and elements analysis, and the adsorption mechanisms of systems of SO2 -O2-N2 and SO2-O2-H2O(g)-N2 were studied by FTIR. Results indicated that the desulfurization performance of adsorbent made from surplus sludge was better, subsequent was petrochemical sludge, and the adsorbent made from biochemical sludge of sewage was worse. The desulfurization efficiency of adsorbent made from surplus sludge was slightly lower than active carbon. In the system of SO2-O2-N2, physical adsorption was primary, but in the condition of water, chemical adsorption was primary, where catalysis and oxidation of SO2 took place in sludge-derived adsorbent. In adsorption process, the adsorption depends on micropore structure. PMID:16883862

Yu, Lan-Lan; Zhong, Qin; Feng, Lan-Lan

2006-05-01

188

Simultaneous NH 3 oxidation and N 2 production at reduced O 2 tensions by sewage sludge subcultured with chemolithotrophic medium  

Microsoft Academic Search

The ammonia oxidation rate by sewage sludge was determined as a function of the dissolved oxygen tension. Samples of sludge were taken from a domestic waste water treatment pilot plant in which sludge was completely retained by membrane filtration. The samples were subcultured chemolithotrophically in recycling reactors. The gas supplied was a mixture of pure argon and oxygen. The KO2

E. B. Muller; A. H. Stouthamer; H. W. van Verseveld

1995-01-01

189

REPORT OF PYROLYSIS OF SEWAGE SLUDGES IN THE NEW YORK-NEW JERSEY METROPOLITAN AREA (PHASE I)  

EPA Science Inventory

The purpose of this work was to reduce the volume of municipal wastewater (sewage) sludge in a multiple-hearth furnance via starved air combustion (pyrolysis) to determine how it compared with incineration as an environmentally acceptable method of sludge disposal. Sludge was fir...

190

Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung.  

PubMed

The chemical changes of water-extractable organic matter (WEOM) from five different substrates of sewage sludge enriched with different proportions of cow dung after vermicomposting with Eisenia fetida were investigated using various analytical approaches. Results showed that dissolved organic carbon, chemical oxygen demand, and C/N ratio of the substrates decreased significantly after vermicomposting process. The aromaticity of WEOM from the substrates enhanced considerably, and the amount of volatile fatty acids declined markedly, especially for the cow dung substrate. Gel filtration chromatography analysis showed that the molecular weight fraction between 10(3) and 10(6) Da became the main part of WEOM in the final product. 1H nuclear magnetic resonance spectra revealed that the proportion of H moieties in the area of 0.00-3.00 ppm decreased, while increasing at 3.00-4.25 ppm after vermicomposting. Fluorescence spectra indicated that vermicomposting caused the degradation of protein-like groups, and the formation of fulvic and humic acid-like compounds in the WEOM of the substrates. Overall results indicate clearly that vermicomposting promoted the degradation and transformation of liable WEOM into biological stable substances in sewage sludge and cow dung alone, as well as in mixtures of both materials, and testing the WEOM might be an effective way to evaluate the biological maturity and chemical stability of vermicompost. PMID:22230755

Xing, Meiyan; Li, Xiaowei; Yang, Jian; Huang, Zhidong; Lu, Yongsen

2012-02-29

191

The use of sewage sludge as soil amendment. The need for an ecotoxicological evaluation  

Microsoft Academic Search

Background, aim, and scopeSewage sludge use in agriculture should be limited by the presence of metals and other persistent environmental pollutants.\\u000a The present study aims to contribute for the definition of a test battery of ecotoxicological assays that allows a proper\\u000a ecotoxicological characterization of sludges, providing information on their potential hazard and identified safe application\\u000a levels.\\u000a \\u000a \\u000a \\u000a Materials and methodsThree sludges

Tiago Natal-da-Luz; Serena Tidona; Bruno Jesus; Paula V. Morais; Jos P. Sousa

2009-01-01

192

Phytoremediation of sewage sludge and use of its leachate for crop production.  

PubMed

The land application of sewage sludge has the potential risk of transferring heavy metals to soil or groundwater. The agricultural reuse of sludge leachate could be a cost-effective way to decrease metal contamination. Sludge leachate collected during the phytoremediation of sludge by co-cropping with Sedum alfredii and Zea mays was used for irrigating vegetables in a field experiment. Results indicate that the concentrations of Cu, Zn, Pb, and Cd in sludge leachates complied with the National Standards for agricultural irrigation water in China. For the vegetable crop Ipomoea aquatica, nutrients obtained only from the sludge leachate were not sufficient to support growth. For the second crop, Brassica parachinensis, no differences in biomass were observed between the treatment with leachate plus a half dose of inorganic fertilizer and the treatment with a full dose of inorganic fertilizers. The concentrations of heavy metals in I. aquatica and B. parachinensis were not significantly affected by the application of sludge leachates. Compared with initial values, there were no significant differences in Zn, Cd, Cu, and Pb concentrations in soil following treatment with sludge leachate. This study indicates that on range lands, sludge phytoremediation can be conducted at the upper level, and the generated sludge leachate can be safely and easily used in crop production at the lower level. PMID:25205245

Xu, Tianfen; Xie, Fangwen; Wei, Zebin; Zeng, Shucai; Wu, Qi-Tang

2014-09-01

193

Preparation and mechanism of ultra-lightweight ceramics produced from sewage sludge  

Microsoft Academic Search

The preparation, characterization, preheating mechanism and bloating mechanism of ultra-lightweight ceramics (ULWC) manufactured by dehydrated sewage sludge (DSS) and clay were studied. Three experiments were designed to investigate the addition of DSS, the effect of preheating treatment and sintering treatment, respectively, and then the optimum conditions for preparing ULWC were determined. Chemical components, especially ratios of carbon content to iron

Yuanfeng Qi; Qinyan Yue; Shuxin Han; Min Yue; Baoyu Gao; Hui Yu; Tian Shao

2010-01-01

194

Evaluation of Emission of Greenhouse Gases from Soils Amended with Sewage Sludge  

Technology Transfer Automated Retrieval System (TEKTRAN)

Increase in concentrations of various greenhouse gases originated by various human activities, including agricultural origin, could contribute to climate change. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in ...

195

PHYSICAL AND CHEMICAL CHARACTERISTICS OF SYNTHETIC ASPHALT PRODUCED FROM LIQUEFACTION OF SEWAGE SLUDGE  

EPA Science Inventory

Direct thermochemical liquefaction of primary undigested municipal sewage sludge was carried out to produce a low molecular weight steam-volatile oil, a high molecular weight synthetic asphalt, and a residual char cake. The latter product is capable of supplying the thermal energ...

196

The comparative mycological analysis of wastewater and sewage sludges from selected wastewater treatment plants  

Microsoft Academic Search

The wastewater and sewage sludge, which are rich in organic matter, are habitat for many groups of microorganisms, such as viruses, bacteria, fungi, algae, protozoa and worms. Many of them could turn out be plant, animal or human parasites, however in a routine analysis are almost never looked for. The main subject of the study was comparative analysis of microscopic

M. Kacprzak; E. Neczaj; E. Okoniewska

2005-01-01

197

USE OF FLY ASH AND MUNICIPAL SEWAGE SLUDGE: CHALLENGES, OPPORTUNITIES, AND FUTURE  

Technology Transfer Automated Retrieval System (TEKTRAN)

Utilization of coal combustion by-products (CCBP) and municipal by-products, mainly sewage sludge (SS), as agricultural soil amendments is of considerable importance not only as an avenue to dispose these materials but also to explore the potential advantages as source of some plant nutrients and to...

198

Development of sewage sludge?based synthetic aggregates for containerized ornamentals  

Microsoft Academic Search

Potential utilization of synthetic aggregates (SAs) developed from sewage sludge (SS) as a component of containerized media for French marigold (Tagetes patula) cultivation as a peat substitution was investigated in this study. The six different containerized media utilized were: peat only, SA 20%: peat 80%, SA 40%: peat 60%, SA 60%: peat 40%, SA 80%: peat 20% and SA only.

G. Y. Jayasinghe; Yoshihiro Tokashiki; I. D. Liyana Arachchi

2011-01-01

199

A REVIEW OF TECHNIQUES FOR INCINERATION OF SEWAGE SLUDGE WITH SOLID WASTES  

EPA Science Inventory

This report discusses the state of the art of co-incineration of municipal refuse and sewage sludge. European and American practice is described. Four co-incineration techniques are evaluated for thermodynamic and economic feasibility; pyrolysis, multiple hearth, direct drying, a...

200

Comparison of microbial sulfuric acid production in sewage sludge from added sulfur and thiosulfate  

Microsoft Academic Search

Microbial leaching is one of the most attractive methods of removing toxic metals from sewage sludge. Sulfuric acid produced by indigenous microflora by the oxidation of elemental sulfur and sulfur compounds solubilizes toxic metals. The oxidation of sulfur compounds can be achieved by the direct oxidation to sulfates or by indirect oxidation, through the production and accumulation of soluble intermediate

R. D. Tyagi; J. F. Blais; L. Deschenes; P. Lafrance; J. P. Villeneuve

1994-01-01

201

Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil  

Microsoft Academic Search

Incubation experiments with soil were made to study C and N mineralization in a sewage sludgecotton waste mixture at different stages of the composting process performed by the Rutgers static pile system. Three composting samples were selected: initial mixture (I); the end of the active phase (E); and the mature compost (M). The CO2-C evolved (as % of added C)

M. P. Bernal; A. F. Navarro; M. A. Snchez-Monedero; A. Roig; J. Cegarra

1998-01-01

202

EVALUATION OF 'WITHIN-VESSEL' SEWAGE SLUDGE COMPOSTING SYSTEMS IN EUROPE  

EPA Science Inventory

The objectives were: (1) To update a review of the state of the art of sewage sludge composting in Europe; (2) to evaluate a European-designed, continuous, thermophilic, mechanical, aerobic, composting system in Germany; and (3) to compare its cost to those of the U.S. Department...

203

Municipal sewage sludge as fertilizer. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the use of sewage sludge as forestry and farm crop fertilizer. References discuss degassed biomass, fertilizer-grade residues, compost fertilizers, biological conversion of organic wastes, organic environmental pollution, and iron salts. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-06-01

204

MANUAL FOR COMPOSTING SEWAGE SLUDGE BY THE BELTSVILLE AERATED-PILE METHOD  

EPA Science Inventory

In producing clean water from sewage, wastewater treatment plants also produce sludge. Most of the commonly used methods to dispose of this material are now considered to be either environmentally unacceptable, wasteful of energy, or very expensive. To ease this situation, a rela...

205

POTENTIAL OF GREENHOUSE GASES REDUCTION BY FUEL CROP CULTIVATION UTILIZING SEWAGE SLUDGE IN JAPAN  

NASA Astrophysics Data System (ADS)

Potential of greenhouse gases (GHG) reduction was estimated and compared in six scenarios of fuel crop cultivation by utilizing sewage sludge in Japan. Bioethanol from corn and biodiesel fuel from soybean was selected as biofuel produced. When all the sludge discharged from sewage treatment plants in 18 major cities was utilized for soybean cultivation and subsequent biodiesel fuel production, produced biofuel corresponded to 4.0% of GHG emitted from sewage treatment in Japan. On the other hand, cultivation area for fuel crop cultivation was found to be the regulating factor. When fuel crop was cultivated only in abandoned agricultural fields, produced biofuel corresponded to 0.60% and 0.62%, respectively, in the case that corn and soybean was cultivated. Production of biodiesel fuel from soybean was estimated to have more net reduction potential than bioehanol production from corn when sludge production is limited, because required sewage sludge compost was 2.5-times larger in corn although reduction potential per crop area was 2-times larger in bioethanol production from corn.

Honda, Ryo; Fukushi, Kensuke

206

Impact of landspread sewage sludge and earthworm introduction on established earthworms and soil structure  

Microsoft Academic Search

Sewage sludge was applied to twelve 4-m2 plots in two forest (mixed hardwood, Norway spruce plantation) site and one old field site. The earthworm Eisenia fetida was introduced to half the control and half the treated plots. Earthworm populations were sampled by formalin extraction and hand-sorting five times in the year following treatment. One year after treatment, soil samples were

W. E. Hamilton; D. L. Dindal

1989-01-01

207

Use of sewage sludge ash in asphaltic paving mixes in hot regions  

Microsoft Academic Search

This paper presents the results of experiments on the utilization of sewage sludge ash as a replacement for mineral filler in asphaltic paving mixes used in Bahrain. The physical and chemical properties of the waste were studied. Asphaltic concrete mixes containing the waste and a control were prepared. Five percentages by weight of bitumen were employed in order to determine

Mohammed H. Al Sayed; Ismail M. Madany; A. Rahman M. Buali

1995-01-01

208

EDTA-Facilitated Phytoremediation of Soil with Heavy Metals from Sewage Sludge  

Microsoft Academic Search

The objective of this research was to determine the effect of the chelate EDTA (ethylenediaminetetraacetic acid), which is used in phytoremediation, on plant availability of heavy metals in liquid sewage sludge applied to soil. Sunflower (Helianthus annuus L.) was grown under greenhouse conditions in a commercial potting soil; the tetrasodium salt of EDTA (EDTA Na4) was added at a rate

M. B. Kirkham

2000-01-01

209

DEVELOPMENT OF A KINETIC MODEL FOR BIOLOGICAL SULPHATE REDUCTION WITH PRIMARY SEWAGE SLUDGE AS SUBSTRATE  

Microsoft Academic Search

The Rhodes BioSURE? Process is a low cost active treatment system for acid mine drainage (AMD) waters (Rose et al., 2002). Central to this process is biological sulphate reduction (BSR) using primary sewage sludge (PSS) as the electron donor and organic carbon source, with the concomitant reduction of sulphate to sulphide and production of alkalinity. To optimise the design, operation

HS van Wageningen; SW Stemann; MC Wentzel

210

BENTHIC DISTRIBUTION OF SEWAGE SLUDGE INDICATED BY CLOSTRIDIUM PERFRIGENS AT A DEEP-OCEAN DUMP SITE  

EPA Science Inventory

Clostridium perfrigens in sediment samples collected at the Deep Water Municipal Sewage Sludge Disposal Site (also called the 106-Mile Site), off the coast of New Jersey, was enumerated. he counts of C. perfrigens found in sediment samples collected within and to the southwest of...

211

SOIL TEMPERATURE AND SEWAGE SLUDGE EFFECTS ON PLANT AND SOIL PROPERTIES  

EPA Science Inventory

A field experiment was conducted to determine the influence of soil temperature and sewage sludge on growth and composition of corn (Zea mays L.). Changes in soil organic matter, extractable metals, pH, bulb density, aggregation, fecal coliform, and fecal streptococcus were deter...

212

Characterization of top phase oil obtained from co-pyrolysis of sewage sludge and poplar sawdust.  

PubMed

To research the impact of adding sawdust on top phase oil, a sewage sludge and poplar sawdust co-pyrolysis experiment was performed in a fixed bed. Gas chromatography (GC)/mass spectrometry (MS) was used to analyze the component distribution of top phase oil. Higher heating value, viscosity, water content, and pH of the top phase oil product were determined. The highest top phase oil yield (5.13 wt%) was obtained from the mixture containing 15% poplar sawdust, while the highest oil yield (16.51 wt%) was obtained from 20% poplar sawdust. Top phase oil collected from the 15% mixture also has the largest amount of aliphatics and the highest higher heating value (28.6 MJ/kg). Possible reaction pathways were proposed to explain the increase in the types of phenols present in the top phase oil as the proportion of poplar sawdust used in the mixture increased. It can be concluded that synergetic reactions occurred during co-pyrolysis of sewage sludge and poplar sawdust. The results indicate that the high ash content of the sewage sludge may be responsible for the characteristic change in the top phase oil obtained from the mixtures containing different proportions of sewage sludge and poplar sawdust. Consequently, co-pyrolysis of the mixture containing 15 % poplar sawdust can increase the yield and the higher heating value of top phase oil. PMID:24756683

Zuo, Wu; Jin, Baosheng; Huang, Yaji; Sun, Yu

2014-08-01

213

Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses  

Microsoft Academic Search

There have been various methods used for determining a heating value of solid fuel such as coal, biomass and municipal solid waste (MSW) either by experiment using a bomb calorimeter or by modeling based on its compositions. This work proposes another aspect in developing models to predict the heating value of sewage sludge from its proximate and ultimate analyses data.

Puchong Thipkhunthod; Vissanu Meeyoo; Pramoch Rangsunvigit; Boonyarach Kitiyanan; Kitipat Siemanond; Thirasak Rirksomboon

2005-01-01

214

Effects of the application of heated sewage sludge on soil nutrient supply to plants  

Microsoft Academic Search

We previously reported that heating sewage sludge significantly changes the rate of N mineralization. The present study was undertaken to examine the extent to which these changes affect plant growth and nutrient supply after application to different soils. A pot experiment in which komatsuna plants (Brassica campestris L. var. rapa) were grown in a Fluvisol or an Arenosol indicated that

Naoki Moritsuka; Kaori Matsuoka; Shingo Matsumoto; Tsugiyuki Masunaga; Kensuke Matsui; Toshiyuki Wakatsuki

2006-01-01

215

Sludge dewatering: Sewage and industrial wastes. (Latest citations from Pollution Abstracts database). Published Search  

SciTech Connect

The bibliography contains citations concerning techniques and equipment used in dewatering waste products. Included are techniques for sewage waste as well as industrial, mining, petroleum, and municipal waste sludge. Dewatering processes, device design, and performance evaluations are considered. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-11-01

216

Sludge dewatering: Sewage and industrial wastes. (Latest citations from Pollution Abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning techniques and equipment used in dewatering waste products. Included are techniques for sewage waste as well as industrial, mining, petroleum, and municipal waste sludge. Dewatering processes, device design, and performance evaluations are considered. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-06-01

217

Energy recovery from sewage sludge by means of fluidised bed gasification  

SciTech Connect

Because of its potential harmful impact on the environment, disposal of sewage sludge is becoming a major problem all over the world. Today the available disposal measures are at the crossroads. One alternative would be to continue its usage as fertiliser or to abandon it. Due to the discussions about soil contamination caused by sewage sludge, some countries have already prohibited its application in agriculture. In these countries, thermal treatment is now presenting the most common alternative. This report describes two suitable methods to directly convert sewage sludge into useful energy on-site at the wastewater treatment plant. Both processes consist mainly of four devices: dewatering and drying of the sewage sludge, gasification by means of fluidised bed technology (followed by a gas cleaning step) and production of useful energy via CHP units as the final step. The process described first (ETVS-Process) is using a high pressure technique for the initial dewatering and a fluidised bed technology utilising waste heat from the overall process for drying. In the second process (NTVS-Process) in addition to the waste heat, solar radiation is utilised. The subsequent measures - gasification, gas cleaning and electric and thermal power generation - are identical in both processes. The ETVS-Process and the NTVS-Process are self-sustaining in terms of energy use; actually a surplus of heat and electricity is generated in both processes.

Gross, Bodo [IZES gGmbH, Altenkesseler Strasse 17, D-66115 Saarbruecken (Germany); Eder, Christian [CET, Christian Eder Technology, Eduard-Didion Strasse, D-66539 Neunkirchen (Germany); Grziwa, Peter [BISANZ Anlagenbau GmbH, Scheidter Strasse 2, D-66123 Saarbruecken (Germany); Horst, Juri [IZES gGmbH, Altenkesseler Strasse 17, D-66115 Saarbruecken (Germany)], E-mail: horst@izes.de; Kimmerle, Klaus [IZES gGmbH, Altenkesseler Strasse 17, D-66115 Saarbruecken (Germany)

2008-07-01

218

Sludge dewatering: Sewage and industrial wastes. (Latest citations from Pollution Abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning techniques and equipment used in dewatering waste products. Included are techniques for sewage waste as well as industrial, mining, petroleum, and municipal waste sludge. Dewatering processes, device design, and performance evaluations are considered. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-07-01

219

ELECTROSTATIC PRECIPITATOR EFFICIENCY ON A MULTIPLE HEARTH INCINERATOR BURNING SEWAGE SLUDGE  

EPA Science Inventory

A pilot scale electrostatic precipitator (ESP) was evaluated for its removal performance of 23 metals and for sulfur containing particles when fitted to a multiple hearth incinerator burning sewage sludge. The small scale ESP was installed to take a slipstream of about 3% of the ...

220

PRELIMINARY COMPARATIVE STUDY OF METHODS TO EXTRACT VIRUS FROM RAW AND PROCESSED SEWAGE SLUDGES  

EPA Science Inventory

Two simple virus extraction techniques were compared to an EPA standard method for detection of human enteric viruses in raw sewage sludge and class A biosolids. The techniques were used to detect both indigenous and seeded virus from a plant that distributes class A material pr...

221

EVALUATION OF OXYGEN-ENRICHED MSW/SEWAGE SLUDGE CO-INCINERATION DEMONSTRATION PROGRAM  

EPA Science Inventory

This report provides and evaluation of a two-phased demonstration program conducted for the U.S. Environmental Protection Agency's Municipal Solid Waste Innovative Technology Evaluation Program, and the results thereof, of a recently developed method of sewage sludge management. ...

222

EVALUATION OF OXYGEN-ENRICHED MSW/SEWAGE SLUDGE CO-INCINERATION DEMONSTRATION PROGRAM  

EPA Science Inventory

This report provides an evaluation of a two-phased demonstration program conducted for the U.S. Environmental Protection Agency's Municipal Solid Waste Innovative Technology Evaluation Program, and the results thereof, of a recently developed method of sewage sludge managemen...

223

Determination of mobile heavy metal fraction in soil: Results of a pot experiment with sewage sludge  

Microsoft Academic Search

The development of a method using a chelating resin to assess heavy metal mobility in soil and the first results obtained from a pot experiment with sewage sludge additions were studied. The resin was Chelex 100 with the calcium (Ca)?form of the resin proving to be best suited for the extraction. The efficiency of recovery of the heavy metals from

Enzo Lombi; Martin H. Gerzabek

1998-01-01

224

Salmonellae in sewage sludge and abattoir effluent in south-east Scotland.  

PubMed Central

A survey into the prevalence of salmonella organisms in sewage in the Borders Region of South-east Scotland is described. A total of 317 isolates representing 34 different serotypes were made, of which only 5 serotypes appeared in animals, supporting the view that the spreading of sewage sludge on to pastureland presents little risk to livestock provided the recommended guidelines are followed. Nevertheless, Salmonella typhimurium phage type 12, identified in sewage, was also recovered from animals in incidents on 11 farms, including 4 which had received sludge from this source. A further 48 isolates (13 serotypes) were obtained from the parallel monitoring of abattoir effluents, indicating that the background level of salmonella infection in the animal population appears to be low in comparison to that in humans. PMID:3891848

Linklater, K. A.; Graham, M. M.; Sharp, J. C.

1985-01-01

225

In situ biodiesel production from greasy sewage sludge using acid and enzymatic catalysts.  

PubMed

This study proposes to select the most appropriate sewage sludge (greasy, primary and secondary) for in situ transesterification and to compare the technical, economic and energetic performance of an enzymatic catalyst (Novozym435) with sulfuric acid. Greasy sludge was selected as feedstock for biodiesel production due to its high lipid content (44.4%) and low unsaponifiable matter. Maximum methyl esters yield (61%) was reached when processing the wet sludge using sulfuric acid as catalyst and n-hexane, followed by dried-greasy sludge catalyzed by Novozym435 (57% methyl esters). Considering the economic point of view, the process using acid catalyst was more favorable compared to Novozym435 catalyst due to the high cost of lipase. In general, greasy sludge (wet or dried) showed high potential to produce biodiesel. However, further technical adjustments are needed to make biodiesel production by in situ transesterification using acid and enzymatic catalyst feasible. PMID:25528605

Sangaletti-Gerhard, Naiane; Cea, Mara; Risco, Vicky; Navia, Rodrigo

2015-03-01

226

Simultaneous determination of 4-nonylphenol and bisphenol A in sewage sludge.  

PubMed

An analytical method has been developed for simultaneous extraction and determination of two estrogenic active agents, 4-nonylphenol (4-NP) and bisphenol A (BPA), in activated sewage sludge and anaerobically stabilized sewage sludge. Both compounds were determined by GC/MS in freeze-dried sewage sludge samples that had been spiked with these compounds in order to indicate different contamination levels. Extractive steam distillation, Soxhlet extraction, supercritical fluid extraction (SFE), and accelerated solvent extraction (ASE) were applied, and the results were compared. ASE under use of ethyl acetate/formic acid and an extraction temperature of 170 degrees C provided the most efficient extraction procedure for simultaneous extraction and the only reliable extraction results. Analyses of the phenolic compounds were performed by capillary column gas chromatography/mass spectrometry (GC/MS), operating in selected ion monitoring (SIM) mode after an aluminum oxide column-cleanup step prior to acetylation. The observed recovery rates under optimized conditions-ASE with ethyl acetate/formic acid-for 4-NP in spiked activated sewage sludge samples (spiking levels: 51, 88, or 554 microg/g on dry weight basis (dwb)) were 90, 107, or 101%. BPA (spiking levels: 50, 87, or 474 microg/g dwb) was found with recovery rates of 70, 105, or 101%, respectively. For anaerobically stabilized sewage sludge, recoveries for 4-NP (spiking levels: 40, 66, or 196 microg/g dwb) were 97, 95, or 101% and 90, 95, or 101% for BPA (spiking levels: 41, 67, or 474 microg/g dwb), respectively. PMID:12139069

Meesters, Roland J W; Schrder, Horst Fr

2002-07-15

227

EFFECTS ON CATTLE FROM EXPOSURE TO SEWAGE SLUDGE  

EPA Science Inventory

Soils, forages, and cattle grazing on a sludge disposal site were examined for trace metals and persistent organics. Soils at the disposal site had increased concentrations of Zn, Cu, Ni, Cd, and Pb. Forages from sludge applied soils had higher levels of Zn, Cd, Cu, and Ni and lo...

228

DEMONSTRATION OF ACCEPTABLE SYSTEMS FOR LAND DISPOSAL OF SEWAGE SLUDGE  

EPA Science Inventory

The objective was to demonstrate sludge application systems for farmland that would minimize any adverse effects on the environment and public health, achieve both urban and rural acceptance, and be generally beneficial for producer and receptor of the sludge. A comprehensive hea...

229

INFORMATION PROGRAMS AFFECT ATTITUDES TOWARD SEWAGE SLUDGE USE IN AGRICULTURE  

EPA Science Inventory

A survey was conducted of rural farmers, rural nonfarmers, urban and suburban residents to determine attitudes toward land application of sludge. After a thorough educational meeting devoted to a discussion of benefits and risks in sludge use, the groups were again quizzed and th...

230

The effect of sewage sludge composting on the quantitative state of some groups of bacteria and fungi.  

PubMed

Analysis of the quantitative state of disease causing bacteria and of other microbic groups were done on the sewage sludge from a sewage treatment plant. The results of the analysis include the ammonifying bacteria, nitrifying and denitrifying bacteria. The general quantity of bacteria and fungi in a secondary dehydrated sludge, fermented secondary dehydrated sludge, and in composted secondary dehydrated sludge was deterinated. Composts were prepared from dehydrated secondary sludge with the addition of sawdust. Microbiological analysis of sewage sludge showed, that the quantities of the fecal coli bacteria were 6500; 220 and 150 cells per cm3 of the secondary dehydrated sludge, fermented secondary dehydrated sludge and composted dehydrated secondary sludge, respectively. The numbers of Salmonella were respectively 67.80; 6.48 and 6.60 cells per cm3. The general numbers of bacteria were 2.98 x 10(7); 2.79 x 10(7); 2.15 x 10(7) cells per cm3 of sludge. The cell numbers of fungi were: 6.20x 10(2); 19.60 x 10(2); 7.80 x 10(2) per cm3 of sludge. In the three types of sludge, the results show great numbers of the ammonifying, nitrifying and denitrifying bacteria. Of the analysed groups of bacteria, the highest numbers of cells were found for general bacteria; ammonifying and nitrifying bacteria were next in abundance; still fewer were the denitrifying bacteria. Fungi and pathogenic bacteria were the least numerous. PMID:10997494

Piontek, M; Nguyen, T B

2000-01-01

231

Co-cropping for phyto-separation of zinc and potassium from sewage sludge.  

PubMed

The use of sewage sludge as a fertilizer and soil amendment has resulted in high concentrations of heavy metals in the soil limiting its use. The present study was carried out to find the possibility of phyto-separating toxic and beneficial elements from the sludge using suitable plants. Of the five plants tested the hyperaccumulator Sedum alfredii H achieved the greatest removal of Zn, while shoots of Alocasia marorrhiza accumulated high content of K. Co-cropping these two plants on the sludge verified the previous observations on A. marorrhiza and the shoots of this plant could accumulate more than 120 g K kg(-1) dry matter in the median growth stage. Zn hyperaccumulated in Sedum's shoots to an extent more than 10 g kg(-1) dry matter; K concentrated five to ten times in the Alocasia's shoots which could be used as a good organic-K-fertilizer. Hence, the two elements were simultaneously phytoseparated and could be recycled. Furthermore, cultivation of plants in the sludge resulted in significant decreases in total Zn but kept the favorable agronomic characteristics of the sludge material, such as pH, organic matter content, and NPK concentrations and ameliorated its biological stability. These results suggest that simultaneous phyto-separation of toxic and beneficial elements from sewage sludge are possible by co-cropping using specific plants without the input of any chemicals. PMID:17449086

Wu, Qi-Tang; Hei, Liang; Wong, J W C; Schwartz, Christophe; Morel, Jean-Louis

2007-08-01

232

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites Groundwater Monitoring Report. Second quarter 1995  

SciTech Connect

During second quarter 1995, samples from monitoring wells at the K-Area Sewage Sludge Application Site (KSS wells) and Par Pond Sewage Sludge Application Site (PSS wells) were analyzed for constituents required by SCDHEC Construction Permit 13,173. H-Area Sewage Sludge Application Site (HSS wells) samples were analyzed for constituents required by SCDHEC Construction Permit 12,076. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. There were no constituents which exceeded the SCDHEC final Primary Drinking Water Standard in any well from the H-Area, K-Area, and Par Pond Sewage Sludge Application Sites. There were also no constituents which were above the SRS Flag 2 criteria in any well at the three sites during second quarter 1995.

Chase, J.A.

1995-09-01

233

Evaluation of dioxin contamination in sewage sludge discharges on coastal sediments from Catalonia, Spain.  

PubMed

The fate of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in sewage sludges after discharge into the sea was investigated. Sediment samples were analysed at a sewage sludge disposal site as well as in the surrounding areas. Moreover, eight sediment samples from two rivers in Catalonia and three sediment samples from Catalonian Coast were analysed to determine the background levels of contamination. Total international toxicity equivalent (I-TEQ) values for these sediments ranged from 0.42 to 8.01 pg g, with a mean value of 4.15 pg/g and a median value of 3.69 pg/g. However, the I-TEQ values of sludge-treated areas were higher: 57.04 pg/g at the dumping site, and within a range of 13.42-47.76 pg/g near this site. Thus, European sediment quality objectives were exceeded. The higher concentrations coincided with changes in the ratio between PCDD and PCDF levels, suggesting the influence of the sewage sludge on coastal sediments. PMID:11456183

Eljarrat, E; Caixach, J; Rivera, J

2001-08-01

234

Production of pyrolytic liquids from industrial sewage sludges in an induction-heating reactor.  

