Science.gov

Sample records for sexually dimorphic modifications

  1. Sexual dimorphism in Ramapithecinae

    PubMed Central

    Kay, Richard F.

    1982-01-01

    The Ramapithecinae are an extinct, mainly Miocene group of hominoids comprising the genera Sivapithecus and Gigantopithecus. Ouranopithecus and Ramapithecus are other included genera, here regarded as invalid. Cladistically, ramapithecines are hominid, although, in most aspects of their anatomy, they remain very primitive or ape-like. Miocene ramapithecines show reduced sexual dimorphism in canine size. In this respect they resemble Pliocene/Recent hominids, not extant great apes (which have highly dimorphic canines). Reduced dimorphism in canine size is an important shared derived feature indicating the hominid status of ramapithecines. Among living anthropoids, a significant association has been observed between a monogamous social structure and low canine dimorphism. This supports the inference that ramapithecines may have been monogamous. PMID:16593143

  2. Sexual dimorphism in Ramapithecinae.

    PubMed

    Kay, R F

    1982-01-01

    The Ramapithecinae are an extinct, mainly Miocene group of hominoids comprising the genera Sivapithecus and Gigantopithecus. Ouranopithecus and Ramapithecus are other included genera, here regarded as invalid. Cladistically, ramapithecines are hominid, although, in most aspects of their anatomy, they remain very primitive or ape-like. Miocene ramapithecines show reduced sexual dimorphism in canine size. In this respect they resemble Pliocene/Recent hominids, not extant great apes (which have highly dimorphic canines). Reduced dimorphism in canine size is an important shared derived feature indicating the hominid status of ramapithecines. Among living anthropoids, a significant association has been observed between a monogamous social structure and low canine dimorphism. This supports the inference that ramapithecines may have been monogamous. PMID:16593143

  3. Sexual dimorphism of body composition.

    PubMed

    Wells, Jonathan C K

    2007-09-01

    Sexual dimorphism in human body composition is evident from fetal life, but emerges primarily during puberty. At birth, males have a similar fat mass to females but are longer and have greater lean mass. Such differences remain detectable during childhood; however, females enter puberty earlier and undergo a more rapid pubertal transition, whereas boys have a substantially longer growth period. After adjusting for dimorphism in size (height), adult males have greater total lean mass and mineral mass, and a lower fat mass than females. These whole-body differences are complemented by major differences in tissue distribution. Adult males have greater arm muscle mass, larger and stronger bones, and reduced limb fat, but a similar degree of central abdominal fat. Females have a more peripheral distribution of fat in early adulthood; however, greater parity and the menopause both induce a more android fat distribution with increasing age. Sex differences in body composition are primarily attributable to the action of sex steroid hormones, which drive the dimorphisms during pubertal development. Oestrogen is important not only in body fat distribution but also in the female pattern of bone development that predisposes to a greater female risk of osteoporosis in old age. Disorders of sex development are associated with significant abnormalities of body composition, attributable largely to their impact on mechanisms of hormonal regulation. PMID:17875489

  4. Sexual dimorphism and human enhancement.

    PubMed

    Casal, Paula

    2013-12-01

    Robert Sparrow argues that because of women's longer life expectancy philosophers who advocate the genetic modification of human beings to enhance welfare rather than merely supply therapy are committed to favouring the selection of only female embryos, an implication he deems sufficiently implausible to discredit their position. If Sparrow's argument succeeds, then philosophers who advocate biomedical moral enhancement also seem vulnerable to a similar charge because of men's greater propensity for various forms of harmful wrongdoing. This paper argues there are various flaws in Sparrow's argument that render it unsuccessful. The paper also examines whether dimorphism reduction is a more desirable outcome than male elimination, thereby further illustrating the difficulties besetting the distinction between therapy and enhancement. PMID:22962068

  5. Modular genetic control of sexually dimorphic behaviors

    PubMed Central

    Xu, Xiaohong; Coats, Jennifer K.; Yang, Cindy F.; Wang, Amy; Ahmed, Osama M.; Alvarado, Maricruz; Izumi, Tetsuro; Shah, Nirao M.

    2012-01-01

    SUMMARY Sex hormones such as estrogen and testosterone are essential for sexually dimorphic behaviors in vertebrates. However, the hormone-activated molecular mechanisms that control the development and function of the underlying neural circuits remain poorly defined. We have identified numerous sexually dimorphic gene expression patterns in the adult mouse hypothalamus and amygdala. We find that adult sex hormones regulate these expression patterns in a sex-specific, regionally-restricted manner, suggesting that these genes regulate sex typical behaviors. Indeed, we find that mice with targeted disruptions of each of four of these genes (Brs3, Cckar, Irs4, Sytl4) exhibit extremely specific deficits in sex specific behaviors, with single genes controlling the pattern or extent of male sexual behavior, male aggression, maternal behavior, or female sexual behavior. Taken together, our findings demonstrate that various components of sexually dimorphic behaviors are governed by separable genetic programs. PMID:22304924

  6. The sexual dimorphism of obesity

    PubMed Central

    Palmer, Biff F.; Clegg, Deborah J.

    2015-01-01

    The NIH has recently highlighted the importance of sexual dimorphisms and has mandated inclusion of both sexes in clinical trials and basic research. In this review we highlight new and novel ways sex hormones influence body adiposity and the metabolic syndrome. Understanding how and why metabolic processes differ by sex will enable clinicians to target and personalize therapies based on gender. Adipose tissue function and deposition differ by sex. Females differ with respect to distribution of adipose tissues, males tend to accrue more visceral fat, leading to the classic android body shape which has been highly correlated to increased cardiovascular risk; whereas females accrue more fat in the subcutaneous depot prior to menopause, a feature which affords protection from the negative consequences associated with obesity and the metabolic syndrome. After menopause, fat deposition and accrual shift to favor the visceral depot. This shift is accompanied by a parallel increase in metabolic risk reminiscent to that seen in men. A full understanding of the physiology behind why, and by what mechanisms, adipose tissues accumulate in specific depots and how these depots differ metabolically by sex is important in efforts of prevention of obesity and chronic disease. Estrogens, directly or through activation of their receptors on adipocytes and in adipose tissues, facilitate adipose tissue deposition and function. Evidence suggests that estrogens augment the sympathetic tone differentially to the adipose tissue depots favoring lipid accumulation in the subcutaneous depot in women and visceral fat deposition in men. At the level of adipocyte function, estrogens and their receptors influence the expandability of fat cells enhancing the expandability in the subcutaneous depot and inhibiting it in the visceral depot. Sex hormones clearly influence adipose tissue function and deposition, determining how to capture and utilize their function in a time of caloric surfeit

  7. Human sexual size dimorphism in early pregnancy.

    PubMed

    Bukowski, Radek; Smith, Gordon C S; Malone, Fergal D; Ball, Robert H; Nyberg, David A; Comstock, Christine H; Hankins, Gary D V; Berkowitz, Richard L; Gross, Susan J; Dugoff, Lorraine; Craigo, Sabrina D; Timor-Tritsch, Ilan E; Carr, Stephen R; Wolfe, Honor M; D'Alton, Mary E

    2007-05-15

    Sexual size dimorphism is thought to contribute to the greater mortality and morbidity of men compared with women. However, the timing of onset of sexual size dimorphism remains uncertain. The authors determined whether human fetuses exhibit sexual size dimorphism in the first trimester of pregnancy. Using a prospective cohort study, conducted in 1999-2002 in the United States, they identified 27,655 women who conceived spontaneously and 1,008 whose conception was assisted by in vitro fertilization or intrauterine insemination and for whom a first-trimester measurement of fetal crown-rump length was available. First-trimester size was expressed as the difference between the observed and expected size of the fetus, expressed as equivalence to days of gestational age. The authors evaluated the association between fetal sex, first-trimester size, and birth weight. Eight to 12 weeks after conception, males were larger than females (mean difference: assisted conception = 0.4 days, 95% confidence interval (CI): 0.1, 0.7, p = 0.008; spontaneous conception = 0.3 days, 95% CI: 0.2, 0.4, p < 0.00001). The size discrepancy remained significant at birth (mean birth weight difference: assisted conception = 90 g, 95% CI: 22, 159, p = 0.009; spontaneous conception = 120 g, 95% CI: 107, 132, p < 0.00001). These data demonstrate that human fetuses exhibit sexual size dimorphism in the first trimester of pregnancy. PMID:17344203

  8. Protandry, sexual size dimorphism, and adaptive growth.

    PubMed

    Morbey, Yolanda E

    2013-12-21

    Adaptive growth refers to the strategic adjustment of growth rate by individuals to maximize some component of fitness. The concept of adaptive growth proliferated in the 1990s, in part due to an influential theoretical paper by Peter Abrams and colleagues. In their 1996 paper, Abrams et al. explored the effects of time stress on optimal growth rate, development time, and adult size in seasonal organisms. In this review, I explore how the concept of adaptive growth informs our understanding of protandry (the earlier arrival of males to sites of reproduction than females) and sexual size dimorphism in seasonal organisms. I conclude that growth rate variation is an important mechanism that helps to conserve optimal levels of protandry and sexual size dimorphism in changing environments. PMID:23688825

  9. Mammalian meiotic silencing exhibits sexually dimorphic features.

    PubMed

    Cloutier, J M; Mahadevaiah, S K; ElInati, E; Tóth, A; Turner, James

    2016-06-01

    During mammalian meiotic prophase I, surveillance mechanisms exist to ensure that germ cells with defective synapsis or recombination are eliminated, thereby preventing the generation of aneuploid gametes and embryos. Meiosis in females is more error-prone than in males, and this is in part because the prophase I surveillance mechanisms are less efficient in females. A mechanistic understanding of this sexual dimorphism is currently lacking. In both sexes, asynapsed chromosomes are transcriptionally inactivated by ATR-dependent phosphorylation of histone H2AFX. This process, termed meiotic silencing, has been proposed to perform an important prophase I surveillance role. While the transcriptional effects of meiotic silencing at individual genes are well described in the male germ line, analogous studies in the female germ line have not been performed. Here we apply single- and multigene RNA fluorescence in situ hybridization (RNA FISH) to oocytes from chromosomally abnormal mouse models to uncover potential sex differences in the silencing response. Notably, we find that meiotic silencing in females is less efficient than in males. Within individual oocytes, genes located on the same asynapsed chromosome are silenced to differing extents, thereby generating mosaicism in gene expression profiles across oocyte populations. Analysis of sex-reversed XY female mice reveals that the sexual dimorphism in silencing is determined by gonadal sex rather than sex chromosome constitution. We propose that sex differences in meiotic silencing impact on the sexually dimorphic prophase I response to asynapsis. PMID:26712235

  10. Parasitism and the expression of sexual dimorphism.

    PubMed

    De Lisle, Stephen P; Rowe, Locke

    2015-02-01

    Although a negative covariance between parasite load and sexually selected trait expression is a requirement of few sexual selection models, such a covariance may be a general result of life-history allocation trade-offs. If both allocation to sexually selected traits and to somatic maintenance (immunocompetence) are condition dependent, then in populations where individuals vary in condition, a positive covariance between trait expression and immunocompetence, and thus a negative covariance between trait and parasite load, is expected. We test the prediction that parasite load is generally related to the expression of sexual dimorphism across two breeding seasons in a wild salamander population and show that males have higher trematode parasite loads for their body size than females and that a key sexually selected trait covaries negatively with parasite load in males. We found evidence of a weaker negative relationship between the analogous female trait and parasite infection. These results underscore that parasite infection may covary with expression of sexually selected traits, both within and among species, regardless of the model of sexual selection, and also suggest that the evolution of condition dependence in males may affect the evolution of female trait expression. PMID:25750721

  11. Mimetic butterflies support Wallace's model of sexual dimorphism.

    PubMed

    Kunte, Krushnamegh

    2008-07-22

    Theoretical and empirical observations generally support Darwin's view that sexual dimorphism evolves due to sexual selection on, and deviation in, exaggerated male traits. Wallace presented a radical alternative, which is largely untested, that sexual dimorphism results from naturally selected deviation in protective female coloration. This leads to the prediction that deviation in female rather than male phenotype causes sexual dimorphism. Here I test Wallace's model of sexual dimorphism by tracing the evolutionary history of Batesian mimicry-an example of naturally selected protective coloration-on a molecular phylogeny of Papilio butterflies. I show that sexual dimorphism in Papilio is significantly correlated with both female-limited Batesian mimicry, where females are mimetic and males are non-mimetic, and with the deviation of female wing colour patterns from the ancestral patterns conserved in males. Thus, Wallace's model largely explains sexual dimorphism in Papilio. This finding, along with indirect support from recent studies on birds and lizards, suggests that Wallace's model may be more widely useful in explaining sexual dimorphism. These results also highlight the contribution of naturally selected female traits in driving phenotypic divergence between species, instead of merely facilitating the divergence in male sexual traits as described by Darwin's model. PMID:18426753

  12. Developmental basis of sexually dimorphic digit ratios

    PubMed Central

    Zheng, Zhengui; Cohn, Martin J.

    2011-01-01

    Males and females generally have different finger proportions. In males, digit 2 is shorter than digit 4, but in females digit 2 is the same length or longer than digit 4. The second- to fourth-digit (2D:4D) ratio correlates with numerous sexually dimorphic behavioral and physiological conditions. Although correlational studies suggest that digit ratios reflect prenatal exposure to androgen, the developmental mechanism underlying sexually dimorphic digit development remains unknown. Here we report that the 2D:4D ratio in mice is controlled by the balance of androgen to estrogen signaling during a narrow window of digit development. Androgen receptor (AR) and estrogen receptor α (ER-α) activity is higher in digit 4 than in digit 2. Inactivation of AR decreases growth of digit 4, which causes a higher 2D:4D ratio, whereas inactivation of ER-α increases growth of digit 4, which leads to a lower 2D:4D ratio. We also show that addition of androgen has the same effect as inactivation of ER and that addition of estrogen mimics the reduction of AR. Androgen and estrogen differentially regulate the network of genes that controls chondrocyte proliferation, leading to differential growth of digit 4 in males and females. These studies identify previously undescribed molecular dimorphisms between male and female limb buds and provide experimental evidence that the digit ratio is a lifelong signature of prenatal hormonal exposure. Our results also suggest that the 2D:4D ratio can serve as an indicator of disrupted endocrine signaling during early development, which may aid in the identification of fetal origins of adult diseases. PMID:21896736

  13. Early evolution of sexual dimorphism and polygyny in Pinnipedia.

    PubMed

    Cullen, Thomas M; Fraser, Danielle; Rybczynski, Natalia; Schröder-Adams, Claudia

    2014-05-01

    Sexual selection is one of the earliest areas of interest in evolutionary biology. And yet, the evolutionary history of sexually dimorphic traits remains poorly characterized for most vertebrate lineages. Here, we report on evidence for the early evolution of dimorphism within a model mammal group, the pinnipeds. Pinnipeds show a range of sexual dimorphism and mating systems that span the extremes of modern mammals, from monomorphic taxa with isolated and dispersed mating to extreme size dimorphism with highly ordered polygynous harem systems. In addition, the degree of dimorphism in pinnipeds is closely tied to mating system, with strongly dimorphic taxa always exhibiting a polygynous system, and more monomorphic taxa possessing weakly polygynous systems. We perform a comparative morphological description, and provide evidence of extreme sexual dimorphism (similar to sea lions), in the Miocene-aged basal pinniped taxon Enaliarctos emlongi. Using a geometric morphometric approach and combining both modern and fossil taxa we show a close correlation between mating system and sex-related cranial dimorphism, and also reconstruct the ancestral mating system of extant pinnipeds as highly polygynous. The results suggest that sexual dimorphism and extreme polygyny in pinnipeds arose by 27 Ma, in association with changing climatic conditions. PMID:24548136

  14. Patterns of sexual dimorphism in body weight among prosimian primates.

    PubMed

    Kappeler, P M

    1991-01-01

    Many primatologists believe that there is no sexual dimorphism in body size in prosimian primates. Because this belief is based upon data that came from only a few species and were largely flawed in some aspect of sample quality, I re-examined the extent of sexual dimorphism in body weight, using weights of 791 adult prosimians from 34 taxa recorded over the last 17 years at the Duke University Primate Center. There was no significant sex difference in body weight in 17 species, but males were significantly larger in Nycticebus pygmaeus, Tarsius syrichta, Galago moholi, Galagoides demidovii, Otolemur crassicaudatus and Otolemur garnettii. Moreover, females were significantly larger in Microcebus murinus. Thus, the general lack of sexual dimorphism could be confirmed, notably for lemurs, but prosimians as a group show more variability in sexual size dimorphism than was previously thought. After including previously published data obtained in the wild from 8 additional species, I found significant heterogeneity in the degree of sexual dimorphism at the family level, but only the Indridae and Galagidae were significantly different from each other. Among the prosimian infraorders, the Lorisiformes were significantly more dimorphic than the Lemuriformes. Differences in dimorphism between higher taxonomic groups are discussed in the context of prosimian evolution, concluding that phylogenetic inertia cannot provide a causal explanation for the evolution of sexual dimorphism. The relative monomorphism of most prosimians may be related to allometric constraints and, especially in the Lemuriformes, to selective forces affecting male and female behavioral strategies. PMID:1794769

  15. Evidence for ecological causation of sexual dimorphism in a hummingbird.

    PubMed

    Temeles, E J; Pan, I L; Brennan, J L; Horwitt, J N

    2000-07-21

    Unambiguous examples of ecological causes of animal sexual dimorphism are rare. Here we present evidence for ecological causation of sexual dimorphism in the bill morphology of a hummingbird, the purple-throated carib. This hummingbird is the sole pollinator of two Heliconia species whose flowers correspond to the bills of either males or females. Each sex feeds most quickly at the flower species approximating its bill dimensions, which supports the hypothesis that floral specialization has driven the evolution of bill dimorphism. Further evidence for ecological causation of sexual dimorphism was provided by a geographic replacement of one Heliconia species by the other and the subsequent development of a floral dimorphism, with one floral morph matching the bills of males and the other of females. PMID:10903203

  16. Sexual dimorphism in skeletal muscle protein turnover.

    PubMed

    Smith, Gordon I; Mittendorfer, Bettina

    2016-03-15

    Skeletal muscle is the major constituent of lean body mass and essential for the body's locomotor function. Women have less muscle mass (and more body fat) than men and are therefore not able to exert the same absolute maximal force as men. The difference in body composition between the sexes is evident from infancy but becomes most marked after puberty (when boys experience an accelerated growth spurt) and persists into old age. During early adulthood until approximately the fourth decade of life, muscle mass is relatively stable, both in men and women, but then begins to decline, and the rate of loss is slower in women than in men. In this review we discuss the underlying mechanisms responsible for the age-associated sexual dimorphism in muscle mass (as far as they have been elucidated to date) and highlight areas that require more research to advance our understanding of the control of muscle mass throughout life. PMID:26702024

  17. Interpreting hominid behavior on the basis of sexual dimorphism.

    PubMed

    Plavcan, J M; van Schaik, C P

    1997-04-01

    Numerous studies use estimates of sexual dimorphism in canine tooth size and body weight to support speculation about the behavior of australopithecines. However, the range of mating systems inferred for australopithecines encompasses virtually the entire spectrum of mating systems seen among extant anthropoid primates, from monogamy to polygyny characterized by intense male male competition. This variety of opinion can be attributed partly to the unusual combination of high body size dimorphism and reduced canine dimorphism in australopithecines. Here we provide a joint comparison of recent models for the behavioral correlates of both canine dimorphism and body size dimorphism, and apply this to published estimates of dimorphism in body size and canine tooth size in hominids. Among extant species, body weight dimorphism and canine dimorphism are strongly correlated with estimates of intrasexual competition. Canine crown height dimorphism provides the best discrimination between taxa that show high degrees of male-male competition, and those that do not. Relative male maxillary canine tooth size offers additional evidence about male-male competition. On the other hand, canine occlusal dimorphism offers little discrimination among species of different male-male competition levels. Estimates of canine dimorphism, relative canine size, and body weight dimorphism in australopithecines provide little definitive information about male-male competition or mating systems. Dimorphism of Australopithecus africanus and Australopithecus robustus can be reconciled with a mating system characterized by low-intensity male-male competition. The pattern of dimorphism and relative canine size in Australopithecus afarensis and A. robustus provides contradictory evidence about mating systems and male-male competition. We review a number of hypotheses that may explain the unusual pattern of dimorphism of A. afarensis and Australopithecus boisei, but non-satisfactorily resolves the

  18. Sexual Dimorphism: How Female Cells Win the Race.

    PubMed

    Deng, Hansong; Jasper, Heinrich

    2016-03-01

    Sexual dimorphisms are established by sex determination pathways and are maintained during regeneration of adult tissues. Two recent studies in Drosophila elucidate the contribution of cell-autonomous and endocrine mechanisms to the establishment and maintenance of growth dimorphism in larvae and the adult intestine. PMID:26954444

  19. Sexually dimorphic actions of glucocorticoids: beyond chromosomes and sex hormones.

    PubMed

    Quinn, Matthew; Ramamoorthy, Sivapriya; Cidlowski, John A

    2014-05-01

    Sexual dimorphism is a well-documented phenomenon that is observed at all levels of the animal kingdom. Historically, sex hormones (testosterone and estrogen) have been implicated as key players in a wide array of pathologies displaying sexual dimorphism in their etiology and progression. While these hormones clearly contribute to sexually dimorphic diseases, other factors may be involved in this phenomenon as well. In particular, the stress hormone cortisol exerts differential effects in both males and females. The underlying molecular basis for the sexually dimorphic actions of glucocorticoids is unknown but clearly important to understand, since synthetic glucocorticoids are the most widely prescribed medication for the treatment of chronic inflammatory diseases and hematological cancers in humans. PMID:24739020

  20. Mandibular sexual dimorphism analysis in CBCT scans.

    PubMed

    Gamba, Thiago de Oliveira; Alves, Marcelo Corrêa; Haiter-Neto, Francisco

    2016-02-01

    The aim of this study was to evaluate sexual dimorphism using anthropometric measurements on mandibular images obtained by cone beam computed tomography (CBCT). The sample consisted of 160 CT scans collected from a Brazilian population (74 males, 86 females) aged 18-60 years. The CBCT images were analyzed by five reviewers. Six measurements (ramus length, gonion-gnathion length, minimum ramus breadth, gonial angle, bicondylar breadth, and bigonial breadth) were collected for the sexual prediction analysis. For the statistical analysis, intraclass correlation was used to evaluate intra- and inter-reviewers, analysis of variance was used to compare the mean values of these measurements, binary logistic regression equations were created to predict sex. Using these four variables, the rate of correct sex classification was 95.1%. After, the discriminant function was used to validate the formula built. Accuracy of 93.33% and 94.74% was found for estimating male and females, respectively. Thus, the formula developed in this study can be used for sex estimation in forensic settings. PMID:26773251

  1. Perinatal modification of a sexually dimorphic motor nucleus in the spinal cord of the B6D2F1 house mouse.

    PubMed

    Wagner, C K; Clemens, L G

    1989-04-01

    The sexually dimorphic dorsomedial nucleus (DM) of the spinal cord of mice is affected by gonadal steroids in adulthood and these effects are dependent upon genotype. Following castration of adult mice there is a decrease in DM cell size in DBA/2J and hybrid B6D2F1 strains and a decrease in the number of cells staining with thionin in C57B1/6J and B6D2F1 strains. The effects of androgens on development of the DM nucleus were examined in B6D2F1 mice, which exhibit both characteristics in adulthood. Testosterone propionate (TP) administered to females pre- or postnatally resulted in a significantly larger number of motoneurons in the region of the DM when compared to administration of the vehicle alone, while soma area remained unchanged. Adult males castrated on the day of birth had significantly fewer cells in the DM than did intact males. Differences in cell size between shams and castrates were dependent upon age. PMID:2780856

  2. Heterospecific interactions and the proliferation of sexually dimorphic traits.

    PubMed

    Pfennig, Karin S; Hurlbert, Allen H

    2012-02-01

    Sexual selection is expected to promote speciation by fostering the evolution of sexual traits that minimize reproductive interactions among existing or incipient species. In species that compete for access to, or attention of, females, sexual selection fosters more elaborate traits in males compared to females. If these traits also minimize reproductive interactions with heterospecifics, then species with enhanced risk of interactions between species might display greater numbers of these sexual dimorphic characters. We tested this prediction in eight families of North American birds. In particular, we evaluated whether the number of sexually dimorphic traits was positively associated with species richness at a given site or with degree of sympatry with congeners. We found no strong evidence of enhanced sexual dimorphism with increasing confamilial species richness at a given site. We also found no overall relationship between the number of sexually dimorphic traits and overlap with congeners across these eight families. However, we found patterns consistent with our prediction within Anatidae (ducks, geese and swans) and, to a lesser degree, Parulidae (New World warblers). Our results suggest that sexually selected plumage traits in these groups potentially play a role in reproductive isolation. PMID:24639684

  3. Sexually antagonistic epigenetic marks that canalize sexually dimorphic development.

    PubMed

    Rice, William R; Friberg, Urban; Gavrilets, Sergey

    2016-04-01

    The sexes share the same autosomal genomes, yet sexual dimorphism is common due to sex-specific gene expression. When present, XX and XY karyotypes trigger alternate regulatory cascades that determine sex-specific gene expression profiles. In mammals, secretion of testosterone (T) by the testes during foetal development is the master switch influencing the gene expression pathways (male vs. female) that will be followed, but many genes have sex-specific expression prior to T secretion. Environmental factors, like endocrine disruptors and mimics, can interfere with sexual development. However, sex-specific ontogeny can be canalized by the production of epigenetic marks (epimarks) generated during early ontogeny that increase sensitivity of XY embryos to T and decrease sensitivity of XX embryos. Here, we integrate and synthesize the evidence indicating that canalizing epimarks are produced during early ontogeny. We will also describe the evidence that such epimarks sometimes carry over across generations and produce mosaicism in which some traits are discordant with the gonad. Such carryover epimarks are sexually antagonistic because they benefit the individual in which they were formed (via canalization) but harm opposite-sex offspring when they fail to erase across generations and produce gonad-trait discordances. SA-epimarks have the potential to: i) magnify phenotypic variation for many sexually selected traits, ii) generate overlap along many dimensions of the masculinity/femininity spectrum, and iii) influence medically important gonad-trait discordances like cryptorchidism, hypospadias and idiopathic hirsutism. PMID:26600375

  4. The Dilemma of Choosing a Reference Character for Measuring Sexual Size Dimorphism, Sexual Body Component Dimorphism, and Character Scaling: Cryptic Dimorphism and Allometry in the Scorpion Hadrurus arizonensis

    PubMed Central

    Fox, Gerad A.; Cooper, Allen M.; Hayes, William K.