PubMed

With the application of induction-heating, the pyrolytic experiments have been carried out for three sewage sludges from the food processing factories in an externally heated fixed-bed reactor. The thermochemical characteristics of sludge samples were first analyzed. The results indicated that the calorific value had about 15 MJ/kg on an average, suggesting that it had a potential for biomass energy source. However, its nitrogen concentration was relatively high. From the thermogravimetric analysis (TGA) curves, it showed that the pyrolysis reaction can be almost finished in the temperature range of 450-750 degrees C. The yields of resulting liquid and char products from the pyrolysis of sewage sludge were discussed for examining the effects of pyrolysis temperature (500-800 degrees C), heating rate (200-500 degrees C/min), and holding time (1-8 min). Overall, the variation of yield was not so significant in the experimental conditions for three sewage sludges. All results of the resulting liquid products analyzed by elemental analyzer, pH meter, Karl-Fischer moisture titrator and bomb calorimeter were in consistence with those analyses by FTIR spectroscopy. Furthermore, the pyrolysis liquid products contained large amounts of water (>73% by weight) mostly derived from the bound water in the biosludge feedstocks and the condensation reactions during the pyrolysis reaction, and fewer contents of oxygenated hydrocarbons composing of carbonyl and nitrogen-containing groups, resulting in low pH and low calorific values. PMID:18656347

Tsai, Wen-Tien; Chang, Jeng-Hung; Hsien, Kuo-Jung; Chang, Yuan-Ming

2009-01-01

235

Preference of the green peach aphid, Myzus persicae, for plants grown in sewage sludges  

SciTech Connect

Since passage of the Clean Water Act in the 1970s, disposal of the millions of tonnes of sewage sludge generated annually has become a major concern of municipalities throughout the United States. With the range of other disposal options having narrowed in recent years, application of sludge to land is increasingly viewed as a practical and economical means to recycle this waste material. However, sludges from large cities with industries may be contaminated with various toxic chemicals, including polychlorinated biphenyls (PCBs), other organic chemicals, such as pesticides, and heavy metals. Sludge application to land thus has the potential adversely to affect biota and the functioning of terrestrial ecosystems. The authors previously demonstrated marked reductions in fecundity and survival of green peach aphids, Myzus persicae, on collard plants, Brassica oleracea var. sabellica, growing in soil treated with chemically contaminated sludge as compared to aphids on plants growing either in soil treated with uncontaminated sludge of soil conventionally fertilized. Reduced plant growth and increased restlessness in aphids in the contaminated sludge treatment were also observed. The purpose of the present study was to examine more closely the influence of sludge contaminants on aphid settling behavior as indicated by differential preference of M. persicae for leaves of its collard host grown under different soil conditions.

Culliney, T.W.; Pimentel, D.

1987-08-01

236

Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction.  

PubMed

The purpose of this study is to quantify the thermal conductivity of sewage sludge related to reaction temperature for the optimal design of a thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dewatered sludge related to the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bound water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry in a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.64 times lower than that of the water at 20. However, above 200, it became 0.704 W/m* degrees C, which is about 4% higher than that of water. As a result, the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. Implications: The thermal conductivity of dewatered sludge is an important factor the optimal design of a thermal hydrolysis reactor. The dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. The liquid phase slurry has a higher thermal conductivity than pure water. PMID:25562934

Song, Hyoung Woon; Park, Keum Joo; Han, Seong Kuk; Jung, Hee Suk

2014-12-01

237

Experimental Research of the Oxygen-Enriched Combustion of Sewage Sludge and Coal in CFB  

NASA Astrophysics Data System (ADS)

Sewage sludge is the by-products of sewage treatment, and it is a fuel of high moisture, high ash and low caloric. Oxygen-enriched combustion technology is one of the new and clean coal combustion technologies that can control pollutant emission, which makes CO2 separation, SO2 treatment become easier, and NOx emission reduced. In this paper, we carried out the experimental research on the advantages of oxygen-enriched combustion and the characteristics of sewage sludge in a CFB incinerator that the diameter of the furnace is 100 mm, It is an important foundation for the industrialized application of the oxygen-enriched combustion of sewage sludge and coal in CFB. Experimental analyzed on the combustion characteristics of three conditions in the oxygen concentration of 21%35%, which were the weight ratio of coal and sludge were 1?1, 1?2 and also the coal was given. Furthermore, the change of gas composition along with the change of oxygen content and the temperature of dense phase region was analyzed. The results showed that the combustion characteristics differ from the different mixing rate between coal and sludge in different oxygen atmosphere, when the fluidized air velocity was 1.56 m/s1.88 m/s, the combustion stability; When the amount of the fuel was constant, as the increase of the oxygen contents in the experimental atmosphere, the total air volume decreased, the furnace temperature increased gradually, the concentration of SO2 and NOx showed increasing trend, which is beneficial to the removal of SO2; The concentration of NOx was increased gradually as temperature of the fluidized bed increased.

Xin, S. W.; Lu, X. F.; Liu, H. Z.

238

Occurrence of Listeria sp. and L. monocytogenes in sewage sludge used for land application: effect of dewatering, liming and storage in tank on survival of Listeria species  

Microsoft Academic Search

The application of sewage sludge to agricultural land is widely used in France. To determine the impact of sludge treatments, concentrations of Listeria sp., Listeria monocytogenes and faecal indicators were monitored in five types of sludge from three sewage treatment plants in Angers (France) and its suburbs over a 1-year period. On the whole, bacteria were reduced in numbers through

N Garrec; F Picard-Bonnaud; A. M Pourcher

2003-01-01

239

Study Into Combustion of Sewage Sludge as Energetic Fuel / Badania Spalania OSADW ?CIEKOWYCH Jako Paliwa Energetycznego  

NASA Astrophysics Data System (ADS)

Along with the development of civilisation, it can be observed that the amount of waste of different type is growing and the preparation process for further usage of the waste or the utilization process differs. What is to be focused on is municipal sewage sludge which, due to its energetic properties, constitutes a valuable fuel. The problem of usage of municipal sewage sludge remains still unsolved, which stems both from the increasing amount of such waste, and from the lack of properly adjusted systems for thermal processing thereof. What is of an additional obstacle are the increasingly stricter legal regulations regarding disposal of sewage sludge after the year 2013; hence, it is necessary to consider various benefits resulting from thermal processing of such waste. This work presents an overview of methods of disposal of sewage sludge, taking into consideration, in particular, thermal methods including the process of combustion and co-combustion as a means of successful utilization. The research section of the work presents the results of study into the mechanism and kinetics of combustion of sewage sludge in various conditions of the process carried out in air flow. Combustion of sewage sludge has been compared against combustion of coal and biomass. Wraz z rozwojem cywilizacji zaobserwowa? mo?na post?puj?ce powstawanie r?nego rodzaju odpadw r?ni?cych si?, m.in. sposobem przygotowania do dalszego wykorzystania, czy procesem utylizacji. Na szczegln? uwag? zas?uguj? komunalne osady ?ciekowe, ktre z uwagi na w?a?ciwo?ci energetyczne stanowi? cenne paliwo. Problem wykorzystania komunalnych osadw ?ciekowych jest nadal otwarty, a wynika to zarwno z rosn?cej produkcji tych odpadw, jak i braku odpowiednio przystosowanych instalacji do termicznego ich przekszta?cania. Dodatkowym utrudnieniem s? zaostrzaj?ce si? przepisy prawne dotycz?ce sk?adowania osadw ?ciekowych po 2013 r. sk?aniaj?ce tym samym do rozwa?a? nad korzy?ciami p?yn?cymi z termicznej obrbki tych odpadw. W pracy przedstawiono przegl?d sposobw unieszkodliwiania osadw ?ciekowych ze szczeglnym uwzgl?dnieniem metod termicznych, g?wnie spalania i wsp?spalania jako drogi do ich sukcesywnej utylizacji. W cz??ci badawczej pracy zaprezentowano wyniki bada? mechanizmu i kinetyki spalania osadw ?ciekowych w r?nych warunkach procesu prowadzonego w strumieniu powietrza. Spalanie osadw ?ciekowych porwnano ze spalaniem w?gla oraz biomasy.

Kijo-Kleczkowska, Agnieszka; ?roda, Katarzyna; Otwinowski, Henryk

2013-12-01

240

Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China.  

PubMed

The occurrence and distribution of eight quinolones, nine sulfonamides, and five macrolides were investigated in sewage sludge from 45 wastewater treatment plants in 23 cities in China. Among all the antibiotics considered, quinolones were the dominant antibiotics detected in all samples [total concentrations up to 8905 ?g/kg, dry weight (dw)], followed by macrolides (85.1 ?g/kg, dw), and sulfonamides (22.7 ?g/kg, dw). High concentrations of quinolones in sewage sludge indicated that antibiotics are widely used and extensive pollutants in China. Significant differences were observed for the total concentrations of antibiotics in sludge samples among the 45 WWTPs. To evaluate the potential factors affecting the antibiotic levels in sewage sludge, wastewater and sludge characteristics, as well as the operational conditions and treatment techniques in WWTPs were investigated. The results indicated that the antibiotic levels in sewage sludge depend to a great extent on wastewater characteristics. Significant correlation between total organic carbon (TOC) and total concentrations of antibiotics was also found in studied WWTPs, indicating that TOC could affect the sludge adsorption capability to the antibiotics to some extent. Moreover, the relation between treatment techniques and the total concentrations of antibiotics in sludge showed that antibiotic levels in sludge increased with longer solid retention time. PMID:23340024

Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

2013-02-15

241

Moisture retention of municipal solid waste mixed with sewage sludge and ash in a semi-arid climate.  

PubMed

Mechanisms involved in moisture storage in refuse are explored using data from four sets of experiments in a semi-arid climate. Two laboratory series of experiments contained municipal solid waste (MSW) amended with sewage sludge, one with higher proportions of ash in the MSW than the other. Outdoor experiments contained waste streams with different proportions of ash. Field cells compared moisture retention of refuse and MSW co-disposed with sewage sludge. Sewage sludge at high loads was found to increase the moisture storage relative to unamended MSW. Belt-pressed sludge retained water as bound water that was released by decay and changing pH. Sun-dried sludge also retained more moisture than MSW alone. In gravimetric terms, ash reduced the storage potential of MSW, in laboratory and outdoor experiments. However, outdoor experiments released less leachate from ash-rich refuse than middle-income waste with no ash fraction. PMID:15988940

Dollar, L H

2005-06-01

242

Investigation into the distribution of polycyclic aromatic hydrocarbons (PAHs) in wastewater sewage sludge and its resulting pyrolysis bio-oils.  

PubMed

This study firstly investigated the distributions of 16 US EPA priority controlled polycyclic aromatic hydrocarbons (PAHs) in seven kinds of different wastewater sewage sludges and bio-oils from the sludge pyrolysis. A lab-scale tube furnace was used to simulate sludge pyrolysis and retrieve condensed oils. PAH determination was conducted with the extraction, concentration, and purification of PAHs in sludge samples and the resulting bio-oils, and then GC-MS analysis. Then, the factors influencing the distributions of different rings of PAHs in pyrolysis bio-oil, such as the chemical characteristics of raw sewage sludge and pyrolysis condition, were analyzed. It was noted that the total amount of PAHs in raw sludge is evidently varied with the sludge resource, with values ranging between 9.19 and 23.68 mg/kg. The middle molar weight (MMW) PAH distribution is dominant. PAH concentrations in sludge pyrolysis bio-oil were ranged from 13.72 to 48.9 mg/kg. The most abundant PAHs were the low molar weight (LMW) PAHs. It could be found that the concentration of LMW PAHs in bio-oil is correlated with MMW PAHs in raw sewage sludge at best, which the correlation coefficient is 0.607. For MMW and HMW (high molar weight) PAHs, they are significantly correlated with HMW PAHs in raw sewage sludge, which the correlation coefficients are 0.672 and 0.580, respectively. The concentration of LMW PAHs in bio-oil is also relatively significant and correlated with the volatile matter content of raw sludge. In addition, it was proved that final temperature and residence time have important influences on PAH generations during the pyrolysis of sewage sludge. PMID:24388824

Hu, Yanjun; Li, Guojian; Yan, Mi; Ping, Chuanjuan; Ren, Jianli

2014-03-01

243

FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT  

SciTech Connect

This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

2003-09-21

244

PHARMACEUTICALS AND PERSONAL CARE PRODUCTS IN BIOSOLIDS/SEWAGE SLUDGES - THE INTERFACE BETWEEN ANALYTICAL CHEMISTRY AND REGULATION  

EPA Science Inventory

Modern sanitary practices result in large volumes of human waste, as well as domestic and industrial sewage, being collected and treated at common collection points, wastewater treatment plants (WWTP). In recognition of the growing use of sewage sludges as a fertilizers and as so...

245

Beneficial uses of nuclear byproducts/sewage sludge irradiation project. Progress report, October 1981-March 1982  

SciTech Connect

A cooperative agreement was made between Albuquerque and DOE during FY81 for sewage sludge irradiation in upgrading the sewage treatment facilities. Other potential sites for implementation of sludge irradiation technology were also considered. Sludge was irradiated in the SIDSS for agronomy and animal feeding experiments. Sludge was also irradiated for use on turf areas. Cooperative work was also performed on grapefruit irradiation for fruit fly disinfestation, and on irradiation of sugar cane waste (bagasse) for enhanced ruminant digestibility. Preliminary design work began on a shipping cask to accomodate WESF Cs-137 capsules. The shielding performance, steady-state thermal response, and response to specified regulatory accident sequences have been evaluated. Work has been initiated on pathogen survival and post-irradiation pathogen behavior. Agronomy field, greenhouse, and soil chemistry studies continue. Various field experiments are ongoing. The fifth year of a five-year program to evaluate the potential use of a sludge product as a range feed supplement for cows is now in its fifth year. In agricultural economics, a preliminary marketing plan has been prepared for Albuquerque.

Zak, B.D. (ed.)

1982-12-01

246

Environmental assessment of supercritical water oxidation and other sewage sludge handling options.  

PubMed

Sustainable development relies on the eco-efficient use of all flows in society; more value created out of each resource unit. Supercritical water oxidation (SCWO) can be used for treatment of wet organic waste. The technology has been under development for over 20 years but has not yet been fully commercialized. SCWO allows for complete oxidation of all organics in sewage sludge and almost complete recovery of the inherent energy, essentially without harmful emissions. In this paper, a life-cycle assessment (LCA) of sewage sludge SCWO (Aqua-Critox) is presented and the results are compared with LCA results for other sludge handling options: agricultural use, co-incineration with municipal solid waste, incineration with subsequent phosphorus extraction (Bio-Con) and sludge fractionation with phosphorus recovery (Cambi-KREPRO). For SCWO, beneficial utilization of the heat of reaction is of crucial importance for the outcome. The electricity consumed by pumping and the nitrous oxide produced are other important parameters. The best sludge handling option from an environmental point of view depends on what aspect is considered more important in the impact assessment. Regarding global warming, the energy recovery methods perform better than agricultural use. PMID:16200986

Svanstrm, Magdalena; Frling, Morgan; Olofsson, Mattias; Lundin, Margareta

2005-08-01

247

Microbial community of sulfate-reducing up-flow sludge bed in the SANI process for saline sewage treatment  

Microsoft Academic Search

This study investigated the microbial community of the sulfate-reducing up-flow sludge bed (SRUSB) of a novel sulfate reduction,\\u000a autotrophic denitrification, and nitrification integrated (SANI) process for saline sewage treatment. The investigation involved\\u000a a lab-scale SANI system treating synthetic saline sewage and a pilot-scale SANI plant treating 10m3\\/day of screened saline sewage. Sulfate-reducing bacteria (SRB) were the dominant population, responsible for

Jin Wang; Manyuan Shi; Hui Lu; Di Wu; Ming-Fei Shao; Tong Zhang; George A. Ekama; Mark C. M. van Loosdrecht; Guang-Hao Chen

2011-01-01

248

Devolatilization and ash comminution of two different sewage sludges under fluidized bed combustion conditions  

SciTech Connect

Two different wet sewage sludges have been characterized under fluidized bed combustion conditions with reference to their devolatilization behavior and ash comminution with the aid of different and complementary experimental protocols. Analysis of the devolatilization process allowed to determine the size of fuel particle able to achieve effective lateral spreading of the volatile matter across the cross-section of medium-scale combustors. Primary fragmentation and primary ash particle characterization pointed out the formation of a significant amount of relatively large fragments. The mechanical properties of these fragments have been characterized by means of elutriation/abrasion tests using both quartz and sludge ash beds. (author)

Solimene, R.; Urciuolo, M.; Cammarota, A.; Chirone, R. [Istituto di Ricerche sulla Combustione (IRC) - CNR, Napoli (Italy); Salatino, P. [Istituto di Ricerche sulla Combustione (IRC) - CNR, Napoli (Italy); Dipartimento di Ingegneria Chimica Universita degli Studi di Napoli Federico II, Napoli (Italy); Damonte, G.; Donati, C.; Puglisi, G. [ECODECO Gruppo A2A, Giussago (PV) (Italy)

2010-04-15

249

Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge.  

PubMed

Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1-0.2 mgL(-1)) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH4/hg VSS) and aerobic activity (SOUR: 2.21 mMO2/hg VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic condition and PCP on microbial community. Furthermore, nucleotide sequencing indicated that the main microorganisms for PCP degradation might be related to Actinobacterium and Sphingomonas. These results provided insights into situ bioremediation of environments contaminated by PCP and had practical implications for the strategies of PCP degradation. PMID:25151236

Lv, Yuancai; Chen, Yuancai; Song, Wenzhe; Hu, Yongyou

2014-09-15

250

Emission characteristics of granulated fuel produced from sewage sludge and coal slime.  

PubMed

The neutralization of wastewater treatment residues is an issue for many countries. The European Union (EU) legal regulations have limited the use of the residues in agriculture and implemented a ban for their disposal. Therefore, urgent action should be taken to find solutions for the safe disposal of sewage sludge. The problem refers in particular to the new EU member countries, including Poland, where one can now observe an intensive development of sewage system networks and new sewage treatment plants. At the same time, these countries have few installations for thermal sewage sludge utilization (e.g., there is only one installation of that type in Poland). Simultaneously, there are many coal-fired mechanical stoker-fired boilers in some of these countries. This paper presents suggestions for the production of granulated fuel from sewage sludge and coal slime. Additionally, among others, lime was added to the fuel to decrease the sulfur compounds emission. Results are presented of research on fuel with two average grain diameters (approximately 15 and 35 mm). The fuel with such diameters is adapted to the requirements of the combustion process taking place in a stoker-fired boiler. The research was aimed at identifying the behavior of the burning fuel, with special attention paid to its emission properties (e.g., to the emissions of oxides of nitrogen [NO(x)], sulfur dioxide [SO2], and carbon monoxide [CO], among others). The concentration and emission values were compared with similar results obtained while burning hard coal. The combustion process was carried out in a laboratory stand where realization of the large-scale tests is possible. The laboratory stand used made simulation possible for a wide range of burning processes in mechanical stoker-fired boilers. PMID:21243903

Wzorek, Ma?gorzata; Kozio?, Micha?; Scierski, Waldemar

2010-12-01

251

Optimization of digestion methods for sewage sludge using the Plackett-Burman saturated design  

Microsoft Academic Search

The Plackett-Burman saturated factorial design was used to select optimized dissolution conditions for sewage sludge samples.\\u000a Three different digestion methods were applied: i) microwave oven digestion in a domestic oven with Parr-type reactors; ii)\\u000a microwave oven digestion with controlled-pressure reactors; iii) pressure bomb reactor heated on a hot plate. The three methods\\u000a were validated by statistically comparing the metal contents

I. Lavilla; B. Prez-Cid; C. Bendicho

1998-01-01

252

Enzyme activities as indicators of the stabilization of sewage sludges composting with Eisenia foetida  

Microsoft Academic Search

Evolution of earthworm (Eisenia foetida, Savigny) biomass and changes in enzyme activities during 18 weeks of sewage sludge vermicomposting were studied. With time, hydrolase (?-glucosidase, urease, BAA-hydrolysing protease and phosphatase) and dehydrogenase (DH-ase) activities decreased as available organic compounds (water-soluble carbon) decreased. A high correlation among all enzyme activities and between each activity and the water-soluble carbon (WSC) led to

E. Benitez; R. Nogales; C. Elvira; G. Masciandaro; B. Ceccanti

1999-01-01

253

Anaerobic co-digestion of sewage sludge: Application to the macroalgae from the Venice lagoon  

Microsoft Academic Search

Possibilities of co-digestion of sewage sludge (SS) with other organic wastes are examined in this paper. Anaerobic co-digestion of macroalgae of the Venice lagoon (A) with SS, in wastewater treatment plants is studied in detail. This approach can contribute to the solution of the final disposal of the 50 000 m3 of macrophytes harvested each season. These are mainly Ulva

F. Cecchi; P. Pavan; J. Mata-Alvarez

1996-01-01

254

Biohydrogen production from sewage sludge using a continuous hydrogen fermentation system with a heat treatment vessel  

Microsoft Academic Search

An anaerobic hydrogen fermentation system with a thermophilic flow-through reactor (55C) for hydrogen production and a boiling\\u000a retention vessel (100C) for continuous heat treatment, was studied for enhanced continuous hydrogen fermentation using sewage\\u000a sludge. The performance of the hydrogen fermentation system was tested at various Hydraulic Retention Times (HRTs) ranged\\u000a from 1 to 5 days. The heat treatment of the

Jung-Hui Woo; Young-Chae Song

2010-01-01

255

Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste  

Microsoft Academic Search

The feasibility of sewage sludge co-digestion using intermediate waste generated inside a wastewater treatment plant, i.e. trapped grease waste from the dissolved air flotation unit, has been assessed in a continuous stirred lab reactor operating at 35C with a hydraulic retention time of 20days. Three different periods of co-digestion were carried out as the grease waste dose was increased. When

G. Silvestre; A. Rodrguez-Abalde; B. Fernndez; X. Flotats; A. Bonmat

2011-01-01

256

Illicit and abused drugs in sewage sludge: method optimization and occurrence.  

PubMed

A sensitive and reliable method for the determination of 20 abused and illicit drugs and their metabolites in sewage sludge has been developed and validated. To the authors' knowledge, nine out of the 20 selected analytes, namely, cocaethylene, ephedrine, heroin, alprazolam, lysergic acid diethylamide (LSD), its metabolite 2-oxo-3-hydroxy-LSD, and the cannabinoids ?(9)-tetrahydrocannabinol (THC), cannabinol (CBN) and cannabidiol (CBD), are investigated for the first time in this matrix. In the optimized approach, freeze-dried sewage sludge samples were extracted by means of pressurized liquid extraction, and the extracts were further cleaned-up by solid phase extraction. Analytes were determined by liquid chromatography coupled to tandem mass spectrometry. Method limits of quantification were below 3.3ng/g d.w. for all compounds but cannabinoids (8.2-22.5ng/g d.w.). Method repeatability was below 14% for most compounds. Overall method recoveries were low due to the presence of matrix interferences that could not be completely eliminated and suppressed the ionization of the target analytes between 26% and 89%. However, extraction losses and matrix effects were satisfactorily corrected through the use of isotopically labeled analogs as surrogate standards, ensuring reliable results. The method was applied to the analysis of various sewage sludge samples. Cannabinoids, methadone and its metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) were the most ubiquitous and abundant compounds, showing maximum concentrations above 100ng/g d.w. in all cases (up to 579ng/g d.w. in the case of THC). This work is the first evidence of the presence of the cannabinoids CBN, CBD, and THC in sewage sludge. PMID:24275487

Mastroianni, Nicola; Postigo, Cristina; de Alda, Miren Lopez; Barcelo, Damia

2013-12-27

257

Experimental investigation and modeling of gasification of sewage sludge in the circulating fluidized bed  

Microsoft Academic Search

Experiments of sewage sludge gasification were performed in a circulating fluidized bed of pilot plant scale (15m height, 0.1m i.d.). For the examination of the influence of the air ratio, gasification temperature, feeding height and fluidization velocity several screening tests were conducted. To understand better the results from the screening experiments, axial profiles of the gas composition were measured. As

I. Petersen; J. Werther

2005-01-01

258

Sewage sludge pretreatment and disposal. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning techniques and equipment used in the pretreatment processes and disposal of sewage sludges. Topics include resource and energy recovery operations, land disposal, composting, ocean disposal, and incineration. Digestion, dewatering, and disinfection are among the pretreatment processes discussed. Environmental aspects, including the effects on soils, plants, and animals, are also presented. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-09-01

259

Thermoactive extracellular proteases of Geobacillus caldoproteolyticus , sp. nov., from sewage sludge  

Microsoft Academic Search

A proteolytic thermophilic bacterial strain, designated as strain SF03, was isolated from sewage sludge in Singapore. Strain SF03 is a strictly aerobic, Gram stain-positive, catalase-positive, oxidase-positive, and endospore-forming rod. It grows at temperatures ranging from 35 to 65C, pH ranging from 6.0 to 9.0, and salinities ranging from 0 to 2.5%. Phylogenetic analyses revealed that strain SF03 was most similar

Xiao-Ge Chen; Olena Stabnikova; Joo-Hwa Tay; Jing-Yuan Wang; Stephen Tiong-Lee Tay

2004-01-01

260

Transformation and availability of nutrients and heavy metals during integrated composting-vermicomposting of sewage sludges.  

PubMed

Transformation and availability of nutrients and some heavy metals were assessed during the integrated composting-vermicomposting of both primary sewage sludge (PSS) and waste activated sewage sludge (WAS) using matured vermicompost as indigenous bulking material and employing Eisenia fetida as earthworm species. Vermicomposting resulted in significant increase in total N (TN) (PSS: 41.7-64.6%, F=11.6, P<0.05; WAS: 36.4-58.6%, F=6.4, P<0.05), water soluble N (WSN) (PSS: 37.1-50.5%, F=30.1, P<0.05; WAS: 40.1-53.0%, F=27.6, P<0.05), total P (TP) (PSS: 39.9-69.8%, F=27.1, P<0.05; WAS: 32.2-56.6%, F=21.4, P<0.05) and water soluble P (WSP) (PSS: 25.2-34.3%, F=163.9, P<0.05; WAS: 24.1-34.2%, F=144.3, P<0.05) as compared to the initial compost material depending on different experimental conditions. The study demonstrated that the vermicomposting significantly improved the availability of nutrients in sewage sludges. In addition, vermicomposting considerably reduced the availability of heavy metals except Fe and Mn, presumably by forming organic-bound complexes in spite of several fold increase in their total content. The environmental conditions (i.e., temperature and relative humidity), in general, showed significant effect on the transformation and availability of nutrients and heavy metals. There was no effect of earthworm density on the transformation and availability of heavy metals and nutrients except N and P, possibly due to prior exposure during acclimation period in sewage sludge. PMID:22277776

Hait, Subrata; Tare, Vinod

2012-05-01

261

Enhanced biohydrogen production from tofu residue by acid\\/base pretreatment and sewage sludge addition  

Microsoft Academic Search

Anaerobic dark fermentation is considered a promising technology for clean energy production and waste reduction. In the present work, tofu residue and sewage sludge were utilized as substrates for fermentative hydrogen production. To increase the biodegradability, tofu residue was pretreated for 30min in the presence of HCl and NaOH at various concentrations (0, 0.5, 1.0, and 2.0%), and then fermented

Dong-Hoon Kim; Dong-Yeol Lee; Mi-Sun Kim

2011-01-01

262

Pyrolysis Analysis and Solid Residue Stabilization of Polymers, Waste Tyres, Spruce Sawdust and Sewage Sludge  

Microsoft Academic Search

PurposeThe pyrolysis thermal treatment of several waste such as polymers (PE, PVC, PS), sewage sludge, tyres, waste wood as spruce\\u000a sawdust and the successive stabilization of the pyrolysis residue has been investigated on analytical and energetic point\\u000a of view. This thermal process has been considered as it allows the reduction of the waste mass with the recovery of its energy

M. Grigiante; M. Ischia; M. Baratieri; R. Dal Maschio; M. Ragazzi

2010-01-01

263

BEHAVIOR CANOLA (BRASSICA NAPUS) FOLLOWING A SEWAGE SLUDGE TREATMENT  

E-print Network

. INTRODUCTION In Tunisia, the amount of sludge produced by wastewater treatment stations is constantly waste water treatment stations, in other words, most of it is wastewater from domestic sources. The second type is obtained from the treatment of industrial wastewater or partly from industrial wastewater

Boyer, Edmond

264

EFFECTS OF SEWAGE SLUDGE ON CORN SILAGE AND ANIMAL PRODUCTS  

EPA Science Inventory

Studies were conducted to determine the impact of heavy metals in sludge-fertilized corn silage on the food and feed chain when the silage containing up to 5.26 mg Cd/kg was fed to dairy goats and feeder lambs. Neither health nor performance of the goats or lambs were significant...

265

A METHOD FOR CONCENTRATING VIRUSES RECOVERED FROM SEWAGE SLUDGES  

EPA Science Inventory

Buffered 10% beef extract eluates of primary, activated, and anaerobic mesophilically digested sludges were concentrated 20-fold by the Katzenelson organic flocculation procedure after diluting the beef extract in the eluates to a final concentration of 3%. The weighted mean reco...

266

CONTROL OF PATHOGENS AND VECTOR ATTRACTION IN SEWAGE SLUDGE (1999 EDITION) (EPA/625/R-92/013)  

EPA Science Inventory

Properly treated sewage sludge (biosolids) is used as a soil conditioner and partial fertilizer in the United States and many other countries. While sludge has beneficial plant nutrients and soil-conditioning properties, if it is not treated. It may also contain bacteria, viruses...

267

Earthworm response to 10 weeks of incubation in a pot with acid mine spoil, sewage sludge, and lime  

Microsoft Academic Search

Applications of sewage sludge and lime have been used to restore some of the nearly 1.0 million ha of unreclaimed acid mine spoils in the United States. Earthworms might also aid in the reconstruction of mine spoils, but the earthworm response to mine spoils and sludge has not been widely studied. The objective of the present study was to examine

E. Pallant; L. M. Hilster

1996-01-01

268

Quick Startup of EGSB Reactor Seeded with Anaerobic Digestion Sludge for the Treatment of Actual Domestic Sewage under Ambient Temperature  

Microsoft Academic Search

To obtain the rapid startup of EGSB reactor seeded with anaerobic digestion sludge for the treatment of actual domestic wastewater under ambient temperature, two startup methods i.e. A and B were tried out at 25C. For method A, reactor A (RA) was fed with brewery wastewater to incubate granular sludge and then treated domestic sewage, for method B, reactor B

Dong Chunjuan; Li Qingwei; Geng Zhaoyu; Wang Haihui; Wang Zengzhang

2010-01-01

269

The growth of Agropyron elongatum in an artificial soil mix from coal fly ash and sewage sludge  

Microsoft Academic Search

A greenhouse experiment was performed to evaluate the feasibility of using an artificial soil medium produced from alkaline coal fly ash and sewage sludge for the growth of Agropyron elongatum (tall wheat grass). Sludge was amended with ash at an application rate of 0, 5, 10, 35 and 50% (w\\/w). Each mixture was then mixed with a loamy soil at

J. W. C. Wong; D. C. Su

1997-01-01

270

Effect of municipal sewage sludge application on growth of two reclamation shrub species in copper mine spoils  

Microsoft Academic Search

One-year old transplants of fourwing saltbush (Atriplex canescens (Pursh) Nutt.) and mountain big sagebrush (Artemisia tridentata ssp. vaseyana (Rybd.) Beetle) were grown for 9 mo in large greenhouse pots containing copper mine spiol material amended with one of three rates of municipal sewage sludge. Sludge was thoroughly mixed with the soils in some pots and concentrated around the root plug

B. R. Sabey; B. L. Webb; R. L. Pendleton

2009-01-01

271

Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine  

USGS Publications Warehouse

Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (<5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

Cravotta, C.A., III

1998-01-01

272

Towards understanding the effects of additives on the vermicomposting of sewage sludge.  