    2015-01-01

    Sexual differences in morphology, ranging from subtle to extravagant, occur commonly in many animal species. These differences can encompass overall body size (sexual size dimorphism, SSD) or the size and/or shape of specific body parts (sexual body component dimorphism, SBCD). Interacting forces of natural and sexual selection shape much of the expression of dimorphism we see, though non-adaptive processes may be involved. Differential scaling of individual features can result when selection favors either exaggerated (positive allometry) or reduced (negative allometry) size during growth. Studies of sexual dimorphism and character scaling rely on multivariate models that ideally use an unbiased reference character as an overall measure of body size. We explored several candidate reference characters in a cryptically dimorphic taxon, Hadrurus arizonensis. In this scorpion, essentially every body component among the 16 we examined could be interpreted as dimorphic, but identification of SSD and SBCD depended on which character was used as the reference (prosoma length, prosoma area, total length, principal component 1, or metasoma segment 1 width). Of these characters, discriminant function analysis suggested that metasoma segment 1 width was the most appropriate. The pattern of dimorphism in H. arizonensis mirrored that seen in other more obviously dimorphic scorpions, with static allometry trending towards isometry in most characters. Our findings are consistent with the conclusions of others that fecundity selection likely favors a larger prosoma in female scorpions, whereas sexual selection may favor other body parts being larger in males, especially the metasoma, pectines, and possibly the chela. For this scorpion and probably most other organisms, the choice of reference character profoundly affects interpretations of SSD, SBCD, and allometry. Thus, researchers need to broaden their consideration of an appropriate reference and exercise caution in interpreting

  5. Review on the use of sexually dimorphic characters in the taxonomy of Diabroticites (Galerucinae, Luperini, Diabroticina).

    PubMed

    Prado, Laura Rocha

    2013-01-01

    Sexual dimorphism occurs frequently in Chrysomelidae Latreille, 1802 and is particularly variable in subfamily Galerucinae Latreille, 1802. This diversity has been early noted by authors a potential source of taxonomic characters. The section Diabroticites (Luperini Gistel, 1848) is one of the largest assemblies of chrysomelid genera with currently 823 valid species in 17 genera (12 based on dimorphic characteristics), being most diverse in the neotropical region. Apart from a revision work on the type specimens for the section, there are no general taxonomic studies for this group. The occurrence of sexually dimorphic characteristics in the section Diabroticites is revised and their practical taxonomic relevance evaluated. A total of 240 species was studied (145 species with males available), representing 15 out of the 17 genera included in Diabroticites. The analysis of characters was based on the study of specimens in south-american collections, literature and the aid of photos in online databases. Sexual dimorphism occurred in most species analyzed. Dimorphic features were divided in general (i. e., occur in higher taxa) and special characters (those that support the definition of species and genera). Special dimorphism was observed in every tagma, and most modifications occur in antennae. Characters used as diagnostic of genera often do not correspond to the modifications present in species included in them. Many modifications were considered by earlier authors as a single character, probably due to vague definitions. Most generic definitions are, therefore, inaccurate. The study of morphology and the homology assessment of characters are needed to increase understanding of the genera in Diabroticites. PMID:24163580

  6. Sexual dimorphism in the white matter of rodents

    PubMed Central

    Cerghet, Mirela; Skoff, Robert P.; Swamydas, Muthulekha; Bessert, Denise

    2009-01-01

    Sexual dimorphism of astrocytes and neurons is well documented in many brain and spinal cord structures. Sexual dimorphism of oligodendrocytes (Olgs) and myelin has received less attention. We recently showed that density of Olgs in corpus callosum, fornix, and spinal cord of wild-type male rodents are more densely packed than in females; myelin proteins and myelin gene expression is likewise greater in males than in female rodents. However, glial cell proliferation and cell death were two times greater in female corpus callosum. Endogenous sex hormones, specifically lack of androgens, produce an Olg female phenotype in castrated male mouse. In vitro studies using Olgs culture also showed differences between males and females Olg survival and signaling pathways in response to sexual hormones. Sexual dimorphism of white matter tracts and glia in rodents indicates the necessity for controlling gender in experimental studies of neurodegenerative disorders. Most importantly, our studies suggest that hormones may contribute to sexual dimorphism observed in certain human diseases including multiple sclerosis. PMID:19625027

  7. Sexual dimorphism in the face of Australopithecus africanus.

    PubMed

    Lockwood, C A

    1999-01-01

    Recently discovered crania of Australopithecus africanus from Sterkfontein Member 4 and Makapansgat enlarge the size range of the species and encourage a reappraisal of both the degree and pattern of sexual dimorphism. Resampling methodology (bootstrapping) is used here to establish that A. africanus has a greater craniofacial size range than chimpanzees or modern humans, a range which is best attributed to a moderately high degree of sexual dimorphism. Compared to other fossil hominins, this variation is similar to that of Homo habilis (sensu lato) but less than that of A. boisei. The finding of moderately high dimorphism is corroborated by a CV-based estimate and ratios between those specimens considered to be male and those considered to be female. Inferences about the pattern of craniofacial dimorphism in the A. africanus face currently rely on the relationship of morphology and size. Larger specimens, particularly Stw 505, show prominent superciliary eminences and glabellar regions, but in features related in part to canine size, such as the curvature of the infraorbital surface, large and small specimens of A. africanus are similar. In this respect, the pattern resembles that of modern humans more so than chimpanzees or lowland gorillas. A. africanus may also show novel patterns of sexual dimorphism when compared to extant hominines, such as in the form of the anterior pillar. However, males of the species do not exhibit characteristics of more derived hominins, such as A. robustus. PMID:9915304

  8. The earliest fossil evidence for sexual dimorphism in primates

    NASA Technical Reports Server (NTRS)

    Krishtalka, Leonard; Stucky, Richard K.; Beard, K. C.

    1990-01-01

    Recently obtained material of the early Eocene primate Notharctus venticolus, including two partial skulls from a single stratigraphic horizon, provides the geologically earliest evidence of sexual dimorphism in canine size and shape in primates and the only unequivocal evidence for such dimorphism in strepsirhines. By analogy with living platyrrhines, these data suggest that Notharctus venticolus may have lived in polygynous social groups characterized by a relatively high level of intermale competition for mates and other limited resources. The anatomy of the upper incisors and related evidence imply that Notharctus is not as closely related to extant lemuriform primates as has been recently proposed. The early Eocene evidence for canine sexual dimorphism reported here, and its occurrence in a nonanthropoid, indicates that in the order Primates such a condition is either primitive or evolved independently more than once.

  9. Sexually dimorphic nuclei in the spinal cord control male sexual functions

    PubMed Central

    Sakamoto, Hirotaka

    2014-01-01

    Lower spinal cord injuries frequently cause sexual dysfunction in men, including erectile dysfunction and an ejaculation disorder. This indicates that the important neural centers for male sexual function are located within the lower spinal cord. It is interesting that the lumbar spinal segments contain several neural circuits, showing a clear sexually dimorphism that, in association with neural circuits of the thoracic and sacral spinal cord, are critical in expressing penile reflexes during sexual behavior. To date, many sex differences in the spinal cord have been discovered. Interestingly, most of these are male dominant. Substantial evidence of sexually dimorphic neural circuits in the spinal cord have been reported in many animal models, but major issues remain unknown. For example, it is not known how the different circuits cooperatively function during male sexual behavior. In this review, therefore, the anatomical and functional significance of the sexually dimorphic nuclei in the spinal cord corresponding to the expression of male sexual behavior is discussed. PMID:25071429

  10. Modeling the Process of Science: Investigating Sexual Dimorphism in Crayfish.

    ERIC Educational Resources Information Center

    Mullen, Dennis M.; Rutledge, Michael L.; Swain, Sarah H.

    2003-01-01

    Describes a scientific investigation of sexual dimorphism with regard to chela size in crayfish in which students utilize the skills, tools, and techniques associated with the formulation and testing of scientific hypotheses. Indicates that students find the investigation effective in aiding their understanding of fundamental aspects of scientific…

  11. Variation of mandibular sexual dimorphism across human facial patterns.

    PubMed

    Alarcón, J A; Bastir, M; Rosas, A

    2016-06-01

    This study analysed how sex-specific features differed in male and female adult mandibles throughout the spectrum of vertical facial patterns (i.e., meso-, dolicho- and brachyfacial) and sagittal variations (the so-called skeletal Classes I, II and III; normal maxillo-mandibular relationship, maxillary prognathism vs. mandibular retrognathism, and maxillary retrognathism vs. mandibular prognathism, respectively). Specifically, we test the hypothesis that sexual dimorphism in the mandible is independent of such facial vertical and sagittal patterns. A sample of 187 European adults (92 males, 95 females; age range, 20-30 years; mean age 25.6 years, sd=4.2 years) from Granada (southern Spain) were randomly selected and grouped according to the standard cephalometric criteria of the sagittal and vertical patterns. Geometric morphometrics were used to analyse the size (centroid size) and shape (principal components analysis, mean shape comparisons) of the mandible. The patterns of sexual dimorphism were evaluated with a generalised linear model with interaction term. We found that sagittal and vertical facial patterns are associated with different mandibular morphologies (size and shape). Also, sexual dimorphism was present in all comparisons. The hypothesis was rejected only for vertical facial patterns. That is, the nature of sexual dimorphism was similar among the skeletal classes but different (e.g., distribution of dimorphic variables, interaction term) in meso-, dolicho-, and brachyfacial mandibles. In conclusion, sex-specific mandibular traits behave in a different way across vertical facial patterns. These results imply that an assessment of the vertical facial pattern of the individual is required before a sexual diagnosis of the mandible is proposed. PMID:26852041

  12. Red is romantic, but only for feminine females: sexual dimorphism moderates red effect on sexual attraction.

    PubMed

    Wen, Fangfang; Zuo, Bin; Wu, Yang; Sun, Shan; Liu, Ke

    2014-01-01

    Previous researchers have documented that the color red enhances one's sexual attraction to the opposite sex. The current study further examined the moderating role of sexual dimorphism in red effects. The results indicated that red enhanced men's sexual attraction to women with more feminine facial characteristics but had no effect on ratings of perceived general attractiveness. Red clothing also had a marginally significant effect on men's sexual attractiveness. In addition, regardless of sexual dimorphism cues, male participants rated women with red as warmer and more competent. The underlying mechanisms of the red effect, the limitations of the current study, and suggestions for future directions are discussed. PMID:25300050

  13. Sexual dimorphism in Tripedaliidae (Conant 1897) (Cnidaria, Cubozoa, Carybdeida).

    PubMed

    Straehler-Pohl, Ilka; Garm, Anders; Morandini, André C

    2014-01-01

    The family Tripedaliidae was re-defined and expanded based on a molecular phylogenetic hypothesis by Bentlage et al. (2010, Proceedings of the Royal Society Biological Science, 277: 497). Additionally, Bentlage et al. (2010) proposed that all members of the family Tripedaliidae present dimorphism in gonads and have structures that function as seminal vesicles (at least in males). Until now, no information on Tripedalia binata concerning gonad morphology, sexual dimorphism, spermatophore formation or structures that serve as seminal vesicles or spermathecae were published. We studied mature medusae of both sexes of Tripedalia cystophora, Tripedalia binata and Copula sivickisi in order to compare these structures in their stomach regions. We found sexual dimorphism and spermatophore formation in seminal vesicle-like structures in all three species. In particular, we show that along with the females of Copula sivickisi, the females of Tripedalia cystophora and Tripedalia binata also possess structures that store spermatophores and serve as spermathecae. The results are in agreement with the morphological synapomorphies for Tripedaliidae outlined in Bentlage et al. (2010), but suggest an adjustment of the diagnosis of Tripedaliidae (underlined): All carybdeids that display sexual dimorphism of the gonads, produce spermatophores and in which males and females possess subgastral sacs, pockets or purses which function as seminal vesicles or spermathecae. PMID:24872244

  14. ALTERATIONS IN SEXUALLY DIMORPHIC BIOTRANSFORMATION OF TESTOSTERONE IN JUVENILE AMERICAN ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM CONTAMINATED LAKES

    EPA Science Inventory

    The goal of this study was to determine whether hepatic biotransformation of testosterone is normally sexually dimorphic in juvenile alligators and whether living in a contaminated environment affects hepatic dimorphism. Lake Woodruff served as our reference site. Moonshine Bay, ...

  15. Sexual dimorphism in primate aerobic capacity: a phylogenetic test.

    PubMed

    Lindenfors, Patrik; Revell, L J; Nunn, C L

    2010-06-01

    Male intrasexual competition should favour increased male physical prowess. This should in turn result in greater aerobic capacity in males than in females (i.e. sexual dimorphism) and a correlation between sexual dimorphism in aerobic capacity and the strength of sexual selection among species. However, physiological scaling laws predict that aerobic capacity should be lower per unit body mass in larger than in smaller animals, potentially reducing or reversing the sex difference and its association with measures of sexual selection. We used measures of haematocrit and red blood cell (RBC) counts from 45 species of primates to test four predictions related to sexual selection and body mass: (i) on average, males should have higher aerobic capacity than females, (ii) aerobic capacity should be higher in adult than juvenile males, (iii) aerobic capacity should increase with increasing sexual selection, but also that (iv) measures of aerobic capacity should co-vary negatively with body mass. For the first two predictions, we used a phylogenetic paired t-test developed for this study. We found support for predictions (i) and (ii). For prediction (iii), however, we found a negative correlation between the degree of sexual selection and aerobic capacity, which was opposite to our prediction. Prediction (iv) was generally supported. We also investigated whether substrate use, basal metabolic rate and agility influenced physiological measures of oxygen transport, but we found only weak evidence for a correlation between RBC count and agility. PMID:20406346

  16. Sexual Size Dimorphism and Body Condition in the Australasian Gannet.

    PubMed

    Angel, Lauren P; Wells, Melanie R; Rodríguez-Malagón, Marlenne A; Tew, Emma; Speakman, John R; Arnould, John P Y

    2015-01-01

    Sexual size dimorphism is widespread throughout seabird taxa and several drivers leading to its evolution have been hypothesised. While the Australasian Gannet (Morus serrator) has previously been considered nominally monomorphic, recent studies have documented sexual segregation in diet and foraging areas, traits often associated with size dimorphism. The present study investigated the sex differences in body mass and structural size of this species at two colonies (Pope's Eye, PE; Point Danger, PD) in northern Bass Strait, south-eastern Australia. Females were found to be 3.1% and 7.3% heavier (2.74 ± 0.03, n = 92; 2.67 ± 0.03 kg, n = 43) than males (2.66 ± 0.03, n = 92; 2.48 ± 0.03 kg, n = 43) at PE and PD, respectively. Females were also larger in wing ulna length (0.8% both colonies) but smaller in bill depth (PE: 2.2%; PD: 1.7%) than males. Despite this dimorphism, a discriminant function provided only mild accuracy in determining sex. A similar degree of dimorphism was also found within breeding pairs, however assortative mating was not apparent at either colony (R2 < 0.04). Using hydrogen isotope dilution, a body condition index was developed from morphometrics to estimate total body fat (TBF) stores, where TBF(%) = 24.43+1.94*(body mass/wing ulna length) - 0.58*tarsus length (r2 = 0.84, n = 15). This index was used to estimate body composition in all sampled individuals. There was no significant difference in TBF(%) between the sexes for any stage of breeding or in any year of the study at either colony suggesting that, despite a greater body mass, females were not in a better condition than males. While the driving mechanism for sexual dimorphism in this species is currently unknown, studies of other Sulids indicate segregation in foraging behaviour, habitat and diet may be a contributing factor. PMID:26637116

  17. Sexually Monomorphic Maps and Dimorphic Responses in Rat Genital Cortex.

    PubMed

    Lenschow, Constanze; Copley, Sean; Gardiner, Jayne M; Talbot, Zoe N; Vitenzon, Ariel; Brecht, Michael

    2016-01-11

    Mammalian external genitals show sexual dimorphism [1, 2] and can change size and shape upon sexual arousal. Genitals feature prominently in the oldest pieces of figural art [3] and phallic depictions of penises informed psychoanalytic thought about sexuality [4, 5]. Despite this longstanding interest, the neural representations of genitals are still poorly understood [6]. In somatosensory cortex specifically, many studies did not detect any cortical representation of genitals [7-9]. Studies in humans debate whether genitals are represented displaced below the foot of the cortical body map [10-12] or whether they are represented somatotopically [13-15]. We wondered what a high-resolution mapping of genital representations might tell us about the sexual differentiation of the mammalian brain. We identified genital responses in rat somatosensory cortex in a region previously assigned as arm/leg cortex. Genital responses were more common in males than in females. Despite such response dimorphism, we observed a stunning anatomical monomorphism of cortical penis and clitoris input maps revealed by cytochrome-oxidase-staining of cortical layer 4. Genital representations were somatotopic and bilaterally symmetric, and their relative size increased markedly during puberty. Size, shape, and erect posture give the cortical penis representation a phallic appearance pointing to a role in sexually aroused states. Cortical genital neurons showed unusual multi-body-part responses and sexually dimorphic receptive fields. Specifically, genital neurons were co-activated by distant body regions, which are touched during mounting in the respective sex. Genital maps indicate a deep homology of penis and clitoris representations in line with a fundamentally bi-sexual layout [16] of the vertebrate brain. PMID:26725197

  18. Measuring sexual dimorphism with a race-gender face space.

    PubMed

    Hopper, William J; Finklea, Kristin M; Winkielman, Piotr; Huber, David E

    2014-10-01

    Faces are complex visual objects, and faces chosen to vary in 1 regard may unintentionally vary in other ways, particularly if the correlation is a property of the population of faces. Here, we present an example of a correlation that arises from differences in the degree of sexual dimorphism. In Experiment 1, paired similarity ratings were collected for a set of 40 real face images chosen to vary in terms of gender and race (Asian vs. White). Multidimensional scaling (MDS) placed these stimuli in a "face space," with different attributes corresponding to different dimensions. Gender was found to vary more for White faces, resulting in a negative or positive correlation between gender and race when only considering male or only considering female faces. This increased sexual dimorphism for White faces may provide an alternative explanation for differences in face processing between White and Asian faces (e.g., the own-race bias, face attractiveness biases, etc.). Studies of face processing that are unconfounded by this difference in the degree of sexual dimorphism require stimuli that are decorrelated in terms of race and gender. Decorrelated faces were created using a morphing technique, spacing the morphs uniformly around a ring in the 2-dimensional (2D) race-gender plane. In Experiment 2, paired similarity ratings confirmed the 2D positions of the morph faces. In Experiment 3, race and gender category judgments varied uniformly for these decorrelated stimuli. Our results and stimuli should prove useful for studying sexual dimorphism and for the study of face processing more generally. PMID:25151105

  19. Sexual dimorphism in tooth morphometrics: An evaluation of the parameters

    PubMed Central

    Banerjee, Abhishek; Kamath, Venkatesh V.; Satelur, Krishnanand; Rajkumar, Komali; Sundaram, Lavanya

    2016-01-01

    Aims and Objectives: Sexual dimorphism refers to the variations in tooth size and shape between the sexes. The consistency of these variations is valuable in the identification of the sex of an individual in times of mass disaster when whole body parts get destroyed or are unavailable. There exist differences in the expression of these variables across races and regions. This study aims to tabulate and identify the variations in tooth measurements using standarized reference points in an attempt to establish parameters of sexual dimorphism. Materials and Methods: 100 individuals (50 of each sex) in the age group 19-23 years were assessed for standard morphometric parameters of the maxillary central incisor, canine, premolar and molar. Odontometric measurements of established parameters were recorded from impression casts of the maxillary jaws. The mesiodistal width (MDW), the bucco-ligual width (BLW), the crown length (CL) and the cervical angle (CA) were charted among the teeth. The consistency of the variations was statistically analyzed and a logistic regression table was prepared to identify the sex of the individual from the tooth measurements. Results and Conclusions: The BLW, MDW and CL reflected significant variations among all the teeth to be effective in establishing sexual dimorphism. CA as a parameter was inadequate across all the teeth. The permanent maxillary canine was the most important tooth to be reflective of the gender and statistically significant to be utilized for gender determination. PMID:27051219

  20. Sexual dimorphism in a trophically polymorphic cichlid fish?

    PubMed

    Hulsey, Christopher Darrin; García-De León, Francisco J; Meyer, Axel

    2015-12-01

    Sexual dimorphism in ecologically relevant traits is ubiquitous in animals. However, other types of intraspecific phenotypic divergence, such as trophic polymorphism, are less common. Because linkage to sex should often lead to balancing selection, understanding the association between sex and phenotypic divergence could help explain why particular species show high morphological variability. To determine if sexual dimorphism could be helping to maintain ecomorphological variation in a classic case of intraspecific trophic polymorphism, we examined the association between sex and morphological divergence in the cichlid Herichthys minckleyi. Although H. minckleyi with enlarged molariform teeth on their pharyngeal jaws have been reported to more commonly be male, we did not find an association between sex and pharyngeal morphotype. Sex was associated with divergence in body size (as measured through standard length). But, sex was not associated with any of the other trophic traits examined. However, pharyngeal morphotype did show an association with gut length, gape, and tooth number. Sexual dimorphism is not playing a central role in enhancing trophic diversity within H. minckleyi. PMID:26289966

  1. Retinol and Retinyl Palmitate in Foetal Lung Mice: Sexual Dimorphism

    PubMed Central

    Carvalho, Olga; Gonçalves, Carlos

    2013-01-01

    In this work, we evaluate the lung retinoids content to study the possible difference between male and female mice during prenatal development and to comprehend if the vitamin A metabolism is similar in both genders. The study occurred between developmental days E15 and E19, and the retinol and retinyl palmitate lung contents were determined by HPLC analysis. We established two main groups: the control, consisting of foetuses obtained from pregnant females without any manipulation, and vitamin A, composed of foetuses from pregnant females submitted to vitamin A administration on developmental day E14. Each of these groups was subdivided by gender, establishing the four final groups. In the lung of control group, retinol was undetected in both genders and retinyl palmitate levels exhibited a sexual dimorphism. In the vitamin A group, we detected retinol and retinyl palmitate in both genders, and we observed a more evident sexual dimorphism for both retinoids. Our study also indicates that, from developmental day E15 to E19, there is an increase in the retinoids content in foetal lung and a gender difference in the retinoids metabolism. In conclusion, there is a sexual dimorphism in the lung retinoids content and in its metabolism during mice development. PMID:23365730

  2. Sexual dimorphism in the feeding mechanism of threespine stickleback.

    PubMed

    McGee, Matthew D; Wainwright, Peter C

    2013-03-01

    Sexual dimorphism is common in nature and has the potential to increase intraspecific variation in performance and patterns of resource use. We sought to determine whether anadromous threespine stickleback, Gasterosteus aculeatus, exhibit sexual dimorphism in feeding kinematics. We filmed four males and four females consuming live prey in a total of 51 sequences filmed at 500 Hz, then tested for differences in cranial kinematics using a combination of principal component analysis and linear mixed models. We document, for the first time in fishes, divergence between males and females in both the timing of key movements and the magnitude of excursions reached by the hyoid, jaws and neurocranium during prey capture. Some of the largest differences are in jaw protrusion, with males exhibiting faster time to peak jaw protrusion but females exhibiting greater maximum jaw protrusion. Measurements of morphological jaw protrusion on cleared and stained specimens significantly predict jaw protrusion in kinematics. This morphological divergence could reflect ecological divergence between the sexes, or the demands of nest building and territory defense compromising male feeding performance. Remarkably, the morphological jaw protrusion divergence in anadromous males and females is similar to jaw protrusion divergence between ecomorphs in a benthic-limnetic species pair, with limnetics exhibiting female-like patterns of protrusion and benthics exhibiting male-like patterns. These results suggest that sexual dimorphism in feeding functional morphology exists in nature and may have played an important role in the radiation of threespine stickleback. PMID:23408802

  3. Masculinization of Gene Expression Is Associated with Exaggeration of Male Sexual Dimorphism

    PubMed Central

    Pointer, Marie A.; Harrison, Peter W.; Wright, Alison E.; Mank, Judith E.

    2013-01-01

    Gene expression differences between the sexes account for the majority of sexually dimorphic phenotypes, and the study of sex-biased gene expression is important for understanding the genetic basis of complex sexual dimorphisms. However, it has been difficult to test the nature of this relationship due to the fact that sexual dimorphism has traditionally been conceptualized as a dichotomy between males and females, rather than an axis with individuals distributed at intermediate points. The wild turkey (Meleagris gallopavo) exhibits just this sort of continuum, with dominant and subordinate males forming a gradient in male secondary sexual characteristics. This makes it possible for the first time to test the correlation between sex-biased gene expression and sexually dimorphic phenotypes, a relationship crucial to molecular studies of sexual selection and sexual conflict. Here, we show that subordinate male transcriptomes show striking multiple concordances with their relative phenotypic sexual dimorphism. Subordinate males were clearly male rather than intersex, and when compared to dominant males, their transcriptomes were simultaneously demasculinized for male-biased genes and feminized for female-biased genes across the majority of the transcriptome. These results provide the first evidence linking sexually dimorphic transcription and sexually dimorphic phenotypes. More importantly, they indicate that evolutionary changes in sexual dimorphism can be achieved by varying the magnitude of sex-bias in expression across a large proportion of the coding content of a genome. PMID:23966876

  4. Human preferences for sexually dimorphic faces may be evolutionarily novel.

    PubMed

    Scott, Isabel M; Clark, Andrew P; Josephson, Steven C; Boyette, Adam H; Cuthill, Innes C; Fried, Ruby L; Gibson, Mhairi A; Hewlett, Barry S; Jamieson, Mark; Jankowiak, William; Honey, P Lynne; Huang, Zejun; Liebert, Melissa A; Purzycki, Benjamin G; Shaver, John H; Snodgrass, J Josh; Sosis, Richard; Sugiyama, Lawrence S; Swami, Viren; Yu, Douglas W; Zhao, Yangke; Penton-Voak, Ian S

    2014-10-01

    A large literature proposes that preferences for exaggerated sex typicality in human faces (masculinity/femininity) reflect a long evolutionary history of sexual and social selection. This proposal implies that dimorphism was important to judgments of attractiveness and personality in ancestral environments. It is difficult to evaluate, however, because most available data come from large-scale, industrialized, urban populations. Here, we report the results for 12 populations with very diverse levels of economic development. Surprisingly, preferences for exaggerated sex-specific traits are only found in the novel, highly developed environments. Similarly, perceptions that masculine males look aggressive increase strongly with development and, specifically, urbanization. These data challenge the hypothesis that facial dimorphism was an important ancestral signal of heritable mate value. One possibility is that highly developed environments provide novel opportunities to discern relationships between facial traits and behavior by exposing individuals to large numbers of unfamiliar faces, revealing patterns too subtle to detect with smaller samples. PMID:25246593

  5. Human preferences for sexually dimorphic faces may be evolutionarily novel

    PubMed Central

    Scott, Isabel M.; Clark, Andrew P.; Josephson, Steven C.; Boyette, Adam H.; Cuthill, Innes C.; Fried, Ruby L.; Gibson, Mhairi A.; Hewlett, Barry S.; Jamieson, Mark; Jankowiak, William; Honey, P. Lynne; Huang, Zejun; Liebert, Melissa A.; Purzycki, Benjamin G.; Shaver, John H.; Snodgrass, J. Josh; Sosis, Richard; Sugiyama, Lawrence S.; Swami, Viren; Yu, Douglas W.; Zhao, Yangke; Penton-Voak, Ian S.

    2014-01-01

    A large literature proposes that preferences for exaggerated sex typicality in human faces (masculinity/femininity) reflect a long evolutionary history of sexual and social selection. This proposal implies that dimorphism was important to judgments of attractiveness and personality in ancestral environments. It is difficult to evaluate, however, because most available data come from large-scale, industrialized, urban populations. Here, we report the results for 12 populations with very diverse levels of economic development. Surprisingly, preferences for exaggerated sex-specific traits are only found in the novel, highly developed environments. Similarly, perceptions that masculine males look aggressive increase strongly with development and, specifically, urbanization. These data challenge the hypothesis that facial dimorphism was an important ancestral signal of heritable mate value. One possibility is that highly developed environments provide novel opportunities to discern relationships between facial traits and behavior by exposing individuals to large numbers of unfamiliar faces, revealing patterns too subtle to detect with smaller samples. PMID:25246593

  6. Early constraints in sexual dimorphism: survival benefits of feminized phenotypes.

    PubMed

    López-Rull, I; Vergara, P; Martínez-Padilla, J; Fargallo, J A

    2016-02-01

    Sexual dimorphism (SD) has evolved in response to selection pressures that differ between sexes. Since such pressures change across an individual's life, SD may vary within age classes. Yet, little is known about how selection on early phenotypes may drive the final SD observed in adults. In many dimorphic species, juveniles resemble adult females rather than adult males, meaning that out of the selective pressures established by sexual selection feminized phenotypes may be adaptive. If true, fitness benefits of early female-like phenotypes may constrain the expression of male phenotypes in adulthood. Using the common kestrel Falco tinnunculus as a study model, we evaluated the fitness advantages of expressing more feminized phenotypes at youth. Although more similar to adult females than to adult males, common kestrel fledglings are still sexually dimorphic in size and coloration. Integrating morphological and chromatic variables, we analysed the phenotypic divergence between sexes as a measure of how much each individual looks like the sex to which it belongs (phenotypic sexual resemblance, PSR). We then tested the fitness benefits associated with PSR by means of the probability of recruitment in the population. We found a significant interaction between PSR and sex, showing that in both sexes more feminized phenotypes recruited more into the population than less feminized phenotypes. Moreover, males showed lower PSR than females and a higher proportion of incorrect sex classifications. These findings suggest that the mechanisms in males devoted to resembling female phenotypes in youth, due to a trend to increase fitness through more feminized phenotypes, may provide a mechanism to constrain the SD in adulthood. PMID:26494322

  7. Circulating kisspeptin levels exhibit sexual dimorphism in adults, are increased in obese prepubertal girls and do not suffer modifications in girls with idiopathic central precocious puberty.

    PubMed

    Pita, Jimena; Barrios, Vicente; Gavela-Pérez, Teresa; Martos-Moreno, Gabriel Á; Muñoz-Calvo, María T; Pozo, Jesús; Rovira, Adela; Argente, Jesús; Soriano-Guillén, Leandro

    2011-09-01

    The system KISS1-KISS1R is one of the main regulators of the hypothalamic-pituitary-gonadal axis and constitutes a link between metabolism and reproduction through its interaction with leptin. The aim of this study was to clarify the possible utility of kisspeptin as a pubertal marker and/or the possible influence of nutritional status in kisspeptin levels. To this end, we have studied kisspeptin plasma levels throughout sexual development and in prepubertal obese girls and girls affected by idiopathic central precocious puberty (CPP). Plasma kisspeptin concentrations were analyzed by RIA. An increase in kisspeptin levels was observed in adult females compared to healthy prepubertal and pubertal girls (p<0.001) and to adult males (p<0.001). Additionally, kisspeptin was increased in prepubertal obese girls compared to healthy prepubertal girls (p<0.01) and girls with idiopathic CPP (p<0.05). As revealed by the regression analysis, in prepubertal healthy and obese girls and girls with idiopathic CCP, the parameters that influenced kisspeptin levels were BMI (R(2)=0.10, p<0.05) and leptin levels (R(2)=0.14, p<0.01). In conclusion, kisspeptin levels do not seem to be a good pubertal marker. The results obtained in prepubertal and idiopathic CCP girls point to a relationship between leptin, BMI and kisspeptin at least in this group, and suggest a possible role for adipose tissue in the modulation kisspeptin synthesis. PMID:21827808

  8. Sexual Size Dimorphism and Body Condition in the Australasian Gannet

    PubMed Central

    Angel, Lauren P.; Wells, Melanie R.; Rodríguez-Malagón, Marlenne A.; Tew, Emma; Speakman, John R.; Arnould, John P. Y.

    2015-01-01

    Sexual size dimorphism is widespread throughout seabird taxa and several drivers leading to its evolution have been hypothesised. While the Australasian Gannet (Morus serrator) has previously been considered nominally monomorphic, recent studies have documented sexual segregation in diet and foraging areas, traits often associated with size dimorphism. The present study investigated the sex differences in body mass and structural size of this species at two colonies (Pope’s Eye, PE; Point Danger, PD) in northern Bass Strait, south-eastern Australia. Females were found to be 3.1% and 7.3% heavier (2.74 ± 0.03, n = 92; 2.67 ± 0.03 kg, n = 43) than males (2.66 ± 0.03, n = 92; 2.48 ± 0.03 kg, n = 43) at PE and PD, respectively. Females were also larger in wing ulna length (0.8% both colonies) but smaller in bill depth (PE: 2.2%; PD: 1.7%) than males. Despite this dimorphism, a discriminant function provided only mild accuracy in determining sex. A similar degree of dimorphism was also found within breeding pairs, however assortative mating was not apparent at either colony (R2 < 0.04). Using hydrogen isotope dilution, a body condition index was developed from morphometrics to estimate total body fat (TBF) stores, where TBF(%) = 24.43+1.94*(body mass/wing ulna length) – 0.58*tarsus length (r2 = 0.84, n = 15). This index was used to estimate body composition in all sampled individuals. There was no significant difference in TBF(%) between the sexes for any stage of breeding or in any year of the study at either colony suggesting that, despite a greater body mass, females were not in a better condition than males. While the driving mechanism for sexual dimorphism in this species is currently unknown, studies of other Sulids indicate segregation in foraging behaviour, habitat and diet may be a contributing factor. PMID:26637116

  9. The Proximate Causes of Sexual Size Dimorphism in Phrynocephalus przewalskii

    PubMed Central

    Zhao, Wei; Liu, Nai-fa

    2014-01-01

    Sexual size dimorphism (SSD) is a common phenomenon and is a central topic in evolutionary biology. Recently, the importance of pursuing an ontogenetic perspective of SSD has been emphasized, to elucidate the proximate physiological mechanisms leading to its evolution. However, such research has seldom focused on the critical periods when males and females diverge. Using mark-recapture data, we investigated the development of SSD, sex-specific survivorship, and growth rates in Phrynocephalus przewalskii (Agamidae). We demonstrated that both male and female lizards are reproductively mature at age 10–11 months (including 5 months hibernation). Male-biased SSD in snout-vent length (SVL) was only found in adults and was fully expressed at age 11 months (June of the first full season of activity), just after sexual maturation. However, male-biased SSD in tail length (TL), hind-limb length (LL), and head width (HW) were fully expressed at age 9–10 months, just before sexual maturation. Analysis of age-specific linear growth rates identified sexually dimorphic growth during the fifth growth month (age 10–11 months) as the proximate cause of SSD in SVL. The males experienced higher mortality than females in the first 2 years and only survived better than females after SSD was well developed. This suggests that the critical period of divergence in the sizes of male and female P. przewalskii occurs between 10 and 11 months of age (May to June during the first full season of activity), and that the sexual difference in growth during this period is the proximate cause. However, the sexual difference in survivorship cannot explain the male-biased SSD in SVL. Our results indicate that performance-related characteristics, such as TL, HW, and LL diverged earlier than SVL. The physiological mechanisms underlying the different growth patterns of males and females may reflect different energy allocations associated with their different reproductive statuses. PMID:24465815

  10. Sexual dimorphism of canine volume: a pilot study.

    PubMed

    De Angelis, Danilo; Gibelli, Daniele; Gaudio, Daniel; Cipriani Noce, Filippo; Guercini, Nicola; Varvara, Giuseppe; Sguazza, Emanuela; Sforza, Chiarella; Cattaneo, Cristina

    2015-05-01

    Sex assessment is a crucial part of the biological profile in forensic and archaeological context, but it can be hardly performed in cases of commingled and charred human remains where DNA tests often are not applicable. With time literature have analyzed the sexual dimorphism of teeth (and especially canines), but very few articles take into consideration the teeth volume, although with time several technologies have been introduced in order to assess 3D volume (CT-scan, laser scanner, etc.). This study aims at assessing the sexual dimorphism of dental and pulp chamber volumes of a sample of canines. Cone beam computed tomography analyses were performed by 87 patients (41 males and 46 females, aged between 15 and 83 years) for clinical purposes, and were acquired in order to measure canine volumes. Results show that the dental volume amounted to 0.745 cm(3) (SD 0.126 cm(3)) in males, 0.551 cm(3) (SD 0.130 cm(3)) with a statistically significant difference (p<0.01). A diagnostic threshold of 0.619 cm(3) was stated, which provides a percentage of correct answer of 80.5% in the chosen sample. The novel method was then applied with success to 7 archaeological: where in all the cases the results were concordant with those provided by the assessment of the cranium and pelvis. The study adds a contribution to the wide analysis of dental sexual dimorphism confirming the statistically significant differences of volume between males and females and providing a method for the diagnosis of sex applicable to forensic cases. PMID:25556039

  11. The Sexual Dimorphism of Lipid Kinetics in Humans

    PubMed Central

    Santosa, Sylvia; Jensen, Michael D.

    2015-01-01

    In addition to the obvious differences in body shape, there are substantial differences in lipid metabolism between men and women. These differences include how dietary fatty acids are handled, the secretion and clearance of very low-density lipoprotein-triglycerides, the release rates of free fatty acids (FFA) from adipose tissue relative to energy needs, and the removal of FFA from the circulation, including the storage of FFA into adipose tissue via the direct uptake process. We will review what is known about these processes and how they may contribute to the sexual dimorphism of body fat distribution. PMID:26191040

  12. Sexual Dimorphism Analysis and Gender Classification in 3D Human Face

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Lu, Li; Yan, Jingqi; Liu, Zhi; Shi, Pengfei

    In this paper, we present the sexual dimorphism analysis in 3D human face and perform gender classification based on the result of sexual dimorphism analysis. Four types of features are extracted from a 3D human-face image. By using statistical methods, the existence of sexual dimorphism is demonstrated in 3D human face based on these features. The contributions of each feature to sexual dimorphism are quantified according to a novel criterion. The best gender classification rate is 94% by using SVMs and Matcher Weighting fusion method.This research adds to the knowledge of 3D faces in sexual dimorphism and affords a foundation that could be used to distinguish between male and female in 3D faces.

  13. Divergence in androgen sensitivity contributes to population differences in sexual dimorphism of electrocommunication behavior.

    PubMed

    Ho, Winnie W; Rack, Jessie M; Smith, G Troy

    2013-01-01

    Weakly-electric fish (Apteronotidae) produce highly diverse electrocommunication signals. Electric organ discharges (EODs) vary across species, sexes, and in the magnitude and direction of their sexual dimorphism. Gonadal steroid hormones can modulate EODs, and differences in androgen sensitivity are hypothesized to underlie variation in the degree of sexual dimorphism across species. In this study, we asked whether variation in androgen sensitivity explained variation in sexual dimorphism of EODs within species, at the population level. We examined two populations of black ghost knifefish (Apteronotus albifrons), one from the Orinoco and the other from the Amazon River Basin. EOD frequency (EODf) and chirp rates were measured to characterize diversity in sexual dimorphism across populations. The magnitude of sexual dimorphism in EODf differed significantly across populations, and was more pronounced in the Orinoco population than in the Amazon population. Chirp rates were sexually monomorphic in both populations. 11-Ketotestosterone (11-kT) was administered over a two-week period to assess population differences in sensitivity to androgens. 11-kT masculinized EODf significantly more in the population with the greater degree of sexual dimorphism. 11-kT had no effect on the sexually monomorphic chirping rates. We conclude that population divergence in androgen sensitivity contributes to variation in sexual dimorphism of EODf in A. albifrons. PMID:23142327

  14. Molecular and neural control of sexually dimorphic social behaviors.

    PubMed

    Yang, Taehong; Shah, Nirao M

    2016-06-01

    Sexually reproducing animals exhibit sex differences in behavior. Sexual dimorphisms in mating, aggression, and parental care directly contribute to reproductive success of the individual and survival of progeny. In this review, we discuss recent advances in our understanding of the molecular and neural network mechanisms underlying these behaviors in mice. Notable advances include novel insights into the sensory control of social interactions and the identification of molecularly-specified neuronal populations in the brain that control mating, aggression, and parental behaviors. In the case of the latter, these advances mark a watershed because scientists can now focus on discrete neural pathways in an effort to understand how the brain encodes these fundamental social behaviors. PMID:27162162

  15. Geometric morphometric analysis reveals sexual dimorphism in the distal femur.

    PubMed

    Cavaignac, Etienne; Savall, Frederic; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert

    2016-02-01

    An individual's sex can be determined by the shape of their distal femur. The goal of this study was to show that differences in distal femur shape related to sexual dimorphism could be identified, visualized, and quantified using 3D geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions; these analyses identified trends in bone shape in sex-based subgroups. Sex-related differences in shape were statistically significant. The subject's sex was correctly assigned in 77.3% of cases using geometric morphometric analysis. This study has shown that geometric morphometric analysis of the distal femur is feasible and has revealed sexual dimorphism differences in this bone segment. This reliable, accurate method could be used for virtual autopsy and be used to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. PMID:26743712

  16. A brain sexual dimorphism controlled by adult circulating androgens.

    PubMed

    Cooke, B M; Tabibnia, G; Breedlove, S M

    1999-06-22

    Reports of structural differences between the brains of men and women, heterosexual and homosexual men, and male-to-female transsexuals and other men have been offered as evidence that the behavioral differences between these groups are likely caused by differences in the early development of the brain. However, a possible confounding variable is the concentration of circulating hormones seen in these groups in adulthood. Evaluation of this possibility hinges on the extent to which circulating hormones can alter the size of mammalian brain regions as revealed by Nissl stains. We now report a sexual dimorphism in the volume of a brain nucleus in rats that can be completely accounted for by adult sex differences in circulating androgen. The posterodorsal nucleus of the medial amygdala (MePD) has a greater volume in male rats than in females, but adult castration of males causes the volume to shrink to female values within four weeks, whereas androgen treatment of adult females for that period enlarges the MePD to levels equivalent to normal males. This report demonstrates that adult hormone manipulations can completely reverse a sexual dimorphism in brain regional volume in a mammalian species. The sex difference and androgen responsiveness of MePD volume is reflected in the soma size of neurons there. PMID:10377450

  17. Regulation of transcription factors on sexual dimorphism of fig wasps.

    PubMed

    Sun, Bao-Fa; Li, Yong-Xing; Jia, Ling-Yi; Niu, Li-Hua; Murphy, Robert W; Zhang, Peng; He, Shunmin; Huang, Da-Wei

    2015-01-01

    Fig wasps exhibit extreme intraspecific morphological divergence in the wings, compound eyes, antennae, body color, and size. Corresponding to this, behaviors and lifestyles between two sexes are also different: females can emerge from fig and fly to other fig tree to oviposit and pollinate, while males live inside fig for all their lifetime. Genetic regulation may drive these extreme intraspecific morphological and behavioral divergence. Transcription factors (TFs) involved in morphological development and physiological activity may exhibit sex-specific expressions. Herein, we detect 865 TFs by using genomic and transcriptomic data of the fig wasp Ceratosolen solmsi. Analyses of transcriptomic data indicated that up-regulated TFs in females show significant enrichment in development of the wing, eye and antenna in all stages, from larva to adult. Meanwhile, TFs related to the development of a variety of organs display sex-specific patterns of expression in the adults and these may contribute significantly to their sexual dimorphism. In addition, up-regulated TFs in adult males exhibit enrichment in genitalia development and circadian rhythm, which correspond with mating and protandry. This finding is consistent with their sex-specific behaviors. In conclusion, our results strongly indicate that TFs play important roles in the sexual dimorphism of fig wasps. PMID:26031454

  18. Variation in Craniomandibular Morphology and Sexual Dimorphism in Pantherines and the Sabercat Smilodon fatalis

    PubMed Central

    Christiansen, Per; Harris, John M.