PubMed

This work evaluated the effects of additives on the chemical properties of the final products (vermicompost) from vermicomposting of sewage sludge and the adaptable characteristics of Eisenia fetida during the process. An experimental design with different ratios of sewage sludge and the additives (cattle dung or pig manure) was conducted. The results showed that the vermicomposting reduced total organic carbon and the quotient of total organic carbon to total nitrogen (C/N ratio) of the initial mixtures and enhanced the stability and agronomical value of the final products. Notably, principal component analysis indicated that the additives had significant effects on the characteristics of the vermicomposts. Moreover, the vermibeds containing cattle dung displayed a better earthworm growth and reproduction than those with pig manure. Additionally, redundancy analysis demonstrated that electrical conductivity (EC), pH, and C/N ratio played crucial roles on earthworm growth and reproduction. In all, the additives with high C/N ratio, pH buffering capacity, and low EC are recommended to be used for vermicomposting of sewage sludge. PMID:25328094

Xing, Meiyan; Lv, Baoyi; Zhao, Chunhui; Yang, Jian

2014-10-21

273

Food waste co-digestion with sewage sludge--realising its potential in the UK.  

PubMed

The application of anaerobic co-digestion of food waste with sewage sludge, although well established in many European countries, is still in its infancy in the UK. This process has many benefits to offer, with a successful application often associated with increased renewable energy potential, outweighing constraints associated with the variability of food waste and its handling requirements prior to co-digestion. With both regulations and water infrastructures designed and constructed on the basis of linear views and sectorial requirements and conditions and technologies from the past in many parts of the world, in the UK, sewage sludge and food waste digestion operations are also under very different regulatory and management regimes. With sustainability requiring that we do not address single issues in isolation, but through a systems approach that delivers integrated solutions, co-digestion of food waste with sewage sludge could become such a solution. If carefully applied, co-digestion can deliver beneficial synergies for the water industry and authorities responsible for food waste management. The collaboration of all relevant stakeholders and regulators to support changes to current regulatory frameworks to enable this, is proposed as the way forward, particularly as their complexity has been identified as the major hurdle to the implementation of co-digestion in the UK. PMID:22940124

Iacovidou, Eleni; Ohandja, Dieudonn-Guy; Voulvoulis, Nikolaos

2012-12-15

274

Sampling of tar from sewage sludge gasification using solid phase adsorption.  

PubMed

Sewage sludge is a residue from wastewater treatment plants which is considered to be harmful to the environment and all living organisms. Gasification technology is a potential source of renewable energy that converts the sewage sludge into gases that can be used to generate energy or as raw material in chemical synthesis processes. But tar produced during gasification is one of the problems for the implementation of the gasification technology. Tar can condense on pipes and filters and may cause blockage and corrosion in the engines and turbines. Consequently, to minimize tar content in syngas, the ability to quantify tar levels in process streams is essential. The aim of this work was to develop an accurate tar sampling and analysis methodology using solid phase adsorption (SPA) in order to apply it to tar sampling from sewage sludge gasification gases. Four types of commercial SPA cartridges have been tested to determine the most suitable one for the sampling of individual tar compounds in such streams. Afterwards, the capacity, breakthrough volume and sample stability of the Supelclean ENVI-Carb/NH(2), which is identified as the most suitable, have been determined. Basically, no significant influences from water, H(2)S or NH(3) were detected. The cartridge was used in sampling real samples, and comparable results were obtained with the present and traditional methods. PMID:22526666

Ortiz Gonzlez, Isabel; Prez Pastor, Rosa Ma; Snchez Hervs, Jos Ma

2012-06-01

275

Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier.  

PubMed

This work presents results of experimental studies on the gasification process of granulated sewage sludge in a laboratory fixed bed gasifier. Nowadays, there is a large and pressing need for the development of thermal methods for sewage sludge disposal. Gasification is an example of thermal method that has several advantages over the traditional combustion. Gasification leads to a combustible gas, which can be used for the generation of useful forms of final energy. It can also be used in processes, such as the drying of sewage sludge directly in waste treatment plant. In the present work, the operating parameters were varied over a wide range. Parameters, such as air ratio ? = 0.12 to 0.27 and the temperature of air preheating t = 50 C to 250 C, were found to influence temperature distribution and syngas properties. The results indicate that the syngas heating value decreases with rising air ratio for all analysed cases: i.e. for both cold and preheated air. The increase in the concentration of the main combustible components was accompanied by a decrease in the concentration of carbon dioxide. Preheating of the gasification agent supports the endothermic gasification and increases hydrogen and carbon monoxide production. PMID:24938298

Werle, Sebastian

2014-10-01

276

Thermo-chemical process with sewage sludge by using CO2.  

PubMed

This work proposed a novel methodology for energy recovery from sewage sludge via the thermo-chemical process. The impact of CO2 co-feed on the thermo-chemical process (pyrolysis and gasification) of sewage sludge was mainly investigated to enhance thermal efficiency and to modify the end products from the pyrolysis and gasification process. The CO2 injected into the pyrolysis and gasification process enhance the generation of CO. As compared to the thermo-chemical process in an inert atmosphere (i.e., N2), the generation of CO in the presence of CO2 was enhanced approximately 200% at the temperature regime from 600 to 900C. The introduction of CO2 into the pyrolysis and gasification process enabled the condensable hydrocarbons (tar) to be reduced considerably by expediting thermal cracking (i.e., approximately 30-40%); thus, exploiting CO2 as chemical feedstock and/or reaction medium for the pyrolysis and gasification process leads to higher thermal efficiency, which leads to environmental benefits. This work also showed that sewage sludge could be a very strong candidate for energy recovery and a raw material for chemical feedstock. PMID:23792821

Kwon, Eilhann E; Yi, Haakrho; Kwon, Hyun-Han

2013-10-15

277

Experimental study of the bio-oil production from sewage sludge by supercritical conversion process.  

PubMed

Environment-friendly treatment of sewage sludge has become tremendously important. Conversion of sewage sludge into energy products by environment-friendly conversion process, with its energy recovery and environmental benefits, is being paid significant attention. Direct liquefaction of sewage sludge into bio-oils with supercritical water (SCW) was therefore put forward in this study, as de-water usually requiring intensive energy input is not necessary in this direct liquefaction. Supercritical water may act as a strong solvent and also a reactant, as well as catalyst promoting reaction process. Experiments were carried out in a self designed high-pressure reaction system with varying operating conditions. Through orthogonal experiments, it was found that temperature and residence time dominated on bio-oil yield compared with other operating parameters. Temperature from 350 to 500C and reaction residence time of 0, 30, 60min were accordingly investigated in details, respectively. Under supercritical conversion, the maximum bio-oil yield could achieve 39.73%, which was performed at 375C and 0min reaction residence time. Meanwhile, function of supercritical water was concluded. Fuel property analysis showed the potential of bio-oil application as crude fuel. PMID:23816312

Wang, Yan; Chen, Guanyi; Li, Yanbin; Yan, Beibei; Pan, Donghui

2013-11-01

278

Bioanalytical characterization of dioxin-like activity in sewage sludge from Beijing, China.  

PubMed

In this preliminary study, the bioanalytical characterization of dioxin-like activity in the sludge of all the nine municipal sewage treatment plants from Beijing city was studied using chemically activated luciferase gene expression (CALUX) assay. The influence of heating period in winter, sewage and sludge treatment processes on the occurrence of dioxin-like activity was also discussed. For the use of clean coal and natural gas, heating did not have significant influence on the occurrence level of PCDD/Fs and dioxin-like-PCBs in this study. Anaerobic-aerobic-anoxic sewage treatment process did not show a good performance in the reduction of dioxin-like activity which is useful in the removal of chemical oxygen demand (COD) and nitrogen. Anaerobic digestion of sludge increased the concentration of PCDD/Fs from 30.1 to 68.3pgCALUX-TEQg(-1)d.w., and total dioxin-like activity from 32.2 to 69.3pgCALUX-TEQg(-1)d.w. This cost-effective and quick test is useful for large developing countries like China in monitoring programs to obtain baseline data about the scale of contamination caused by dioxin-like activity. It is also a useful component in the monitoring capacity building of dioxins. PMID:19201008

Zhang, Tingting; Yu, Gang; Wang, Bin; Fiedler, Heidelore; Huang, Jun; Deng, Shubo

2009-05-01

279

Stabilization process within a sewage sludge landfill determined through both particle size distribution and content of humic substances as well as by FT-IR analysis.  

PubMed

Landfill is largely considered as a reliable option for sewage sludge disposal in most metropolitan areas worldwide due to the huge quantities of this waste to be disposed of and the relatively low costs of such a kind of sludge management. It has been found that the sludge in the landfill degrades rapidly and becomes stabilized within a few years. In the present study, the sludge from different landfill stages was characterized by particle size distribution, humic substances contents and elemental composition, and Fourier transform infrared spectroscopy (FT-IR), as the landfill time increased. In general, the mean particle size of the sludge increased from 37 ?m at day 0 to 143 ?m at 300 days and the corresponding median particle size increased from 13 to 70 ?m. The stability of particle size distribution can be assessed by the mean or median particle size. The humic acid (HA) and fulvic acid (FA) contents extracted from dry sludge after different landfill periods increased from 4.2 and 2.7% of day 0 to 5.6 and 3.1%, respectively, at 400 days, thereby indicating that the stabilization process of sludge in a landfill is also a humification process. The HA samples contained more carbon and nitrogen, and less hydrogen and oxygen than the FA samples, indicating a high degree of maturity and humification of these HA samples. The FT-IR spectra indicated that easily degradable organic matter components, such as aliphatic chains and protein, were distinctly decomposed during landfill. Based on the changes in the band relative intensity, it was concluded that after 300 days in a landfill the sludge is still in the process of degradation and maturity. PMID:21030423

Zhu, Ying; Zhao, Youcai

2011-04-01

280

Degradation and environmental risk of surfactants after the application of compost sludge to the soil  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Degradation of surfactants in soil amended with sewage sludge during 100 days. Black-Right-Pointing-Pointer Temperature influences on the degradation of the studied compounds. Black-Right-Pointing-Pointer Overall, the LAS degradation is faster than the NP compounds degradation. Black-Right-Pointing-Pointer Therefore, the LAS presented lower environmental risk than the NP compounds. - Abstract: In this work, the degradation of anionic and non-ionic surfactants in agricultural soil amended with sewage sludge is reported. The compounds analysed were: linear alkylbenzene sulphonates (LAS) with a 10-13 carbon alkylic chain, and nonylphenolic compounds (NPE), including nonylphenol (NP) and nonylphenol ethoxylates with one and two ethoxy groups (NP1EO and NP2EO). The degradation studies were carried out under winter (12.7 Degree-Sign C) and summer (22.4 Degree-Sign C) conditions in Andalusia region. The concentration of LAS was reduced to 2% of the initial concentration 100 day after sludge-application to the soil. The half-life time measured for LAS homologues were ranged between 4 and 14 days at 12.7 Degree-Sign C and between 4 and 7 days at 22.4 Degree-Sign C. With regard to NPE compounds, after 8 and 4 days from the beginning of the experiment at 12.7 and 22.4 Degree-Sign C, respectively, their concentration levels were increased to 6.5 and 13.5 mg/kg dm (dry matter) as consequence of the degradation of nonylphenol polyethoxylates. These concentration levels were reduced to 5% after 63 and 70 days for 12.7 Degree-Sign C and 22.4 Degree-Sign C, respectively. The half-life times measured for NPEs were from 8 to 16 days at 12.7 Degree-Sign C and from 8 to 18 days at 22.4 Degree-Sign C. Environmental risk assessment revealed that for LAS homologues no environment risk could be expected after 7 and 8 days of sludge application to the soil for 22.4 and 12.7 Degree-Sign C, respectively; however, potential toxic effects could be observed for the nonylphenolic compounds during the first 56 days after sludge application to the soil.

Gonzalez, M.M.; Martin, J.; Camacho-Munoz, D.; Santos, J.L.; Aparicio, I. [Department of Analytical Chemistry, Escuela Politecnica Superior, University of Seville, C/Virgen de Africa 7, E-41011 Seville (Spain); Alonso, E., E-mail: ealonso@us.es [Department of Analytical Chemistry, Escuela Politecnica Superior, University of Seville, C/Virgen de Africa 7, E-41011 Seville (Spain)

2012-07-15

281

Organic Contaminants from Sewage Sludge Applied to Agricultural Soils. False Alarm Regarding Possible Problems for Food Safety? (8 pp)  

Microsoft Academic Search

Goal, Scope and Background Sewage sludge produced in wastewater treatment contains large amounts of organic matter and nutrients and could, therefore,\\u000a be suitable as fertiliser. However, with the sludge, besides heavy metals and pathogenic bacteria, a variety of organic contaminants\\u000a can be added to agricultural fields. Whether the organic contaminants from the sludge can have adverse effects on human health

Christian Grn; Karin von Arnold

2007-01-01

282

Metabolic consequences of exposure to polychlorinated biphenyls (PCB) in sewage sludge  

SciTech Connect

Polychlorinated biphenyls (PCB) were discovered in sewage sludge used for fertilizer in Bloomington, Indiana. The PCB had been discharged into the municipal sewage system by an electrical capacitor manufacturing plant. To study the epidemiology and metabolic consequences of PCB exposure an epidemiologic and clinical survey was conducted. Mean serum PCB levels were 17.4 ppB in 89 sludge users, 75.1 ppB in 18 workers with occupational exposure to PCB, 33.6 ppB in 19 members of those workers' families, and 24.4 ppB in 22 community residents without unusual exposure to PCB. In sludge users PCB levels were associated positively with per cent performance of garden care (p = 0.035) and negatively with wearing gloves while gardening (p = 0.021), but were not significantly associated with the amount of sludge used or the duration of exposure. In no groups were chloracne or systemic symptoms of PCB toxicity noted, nor were significant correlations found between PCB levels and tests of hematologic, hepatic, or renal function. Plasma triglyceride levels increased significantly with serum PCB concentrations in both alcohol drinkers and nondrinkers (r = 0.541, n = 36, p < 0.001 for nondrinkers). These data indicate that PCB may alter lipid metabolism at levels of exposure and bioaccumulation insufficient to produce overt symptoms.

Baker, E.L. Jr. (Center for Disease Control, Atlanta, GA); Landrigan, P.J.; Glueck, C.J.; Zack, M.M. Jr.; Liddle, J.A.; Burse, V.W.; Housworth, W.J.; Needham, L.L.

1980-10-01

283

Heavy metal concentrations in earthworms from soil amended with sewage sludge  

USGS Publications Warehouse

Metal concentrations in soil may be elevated considerably when metal-laden sewage sludge is spread on land. Metals in earthworms (Lumbricidae) from agricultural fields amended with sewage sludge and from experimental plots were examined to determine if earthworms are important in transferring metals in soil to wildlife. Earthworms from four sites amended with sludge contained significantly (P . < 0.05) more Cd (12 times), Cu (2.4 times), Zn (2.0 times), and Pb (1.2 times) than did earthworms from control sites, but the concentrations detected varied greatly and depended on the particular sludge application. Generally, Cd and Zn were concentrated by earthworms relative to soil, and Cu, Pb, and Ni were not concentrated. Concentrations of Cd, Zn, Cu, and Pb in earthworms were correlated (P < 0.05) with those in soil. The ratio of the concentration of metals in earthworms to the concentration of metals in soil tended to be lower in contaminated soil than in clean soil. Concentrations of Cd as high as 100 ppm (dry wt) were detected in earthworms from soil containing only 2 ppm Cd. These concentrations are considered hazardous to wildlife that eat worms. Liming soil decreased Cd concentrations in earthworms slightly (P < 0.05) but had no discernible effect on concentrations of the other metals studied. High Zn concentrations in soil substantially reduced Cd concentrations in earthworms.

Beyer, W.N.; Chaney, R.L.; Mulhern, B.M.

1982-01-01

284

Comparison of methods for the preparation of sewage sludge samples prior to the spectrophotometric determination of phosphorus  

SciTech Connect

Three procedures for the preparation of sewage sludge samples prior to the colorimetric determination of phosphorus as molybdenum blue were evaluated. Using samples of the US EPA's municipal digested sludge as a reference material, sulfuric acid/ammonium persulfate digestion, muffle furnace ignition followed by extraction of the ash with hydrochloric acid, and direct extraction of the sewage sludge with sodium bicarbonate solution were compared in terms of phosphorus recovery as determined by colorimetric measurements. On the basis of phosphorus recovery, the samples prepared by muffle furnace ignition/hydrochloric acid extraction of the ash showed the best accuracy and precision. This procedure was also superior in terms of the time and effort expended in the preparation of the sewage sludge samples.

Katz, S.A.; Jenniss, S.W.; Ciuffo, M.; Alberts, R.

1986-01-01

285

Mathematical model investigation of long-term transport of ocean-dumped sewage sludge related to remote sensing  

NASA Technical Reports Server (NTRS)

An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, horizontal diffusion coefficients, particle size distributions, and specific gravities. The results presented are a quantitative description of the fate of a negatively buoyant sewage sludge plume resulting from continuous and instantaneous barge releases. Concentrations of the sludge near the surface were compared qualitatively with those remotely sensed. Laboratory study was performed to investigate the behavior of sewage sludge dumping in various ambient density conditions.

Kuo, C. Y.; Modena, T. D.

1979-01-01

286

Nitrous oxide emissions after sewage sludge fertilization of a bio-energy plantation  

NASA Astrophysics Data System (ADS)

The use of sewage sludge as fertilizer after harvest of bio-energy plantations gives rise to high emissions of the greenhouse gas nitrous oxide (N2O). N2O is a powerful greenhouse gas with a global warming potential almost 300 times larger than that of carbon dioxide and an atmospheric life-span of over 100 years. Plantations of e.g. willow (Salix) and poplar (Populus) species are today grown and used for bio-energy purposes. They could serve as carbon and nitrogen sinks, thus lowering greenhouse gas emissions and helping to mitigate a change in climate. However, since N2O is such a powerful greenhouse gas it can have a large impact on the total emission of greenhouse gases from a bio-energy plantation. The magnitude of N2O emissions after fertilization using sludge from sewage treatment plants is therefore important to investigate. This study concerns N2O emissions from a conventionally grown bio-energy plantation of Salix. The aim of the study was to investigate the use of sewage sludge as fertilizer after harvest, and its effect on emissions of N2O from the soil ecosystem. The field site is a Salix plantation in south-western Sweden, a representative site in management practices and abiotic conditions. Emissions of N2O were monitored using automatic chambers (height 1.05 m, volume 0.2625 m3) and a trace gas analyzer (TGA100, Campbell Scientific, USA) during approximately one (1) year. After harvest, N2O emissions from control plots without application of sewage sludge (non-fertilized plots) were compared to plots with sewage sludge application (fertilized plots). Preliminary results show that emissions of N2O were continuously very low throughout the measurement period, except for peak emissions after harvest and fertilization. These peak emissions of N2O were observed at both fertilized and non-fertilized plots in connection to the fertilization events. The results indicate that heavy precipitation could be the cause of induced emissions of N2O at non-fertilized plots. Some fertilized plots also showed smaller emission peaks several weeks after fertilization, whereas none of the non-fertilized plots showed this emission pattern. Annual emissions have also been calculated for fertilized and non-fertilized plots, and the results will be presented at the conference. Preliminary results indicate higher annual emissions from fertilized plots.

Hedenrud, Anna; Achberger, Christine; Klemedtsson, Leif; Lindroth, Anders

2013-04-01

287

Evaluation of emission of greenhouse gases from soils amended with sewage sludge.  

PubMed

Increase in concentrations of various greenhouse gases and their possible contributions to the global warming are becoming a serious concern. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in C and N, as soil amendments could contribute to the increase in emission of greenhouse gases such as methane (CH(4)) and nitrous oxide (N(2)O) into the atmosphere. Therefore, evaluation of flux of various greenhouse gases from soils amended with sewage sludge is essential to quantify their release into the atmosphere. Two soils with contrasting properties (Candler fine sand [CFS] from Florida, and Ogeechee loamy sand [OLS] from Savannah, GA) were amended with varying rates (0, 24.7, 49.4, 98.8, and 148.3 Mg ha(-1)) of 2 types of sewage sludge (industrial [ISS] and domestic [DSS] origin. The amended soil samples were incubated in anaerobic condition at field capacity soil water content in static chamber (Qopak bottles). Gas samples were extracted immediately after amending soils and subsequently on a daily basis to evaluate the emission of CH(4), CO(2) and N(2)O. The results showed that emission rates and cumulative emission of all three gases increased with increasing rates of amendments. Cumulative emission of gases during 25-d incubation of soils amended with different types of sewage sludge decreased in the order: CO(2) > N(2)O > CH(4). The emission of gases was greater from the soils amended with DSS as compared to that with ISS. This may indicate the presence of either low C and N content or possible harmful chemicals in the ISS. The emission of gases was greater from the CFS as compared to that from the OLS. Furthermore, the results clearly depicted the inhibitory effect of acetylene in both soils by producing more N(2)O and CH(4) emission compared to the soils that did not receive acetylene at the rate of 1 mL g(-1) soil. Enumeration of microbial population by fluorescein diacetate (FDA) and most probable number (MPN) procedure at the end of 25-d incubation demonstrated a clear relationship between microbial activity and the emission of gases. The results of this study emphasize the need to consider the emission of greenhouse gases from soils amended with organic soil amendments such as sewage sludge, especially at high rates, and their potential contribution to global warming. PMID:18172810

Paramasivam, S; Fortenberry, Gamola Z; Julius, Afolabi; Sajwan, Kenneth S; Alva, A K

2008-02-01

288

Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes.  

PubMed

Emission of odours during the thermal drying in sludge handling processes is one of the main sources of odour problems in wastewater treatment plants. The objective of this work was to assess the use of the response surface methodology as a technique to optimize the chemical conditioning process of undigested sewage sludges, in order to improve the dewaterability, and to reduce the odour emissions during the thermal drying of the sludge. Synergistic effects between inorganic conditioners (iron chloride and calcium oxide) were observed in terms of sulphur emissions and odour reduction. The developed quadratic models indicated that optimizing the conditioners dosage is possible to increase a 70% the dewaterability, reducing a 50% and 54% the emission of odour and volatile sulphur compounds respectively. The optimization of the conditioning process was validated experimentally. PMID:25438118

Vega, Esther; Moncls, Hctor; Gonzalez-Olmos, Rafael; Martin, Maria J

2015-03-01

289

Phytoextraction of Zn and Cu from sewage sludge and impact on agronomic characteristics.  

PubMed

The presence of elevated concentrations of heavy metals limits the usage of sewage sludge as a fertilizer and soil amendment. Experiments were carried out to examine the extent to which seven plant species phytoextracted Zn and Cu from dewatered sludge. The hyperaccumulators Thlaspi caerulescens and Sedum alfredii showed the greatest removal of Zn, while shoots and tubers of two species of Alocasia showed the greatest Cu removal. Cultivation of plants in the sludge resulted in significant decreases in total Zn and changes in the partitioning of Zn between soil pools. However, Cu levels were largely unchanged and remained associated predominantly with the organic matter pool. Agronomic characteristics of the sludge material, such as pH, organic matter content, and nitrogen, phosphorus, and potassium concentrations, did not change significantly during the four-month growth period, indicating that subsequent crops could be sustained by this material. These results suggest that Zn can be phytoextracted from sludge material, provided the rate of metal uptake exceeds the rate of mobilization to the exchangeable fraction. Since there was no appreciable accumulation of Zn and Cu in seeds of Zea mays in this study, some tissues from sludge-grown plants could potentially be used as animal fodder. PMID:15792302

Xiaomei, Liu; Qitang, Wu; Banks, M K; Ebbs, S D

2005-01-01

290

Spectroscopic studies of the progress of humification processes in humic acid extracted from sewage sludge  

NASA Astrophysics Data System (ADS)

The humic acids extracted from sludge collected from the digestion chamber and the sludge drying beds were studied. The sludge samples were collected, dried and humic acids were extracted. The progress of the humification processes was studied with EPR, IR and NMR spectroscopic methods. For extracted humic acids, concentration of free radicals and g factor was determined with EPR. The presence of characteristic functional groups was confirmed with IR and NMR spectroscopy. To study the changes in content of the elements, the elemental analysis was performed to determine the percentage of carbon, hydrogen, nitrogen, sulfur and oxygen. Taking all the obtained results into account it was found that on the sewage drying beds, humification processes take place in the sludge. In the first two weeks when the sludge on the drying beds an intensive enrichment of humic acids in free radicals takes place. This is the result of the intensive humification process course after the stage in the fermentation chamber where the mesophilic fermentation takes place. Moreover, the humidity of sludge influences the intensive development of free radical concentration at the beginning of the storing period, whereas the humification processes still continue.

Polak, J.; Su?kowski, W. W.; Bartoszek, M.; Papie?, W.

2005-06-01

291

Fundamental Combustion Characteristics of Sewage Sludge in Fluidized Bed Incinerator with Turbocharger  

NASA Astrophysics Data System (ADS)

An epoch-making incineration plant, which is equipped with a pressurized fluidized-bed combustor coupled to a turbocharger, for the recovery of the energy contained in sewage sludge is proposed. This plant has three main advantages. (1) A pressure vessel is unnecessary because the maximum operating pressure is 0.3 MPa (absolute pressure). The material cost for plant construction can be reduced. (2) CO2 emissions originating from power generation can be decreased because the FDF (Forced Draft Fan) and the IDF (Induced Draft Fan) are omitted. (3) Steam in the flue gas becomes a working fluid of the turbocharger, so that in addition to the combustion air, the surplus air is also generable. Therefore, this proposed plant will not only save energy but also the generate energy. The objective of this study is to elucidate the fundamental combustion characteristics of the sewage sludge using a lab-scale pressurized fluidized bed combustor (PFBC). The tested fuels are de-watered sludge and sawdust. The temperature distribution in the furnace and N2O emissions in the flue gas are experimentally clarified. As the results, for sludge only combustion, the temperature in the sand bed decreases by drying and pyrolysis, and the pyrolysis gas burns in the freeboard so that the temperature rises. On the other hand, the residual char of sawdust after pyrolysis burns stably in the sand bed for the co-firing of sludge and sawdust. Thus the temperature of the co-firing is considerably higher than that of the sludge only combustion. N2O emissions decreases with increasing freeboard temperature, and are controlled by the temperature for all experimental conditions. These data can be utilize to operation the demonstration plant.

Murakami, Takahiro; Suzuki, Yoshizo; Nagasawa, Hidekazu; Yamamoto, Takafumi; Koseki, Takami; Hirose, Hitoshi; Ochi, Shuichi

292

Assessment of a potential agricultural application of Bangkok-digested sewage sludge and finished compost products.  

PubMed

A study was conducted to investigate the levels of plant nutrients, heavy metals, parasites and fecal coliform bacteria in Bangkok-produced sewage sludge and finished compost products for potential agricultural application, as well as to compare the quality of compost under different composting conditions. The results indicated that digested sewage sludge had high fertilizing values for organic matter (19.01 0.09%), total nitrogen (2.17 0.07%), total phosphorus (2.06 0.06%) and total potassium (1.16 0.22%), but it was contaminated with human pathogens, including fecal coliform bacteria, viable helminthes egg and active forms of parasite cysts. Thus, fresh sewage sludge should not be disposed on land unless it has undergone pathogen reduction. It is proven that the quality of the sludge mixed with grass clippings at a ratio of 6:1 volume/volume after having passed a windrow composting process for 8 weeks can be classified as class A biosolids as the levels of remaining fecal coliforms were < 3 most probable number g(-1) dry solid and all human parasites were destroyed. Concentrations of organic matter, total nitrogen, total phosphorus and total potassium in the finished compost were 16.53 1.25%, 1.39 0.06%, 0.42 0.10% and 1.53 0.05% respectively. The total copper concentration was rather high (2291.31 121.77 mg kg(-1)), but all heavy metal concentrations were also well below the United States Environmental Protection Agency pollutant limits for land application. The finished compost products can be considered as a soil conditioner as they have relatively low essential plant nutrient concentrations. It is recommended to be initially used for gardening and landscaping to ensure safety utilization. PMID:23836101

Sreesai, Siranee; Peapueng, Panadda; Tippayamongkonkun, Taninporn; Sthiannopkao, Suthipong

2013-09-01

293

Recovery of phosphorus as struvite from sewage sludge ash.  

PubMed

Phosphorus (P) is an element vital for all living organisms, yet the world's reserves of phosphate rock are becoming depleted. This study investigated an effective P recovery method from sludge ash via struvite precipitation. Results showed that more than 95% of the total P content was extracted from sludge ash by applying 0.5 mol/L HCl at a liquid/solid ratio of 50 mL/g. Although heavy metal leaching also occurred during P extraction, cation exchange resin efficiently removed the heavy metals from the P-rich solution. Orthogonal tests showed that the optimal parameters for P precipitation as struvite would be a Mg:N:P molar ratio of 1.6:1.6:1 at pH 10.0. X-ray diffraction analysis validated the formation of struvite. Further investigations revealed that the harvested precipitate had a high struvite content (97%), high P bioavailability (94%), and low heavy metal content, which could be considered a high quality fertilizer. PMID:23513698

Xu, Huacheng; He, Pinjing; Gu, Weimei; Wang, Guanzhao; Shao, Liming

2012-01-01

294

Phytotreatment of sewage sludge contaminated by heavy metals and PAHs by co-planting Sedum alfredii and Alocasia marorrhiza.  

PubMed

High concentrations of heavy metals and organic pollutants in municipal sewage sludge are key factors limiting its use in agriculture. The objectives of this study were to decrease the heavy metal and polycyclic aromatic hydrocarbon concentrations in sewage sludge by phytotreatment and to determine, in a field experiment, whether co-planting is more effective than using a mono-crop of Sedum alfredii. Four treatments were used in the plot experiment: no sludge, no plants, S. alfredii and co-planting S. alfredii and Alocasia marorrhiza. The results showed that co-planting produced tubers and shoots of A. marorrhiza that were suitable as a safe animal feed and good organic K fertilizer, respectively. Co-planting was more effective than mono-planting at reducing concentrations of total Zn and diethylenetriaminepentaacetic acid (DTPA)-extractable Zn, Cd, and Cu in the sludge. Co-planting decreased the concentrations of DTPA-extractable heavy metals and benzo[a]pyrene (B[a]P) in the sludge significantly compared with the unplanted sludge. Decreases of 87, 75, 85, 31, and 64% were obtained for B[a]P and DTPA-extractable Zn, Cd, Cu, and Pb, respectively, compared with the fresh sludge. These results indicate that co-planting can reduce significantly the environmental risks associated with heavy metals and B[a]P in sewage sludge for further disposal. PMID:24912211

Qiu, J R; Guo, X F; Cai, Q Y; Liu, W; Zhang, M W; Wei, Z B; Wu, Q T

2014-01-01

295

Field study on the uptake and translocation of PBDEs by wheat (Triticum aestivum L.) in soils amended with sewage sludge.  