    2012-01-01

    Sexual dimorphism is widespread among carnivorans, and has been an important evolutionary factor in social ecology. However, its presence in sabertoothed felids remains contentious. Here we present a comprehensive analysis of extant Panthera and the sabertoothed felid Smilodon fatalis. S. fatalis has been reported to show little or no sexual dimorphism but to have been intraspecifically variable in skull morphology. We found that large and small specimens of S. fatalis could be assigned to male and female sexes with similar degrees of confidence as Panthera based on craniomandibular shape. P. uncia is much less craniomandibularly variable and has low levels of sexual size-dimorphism. Shape variation in S. fatalis probably reflects sexual differences. Craniomandibular size-dimorphism is lower in S. fatalis than in Panthera except P. uncia. Sexual dimorphism in felids is related to more than overall size, and S. fatalis and the four large Panthera species show marked and similar craniomandibular and dental morphometric sexual dimorphism, whereas morphometric dimorphism in P. uncia is less. Many morphometric-sexually dimorphic characters in Panthera and Smilodon are related to bite strength and presumably to killing ecology. This suggests that morphometric sexual dimorphism is an evolutionary adaptation to intraspecific resource partitioning, since large males with thicker upper canines and stronger bite forces would be able to hunt larger prey than females, which is corroborated by feeding ecology in P. leo. Sexual dimorphism indicates that S. fatalis could have been social, but it is unlikely that it lived in fusion-fission units dominated by one or a few males, as in sub-Saharan populations of P. leo. Instead, S. fatalis could have been solitary and polygynous, as most extant felids, or it may have lived in unisexual groups, as is common in P. leo persica. PMID:23110232

  19. Between-sex genetic covariance constrains the evolution of sexual dimorphism in Drosophila melanogaster.

    PubMed

    Ingleby, F C; Innocenti, P; Rundle, H D; Morrow, E H

    2014-08-01

    Males and females share much of their genome, and as a result, intralocus sexual conflict is generated when selection on a shared trait differs between the sexes. This conflict can be partially or entirely resolved via the evolution of sex-specific genetic variation that allows each sex to approach, or possibly achieve, its optimum phenotype, thereby generating sexual dimorphism. However, shared genetic variation between the sexes can impose constraints on the independent expression of a shared trait in males and females, hindering the evolution of sexual dimorphism. Here, we examine genetic constraints on the evolution of sexual dimorphism in Drosophila melanogaster cuticular hydrocarbon (CHC) expression. We use the extended G matrix, which includes the between-sex genetic covariances that constitute the B matrix, to compare genetic constraints on two sets of CHC traits that differ in the extent of their sexual dimorphism. We find significant genetic constraints on the evolution of further dimorphism in the least dimorphic traits, but no such constraints for the most dimorphic traits. We also show that the genetic constraints on the least dimorphic CHCs are asymmetrical between the sexes. Our results suggest that there is evidence both for resolved and ongoing sexual conflict in D. melanogaster CHC profiles. PMID:24893565

  20. Sexual selection explains sex-specific growth plasticity and positive allometry for sexual size dimorphism in a reef fish

    PubMed Central

    Walker, Stefan P. W.; McCormick, Mark I.

    2009-01-01

    In 1950, Rensch noted that in clades where males are the larger sex, sexual size dimorphism (SSD) tends to be more pronounced in larger species. This fundamental allometric relationship is now known as ‘Rensch's rule’. While most researchers attribute Rensch's rule to sexual selection for male size, experimental evidence is lacking. Here, we suggest that ultimate hypotheses for Rensch's rule should also apply to groups of individuals and that individual trait plasticity can be used to test those hypotheses experimentally. Specifically, we show that in the sex-changing fish Parapercis cylindrica, larger males have larger harems with larger females, and that SSD increases with harem size. Thus, sexual selection for male body size is the ultimate cause of sexual size allometry. In addition, we experimentally illustrate a positive relationship between polygyny potential and individual growth rate during sex change from female to male. Thus, sexual selection is the ultimate cause of variation in growth rate, and variation in growth rate is the proximate cause of sexual size allometry. Taken together, our results provide compelling evidence in support of the sexual selection hypothesis for Rensch's rule and highlight the potential importance of individual growth modification in the shaping of morphological patterns in Nature. PMID:19553253

  1. Sexual Dimorphism in Bite Performance Drives Morphological Variation in Chameleons

    PubMed Central

    da Silva, Jessica M.; Herrel, Anthony; Measey, G. John; Tolley, Krystal A.

    2014-01-01

    Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal’s foraging behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal’s performance. For performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open- or closed-canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators, enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual characteristics and, ultimately, enforcing their overall diminutive body size and

  2. Is Sexual Size Dimorphism Inherent in the Scallop Patinopecten yessoensis?

    PubMed Central

    Silina, Alla V.

    2016-01-01

    Studies on sexual size dimorphism in Pectinidae are limited. This work deals with the mobile long-lived scallop Patinopecten yessoensis, a common (fished and cultured) species in the subtidal benthos of the Sea of Japan. A previously developed method of age determination in P. yessoensis allowed me to compare the parameters of same aged males and females in scallop populations. The shell growth rates and sizes of both sexes were similar; therefore, it was only possible to visually identify the sex of live specimens during the breeding period (May-June). Statistical analyses showed female-biased dimorphism in the gonad weight for age groups that are >4 years old. Gonad weight (in the prespawning period) increased with age, until a threshold age was attained, which varied between populations; and then gonad weight remained virtually unchanged. The fecundity advantage hypothesis for P. yessoensis with group mating and external fertilization is at least partly realized by physiological mechanisms, which cause older females to have larger gonads than those of same aged males in the population in order to produce a larger brood. Gregarious settlement of this bivalve contributes to the reproductive success of the population so that the energetically costly ovaries may all be fertilized. PMID:27293980

  3. Sexual size dimorphism in anadromous brown trout Salmo trutta.

    PubMed

    Jonsson, B; Jonsson, N

    2015-07-01

    Anadromous trout Salmo trutta exhibits sexual size dimorphism (SSD ); females were larger than males in populations where male mean total length (LT ) at maturity was below 49 cm and females were smaller than males when mean male LT was above 49 cm, the slope of the regression of female on male LT was 0·59. In streams with mean annual discharge below 41 m(3) s(-1) , flow added significantly to a model with SSD as the dependent variable and male mean LT at maturity as the first predictor variable. There was a slight increase in SSD with increasing latitude, which may result from an increase in male size with increasing latitude. PMID:25959597

  4. Climate change and sexual size dimorphism in an Arctic spider.

    PubMed

    Høye, Toke Thomas; Hammel, Jörg U; Fuchs, Thomas; Toft, Søren

    2009-08-23

    Climate change is advancing the onset of the growing season and this is happening at a particularly fast rate in the High Arctic. However, in most species the relative fitness implications for males and females remain elusive. Here, we present data on 10 successive cohorts of the wolf spider Pardosa glacialis from Zackenberg in High-Arctic, northeast Greenland. We found marked inter-annual variation in adult body size (carapace width) and this variation was greater in females than in males. Earlier snowmelt during both years of its biennial maturation resulted in larger adult body sizes and a skew towards positive sexual size dimorphism (females bigger than males). These results illustrate the pervasive influence of climate on key life-history traits and indicate that male and female responses to climate should be investigated separately whenever possible. PMID:19435831

  5. The neuronal control of hypoxic ventilation: erythropoietin and sexual dimorphism.

    PubMed

    Gassmann, Max; Tissot van Patot, Martha; Soliz, Jorge

    2009-10-01

    Using mice, we demonstrated that when oxygen supply is lowered, erythropoietin (Epo), the main regulator of red blood cell production, modulates the ventilatory response by interacting with central (brainstem) and peripheral (carotid bodies) respiratory centers. We showed that enhanced Epo levels in the brainstem increased the hypoxic ventilatory response, and that intracerebroventricular injection of an Epo antagonist (soluble Epo receptor) abolished the ventilatory acclimatization to hypoxia. More recently, we have found that the impact of Epo on ventilation occurs in a sex-dependent manner. Keeping in mind that women are less susceptible to several respiratory sicknesses and syndromes than men, we suggest that Epo plays a key role in sexually-dimorphic hypoxic ventilation. Accordingly, we foresee that Epo has a potential therapeutic use as treatment for hypoxia-associated ventilatory diseases. PMID:19845617

  6. Climate change and sexual size dimorphism in an Arctic spider

    PubMed Central

    Høye, Toke Thomas; Hammel, Jörg U.; Fuchs, Thomas; Toft, Søren

    2009-01-01

    Climate change is advancing the onset of the growing season and this is happening at a particularly fast rate in the High Arctic. However, in most species the relative fitness implications for males and females remain elusive. Here, we present data on 10 successive cohorts of the wolf spider Pardosa glacialis from Zackenberg in High-Arctic, northeast Greenland. We found marked inter-annual variation in adult body size (carapace width) and this variation was greater in females than in males. Earlier snowmelt during both years of its biennial maturation resulted in larger adult body sizes and a skew towards positive sexual size dimorphism (females bigger than males). These results illustrate the pervasive influence of climate on key life-history traits and indicate that male and female responses to climate should be investigated separately whenever possible. PMID:19435831

  7. Sexual dimorphism in relation to big-game hunting and economy in modern human populations.

    PubMed

    Collier, S

    1993-08-01

    Postcranial skeletal data from two recent Eskimo populations are used to test David Frayer's model of sexual dimorphism reduction in Europe between the Upper Paleolithic and Mesolithic. Frayer argued that a change from big-game hunting and adoption of new technology in the Mesolithic reduced selection for large body size in males and led to a reduction in skeletal sexual dimorphism. Though aspects of Frayer's work have been criticized in the literature, the association of big-game hunting and high sexual dimorphism is untested. This study employs univariate and multivariate analysis to test that association by examining sexual dimorphism of cranial and postcranial bones of two recent Alaskan Eskimo populations, one being big-game (whale and other large marine mammal) hunting people, and the second being salmon fishing, riverine people. While big-game hunting influences skeletal robusticity, it cannot be said to lead to greater sexual dimorphism generally. The two populations had different relative sexual dimorphism levels for different parts of the body. Notably, the big-game hunting (whaling) Eskimos had the lower multivariate dimorphism in the humerus, which could be expected to be the structure under greatest exertion by such hunting in males. While the exertions of the whale hunting economic activities led to high skeletal robusticity, as predicted by Frayer's model, this was true of the females as well as the males, resulting in low sexual dimorphism in some features. Females are half the sexual dimorphism equation, and they cannot be seen as constants in any model of economic behavior. PMID:8372937

  8. Sexual dimorphism in the osmopressor response following water ingestion.

    PubMed

    Mendonca, Goncalo V; Teodósio, Carolina; Lucena, Rui; Pereira, Fernando D

    2016-07-01

    There is conflicting evidence as to whether water drinking elicits a pressor response in healthy young adults. The inclusion of a variable number of women may have contributed to the discrepancies found in past research. Thus, we aimed at exploring whether the osmopressor response follows a sexually dimorphic pattern. In a randomized fashion, 31 healthy adults (16 men; 15 women, aged 18-40 years) ingested 50 and 500 ml of water before completing a resting protocol on two separate days. Arterial blood pressure, heart rate and spectral heart rate variability were measured in the seated position at pre- and post-25 min of water ingestion. Women responded to 500 ml of water with a greater proportion of change in diastolic and mean arterial pressure (MAP) (P<0.05). Conversely, the percent change in systolic blood pressure (SBP) and heart rate was not different between sexes after 500 ml of water. Overall, women demonstrated lower blood pressure, but higher resting heart rate compared with men (P<0.05). In contrast, heart rate variability was similar between sexes before and after ingesting either volume of water. There was a bradycardic effect of water and, irrespectively of sex; this was accompanied by increased high frequency power (HF) (P<0.05). We conclude that women display a greater magnitude of pressor response than men post-water ingestion. Accordingly, we provide direct evidence of sexual dimorphism in the haemodynamic response to water intake in young healthy adults. PMID:27129286

  9. Sexual dimorphism in cranial morphology among modern South Africans.

    PubMed

    Krüger, Gabriele Christa; L'Abbé, Ericka N; Stull, Kyra E; Kenyhercz, Michael W

    2015-07-01

    Pattern expressions of morphoscopic cranial traits vary across populations with classification accuracies being highly dependent on the reference collection to which unknown skulls are compared. Despite recent developments in population-specific standards for South Africans, researchers have not addressed the accuracy of morphological methods. Several studies demonstrate differences in sexual dimorphism between South Africans and North Americans, warranting a need to re-evaluate sex estimation methods in South Africa. The purposes of this study were to test the reliability and accuracy of the Walker (2008) method and to examine patterns of sexual dimorphism among South Africans. A total of 245 modern Black and White South African male and female crania from the Pretoria Bone Collection, University of Pretoria, were scored using the Walker (2008) methodology. Cohen's kappa was used to evaluate reliability of the method, and percent correct assessed validity of the method. Logistic regression was utilised to create modified population-specific formulae. Inter- and intra-observer agreement was moderate to excellent (0.60-0.90), except for the mental eminence (0.40). The percent correct results for sex were 80% or higher for combinations of glabella, mastoid and menton and between 68% and 73% for menton, mastoid, orbital and nuchal margin using logistic equations of Walker (2008). White males had the highest (94-97%) and White females had the lowest (31-62%) percent correct. The low accuracies obtained when using Walker's (2008) equations emphasised the need for population-specific sex estimation models. Modified formulae for South Africans were created, yielding higher classification rates (84-93%) than when North American standards were employed. PMID:25394745

  10. Sexual dimorphism of human sternum in a contemporary Spanish population.

    PubMed

    García-Parra, Patricia; Pérez Fernández, Ángela; Djorojevic, Mirjana; Botella, Miguel; Alemán, Inmaculada

    2014-11-01

    Sex estimation is one of the first steps in forensic anthropology to identify human remains. In absence of the skull or the pelvis, any skeletal remain becomes fundamental for identification, especially in mass-disaster cases. The sternum is a potentially useful element in anthropological analysis with a high recovery rate in both forensic-and archaeological context. This study aims to develop classification functions for use in Spanish population. For this, sternum sexual dimorphism is studied in a sample of 105 individuals, known age-at-death, ancestry and sex, from San José Municipal Cemetery of Granada (Spain). Lin's concordance correlation coefficient was used to estimate intra-and inter-observer error. In discriminant analysis for estimating sex, cross-validation shows accuracy rates exceeds 90% for sternum body length and maximum width (91.8%), or total length with maximum width (90.7%). Isolated variables with higher accuracy rates are total sternum length (89.1%), and sternum body length (87%). Although there is compliance with Hyrtl's law it is not useful for estimating sex in Spanish population. These discriminant functions have also been validated successfully in two samples from Portugal (Coimbra identified skeletal collection--CISC, and 21st century identified ckeletal collection--Santarém XXI): the variables with higher accuracy rates sternum total length with its maximum width (92.3% the correctly classified individual in the sample CISC; and 83.5% in the sample of Santarém XXI) and the sternum total length (92.1% and 78.5%, respectively). The discriminant functions achieved with the collection of the San Jose cemetery of Granada can be applied to current remains, provided that study populations present a similar sexual dimorphism, like the two samples from Portuguese population presented in this study. PMID:25102779

  11. Males Resemble Females: Re-Evaluating Sexual Dimorphism in Protoceratops andrewsi (Neoceratopsia, Protoceratopsidae)

    PubMed Central

    Maiorino, Leonardo; Farke, Andrew A.; Kotsakis, Tassos; Piras, Paolo

    2015-01-01

    Background Protoceratops andrewsi (Neoceratopsia, Protoceratopsidae) is a well-known dinosaur from the Upper Cretaceous of Mongolia. Some previous workers hypothesized sexual dimorphism in the cranial shape of this taxon, using qualitative and quantitative observations. In particular, width and height of the frill as well as the development of a nasal horn have been hypothesized as potentially sexually dimorphic. Methodology/Principal Findings Here, we reassess potential sexual dimorphism in skulls of Protoceratops andrewsi by applying two-dimensional geometric morphometrics to 29 skulls in lateral and dorsal views. Principal Component Analyses and nonparametric MANOVAs recover no clear separation between hypothetical “males” and “females” within the overall morphospace. Males and females thus possess similar overall cranial morphologies. No differences in size between “males” and “females” are recovered using nonparametric ANOVAs. Conclusions/Significance Sexual dimorphism within Protoceratops andrewsi is not strongly supported by our results, as previously proposed by several authors. Anatomical traits such as height and width of the frill, and skull size thus may not be sexually dimorphic. Based on PCA for a data set focusing on the rostrum and associated ANOVA results, nasal horn height is the only feature with potential dimorphism. As a whole, most purported dimorphic variation is probably primarily the result of ontogenetic cranial shape changes as well as intraspecific cranial variation independent of sex. PMID:25951329

  12. The Ontogeny of Sexual Size Dimorphism of a Moth: When Do Males and Females Grow Apart?

    PubMed Central

    Stillwell, R. Craig; Daws, Andrew; Davidowitz, Goggy

    2014-01-01

    Sexual dimorphism in body size (sexual size dimorphism) is common in many species. The sources of selection that generate the independent evolution of adult male and female size have been investigated extensively by evolutionary biologists, but how and when females and males grow apart during ontogeny is poorly understood. Here we use the hawkmoth, Manduca sexta, to examine when sexual size dimorphism arises by measuring body mass every day during development. We further investigated whether environmental variables influence the ontogeny of sexual size dimorphism by raising moths on three different diet qualities (poor, medium and high). We found that size dimorphism arose during early larval development on the highest quality food treatment but it arose late in larval development when raised on the medium quality food. This female-biased dimorphism (females larger) increased substantially from the pupal-to-adult stage in both treatments, a pattern that appears to be common in Lepidopterans. Although dimorphism appeared in a few stages when individuals were raised on the poorest quality diet, it did not persist such that male and female adults were the same size. This demonstrates that the environmental conditions that insects are raised in can affect the growth trajectories of males and females differently and thus when dimorphism arises or disappears during development. We conclude that the development of sexual size dimorphism in M. sexta occurs during larval development and continues to accumulate during the pupal/adult stages, and that environmental variables such as diet quality can influence patterns of dimorphism in adults. PMID:25184664

  13. Range extension of Lepidocephalichthys alkaia (Teleostei: Cobitidae) and notes on its sexual dimorphism

    PubMed Central

    ENDRUWEIT, Marco

    2016-01-01

    The natural distributional range of the cobitid loach Lepidocephalichthys alkaia is extended into Yunnan Province,China. The modified sexually dimorphic pectoral fin in males of L. alkaia is described. PMID:27265657

  14. Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats.

    PubMed

    Gillette, Ross; Miller-Crews, Isaac; Nilsson, Eric E; Skinner, Michael K; Gore, Andrea C; Crews, David

    2014-10-01

    How an individual responds to the environment depends upon both personal life history as well as inherited genetic and epigenetic factors from ancestors. Using a 2-hit, 3 generations apart model, we tested how F3 descendants of rats given in utero exposure to the environmental endocrine-disrupting chemical (EDC) vinclozolin reacted to stress during adolescence in their own lives, focusing on sexually dimorphic phenotypic outcomes. In adulthood, male and female F3 vinclozolin- or vehicle-lineage rats, stressed or nonstressed, were behaviorally characterized on a battery of tests and then euthanized. Serum was used for hormone assays, and brains were used for quantitative PCR and transcriptome analyses. Results showed that the effects of ancestral exposure to vinclozolin converged with stress experienced during adolescence in a sexually dimorphic manner. Debilitating effects were seen at all levels of the phenotype, including physiology, behavior, brain metabolism, gene expression, and genome-wide transcriptome modifications in specific brain nuclei. Additionally, females were significantly more vulnerable than males to transgenerational effects of vinclozolin on anxiety but not sociality tests. This fundamental transformation occurs in a manner not predicted by the ancestral exposure or the proximate effects of stress during adolescence, an interaction we refer to as synchronicity. PMID:25051444

  15. Sexually Dimorphic Effects of Ancestral Exposure to Vinclozolin on Stress Reactivity in Rats

    PubMed Central

    Gillette, Ross; Miller-Crews, Isaac; Nilsson, Eric E.; Skinner, Michael K.; Gore, Andrea C.