PubMed

Field experiments were conducted to explore the effects of different sewage sludge amendment strategies on the accumulation and translocation of polybrominated diphenyl ethers (PBDEs) in soil-wheat systems. Two types of application methods (single or annual application) and four annual application rates (5, 10, 20, and 40tha(-1)year(-1)) were investigated. BDE 209 was detected in all of the sewage sludge amended soils and different parts of wheat plants collected from the contaminated soils. However, the other seven PBDE congeners (BDE 28, BDE 47, BDE 99, BDE 100, BDE 153, BDE 154, and BDE 183) were not detected or were only observed at very low levels. A single application of sewage sludge in large quantities would likely increase accumulation of BDE 209 in soil and its subsequent uptake and translocation by wheat. The concentrations of BDE 209 in soils, wheat roots and straws increased with the increasing sewage sludge application rate. There is a negative correlation between the root accumulation factors (the ratios of concentrations in wheat roots to those in soils) and soil total organic carbon (R(2)=0.84,P<0.05), demonstrating that the bioavailability of BDE 209 was controlled by the soil total organic carbon. BDE 209 concentrations in the grains from the sewage sludge amended soils were not significantly different from those of the control soils, suggesting that atmospheric deposition was the main source of BDE 209 detected in the grains. PMID:25563166

Li, Helian; Qu, Ronghui; Yan, Liangguo; Guo, Weilin; Ma, Yibing

2015-03-01

296

Spectroscopic study of the effect of biological treatment on the humification process of sewage sludge  

NASA Astrophysics Data System (ADS)

In 2005 the treatment plant in Sosnowiec Zagrze was modernized and the processes of nitrification and denitrification were introduced. The study of the biological treatment influence on the course of the humification process was conducted for the sewage sludge received from each stage of sewage purification. The extracted humic-like substances (HA) were investigated by the use of the spectroscopic and analytical methods. The concentration of free radicals and the g-factor was determined with EPR, the presence of the characteristic functional groups was confirmed with IR spectroscopy, whereas the aromatisation of HA was estimated by 13C NMR method. The results obtained were compared with those for HA extracted from sewage sludge before modernization [1]. It was found that the processes of biological treatment have a significant influence on the changes of the chemical elements in the extracted HA. The HA obtained after modernization are nitrogen-rich (about 9%), in particular after the nitrification and denitrification processes. However, nitrification and denitrification processes only slightly affect the free radical concentration and the g-factor values.

Polak, J.; Su?kowski, W. W.; Bartoszek, M.; Luty, A.; Pentak, D.; Su?kowska, A.

2007-05-01

297

In vivo genotoxicity evaluation of a treated urban sewage sludge sample.  

PubMed

Tons of sludge is produced daily in sewage treatment plants of large cities, causing an enormous disposal problem. Because recycling has been proposed to mitigate the situation, the potential adverse health effects of the sludge should be verified before that policy is undertaken. The present study is a part of an assessment of oral toxicity in rats fed with sewer-treated sludge and aimed to contribute to its genotoxicity characterization. After a 2-week acclimatization period, male and female Wistar rats were fed ad libitum for 90 days a pelleted commercial diet containing 0, 5000, 10,000 and 50,000 ppm of a treated sludge sample. The potential mutagenic or genotoxic effect was detected in recent animal cells by the bone marrow micronucleus test and the comet assay, respectively. For the comet assay peripheral blood samples were obtained immediately before the sacrifice from the periorbital plexus. Following sacrifices, polychromatic erythrocytes (PCEs) were analyzed in femoral bone marrow smears and the frequencies of micronucleated polychromatic erythrocytes (MNPCEs) were registered. Results of both assays indicated that exposure to any of the sludge concentrations tested did not increase the frequency of MNPCEs or the levels of DNA damage when compared to non-exposed concurrent control rats. PMID:19610200

de Lourdes Marzo Solano, Marize; de Lima, Patrcia Lepage Alves; Luvizutto, Joo Francisco Lozano; Silva, Paula Regina Pereira; de Arago Umbuzeiro, Gisela; de Camargo, Joo Lauro Viana

2009-05-31

298

Reduction in greenhouse gas emissions from sewage sludge aerobic compost in China.  

PubMed

Sewage sludge is an important contributor to greenhouse gas (GHG) emissions and the carbon budget of organic solid waste treatment and disposal. In this case study, total GHG emissions from an auto-control sludge compost system, including direct and indirect emissions and replaceable reduction due to sludge compost being reused as fertilizer, were quantified. The results indicated that no methane generation needed to be considered in the carbon debit because of the advantages of auto-control for monitoring and maintenance of appropriate conditions during the composting process. Indirect emissions were mainly from electricity and fossil fuel consumption, including sludge transportation and mechanical equipment use. Overall, the total carbon replaceable emission reduction owing to sludge being treated by composting rather than landfill, and reuse of its compost as fertilizer instead of chemical fertilizer, were calculated to be 0.6204 tCO2e t(-1) relative to baseline. Auto-control compost can facilitate obtaining certified emission reduction warrants, which are essential to accessing financial support with the authentication by the Clean Development Mechanism. PMID:24647175

Liu, H-t; Zheng, H-x; Chen, T-b; Zheng, G-d; Gao, D

2014-01-01

299

Nitrogen fertilizer and sewage sludge effects on hybrid poplars. Final report  

SciTech Connect

Experiments conducted in the greenhouse compared the growth and nutrient and heavy metal uptake in two clones of hybrid poplar grown in soil amended with nitrogen fertilizer or sewage sludge. In addition, poplar responses to weed competition and to rooting prior to planting were investigated. Both fertilizer and sludge application increased poplar stem biomass. Weeds reduced poplar biomass. The large difference in root biomass of the two poplar clones may account for different effects weed and sludge application had on nutrient and heavy metal uptake in each clone. The relatively small root biomass of I-45/51 increased with increasing sludge application, as did the uptake of nutrients and heavy metals. The relatively large root biomass of clone NE-510 was reduced when weeds were present, as was nutrient and heavy metal uptake. Other results suggest that poplars with low root-to-stem ratios may be most affected by weed competition, especially after their first year, and that nitrogen fertilization may alleviate effects of weeds on their growth. Poplars grown in sludge-amended soil did not accumulate more of any nutrient or heavy metal studied compared to those grown in nitrogen-fertilized soil. 17 refs., 5 figs., 57 tabs.

Riha, S.R.; Senesac, G.P.; Naylor, L.

1985-01-01

300

Soil improvement with coal ash and sewage sludge: a field experiment  

NASA Astrophysics Data System (ADS)

A field experimental study was carried out successfully to improve the quality of the sandy soil by adding coal ash and sewage sludge. One ha of barren sandy soil field was chosen for the experiment in Shanghe County, Shandong Province, China. For soil amelioration and tree planting, two formulas of the mixture:coal ash, sewage sludge and soil, in ratios of 20:10:70 and 20:20:60, respectively, were used. Poplar trees were planted in pits filled with soils with additives (mixture of ash and sludge) as well as in the original sandy soil. In the 19th months after the trees were planted, the soils with additives were sampled and analyzed. The results show that the barren sandy soil was greatly improved after mixing with coal ash and sludge. The improved soils have remarkably higher nutrient concentrations, better texture, smaller bulk density, higher porosity and mass moisture content, and higher content of fine-grained minerals. During the first 22 months after planting, the annual increase in height of the trees grown in the soil with additives (4.78 m per year) was 55% higher than that of the control group (3.07 m per year), and the annual increase in diameter at the breast height (1.3 m) was 33 % higher (43.03 vs. 32.36 mm). Trees planted in soils with additives appeared healthier and shed leaves later than those in the control group. As the volume of the additives (30-40% in both formulas) is less than that of the sandy soil in and around the tree pits, it appears that the use of coal ash and sludge for tree planting and soil amelioration is environmentally safe even though the additives have relatively high heavy metal concentrations.

Shen, Junfeng; Zhou, Xuewu; Sun, Daisheng; Fang, Jianguo; Liu, Zhijun; Li, Zhongmin

2008-02-01

301

Effect of sewage sludge-borne cadmium on crop production and on soil and plant composition  

SciTech Connect

Teller sandy loan (fine-loamy, mixed, thermic, Udic Agriustolls) and Norge loam (fine-silty, mixed, thermic, Udic Paleustolls) were used in a greenhouse study with rates of cadmium (Cd) in sewage sludge. Two sewage sludges were mixed to produce a range of Cd treatments of 7 to 120 mg Cd kg/sup -1/ in a 44 mt ha/sup -1/ sludge treatment rate. Application depths of 0 to 15 cm and 15 to 30 cm for grain sorghum (Sorghum bicolor) and soybean (Glycine max) for two successive crops were included as experimental variables. Statistical design was a lattice square with five replications. Fresh and dry weights of plant materials were determined and analyzed for total content of Fe, Mn, Zn, and Cd after digestion. Soil samples from 0 to 7.5, 7.5 to 15, and 15 to 30 cm depths were taken after the second crop was harvested and analyzed for DTPA extractable Fe, Zn, and Cd. The soil pH and percent organic matter were determined, also, and compared to original soil analysis.

Al-Solaimani, S.G.

1986-01-01

302

Chemical and toxicological characterization of the bricks produced from clay/sewage sludge mixture.  

PubMed

The present study aimed to characterize chemical properties of clay bricks containing 20 % of sewage sludge. After detection of potentially hazardous metals, we simulated precipitation exposure of such material to determine the amount of heavy metals that could leach out of the bricks. Metals, such as copper, zinc, nickel, cobalt, chromium, etc., were detected in leachate in low concentrations. Moreover, human peripheral blood lymphocytes were exposed to brick leachate for 24 h in order to evaluate its possible negative impact on human cells and genome in vitro. Cytotoxicity tests showed no effect on human peripheral blood lymphocytes viability after exposure to brick's leachate. On the contrary, the alkaline comet assay showed slight but significant increase in DNA damage with all three parameters tested. As we might predict, interactions of several heavy metals in low concentrations could be responsible for DNA damaging effect. In that manner, our findings suggest that leachates from sewage sludge-produced bricks may lead to adverse effects on the exposed human population, and that more stabile bricks should be developed to minimize leaching of heavy metals into the environment. Bricks with lower percentage of the sludge may be one of the solutions to reduce the toxic effect of the final product. PMID:22702811

Geri?, Marko; Gajski, Goran; Ore?anin, Vinja; Kollar, Robert; Garaj-Vrhovac, Vera

2012-01-01

303

Occurrence and analysis of parabens in municipal sewage sludge from wastewater treatment plants in Madrid (Spain).  

PubMed

A rapid method for determination of seven parabens and two chlorinated by-products in sewage sludge was developed based on matrix solid-phase dispersion and gas chromatography-tandem mass spectrometry. The analytical procedure showed good recoveries that ranged from 80 to 125%, with relative standard deviations lower than 12% and low detection limits, ranging from 0.1 to 2.0 ng g(-1) dry weight. The developed method was applied to the analysis of sewage sludge collected during 2010 in 19 wastewater treatment plants (WWTPs) located in various urban, industrial or rural zones in Madrid (Spain). Methylparaben was found in most of the WWTPs sampled (95%) at levels between 5.1 and 26.2 ng g(-1) dry weight and propylparaben was detected in 74% of the WWTPs at levels up to 44.1 ng g(-1) dry weight. In order to study the temporal variation of parabens and two chlorinated parabens during a four-year period, sludge samples were collected from 3 selected WWTPs. The levels of methylparaben encountered were rather constant throughout the sampling period whereas propylparaben levels slightly increased. In one of the WWTPs monitored, isopropylparaben was found at the beginning of the sampling period but its content decreased and was not detected in the 2010 sampling. PMID:22640822

Albero, Beatriz; Prez, Rosa Ana; Snchez-Brunete, Consuelo; Tadeo, Jos Luis

2012-11-15

304

Study on a novel reactor of sludge process reduction for domestic sewage treatment.  

PubMed

A laboratory-scale novel Sludge Reduction Reactor with Arc Guide Plate (SRR) for sludge process reduction was developed in this study. Pollutant removal efficiency and biomass yield for domestic sewage treatment in the Anaerobic/Anoxic/Oxic-SRR (A2/O-SRR) process were compared with performances in a control A2/O process. One of the competitive advantages in the SRR was that part of the inert suspended solids (ISS) could be separated and discharged out of system with flux at the bottom of the SRR. Mixed liquid volatile suspended solids (MLVSS) in the A2/O-SRR system also could be steadily kept at a good level under a relatively long solid retention time. The average MLVSS/mixed liquor suspended solids (MLSS) ratio of 77.5% in the A2/O-SRR was higher than that in the A2/O process. Average removal rates of chemical oxygen demand (COD), total nitrogen (TN) and NH4(+) showed little difference, while total phosphorous (TP) removal efficiency in the A2/O-SRR decreased slightly (81.89% in the A2/O-SRR and 86.50% in the A2/O process) due to the reduction of sludge discharge. The A2/O-SRR system demonstrated a considerable sludge reduction effect, with the sludge reduction ratio of 43.8%, lower solid volume index and higher dehydrogenase activity (DHA) value in comparison to the control A2/O system. The mainly mechanisms of sludge reduction in the SRR have been proved to be the uncoupling effect under the condition of anaerobic/oxic circulation and the sludge lysis with the lack of substrate. PMID:24191494

Xie, En; Xu, Xiao-Yi; Luo, Gu-Yuan

2013-01-01

305

H-Area, K-Area, and Par Pond Sewage Sludge Application sites groundwater monitoring report. First quarter 1995  

SciTech Connect

During first quarter 1995, samples from monitoring wells at the K-Area Sewage Sludge Application Site (KSS wells) and Par Pond Sewage Sludge Application Site (PSS wells) were analyzed for constituents required by SCDHEC Construction Permit 13,173. H-Area Sewage Sludge Application Site (HSS wells) samples were analyzed for constituents required by SCDHEC Construction Permit 12,076. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. The only constituent that exceeded the SCDHEC final Primary Drinking Water Standard in any well was lead which was found in wells HSS 3D and PSS 3D. Aluminum and iron were above Flag 2 criteria in one or more wells in the three sites during first quarter 1995.

Chase, J.A.

1995-06-01

306

F- and H-Area Sewage Sludge Application Sites groundwater monitoring report. Fourth quarter 1993 and 1993 summary  

SciTech Connect

Samples from the four wells at the F-Area Sewage Sludge Application Site (FSS wells) and the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076 and, as requested, for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. No constituent exceeded either the final Primary Drinking Water Standards or the SRS Flag 2 criteria during fourth quarter 1993. Iron, lead, and manganese were the only permit- required analytes that exceeded standards at the F- and H-Area Sewage Sludge Application Sites in 1993. Tritium, aluminum, and other constituents not included in the permit have exceeded standards at this site previously, but only sporadically. These constituents were not analyzed fourth quarter 1993.

Not Available

1994-04-01

307

Potential of recycling gamma-irradiated sewage sludge for use as a fertilizer: a study on chickpea (Cicer arietinum).  

PubMed

The effects of gamma-irradiated sludge on the growth and yield of chickpea (Cicer arietinum) in pot cultures have been studied. Compared to plants grown only in soil, root length, fresh weight and dry weight of plants grown in soil supplemented with unirradiated sludge were found to be significantly reduced. This inhibition in growth was found to be nullified when plants were grown in soil supplemented with gamma-irradiated sludge, suggesting that gamma radiation induced inactivation of toxic substance(s) in sludge. The protein content of plants grown in soil supplemented with irradiated sludge was also found to be significantly increased compared to those grown with unirradiated or no sludge, after 45 days. There was no significant effect of gamma irradiated sludge on shoot length, total soluble sugars, starch content and yield of chickpea plants. The results obtained suggest that the sludge tested, and obtained from the digester of a conventional domestic sewage treatment plant, is inhibitory to several growth parameters. Gamma irradiation of sewage resulted in removal of this inhibition. This suggests a possibility of beneficial and safe recycling of gamma-irradiated sludge for agricultural uses. PMID:15092481

Pandya, G A; Sachidanand, S; Modi, V V

1989-01-01

308

Treatment of anaerobic digestion effluent of sewage sludge using soilless cultivation  

NASA Astrophysics Data System (ADS)

Soilless cultivation was carried out using anaerobic digestion effluent of sewage sludge as liquid fertilizer, with a preparation which cultures microorganisms in nutrient solution. As a result, ammonium ions contained in the effluent were nitrified into nitrate ions by the microorganisms. And then, Japanese mustard spinach (Brassica rapa var. perviridis) was cultivated by soilless cultivation system. The plants were grown well using microbial nutrient solution, which similar to the plants using conventional inorganic nutrient solution. In contrast, the plants were grown poorly using the effluent as liquid fertilizer without microorganisms.

Uchimura, Koki; Sago, Yuki; Kamahara, Hirotsugu; Atsuta, Yoichi; Daimon, Hiroyuki

2014-02-01

309

Changes at an activated sludge sewage treatment plant alter the numbers of airborne aerobic microorganisms.  

PubMed

In 1976, the activated sludge sewage treatment plant in Edmonton, Canada, was surveyed to determine the numbers of culturable airborne microorganisms. Many changes have been made at the plant to reduce odors and improve treatment efficiency, so in 2004 another survey was done to determine if these changes had reduced the bioaerosols. Covering the grit tanks and primary settling tanks greatly reduced the numbers of airborne microbes. Changing the design and operation of indoor automated sampling taps and sinks also reduced bioaerosols. The secondary was expanded and converted from a conventional activated sludge process using coarse bubble aeration to a biological nutrient removal system using fine bubble aeration. Although the surface area of the secondary more than doubled, the average number of airborne microorganisms in this part of the plant in 2004 was about 1% of that in 1976. PMID:16209882

Fernando, Nadeesha L; Fedorak, Phillip M

2005-11-01

310

Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation.  

PubMed

The potential benefits of Fe(II)-activated persulfate oxidation on sludge dewatering and its mechanisms were investigated in this study. Capillary suction time (CST) was used to evaluate sludge dewaterability. Both extracellular polymeric substances (EPS) and viscosity were determined in an attempt to explain the observed changes in sludge dewaterability. The optimal conditions to give preferable dewaterability characteristics were found to be persulfate (S(2)O(8)(2-)) 1.2 mmol/gVSS, Fe(II) 1.5 mmol/gVSS, and pH 3.0-8.5, which demonstrated a very high CST reduction efficiency (88.8% reduction within 1 min). It was further observed that both soluble EPS and viscosity played relatively negative roles in sludge dewatering, whereas no correlation was established between sludge dewaterability and bound EPS. Three-dimensional excitation-emission matrix (EEM) fluorescence spectra also revealed that soluble EPS of sludge were degraded and sludge flocs were ruptured by persulfate oxidation, which caused the release of water in the intracellular pace and subsequent improvement of its dewaterability. PMID:22542138

Zhen, Guangyin; Lu, Xueqin; Zhao, Youcai; Chai, Xiaoli; Niu, Dongjie

2012-07-01

311

Survey of keratinophilic fungi in sewage sludge from wastewater treatment plants of Mazandaran, Islamic Republic of Iran.  

PubMed

To isolate keratinophilic fungi in sewage sludge from wastewater treatment plants in Sari city, Mazandaran province, Islamic Republic of Iran, samples were taken from 7 plants with different sewage treatment technologies. From 35 sludge samples cultured on Sabouraud's agar with cycloheximide and chloramphenicol, 326 fungal colonies belonging to 7 species were isolated. Geotrichum (59.5%), Cladosporium (13.8%), Alternaria (11.3%) and Penicillium (10.7%) species were the most prevalent. No growth of keratinophilic fungi was observed on this medium. However, using the hair-baiting technique, Microsporum gypseum, Chrysosporium spp. and Geotrichum spp. were isolated. PMID:19554993

Hedayati, M T; Mirzakhani, M

2009-01-01

312

Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants.  

PubMed

Differential filtration was used to measure silver (>2 nm) entering and leaving nine sewage treatment plants (STPs). The mean concentration of colloidal (2-450 nm) silver, which includes nanosilver, was found to be 12 ng L(-1) in the influent and 6 ng L(-1) in the effluent. For particulate silver (>450 nm) the mean values were 3.3 ?g L(-1) for influent and 0.08 ?g L(-1) for effluent. Thus, removal was around 50% and 98% for colloidal and particulate silver respectively. There was no significant difference in performance between the different types of STP investigated (three examples each of activated sludge, biological filter and biological filter with tertiary treatment located across England, UK). In addition, treated sewage sludge samples (biosolids) were taken from several STPs to measure the total silver likely to be discharged to soils. Total silver was 3-14 mg kg(-1) DW in the sludge (median 3.6), which if the sludge were added at the recommended rate to soil, would add 11 ?g kg(-1) yr(-1) to the top 20 cm soil layer. Predicted concentrations using the LF2000-WQX model for all the rivers of England and Wales for nanosilver were typically in the 0-1 ng L(-1) range but levels up to 4 ng L(-1) are possible in a high discharge and low flow scenario. Predicted concentrations for the total particulate forms were mostly below 50 ng L(-1) except for a high discharge and low flow scenario where concentrations could reach 135 ng L(-1). PMID:25048887

Johnson, Andrew C; Jrgens, Monika D; Lawlor, Alan J; Cisowska, Iwona; Williams, Richard J

2014-10-01

313

Application of the severity parameter for predicting viscosity during hydrothermal processing of dewatered sewage sludge for a commercial PFBC plant.  

PubMed

Dewatered sewage sludge (approximately 80% water, but with low fluidity) was liquidized by hydrothermal treatment in order to make coal-water paste (CWP) for use in a pressurized-fluidized-bed-combustion (PFBC) power plant. Prediction of the viscosity of the dewatered sewage sludge during batch reactor hydrothermal liquefaction is important in order to avoid inputting excess energy. A single parameter, the severity parameter, has been used to predict viscosity during the hydrothermal process. The relationship between the viscosity of the slurry made from dewatered sewage sludge and the severity value was investigated. Viscosity reduction was associated with an increase in the severity value and was dependent on reaction temperature and time. It was concluded that predicting the viscosity of dewatered sewage sludge during the hydrothermal process by means of the severity parameter is possible. This method is expected to provide a useful guideline for choosing reaction conditions based on prediction of the viscosity of the sludge slurry during the hydrothermal process. PMID:19850471

Yanagida, Takashi; Fujimoto, Shinji; Minowa, Tomoaki

2010-03-01

314

Cytogenotoxicity of sewage sludge leachate before and after calcium oxide-based solidification in human lymphocytes.  

PubMed

Present study aimed to establish the chemical composition of sewage sludge leachate before/after calcium oxide-based solidification using energy dispersive X-ray fluorescence (EDXRF). The other aim was to determine leachate effects on human lymphocyte and DNA integrity in vitro using a battery of bioassays (DNA diffusion assay, micronucleus test and comet assay) to determine effects of those complex mixtures of elements on cell and DNA integrity. EDXRF showed that nickel concentration in the leachate of untreated sludge was 18.5 times higher than the upper permissible limit for inert waste landfills. Other elements were kept below the permissible values. After sludge solidification, leachate concentrations of Cr, Mn, Fe, Ni, Cu, Zn, and Pb dropped 1.6, 2.7, 37, 5.9, 3.2, 7.8, and 2.6 times, respectively. Untreated sludge leachate was cytogenotoxic to lymphocytes, and may lead to adverse effects on the exposed human populations, but calcium oxide-based solidification reduced these effects in significant manner. PMID:21514671

Gajski, Goran; Ore?anin, Vinja; Garaj-Vrhovac, Vera

2011-07-01

315

Immobilization of heavy metals in sewage sludge by using subcritical water technology.  

PubMed

Heavy metals (HMs) immobilization in sewage sludge was investigated by using subcritical water technology (SCWT) in this study. The characteristics of sludge and toxicity of HMs were analyzed after SCWT process. The results showed that besides large reduction in sludge volume, SCWT had some positive effect on HMs dissolution into liquid phase, while the majority of HMs was still accumulated in solid phase. The direct toxicity and bioavailability of HMs in sludge was greatly decreased with no toxicity fractions of HMs highly increased. Pb was always at low risk level and the risk of other HMs was greatly reduced from low risk to no risk after SCWT treatment. Moreover, the leaching toxicity of HMs declined after SCWT and the best result was obtained at 280C with the metal concentrations in leachate decreased by 97.46%, 93.91%, 86.14%, 73.67%, 71.93% and 10.71% for Cu, Cd, Zn, Cr, Ni and Pb, respectively. PMID:23570779

Shi, Wansheng; Liu, Chunguang; Ding, Dahu; Lei, Zhongfang; Yang, Yingnan; Feng, Chuanping; Zhang, Zhenya

2013-06-01

316

Combined ultrasonication and thermal pre-treatment of sewage sludge for increasing methane production.  

PubMed

This article focuses on the combination of ultrasonic and thermal treatment of sewage sludge (SS). The combination involved ultrasonicating a fraction of the sludge and thermal treatment at various temperatures and this resulted in solubilization of proteins and carbohydrates, and so contributing to increased COD solubilization. During the treatment, SCOD, soluble proteins and carbohydrates increased from 760mg L(-1) to 10,200mg L(-1), 110mg L(-1) to 2,900mg L(-1) and 60mg L(-1) to 630mg L(-1), respectively. It was found ultrasonication of only a fraction of the sludge (>20%) followed by thermal treatment led to significant improvement compared to thermal and ULS treatments applied on their own. At 65C, the kinetic of solubilization was improved and the hyper-thermophilic treatment time could be reduced to a few hours when ultrasonication was used first. A linear correlation (R(2) = 95%) was found between the SCOD obtained after ultrasonication pre-treatment and anaerobic biodegradability. The combined treatment resulted in 20% increase in biogas production during the anaerobic digestion of the pre-treated sludge. PMID:25560267

Trzcinski, Antoine Prandota; Tian, Xinbo; Wang, Chong; Lin, Li Leonard; Ng, Wun Jern

2015-01-28

317

Polybrominated diphenyl ethers in sewage sludge and treated biosolids: effect factors and mass balance.  

PubMed

Polybrominated diphenyl ether (PBDE) flame retardants have been consistently detected in sewage sludge and treated biosolids. Two hundred and eighty-eight samples including primary sludge (PS), waste biological sludge (WBS) and treated biosolids from fifteen wastewater treatment plants (WWTPs) in Canada were analyzed to investigate the factors affecting accumulation of PBDEs in sludge and biosolids. Factors examined included environmental/sewershed conditions and operational parameters of the WWTPs. PBDE concentrations in PS, WBS and treated biosolids were 230-82,000 ng/g, 530-8800 ng/g and 420-6000 ng/g, respectively; BDE-209,-99, and -47 were the predominant congeners. Concentrations were influenced by industrial input, leachate, and temperature. Several examinations including the measurement of BDE-202 indicated minimal debromination during wastewater treatment. Estimated solids-liquid distribution coefficients were moderately correlated to hydraulic retention time, solids loading rate, mixed liquor suspended solids, solids retention time, and removal of organic solids, indicating that PBDE partitioning to solids can be optimized by WWTPs' operational conditions. Solids treatment type strongly affected PBDE levels in biosolids: 1.5 times increase after solids digestion, therefore, digestion efficiency could be a potential factor for variability of PBDEs concentration. In contrast, alkaline treatment reduced PBDE concentrations in biosolids. Overall, mass balance approaches confirmed that PBDEs were removed from the liquid stream through partitioning to solids. Variability of PBDE levels in biosolids could result in different PBDEs burdens to agricultural land, and different exposure levels to soil organisms. PMID:24091190

Kim, M; Guerra, P; Theocharides, M; Barclay, K; Smyth, S A; Alaee, M

2013-11-01

318

Energy self-sufficient sewage wastewater treatment plants: is optimized anaerobic sludge digestion the key?  

PubMed

The anaerobic digestion of primary and waste activated sludge generates biogas that can be converted into energy to power the operation of a sewage wastewater treatment plant (WWTP). But can the biogas generated by anaerobic sludge digestion ever completely satisfy the electricity requirements of a WWTP with 'standard' energy consumption (i.e. industrial pollution not treated, no external organic substrate added)? With this question in mind, we optimized biogas production at Prague's Central Wastewater Treatment Plant in the following ways: enhanced primary sludge separation; thickened waste activated sludge; implemented a lysate centrifuge; increased operational temperature; improved digester mixing. With these optimizations, biogas production increased significantly to 12.5 m(3) per population equivalent per year. In turn, this led to an equally significant increase in specific energy production from approximately 15 to 23.5 kWh per population equivalent per year. We compared these full-scale results with those obtained from WWTPs that are already energy self-sufficient, but have exceptionally low energy consumption. Both our results and our analysis suggest that, with the correct optimization of anaerobic digestion technology, even WWTPs with 'standard' energy consumption can either attain or come close to attaining energy self-sufficiency. PMID:24185054

Jenicek, P; Kutil, J; Benes, O; Todt, V; Zabranska, J; Dohanyos, M

2013-01-01

319

Environmental and plant effects of sewage sludge application to forests and pastures  

SciTech Connect

Digested sewage sludge was applied to pastures and tree plantations at 19 to 44 Mg/ha (dry weight) as part of a municipal sludge disposal program. The sludge had low concentrations of heavy metals and traces of /sup 137/Cs and /sup 60/Co. Monitoring of soils, soil solutions, and runoff indicated that N, P, heavy metals, and radionuclides were largely retained in the upper 15cm of the soil. Soil solutions had elevated NO/sub 3//sup /minus// concentrations often >100 mg/L, but no significant increases in groundwater NO/sub 3//sup /minus// were found during the first year. Runoff from active sites had elevated concentrations of NO/sub 3//sup /minus// (20--30 mg/L), soluble P (1 mg/L), BOD/sub 5/ (5--30 mg/L), and fecal coliform (up to 14,000 colonies per 100 ml), not unlike runoff from pastures with cattle. Enrichment of organic N (2 times), available (inorganic) N (5 to 10 times), and Bray-P in the upper soils persisted for several years following sludge application. Sludge increased vegetation N concentrations from 1.5% to 2.3% and P concentrations from 0.16% to 0.31%. With the exception of Zn, heavy metals did not accumulate substantially in the vegetation. The sludge addition increased the survival and growth of sycamore (Platanus occidentalis L.). For a loblolly pine (Pinus taeda L.) plantation future growth improvements are expected based on elevated foliar N concentrations. 37 refs., 3 figs., 7 tabs.

Van Miegroet, H.; Boston, H.L.; Johnson, D.W.

1989-01-01

320

Use of sequential extraction to assess the influence of sewage sludge amendment on metal mobility in Chilean soils.  