    2014-01-01

    How an individual responds to the environment depends upon both personal life history as well as inherited genetic and epigenetic factors from ancestors. Using a 2-hit, 3 generations apart model, we tested how F3 descendants of rats given in utero exposure to the environmental endocrine-disrupting chemical (EDC) vinclozolin reacted to stress during adolescence in their own lives, focusing on sexually dimorphic phenotypic outcomes. In adulthood, male and female F3 vinclozolin- or vehicle-lineage rats, stressed or nonstressed, were behaviorally characterized on a battery of tests and then euthanized. Serum was used for hormone assays, and brains were used for quantitative PCR and transcriptome analyses. Results showed that the effects of ancestral exposure to vinclozolin converged with stress experienced during adolescence in a sexually dimorphic manner. Debilitating effects were seen at all levels of the phenotype, including physiology, behavior, brain metabolism, gene expression, and genome-wide transcriptome modifications in specific brain nuclei. Additionally, females were significantly more vulnerable than males to transgenerational effects of vinclozolin on anxiety but not sociality tests. This fundamental transformation occurs in a manner not predicted by the ancestral exposure or the proximate effects of stress during adolescence, an interaction we refer to as synchronicity. PMID:25051444

  16. Ontogeny of the sexually dimorphic area of the gerbil hypothalamus.

    PubMed

    Ulibarri, C M; Yahr, P

    1993-07-16

    The sexually dimorphic area (SDA) of the gerbil hypothalamus is a set of cell groups in the medial preoptic area that is essential for masculine sexual behavior and implicated in the hormonal control of scent making and ultrasound production. The adult SDA shrinks after gonadectomy unless the gerbils receive testosterone. So does the SDA pars compacta, a small cell group in the SDA of males that is seldom seen in females. Here, development of the SDA and SDApc, and of a second, small, compact cell group, the cmSDApc, that lies caudal and medial to the SDApc, is described. Development of the SDApc and cmSDApc was studied quantitatively by assessing their incidence and volume in both sexes from birth (PND 1) to adulthood (PND 150). The volume of the entire SDA was studied from PND 45 to 150. In male gerbils, puberty begins around PND 40 and is complete by PND 90-120. The male SDA enlarged relative to the cross-sectional area of the hypothalamus as puberty began, but the female SDA did not. The SDApc was present in virtually all gerbils at birth and was the same size in both sexes. Over the next two weeks, the SDApcs of females disappeared while those of males persisted and doubled in size. Like the SDApc, the cmSDApc was larger and more common in males than in females, but it became smaller and less prevalent in both sexes during the first two weeks after birth. PMID:8403369

  17. Sexually dimorphic nonreproductive behaviors as indicators of endocrine disruption.

    PubMed Central

    Weiss, Bernard

    2002-01-01

    Measures of cognitive and other behaviors not specifically related to reproduction are often sex-linked. Males and females perform differently on many tasks and often interact with members of their species in dissimilar ways. If such differences are diminished, reversed, or widened by prenatal chemical exposures, a reasonable inference is that exposure interfered with sexual differentiation of the brain, largely, but not exclusively, through interference with the actions of gonadal hormones. Explicit recognition of sex differences in performance is not a prominent feature of toxicity testing, however, except for reproduction studies, and is not a recognized criterion in developmental neurotoxicity testing. In contrast to the low visibility accorded sex differences in testing protocols for the assessment of developmental neurotoxicity, the literature is filled with examples showing that the developing male and female respond differently to many chemical agents, with subsequent expression in behavior. Quite often, even when such differences are reported, further analyses are not carried out nor are subsequent studies conducted for clarification. Moreover, many investigators include only male subjects. Both polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) studies provide several examples of striking differences between the behavioral responses of male and female offspring to developmental exposure. They offer examples, as well, of how to approach the study and analysis of such differences. Given the societal importance of risk assessments applied to potential developmental neurotoxicants, studies should be deemed questionable if they fail to include outcome measures based on sexual dimorphisms in nonreproductive behaviors. PMID:12060833

  18. A test of the size-constraint hypothesis for a limit to sexual dimorphism in plants.

    PubMed

    Labouche, Anne-Marie; Pannell, John R

    2016-07-01

    In flowering plants, many dioecious species display a certain degree of sexual dimorphism in non-reproductive traits, but this dimorphism tends to be much less striking than that found in animals. Sexual size dimorphism in plants may be limited because competition for light in crowded environments so strongly penalises small plants. The idea that competition for light constrains the evolution of strong sexual size dimorphism in plants (the size-constraint hypothesis) implies a strong dependency of the expression of sexual size dimorphism on the neighbouring density as a result of the capacity of plants to adjust their reproductive effort and investment in growth in response to their local environment. Here, we tested this hypothesis by experimentally altering the context of competition for light among male-female pairs of the light-demanding dioecious annual plant Mercurialis annua. We found that males were smaller than females across all treatments, but sexual size dimorphism was diminished for pairs grown at higher densities. This result is consistent with the size-constraint hypothesis. We discuss our results in terms of the tension between selection on size acting in opposite directions on males and females, which have different optima under sexual selection, and stabilizing selection for similar sizes in males and females, which have similar optima under viability selection for plasticity in size expression under different density conditions. PMID:27037560

  19. Differential Juvenile Hormone Variations in Scale Insect Extreme Sexual Dimorphism

    PubMed Central

    Vea, Isabelle Mifom; Tanaka, Sayumi; Shiotsuki, Takahiro; Jouraku, Akiya; Tanaka, Toshiharu; Minakuchi, Chieka

    2016-01-01

    Scale insects have evolved extreme sexual dimorphism, as demonstrated by sedentary juvenile-like females and ephemeral winged males. This dimorphism is established during the post-embryonic development; however, the underlying regulatory mechanisms have not yet been examined. We herein assessed the role of juvenile hormone (JH) on the diverging developmental pathways occurring in the male and female Japanese mealybug Planococcus kraunhiae (Kuwana). We provide, for the first time, detailed gene expression profiles related to JH signaling in scale insects. Prior to adult emergence, the transcript levels of JH acid O-methyltransferase, encoding a rate-limiting enzyme in JH biosynthesis, were higher in males than in females, suggesting that JH levels are higher in males. Furthermore, male quiescent pupal-like stages were associated with higher transcript levels of the JH receptor gene, Methoprene-tolerant and its co-activator taiman, as well as the JH early-response genes, Krüppel homolog 1 and broad. The exposure of male juveniles to an ectopic JH mimic prolonged the expression of Krüppel homolog 1 and broad, and delayed adult emergence by producing a supernumeral pupal stage. We propose that male wing development is first induced by up-regulated JH signaling compared to female expression pattern, but a decrease at the end of the prepupal stage is necessary for adult emergence, as evidenced by the JH mimic treatments. Furthermore, wing development seems linked to JH titers as JHM treatments on the pupal stage led to wing deformation. The female pedomorphic appearance was not reflected by the maintenance of high levels of JH. The results in this study suggest that differential variations in JH signaling may be responsible for sex-specific and radically different modes of metamorphosis. PMID:26894583

  20. Macroevolutionary patterns of sexual size dimorphism in copepods.

    PubMed

    Hirst, Andrew G; Kiørboe, Thomas

    2014-09-22

    Major theories compete to explain the macroevolutionary trends observed in sexual size dimorphism (SSD) in animals. Quantitative genetic theory suggests that the sex under historically stronger directional selection will exhibit greater interspecific variance in size, with covariation between allometric slopes (male to female size) and the strength of SSD across clades. Rensch's rule (RR) also suggests a correlation, but one in which males are always the more size variant sex. Examining free-living pelagic and parasitic Copepoda, we test these competing predictions. Females are commonly the larger sex in copepod species. Comparing clades that vary by four orders of magnitude in their degree of dimorphism, we show that isometry is widespread. As such we find no support for either RR or for covariation between allometry and SSD. Our results suggest that selection on both sexes has been equally important. We next test the prediction that variation in the degree of SSD is related to the adult sex ratio. As males become relatively less abundant, it has been hypothesized that this will lead to a reduction in both inter-male competition and male size. However, the lack of such a correlation across diverse free-living pelagic families of copepods provides no support for this hypothesis. By comparison, in sea lice of the family Caligidae, there is some qualitative support of the hypothesis, males may suffer elevated mortality when they leave the host and rove for sedentary females, and their female-biased SSD is greater than in many free-living families. However, other parasitic copepods which do not appear to have obvious differences in sex-based mate searching risks also show similar or even more extreme SSD, therefore suggesting other factors can drive the observed extremes. PMID:25100692

  1. The Permian mammal-like herbivore Diictodon, the oldest known example of sexually dimorphic armament.

    PubMed Central

    Sullivan, Corwin; Reisz, Robert R; Smith, Roger M H

    2003-01-01

    Dicynodonts, a highly successful group of Palaeozoic tetrapods, were herbivores with keratinous beaks, and were frequently equipped with large, neomorphic tusks. Diictodon is a particularly abundant dicynodont genus, allowing statistical investigation of its palaeobiology. Anatomical, morphometric and distributional analyses provide evidence of sexual dimorphism, based on the presence or absence of formidable tusks. Tusk occurrence is also correlated with the presence of a cranial boss on the skull roof and, possibly, with greater cranial size. This earliest well-documented example of dimorphic armament suggests that sexual dimorphism, and the complex social behaviour that accompanies it, have long been characteristic of the synapsid lineage. PMID:12590756

  2. The geography of sex-specific selection, local adaptation, and sexual dimorphism.

    PubMed

    Connallon, Tim

    2015-09-01

    Local adaptation and sexual dimorphism are iconic evolutionary scenarios of intraspecific adaptive differentiation in the face of gene flow. Although theory has traditionally considered local adaptation and sexual dimorphism as conceptually distinct processes, emerging data suggest that they often act concurrently during evolutionary diversification. Here, I merge theories of local adaptation in space and sex-specific adaptation over time, and show that their confluence yields several new predictions about the roles of context-specific selection, migration, and genetic correlations, in adaptive diversification. I specifically revisit two influential predictions from classical studies of clinal adaptation and sexual dimorphism: (1) that local adaptation should decrease with distance from the species' range center and (2) that opposing directional selection between the sexes (sexual antagonism) should inevitably accompany the evolution of sexual dimorphism. I show that both predictions can break down under clinally varying selection. First, the geography of local adaptation can be sexually dimorphic, with locations of relatively high local adaptation differing profoundly between the sexes. Second, the intensity of sexual antagonism varies across the species' range, with subpopulations near the range center representing hotspots for antagonistic selection. The results highlight the context-dependent roles of migration versus sexual conflict as primary constraints to adaptive diversification. PMID:26194274

  3. Introducing the refined gravity hypothesis of extreme sexual size dimorphism

    PubMed Central

    2010-01-01

    Background Explanations for the evolution of female-biased, extreme Sexual Size Dimorphism (SSD), which has puzzled researchers since Darwin, are still controversial. Here we propose an extension of the Gravity Hypothesis (i.e., the GH, which postulates a climbing advantage for small males) that in conjunction with the fecundity hypothesis appears to have the most general power to explain the evolution of SSD in spiders so far. In this "Bridging GH" we propose that bridging locomotion (i.e., walking upside-down under own-made silk bridges) may be behind the evolution of extreme SSD. A biomechanical model shows that there is a physical constraint for large spiders to bridge. This should lead to a trade-off between other traits and dispersal in which bridging would favor smaller sizes and other selective forces (e.g. fecundity selection in females) would favor larger sizes. If bridging allows faster dispersal, small males would have a selective advantage by enjoying more mating opportunities. We predicted that both large males and females would show a lower propensity to bridge, and that SSD would be negatively correlated with sexual dimorphism in bridging propensity. To test these hypotheses we experimentally induced bridging in males and females of 13 species of spiders belonging to the two clades in which bridging locomotion has evolved independently and in which most of the cases of extreme SSD in spiders are found. Results We found that 1) as the degree of SSD increased and females became larger, females tended to bridge less relative to males, and that 2) smaller males and females show a higher propensity to bridge. Conclusions Physical constraints make bridging inefficient for large spiders. Thus, in species where bridging is a very common mode of locomotion, small males, by being more efficient at bridging, will be competitively superior and enjoy more mating opportunities. This "Bridging GH" helps to solve the controversial question of what keeps males small

  4. Reproductive skew drives patterns of sexual dimorphism in sponge-dwelling snapping shrimps

    PubMed Central

    Chak, Solomon Tin Chi; Duffy, J. Emmett; Rubenstein, Dustin R.

    2015-01-01

    Sexual dimorphism is typically a result of strong sexual selection on male traits used in male–male competition and subsequent female choice. However, in social species where reproduction is monopolized by one or a few individuals in a group, selection on secondary sexual characteristics may be strong in both sexes. Indeed, sexual dimorphism is reduced in many cooperatively breeding vertebrates and eusocial insects with totipotent workers, presumably because of increased selection on female traits. Here, we examined the relationship between sexual dimorphism and sociality in eight species of Synalpheus snapping shrimps that vary in social structure and degree of reproductive skew. In species where reproduction was shared more equitably, most members of both sexes were physiologically capable of breeding. However, in species where reproduction was monopolized by a single individual, a large proportion of females—but not males—were reproductively inactive, suggesting stronger reproductive suppression and conflict among females. Moreover, as skew increased across species, proportional size of the major chela—the primary antagonistic weapon in snapping shrimps—increased among females and sexual dimorphism in major chela size declined. Thus, as reproductive skew increases among Synalpheus, female–female competition over reproduction appears to increase, resulting in decreased sexual dimorphism in weapon size. PMID:26041357

  5. Sexual dimorphism in venom chemistry in Tetragnatha spiders is not easily explained by adult niche differences.

    PubMed

    Binford, Greta J; Gillespie, Rosemary G; Maddison, Wayne P

    2016-05-01

    Spider venom composition typically differs between sexes. This pattern is anecdotally thought to reflect differences in adult feeding biology. We used a phylogenetic approach to compare intersexual venom dimorphism between species that differ in adult niche dimorphism. Male and female venoms were compared within and between related species of Hawaiian Tetragnatha, a mainland congener, and outgroups. In some species of Hawaiian Tetragnatha adult females spin orb-webs and adult males capture prey while wandering, while in other species both males and females capture prey by wandering. We predicted that, if venom sexual dimorphism is primarily explained by differences in adult feeding biology, species in which both sexes forage by wandering would have monomorphic venoms or venoms with reduced dimorphism relative to species with different adult feeding biology. However, we found striking sexual dimorphism in venoms of both wandering and orb-weaving Tetragnatha species with males having high molecular weight components in their venoms that were absent in females, and a reduced concentration of low molecular weight components relative to females. Intersexual differences in venom composition within Tetragnatha were significantly larger than in non-Tetragnatha species. Diet composition was not different between sexes. This striking venom dimorphism is not easily explained by differences in feeding ecology or behavior. Rather, we hypothesize that the dimorphism reflects male-specific components that play a role in mating biology possibly in sexual stimulation, nuptial gifts and/or mate recognition. PMID:26908290

  6. Evidence of sexually dimorphic introgression in Pinaleno Mountain Apache trout

    USGS Publications Warehouse

    Porath, M.T.; Nielsen, J.L.

    2003-01-01

    The high-elevation headwater streams of the Pinaleno Mountains support small populations of threatened Apache trout Oncorhynchus apache that were stocked following the chemical removal of nonnative salmonids in the 1960s. A fisheries survey to assess population composition, growth, and size structure confirmed angler reports of infrequent occurrences of Oncorhynchus spp. exhibiting the external morphological characteristics of both Apache trout and rainbow trout O. mykiss. Nonlethal tissue samples were collected from 50 individuals in the headwaters of each stream. Mitochondrial DNA (mtDNA) sequencing and amplification of nuclear microsatellite loci were used to determine the levels of genetic introgression by rainbow trout in Apache trout populations at these locations. Sexually dimorphic introgression from the spawning of male rainbow trout with female Apache trout was detected using mtDNA and microsatellites. Estimates of the degree of hybridization based on three microsatellite loci were 10-88%. The use of nonlethal DNA genetic analyses can supplement information obtained from standard survey methods and be useful in assessing the relative importance of small and sensitive populations with a history of nonnative introductions.

  7. Sexual dimorphism and mating behavior in Anomala testaceipennis.

    PubMed

    Rodrigues, Sérgio Roberto; Gomes, Elias Soares; Bento, José Maurício Simões

    2014-01-01

    The beetle, Anomala testaceipennis Blanchard (Coleoptera: Scarabaeidae), occurs in central-western Brazil where larvae feed on the roots of plants causing damage. This research aimed to study sexual dimorphism and mating behavior of A. testaceipennis. Adults of A. testaceipennis were collected with light traps in the experimental area of the State University of Mato Grosso do Sul, in Aquidauana. Laboratory experiments were performed to describe copulation behavior and adult morphology of males and females. In males the last abdominal segment has a pronounced constriction, which is absent in females, and the male's last segment of the first pair of legs has a ventral projection, which is poorly developed in females. The mating activities of adults begin soon after sunset, when adults leave the soil and fly. When the male encounters a female, he touches her with antennae and tarsi. If accepted, the male climbs on the female and remains on her back, and soon after the copulation begins. When the female does not accept the male for mating, she moves rapidly and can roll on the ground, and by so removing the male. In the field, adults feed and mate on bloomed trees of Oiti, Licania tomentosa Benth (Malpighiales: Chrysobalanaceae) and Louro, Cordia glabrata Martius (Boraginaceae). In trees without inflorescences no adults of this species were found. PMID:25502043

  8. Sexually Dimorphic White Matter Geometry Abnormalities in Adolescent Onset Schizophrenia

    PubMed Central

    Savadjiev, P.; Whitford, T.J.; Hough, M.E.; Clemm von Hohenberg, C.; Bouix, S.; Westin, C.-F.; Shenton, M.E.; Crow, T.J.; James, A.C.; Kubicki, M.

    2014-01-01

    The normal human brain is characterized by a pattern of gross anatomical asymmetry. This pattern, known as the “torque”, is associated with a sexual dimorphism: The male brain tends to be more asymmetric than that of the female. This fact, along with well-known sex differences in brain development (faster in females) and onset of psychosis (earlier with worse outcome in males), has led to the theory that schizophrenia is a disorder in which sex-dependent abnormalities in the development of brain torque, the correlate of the capacity for language, cause alterations in interhemispheric connectivity, which are causally related to psychosis (Crow TJ, Paez P, Chance SE. 2007. Callosal misconnectivity and the sex difference in psychosis. Int Rev Psychiatry. 19(4):449–457.). To provide evidence toward this theory, we analyze the geometry of interhemispheric white matter connections in adolescent-onset schizophrenia, with a particular focus on sex, using a recently introduced framework for white matter geometry computation in diffusion tensor imaging data (Savadjiev P, Kindlmann GL, Bouix S, Shenton ME, Westin CF. 2010. Local white geometry from diffusion tensor gradients. Neuroimage. 49(4):3175–3186.). Our results reveal a pattern of sex-dependent white matter geometry abnormalities that conform to the predictions of Crow's torque theory and correlate with the severity of patients' symptoms. To the best of our knowledge, this is the first study to associate geometrical differences in white matter connectivity with torque in schizophrenia. PMID:23307635

  9. Sexual dimorphic effects of chronic phencyclidine in rats.

    PubMed

    Wessinger, W D

    1995-04-13

    The behavioral effects of phencyclidine (PCP) were studied in male and female Sprague-Dawley rats to determine if chronic infusions would result in sexually dimorphic effects. Rats were trained to make operant responses for food during 30-min response periods that occurred 4 times each day. After attaining stable baseline behaviors, 10 mg of PCP/kg/day was infused s.c. for 10 days. Females were more profoundly affected than males. In the females, response rates were suppressed to 30-71% of control rates during the first 7 days of infusion. In contrast, response rate in male rats never fell below 77% of control during the infusion period. By the eighth infusion day both sexes had become tolerant to these behavioral effects. After stopping infusions there was clear evidence that behavioral dependence had developed; however, the abstinence effects in males and females were similar. Saturation studies of [3H]dizocilpine (MK-801; (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine) binding to brain membranes were conducted to determine if there were sex-dependent receptor differences. There were no significant differences in Kd +/- S.D. (7.6 +/- 1.5 and 7.1 +/- 0.9 nM for males and females, respectively) or Bmax +/- S.D. (4.1 +/- 0.2 and 4.0 +/- 0.5 pmol/mg protein for males and females, respectively). PMID:7635165

  10. Sexually dimorphic RB inactivation underlies mesenchymal glioblastoma prevalence in males

    PubMed Central

    Sun, Tao; Warrington, Nicole M.; Luo, Jingqin; Brooks, Michael D.; Dahiya, Sonika; Snyder, Steven C.; Sengupta, Rajarshi; Rubin, Joshua B.

    2014-01-01

    The prevalence of brain tumors in males is common but unexplained. While sex differences in disease are typically mediated through acute sex hormone actions, sex-specific differences in brain tumor rates are comparable at all ages, suggesting that factors other than sex hormones underlie this discrepancy. We found that mesenchymal glioblastoma (Mes-GBM) affects more males as the result of cell-intrinsic sexual dimorphism in astrocyte transformation. We used astrocytes from neurofibromin-deficient (Nf1–/–) mice expressing a dominant-negative form of the tumor suppressor p53 (DNp53) and treated them with EGF as a Mes-GBM model. Male Mes-GBM astrocytes exhibited greater growth and colony formation compared with female Mes-GBM astrocytes. Moreover, male Mes-GBM astrocytes underwent greater tumorigenesis in vivo, regardless of recipient mouse sex. Male Mes-GBM astrocytes exhibited greater inactivation of the tumor suppressor RB, higher proliferation rates, and greater induction of a clonogenic, stem-like cell population compared with female Mes-GBM astrocytes. Furthermore, complete inactivation of RB and p53 in Mes-GBM astrocytes resulted in equivalent male and female tumorigenic transformation, indicating that intrinsic differences in RB activation are responsible for the predominance of tumorigenic transformation in male astrocytes. Together, these results indicate that cell-intrinsic sex differences in RB regulation and stem-like cell function may underlie the predominance of GBM in males. PMID:25083989

  11. Environmental Health Factors and Sexually Dimorphic Differences in Behavioral Disruptions

    PubMed Central

    Rosenfeld, Cheryl S.; Trainor, Brian C.

    2015-01-01

    Mounting evidence suggests that environmental factors—in particular, those that we are exposed to during perinatal life—can dramatically shape the organism’s risk for later diseases, including neurobehavioral disorders. However, depending on the environmental insult, one sex may demonstrate greater vulnerability than the other sex. Herein, we focus on two well-defined extrinsic environmental factors that lead to sexually dimorphic behavioral differences in animal models and linkage in human epidemiological studies. These include maternal or psychosocial stress (such as social stress) and exposure to endocrine-disrupting compounds (such as one of the most prevalent, bisphenol A [BPA]). In general, the evidence suggests that early environmental exposures, such as BPA and stress, lead to more pronounced behavioral deficits in males than in females, whereas female neurobehavioral patterns are more vulnerable to later in life stress. These findings highlight the importance of considering sex differences and developmental timing when examining the effects of environmental factors on later neurobehavioral outcomes. PMID:25705580

  12. A Comparative, Developmental, and Clinical Perspective of Neurobehavioral Sexual Dimorphisms

    PubMed Central

    Viveros, Maria-Paz; Mendrek, Adriana; Paus, Tomáš; López-Rodríguez, Ana Belén; Marco, Eva Maria; Yehuda, Rachel; Cohen, Hagit; Lehrner, Amy; Wagner, Edward J.

    2012-01-01

    Women and men differ in a wide variety of behavioral traits and in their vulnerability to developing certain mental disorders. This review endeavors to explore how recent preclinical and clinical research findings have enhanced our understanding of the factors that underlie these disparities. We start with a brief overview of some of the important genetic, molecular, and hormonal determinants that contribute to the process of sexual differentiation. We then discuss the importance of animal models in studying the mechanisms responsible for sex differences in neuropsychiatric disorders (e.g., drug dependence) – with a special emphasis on experimental models based on the neurodevelopmental and “three hits” hypotheses. Next, we describe the most common brain phenotypes observed in vivo with magnetic resonance imaging. We discuss the challenges in interpreting these phenotypes vis-à-vis the underlying neurobiology and revisit the known sex differences in brain structure from birth, through adolescence, and into adulthood. This is followed by a presentation of pertinent clinical and epidemiological data that point to important sex differences in the prevalence, course, and expression of psychopathologies such as schizophrenia, and mood disorders including major depression and posttraumatic stress disorder. Recent evidence implies that mood disorders and psychosis share some common genetic predispositions and neurobiological bases. Therefore, modern research is emphasizing dimensional representation of mental disorders and conceptualization of schizophrenia and major depression as a continuum of cognitive deficits and neurobiological abnormalities. Herein, we examine available evidence on cerebral sexual dimorphism to verify if sex differences vary quantitatively and/or qualitatively along the psychoses-depression continuum. Finally, sex differences in the prevalence of posttraumatic disorder and drug abuse have been described, and we consider the genomic and

  13. Evasion of predators contributes to the maintenance of male eyes in sexually dimorphic Euphilomedes ostracods (Crustacea).