PubMed

In Chile, the increasing number of plants for the treatment of wastewater has brought about an increase in the generation of sludge. One way of sludge disposal is its application on land; this, however involves some problems, some of them being heavy metal accumulation and the increase in organic matter and other components from sewage sludge which may change the distribution and mobility of heavy metals. The purpose of the present study was to determine the effect of sewage sludge application on the distribution of Cr, Ni, Cu, Zn and Pb in agricultural soils in Chile. Three different soils, two Mollisols and one Alfisol, were sampled from an agricultural area in Central Chile. The soils were treated with sewage sludge at the rates of 0 and 30 ton ha(-1), and were incubated at 25 degrees C for 45 days. Before and after incubation, the soils were sequentially extracted to obtain labile (exchangeable and sodium acetate-soluble), potentially labile (soluble in moderately reducing conditions, K4P2O7-soluble and soluble in reducing conditions) and inert (soluble in strong acid oxidizing conditions) fractions. A two-level factored design was used to assess the effect of sludge application rate, incubation time and their interaction on the mobility of the elements under study. Among the metals determined in the sludge, zinc has the highest concentration. However, with the exception of Ni, the total content of metals was lower than the recommended limit values in sewage sludge as stated by Chilean regulations. Although 23% of zinc in sludge was in more mobile forms, the residual fraction of all metals was the predominant form in soils and sludge. The content of zinc only was significantly increased in two of the soils by sewage sludge application. On the other hand, with the exception of copper, the metals were redistributed in the first four fractions of amended soils. The effect of sludge application rate, incubation time and their interaction depended on the metal or soil type. In most cases an increase in more mobile forms of metals in soils was observed as the final effect. PMID:15054542

Ahumada, Ins; Escudero, Paula; Carrasco, M Adriana; Castillo, Gabriela; Ascar, Loreto; Fuentes, Edwar

2004-04-01

321

Cardoon (Cynara cardunculus L.) biomass production in a calcareous soil amended with sewage sludge compost and irrigated with sewage water  

NASA Astrophysics Data System (ADS)

Energy use is one of the most important current global issues. Traditional energetic resources are limited and its use generates environmental problems, i.e. Global Warming, thus it is necessary to find alternative ways to produce energy. Energy crops represent one step towards sustainability but it must be coupled with appropriate land use and management adapted to local conditions. Moreover, positive effects like soil conservation; economical improvement of rural areas and CO2 storage could be achieved. Treated sewage water and sewage sludge compost were used as low-cost inputs for nutrition and irrigation, to cultivate cardoon (Cynara cardunculus L.) a perennial Mediterranean crop. The aim of the present field experiment was to ascertain the optimum dose of compost application to obtain maximum biomass production. Four compost treatments were applied by triplicate (D1=0; D2=30; D3=50; D4=70 ton/ha) and forty eight cardoon plants were placed in each plot, 12 per treatment, in a calcareous soil (CLfv; WRB, 2006) plot, located in the South East of Spain, in semi-arid conditions. The experiment was developed for one cardoon productive cycle (one year); soil was sampled three times (October, April and July). Soil, compost and treated sewage irrigation water were analyzed (physical and chemical properties). Stalk, capitula and leave weight as well as height and total biomass production were the parameters determined for cardoon samples. Analyses of variance (ANOVA) at p=0,05 significance level were performed to detect differences among treatments for each sampling/plot and to study soil parameters evolution and biomass production for each plot/dose. Several statistical differences in soil were found between treatments for extractable zinc, magnesium and phosphorus; as well as Kjeldahl nitrogen and organic carbon due to compost application, showing a gradual increase of nutrients from D1 to D4. However, considering the evolution of soil parameters along time, pH was the only with marked and significant decreasing trend from the first to the last sampling period. Mean cardoon biomass production in D1subplot was 13 ton/ha which differed significantly from D4 production, which was about 20 ton/ha. Hence, the maximum biomass production was obtained with the maximum compost dose. The results show that compost amendment increased cardoon biomass production, probably due to the improvement of soil properties, especially plant nutrient availability. No significant differences were found in soil parameters along time, with the exception of pH. However, longer test time is needed to evaluate long term effects in soil and to check the maintenance of biomass productivity. References Fernadez J., Curt, M.D., Aguado P.L. Industrial applications of Cynara cardunculus for energy and other uses. Industrial Crops and Product 24 (2006) pp 222-229. WRB (2006). World Reference Base for Soil Resources (2nd ed.). World Soil Resources Report 103, FAO, Rome, Italy (2006) 133 pp. Casado, J.; Sells, S.; Navarro, J.; Bustamante, M.A.; Mataix, J.; Guerrero, C.; Gomez, I. Evaluation of composted sewage sludge as nutricional source for horticulturals soils. Waste Management 26 (2006). pp 946-952. Acknowledgements: The author gratefully acknowledges the Spanish Ministry of Innovation and Science for a research fellowship (AP2007-01641).

Lag, A.; Gomez, I.; Navarro-Pedreo, J.; Melendez, I.; Perez Gimeno, A.; Soriano-Disla, J. M.

2010-05-01

322

Potential for Increased Human Foodborne Exposure to PCDD/F When Recycling Sewage Sludge on Agricultural Land  

PubMed Central

Sewage sludge from municipal wastewater treatment is used in agriculture as a nutrient source and to aid in moisture retention. To examine the potential impact of sludge-amended soil on exposures to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from plant and animal foods, we conducted a review of published empirical data from international sources. Levels of PCDD/F in municipal sewage sludge ranged from 0.0005 to 8,300 pg toxic equivalents (TEQ)/g. Background levels in soil ranged from 0.003 to 186 pg TEQ/g. In sludge-amended soils, levels of PCDD/F ranged from 1.4 to 15 pg TEQ/g. Studies that measured levels before and after sludge treatment showed an increase in soil concentration after treatment. Relationships between PCDD/F levels in soil and resulting concentrations in plants were very weakly positive for unpeeled root crops, leafy vegetables, tree fruits, hay, and herbs. Somewhat stronger relationships were observed for plants of the cucumber family. In all cases, large increases in soil concentration were required to achieve a measurable increase in plant contamination. A considerably stronger positive relationship was observed between PCDD/F in feed and resulting levels in cattle tissue, suggesting bioaccumulation. Although PCDD/Fs are excreted in milk, no association was found between feed contamination and levels of PCDD/Fs measured in milk. There is a paucity of realistic data describing the potential for entry of PCDD/Fs into the food supply via sewage sludge. Currently available data suggest that sewage sludge application to land used for most crops would not increase human exposure. However, the use of sludge on land used to graze animals appears likely to result in increased human exposure to PCDD/F. PMID:15198915

Rideout, Karen; Teschke, Kay

2004-01-01

323

Identification of Archaeal population in the granular sludge of an UASB reactor treating sewage at low temperatures  

Microsoft Academic Search

Effect of low temperature on up-flow anaerobic sludge bed (UASB) reactor performance treating raw sewage was investigated in terms of the variations in methanogenic diversity using the 16S rRNA based Fluorescence In-Situ Hybridization (FISH) technique. The diversity of microorganisms present in the anaerobic granular sludge and the structure of the granules operated at 13C have been investigated using FISH combined

Cigdem Y. Gomec; Ioanna Letsiou; Izzet Ozturk; Veysel Eroglu; Peter A. Wilderer

2008-01-01

324

Degradation and environmental risk of surfactants after the application of compost sludge to the soil.  

PubMed

In this work, the degradation of anionic and non-ionic surfactants in agricultural soil amended with sewage sludge is reported. The compounds analysed were: linear alkylbenzene sulphonates (LAS) with a 10-13 carbon alkylic chain, and nonylphenolic compounds (NPE), including nonylphenol (NP) and nonylphenol ethoxylates with one and two ethoxy groups (NP1EO and NP2EO). The degradation studies were carried out under winter (12.7C) and summer (22.4C) conditions in Andalusia region. The concentration of LAS was reduced to 2% of the initial concentration 100 day after sludge-application to the soil. The half-life time measured for LAS homologues were ranged between 4 and 14days at 12.7C and between 4 and 7 days at 22.4C. With regard to NPE compounds, after 8 and 4days from the beginning of the experiment at 12.7 and 22.4C, respectively, their concentration levels were increased to 6.5 and 13.5mg/kgdm (dry matter) as consequence of the degradation of nonylphenol polyethoxylates. These concentration levels were reduced to 5% after 63 and 70 days for 12.7C and 22.4C, respectively. The half-life times measured for NPEs were from 8 to 16 days at 12.7C and from 8 to 18 days at 22.4C. Environmental risk assessment revealed that for LAS homologues no environment risk could be expected after 7 and 8 days of sludge application to the soil for 22.4 and 12.7C, respectively; however, potential toxic effects could be observed for the nonylphenolic compounds during the first 56 days after sludge application to the soil. PMID:22480727

Gonzlez, M M; Martn, J; Camacho-Muoz, D; Santos, J L; Aparicio, I; Alonso, E

2012-07-01

325

Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes.  

PubMed

Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH(3)), sulfur dioxide (SO(2)), hydrogen sulfide (H(2)S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO(2) and H(2)S emissions in the H(2)SO(4) conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant release of NH(3). PMID:22902143

Liu, Huan; Luo, Guang-Qian; Hu, Hong-Yun; Zhang, Qiang; Yang, Jia-Kuan; Yao, Hong

2012-10-15

326

Insight into the roles of earthworm in vermicomposting of sewage sludge by determining the water-extracts through chemical and spectroscopic methods.  

PubMed

This work illustrated the effects of earthworm in vermicomposting (Eisenia fetida) by determining the water-extracts through chemical and spectroscopic methods. A field experiment with sludge as the only feed was subjected to vermicomposting and the control (without worms) for three weeks. Compared to the control, vermicomposting resulted in lower pH and water-extractable organic carbon (WEOC) along with higher electrical conductivity (EC). Moreover, vermicomposting caused nearly two times higher content of water-extractable nitrate (WEN-NO3(-)) than the control. Furthermore, fourier transform infrared spectra (FT-IR) revealed that vermicomposting promoted the hydrolysis/transformation of macromolecular organic matters and accelerated the degradation of polysaccharide-like and protein-like materials. Fluorescence spectroscopy also reflected vermicomposting led to higher humification degree than the control. In all, this study supplies a new view to assess the roles of earthworm in vermicomposting of sewage sludge by evaluating the water extracts. PMID:24384315

Yang, Jian; Lv, Baoyi; Zhang, Jie; Xing, Meiyan

2014-02-01

327

Stabilization of heavy metals in lightweight aggregate made from sewage sludge and river sediment.  

PubMed

The primary goal of this research is to investigate the stabilization of heavy metals in lightweight aggregate (LWA) made from sewage sludge and river sediment. The effects of the sintering temperature, the (Fe?O?+CaO+MgO)/(SiO?+Al?O?) ratio (K ratio), SiO?/Al?O? and Fe?O?/CaO/MgO (at fixed K ratio), pH, and oxidative conditions on the stabilization of heavy metals were studied. Sintering at temperatures above 1100 C effectively binds Cd, Cr, Cu and Pb in the LWA, because the stable forms of the heavy metals are strongly bound to the aluminosilicate or silicate frameworks. Minimum leachabilities of Cd, Cr, Cu and Pb were obtained at K ratios between 0.175 and 0.2. When the LWA was subjected to rigorous leaching conditions, the heavy metals remained in the solid even when the LWA bulk structure was broken. LWA made with sewage sludge and river sediment can therefore be used as an environmentally safe material for civil engineering and other construction applications. PMID:23747465

Xu, Guoren; Liu, Mingwei; Li, Guibai

2013-09-15

328

K-Area and Par Pond Sewage Sludge Application Sites Groundwater Monitoring Report  

SciTech Connect

During fourth quarter 1992, samples from the three monitoring wells at the K-Area site (KSS series) and the three monitoring wells at the Par Pond site (PSS series) were analyzed for constituents required by South Carolina Department of Health and Environmental Control Construction Permit 13, 173 and for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. This report describes monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the SRS flagging criteria. During fourth quarter 1992, no constituents analyzed exceeded the PDWS or the SRS Flag 2 criteria at the K-Area and Par Pond Sewage Sludge Application Sites. In the KSS well series, the field measurement for alkalinity ranged as high as 26 mg/L in well KSS 1D. Alkalinity measurements were zero in the PSS wells. Historical and current water-level elevations at the K-Area and Par Pond Sewage Sludge Application Site indicate that the groundwater flow directions are south to southwest (SRS grid coordinates).

Thompson, C.Y.

1993-04-01

329

Foamed lightweight materials made from mixed scrap metal waste powder and sewage sludge ash.  

PubMed

The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio. PMID:15560443

Wang, Kuen-Sheng; Chiou, Ing-Jia

2004-10-01

330

Activated carbons obtained from sewage sludge by chemical activation: gas-phase environmental applications.  

PubMed

The objective of this study was to evaluate the adsorption capacity for toluene and SO2 of low cost activated carbons prepared from sewage sludge by chemical activation at different impregnation ratios. Samples were characterized by proximate and ultimate analyses, thermogravimetry, infrared spectroscopy and N2 adsorption. Because of the low carbon content of the raw material, the development of porosity in the activated carbons was mainly of a mesoporous nature, with surface areas lower than 300 m(2)/g. The study of gas-phase applications for activated carbons from sewage sludge was carried out using both an organic and an inorganic compound in order to screen for possible applications. Toluene adsorption capacity at saturation was around 280 mg/g, which is a good level of performance given the high ash content of the activated carbons. However, dynamic experiments at low toluene concentration presented diffusion problems resulting from low porosity development. SO2 adsorption capacity is associated with average micropore size, which can be controlled by the impregnation ratio used to prepare the activated carbons. PMID:24747937

Boualem, T; Debab, A; Martnez de Yuso, A; Izquierdo, M T

2014-07-01

331

Microbial electrolysis cell accelerates phosphate remobilisation from iron phosphate contained in sewage sludge.  

PubMed

Phosphate was remobilised from iron phosphate contained in digested sewage sludge using a bio-electric cell. A significant acceleration above former results was caused by strongly basic catholytes. For these experiments a dual chambered microbial electrolysis cell with a small cathode (40 mL) and an 80 times larger anode (2.5 L) was equipped with a platinum sputtered reticulated vitreous carbon cathode. Various applied voltages (0.2-6.0 V) generated moderate to strongly basic catholytes using artificial waste water with pH close to neutral. Phosphate from iron phosphate contained in digested sewage sludge was remobilised most effectively at pH ?13 with up to 95% yield. Beside minor electrochemical reduction, hydroxyl substitution was the dominating remobilisation mechanism. Particle-fluid kinetics using the "shrinking core" model allowed us to determine the reaction controlling step. Reaction rates changed with temperature (15-40 C) and an activation energy of Ea = 55 kJ mol(-1) was found. These analyses indicated chemical and physical reaction control, which is of interest for future scale-up work. Phosphate remobilisation rates increased significantly, yields doubled and recovered PO4(3-) concentrations increased four times using a task specific bio-electric system. The result is a sustainable process for decentralized phosphate mining and a green chemical base generator useful also for many other sustainable processing needs. PMID:25407335

Fischer, Fabian; Zufferey, Graldine; Sugnaux, Marc; Happe, Manuel

2015-01-23

332

Hydrologic effects of storing liquified sewage sludge on strip-mined land, Fulton County, Illinois  

USGS Publications Warehouse

The water table near four sewage storage basins in a strip-mined area of western Illinois, has risen about 10 feet since the basins were constructed in 1971. Two dimensional modeling of ground-water flow in the mine spoil indicates that the rise is caused by leakage from one storage basin. The hydrologic-parameter values producing the best fit between computed and observed head values are 0.000007 feet per second for the hydraulic conductivity of the mine spoil, 0.0000000004 feet per second for recharge from the leaking basin. The model indicates the volume of water leaking from the basin is 91,600 cubic yards per year. The principal components of the sewage sludge after the solids have been removed are alkalinity, nitrogen, phosphorous, and chloride. Components in higher concentrations near the basins were sodium, alkalinity, and chloride. Because the sodium and chloride concentrations in the sludge were too low to cause the higher concentrations in the ground water, the strip-mine spoil used in constructing the basins was considered to be the major source of these constituents. This spoil has been moved from its original location and unweathered surfaces exposed, which allowed dissolution of carbonate and chloride and release of sodium through cation exchange. (USGS)

Patterson, G.L.

1982-01-01

333

Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review.  

PubMed

The drivers for increasing incineration of sewage sludge and the characteristics of the resulting incinerated sewage sludge ash (ISSA) are reviewed. It is estimated that approximately 1.7 milliontonnes of ISSA are produced annually world-wide and is likely to increase in the future. Although most ISSA is currently landfilled, various options have been investigated that allow recycling and beneficial resource recovery. These include the use of ISSA as a substitute for clay in sintered bricks, tiles and pavers, and as a raw material for the manufacture of lightweight aggregate. ISSA has also been used to form high density glass-ceramics. Significant research has investigated the potential use of ISSA in blended cements for use in mortars and concrete, and as a raw material for the production of Portland cement. However, all these applications represent a loss of the valuable phosphate content in ISSA, which is typically comparable to that of a low grade phosphate ore. ISSA has significant potential to be used as a secondary source of phosphate for the production of fertilisers and phosphoric acid. Resource efficient approaches to recycling will increasingly require phosphate recovery from ISSA, with the remaining residual fraction also considered a useful material, and therefore further research is required in this area. PMID:23820291

Donatello, Shane; Cheeseman, Christopher R

2013-11-01

334

[Thermophiles and their working mechanisms in degrading excess sludge: a review].  

PubMed

Activated sludge process is widely used in treating a wide variety of wastewater, but the by-product is the large amount of excess sludge. To treat the excess sludge properly could spend 25%-60% of the total cost of wastewater treatment, while improperly treating the sludge could cause serious secondary pollution. Therefore, the reduction of excess sludge is becoming a rising challenge. Using thermophiles to degrade excess sludge is a way easy in operation and inexpensive in maintenance, being a promising method in application. This paper reviewed the recent progress in the researches of sludge-degrading thermophiles, their working mechanisms, and the enzymes from thermophiles, such as thermophilic proteolytic enzymes and thermophilic lipases which play an important role in the degradation of sludge. The factors affecting the degradation of sludge by thermophiles were summarized, and the perspectives for the further research on the application of thermophiles in digesting sludge were discussed. PMID:23173483

Yang, Yue; Wang, Yun-Long; Yang, Shang-Yuan; Liang, Zhi-Wei; Liu, Guo-Fang; Chen, Ying-Xu

2012-07-01

335

Current levels and composition profiles of emerging halogenated flame retardants and dehalogenated products in sewage sludge from municipal wastewater treatment plants in China.  

PubMed

Occurrence of new toxic chemicals in sludge from wastewater treatment plants (WWTPs) is of concern for the environment and human health. Alternative halogenated flame retardants (HFRs) are a group of potentially harmful organic contaminants in the environment. In this study, a nationwide survey was carried out to identify the occurrence of HFRs and their potential dehalogenated products in sewage sludge from 62 WWTPs in China. Of all 20 target chemicals analyzed, decabromodiphenyl ethane (DBDPE), hexabromocyclododecane (HBCD) and 1, 2-bis (2,4,6-tribromophenoxy)-ethane (BTBPE) were detected in all sludge samples, and the concentrations were in the range of 0.82-215, 0.09-65.8, and 0.10-2.26 ng g(-1) d.w., respectively. Dechlorane Plus (DP) was found in 60 of 62 samples, and the concentration ranged from nd-298 ng g(-1) with a mean of 18.9 ng g(-1) d.w. The anti-DP fractional abundance fanti (0.79) in the samples was much higher than the commercial DP composition (fanti=0.59), indicating a stereoselective degradation. Comparison with global sludge concentrations of HFRs indicate that China is at the medium pollution level in the world. Principal components analysis revealed that strong correlations existed between ln-transformed concentrations (natural logarithm) of the dominant BFRs and total organic carbon (TOC) as well as industrial wastewater proportion, influent volume and serving population. Significant linear relationships (R=0.360-0.893, p<0.01) were found among emerging brominated flame retardants (BFRs), suggesting their common commercial applications and release sources to the environment. Two kinds of dehalogenated products, pentabromocyclododecane (PBCD) and undecachloropentacyclooctadecadiene (Cl11-DP), derived from HBCD and DP, were also identified in sewage sludge for the first time. PMID:25286358

Zeng, Lixi; Yang, Ruiqiang; Zhang, Qinghua; Zhang, Haidong; Xiao, Ke; Zhang, Haiyan; Wang, Yawei; Lam, Paul K S; Jiang, Guibin

2014-11-01

336

The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal  

SciTech Connect

The behavior of Cd, Cr, Cu, Co, Mn, Ni, Pb, Zn, and Hg during the combustion tests of a dry granular sewage sludge on a fluidized bed combustor pilot (FBC) of about 0.3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals (HM). Heavy metals were collected and analyzed from different locations of the installation, which included the stack, the two cyclones, and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40% and 80%. It is believed that in this latter case, a slightly higher temperature could have enhanced the volatilization, especially of Cd and Pb. However these metals were then retained in fly ashes captured in the cyclones. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of Hg was retained in the cyclones and the rest was emitted either with fine ash particles or in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted, for about 50%. This appeared to have significantly decreased in the case of co-combustion, as only about 75% has been emitted, due to the retention effect of cyclone ashes.

Gulyurtlu, I.; Lopes, M.H.; Abelha, P.; Cabrita, I.; Oliveira, J.F.S. [INETI, Lisbon (Portugal)

2006-06-15

337

Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge  

SciTech Connect

The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as a result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.

Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan; Turney, Terence W.; Naidu, Ravi; Miller, Bradley W.; Scheckel, Kirk G. (U. South Australia); (EPA); (Monash)

2013-01-14

338

HIGHLIGHTS, INSIGHTS, AND PERSPECTIVES ON INFECTIOUS DISEASE AGENTS IN SEWAGE SLUDGE AND ANIMAL MANURE IN THE U.S.  

EPA Science Inventory

The purpose of this chapter is: 1) Highlight the core principles and findings from the Workshop on Emerging Infectious Disease Agents and Issues Associated With Sewage Sludge, Animal Manures and Other Organic By-Products held June 4-6, 2001, Cincinnati, Ohio, so that all readers,...

339

Distribution, movement and plant availability of trace metals in soils amended with sewage sludge composts: application to low metal loadings  

Microsoft Academic Search

Three soils, representative of various physicochemical properties, an acid soil from a granitic arena with a sandy texture, a calcareous soil with a sandy silty texture and a clayey and silty one, were used in a lysimetric experiment to evaluate the ecotoxicological risks associated with the disposal of sewage sludge composts (SSC) containing trace metal contents below the recommended limit

P. Planquart; G. Bonin; A. Prone; C. Massiani

1999-01-01

340

Effects of different applications of sewage sludge on crops of a cultivated site located in the East part of Romania  

NASA Astrophysics Data System (ADS)

Investigations were carried out in order to determine the effects of sewage sludge application on soil and plants. In the course, plots with an area of 100 sq.m were treated with different fertilization systems (mineral fertilization, organic fertilization, and mineral and organic fertilization). The organic component consisted of sewage sludge in different amounts with a maximum of 30 tons dry substance per ha. Furthermore three tillage systems were installed (conventional tillage system, minimal tillage system and no-tillage system). The content in heavy metals was affect by both fertilization and tillage systems. Winter wheat and rape where sewage sludge was applied, showed a clear increase of Zn and Cd compared to the untreated plots, both in plants and seeds. The increases of applied sewage sludge increased also the contents in both Zn and Cd in plants and seeds of these crops. The effect of the tillage systems on the contents of these heavy metals, shows different results. A higher content of Cd in crops occurred in the no-tillage system and a higher content in Zn was found in crops of the minimal tillage system. A lesser content of Cd and Zn occurred generally in crops of the conventional tillage system. The results of this one-year experiment up to now show no significant negative effects for the food chain according to the present laws and regulations in Romania.

Balan, A.; Duering, R.; Felix-Henningsen, P.; Raus, L.; Ailincai, C.; Jitareanu, G.

2009-04-01

341

Application of hydrothermal oxidation and alkaline hydrothermal gasification for the treatment of sewage sludge and pharmaceutical wastewaters  

Microsoft Academic Search

Hydrothermal treatment involving the oxidation and gasification of sewage sludge and pharmaceutical wastewater samples has been carried out in batch autoclave reactor. The efficiency of the oxidation processes measured in terms of total organic carbon (TOC) and total solids (TS) removal showed that effective sample treatments were achieved at moderately low temperatures of 350450C. More than 90% TOC removal was

Jude A. Onwudili; Pushpa Radhakrishnan; Paul T. Williams

2012-01-01

342

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites groundwater monitoring report. Second quarter 1994  

SciTech Connect

Groundwater samples from the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control (SCDHEC) Construction Permit 12,076. Samples from the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) are analyzed quarterly for constituents required by SCDHEC Construction Permit 13,173. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. No constituents exceeded the SCDHEC final Primary Drinking Water Standard in any well from the H-Area, K-Area, and Par Pond Sewage Sludge Application Sites. Aluminum, iron, lead, and manganese, which were above standards and Flag 2 criteria in one or more wells in the three sites during first quarter 1994, were not analyzed this quarter. Second quarter results are similar to results for fourth quarter 1993.

Not Available

1994-10-01

343

Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was within the limits for landfilling inert residues. On the other hand, sulfate and chloride releases were found to comply with the limits for non-hazardous residues.

Seggiani, Maurizia, E-mail: m.seggiani@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Puccini, Monica, E-mail: m.puccini@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Raggio, Giovanni, E-mail: g.raggio@tiscali.it [Italprogetti Engineering SPA, Lungarno Pacinotti, 59/A, 56020 San Romano (Pisa) (Italy); Vitolo, Sandra, E-mail: s.vitolo@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy)

2012-10-15

344

Techno-economic and environmental assessment of sewage sludge wet oxidation.  

PubMed

Today, several technologies and management strategies are proposed and applied in wastewater treatment plants (WWTPs) to minimise sludge production and contamination. In order to avoid a shifting of burdens between different areas, their techno-economic and environmental performance has to be carefully evaluated. Wet oxidation (WO) is an alternative solution to incineration for recovering energy in sewage sludge while converting it to mostly inorganic residues. This paper deals with an experimentation carried out within the EU project "ROUTES". A mass balance was made for a WWTP (500,000 person equivalents) in which a WO stage for sludge minimisation was considered to be installed. Both bench- and full-scale test results were used. Design of treatment units and estimation of capital and operational costs were then performed. Subsequently, technical and economic aspects were evaluated by means of a detailed methodology which was developed within the ROUTES project. Finally, an assessment of environmental impacts from a life cycle perspective was performed. The integrated assessment showed that for the specific upgrade considered in this study, WO technology, although requiring a certain increase of technical complexity at the WWTP, may contribute to environmental and economic advantages. The paper provides guidance in terms of which aspects need a more thorough evaluation in relation to the specific case in which an upgrade with WO is considered. PMID:25091166

Bertanza, Giorgio; Canato, Matteo; Heimersson, Sara; Laera, Giuseppe; Salvetti, Roberta; Slavik, Edoardo; Svanstrm, Magdalena

2014-08-01

345

Experimental study on agitated drying characteristics of sewage sludge under the effects of different additive agents.  

PubMed

Drying experiments of dewatered sewage sludge (DSS) were conducted on a agitated paddle dryer, and the effects of additive agents, i.e., CaO, pulverized coal (PC), heavy oil (HO), and dried sludge ("DS" through back mixing) on the agitated drying characteristics of DSS were investigated. The results indicated that CaO can significantly increase the drying rate of DSS. The drying rate at CaO/DSS (mass ratio)=1/100 was 135% higher than that of CaO/DSS=0. Pulverized coal has no obvious effect on drying rate, but the increase of PC/DSS can promote breaking up of sludge lump. Heavy oil was found to be slightly effective in improving the drying rate of DSS in the examined experimental range of HO/DSS=0-1/20. It is also found that HO can reduce the torque of the dryer shaft, due to its lubrication effect. Back mixing of DS was found to be effective in alleviating the unfavorable effect of the lumpy phase by improving the mixing effect of the paddle dryer. There was a marked increase of drying rate with an increase of the DS/DSS in the experimental range of DS/DSS=0-1/3. PMID:25080002

Deng, Wenyi; Su, Yaxin

2014-07-01

346

Activated carbons from sewage sludge and discarded tyres: production and optimization.  

PubMed

This is a study about making use of two residual materials such as sludges from a sewage treatment plant and discarded tyres to generate activated carbons and later optimize the production process. H2SO4 and ZnCl2 were used as chemical activating agents. Liquid-phase adsorption tests were made using the produced carbons to retain methylene blue and iodine. The best precursor was sludge activated with ZnCl2. After optimization studies, the best production methodology involved a 1:1 ratio of sludge and ZnCl2, a heating rate of 5 degrees C/min up to 650 degrees C and a residence time of 5 min. The resulting materials adsorbed up to 139.4 mg/g of methylene blue and 1358.5 mg/g of iodine. Nevertheless these carbons may leach Zn while using. To avoid this two treatments were carried out: one consisting of a coating with a polymer and another involving an intensive washing, which was seen to be more efficient. PMID:15955625

Rozada, F; Otero, M; Morn, A; Garca, A I

2005-09-30

347

Influence of organic and inorganic flocculants on the formation of PCDD/Fs during sewage sludge incineration.  

PubMed

Flocculants are widely used to improve the properties of sludge dewatering in industrial wastewater treatment. However, there have been no studies conducted on the influence of flocculants on the formation of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) during sewage sludge incineration. This paper selected three typical kinds of flocculants, including polyacrylamide (PAM), poly-ferric chloride (PFC), and polyaluminum chloride (PAC) flocculant, to study their influences on the formation of PCDD/Fs during sewage sludge incineration. The results indicated that PAM flocculant, which is an organic flocculant, inhibited the formation of PCDD/Fs in sewage sludge incineration, while inorganic flocculant, such as PFC and PAC flocculant, promoted the formation. The most probable explanation is that the amino content in the PAM flocculant acted as an inhibitor in the formation of PCDD/Fs, while the chlorine content, especially the metal catalyst in the PFC and PAC flocculants, increased the formation rate. The addition of flocculants nearly did not change the distribution of PCDD/F homologues. The PCDFs contributed the most toxic equivalent (TEQ) value, especially 2, 3, 4, 7, 8-PeCDF. Therefore, the use of inorganic flocculants in industrial wastewater treatment should be further assessed and possibly needs to be strictly regulated if the sludge is incinerated. From this aspect, a priority to the use of organic flocculants should be given. PMID:25028327

Lin, Xiaoqing; Li, Xiaodong; Lu, Shengyong; Wang, Fei; Chen, Tong; Yan, Jianhua

2014-07-16

348

Long-term balance in heavy metal adsorption and release in biochar derived from sewage sludge  

NASA Astrophysics Data System (ADS)

In Europe, sewage sludge has major potential as a resource for producing biochar. Biochar from sludge could offer a means for the controlled recycling of phosphorus to soil, with the additional benefit of carbon stabilisation. Biochar made from contaminated feedstock could, however, also leach heavy metals into soil. Counter to release of metals, biochar from fresh plant biomass has a documented affinity and adsorption capacity. The longer term balance of release and adsorption of metals in sludge-derived biochar has not been established. Our work compared the adsorption and release of both indigenous metals and metals adsorbed to sludge derived biochar. The hypotheses were threefold: (1) the capacity to adsorb metals is lower than the potential to release them, (2) the affinity for indigenous metals is higher than for metals in solution, 3) oxidative ageing of biochar leads to partial release of adsorbed metals. Sludge biochar was produced in a horizontal, externally heated kiln at a feed rate of approx. 0.5 kg/hr. Dry sludge was converted in a 20 min. transit time with peak kiln temperature of 550C. Elemental analysis using ICP OES (after a published preparation step) showed Zn, Pb and Cu to be the most abundant heavy metals in the biochar. The same elements were assessed in sequential water and Mehlich III extracts. Adsorption of the metals from pure and mixed Zn, Pb and Pb solutions were undertaken before and after the other extractions. All the treatments were applied to the same biochar after oxidative ageing, in which biochar C was also found to be very stable. Extractability of all three metals from fresh biochar was low (less than 5 %), but for two of the metals it was lower after ageing. For one of the metals, ageing increased extractability. For the same metal, adsorption was lower when undertaken with a mixed rather than pure solution. Capacity for adsorption of one of the other metals was higher after biochar ageing; the general capacity for metal adsorption was similar to indigenous content. The affinity of biochar for adsorbed metals was higher after ageing than it had been for fresh biochar. The findings provide a quite positive picture in terms of the potential for safe use of sludge-derived biochar in agriculture, over the long- as well as near-term. Integrating further work on metals and its integration with work biochar phosphorus and C stability could lead to strategies that successfully address multiple goals and are also economically feasible.

Sohi, Saran; Cleat, Robert; Graham, Margaret; Cross, Andrew

2014-05-01

349

Characterization of organic matter microstructure dynamics during co-composting of sewage sludge, barks and green waste.  

PubMed

A microstructure characterization study using transmission electron microscopy (TEM) was conducted to specify organic matter dynamics during the co-composting process of sewage sludge, green waste and barks. TEM results showed that ligneous and polyphenolic compounds brought by barks were not biodegraded during composting. Green waste brought more or less biodegraded ligneous constituents and also an active microbial potential. Chloroplasts and sludge flocs appeared to be relevant indicators of green waste and sewage sludge in composted products, as they were still viewable at the end of the process. TEM characterization of the final product highlighted two main fractions of organic matter, one easily available and a more recalcitrant one, and also a remaining microbial activity. Thus microstructure characterization appeared to be an appropriate way of taking the heterogeneity of the organic constituents' size and composition into account when attempting to specify such compost quality parameters as maturity and stability. PMID:21807502

Watteau, Franoise; Villemin, Genevive

2011-10-01

350

The effect of sludge recirculation rate on a UASB-digester treating domestic sewage at 15 C.  

PubMed

The anaerobic treatment of low strength domestic sewage at low temperature is an attractive and important topic at present. The upflow anaerobic sludge bed (UASB)-digester system is one of the anaerobic systems to challenge low temperature and concentrations. The effect of sludge recirculation rate on a UASB-digester system treating domestic sewage at 15 C was studied in this research. A sludge recirculation rate of 0.9, 2.6 and 12.5% of the influent flow rate was investigated. The results showed that the total chemical oxygen demand (COD) removal efficiency rose with increasing sludge recirculation rate. A sludge recirculation rate of 0.9% of the influent flow rate led to organic solids accumulation in the UASB reactor. After the sludge recirculation rate increased from 0.9 to 2.6%, the stability of the UASB sludge was substantially improved from 0.37 to 0.15 g CH?-COD/g COD, and the bio-gas production in the digester went up from 2.9 to 7.4 L/d. The stability of the UASB sludge and bio-gas production in the digester were not significantly further improved by increasing sludge recirculation rate to 12.5% of the influent flow rate, but the biogas production in the UASB increased from 0.37 to 1.2 L/d. It is recommended to apply a maximum sludge recirculation rate of 2-2.5% of the influent flow rate in a UASB-digester system, as this still allows energy self-sufficiency of the system. PMID:23109575

Zhang, Lei; Hendrickx, Tim L G; Kampman, Christel; Zeeman, Grietje; Temmink, Hardy; Li, Weiguang; Buisman, Cees J N

2012-01-01

351

Effect of wastewater treatment processes on the pyrolysis properties of the pyrolysis tars from sewage sludges  

NASA Astrophysics Data System (ADS)

The pyrolysis properties of five different pyrolysis tars, which the tars from 1# to 5# are obtained by pyrolyzing the sewage sludges of anaerobic digestion and indigestion from the A2/O wastewater treatment process, those from the activated sludge process and the indigested sludge from the continuous SBR process respectively, were studied by thermal gravimetric analysis at a heating rate of 10 C/min in the nitrogen atmosphere. The results show that the pyrolysis processes of the pyrolysis tars of 1#, 2#, 3# and 5# all can be divided into four stages: the stages of light organic compounds releasing, heavy polar organic compounds decomposition, heavy organic compounds decomposition and the residual organic compounds decomposition. However, the process of 4# pyrolysis tar is only divided into three stages: the stages of light organic compounds releasing, decomposition of heavy polar organic compounds and the residual heavy organic compounds respectively. Both the sludge anaerobic digestion and the "anaerobic" process in wastewater treatment processes make the content of light organic compounds in tars decrease, but make that of heavy organic compounds with complex structure increase. Besides, both make the pyrolysis properties of the tars become worse. The pyrolysis reaction mechanisms of the five pyrolysis tars have been studied with Coats-Redfern equation. It shows that there are the same mechanism functions in the first stage for the five tars and in the second and third stage for the tars of 1#, 2#, 3# and 5#, which is different with the function in the second stage for 4# tar. The five tars are easy to volatile.

Wu, Xia; Xie, Li-Ping; Li, Xin-Yu; Dai, Xiao-Hong; Fei, Xue-Ning; Jiang, Yuan-Guang

2011-06-01

352

Emissions of NO x and N 2O during co-combustion of dried sewage sludge with coal in a bubbling fluidized bed combustor  

Microsoft Academic Search

Emissions of NOx and N2O were measured during mono-combustion of dried sewage sludge and co-combustion with coal in a bench-scale bubbling fluidized bed combustor. After starting the sludge feed, emissions of NOx increased with time, but N2O emissions changed only slightly. After a certain amount of sludge was burned, the fuel was switched from sludge to coal. Emissions of NOx

Tadaaki Shimizu; Masanori Toyono; Hajime Ohsawa

2007-01-01

353

An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor  

PubMed Central

The gasification of sewage sludge was carried out in a simple atmospheric fluidized bed gasifier. Flow and fuel feed rate were adjusted for experimentally obtaining an air mass?:?fuel mass ratio (A/F) of 0.2 < A/F < 0.4. Fuel characterization, mass and power balances, produced gas composition, gas phase alkali and ammonia, tar concentration, agglomeration tendencies, and gas efficiencies were assessed. Although accumulation of material inside the reactor was a main problem, this was avoided by removing and adding bed media along gasification. This allowed improving the process heat transfer and, therefore, gasification efficiency. The heating value of the produced gas was 8.4?MJ/Nm, attaining a hot gas efficiency of 70% and a cold gas efficiency of 57%. PMID:24453863

Calvo, L. F.; Garca, A. I.; Otero, M.

2013-01-01

354

Hydrothermal carbonisation of sewage sludge: Effect of process conditions on product characteristics and methane production.  

PubMed

Hydrothermal carbonisation of primary sewage sludge was carried out using a batch reactor. The effect of temperature and reaction time on the characteristics of solid (hydrochar), liquid and gas products, and the conditions leading to optimal hydrochar characteristics were investigated. The amount of carbon retained in hydrochars decreased as temperature and time increased with carbon retentions of 64-77% at 140 and 160C, and 50-62% at 180 and 200C. Increasing temperature and treatment time increased the energy content of the hydrochar from 17 to 19MJ/kg but reduced its energy yield from 88% to 68%. Maillard reaction products were identified in the liquid fractions following carbonisations at 180 and 200C. Theoretical estimates of the methane yields resulting from the anaerobic digestion of the liquid by-products are also presented and optimal reaction conditions to maximise these identified. PMID:25496954

Danso-Boateng, E; Shama, G; Wheatley, A D; Martin, S J; Holdich, R G

2015-02-01

355

Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting.  

PubMed

Sewage sludge (SS) was mixed with different proportions of fly ash (FA) and phosphoric rock (PR), as passivators, and earthworms, Eisenia fetida, were introduced to allow vermicomposting. The earthworm growth rates, reproduction rates, and metal (except Zn and Cd) concentrations were significantly higher in the vermireactors containing FA and PR than in the treatments without passivators. The total organic carbon (TOC) and total metal concentrations in the mixtures decreased, and the mixtures were brought to approximately pH 7 during vermicomposting. There were significant differences in the decreases in the metal bioavailability factors (BFs) between the passivator and control treatments, and adding 20% FA (for Cu and Zn) or 20% PR (for Pb, Cd, and As) to the vermicompost were the most effective treatments for mitigating metal toxicity. The BF appeared to be dependent on TOC in the all treatments, but was not closely dependent on pH in the different vermibeds. PMID:23567692

Wang, Longmian; Zhang, Yimin; Lian, Jianjun; Chao, Jianying; Gao, Yuexiang; Yang, Fei; Zhang, Leiyan

2013-05-01

356

Concentrations and distribution of synthetic musks and siloxanes in sewage sludge of wastewater treatment plants in China.  

PubMed

In this study, we assessed the occurrence and distribution patterns of seven synthetic musks (SMs) and 17 siloxanes in anaerobic digested sludge samples collected at the dewatering process from 42 wastewater treatment plants (WWTPs) in China. SMs in sludge from different WWTPs exhibited similar composition profiles, and their total concentrations ranged from 47.3 ng/g to 68.2 ?g/g dry weight (dw). On average, galaxolide (HHCB, 63.8%) and tonalide (AHTN, 31.7%) accounted for 95.5% of ?SMs. The total concentrations of cyclic siloxanes ranged from sewage sludge indicated that both of them were widely used in China. Among the sludge samples from 42 WWTPs, the concentrations of both ?SMs and ?siloxanes had considerable variations. We investigated the influence of potential factors (wastewater and sludge characteristics, the treatment capacity, serving population, and the treatment techniques of WWTPs) on the levels of target compounds in sludge, and found that SMs were significantly (p<0.05) correlated with the total organic carbon (TOC) of the sludge and the serving population of WWTP. There were also strong correlations (p<0.05) between the treatment capacity of WWTPs and cyclic siloxanes, as well as between the TOC of the sludge and linear siloxanes. In addition, the ecological risks of SMs and siloxanes in sewage sludge addressed to land application were assessed, which suggested that there was a low risk to the soil environment. PMID:24463026

Liu, Nannan; Shi, Yali; Li, Wenhui; Xu, Lin; Cai, Yaqi

2014-04-01

357

Dissolution of Barium from Barite in Sewage Sludges and Cultures of Desulfovibrio desulfuricans  

PubMed Central

High concentrations of total barium, ranging from 0.42 to 1.58 mg(middot)g(sup-1) (dry weight) were found in sludges of two sewage treatment plants near Florence, Italy. Barium concentrations in the suspended matter decreased as redox potential values changed from negative to positive. An anoxic sewage sludge sample was aerated, and 30% of the total barium was removed in 24 h. To demonstrate that barium was solubilized from barite by sulfate-reducing bacteria, a strain of Desulfovibrio desulfuricans was used to study the solubilization of barium from barite under laboratory conditions. During cell growth with different concentrations of barite from 0.01 to 0.3 g(middot)liter(sup-1) (the latter is the MIC) as the only source of sulfates in the cultures, the D. desulfuricans strain accumulated barium up to 0.58 (mu)g(middot)mg(sup-1) (dry weight). Three times the quantity of barium was dissolved by bacteria than in the uninoculated medium (control). The unexpectedly low concentration of soluble barium (1.2 mg of Ba(middot)liter(sup-1)) with respect to the quantity expected (109 mg of Ba(middot)liter(sup-1)), calculated on the basis of the free H(inf2)S evolved from the dissimilatory reduction of sulfate from barite, was probably due to the formation of other barium compounds, such as witherite (BaCO(inf3)) and the transient species barium sulfide (BaS). The D. desulfuricans strain, growing on barite, formed visible aggregates. Confocal microscopy analysis showed that aggregates consisted of bacteria and barite. After 3 days of incubation, several autofluorescent crystals surrounded by a dissolution halo were observed. The crystals were identified as BaS by comparison with the commercial compound. PMID:16535353

Baldi, F.; Pepi, M.; Burrini, D.; Kniewald, G.; Scali, D.; Lanciotti, E.

1996-01-01

358

Microbially mediated cadmium sorption/desorption processes in soil amended with sewage sludge.  

PubMed

A multi-compartment system was used to study the importance of microorganisms for Cd desorption from soil amended with sewage sludge and simultaneous resorption of the mobilized metal by soil constituents. Using this system made it possible to study the participation of microorganisms (Arthrobacter, Trichoderma), montmorillonite, humic acids, and iron oxides in resorption of the released Cd. A filter-sterilized water extract of root-free soil of pH 6.7 (RF) or RF supplemented with glucose (RFG) were used to mobilize Cd from soil at 14 degrees C in 48 h. Cadmium found in those extracts after 48-h incubation was recognized as bioavailable. Changes in pH values and enrichment of soil extracts with organic acids and siderophores resulted from microbial growth. RFG with lower pH and a higher content of ligands mobilized, on average, 40% of Cd introduced with sewage sludge amended soil, whereas RF mobilized only 20% of it. Sequential extractions of Cd at time 0 and Cd remaining in soil showed that RFG had mobilized Cd mostly from the fraction bound with Fe and Mn oxides. Microbial biomass accounted for only up to 3.4% (w/w) of the soil constituents used in the experiments but resorbed 25% of mobilized Cd. The chemical composition of mobilizing soil extracts and the solid-to-mobilizing-extracts volume ratio had a significant effect on the amount of bioavailable Cd. The results of the study suggest that microbial metabolites were involved in Cd mobilization, while the biomass of microorganisms was involved in Cd resorption as a biosorbent. PMID:17182077

Majewska, Ma?gorzata; Kurek, Ewa; Rogalski, Jerzy

2007-03-01

359

Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash  

SciTech Connect

Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 {+-} 100 deg. C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor and a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl{sub 2}. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 deg. C, 10 and 30 min and 3.4 and 4.6 m s{sup -1}. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu. In the pellet, three major reactions occur: formation of HCl and Cl{sub 2} from CaCl{sub 2}; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl{sub 2} out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.

Nowak, Benedikt, E-mail: benedikt.nowak@tuwien.ac.at [Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166, A-1060 Vienna (Austria); Perutka, Libor [Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166, A-1060 Vienna (Austria); Aschenbrenner, Philipp [Institute for Water Quality, Resource and Waste Management, Vienna University of Technology, Karlsplatz 13/226, A-1040 Vienna (Austria); Kraus, Petra [ASH DEC Umwelt AG, Donaufelderstrasse 101/4/5, A-1210 Vienna (Austria); Rechberger, Helmut [Institute for Water Quality, Resource and Waste Management, Vienna University of Technology, Karlsplatz 13/226, A-1040 Vienna (Austria); Winter, Franz, E-mail: franz.winter@tuwien.ac.at [Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166, A-1060 Vienna (Austria)

2011-06-15

360

Community Level Physiological Profiles (CLPP), Characterization and Microbial Activity of Soil Amended with Dairy Sewage Sludge  

PubMed Central

The aim of the present work was to assess the influence of organic amendment applications compared to mineral fertilization on soil microbial activity and functional diversity. The field experiment was set up on a soil classified as an Eutric Cambisol developed from loess (South-East Poland). Two doses of both dairy sewage sludge (20 Mgha?1 and 26 Mgha?1) and of mineral fertilizers containing the same amount of nutrients were applied. The same soil without any amendment was used as a control. The soil under undisturbed native vegetation was also included in the study as a representative background sample. The functional diversity (catabolic potential) was assessed using such indices as Average Well Color Development (AWCD), Richness (R) and ShannonWeaver index (H). These indices were calculated, following the community level physiological profiling (CLPP) using Biolog Eco Plates. Soil dehydrogenase and respiratory activity were also evaluated. The indices were sensitive enough to reveal changes in community level physiological profiles due to treatment effects. It was shown that dairy sewage amended soil was characterized by greater AWCD, R, H and dehydrogenase and respiratory activity as compared to control or mineral fertilized soil. Analysis of variance (ANOVA) and principal component analysis (PCA) were used to depict the differences of the soil bacterial functional diversity between the treatments. PMID:22737006

Fr?c, Magdalena; Oszust, Karolina; Lipiec, Jerzy

2012-01-01

361

Sewage sludge application in a plantation: effects on trace metal transfer in soil-plant-snail continuum.  

PubMed

We studied the potential bioaccumulation of Cu, Zn, Pb and Cd by the snail Cantareus aspersus and evaluated the risk of leaching after application of sewage sludge to forest plantation ecosystems. Sewage sludge was applied to the soil surface at two loading rates (0, and 6 tons ha(-1) in dry matter) without incorporation into the soil so as to identify the sources of trace metal contamination in soil and plants and to evaluate effects on snail growth. The results indicated a snail mortality rate of less than 1% during the experiment, while their dry weight decreased significantly (<0.001) in all treatment modalities. Thus, snails showed no acute toxicity symptoms after soil amendment with sewage sludge over the exposure period considered. Additions of sewage sludge led to higher levels of trace metals in forest litter compared to control subplots, but similar trace metal concentrations were observed in sampling plants. Bioaccumulation study demonstrated that Zn had not accumulated in snails compared to Cu which accumulated only after 28 days of exposure to amended subplots. However, Pb and Cd contents in snails increased significantly after 14 and 28 days of exposure in both the control and amended subplots. At the last sampling date, in comparison to controls the Cd increase was higher in snails exposed to amended subplots. Thus, sludge spread therefore appears to be responsible for the observed bioaccumulation for Cu and Cd after 28days of exposure. Concerning Pb accumulation, the results from litter-soil-plant compartments suggest that soil is this metal's best transfer source. PMID:25262293

Bourioug, Mohamed; Gimbert, Frdric; Alaoui-Sehmer, Laurence; Benbrahim, Mohammed; Aleya, Lotfi; Alaoui-Soss, Badr

2015-01-01

362

Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries.  

PubMed

Municipal wastewater treatment results to the production of large quantities of sewage sludge, which requires proper and environmentally accepted management before final disposal. In European Union, sludge management remains an open and challenging issue for the Member States as the relative European legislation is fragmentary and quite old, while the published data concerning sludge treatment and disposal in different European countries are often incomplete and inhomogeneous. The main objective of the current study was to outline the current situation and discuss future perspectives for sludge treatment and disposal in EU countries. According to the results, specific sludge production is differentiated significantly between European countries, ranging from 0.1 kg per population equivalent (p.e.) and year (Malta) to 30.8 kg per p.e. and year (Austria). More stringent legislations comparing to European Directive 86/278/EC have been adopted for sludge disposal in soil by several European countries, setting lower limit values for heavy metals as well as limit values for pathogens and organic micropollutants. A great variety of sludge treatment technologies are used in EU countries, while differences are observed between Member States. Anaerobic and aerobic digestion seems to be the most popular stabilization methods, applying in 24 and 20 countries, respectively. Mechanical sludge dewatering is preferred comparing to the use of drying beds, while thermal drying is mainly applied in EU-15 countries (old Member States) and especially in Germany, Italy, France and UK. Regarding sludge final disposal, sludge reuse (including direct agricultural application and composting) seems to be the predominant choice for sludge management in EU-15 (53% of produced sludge), following by incineration (21% of produced sludge). On the other hand, the most common disposal method in EU-12 countries (new Member States that joined EU after 2004) is still landfilling. Due to the obligations set by Directive 91/271/EC, a temporary increase of sludge amounts that are disposed in landfills is expected during the following years in EU-12 countries. Beside the above, sludge reuse in land and sludge incineration seem to be the main practices further adopted in EU-27 (all Member States) up to 2020. The reinforcement of these disposal practices will probably result to adoption of advanced sludge treatment technologies in order to achieve higher pathogens removal, odors control and removal of toxic compounds and ensure human health and environmental protection. PMID:22336390

Kelessidis, Alexandros; Stasinakis, Athanasios S

2012-06-01

363

Co-Firing of Sewage Sludge with Bark in A Bench-Scale Bubbling Fluidized BED A Study of Deposits and Emissions  

Microsoft Academic Search

\\u000a It has been shown that addition of either sulfur and\\/or aluminosilicates such as kaolinite may reduce alkali induced deposit\\u000a formation when firing biomass fuels. Sewage sludge is a fuel containing substantial amounts of sulfur and aluminosilicates,\\u000a such as zeolites. In this work different amounts of sewage sludge (0, 2, 4, 6 and 8%en) were co-fired with bark in a bench-scale

Patrik Yrjas; Martti Aho; Maria Zevenhoven; Raili Taipale; Jaani Silvennoinen; Mikko Hupa

2010-01-01

364

Two-phase anaerobic co-digestion of food waste and sewage sludge.  

PubMed

The feasibility and performance of food waste and sewage sludge co-digestion were investigated to gain insight into their resource utilization. In this study, two-phase anaerobic digestion (TPAD) was operated under a total solids mixing ratio of 1:1 and different sludge retention times (SRTs). Results show that an acidogenic reactor with a 5-day SRT obtained the highest acidification efficiency, and its acetic acid content was dominant. The organic removal rate of a methanogenic reactor (MR) with a 20-day SRT and its corresponding TPAD system with a 25-day SRT were both the highest among the MRs and TPAD systems. Volatile solids and total chemical oxygen demand average removal efficiencies of the TPAD system with a 25-day SRT reached 64.7 and 60.8%, respectively. The MR with a 30-day SRT obtained the minimum ratio of volatile fatty acid to alkalinity (0.12). The methane content generated from the different MRs fluctuated at around 70%. All of the above results can provide reference for future research. PMID:25607669

Wang, Feng; Li, Wei-Ying; Yi, Xue-Nong

2015-01-01

365

Gasification of dried sewage sludge: status of the demonstration and the pilot plant.  

PubMed

The disposal of sewage sludge from municipal waste water treatment plants is suffering from raising costs. The gasification is an alternative way of treatment, which can reduce the amount of solid residues that must be disposed from a water treatment plant. The produced gas can be used very flexible to produce electrical energy, to burn it very cleanly or to use it for upgrading. The gasification in the fluidised bed and the gas cleaning with the granular bed filter has shown successful operation. A demonstration plant in Balingen was set up in 2002 and rebuilt to a larger throughput in 2010. As a next step a demonstration plant was built in Mannheim and is now at the end of the commissioning phase. Nowadays the product gas is blended with biogas from sludge fermentation and utilized in a gas engine or combustion chamber to produce heat. In the future the process control for a maximized efficiency and the removal of organic and inorganic impurities in the gas will be further improved. PMID:22284442

Judex, Johannes W; Gaiffi, Michael; Burgbacher, H Christian

2012-04-01

366

Application of sewage sludge to non-agricultural ecosystems: Assessment of contaminant risks to wildlife  

SciTech Connect

This report is part of a larger study evaluating nutrient and contaminant impacts associated with the land application of biosolids in four non-agricultural ecosystems: Pacific Northwest forests, semi-arid rangelands, eastern deciduous forests, and southeasternpine plantations. Because contaminants in biosolids may be taken up by biota and transferred through the food web, they may present a risk to wildlife. Biosolids application scenarios that reflect actual practices in each ecosystem were developed. Concentrations of contaminants in biosolids were obtained from the US EPA`s 1988 National Sewage Sludge Survey. Soil-biota uptake factors for contaminants in sludge were developed from contaminant studies performed in each ecosystem type. Where ecosystem-specific data were unavailable, more generalized factors were used. Endpoints were selected that reflected species expected to be present in each ecosystem. Four trophic groups were considered: herbivores (e.g., deer) vermivores (earthworm-consumers; e.g., shrews), insectivores (e.g., songbirds), and carnivores (e.g., fox). Contaminant concentrations in wildlife foods were estimated using the uptake factors. These estimates were then incorporated into models to estimate the contaminant exposure for endpoints in each trophic group in each ecosystem. Exposure estimates were then compared to NOAELs and LOAELs to determine the nature and magnitude of risks that biosolids may present to wildlife.

Sample, B.E.; Efroymson, R.A.; Barnthouse, L.W. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Daniel, F.B. [Environmental Protection Agency, Cincinnati, OH (United States). Office of Research and Development

1995-12-31

367

Factors affecting microwave-enhanced advanced oxidation process for sewage sludge treatment.  

PubMed

The microwave-enhanced advanced oxidation process (MW/H(2)O(2)-AOP) was applied to sewage sludge for nutrient solubilization and solids' disintegration. Four factors, temperature, hydrogen peroxide dosage, mixing, and solids concentration were chosen for a screening experiment, and were ranked according to their significance of influence on the process. In general, temperature and hydrogen peroxide dosage are the two significant factors affecting the process, while mixing is the least significant factor. Temperature was the most significant factor for the release of orthophosphate, and hydrogen peroxide dosage was most important in ammonia release. Solids disintegration, in terms of soluble chemical oxygen demand (SCOD), was largely dependent on temperature and hydrogen peroxide dosage. For volatile fatty acids (VFA) release, mixing was the most significant factor. At higher temperatures with mixing, more VFA was released into the headspace, resulting in less VFA retained in the solution. The best results of solids' disintegration and nutrient release were obtained at 120 degrees C, and 0.80 g H(2)O(2)/g dry sludge. PMID:19847696

Kenge, Anju A; Liao, Ping H; Lo, Kwang V

2009-09-01

368

Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants.  

PubMed

This work investigated the pilot scale production of short chain fatty acids (SCFAs) from sewage sludge through alkaline fermentation and the subsequent membrane filtration. Furthermore, the impact of the fermentation liquid on nutrient bioremoval was examined. The addition of wollastonite in the fermenter to buffer the pH affected the composition of the carbon source produced during fermentation, resulting in higher COD/NH4-N and COD/PO4-P ratios in the liquid phase and higher content of propionic acid. The addition of wollastonite decreased the capillary suction time (CST) and the time to filter (TTF), resulting in favorable dewatering characteristics. The sludge dewatering characteristics and the separation process were adversely affected from the use of caustic soda. When wollastonite was added, the permeate flux increased by 32%, compared to the use of caustic soda. When fermentation liquid was added as carbon source for nutrient removal, higher removal rates were obtained compared to the use of acetic acid. PMID:25459853

Longo, S; Katsou, E; Malamis, S; Frison, N; Renzi, D; Fatone, F

2014-10-01

369

Concentrations and mass balance of mercury in a fluidized bed sewage sludge incineration plant  

SciTech Connect

The fluidized bed sewage sludge incineration plant of the city of Hamburg started its operation in May 1997. In cooperation with Hamburger Stadtentwaesserung the Technical University Hamburg-Harburg undertook an experimental program to measure the mass balance of mercury across this plant. During the first months of full operation the mercury concentrations in the flue gas and in the solid residues were measured. The measurements show that the concentration in the raw flue gas is between 500 to 950 {micro}g/m{sup 3} and part of the elemental mercury depends on the chlorine content of the fuel. The concentration of the mercury in the flue gas is reduced over the first scrubber to 35--460 {micro}m/m{sup 3}. Some 77% of the mercury input are found in the sediment separated from the liquid of the acid scrubber. It is remarkable that the concentration of the elemental mercury increases while the gas passes through the scrubber. The concentration of mercury in the cleaned stack gas is less than 40 {micro}g/m{sup 3}. Since it is generally known that it is not easy to meet the limit of 50 {micro}g mercury per m{sup 3} (standard conditions, dry basis) of flue gas which is set by the German regulations for waste incineration, the measurements provide a comprehensive picture of the fate of mercury in a fluidized bed sludge incineration plant.

Saenger, M.; Werther, J.; Hanssen, H.

1999-07-01

370

Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions  

Microsoft Academic Search

Slow degradation of sewage sludge is a disadvantage of anaerobic digestion leading to high sludge retention times in conventional digesters. Hydrolysis has been pointed as the rate-limiting step in this process. Thermophilic anaerobic digestion has been proved effectively to reduce the retention time needed for sludge stabilization. Sludge pretreatment has been also proposed as a strategy to accelerate the hydrolytic

Mavi Climent; Ivet Ferrer; Ma del Mar Baeza; Adriana Artola; Felcitas Vzquez

2007-01-01

371

The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil  

SciTech Connect

Chemical fractionation procedures were used to quantify the effect of the sediment redox and pH conditions on the adsorption and solubility of arsenic (As) in municipal sewage sludge and sewage sludge-amended soil. Sludge and sludge-amended soil were incubated in microcosms in which Eh-pH conditions were controlled. Samples were sequentially extracted to determine As in various chemical forms (water soluble, exchangeable, bound to carbonates, bound to iron (Fe) and manganese (Mn) oxides, bound to insoluble organics and sulfides) and the chemically inactive fraction (mineral residues). In both sewage sludge and sludge-amended soil, As chemistry was governed by large molecular humic matter and sulfides and Fe and Mn-oxides. Solubility of As remained low and constant under both aerobic and anaerobic conditions in sludge-amended soil. After dissolution of Fe and Mn-oxides, As{sup 5+} was released into sludge solution, reduced to As{sup 3+} and likely precipitated as sulfide. Therefore, an organic amendment rich in sulfur compounds, such as sewage sludge, would drastically reduce the potential risks derived from As pollution under highly anoxic conditions by precipitation of this toxic metalloid as insoluble and immobile sulfides.

Carbonell-Barrachina, A.; Jugsujinda, A.; DeLaune, R.D.; Patrick, W.H. Jr. [Louisiana State Univ., Baton Rouge, LA (United States). Wetland Biogeochemistry Inst.] [Louisiana State Univ., Baton Rouge, LA (United States). Wetland Biogeochemistry Inst.; Burlo, F. [Univ. Miguel Hernandez, Alicante (Spain). Div. Tecnologia de Alimentos] [Univ. Miguel Hernandez, Alicante (Spain). Div. Tecnologia de Alimentos; Sirisukhodom, S. [Mahidol Univ., Bangkok (Thailand). Environmental Health Science Dept.] [Mahidol Univ., Bangkok (Thailand). Environmental Health Science Dept.; Anurakpongsatorn, P. [Kasetsart Univ., Bangkok (Thailand). Dept. of Environmental Science] [Kasetsart Univ., Bangkok (Thailand). Dept. of Environmental Science

1999-07-01

372

Effects of calcined aluminum salts on the advanced dewatering and solidification/stabilization of sewage sludge.  