    PubMed

    Speiser, Daniel I; Lampe, Rebecca I; Lovdahl, Valerie R; Carrillo-Zazueta, Brenna; Rivera, Ajna S; Oakley, Todd H

    2013-07-01

    Sexual dimorphisms have long drawn the attention of evolutionary biologists. However, we still have much to learn about the evolutionary, genetic, and developmental drivers of sexual dimorphisms. Here, we introduce ostracods of the genus Euphilomedes (Myodocopida, Ostracoda, and Crustacea) as a promising new system in which to investigate why and how sexual dimorphisms evolve. First, we ask whether male-skewed selective pressure from pelagic predators may help explain a dramatic sexual dimorphism in which male Euphilomedes have compound eyes, but females do not. Manipulative experiments demonstrate that blindfolding reduces the survival rate of male Euphilomedes when they are exposed to predatory fish. Blindfolding of the female rudimentary eyes (rudiments) does not, however, similarly influence the survival rate of brooding females. Further, numerical estimates of sighting distances, based on reasonable extrapolations from Euphilomedes's eye morphology, suggest that the eyes of male Euphilomedes are useful for detecting objects roughly the size of certain pelagic predators, but not conspecifics. We conclude that eyes do not mediate direct interactions between male and female Euphilomedes, but that differences in predation pressure-perhaps associated with different reproductive behaviors-contribute to maintaining the sexually dimorphic eyes of these ostracods. Second, through transcriptome sequencing, we examined potential gene regulatory networks that could underlie sexual dimorphism in Euphilomedes' eyes. From the transcriptome of juvenile male Euphilomedes' eyes, we identified phototransduction genes and components of eye-related developmental networks that are well characterized in Drosophila and other species. The presence of suites of eye regulatory genes in our Euphilomedes juvenile male transcriptome will allow us, in future studies, to test how ostracods regulate the development of their sexually dimorphic eyes. PMID:23652199

  14. Sex chromosome linked genetic variance and the evolution of sexual dimorphism of quantitative traits.

    PubMed

    Husby, Arild; Schielzeth, Holger; Forstmeier, Wolfgang; Gustafsson, Lars; Qvarnström, Anna

    2013-03-01

    Theory predicts that sex chromsome linkage should reduce intersexual genetic correlations thereby allowing the evolution of sexual dimorphism. Empirical evidence for sex linkage has come largely from crosses and few studies have examined how sexual dimorphism and sex linkage are related within outbred populations. Here, we use data on an array of different traits measured on over 10,000 individuals from two pedigreed populations of birds (collared flycatcher and zebra finch) to estimate the amount of sex-linked genetic variance (h(2)z ). Of 17 traits examined, eight showed a nonzero h(2)Z estimate but only four were significantly different from zero (wing patch size and tarsus length in collared flycatchers, wing length and beak color in zebra finches). We further tested how sexual dimorphism and the mode of selection operating on the trait relate to the proportion of sex-linked genetic variance. Sexually selected traits did not show higher h(2)Z than morphological traits and there was only a weak positive relationship between h(2)Z and sexual dimorphism. However, given the relative scarcity of empirical studies, it is premature to make conclusions about the role of sex chromosome linkage in the evolution of sexual dimorphism. PMID:23461313

  15. Sexual selection and the evolution of visually conspicuous sexually dimorphic traits in male monkeys, apes, and human beings.

    PubMed

    Dixson, Alan; Dixson, Barnaby; Anderson, Matthew

    2005-01-01

    Striking secondary sexual traits, such as brightly colored "sexual skin," capes of hair, beards, and other facial adornments occur in adult males of many anthropoid primate species. This review focuses upon the role of sexual selection in the evolution of these traits. A quantitative approach is used to measure sexually dimorphic characters and to compare their development in the monogamous, polygynous, and multimale-multifemale mating systems of monkeys, apes, and human beings. PMID:16913285

  16. Genetic architecture of sexual dimorphism in a subdioecious plant with a proto-sex chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sexual dimorphism is thought to arise once sexually antagonistic genes accumulate on sex chromosomes early in their evolution. Yet because the earliest stages of sex chromosome evolution are elusive, we lack empirical evidence supporting this theory. In this study, we shed first light on the genetic...

  17. Effect of the MC1R gene on sexual dimorphism in melanin-based colorations.

    PubMed

    San-Jose, Luis M; Ducrest, Anne-Lyse; Ducret, Valérie; Béziers, Paul; Simon, Céline; Wakamatsu, Kazumasa; Roulin, Alexandre

    2015-06-01

    Variants of the melanocortin-1 receptor (MC1R) gene result in abrupt, naturally selected colour morphs. These genetic variants may differentially affect sexual dimorphism if one morph is naturally selected in the two sexes but another morph is naturally or sexually selected only in one of the two sexes (e.g. to confer camouflage in reproductive females or confer mating advantage in males). Therefore, the balance between natural and sexual selections can differ between MC1R variants, as suggest studies showing interspecific correlations between sexual dimorphism and the rate of nonsynonymous vs. synonymous amino acid substitutions at the MC1R. Surprisingly, how MC1R is related to within-species sexual dimorphism, and thereby to sex-specific selection, has not yet been investigated. We tackled this issue in the barn owl (Tyto alba), a species showing pronounced variation in the degree of reddish pheomelanin-based coloration and in the number and size of black feather spots. We found that a valine (V)-to-isoleucine (I) substitution at position 126 explains up to 30% of the variation in the three melanin-based colour traits and in feather melanin content. Interestingly, MC1R genotypes also differed in the degree of sexual colour dimorphism, with individuals homozygous for the II MC1R variant being 2 times redder and 2.5 times less sexually dimorphic than homozygous individuals for the VV MC1R variant. These findings support that MC1R interacts with the expression of sexual dimorphism and suggest that a gene with major phenotypic effects and weakly influenced by variation in body condition can participate in sex-specific selection processes. PMID:25857339

  18. Genetic architecture of sexual dimorphism in a subdioecious plant with a proto-sex chromosome.

    PubMed

    Spigler, Rachel B; Lewers, Kim S; Ashman, Tia-Lynn

    2011-04-01

    The rise of sexual dimorphism is thought to coincide with the evolution of sex chromosomes. Yet because sex chromosomes in many species are ancient, we lack empirical evidence of the earliest stages of this transition. We use QTL analysis to examine the genetic architecture of sexual dimorphism in subdioecious octoploid Fragaria virginiana. We demonstrate that the region housing the male-function locus controls the majority of quantitative variation in proportion fruit set, confirming the existence of a proto-sex chromosome, and houses major QTL for eight additional sexually dimorphic traits, consistent with theory and data from animals and plants with more advanced sex chromosomes. We also detected autosomal QTL, demonstrating contributions to phenotypic variation in sexually dimorphic traits outside the sex-determining region. Moreover, for proportion seed set we found significant epistatic interactions between autosomal QTL and the male-function locus, indicating sex-limited QTL. We identified linked QTL reflecting trade-offs between male and female traits expected from theory and positive integration of male traits. These findings indicate the potential for the evolution of greater sexual dimorphism. Involvement of linkage groups homeologous to the proto-sex chromosome in these correlations reflects the polyploid origin of F. virginiana and raises the possibility that chromosomes in this homeologous group were predisposed to become the sex chromosome. PMID:21062281

  19. Interactive effects of competition and social environment on the expression of sexual dimorphism.

    PubMed

    De Lisle, S P; Rowe, L

    2014-06-01

    The expression of sexual dimorphism is expected to be influenced by the acquisition of resources available to allocate to trait growth, combined with sex-specific patterns of resource allocation. Resource acquisition in the wild may be mediated by a variety of ecological factors, such as the density of interspecific competitors. Allocation may in turn depend on social contexts, such as sex ratio, that alter the pay-off for investment in sexual traits. How these factors interact to promote or constrain the expression and evolution of sexual dimorphism is poorly understood. We manipulated sex ratio and interspecific resource competition over the growing season of red-spotted newts (Notophthalmus viridescens) in artificial ponds. Fish competitors had a stronger effect on female than male growth, which effectively eliminated the expression of sexual size dimorphism. In addition, newt sex ratio influenced fish growth, leading to reduction in fish mass with an increase in female newt frequency. Fish also reduced the expression of male tail height, a sexually selected trait, but only in tanks with a female-biased sex ratio. This suggests males alter their resource allocation pattern in response to the strength of sexual selection. Our results demonstrate that ecologically and socially mediated interactions between sex-specific resource acquisition and allocation can contribute to variation in the expression of sexual dimorphism. PMID:24819816

  20. The role of sexual selection and conflict in mediating among-population variation in mating strategies and sexually dimorphic traits in Sepsis punctum.

    PubMed

    Dmitriew, Caitlin; Blanckenhorn, Wolf U

    2012-01-01

    The black scavenger fly Sepsis punctum exhibits striking among-population variation in the direction and magnitude of sexual size dimorphism, modification to the male forelimb and pre-copulatory behaviour. In some populations, male-biased sexual size dimorphism is observed; in other, less dimorphic, populations males court prior to mating. Such variation in reproductive traits is of interest to evolutionary biologists because it has the potential to limit gene flow among populations, contributing to speciation. Here, we investigate whether large male body size and modified forefemur are associated with higher male mating success within populations, whether these traits are associated with higher mating success among populations, and if these traits carry viability costs that could constrain their response to sexual selection. Flies from five distinct populations were reared at high or low food, generating high and low quality males. The expression of body size, forelimb morphology and courtship rate were each greater at high food, but high food males experienced higher mating success or reduced latency to first copulation in only one of the populations. Among populations, overall mating success increased with the degree of male-bias in overall body size and forelimb modification, suggesting that these traits have evolved as a means of increasing male mating rate. The increased mating success observed in large-male populations raises the question of why variation in magnitude of dimorphism persists among populations. One reason may be that costs of producing a large size constrain the evolution of ever-larger males. We found no evidence that juvenile mortality under food stress was greater for large-male populations, but development time was considerably longer and may represent an important constraint in an ephemeral and competitive growth environment. PMID:23227145

  1. Specialization for aggression in sexually dimorphic skeletal morphology in grey wolves (Canis lupus)

    PubMed Central

    Morris, Jeremy S; Brandt, Ellissa K

    2014-01-01

    Aggressive behaviour is important in the life history of many animals. In grey wolves (Canis lupus), territory defence through direct competition with conspecifics is severe and often lethal. Thus, performance in aggressive encounters may be under strong selection. Additionally, grey wolves frequently kill large dangerous prey species. Because both sexes actively participate in aggressive activities and prey capture, wolves are expected to exhibit a low level of musculoskeletal sexual dimorphism. However, male wolves more often lead in agonistic encounters with conspecifics and must provision the nursing female during the pup-rearing period of the breeding season. These behaviours may select for males that exhibit a higher degree of morphological adaptation associated with aggression and prey capture performance. To test this prediction, we assessed skeletal sexual dimorphism in three subspecies of grey wolves using functional indices reflecting morphological specialization for aggression. As expected, sexual dimorphism in skeletal shape was limited. However, in two of three subspecies, we found sexually dimorphic traits in the skull, forelimbs and hindlimbs that are consistent with the hypothesis that males are more specialized for aggression. These characters may also be associated with selection for improved prey capture performance by males. Thus, the sexually dimorphic functional traits identified by our analysis may be adaptive in the contexts of both natural and sexual selection. Several of these traits may conflict with locomotor economy, indicating the importance of aggression in the life history of male grey wolves. The presence of functional specialization for aggression in a generally monogamous species indicates that sexual dimorphism in specific musculoskeletal traits may be widespread among mammals. PMID:24810384

  2. Specialization for aggression in sexually dimorphic skeletal morphology in grey wolves (Canis lupus).

    PubMed

    Morris, Jeremy S; Brandt, Ellissa K

    2014-07-01

    Aggressive behaviour is important in the life history of many animals. In grey wolves (Canis lupus), territory defence through direct competition with conspecifics is severe and often lethal. Thus, performance in aggressive encounters may be under strong selection. Additionally, grey wolves frequently kill large dangerous prey species. Because both sexes actively participate in aggressive activities and prey capture, wolves are expected to exhibit a low level of musculoskeletal sexual dimorphism. However, male wolves more often lead in agonistic encounters with conspecifics and must provision the nursing female during the pup-rearing period of the breeding season. These behaviours may select for males that exhibit a higher degree of morphological adaptation associated with aggression and prey capture performance. To test this prediction, we assessed skeletal sexual dimorphism in three subspecies of grey wolves using functional indices reflecting morphological specialization for aggression. As expected, sexual dimorphism in skeletal shape was limited. However, in two of three subspecies, we found sexually dimorphic traits in the skull, forelimbs and hindlimbs that are consistent with the hypothesis that males are more specialized for aggression. These characters may also be associated with selection for improved prey capture performance by males. Thus, the sexually dimorphic functional traits identified by our analysis may be adaptive in the contexts of both natural and sexual selection. Several of these traits may conflict with locomotor economy, indicating the importance of aggression in the life history of male grey wolves. The presence of functional specialization for aggression in a generally monogamous species indicates that sexual dimorphism in specific musculoskeletal traits may be widespread among mammals. PMID:24810384

  3. Changes in the sexual dimorphism of the human mandible during the last 1200 years in Central Europe.

    PubMed

    Bejdová, Sárka; Krajíček, Václav; Velemínská, Jana; Horák, Martin; Velemínský, Petr

    2013-12-01

    According to many investigations, changes in mandibular morphology can occur synchronously with changes in the environment, and sexual dimorphism of the mandible can be influenced by the environment. Sexual dimorphism during the last 1200 years was evaluated using geometric morphometric analysis of virtual cranial models. The method of geometric morphometrics allows differences in size and shape to be assessed separately. We analyzed groups of adult individuals dating to Early Middle Ages, High Middle Ages, Early Modern Ages and from a modern Czech population (21st century). Significant sexual dimorphism in mandibular size was found in all populations. A trend in the sexual dimorphism of size was seen, with differences between the sexes increasing gradually over time. Size changes in female mandibles were a better reflection of environmental conditions and climate than size changes in male mandibles. Regarding changes in the sexual dimorphism of shape, significant dimorphism was found in all four samples. However, the pattern of mandibular shape dimorphism was different and varied considerably between samples. There was only one stable shape trait showing sexual dimorphism across all four samples in our study: the gonion lies more laterally in male than in female mandibles and male mandibles are relatively wider than female mandibles. Sexual dimorphism of shape is not influenced by the climate; instead sexual selection might play a role. This research supports earlier studies that have found that the degree and pattern of sexual dimorphism is population-specific and the factors regulating sexual dimorphism today may not be the same as those in the past. PMID:24004582

  4. Different on the inside: extreme swimbladder sexual dimorphism in the South Asian torrent minnows

    PubMed Central

    Conway, Kevin W.; Britz, Ralf; Siegel, Dustin S.

    2014-01-01

    The swimbladder plays an important role in buoyancy regulation but is typically reduced or even absent in benthic freshwater fishes that inhabit fast flowing water. Here, we document, for the first time, a remarkable example of swimbladder sexual dimorphism in the highly rheophilic South Asian torrent minnows (Psilorhynchus). The male swimbladder is not only much larger than that of the female (up to five times the diameter and up to 98 times the volume in some cases), but is also structurally more complex, with multiple internal septa dividing it into smaller chambers. Males also exhibit a strange organ of unknown function or homology in association with the swimbladder that is absent in females. Extreme sexual dimorphism of non-gonadal internal organs is rare among vertebrates and the swimbladder sexual dimorphisms that we describe for Psilorhynchus are unique among fishes. PMID:25009242

  5. Deep sexual dimorphism in adult medaka fish liver highlighted by multi-omic approach.

    PubMed

    Qiao, Qin; Le Manach, Séverine; Sotton, Benoit; Huet, Hélène; Duvernois-Berthet, Evelyne; Paris, Alain; Duval, Charlotte; Ponger, Loïc; Marie, Arul; Blond, Alain; Mathéron, Lucrèce; Vinh, Joelle; Bolbach, Gérard; Djediat, Chakib; Bernard, Cécile; Edery, Marc; Marie, Benjamin

    2016-01-01

    Sexual dimorphism describes the features that discriminate between the two sexes at various biological levels. Especially, during the reproductive phase, the liver is one of the most sexually dimorphic organs, because of different metabolic demands between the two sexes. The liver is a key organ that plays fundamental roles in various physiological processes, including digestion, energetic metabolism, xenobiotic detoxification, biosynthesis of serum proteins, and also in endocrine or immune response. The sex-dimorphism of the liver is particularly obvious in oviparous animals, as the female liver is the main organ for the synthesis of oocyte constituents. In this work, we are interested in identifying molecular sexual dimorphism in the liver of adult medaka fish and their sex-variation in response to hepatotoxic exposures. By developing an integrative approach combining histology and different high-throughput omic investigations (metabolomics, proteomics and transcriptomics), we were able to globally depict the strong sexual dimorphism that concerns various cellular and molecular processes of hepatocytes comprising protein synthesis, amino acid, lipid and polysaccharide metabolism, along with steroidogenesis and detoxification. The results of this work imply noticeable repercussions on the biology of oviparous organisms environmentally exposed to chemical or toxin issues. PMID:27561897

  6. Deep sexual dimorphism in adult medaka fish liver highlighted by multi-omic approach

    PubMed Central

    Qiao, Qin; Le Manach, Séverine; Sotton, Benoit; Huet, Hélène; Duvernois-Berthet, Evelyne; Paris, Alain; Duval, Charlotte; Ponger, Loïc; Marie, Arul; Blond, Alain; Mathéron, Lucrèce; Vinh, Joelle; Bolbach, Gérard; Djediat, Chakib; Bernard, Cécile; Edery, Marc; Marie, Benjamin

    2016-01-01

    Sexual dimorphism describes the features that discriminate between the two sexes at various biological levels. Especially, during the reproductive phase, the liver is one of the most sexually dimorphic organs, because of different metabolic demands between the two sexes. The liver is a key organ that plays fundamental roles in various physiological processes, including digestion, energetic metabolism, xenobiotic detoxification, biosynthesis of serum proteins, and also in endocrine or immune response. The sex-dimorphism of the liver is particularly obvious in oviparous animals, as the female liver is the main organ for the synthesis of oocyte constituents. In this work, we are interested in identifying molecular sexual dimorphism in the liver of adult medaka fish and their sex-variation in response to hepatotoxic exposures. By developing an integrative approach combining histology and different high-throughput omic investigations (metabolomics, proteomics and transcriptomics), we were able to globally depict the strong sexual dimorphism that concerns various cellular and molecular processes of hepatocytes comprising protein synthesis, amino acid, lipid and polysaccharide metabolism, along with steroidogenesis and detoxification. The results of this work imply noticeable repercussions on the biology of oviparous organisms environmentally exposed to chemical or toxin issues. PMID:27561897

  7. Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog

    PubMed Central

    Maan, Martine E.; Cummings, Molly E.

    2009-01-01

    It is commonly assumed that natural selection imposed by predators is the prevailing force driving the evolution of aposematic traits. Here, we demonstrate that aposematic signals are shaped by sexual selection as well. We evaluated sexual selection for coloration brightness in populations of the poison frog Oophaga [Dendrobates] pumilio in Panama's Bocas del Toro archipelago. We assessed female preferences for brighter males by manipulating the perceived brightness of spectrally matched males in two-way choice experiments. We found strong female preferences for bright males in two island populations and weaker or ambiguous preferences in females from mainland populations. Spectral reflectance measurements, coupled with an O. pumilio-specific visual processing model, showed that O. pumilio coloration was significantly brighter in island than in mainland morphs. In one of the island populations (Isla Solarte), males were significantly more brightly colored than females. Taken together, these results provide evidence for directional sexual selection on aposematic coloration and document sexual dimorphism in vertebrate warning coloration. Although aposematic signals have long been upheld as exemplars of natural selection, our results show that sexual selection should not be ignored in studies of aposematic evolution. PMID:19858491

  8. Sexual dimorphism of the Eurasian otter (Lutra lutra) in South Korea: Craniodental geometric morphometry

    PubMed Central

    LAU, Alice Ching Ching; ASAHARA, Masakazu; HAN, Sung Yong; KIMURA, Junpei

    2016-01-01

    Sexual dimorphism of the craniodental morphology of the Eurasian otter in South Korea was studied with geometric morphometrics. 29 adult skulls (15 males and 14 females) were used. Images of the dorsal and ventral view of the cranium and right lateral view of the mandible were taken and then digitized, and measurements were taken on the right side. Results showed that size difference between males and females was significant. Correlations between the size and shape variations have not been observed in this study. The bivariate plots with centroid size showed size dimorphism between males and females with some overlapping. Most relative warp (RW) scores were not significantly different between males and females. We observed only RW2 for dorsal and ventral view of the skull, and only RW1 for mandible was significantly different between the sexes. Shape dimorphisms were revealed at the postorbital constriction, temporal-mandibular joint, coronoid process, mandibular condyle and angular process of the skull. Based on our study, sexual dimorphism exists in Eurasian otter from the South Korean population in terms of both the size and shape. Furthermore, the degree of size dimorphism is greater than shape dimorphism. PMID:26983684

  9. Sexually dimorphic behavioral responses to prenatal dioxin exposure.

    PubMed Central

    Hojo, Rieko; Stern, Sander; Zareba, Grazyna; Markowski, Vincent P; Cox, Christopher; Kost, James T; Weiss, Bernard

    2002-01-01

    Pregnant Sprague-Dawley rats received a single oral dose of 0, 20, 60, or 180 ng/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin on day 8 of gestation. Each litter contributed a single male-female pair trained to press a lever to obtain food pellets under two operant behavior procedures. Initially, each lever press was reinforced. The fixed-ratio (FR) requirement was then increased every four sessions from the initial setting of 1 to values between 6 and 71. We then studied responses for 30 days under a multiple schedule combining FR 11 and another schedule requiring a pause of at least 10 sec between responses (DRL 10-sec). TCDD evoked a sexually dimorphic response pattern. Generally, TCDD-exposed males responded at lower rates than control males. In contrast, exposed females responded at higher rates than controls. Each response measure from the mult-FR DRL schedule yielded a male-female difference score. We used the differences in response rate to calculate benchmark doses based on the relative displacement from modeled zero-dose performance of the effective dose at 1% (ED(01)) and 10% (ED(10)), as determined by a second-order polynomial fit to the dose-effect function. For the male-female difference in FR rate of responding, the mean ED(10) was 2.77 ng/kg with a 95% lower bound of 1.81 ng/kg. The corresponding ED(01) was 0.27 ng/kg with a 95% lower bound of 0.18 ng/kg. For the male-female difference in DRL rate, the mean ED(10) was 2.97 ng/kg with a 95% lower bound of 2.02 ng/kg. The corresponding ED(01) was 0.30 ng/kg with a 95% lower bound of 0.20 ng/kg. These values fall close to, but below, current estimates of human body burdens of 13 ng/kg, based on TCDD toxic equivalents. PMID:11882475

  10. Sexual size dimorphism is not associated with the evolution of parental care in frogs

    PubMed Central

    Monroe, Melanie J; Alonzo, Suzanne H

    2014-01-01

    Sex differences in parental care are thought to arise from differential selection on the sexes. Sexual dimorphism, including sexual size dimorphism (SSD), is often used as a proxy for sexual selection on males. Some studies have found an association between male-biased SSD (i.e., males larger than females) and the loss of paternal care. While the relationship between sexual selection on males and parental care evolution has been studied extensively, the relationship between female-biased SSD (i.e., females larger than males) and the evolution of parental care has received very little attention. Thus, we have little knowledge of whether female-biased SSD coevolves with parental care. In species displaying female-biased SSD, we might expect dimorphism to be associated with the evolution of paternal care or perhaps the loss of maternal care. Here, drawing on data for 99 extant frog species, we use comparative methods to evaluate how parental care and female-biased SSD have evolved over time. Generally, we find no significant correlation between the evolution of parental care and female-biased SSD in frogs. This suggests that differential selection on body size between the sexes is unlikely to have driven the evolution of parental care in these clades and questions whether we should expect sexual dimorphism to exhibit a general relationship with the evolution of sex differences in parental care. PMID:25505526

  11. Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis)

    PubMed Central

    Gorman, Kristen B.; Williams, Tony D.; Fraser, William R.