PubMed

The high moisture content (80%) in the sewage dewatered sludge is the main obstacle to disposal and recycling. A chemical dewatering and stabilization/solidification (S/S) alternative for the sludge was developed, using calcined aluminum salts (AS) as solidifier, and CaCl2, Na2SO4 and CaSO4 as accelerators, to enhance the mechanical compressibility making the landfill operation possible. The properties of the resultant matrixes were determined in terms of moisture contents, unconfined compressive strength, products of hydration, and toxicity characteristics. The results showed that AS exhibited a moderate pozzolanic activity, and the mortar AS(0) obtained with 5% AS and 10% CaSO4 of AS by weight presented a moisture contents below 50%-60% and a compressive strength of (51.32 +/- 2.9) kPa after 5-7 days of curing time, meeting the minimum requirement for sanitary landfill. The use of CaSO4 obviously improved the S/S performance, causing higher strength level. X-ray diffraction, scanning electron microscopy and thermogravimetry-differential scanning calorimetry investigations revealed that a large amount of hydrates (viz., gismondine and CaCO3) were present in solidified sludge, leading to the depletion of evaporable water and the enhancement of the strength. In addition, the toxicity characteristic leaching procedure (TCLP) and horizontal vibration (HJ 557-2009) leaching test were conducted to evaluate their environmental compatibility. It was found that the solidified products conformed to the toxicity characteristic criteria in China and could be safely disposed of in a sanitary landfill. PMID:22125919

Zhen, Guangyin; Yan, Xiaofei; Zhou, Haiyan; Chen, Hua; Zhao, Tiantao; Zhao, Youcai

2011-01-01

373

Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea.  

PubMed

Concern over the occurrence of artificial sweeteners (ASWs) as well as pharmaceuticals and personal care products (PPCPs) in the environment is growing, due to their high use and potential adverse effects on non-target organisms. The data for this study are drawn from a nationwide survey of ASWs in sewage sludge from 40 representative wastewater treatment plants (WWTPs) that receive domestic (WWTPD), industrial (WWTPI), or mixed (domestic plus industrial; WWTPM) wastewaters in Korea. Five ASWs (concentrations ranged from 7.08 to 5220 ng/g dry weight [dw]) and ten PPCPs (4.95-6930 ng/g dw) were determined in sludge. Aspartame (concentrations ranged from 28.4 to 5220 ng/g dw) was determined for the first time in sewage sludge. The median concentrations of ASWs and PPCPs in sludge from domestic WWTPs were 0.8-2.5 and 1.0-3.4 times, respectively, the concentrations found in WWTPs that receive combined domestic and industrial wastewaters. Among the five ASWs analyzed, the median environmental emission rates of aspartame through domestic WWTPs (both sludge and effluent discharges combined) were calculated to be 417 ?g/capita/day, followed by sucralose (117 ?g/capita/day), acesulfame (90 ?g/capita/day), and saccharin (66?g/capita/day). The per-capita emission rates of select PPCPs, such as antimicrobials (triclocarban: 158 ?g/capita/day) and analgesics (acetaminophen: 59 ?g/capita/day), were an order of magnitude higher than those calculated for antimycotic (miconazole) and anthelmintic (thiabendazole) drugs analyzed in this study. Multiple linear regression analysis of measured concentrations of ASWs and PPCPs in sludge revealed that several WWTP parameters, such as treatment capacity, population-served, sludge production rate, and hydraulic retention time could influence the concentrations found in sludge. PMID:24695211

Subedi, Bikram; Lee, Sunggyu; Moon, Hyo-Bang; Kannan, Kurunthachalam

2014-07-01

374

The effect of low-temperature transformation of mixtures of sewage sludge and plant materials on content, leachability and toxicity of heavy metals.  

PubMed

The aim of the study was to determine the influence of the process of low-temperature transformation and the addition of plant material to sewage sludge diversifying the content of mobile forms of heavy metals and their ecotoxicity. The experimental design included: sewage sludge+rape straw, sewage sludge+wheat straw, sewage sludge+sawdust, sewage sludge+bark and sewage sludge with no addition. The mixtures were subjected to thermal transformation in a chamber furnace, under conditions without air. The procedure consisted of two stages: the first stage (130C for 40min) focused on drying the material, whereas in the second stage (200C for 30min) proper thermal transformation of materials took place. Thermal transformation of the materials, caused an increase in total contents of heavy metals in comparison to the material before transformation. From among elements, the cadmium content changed the most in materials after thermal transformation. As a result of thermal transformation, the content of water soluble form of the heavy metals decreased significantly in all the prepared mixtures. Low toxicity of the extracts from materials for Vibrio fischeri and Lepidium sativum was found in the research, regardless of transformation process. L. sativum showed higher sensitivity to heavy metals occurring in the studied extracts from materials than V. fischeri, evidence of which are the positive significant correlations between the content of metals and the inhibition of root growth of L. sativum. PMID:25433992

Gondek, Krzysztof; Baran, Agnieszka; Kope?, Micha?

2014-12-01

375

A solid-phase extraction method for rapidly determining the adsorption coefficient of pharmaceuticals in sewage sludge  

PubMed Central

The partitioning of pharmaceuticals in the environment can be assessed by measuring their adsorption coefficients (Kd) between aqueous and solid phases. Measuring this coefficient in sewage sludge gives an indication of their partitioning behaviour in a wastewater treatment plant and hence contributes to an understanding of their subsequent fate. The regulatory approved method for measuring Kd in sewage sludge is the US Environmental Protection Agency's Office of Prevention, Pesticides and Toxic Substances (OPPTS) guideline 835.1110, which is labour intensive and time consuming. We describe an alternative method for measuring the Kd of pharmaceuticals in sewage sludge using a modified solid-phase extraction (SPE) technique. SPE cartridges were packed at different sludge/PTFE ratios (0.4, 6.0, 24.0 and 40.0% w/w sludge) and eluted with phosphate buffer at pH 7.4. The approach was tested initially using three pharmaceuticals (clofibric acid, diclofenac and oxytetracycline) that covered a range of Kd values. Subsequently, the sorption behaviour of ten further pharmaceuticals with varying physico-chemical properties was evaluated. Results from the SPE method were comparable to those of the OPPTS test, with a correlation coefficient of 0.93 between the two approaches. SPE cartridges packed with sludge and PTFE were stable for up to one year; use within one month reduced variability in measurements (to a maximum of 0.6 log units). The SPE method is low-cost, easy to use and enables the rapid measurement of Kd values for a large number of chemicals. It can be used as an alternative to the more laborious full OPPTS test in environmental fate studies and risk assessments. PMID:25299795

Berthod, Laurence; Roberts, Gary; Whitley, David C.; Sharpe, Alan; Mills, Graham A.

2014-01-01

376

Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

Niu Dongjie, E-mail: niudongjie@tongji.edu.cn [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); UNEP-Tongji Institute of Environment for Sustainable Development, 1239 Siping Road, Shanghai 200092 (China); Huang Hui [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); Dai Xiaohu [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Engineering Research Center for Urban Pollution Control, Shanghai 200092 (China); Zhao Youcai [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2013-01-15

377

Degradation and Fate of Carbon Tetrachloride in Unadapted Methanogenic Granular Sludge  

PubMed Central

The potential of granular sludge from upflow anaerobic sludge blanket (UASB) reactors for bioremediation of chlorinated pollutants was evaluated by using carbon tetrachloride (CT) as a model compound. Granular sludges cultivated in UASB reactors on methanol, a volatile fatty acid mixture, or sucrose readily degraded CT supplied at a concentration of 1,500 nmol/batch (approximately 10 ?M) without any prior exposure to organohalogens. The maximum degradation rate was 1.9 ?mol of CT g of volatile suspended solids?1 day?1. The main end products of CT degradation were CO2 and Cl?, and the yields of these end products were 44 and 68%, respectively, of the initial amounts of [14C]CT and CT-Cl. Lower chlorinated methanes accumulated in minor amounts temporarily. Autoclaved (dead) sludges were capable of degrading CT at rates two- to threefold lower than those for living sludges, indicating that abiotic processes (mediated by cofactors or other sludge components) played an important role in the degradation observed. Reduced components in the autoclaved sludge were vital for CT degradation. A major part (51%) of the CT was converted abiotically to CS2. The amount of CO2 produced (23%) was lower and the amount of Cl? produced (86%) was slightly higher with autoclaved sludge than with living sludge. Both living and autoclaved sludges could degrade chloroform. However, only living sludge degraded dichloromethane and methylchloride. These results indicate that reductive dehalogenation, which was mediated better by living sludge than by autoclaved sludge, is only a minor pathway for CT degradation. The main pathway involves substitutive and oxidative dechlorination reactions that lead to the formation of CO2. Granular sludge, therefore, has outstanding potential for gratuitous dechlorination of CT to safe end products. PMID:9647798

Van Eekert, Miriam H. A.; Schrder, Thomas J.; Stams, Alfons J. M.; Schraa, Gosse; Field, Jim A.

1998-01-01

378

Compacted sewage sludge as a barrier for tailings: the heavy metal speciation and total organic carbon content in the compacted sludge specimen.  

PubMed

Acid mine drainage (AMD) was the main environmental problem facing the mining industry. For AMD had high heavy metals content and low pH, the compacted sewage sludge might be a barrier for tailings whose oxidation and weathering produced AMD, with its own carbon source, microorganism reduction ability and impermeability. To study the heavy metals environmental risk, under the simulate AMD, the deionized water (DW), and the pH 2.1 sulfuric acid water (SA) seepage conditions, respectively, the changes of the chemical speciation of heavy metals Cd, Cu, Fe, Ni, Zn and total organic carbon (TOC) content in the compacted sewage sludge were assessed in the different periods. The results indicated according to the distribution of heavy metals, the potential mobility was for Cd: 6.08 under AMD, 7.48 under SA, ? under DW; for Cu: 0.08 under AMD, 0.17 under SA, 0.59 under DW; for Fe: 0.15 under AMD, 0.22 under SA, 0.22 under DW; for Ni: 2.60 under AMD, 1.69 under SA, 1.67 under DW; and for Zn: 0.15 under AMD, 0.23 under SA and 0.21 under DW at the second checking time. TOC content firstly decreased from 67.620% to 66.290.35%, then increased to 67.740.65% under the AMD seepage while TOC decreased to 63.300.53%, then to 61.330.37% under the DW seepage, decreased to 63.860.41%, then to 63.280.49% under SA seepage. That indicated under the AMD seepage, the suitable microorganisms communities in the compacted sewage sludge were activated. And the heavy metals environmental risk of compacted sewage sludge was lower with AMD condition than with other two. So the compacted sewage sludge as a barrier for tailings was feasible as the aspect of environmental risk assessment. PMID:24979755

Zhang, Huyuan; Zhang, Qing; Yang, Bo; Wang, Jinfang

2014-01-01

379

Compacted Sewage Sludge as a Barrier for Tailings: The Heavy Metal Speciation and Total Organic Carbon Content in the Compacted Sludge Specimen  

PubMed Central

Acid mine drainage (AMD) was the main environmental problem facing the mining industry. For AMD had high heavy metals content and low pH, the compacted sewage sludge might be a barrier for tailings whose oxidation and weathering produced AMD, with its own carbon source, microorganism reduction ability and impermeability. To study the heavy metals environmental risk, under the simulate AMD, the deionized water (DW), and the pH 2.1 sulfuric acid water (SA) seepage conditions, respectively, the changes of the chemical speciation of heavy metals Cd, Cu, Fe, Ni, Zn and total organic carbon (TOC) content in the compacted sewage sludge were assessed in the different periods. The results indicated according to the distribution of heavy metals, the potential mobility was for Cd: 6.08 under AMD, 7.48 under SA, ? under DW; for Cu: 0.08 under AMD, 0.17 under SA, 0.59 under DW; for Fe: 0.15 under AMD, 0.22 under SA, 0.22 under DW; for Ni: 2.60 under AMD, 1.69 under SA, 1.67 under DW; and for Zn: 0.15 under AMD, 0.23 under SA and 0.21 under DW at the second checking time. TOC content firstly decreased from 67.620% to 66.290.35%, then increased to 67.740.65% under the AMD seepage while TOC decreased to 63.300.53%, then to 61.330.37% under the DW seepage, decreased to 63.860.41%, then to 63.280.49% under SA seepage. That indicated under the AMD seepage, the suitable microorganisms communities in the compacted sewage sludge were activated. And the heavy metals environmental risk of compacted sewage sludge was lower with AMD condition than with other two. So the compacted sewage sludge as a barrier for tailings was feasible as the aspect of environmental risk assessment. PMID:24979755

Zhang, Huyuan; Zhang, Qing; Yang, Bo; Wang, Jinfang

2014-01-01

380

Complete Genome Sequence of the Hydrogenotrophic, Methanogenic Archaeon Methanoculleus bourgensis Strain MS2T, Isolated from a Sewage Sludge Digester  

PubMed Central

Methanoculleus bourgensis, of the order Methanomicrobiales, is a dominant methanogenic archaeon in many biogas-producing reactor systems fed with renewable primary products. It is capable of synthesizing methane via the hydrogenotrophic pathway utilizing hydrogen and carbon dioxide or formate as the substrates. Here we report the complete and finished genome sequence of M. bourgensis strain MS2T, isolated from a sewage sludge digester. PMID:22965103

Maus, Irena; Wibberg, Daniel; Stantscheff, Robbin; Eikmeyer, Felix-Gregor; Seffner, Anja; Boelter, Jrgen; Szczepanowski, Rafael; Blom, Jochen; Jaenicke, Sebastian; Knig, Helmut; Phler, Alfred

2012-01-01

381

Production of Volatile Derivatives of Metal(loid)s by Microflora Involved in Anaerobic Digestion of Sewage Sludge  

Microsoft Academic Search

arsine, trimethylarsine, trimethylbismuth (TMBi), elemental mercury (Hg0), trimethylstibine, dimethyltellu- rium, and tetramethyltin. Most of these compounds could be shown to be produced by pure cultures of microorganisms which are representatives of the anaerobic sewage sludge microflora, i.e., methanogenic archaea (Methanobacterium formicicum, Methanosarcina barkeri, Methanobacterium thermoautotrophicum), sul- fate-reducing bacteria (Desulfovibrio vulgaris, D. gigas), and a peptolytic bacterium (Clostridium collageno- vorans). Additionally,

K. Michalke; E. B. Wickenheiser; M. Mehring; A. V. Hirner; R. Hensel

2000-01-01

382

Effects of different rates of fly ash and sewage sludge mixture amendments on cation availability and their leachability  

Microsoft Academic Search

A leaching column study was conducted to evaluate the leaching of cations from soils amended with a mixture of (1:1) fly ash (FA) from Port Wentworth power plant, Savannah, GA: sewage sludge (SS) from President Street water pollution control plant, Savannah, GA. Two sets of soil-leaching columns (30-cm high and 7.5-cm diameter; 15 columns per soil) were prepared with a

K. S. Sajwan; S. Paramasivam; A. K. Alva

2007-01-01

383

Determination of pharmaceuticals in sewage sludge and biochar from hydrothermal carbonization using different quantification approaches and matrix effect studies.  

PubMed

Producing valuable biochar from waste materials using thermal processes like hydrothermal carbonization (HTC) has gained attention in recent years. However, the fate of micropollutants present in these waste sources have been neglected, although they might entail the risk of environmental pollution. Thus, an HPLC-MS/MS method was developed for 12 pharmaceuticals to determine the micropollutant load of biochar, which was made from sewage sludge via HTC within 4h at 210C. Pressurized liquid extraction was applied to extract the compounds. Because of the high load of co-extracted matter, matrix effects in HPLC-MS/MS were investigated using matrix effect profiles. Interfering compounds suppressed 50% of the phenazone signal in sewage sludge and 70% in biochar, for example. The quantification approaches external calibration, internal standard analysis, and standard addition were compared considering recovery rates, standard deviations, and measurement uncertainties. The external analysis resulted in decreased or enhanced recovery rates. Spiking before LC-MS/MS compensated instrumental matrix effects. Still, recovery rates remained below 70% for most compounds because this approach neglects sample losses during the extraction. Internal standards compensated for the matrix effects sufficiently for up to five compounds. The standard addition over the whole procedure proved to compensate for the matrix effects for 11 compounds and achieved recovery rates between 85 and 125%. Additionally, results showed good reproducibility and validity. Only sulfamethoxazole recovery rate remained below 70% in sewage sludge. Real sample analysis showed that three pharmaceuticals were detected in the biochar, while the corresponding sewage sludge source contained 8 of the investigated compounds. PMID:25098418

Vom Eyser, C; Palmu, K; Otterpohl, R; Schmidt, T C; Tuerk, J

2015-01-01

384

Co-Firing of Sewage Sludge with Bark in A Bench-Scale Bubbling Fluidized BED A Study of Deposits and Emissions  

NASA Astrophysics Data System (ADS)

It has been shown that addition of either sulfur and/or aluminosilicates such as kaolinite may reduce alkali induced deposit formation when firing biomass fuels. Sewage sludge is a fuel containing substantial amounts of sulfur and aluminosilicates, such as zeolites. In this work different amounts of sewage sludge (0, 2, 4, 6 and 8%en) were co-fired with bark in a bench-scale BFB. SO2 and HCl emissions were measured and deposits were sampled during 3 hrs with an air-cooled probe with a surface temperature of 500C at two different locations with flue gas temperatures of 850C and 650C, respectively. The test results showed that an increase of the share of sewage sludge to the fuel mixture increased theformation of HCl and simultaneously decreased the Cl-content in the deposits. Usually this is considered to be a sign of sulfation of alkali chlorides. However, the increase of HCl canalso be caused by AI-silicates capturing alkali, thus releasing Cl as HCl to the gas phase. AIthough, sulfur increased in the fuel input with an increased share of sewage sludge, this was not reflected in the gaseous emissions as may be expected. Up to 4%en sewage sludge was fired together with bark without increasing the sulfur content in theemissions. At higher shares of sewage sludge the sulfur emissions increased linearly with an increase of sewage sludge. The amount of water soluble potassium fed into the boiler remained relatively constant in the different tests. This potassium is usually released as volatile salts. Nevertheless, the amount found in deposits decreased with an increase in sludge feeding. In this paper it was shown that interaction of potassium with AI-silicates in the bed is a probable cause for the decrease of potassium in the deposits, while both the sulfation of potassium chlorides and possibly also, the alkali capture by AI-silicates can weaken the deposition of Cl.

Yrjas, Patrik; Aho, Martti; Zevenhoven, Maria; Taipale, Raili; Silvennoinen, Jaani; Hupa, Mikko

385

Human-virulent microsporidian spores in solid waste landfill leachate and sewage sludge, and effects of sanitization treatments on their inactivation  

Microsoft Academic Search

Solid waste landfill leachate and sewage sludge samples were quantitatively tested for viable Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon hellem, and Encephalitozoon cuniculi spores by the multiplexed fluorescence in situ hybridization (FISH) assay. The landfill leachate samples tested positive\\u000a for E. bieneusi and the sludge samples for E. bieneusi and E. intestinalis. The effects of four sanitization treatments on the inactivation

Thaddeus K. Graczyk; Malgorzata Kacprzak; Ewa Neczaj; Leena Tamang; Halshka Graczyk; Frances E. Lucy; Autumn S. Girouard

2007-01-01

386

Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge.  

PubMed

Pyrolysis of sewage sludge was performed at 500 degrees C and a sweeping gas flow rate of 300 cm(3)/min in a drop tube furnace. Liquid fraction (i.e., bio-oil) from the sewage sludge pyrolysis was separated by silica-gel column chromatography (SGCC) with different solvents, including mixed solvents, as eluants. A series of alkanenitriles (C(13)-C(18)), oleamide, alkenenitrile, fatty acid amides and aromatic nitrogen species were fractionated from the bio-oil by SGCC and analyzed with a gas chromatography/mass spectrometry (GC/MS). Most of the GC/MS-detectable organic nitrogen species (ONSs) are lactams, amides and N-heterocyclic compounds, among which acetamide is the most abundant. N-heterocyclics with 1-3 rings, including pyrrole, pyridine, indole, benzoimidazole, carbazole, norharman and harman, were observed. The lactams detected include pyrrolidin-2-one, succinimide, phathalimide, glutarimide, piperidin-2-one and 3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione, all of which should be formed via decarboxylation and cyclization of gamma- and delta-amino acids. Such a procedure provides an effective approach to fractionation and identification of ONSs from bio-oil produced by fast pyrolysis of sewage sludge. PMID:20488694

Cao, Jing-Pei; Zhao, Xiao-Yan; Morishita, Kayoko; Wei, Xian-Yong; Takarada, Takayuki

2010-10-01

387

Determination of artificial sweeteners in sewage sludge samples using pressurised liquid extraction and liquid chromatography-tandem mass spectrometry.  

PubMed

An analytical method for the determination of six artificial sweeteners in sewage sludge has been developed. The procedure is based on pressurised liquid extraction (PLE) with water followed by solid-phase extraction (SPE) and subsequent liquid chromatography-tandem mass spectrometry analysis. After optimisation of the different PLE parameters, extraction with aqueous 500mM formate buffer (pH 3.5) at 80C during a single static cycle of 21min proved to be best conditions. After a subsequent SPE, quantification limits, referred to dry weight (dw) of sewage sludge, ranged from 0.3ng/g for acesulfame (ACE) to 16ng/g for saccharin (SAC) and neohespiridine dihydrochalcone. The trueness, expressed as recovery, ranged between 72% and 105% and the precision, expressed as relative standard deviation, was lower than 16%. Moreover, the method proved its linearity up to the 2?g/g range. Finally, the described method was applied to the determination of the artificial sweeteners in primary and secondary sewage sludge from urban wastewater treatment plants. Four of the six studied artificial sweeteners (ACE, cyclamate, SAC and sucralose) were found in the samples at concentrations ranging from 17 to 628ng/g dw. PMID:24210305

Ordoez, Edgar Y; Quintana, Jos Benito; Rodil, Rosario; Cela, Rafael

2013-12-13

388

Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil  

SciTech Connect

The application of biosolids such as sewage sludge is a concern, because of the potential release of toxic metals after decomposition of the organic matter. The effect of application of sewage sludge (Sw) and compost (C) to the soil (S) on the Cu and Cd sorption, distribution and the quality of the dissolved organic matter (DOM) in the soil, was investigated under controlled conditions. Visible spectrophotometry, infrared spectroscopy, sorption isotherms (simple and competitive sorption systems), and sequential extraction methods were used. The E {sub 4}/E {sub 6} ({lambda} at 465 and 665 nm) ratio and the infrared spectra (IR) of DOM showed an aromatic behaviour in compost-soil (C-S); in contrast sewage sludge-soil (Sw-S) showed an aliphatic behaviour. Application of either Sw or C increased the Cu sorption capacity of soil. The Cd sorption decreased only in soil with a competitive metal system. The availability of Cu was low due to its occurrence in the acid soluble fraction (F3). The Cu concentration varied in accordance with the amounts of Cu added. The highest Cd concentration was found in the exchangeable fraction (F2). The Sw and C applications did not increase the Cd availability in the soil.

Vaca-Paulin, R. [Laboratorio de Edafologia y Ambiente, Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario No. 100, Toluca 50000 (Mexico)]. E-mail: rvp@uaemex.mx; Esteller-Alberich, M.V. [Centro Interamericano de Recursos del Agua, Facultad de Ingenieria, Universidad Autonoma del Estado de Mexico, Toluca 50000 (Mexico); Lugo-de la Fuente, J. [Laboratorio de Edafologia y Ambiente, Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario No. 100, Toluca 50000 (Mexico); Zavaleta-Mancera, H.A. [Colegio de Postgraduados, Instituto de Recursos Naturales. km 36.5 Carr, Mexico-Texcoco, Montecillo 56230 (Mexico)

2006-07-01

389

Estimation of parameters in sewage sludge by near-infrared reflectance spectroscopy (NIRS) using several regression tools.  

PubMed

Sewage sludge application to agricultural soils is a common practice in several countries in the European Union. Nevertheless, the application dose constitutes an essential aspect that must be taken into account in order to minimize environmental impacts. In this study, near infrared reflectance spectroscopy (NIRS) was used to estimate in sewage sludge samples several parameters related to agronomic and environmental issues, such as the contents in organic matter, nitrogen and other nutrients, metals and carbon fractions, among others. In our study (using 380 biosolid samples), two regression models were fitted: the common partial least square regression (PLSR) and the penalized signal regression (PSR). Using PLSR, NIRS became a feasible tool to estimate several parameters with good goodness of fit, such as total organic matter, total organic carbon, total nitrogen, water-soluble carbon, extractable organic carbon, fulvic acid-like carbon, electrical conductivity, Mg, Fe and Cr, among other parameters, in sewage sludge samples. For parameters such as C/N ratio, humic acid-like carbon, humification index, the percentage of humic acid-like carbon, the polymerization ratio, P, K, Cu, Pb, Zn, Ni and Hg, the performance of NIRS calibrations developed with PLSR was not sufficiently good. Nevertheless, the use of PSR provided successful calibrations for all parameters. PMID:23618179

Galvez-Sola, Luis; Morales, Javier; Mayoral, Asuncin M; Paredes, Concepcin; Bustamante, Mara A; Marhuenda-Egea, Frutos C; Barber, J Xavier; Moral, Ral

2013-06-15

390

Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste.  

PubMed

The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production. PMID:24632434

Bajn Fernndez, Y; Soares, A; Villa, R; Vale, P; Cartmell, E

2014-05-01

391

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites groundwater monitoring report. Third quarter 1994  

SciTech Connect

Groundwater samples from the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control (SCDHEC) Construction Permit 12,076. Samples from the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the quired by SCDHEC Construction Permit 13,173. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. No constituents exceeded the SCDHEC final Primary Drinking Water Standard in any well from the H-Area, K-Area, and Par Pond Sewage Sludge Application Sites. Aluminum and iron were above Flag 2 criteria in one or more wells in the three sites during third quarter 1994. These constituents were not analyzed during the previous quarter. Third quarter results are similar to results for first quarter 1994.

NONE

1995-01-01

392

HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge.  

PubMed

The aim of the research involved identification and semi-quantitative determination of unknown volatile and semi-volatile organic compounds emitted to air by sewage sludge formed in the process of municipal wastewater treatment in a sewage treatment plant. Samples taken directly after completion of the technological process as well as the sludge stored on the premise of the sewage treatment plant were analyzed. A simple method using off-line headspace solid-phase microextraction combined with gas chromatography-mass spectrometry has been proposed for extraction and detection of organic pollutants. For reliable identification of compounds, combination of two independent parameters: mass spectra and linear temperature programmed retention indices were employed. Over 170 compounds of different structure were identified including aliphatic and aromatic hydrocarbons, alcohols, esters, carbonyls, as well as sulfur, nitrogen, and chlorine containing compounds. The prevailing substances included: ethyl ether, n-hexane, p-xylene, o-xylene, mesitylene, m-ethylbenzene, limonene, n-decane, n-undecane, and n-dodecane. A few compounds such as methanetiol, dimethyl polisulfide, octaatomic sulfur, phthalic anhydride, and indoles were identified in the sludge for the first time. PMID:21688031

Kotowska, Urszula; ?alikowski, Maciej; Isidorov, Valery A

2012-05-01

393

Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.  

PubMed

The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047mggSS(-1)h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge. PMID:25409590

Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

2015-01-01

394

Composting of Sewage Sludge Using Recycled Matured Compost as a Single Bulking Agent  

NASA Astrophysics Data System (ADS)

Pretreatment (bulking agent choice and mixing) is an essential phase of dewatered raw sludge (RS) composting affecting its industrialization significantly. In this paper recycled compost (RC) was chosen as a single bulking agent in the composting experiment instead of other agents such as sawdust, rice straw, MSW, and the mixing machine was developed for mixing of SS and RC. According to the mixing experiment, SS and RC can be mixed uniformly and formed into small particles of 1015 mm in diameter, which improved the availability of oxygen during composting. The effect of different volumetric ratios of RS to RC, 1:1 (Exp.1), 1:2 (Exp.2) and 1:4 (Exp.3), on the performance of composting was investigated in detail. Temperature, oxygen consumption rate, organic matter, C/N ratio and moisture content were monitored in each experiment. In despite of low initial C/N of the mixture, intensive fermentation happened in all the experiments. Exp.1 and Exp.2 achieved stability and sanitization, but Exp 1 took more days to accomplish the fermentation. Exp 3 maintained thermophilic temperatures for a shortest time and did not satisfy the necessary sanitation requirements because more RC was recycled. In all experiments, the moisture content of their final composts were too high to be used as bulking agents before extra moisture was reduced. RS: RC = 1:2 (v/v) was the optimum and advisable proportion for the industrialization of sewage sludge composting of, the composting period was about 10 days, and the aeration rate 0.05 m3/(m3?min) was appropriate in this study.

Zhang, Xiangyang; Ren, Jian; Niu, Huasi; Wu, Xingwu

2010-11-01

395

Organic contaminants in an agricultural soil with a known history of sewage sludge amendments: Polynuclear aromatic hydrocarbons  

SciTech Connect

The PAH content of soils from a long-term agricultural experiment that received 25 separate sewage sludge applications from 1942 to 1961 is presented along with data from an untreated control plot and a plot that received repeated applications of farmyard manure. Archived plough layer (0-23 cm) soil samples were collected, stored, and processed in the same manner between 1942 and 1984 (i.e., before, during, and after sludge amendments) and samples of the applied sludges were available for analysis. Soil {Sigma} PAH concentrations increased between 1942 and 1960 on the sludge-amended plot and subsequently showed a steady decline. By 1984 the sludge-amended plot still contained over 3 times more {Sigma} PAH than the corresponding control soil. By 1960 {approximately} 70% of the {Sigma} PAH load added in the sludge was unaccounted for; this had increased to nearly 85% by 1984. Some compound-specific trends are apparent in the data; generally, the higher molecular weight PAHs have been more persistent. It is argued that biodegradation and transboundary transfers due to ploughing are the two main loss mechanisms.

Wild, S.R.; Waterhouse, K.S.; Jones, K.C. (Lancaster Univ. (England)); McGrath, S.P. (Institute of Arable Crops Research, Harpenden (England))

1990-11-01

396

Efficient electricity generation from sewage sludge using biocathode microbial fuel cell.  

PubMed

Microbial fuel cells (MFCs) with abiotic cathodes require expensive catalyst (such as Pt) or catholyte (such as hexacynoferrate) to facilitate oxidation reactions. This study incorporated biocathodes into a three-chamber MFC to yield electricity from sewage sludge at maximum power output of 13.2 1.7 W/m(3) during polarization, much higher than those previously reported. After 15 d operation, the total chemical oxygen demand (TCOD) removal and coulombic efficiency (CE) of cell reached 40.8 9.0% and 19.4 4.3%, respectively. The anolyte comprised principally acetate and propionate (minor) as metabolites. The use of biocathodes produced an internal resistance of 36-46 ?, lower than those reported in literature works, hence yielding higher maximum power density from MFC. The massively parallel sequencing technology, 454 pyrosequencing technique, was adopted to probe microbial community on anode biofilm, with dominant phyla belonging to Proteobacteria (45% of total bacteria), Bacteroidetes (19%), Uncultured bacteria (9%), Actinobacteria (7%), Firmicutes (7%), Chloroflex (7%). At genera level, Rhodoferax, Ferruginibacter, Propionibacterium, Rhodopseudomonas, Ferribacterium, Clostridium, Chlorobaculum, Rhodobacter, Bradyrhizobium were the abundant taxa (relative abundances>2.0%). PMID:22078254

Zhang, Guodong; Zhao, Qingliang; Jiao, Yan; Wang, Kun; Lee, Duu-Jong; Ren, Nanqi

2012-01-01

397

The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge.  

PubMed

Bio-oils and bio-chars were obtained from sewage sludge (SS) by liquefaction with ethanol (or acetone) as the solvent at the temperature of 280, 320 and 360C. The migration and transformation of HMs as Pb, Zn, Cu and Ni during liquefaction were thoroughly investigated. Meanwhile, the environmental risk of HMs in the bio-oils and bio-chars was assessed according to the risk assessment code (RAC). The results showed that the liquefaction solvent and temperature significantly affected the redistribution of HMs. HMs distributed mainly into the bio-chars, with less than 10% into the bio-oils. Increasing liquefaction temperature would promote a higher HM content in bio-oils. The environmental risk of HMs in bio-chars was mitigated compared to SS, especially for Ni. However, the environmental risk of Zn and Ni in bio-oils was undesirably high in comparison with bio-chars. It was suggested that the bio-oil should be pretreated before utilization. PMID:24976493

Leng, Lijian; Yuan, Xingzhong; Huang, Huajun; Jiang, Hongwei; Chen, Xiaohong; Zeng, Guangming

2014-09-01

398

Identification and composition of emerging quaternary ammonium compounds in municipal sewage sludge in China.  

PubMed

Quaternary ammonium compounds (QACs) have raised considerable attention due to their wide commercial applications and recent discovery of unknown persistent analogues in aqueous environment. In this work, the occurrence and distribution of alkyltrimethylammonium (ATMAC), benzylakyldimethylethylammonium (BAC) and dialkyldimethylammonium (DADMAC) homologues were investigated in fifty-two municipal sewage sludge samples. ATMAC C10-18, BAC C8-18 and paired DADMAC C8:8-C18:18 as well as emerging homologues such as ATMAC-20, 22 and mixed DADMAC-16:18 and 14:16 were present. Furthermore, paired DADMAC-20:20 and mixed DADMAC-14:18, 18:20 were identified for the first time by nontarget qualitative strategies. A triple quadruple mass spectrometer quantification method was also initially verified with the aid of laboratory synthesized standards for the analysis of the mixed DADMACs with no certificated commercial standards currently available. The total concentrations of ATMACs, BACs and DADMACs were in the range of 0.38-293, 0.09-191 and 0.64-344 ?g/g dry weight, respectively, and particularly, mixed DADMACs constituted 39 7% of total DADMAC concentrations. The concentrations and profiles of individual homologues further suggested different QAC applications and fate in China. Significant correlations were also found among the concentrations of various QAC homologues as well as wastewater treatment plant (WWTP) characteristics (total organic carbon contents and daily treatment volumes). PMID:24654682

Ruan, Ting; Song, Shanjun; Wang, Thanh; Liu, Runzeng; Lin, Yongfeng; Jiang, Guibin

2014-04-15

399

Development of lightweight aggregate from dry sewage sludge and coal ash.  

PubMed

In this study, dry sewage sludge (DSS) as the principal material was blended with coal ash (CA) to produce lightweight aggregate. The effects of different raw material compositions and sintering temperatures on the aggregate properties were then evaluated. In addition, an environmental assessment of the lightweight aggregate generated was conducted by analyzing the fixed rate of heavy metals in the aggregate, as well as their leaching behavior. The results indicated that using DSS enhanced the pyrolysis-volatilization reaction due to its high organic matter content, and decreased the bulk density and sintering temperature. However, the sintered products of un-amended DSS were porous and loose due to the formation of large pores during sintering. Adding CA improved the sintering temperature while effectively decreasing the pore size and increasing the compressive strength of the product. Furthermore, the sintering temperature and the proportion of CA were found to be the primary factors affecting the properties of the sintered products, and the addition of 18-25% of CA coupled with sintering at 1100 degrees C for 30 min produced the highest quality lightweight aggregates. In addition, heavy metals were fixed inside products generated under these conditions and the As, Pb, Cd, Cr, Ni, Cu, and Zn concentrations of the leachate were found to be within the limits of China's regulatory requirements. PMID:19008090

Wang, Xingrun; Jin, Yiying; Wang, Zhiyu; Nie, Yongfeng; Huang, Qifei; Wang, Qi

2009-04-01

400

Electron spin resonance investigation of copper(II) complexation by fulvic acid extracted from sewage sludge  

SciTech Connect

Electron spin resonance (ESR) spectra are reported for copper(II)-fulvic acid complexes prepared with fulvic acid (FA) samples extracted from two different anaerobically-digested sewage sludges. In the original Cu-FA solutions, quadridentate, nearly square planar complexes with FA donor ligands could be inferred from the ESR spectra only at the smallest Cu/FA molar ratio, whereas at the intermediate ratios mixed Cu-FA-H2O complexes became more evident and at the highest ratio free CuS aquo-ions prevailed. The ESR spectra suggested the formation of inter-sphere, polydentate complexes, with the Cu(II) coordinated equatorially by oxygenated and nitrogenated FA ligands. No saturation of the Cu(II) complexation capacity was observed, but increasing the Cu content involved less and less reactive functional groups of FA in the coordination, shifting the complexation equilibria towards the formation of weaker complexes. A significant rearrangement of the Cu-FA systems was suggested to take place upon air-drying.

Senesi, N.; Bocian, D.F.; Sposito, G.

1985-01-01

401

Characterization of bio-oil and biochar from high-temperature pyrolysis of sewage sludge.  

PubMed

The influence of temperature (550-850C) on the characteristics of bio-oil and biochar from the pyrolysis of sewage sludge (SS) in a horizontal tube reactor was investigated. Results showed that when the pyrolysis temperature increased from 550C to 850C, the yield of bio-oil decreased from 26.16% (dry ash-free basis) to 20.78% (dry ash-free basis). Main components of bio-oil were phenols, esters, cholests, ketones, amides, indoles, and nitriles. Besides, the elevated heating rate of 25C/min was demonstrated to favour the complete combustion of bio-oil. Moreover, caused by the increase in temperature, the yield of biochar decreased from 54.9 to 50.6wt%, Brunauer-Emmet-Teller surface area increased from 48.51 to 81.28?m(2)/g. Furthermore, pH was increased from 5.93 of SS to 7.15-8.96 of biochar. The negative ?-potential was also strengthened (-13.87 to -11.30?mV) and principal functional groups on the surface of biochar were -OH, C=O, C=C, -NO2, and S=O. PMID:25518986

Chen, Hongmei; Zhai, Yunbo; Xu, Bibo; Xiang, Bobin; Zhu, Lu; Qiu, Lei; Liu, Xiaoting; Li, Caiting; Zeng, Guangming

2015-02-01

402

Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts.  

PubMed

A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pHPZC, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120C under 0.9MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5h and 90% Total Organic Carbon (TOC) was removed after 24h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. PMID:24862472

Tu, Yuting; Xiong, Ya; Tian, Shuanghong; Kong, Lingjun; Descorme, Claude

2014-07-15

403

Recycling potential of air pollution control residue from sewage sludge thermal treatment as artificial lightweight aggregates.  

PubMed

Thermal treatment of sewage sludge produces fly ash, also known as the air pollution control residue (APCR), which may be recycled as a component of artificial lightweight aggregates (ALWA). Properties of APCR are typical: high content of Ca, Mg, P2O5, as well as potential to induce alkaline reactions. These properties indicate that ALWA prepared with a high content of APCR may remove heavy metals, phosphorus, and ammonium nitrogen from wastewater with high efficiency. The aim of this preliminary study was to determine the optimal composition of ALWA for potential use as a filter media in wastewater treatment systems. Five kinds of ALWA were produced, with different proportions of ash (shown as percentages in subscripts) in mixture with bentonite: ALWA0 (reference), ALWA12.5, ALWA25, ALWA50, and ALWA100. The following parameters of ALWA were determined: density, bulk density, compressive strength, hydraulic conductivity, and removal efficiency of ions Zn(2+), NH4 (+), and PO4 (3-). Tests showed that ALWA had good mechanical and hydraulic properties, and might be used in wastewater filtering systems. Phosphates and zinc ions were removed with high efficiency (80-96%) by ALWA25-100 in static (batch) conditions. The efficiency of ammonium nitrogen removal was low, <18%. Artificial wastewater treatment performance in dynamic conditions (through-flow), showed increasing removal efficiency of Zn(2+), PO4 (3-) with a decrease in flow rate. PMID:24616344

Bialowiec, Andrzej; Janczukowicz, Wojciech; Gusiatin, Zygmunt M; Thornton, Arthur; Rodziewicz, Joanna; Zielinska, Magdalena

2014-03-01

404

Vermiremoval of heavy metal in sewage sludge by utilising Lumbricus rubellus.  

PubMed

Experiments were conducted to remove heavy metals (Cr, Cd, Pb, Cu and Zn) from urban sewage sludge (SS) amended with spent mushroom compost (SMC) using worms, Lumbricus rubellus, for 105 days, after 21 days of pre-composting. Five combinations of SS/SMC treatments were prepared in triplicate along with a control for each treatment in microcosms. Analysis of the earthworms' multiplication and growth and laboratory analysis were conducted during the tenth and fifteenth week of vermicomposting. Our result showed that the final biomass of earthworms (mg) and final number of earthworms showed significant differences between treatments i.e. F=554.70, P=0.00 and F=729.10, P=0.00 respectively. The heavy metals Cr, Cd and Pb contained in vermicompost were lower than initial concentrations, with 90-98.7 percent removal on week ten. However, concentrations of Cu and Zn, that are considered as micronutrients, were higher than initial concentrations, but they were 10-200-fold lower than the EU and USA biosolid compost limits and Malaysian Recommended Site Screening Levels for Contaminated Land (SSLs). An increment of heavy metals were recorded in vermicompost for all treatments on week fifteen compared to week ten, while concentration of heavy metals in earthworms' tissue were lower compared to vermicompost. Hence, it is suggested that earthworms begin to discharge heavy metals into their surroundings and it was evident that the earthworms' heavy metals excretion period was within the interval of ten to fifteen weeks. PMID:23294636

Azizi, A B; Lim, M P M; Noor, Z M; Abdullah, Noorlidah

2013-04-01

405

Interpretation of the characteristics of ocean-dumped sewage sludge related to remote sensing  

NASA Technical Reports Server (NTRS)

Wastewater sludge characteristics in general, and characteristics of wastewater sludges generated by the City of Philadelphia in particular, were addressed. The types and sources of wastewater sludges, a description of sludge treatment and disposal processes, examination of sludge generation and management for the City of Philadelphia, and definition of characteristics for typical east coast sludges undergoing ocean disposal were discussed. Specific differences exist between the characteristics of primary and secondary wastewater sludges, especially with the nature and size distribution of the solids particles. The sludges from the City of Philadelphia monitored during remote sensing experiments were mixtures of various sludge types and lacked distinguishing characteristics. In particular, the anaerobic digestion process exerted the most significant influence on sludge characteristics for the City of Philadelphia. The sludges generated by the City of Philadelphia were found to be typical and harbor no unique features.

Pagoria, P. S.; Kuo, C. Y.

1979-01-01

406

Assessment of sewage sludge bioremediation at different hydraulic retention times using mixed fungal inoculation by liquid-state bioconversion.  

PubMed

Sustainable, environmental friendly, and safe disposal of sewage treatment plant (STP) sludge is a global expectation. Bioremediation performance was examined at different hydraulic retention times (HRT) in 3-10 days and organic loading rates (OLR) at 0.66-7.81 g chemical oxygen demand (COD) per liter per day, with mixed filamentous fungal (Aspergillus niger and Penicillium corylophilum) inoculation by liquid-state bioconversion (LSB) technique as a continuous process in large-scale bioreactor. Encouraging results were monitored in treated sludge by LSB continuous process. The highest removal of total suspended solid (TSS), turbidity, and COD were achieved at 98, 99, and 93%, respectively, at 10 days HRT compared to control. The minimum volatile suspended solid/suspended solid implies the quality of water, which was recorded 0.59 at 10 days and 0.72 at 3 days of HRT. In treated supernatant with 88% protein removal at 10 days of HRT indicates a higher magnitude of purification of treated sludge. The specific resistance to filtration (SRF) quantifies the performance of dewaterability; it was recorded minimum 0.049 10(12) m kg(-1) at 10 days of HRT, which was equivalent to 97% decrease of SRF. The lower OLR and higher HRT directly influenced the bioremediation and dewaterability of STP sludge in LSB process. The obtained findings imply encouraging message in continuing treatment of STP sludge, i.e., bioremediation of wastewater for environmental friendly disposal in near future. PMID:23881591

Rahman, Roshanida A; Molla, Abul Hossain; Fakhru'l-Razi, A

2014-01-01

407

Spectroscopic analysis and biodegradation potential study of dissolved organic matters in sewage sludge treated with high-pressure homogenization.  

PubMed

The effect of high-pressure homogenization (HPH) treatment on characteristics of dissolved organic matters (DOM) in sewage sludge was investigated. Soluble chemical oxygen demand (SCOD), dissolved organic carbon (DOC), protein and polysaccharide concentration in sludge supernatant significantly increased after HPH treatment. Fourier-transform infrared (FTIR) spectra showed that the main components in the DOM for raw sludge were protein and polysaccharide, while for the treated sludge were protein, polysaccharide and lipid. The spectra of fluorescence excitation-emission matrix (EEM) for DOM showed two protein-like peaks at the excitation/emission wavelengths (Ex/Em) of 225/330-340 nm and 275/310-335 nm. A single broad shoulder representing substances with aromatic structure in range 245-270 nm was found in ultraviolet (UV) spectra of the DOM for the treated sludge. Homogenization pressure and homogenization cycle number affected the content of aromatic carbon per unit DOC. The maximum BOD5/SCOD ratio of 0.48 was achieved at 60 MPa with a single homogenization cycle. PMID:23058846

Zhang, Yuxuan; Zhang, Panyue; Guo, Jianbin; Ma, Weifang; Xiao, Lingpeng

2013-05-01

408

Evaluation of the in vitro estrogenicity of emerging bisphenol analogs and their respective estrogenic contributions in municipal sewage sludge in China.  

PubMed

There is a potential risk to the environment from persistent estrogenic compounds in sewage sludge. In this study, eight bisphenols (BPs) were identified in sewage sludge collected from wastewater treatment plants in 15 cities in China. The estrogenic potencies of the eight BPs and the estrogenic activities of sludge samples were evaluated using a bioluminescence yeast estrogen screen (BLYES) assay. All sludge samples elicited considerable estrogenic activity at a range of 2.8-4.7ng E2g(-1) dry weight (dw). All BPs exhibited estrogenic activity in the BLYES assay, but there were significant differences between the potency of individual chemicals. Bisphenol AF had the highest activity, followed by tetrachlorobisphenol A, bisphenol F, bisphenol A, bisphenol E, bisphenol S and 2,4-dihydroxybenzophenone. Tetrabromobisphenol A showed weak estrogenic activity at 110(4)nM, but significant cytotoxicity above this concentration. The total estradiol equivalency quantities (EEQs) of BPs were in the range of 2.16-49.13pg E2g(-1) dw, accounting for 0.05-1.47% of the total EEQs in sewage sludge samples. The results indicate that BPs made a minor contribution to the estrogenic activity of the investigated sewage sludge. Nevertheless, our results suggest that considerable attention should be directed to the estrogenic potentials of emerging organic pollutants because of their widespread use and their potential to persist in the environment. PMID:25548037

Ruan, Ting; Liang, Dong; Song, Shanjun; Song, Maoyong; Wang, Hailin; Jiang, Guibin

2015-04-01

409

Mathematical modelling of sewage sludge incineration in a bubbling fluidised bed with special consideration for thermally-thick fuel particles.  

PubMed

Fluidised bed combustor (FBC) is one of the key technologies for sewage sludge incineration. In this paper, a mathematical model is developed for the simulation of a large-scale sewage sludge incineration plant. The model assumes the bed consisting of a fast-gas phase, an emulsion phase and a fuel particle phase with specific consideration for thermally-thick fuel particles. The model further improves over previous works by taking into account throughflow inside the bubbles as well as the floating and random movement of the fuel particles inside the bed. Validation against both previous lab-scale experiments and operational data of a large-scale industrial plant was made. Calculation results indicate that combustion split between the bed and the freeboard can range from 60/40 to 90/10 depending on the fuel particle distribution across the bed height under the specific conditions. The bed performance is heavily affected by the variation in sludge moisture level. The response time to variation in feeding rate is different for different parameters, from 6 min for outlet H2O, 10 min for O2, to 34 min for bed temperature. PMID:18513938

Yang, Yao Bin; Sharifi, Vida; Swithenbank, Jim

2008-11-01

410

Iodine-131 in sewage sludge from a small water pollution control plant serving a thyroid cancer treatment facility.  

PubMed

Iodine-131 (half-life = 8.04 d) is the most widely used radionuclide in medicine for therapeutic purposes. It is excreted by patients and is discharged directly to sewer systems. Despite considerable dilution in waste water and the relatively short half-life of I, it is readily measured in sewage. This work presents I concentrations in sewage sludge from three water pollution control plants (WPCPs) on Long Island, NY. Iodine-131 concentrations ranged from 0.027 0.002 to 148 4 Bq g dry weight. The highest concentrations were measured in the Stony Brook WPCP, a relatively small plant (average flow = 6.8 10 L d) serving a regional thyroid cancer treatment facility in Stony Brook, NY. Preliminary radiation dose calculations suggested further evaluation of dose to treatment plant workers in the Stony Brook WPCP based on the recommendations of the Interagency Steering Committee on Radiation Standards. PMID:23799495

Rose, Paula S; Swanson, R Lawrence

2013-08-01

411

Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process).  

PubMed

The potential of a new wet chemical process for phosphorus and aluminium recovery from sewage sludge ash by sequential elution with acidic and alkaline solutions has been investigated: SESAL-Phos (sequential elution of sewage sludge ash for aluminium and phosphorus recovery). Its most innovative aspect is an acidic pre-treatment step in which calcium is leached from the sewage sludge ash. Thus the percentage of alkaline soluble aluminium phosphates is increased from 20 to 67%. This aluminium phosphate is then dissolved in alkali. Subsequently, the dissolved phosphorus is precipitated as calcium phosphate with low heavy metal content and recovered from the alkaline solution. Dissolved aluminium is recovered and may be reused as a precipitant in wastewater treatment plants. PMID:22097049

Petzet, S; Peplinski, B; Bodkhe, S Y; Cornel, P

2011-01-01

412

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites Groundwater Monitoring Report. Fourth quarter 1994 and 1994 summary  

SciTech Connect

Groundwater samples from the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076. Samples from the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) are analyzed quarterly for constituents required by SCDHEC Construction Permit 13,173. All samples are also analyzed as requested for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals. also are required by the permits.

Chase, J.A.

1995-04-01

413

Model calibration and validation for OFMSW and sewage sludge co-digestion reactors  

SciTech Connect

Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Water Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.

Esposito, G., E-mail: giovanni.esposito@unicas.it [Department of Mechanics, Structures and Environmental Engineering, University of Cassino, via Di Biasio 43, 03043 Cassino (Italy); Frunzo, L., E-mail: luigi.frunzo@unina.it [Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, via Cintia, Monte S. Angelo, I-80126 Naples (Italy); Panico, A., E-mail: anpanico@unina.it [Department of Hydraulic, Geotechnical and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples (Italy); Pirozzi, F., E-mail: francesco.pirozzi@unina.it [Department of Hydraulic, Geotechnical and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples (Italy)

2011-12-15

414

Radioactive fallout cesium in sewage sludge ash produced after the Fukushima Daiichi nuclear accident.  

PubMed

The radioactive fallout cesium ((137)Cs) in the sewage sludge ashes (SSAs) produced in Japan after the Fukushima Daiichi Nuclear Accident was tested. Five samples of SSAs produced in 2011 and 2012 were tested. Two of the samples contained (137)Cs (23 and 9.6kBq/kg, respectively) above the radioactivity criterion (8kBq of radioactive Cs/kg of solid) for controlled landfill disposal in Japan. The mineral components of SSA are roughly divided into two groups: an HCl-soluble phase mainly composed of phosphates and oxides; and silicates, including quartz, feldspar, and clay. Both phases contained (137)Cs. The majority (up to 90%) of (137)Cs was contained in the HCl-soluble phase. Among the HCl-soluble subphases, Fe-bearing phases that were probably iron oxides were mainly responsible for (137)Cs retention. No positive evidence was obtained that showed that phosphate-bearing phases, which were included most in SSAs along with the silicate phase, retained (137)Cs. Pre-pulverizing SSAs and heating them at 95C in a 6M or a concentrated aqueous HCl was the most effective method of dissolving the HCl-soluble phase. The radioactivity concentrations of (137)Cs in all the HCl-treatment residues were below the radioactivity criterion. This residue was mostly composed of silicates. After static leaching tests of the residue at 60C for 28 days, no (137)Cs was detected in simulated environmental water leachates (pure water and synthetic seawater), demonstrating that (137)Cs in the residue is very stably immobilized in the silicates. PMID:25462767

Kozai, Naofumi; Suzuki, Shinichi; Aoyagi, Noboru; Sakamoto, Fuminori; Ohnuki, Toshihiko

2014-10-29

415

The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed  

SciTech Connect

Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.

Helena Lopes, M.; Abelha, P.; Lapa, N.; Oliveira, J.S.; Cabrita, I.; Gulyurtlu, I

2003-07-01

416

Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor.  

PubMed

In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub-products of such type of thermal processes. PMID:17261348

Lapa, N; Barbosa, R; Lopes, M H; Mendes, B; Abelha, P; Boavida, D; Gulyurtlu, I; Oliveira, J Santos

2007-08-17

417

Experimental investigation on NOx emission characteristics of a new solid fuel made from sewage sludge mixed with coal in combustion.  

PubMed

In this article, a new briquette fuel (SC), which was produced by the mixture of coal fines (25.9%), sewage sludge (60.6%), lignin (4.5%), tannic acid (4.5%) and elemental silicon (4.5%), was provided. Then, in a high temperature electric resistance tubular furnace, the total emissions of NO2 and NO, effects of combustion temperature, air flow rate and heating rate on NOx (NO, NO2) emissions of SC were studied during the combustion of SC; furthermore, effects of additives on hardness were also analysed, and the X-ray photoelectron spectroscopy was applied to investigate the reduced NOx emission mechanism. The research results showed that, compared with the characteristics of briquette fuel (SC0) produced only by the mixture of coal and sewage sludge (the ratio of coal to sewage sludge was the same as that of SC), the Meyer hardness of SC was 12.6% higher than that of SC0 and the emissions of NOx were 27.83% less than that of SC0 under the same combustion conditions. The NOx emissions of SC decreased with the adding of heating rate and increased with the rise of air flow rate. When the temperature was below 1000?C, the emissions of NOx increased with the elevated temperature, however, further temperature extension will result in a decreasing in emissions of NOx. Furthermore, the X-ray photoelectron spectroscopy results proposed that the possible mechanism for the reduction of NOx emissions was nitrogen and silicon in SC to form the compounds of silicon and nitrogen at high temperatures. PMID:25649404

Zhai, Yunbo; Zhu, Lu; Chen, Hongmei; Xu, Bibo; Li, Caiting; Zeng, Guangming

2015-02-01

418

Colza cell autophagy induced of high dose of industrial sewage sludge  

NASA Astrophysics Data System (ADS)

This preliminary study is to evaluate the effects on colza of land application of industrial sludge containing heavy metals especially lead and chromium. We are interested in high doses spreading 100t/ha to better observe the phenomena of induced transformations on colza by the absorption of heavy metals. We used the technique for ultrastructural observation in a transmission electron microscope. The colza cells show a compaction and marginalization of nuclear chromatin, nuclear membrane and cytoplasmic convolution and condensation of cytoplasm. The kernel then fragments, each fragment are surrounded by a jacket. Some cytoplasmic and nuclear elements are released and are phagocytized by neighboring cells. We observed vacuolation of the cytoplasm and the formation of autophagic vesicles. The two main ways to cell death are apoptosis and autophagy. Apoptosis was not seen in plant yet. At the nucleus level cell death main characteristics are the nuclear blebbing and fragmentation. At the molecular level, caspases activity (VPE for plants, or metacaspases I and II), chromatin condensation, degradation of DNA detected by TUNEL assay and DNA laddering detected by comet test are the main events. Autophagy is the major degradation and recycling process in cells. Its aim is to address part of the cytoplasm or organelles to the proteasome. In macro-Autophagy a specific feature is the double membrane structure that we can see in electron microscopy. This membrane is known to fusion with the lysosome/vacuole where this is in process. As a rule, the vacuole grows more and more until no organelles remains. Small lytic vacuoles appear in increasing quantity also. Autophagosomes tend to be pushed against the membrane and wall of the cell. Sometime in the literature it was describe a permeabilization or a tonoplast disruption; this is the last stage called mega-autophagy. The stress generated by heavy metals in industrial sludge spreading, produces in colza cells programmed death. Several authors (Gilchrist, 1998; Larsen, 1994 White, 1996; Wyllie et al. 1980) observed this type of behavior in tobacco and mammals. They attribute this to the case of autophagy or apoptosis programmed cell death. Cryns and Yuan (1998) have shown that autophagy is characterized by a decrease in mitochondrial membrane potential, intracellular acidification, massive proteolysis and DNA damage. We must complete these observations in a larger study in cell biology and biochemistry to better understand the phenomenon of colza cell autophagy and its relations with the spreading of industrial sludge rich in heavy metals. These transformations will have a significant impact on the colza oil produced by this type of culture and therefore an impact on the human body.

Lasoued, Najla; Guenole Bilal, Issam; Rejeb, Saloua; Bilal, Essaid; Rejeb, Nejib

2013-04-01

419

Analysis of Bio-Obtainable Endocrine Disrupting Metals in River Water and Sediment, Sewage Influent/Effluent, Sludge, Leachate, and Concentrated Leachate, in the Irish Midlands Shannon Catchment  

PubMed Central

The application of an acid digestion and subsequent solid-phase extraction (SPE) procedure were implemented as preliminary treatments prior to quantifying the levels of potentially endocrine disrupting metals (EDMs) in a variety of solid and liquid matrices. These included (solid) river sediment, leachate sediment and sewage sludge and also (liquid) river water, landfill leachate, concentrated leachate, sewage influent, and sewage effluent, sampled in the Irish Midlands. The total concentrations of cobalt (Co), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), zinc (Zn), and manganese (Mn), after extraction and preconcentration, were determined by atomic absorption spectroscopy (AAS). Mercury (Hg) in sediment and sludge was determined using cold-vapour atomic fluorescence spectroscopy (AFS). For sewage sludge maximum values (mg/kgdw) of 4700 Ni, 1642 Mn, 100.0 Cd, 3400 Zn, 36.70 Co, 750.0 Pb, 485.8 Cr, and 1003 Cu were determined whilst in leachate sediment, maximum values (mg/kgdw) of 32.10 Ni, 815.0 Mn, 32.78 Cd, 230.3 Zn, 26.73 Co, 3525 Pb, 124.9 Cr, and 50.13 Cu were found. Over several months, the data showed elevated levels in sewage influents, effluents, and sludges compared to a battery of adjacent river water samples and corresponding sediments. There was a definite trend for target values for sediments to be exceeded, while intervention values were only exceeded for cadmium. Overall the pattern in terms of concentration was sewage?>?leachate?>?river matrices. A nonparametric assessment of the effect of sewage treatment method on median metal levels in sludge revealed statistically significant differences at the 95% level of confidence for Co, Cr, and Hg and at the 90% level of confidence for Cd. PMID:20150974

Reid, Antoinette M.; Brougham, Concepta A.; Fogarty, Andrew M.; Roche, James J.

2009-01-01

420

Synergistic effect of rice husk addition on hydrothermal treatment of sewage sludge: fate and environmental risk of heavy metals.  

PubMed

Hydrothermal treatment (HTT) at 200C was applied to immobilize heavy metals (HMs) and the effect of rice husk (RH) addition was investigated based on total HMs concentration, fractionation and leaching tests. The results indicated that a synergistic effect of RH addition and HTT could be achieved on reducing the risk of HMs from medium and low risk to no risk. Metals were redistributed and transformed from weakly bounded state to stable state during the HTT process under RH addition. Notably at a RH/sludge ratio of 1/1.75 (d.w.), all the HMs showed no eco-toxicity and no leaching toxicity, with the concentrations of leachable Cr, Ni, Cu and Cd decreased by 17%, 89%, 95% and 93%, respectively. This synergistic effect of RH addition and HTT on the risk reduction of HMs implies that HTT process with RH addition could be a promising and safe disposal technology for sewage sludge treatment in practice. PMID:24140855

Shi, Wansheng; Liu, Chunguang; Shu, Youju; Feng, Chuanping; Lei, Zhongfang; Zhang, Zhenya

2013-12-01

421

Zinc movement in sewage-sludge-treated soils as influenced by soil properties, irrigation water quality, and soil moisture level  

USGS Publications Warehouse

A soil column study was conducted to assess the movement of Zn in sewage-sludge-amended soils. Varables investigated were soil properties, irrigation water quality, and soil moisture level. Bulk samples of the surface layer of six soil series were packed into columns, 10.2 cm in diameter and 110 cm in length. An anaerobically digested municipal sewage sludge was incorporated into the top 20 cm of each column at a rate of 300 mg ha-1. The columns were maintained at moisture levels of saturation and unsaturation and were leached with two waters of different quality. At the termination of leaching, the columns were cut open and the soil was sectioned and analyzed. Zinc movement was evaluated by mass balance accounting and correlation and regression analysis. Zinc movement in the unsaturated columns ranged from 3 to 30 cm, with a mean of 10 cm. The difference in irrigation water quality did not have an effect on Zn movement. Most of the Zn applied to the unsaturated columns remained in the sludge-amended soil layer (96.1 to 99.6%, with a mean of 98.1%). The major portion of Zn leached from the sludge-amended soil layer accumulated in the 0- to 3-cm depth (35.7 to 100%, with a mean of 73.6%). The mean final soil pH values decreased in the order: saturated columns = sludge-amended soil layer > untreated soils > unsaturated columns. Total Zn leached from the sludge-amended soil layer was correlated negatively at P = 0.001 with final pH (r = -0.85). Depth of Zn movement was correlated negatively at P = 0.001 with final pH (r = -0.91). Multiple linear regression analysis showed that the final pH accounted for 72% of the variation in the total amounts of Zn leached from the sludge-amended soil layer of the unsaturated columns and accounted for 82% of the variation in the depth of Zn movement among the unsaturated columns. A significant correlation was not found between Zn and organic carbon in soil solutions, but a negative correlation significant at P = 0.001 was found between pH and Zn (r = -0.61).

Welch, J.E.; Lund, L.J.

1989-01-01

422

The relation between polyaromatic hydrocarbon concentration in sewage sludge and its uptake by plants: Phragmites communis, Polygonum persicaria and Bidens tripartita.  

PubMed

The aim of the study was to define the relationship between the concentration of PAHs in sewage sludge at a particular location and their amount in various plant materials growing on it. The credibility of the results is enhanced by the fact that sewage sludge from two separate sewage-treatment plants were selected for their influence on the content of PAHs in three plant species growing on them. The investigations were carried out for a period of three years. The results demonstrated unequivocally that the uptake of PAHs by a plant depended on polyaromatic hydrocarbon concentration in the sewage sludge. The correlation between accumulation coefficient of PAH in a plant and the content of the same PAH in the sewage sludge had for three-, four- and five-ring hydrocarbons an exponenti