    2014-01-01

    Background Sexual segregation in vertebrate foraging niche is often associated with sexual size dimorphism (SSD), i.e., ecological sexual dimorphism. Although foraging behavior of male and female seabirds can vary markedly, differences in isotopic (carbon, δ13C and nitrogen, δ15N) foraging niche are generally more pronounced within sexually dimorphic species and during phases when competition for food is greater. We examined ecological sexual dimorphism among sympatric nesting Pygoscelis penguins asking whether environmental variability is associated with differences in male and female pre-breeding foraging niche. We predicted that all Pygoscelis species would forage sex-specifically, and that higher quality winter habitat, i.e., higher or lower sea ice coverage for a given species, would be associated with a more similar foraging niche among the sexes. Results P2/P8 primers reliably amplified DNA of all species. On average, male Pygoscelis penguins are structurally larger than female conspecifics. However, chinstrap penguins were more sexually dimorphic in culmen and flipper features than Adélie and gentoo penguins. Adélies and gentoos were more sexually dimorphic in body mass than chinstraps. Only male and female chinstraps and gentoos occupied separate δ15N foraging niches. Strong year effects in δ15N signatures were documented for all three species, however, only for Adélies, did yearly variation in δ15N signatures tightly correlate with winter sea ice conditions. There was no evidence that variation in sex-specific foraging niche interacted with yearly winter habitat quality. Conclusion Chinstraps were most sexually size dimorphic followed by gentoos and Adélies. Pre-breeding sex-specific foraging niche was associated with overall SSD indices across species; male chinstrap and gentoo penguins were enriched in δ15N relative to females. Our results highlight previously unknown trophic pathways that link Pygoscelis penguins with variation in Southern

  12. Natural allelic variations of xenobiotic-metabolizing enzymes affect sexual dimorphism in Oryzias latipes

    PubMed Central

    Katsumura, Takafumi; Oda, Shoji; Nakagome, Shigeki; Hanihara, Tsunehiko; Kataoka, Hiroshi; Mitani, Hiroshi; Kawamura, Shoji; Oota, Hiroki

    2014-01-01

    Sexual dimorphisms, which are phenotypic differences between males and females, are driven by sexual selection. Interestingly, sexually selected traits show geographical variations within species despite strong directional selective pressures. This paradox has eluded many evolutionary biologists for some time, and several models have been proposed (e.g. ‘indicator model’ and ‘trade-off model’). However, disentangling which of these theories explains empirical patterns remains difficult, because genetic polymorphisms that cause variation in sexual differences are still unknown. In this study, we show that polymorphisms in cytochrome P450 (CYP) 1B1, which encodes a xenobiotic-metabolizing enzyme, are associated with geographical differences in sexual dimorphism in the anal fin morphology of medaka fish (Oryzias latipes). Biochemical assays and genetic cross experiments show that high- and low-activity CYP1B1 alleles enhanced and declined sex differences in anal fin shapes, respectively. Behavioural and phylogenetic analyses suggest maintenance of the high-activity allele by sexual selection, whereas the low-activity allele possibly has experienced positive selection due to by-product effects of CYP1B1 in inferred ancestral populations. The present data can elucidate evolutionary mechanisms behind genetic variations in sexual dimorphism and indicate trade-off interactions between two distinct mechanisms acting on the two alleles with pleiotropic effects of xenobiotic-metabolizing enzymes. PMID:25377463

  13. Early embryonic determination of the sexual dimorphism in segment number in geophilomorph centipedes

    PubMed Central

    2013-01-01

    Background Most geophilomorph centipedes show intraspecific variability in the number of leg-bearing segments. This intraspecific variability generally has a component that is related to sex, with females having on average more segments than males. Neither the developmental basis nor the adaptive role of this dimorphism is known. Results To determine when this sexual dimorphism in segment number is established, we have followed the development of Strigamia maritima embryos from the onset of segmentation to the first post-embryonic stage where we could determine the sex morphologically. We find that males and females differ in segment number by Stage 6.1, a point during embryogenesis when segment addition pauses while the embryo undergoes large-scale movements. We have confirmed this pattern by establishing a molecular method to determine the sex of single embryos, utilising duplex PCR amplification for Y chromosomal and autosomal sequences. This confirms that male embryos have a modal number of 43 segments visible at Stage 6, while females have 45. In our Strigamia population, adult males have a modal number of 47 leg-bearing segments, and females have 49. This implies that the sexual dimorphism in segment number is determined before the addition of the last leg-bearing segments and the terminal genital segments. Conclusions Sexual dimorphism in segment number is not associated with terminal segment differentiation, but must instead be related to some earlier process during segment patterning. The dimorphism may be associated with a difference in the rate and/or duration of segment addition during the main phase of rapid segment addition that precedes embryonic Stage 6. This suggests that the adaptive role, if any, of the dimorphism is likely to be related to segment number per se, and not to sexual differentiation of the terminal region. PMID:23919293

  14. Comparison of sexual dimorphism of permanent mandibular canine with mandibular first molar by odontometrics

    PubMed Central

    Agrawal, Aditi; Manjunatha, Bhari Shranesha; Dholia, Bhavik; Althomali, Yousef

    2015-01-01

    Background and Objectives: Sexual dimorphism is one of important tool of forensic science. The objective of this study is to assess the dimorphic status of mesio-distal (MD) and bucco-lingual (BL) diameter of mandibular canine with mandibular first molar among the students of dental college. This study is of definite significance as sex chromosomes and hormonal production influenced tooth morphology. Materials and Methods: The descriptive study adopted the purposive sampling technique, of 50 male and 50 female aged 17-25 years, using study casts for mesio-distal and bucco-lingual dimensions of mandibular canine with mandibular first molar were taken using digital Vernier caliper. The data obtained were subjected to statistical analysis using descriptive statistics and t-test to compare MD and BL dimensions in male and female populations and P ≤ 0.05 was found statistically significant. Results: Sexual dimorphism can be predicted by measuring mesiodistal dimension of mandibular canine and mandibular first molar. The left mandibular canine showed more sexual dimorphism (12.66%) in comparison to left mandibular first molar (0.824%) only. Right mandibular canine showed greater dimorphism in MD dimensions (10.94%) in comparison to right mandibular first molar (6.96%). In bucco-lingual dimensions mandibular canine showed less variability when compared with mandibular first molar, thus our study showed more significance on mesio-distal dimensions of both teeth. Conclusion: The present study concludes statistically significant sexual dimorphism in mandibular canine over mandibular first molar on study casts. The MD dimensions in mandibular canine and mandibular first molar can help in determining sex and identification of unknown person. PMID:26816466

  15. The evolution of sexual dimorphism and its potential impact on host-pathogen coevolution.

    PubMed

    Gipson, Stephen A Y; Hall, Matthew D

    2016-05-01

    Sex and infection are intimately linked. Many diseases are spread by sexual contact, males are thought to evolve exaggerated sexual signals to demonstrate their immune robustness, and pathogens have been shown to direct the evolution of recombination. In all of these examples, infection is influencing the evolution of male and female fitness, but less is known about how sex differences influence pathogen fitness. A defining characteristic of sexual dimorphism is not only divergent phenotypes, but also a complex genetic architecture involving changes in genetic correlations among shared fitness traits, and differences in the accumulation of mutations-all of which may affect selection on an invading pathogen. Here, we outline the implications that the genetics of sexual dimorphism can have for host-pathogen coevolution and argue that male-female differences influence more than just the environment that a pathogen experiences. PMID:27076194

  16. Sexual Dimorphisms in the Dermal Denticles of the Lesser-Spotted Catshark, Scyliorhinus canicula (Linnaeus, 1758)

    PubMed Central

    Crooks, Neil; Babey, Lucy; Haddon, William J.; Love, Adrian C.; Waring, Colin P.

    2013-01-01

    The dermal layers of several elasmobranch species have been shown to be sexually dimorphic. Generally, when this occurs the females have thicker dermal layers compared to those of males. This sexual dimorphism has been suggested to occur as a response to male biting during mating. Although male biting as a copulatory behaviour in Scyliorhinus canicula has been widely speculated to occur, only relatively recently has this behaviour been observed. Male S. canicula use their mouths to bite the female’s pectoral and caudal fins as part of their pre-copulatory behaviour and to grasp females during copulation. Previous work has shown that female S. canicula have a thicker epidermis compared to that of males. The structure of the dermal denticles in females may also differ from that of males in order to protect against male biting or to provide a greater degree of friction in order to allow the male more purchase. This study reveals that the length, width and density of the dermal denticles of mature male and female S. canicula are sexually dimorphic across the integument in areas where males have been observed to bite and wrap themselves around females (pectoral fin, area posterior to the pectoral fin, caudal fin, and pelvic girdle). No significant differences in the dermal denticle dimensions were found in other body areas examined (head, dorsal skin and caudal peduncle). Sexually dimorphic dermal denticles in mature S. canicula could be a response to male biting/wrapping as part of the copulatory process. PMID:24116179

  17. Women's Performance on Sexually Dimorphic Tasks: The Effect of Hormonal Fluctuations

    ERIC Educational Resources Information Center

    Duell, Lanora J.

    2011-01-01

    This study examined the effect of hormonal fluctuations on women's performance on sexually dimorphic cognitive tasks. Thirty-six participants were recruited through introduction to psychology courses at three colleges. Participants were assessed using the Woodcock-Johnson Test of Cognitive Ability III (WJ III COG), which is a commonly-used, widely…

  18. Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of the Liver Transcriptome.

    EPA Science Inventory

    The growth hormone (GH)-activated transcription factor signal transducer and activator of transcription 5b (STAT5b) is a key regulator of sexually dimorphic gene expression in the liver. Suppression of hepatic STAT5b signaling is associated with lipid metabolic dysfunction leadi...

  19. SEXUAL DIMORPHISM OF BASITARSI IN DIABROTICA AND CEROTOMA SPP. (COLEOPTERA: CHRYSOMELIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sexual dimorphism in basitarsal pad morphology is described for prothoracic and mesothoracic legs of Diabrotica virgifera virgifera LeConte, Diabrotica barberi Smith and Lawrence, and Diabrotica undecimpunctata howardi Barber and for prothoracic legs of Cerotoma trifucata (Forster). On the indicate...

  20. Femur bone strength in Tyrannosaurus rex: A study of sexual dimorphism

    NASA Astrophysics Data System (ADS)

    Lee, Scott

    2012-04-01

    Tyrannosaurus rex is the iconic species of a fearsome predator and is held in fascination by virtually everyone. Like many other species, Tyrannosaurs rex displayed sexual dimorphism with the females larger than the males. The femur bones of 14 fossil specimens were examined to determine if the maximum running abilities were significantly different for the two genders. No significant difference is observed.

  1. The Sexual Dimorphic Association of Cardiorespiratory Fitness to Working Memory in Children

    ERIC Educational Resources Information Center

    Drollette, Eric S.; Scudder, Mark R.; Raine, Lauren B.; Davis Moore, R.; Pontifex, Matthew B.; Erickson, Kirk I.; Hillman, Charles H.

    2016-01-01

    The present investigation examined the sexual dimorphic patterns of cardiorespiratory fitness to working memory in preadolescent children (age range: 7.7-10.9). Data were collected in three separate studies (Study 1: n = 97, 42 females; Study 2: n = 95, 45 females; Study 3: n = 84, 37 females). All participants completed a cardiorespiratory…

  2. Sexual size dimorphism in caecilian amphibians: analysis, review and directions for future research.

    PubMed

    Kupfer, Alexander

    2009-01-01

    Sexual dimorphism, widespread in the animal kingdom, describes differences between the sexes in size, shape and many other traits. Sexual size dimorphism (SSD) plays a significant role in understanding life history evolution and mating systems. The snakelike morphology of limbless caecilian amphibians lacking obvious secondary sexual characters (in contrast to frogs and salamanders) impedes accurate intrasexual comparisons. In this study, sexual size dimorphism in the oviparous caecilian Ichthyophis cf. kohtaoensis, a phylogenetically basal caecilian, was analysed. Females were larger in all body and head characters tested. However, when adjusted to body size (total length), females differed only in their cloacal shape. Clutch volume was positively correlated to female body size, thus female fecundity increased with body size supporting the hypothesis of a fecundity-selected SSD in the oviparous Ichthyophis cf. kohtaoensis. A review of the present SSD data for caecilians shows that many species are monomorphic for body size but show dimorphism in head size, while other species demonstrate female-biased SSD. Male-biased SSD has not been reported for caecilians. To understand life history evolution in caecilians, further studies on the reproductive biology of other taxa are urgently needed, in particular for rhinatrematids and uraeotyphlids. New data will allow phylogenetically controlled comparative analyses to fully explore the pattern of SSD among caecilian lineages. PMID:19433349

  3. Sexual Dimorphism in the Brain of the Monogamous California Mouse (Peromyscus californicus).

    PubMed

    Campi, Katharine L; Jameson, Chelsea E; Trainor, Brian C

    2013-01-01

    Sex differences in behavior and morphology are usually assumed to be stronger in polygynous species compared to monogamous species. A few brain structures have been identified as sexually dimorphic in polygynous rodent species, but it is less clear whether these differences persist in monogamous species. California mice are among the 5% or less of mammals that are considered to be monogamous and as such provide an ideal model to examine sexual dimorphism in neuroanatomy. In the present study we compared the volume of hypothalamic- and limbic-associated regions in female and male California mice for sexual dimorphism. We also used tyrosine hydroxylase (TH) immunohistochemistry to compare the number of dopamine neurons in the ventral tegmental area (VTA) in female and male California mice. Additionally, tract tracing was used to accurately delineate the boundaries of the VTA. The total volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA), the principal nucleus of the bed nucleus of the stria terminalis (BNST), and the posterodorsal medial amygdala (MEA) was larger in males compared to females. In the SDN-POA we found that the magnitude of sex differences in the California mouse were intermediate between the large differences observed in promiscuous meadow voles and rats and the absence of significant differences in monogamous prairie voles. However, the magnitude of sex differences in MEA and the BNST were comparable to polygynous species. No sex differences were observed in the volume of the whole brain, the VTA, the nucleus accumbens or the number of TH-ir neurons in the VTA. These data show that despite a monogamous social organization, sexual dimorphisms that have been reported in polygynous rodents extend to California mice. Our data suggest that sex differences in brain structures such as the SDN-POA persist across species with different social organizations and may be an evolutionarily conserved characteristic of mammalian brains. PMID

  4. First descriptions of copepodid stages, sexual dimorphism and intraspecific variability of Mesocletodes Sars, 1909 (Copepoda, Harpacticoida, Argestidae), including the description of a new species with broad abyssal distribution

    PubMed Central

    Menzel, Lena

    2011-01-01

    Abstract Mesocletodes Sars, 1909a encompasses 37 species to date. Initial evidence on intraspecific variability and sexual dimorphism has been verified for 77 specimens of Mesocletodes elmari sp. n. from various deep-sea regions, and ontogenetic development has been traced for the first time. Apomorphies are a strong spinule-like pinna on the mx seta that is fused to the basis, P2–P4 exp3 proximal outer seta lost, P1–P4 enp2 extremely elongated, furcal rami elongated, female body of prickly appearance, female P2–P4 enp2 proximal inner seta lost. Intraspecific variability involves spinulation, ornamentation and size of the body and setation and spinulation of pereiopods. Sexually dimorphic modifications of adult females include prickly appearance of the body, P1 enp exceeds exp in length, P1 coxa externally broadened, seta of basis arising from prominent protrusion, hyaline frills of body somites ornate. Sexual dimorphism in adult males is expressed in smaller body size, haplocer A1, 2 inner setae on P2–P4 enp2 and on P5 exp, P5 basendopodal lobe with 2 setae. Some modifications allow sexing of copepodid stages. The female A1 is fully developed in CV, the male A1 undergoes extensive modifications at the last molt. P1–P4 are fully developed in CV. Mesocletodes faroerensis and Mesocletodes thielei lack apomorphies of Mesocletodes and are excluded. PMID:21594073

  5. Evolution of sexual dimorphism in bill size and shape of hermit hummingbirds (Phaethornithinae): a role for ecological causation

    PubMed Central

    Temeles, Ethan J.; Miller, Jill S.; Rifkin, Joanna L.

    2010-01-01

    Unambiguous examples of ecological causation of sexual dimorphism are rare, and the best evidence involves sexual differences in trophic morphology. We show that moderate female-biased sexual dimorphism in bill curvature is the ancestral condition in hermit hummingbirds (Phaethornithinae), and that it is greatly amplified in species such as Glaucis hirsutus and Phaethornis guy, where bills of females are 60 per cent more curved than bills of males. In contrast, bill curvature dimorphism is lost or reduced in a lineage of short-billed hermit species and in specialist Eutoxeres sicklebill hermits. In the hermits, males tend to be larger than females in the majority of species, although size dimorphism is typically small. Consistent with earlier studies of hummingbird feeding performance, both raw regressions of traits and phylogenetic independent contrasts supported the prediction that dimorphism in bill curvature of hermits is associated with longer bills. Some evidence indicates that differences between sexes of hermit hummingbirds are associated with differences in the use of food plants. We suggest that some hermit hummingbirds provide model organisms for studies of ecological causation of sexual dimorphism because their sexual dimorphism in bill curvature provides a diagnostic clue for the food plants that need to be monitored for studies of sexual differences in resource use. PMID:20194168

  6. Sexual dimorphism in the size and shape of the os coxae and the effects of microevolutionary processes.

    PubMed

    Betti, Lia

    2014-02-01

    Sexual dimorphism in the human pelvis has been studied widely for forensic purposes, but it is still unclear to what extent it varies among human populations. There is evidence that microevolutionary processes, both neutral (i.e., population history) and selective (e.g., thermoregulatory adaptation and size-related obstetrical constraints) contribute to explain pelvic variation among populations, but the extent to which these factors affect pelvic sexual dimorphism is unknown. In this study, I analyze sexual dimorphism of the os coxae in 20 globally distributed human populations, using 3D morphometric data to separate the size and shape components of sexual differences. After evaluating population differences in the degree and pattern of sexual dimorphism, I test for the effect of population history, climate, and body size in shaping global diversity. The results show that size and shape dimorphism follow different patterns. Coxal size dimorphism is generally quite consistent through populations, with males bigger than females, but it appears to be reduced in small-bodied populations, possibly in relation to obstetrically-related selective pressures for a spacious birth canal. Beyond a general species-wide pattern of shape dimorphism, commonly used for forensic sex determination, other aspects of sexual differences in coxal shape vary among human populations, reflecting the effects of neutral demographic processes and climatic adaptation. PMID:24222471

  7. Quantitative genetics of ontogeny of sexual dimorphism in red junglefowl (Gallus gallus).

    PubMed

    Parker, T H; Garant, D

    2005-11-01

    We studied phenotypic patterns and underlying quantitative genetics of development of sexual size dimorphism in red junglefowl (Gallus gallus). Using a multigenerational pedigree and the 'animal model' technique, we found significant heritability for many of the size and growth-related traits we examined, as well as significant genetic correlations among them. Despite sexual size dimorphism throughout posthatching ontogeny, the genetic correlation between males and females for all size measurements and growth parameters remained high. Significant positive phenotypic and genetic correlations between the fastest rate of growth and mass at week 26 (near asymptote) indicate that faster growth when young promotes larger adult size. However, age at which peak growth is reached does not appear to be phenotypically or genetically correlated with adult size. Positive genetic correlations within traits among ages were common, demonstrating that the genetic variance important to growth is relatively consistent among ages. However, male mass and tarsus length showed no genetic correlation between week 0 values and those from later ages. The body size traits of mass and tarsus length were genetically correlated with each other in females, but this pattern was not significant in males. Thus, despite striking sexual dimorphism in size and growth trajectories, size dimorphic traits in junglefowl show, with some exceptions, genetic integration between the sexes, among ages, and between traits. PMID:16118659

  8. The energy costs of sexual dimorphism in mole-rats are morphological not behavioural

    PubMed Central

    Scantlebury, M; Speakman, J.R; Bennett, N.C

    2005-01-01

    Different reproductive strategies of males and females may lead to the evolution of differences in their energetic costs of reproduction, overall energetic requirements and physiological performances. Sexual dimorphism is often associated with costly behaviours (e.g. large males might have a competitive advantage in fighting, which is energetically expensive). However, few studies of mammals have directly compared the energy costs of reproductive activities between sexes. We compared the daily energy expenditure (DEE) and resting metabolic rate (RMR) of males and females of two species of mole-rat, Bathyergus janetta and Georychus capensis (the former is sexually dimorphic in body size and the latter is not) during a period of intense digging when males seek females. We hypothesized that large body size might be indicative of greater digging or fighting capabilities, and hence greater mass-independent DEE values in males of the sexually dimorphic species. In contrast to this prediction, although absolute values of DEE were greater in B. janetta males, mass-independent values were not. No differences were apparent between sexes in G. capensis. By comparison, although RMR values were greater in B. janetta than G. capensis, no differences were apparent between the sexes for either species. The energy cost of dimorphism is most likely to be the cost of maintenance of a large body size, and not the cost of behaviours performed when an individual is large. PMID:16519235

  9. Interspecific relationships and the evolution of sexual dimorphism in pygmy sunfishes (Centrarchidae: Elassoma).

    PubMed

    Sandel, Michael; Rohde, Fritz C; Harris, Phillip M

    2014-08-01

    The genus Elassoma represents a small but unique component of the aquatic biodiversity hotspot in southeastern North America. We present the first phylogeny of the seven described species, corroborated by sequence data from mitochondrial and nuclear protein coding genes. This analysis reveals a Coastal Plain clade sister to the geographically isolated, and federally protected, Elassoma alabamae. The Coastal Plain clade contains the widespread E. zonatum, which is sister to a clade primarily restricted to lowland Neogene subprovinces. We analyzed morphometric data in a phylogenetic context to illustrate the evolution of sexual shape dimorphism within the genus. Sixteen univariate and three multivariate traits were tested for significant sexual dimorphism for each species, and relative transformation rates were inferred from the time tree. A simple index of interspecific sexual dimorphism revealed greater disparity among sympatric species comparisons than among allopatric comparisons. Results implicate geology as a primary factor influencing ecological diversification, and sexual selection as a mechanism reinforcing reproductive isolation in areas of secondary contact. We discuss putative roles of geological history and sexual selection in the generation and maintenance of the aquatic biodiversity gradient in southeastern North America. PMID:24780749

  10. Costal process of the first sacral vertebra: sexual dimorphism and obstetrical adaptation.

    PubMed

    Tague, Robert G

    2007-03-01

    The human sacrum is sexually dimorphic, with males being larger than females in most dimensions. Previous studies, though, suggest that females may have a longer costal process of the first sacral vertebra (S1) than males. However, these studies neither quantified nor tested statistically the costal process of S1. This study compares S1 with the five lumbar vertebrae (L1 to L5) for a number of metric dimensions, including costal process length. Four issues are addressed, the: 1) hypothesis that females have a longer costal process of S1 than males; 2)hypothesis that homologous structures (i.e., costal processes of L1 to S1) differ in their direction of sexual dimorphism; 3) importance of the costal process of S1 to the obstetrical capacity of the pelvis; and 4) evolution of sexual dimorphism in costal process length of S1. One hundred ninety-seven individuals, including males and females of American blacks and whites, from the Hamann-Todd and Terry Collections were studied. Results show that males are significantly larger than females for most vertebral measurements, except that females have a significantly longer costal process of S1 than males. Costal process length of S1 is positively correlated with the transverse diameter and circumference of the pelvic inlet. The magnitude of sexual dimorphism in costal process length of S1 ranks this measure among the most highly dimorphic of the pelvis. Compared with the humans in this study, australopithecines have a relatively long costal process of S1, but their broad sacrum was not associated with obstetrical imperatives. PMID:17266155

  11. Development of sexually dimorphic vasotocinergic system in the bed nucleus of stria terminalis in chickens.

    PubMed

    Jurkevich, A; Barth, S W; Kuenzel, W J; Köhler, A; Grossmann, R

    1999-05-24

    The bed nucleus of stria terminalis (BnST) of the domestic fowl contains two groups of parvicellular vasotocinergic neurons that are sexually dimorphic. In adult cockerels, arginine vasotocin (AVT) synthesis is well expressed in the dorsolateral and ventromedial portions of the BnST, whereas in corresponding brain areas of hens, AVT synthesis is completely lacking. In the present study, in situ hybridization and immunocytochemical methods were used to compare the ontogeny of sexually dimorphic AVT gene expression in the BnST of male and female chickens from day 12 of embryonic development (E12) until the onset of sexual maturation. By E12, both parvicellular groups of AVT-immunoreactive (AVT-ir) perikarya in the developing BnST can be distinguished in some males, whereas in females their presence is questionable. A quantitative analysis, beginning at E14, showed that the parvicellular dorsolateral portion of the BnST of male embryos had more AVT perikarya compared with females. In contrast, no evident sex difference in distribution pattern and number of AVT mRNA containing neurons in this BnST portion was observable by in situ hybridization at E15. At E18, as well as on the first and second days posthatch (D1 and D2), no differences in the number of AVT synthesizing cells and intensity of immunoreactive staining in male versus female chickens were found. Between D2 and D7, the number of AVT-ir cells in the BnST declined rapidly in both sexes until it disappeared completely in females before D35. In males, another increase in sexually dimorphic AVT-ir cells and innervation of the lateral septum was associated with the onset of puberty and fully matched a pattern observed in adult fowls. These results demonstrate that the sexually dimorphic part of the AVT system undergoes sexual differentiation during early stages of ontogeny. PMID:10331579

  12. Sexual Dimorphism and Population Differences in Structural Properties of Barn Swallow (Hirundo rustica) Wing and Tail Feathers.

    PubMed

    Pap, Péter L; Osváth, Gergely; Aparicio, José Miguel; Bărbos, Lőrinc; Matyjasiak, Piotr; Rubolini, Diego; Saino, Nicola; Vágási, Csongor I; Vincze, Orsolya; Møller, Anders Pape

    2015-01-01

    Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1) and the sexually dimorphic outermost (Ta6) and monomorphic second outermost (Ta5) tail feathers of barn swallows (Hirundo rustica) from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Furthermore, we compared structural properties of Ta6 of barn swallows from six European populations. Finally, we determined the relationship between feather growth bars width (GBW) and the structural properties of tail feathers. The structure of P1 indicates strong resistance against aerodynamic forces, while the narrow rachis, low vane density and low bending stiffness of tail feathers suggest reduced resistance against airflow. The highly elongated Ta6 is characterized by structural modifications such as large rachis width and increased barbule density in relation to the less elongated Ta5, which can be explained by increased length and/or high aerodynamic forces acting at the leading tail edge. However, these changes in Ta6 structure do not allow for full compensation of elongation, as reflected by the reduced bending stiffness of Ta6. Ta6 elongation in males resulted in feathers with reduced resistance, as shown by the low barb density and reduced bending stiffness compared to females. The inconsistency in sexual dimorphism and in change in quality traits of Ta6 among six European populations shows that multiple factors may contribute to shaping population differences. In general, the difference in quality traits between tail feathers cannot be explained by the GBW of feathers. Our results show that the material and structural properties of wing and tail feathers of barn swallows change as a result of aerodynamic forces and sexual selection, although the result of these

  13. Sexual Dimorphism and Population Differences in Structural Properties of Barn Swallow (Hirundo rustica) Wing and Tail Feathers

    PubMed Central

    Pap, Péter L.; Osváth, Gergely; Aparicio, José Miguel; Bărbos, Lőrinc; Matyjasiak, Piotr; Rubolini, Diego; Saino, Nicola; Vágási, Csongor I.; Vincze, Orsolya; Møller, Anders Pape

    2015-01-01

    Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1) and the sexually dimorphic outermost (Ta6) and monomorphic second outermost (Ta5) tail feathers of barn swallows (Hirundo rustica) from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Furthermore, we compared structural properties of Ta6 of barn swallows from six European populations. Finally, we determined the relationship between feather growth bars width (GBW) and the structural properties of tail feathers. The structure of P1 indicates strong resistance against aerodynamic forces, while the narrow rachis, low vane density and low bending stiffness of tail feathers suggest reduced resistance against airflow. The highly elongated Ta6 is characterized by structural modifications such as large rachis width and increased barbule density in relation to the less elongated Ta5, which can be explained by increased length and/or high aerodynamic forces acting at the leading tail edge. However, these changes in Ta6 structure do not allow for full compensation of elongation, as reflected by the reduced bending stiffness of Ta6. Ta6 elongation in males resulted in feathers with reduced resistance, as shown by the low barb density and reduced bending stiffness compared to females. The inconsistency in sexual dimorphism and in change in quality traits of Ta6 among six European populations shows that multiple factors may contribute to shaping population differences. In general, the difference in quality traits between tail feathers cannot be explained by the GBW of feathers. Our results show that the material and structural properties of wing and tail feathers of barn swallows change as a result of aerodynamic forces and sexual selection, although the result of these

  14. Sexual dimorphism in Australopithecus afarensis was similar to that of modern humans

    PubMed Central

    Reno, Philip L.; Meindl, Richard S.; McCollum, Melanie A.; Lovejoy, C. Owen

    2003-01-01

    The substantial fossil record for Australopithecus afarensis includes both an adult partial skeleton [Afar Locality (A.L.) 288-1, “Lucy”] and a large simultaneous death assemblage (A.L. 333). Here we optimize data derived from both to more accurately estimate skeletal size dimorphism. Postcranial ratios derived from A.L. 288-1 enable a significant increase in sample size compared with previous studies. Extensive simulations using modern humans, chimpanzees, and gorillas confirm that this technique is accurate and that skeletal size dimorphism in A. afarensis was most similar to that of contemporary Homo sapiens. These data eliminate some apparent discrepancies between the canine and skeletal size dimorphism in hominoids, imply that the species was not characterized by substantial sexual bimaturation, and greatly increase the probability that the reproductive strategy of A. afarensis was principally monogamy. PMID:12878734

  15. No Sexual Dimorphism Detected in Digit Ratios of the Fire Salamander (Salamandra salamandra).

    PubMed

    Balogová, Monika; Nelson, Emma; Uhrin, Marcel; Figurová, Mária; Ledecký, Valent; Zyśk, Bartłomiej

    2015-10-01

    It has been proposed that digit ratio may be used as a biomarker of early developmental effects. Specifically, the second-to-fourth digit ratio (2D:4D) has been linked to the effects of sex hormones and their receptor genes, but other digit ratios have also been investigated. Across taxa, patterns of sexual dimorphism in digit ratios are ambiguous and a scarcity of studies in basal tetrapods makes it difficult to understand how ratios have evolved. Here, we focus on examining sex differences in digit ratios (2D:3D, 2D:4D, and 3D:4D) in a common amphibian, the fire salamander (Salamandra salamandra). We used graphic software to measure soft tissue digit length and digit bone length from X-rays. We found a nonsignificant tendency in males to have a lower 2D:3D than females; however, no sexual differences were detected in the other ratios. We discuss our results in the context of other studies of digit ratios, and how sex determination systems, as well as other factors, might impact patterns of sexual dimorphism, particularly in reptiles and in amphibians. Our findings suggest that caution is needed when using digit ratios as a potential indicator of prenatal hormonal effects in amphibians and highlight the need for more comparative studies to elucidate the evolutionary and genetic mechanisms implicated in sexually dimorphic patterns across taxonomic groups. PMID:26199217

  16. Cell death is involved in sexual dimorphism during preimplantation development.

    PubMed

    Oliveira, C S; Saraiva, N Z; de Lima, M R; Oliveira, L Z; Serapião, R V; Garcia, J M; Borges, C A V; Camargo, L S A

    2016-02-01

    In bovine preimplantation development, female embryos progress at lower rates and originate smaller blastocysts than male counterparts. Although sex-specific gene expression patterns are reported, when and how sex dimorphism is established is not clear. Differences among female and male early development can be useful for human assisted reproductive medicine, when X-linked disorders risk is detected, and for genetic breeding programs, especially in dairy cattle, which requires female animals for milk production. The aim of this study was to characterize the development of female and male embryos, attempting to identify sex effects during preimplantation development and the role of cell death in this process. Using sex-sorted semen from three different bulls for fertilization, we compared kinetics of bovine sex-specific embryos in six time points, and cell death was assessed in viable embryos. For kinetics analysis, we detected an increased population of female embryos arrested at 48 and 120h.p.i., suggesting this time points as delicate stages of development for female embryos that should be considered for testing improvement strategies for assisted reproductive technologies. Assessing viable embryos quality, we found 144h.p.i. is the first time point when viable embryos are phenotypically distinct: cell number is decreased, and apoptosis and cell fragmentation are increased in female embryos at this stage. These new results lead us to propose that sex dimorphism in viable embryos is established during morula-blastocyst transition, and cell death is involved in this process. PMID:26752320

  17. Sex-linked inheritance, genetic correlations and sexual dimorphism in three melanin-based colour traits in the barn owl.

    PubMed

    Roulin, A; Jensen, H

    2015-03-01

    Theory states that genes on the sex chromosomes have stronger effects on sexual dimorphism than genes on the autosomes. Although empirical data are not necessarily consistent with this theory, this situation may prevail because the relative role of sex-linked and autosomally inherited genes on sexual dimorphism has rarely been evaluated. We estimated the quantitative genetics of three sexually dimorphic melanin-based traits in the barn owl (Tyto alba), in which females are on average darker reddish pheomelanic and display more and larger black eumelanic feather spots than males. The plumage traits with higher sex-linked inheritance showed lower heritability and genetic correlations, but contrary to prediction, these traits showed less pronounced sexual dimorphism. Strong offspring sexual dimorphism primarily resulted from daughters not expressing malelike melanin-based traits and from sons expressing femalelike traits to similar degrees as their sisters. We conclude that in the barn owl, polymorphism at autosomal genes rather than at sex-linked genes generate variation in sexual dimorphism in melanin-based traits. PMID:25656218

  18. Evaluating sexual dimorphism in the human mastoid process: A viewpoint on the methodology.

    PubMed

    Petaros, Anja; Sholts, Sabrina B; Slaus, Mario; Bosnar, Alan; Wärmländer, Sebastian K T S

    2015-07-01

    The mastoid process is one of the most sexually dimorphic features in the human skull, and is therefore often used to identify the sex of skeletons. Numerous techniques for assessing variation in the size and shape of the mastoid process have been proposed and implemented in osteological research, but its complex form still presents difficulties for consistent and effective analysis. In this article, we compare the different techniques and variables that have been used to define, measure, and visually score sexual dimorphism in the mastoid process. We argue that the current protocols fail to capture the full morphological range of this bony projection, and suggest ways of improving and standardizing them, regarding both traditional and 3D-based approaches. PMID:25865024

  19. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish.

    PubMed

    Mei, Jie; Gui, Jian-Fang

    2015-02-01

    Aquaculture has made an enormous contribution to the world food production, especially to the sustainable supply of animal proteins. The utility of diverse reproduction strategies in fish, such as the exploiting use of unisexual gynogenesis, has created a typical case of fish genetic breeding. A number of fish species show substantial sexual dimorphism that is closely linked to multiple economic traits including growth rate and body size, and the efficient development of sex-linked genetic markers and sex control biotechnologies has provided significant approaches to increase the production and value for commercial purposes. Along with the rapid development of genomics and molecular genetic techniques, the genetic basis of sexual dimorphism has been gradually deciphered, and great progress has been made in the mechanisms of fish sex determination and identification of sex-determining genes. This review summarizes the progress to provide some directive and objective thinking for further research in this field. PMID:25563981

  20. Sexual dimorphism of abdominal aortic aneurysms: a striking example of "male disadvantage" in cardiovascular disease.

    PubMed

    Bloomer, Lisa D S; Bown, Matthew J; Tomaszewski, Maciej

    2012-11-01

    The abdominal aortic aneurysm (AAA) is a permanent, localised, dilation of the abdominal aorta that causes death in 80% of patients if left untreated. An apparent male predominance in AAA has been observed in most studies, with a male: female gender ratio of ∼6:1 between the ages 60 years-64 years. The majority of risk factors for AAA exhibit sexual dimorphism but no single risk factor shows a higher magnitude of "male disadvantage" than AAA itself. This in turn suggests that the additive effects of risk factors may better explain the higher prevalence of AAA in men than women compared to each individual factor. Amongst others, sex steroids and sex chromosomes have been hypothesised to act as the drivers of this sexual dimorphism. Future research should focus on the major biological differences between the sexes identifying why men are at more risk of AAA than women. PMID:22840688

  1. Pituitary and Brain Dopamine D2 Receptors Regulate Liver Gene Sexual Dimorphism

    PubMed Central

    Ramirez, Maria Cecilia; Ornstein, Ana Maria; Luque, Guillermina Maria; Perez Millan, Maria Ines; Garcia-Tornadu, Isabel; Rubinstein, Marcelo

    2015-01-01

    Liver sexual gene dimorphism, which depends mainly on specific patterns of GH secretion, may underlie differential susceptibility to some liver diseases. Because GH and prolactin secretion are regulated by dopaminergic pathways, we studied the participation of brain and lactotrope dopamine 2 receptors (D2Rs) on liver gene sexual dimorphism, to explore a link between the brain and liver gene expression. We used global D2R knockout mice (Drd2−/−) and conducted a functional dissection strategy based on cell-specific Drd2 inactivation in neurons (neuroDrd2KO) or pituitary lactotropes. Disruption of neuronal D2Rs (which impaired the GH axis) decreased most of male or female-predominant class I liver genes and increased female–predominant class II genes in males, consistent with the positive (class I) or negative (class II) regulation of these genes by GH. Notably, sexual dimorphism was lost for class I and II genes in neuroDrd2KO mice. Disruption of lactotrope D2Rs did not modify class I or II genes in either sex, because GH axis was preserved. But surprisingly, 1 class II gene (Prlr) and female-predominant class I genes were markedly up-regulated in lacDrd2KO females, pointing to direct or indirect effects of prolactin in the regulation of selected female-predominant liver genes. This suggestion was strengthened in the hyperprolactinemic Drd2−/− female mouse, in which increased expression of the same 4 liver genes was observed, despite a decreased GH axis. We hereby demonstrate endocrine-mediated D2R actions on sexual dimorphic liver gene expression, which may be relevant during chronic dopaminergic medications in psychiatric disease. PMID:25545383

  2. Sexual dimorphism of the mandible in a contemporary Chinese Han population.

    PubMed

    Dong, Hongmei; Deng, Mohong; Wang, WenPeng; Zhang, Ji; Mu, Jiao; Zhu, Guanghui

    2015-10-01

    A present limitation of forensic anthropology practice in China is the lack of population-specific criteria on contemporary human skeletons. In this study, a sample of 203 maxillofacial Cone beam computed tomography (CBCT) images, including 96 male and 107 female cases (20-65 years old), was analyzed to explore mandible sexual dimorphism in a population of contemporary adult Han Chinese to investigate the potential use of the mandible as sex indicator. A three-dimensional image from mandible CBCT scans was reconstructed using the SimPlant Pro 11.40 software. Nine linear and two angular parameters were measured. Discriminant function analysis (DFA) and logistic regression analysis (LRA) were used to develop the mathematics models for sex determination. All of the linear measurements studied and one angular measurement were found to be sexually dimorphic, with the maximum mandibular length and bi-condylar breadth being the most dimorphic by univariate DFA and LRA respectively. The cross-validated sex allocation accuracies on multivariate were ranged from 84.2% (direct DFA), 83.5% (direct LRA), 83.3% (stepwise DFA) to 80.5% (stepwise LRA). In general, multivariate DFA yielded a higher accuracy and LRA obtained a lower sex bias, and therefore both DFA and LRA had their own advantages for sex determination by the mandible in this sample. These results suggest that the mandible expresses sexual dimorphism in the contemporary adult Han Chinese population, indicating an excellent sexual discriminatory ability. Cone beam computed tomography scanning can be used as alternative source for contemporary osteometric techniques. PMID:26146162

  3. Deterioration of the Gαo Vomeronasal Pathway in Sexually Dimorphic Mammals

    PubMed Central

    Suárez, Rodrigo; Fernández-Aburto, Pedro; Manger, Paul R.; Mpodozis, Jorge

    2011-01-01

    In mammals, social and sexual behaviours are largely mediated by the vomeronasal system (VNS). The accessory olfactory bulb (AOB) is the first synaptic locus of the VNS and ranges from very large in Caviomorph rodents, small in carnivores and ungulates, to its complete absence in apes, elephants, most bats and aquatic species. Two pathways have been described in the VNS of mammals. In mice, vomeronasal neurons expressing Gαi2 protein project to the rostral portion of the AOB and respond mostly to small volatile molecules, whereas neurons expressing Gαo project to the caudal AOB and respond mostly to large non-volatile molecules. However, the Gαo-expressing pathway is absent in several species (horses, dogs, musk shrews, goats and marmosets) but no hypotheses have been proposed to date to explain the loss of that pathway. We noted that the species that lost the Gαo pathway belong to Laurasiatheria and Primates lineages, both clades with ubiquitous sexual dimorphisms across species. To assess whether similar events of Gαo pathway loss could have occurred convergently in dimorphic species we studied G-protein expression in the AOB of two species that independently evolved sexually dimorphic traits: the California ground squirrel Spermophilus beecheyi (Rodentia; Sciurognathi) and the cape hyrax Procavia capensis (Afrotheria; Hyracoidea). We found that both species show uniform expression of Gαi2-protein throughout AOB glomeruli, while Gαo expression is restricted to main olfactory glomeruli only. Our results suggest that the degeneration of the Gαo-expressing vomeronasal pathway has occurred independently at least four times in Eutheria, possibly related to the emergence of sexual dimorphisms and the ability of detecting the gender of conspecifics at distance. PMID:22039487

  4. Sex-Biased Gene Expression during Head Development in a Sexually Dimorphic Stalk-Eyed Fly

    PubMed Central

    Wilkinson, Gerald S.; Johns, Philip M.; Metheny, Jackie D.; Baker, Richard H.

    2013-01-01

    Stalk-eyed flies (family Diopsidae) are a model system for studying sexual selection due to the elongated and sexually dimorphic eye-stalks found in many species. These flies are of additional interest because their X chromosome is derived largely from an autosomal arm in other flies. To identify candidate genes required for development of dimorphic eyestalks and investigate how sex-biased expression arose on the novel X, we compared gene expression between males and females using oligonucleotide microarrays and RNA from developing eyestalk tissue or adult heads in the dimorphic diopsid, Teleopsis dalmanni. Microarray analysis revealed sex-biased expression for 26% of 3,748 genes expressed in eye-antennal imaginal discs and concordant sex-biased expression for 86 genes in adult heads. Overall, 415 female-biased and 482 male-biased genes were associated with dimorphic eyestalk development but not differential expression in the adult head. Functional analysis revealed that male-biased genes are disproportionately associated with growth and mitochondrial function while female-biased genes are associated with cell differentiation and patterning or are novel transcripts. With regard to chromosomal effects, dosage compensation occurs by elevated expression of X-linked genes in males. Genes with female-biased expression were more common on the X and less common on autosomes than expected, while male-biased genes exhibited no chromosomal pattern. Rates of protein evolution were lower for female-biased genes but higher for genes that moved on or off the novel X chromosome. These findings cannot be due to meiotic sex chromosome inactivation or by constraints associated with dosage compensation. Instead, they could be consistent with sexual conflict in which female-biased genes on the novel X act primarily to reduce eyespan in females while other genes increase eyespan in both sexes. Additional information on sex-biased gene expression in other tissues and related sexually

  5. Sexual dimorphism in Hucul horses using discriminant analysis.

    PubMed

    Purzyc, H; Kobryńczuk, F; Bojarski, J

    2011-02-01

    The purpose of this study has been to evaluate the applicability of discriminant function analysis to determine gender dimorphism in Hucul horses, based on morphological indices obtained in different stages of life. A total of 243 horses, divided into six age groups, have been examined in its course. For each horse we have measured 12 metric traits, which were then used to calculate 13 biometric indices commonly used in horse breeding in Poland. These have become the basis for defining functions classifying the animals by gender in each of the six age groups. This study answers the question of what parameters play the greatest role in the course of shaping of body proportions of male and female horses in post-foetal development. The following indices have been found to significantly contribute in discriminant models: boniness, smaller trunk length, height at the croup, pelvis width and width of chest. PMID:22439946

  6. The neuroanatomy of sexual dimorphism in opioid analgesia.

    PubMed

    Loyd, Dayna R; Murphy, Anne Z

    2014-09-01

    The influence of sex has been neglected in clinical studies on pain and analgesia, with the vast majority of research conducted exclusively in males. However, both preclinical and clinical studies indicate that males and females differ in both the anatomical and physiological composition of central nervous system circuits that are involved in pain processing and analgesia. These differences influence not only the response to noxious stimuli, but also the ability of pharmacological agents to modify this response. Morphine is the most widely prescribed opiate for the alleviation of persistent pain in the clinic; however, it is becoming increasingly clear that morphine is less potent in women compared to men. This review highlights recent research identifying neuroanatomical and physiological dimorphisms underlying sex differences in pain and opioid analgesia, focusing on the endogenous descending pain modulatory circuit. PMID:24731947

  7. The Neuroanatomy of Sexual Dimorphism in Opioid Analgesia

    PubMed Central

    Loyd, Dayna R.; Murphy, Anne Z.

    2014-01-01

    The influence of sex has been neglected in clinical studies on pain and analgesia, with the vast majority of research conducted exclusively in males. However, both preclinical and clinical studies indicate that males and females differ in both the anatomical and physiological composition of central nervous system circuits that are involved in pain processing and analgesia. These differences influence not only the response to noxious stimuli, but also the ability of pharmacological agents to modify this response. Morphine is the most widely prescribed opiate for the alleviation of persistent pain in the clinic; however, it is becoming increasingly clear that morphine is less potent in women compared to men. This review highlights recent research identifying neuroanatomical and physiological dimorphisms underlying sex differences in pain and opioid analgesia, focusing on the endogenous descending pain modulatory circuit. PMID:24731947

  8. Reversed brain size sexual dimorphism accompanies loss of parental care in white sticklebacks

    PubMed Central

    Samuk, Kieran; Iritani, Davis; Schluter, Dolph

    2014-01-01

    Uncovering factors that shape variation in brain morphology remains a major challenge in evolutionary biology. Recently, it has been shown that brain size is positively associated with level of parental care behavior in various taxa. One explanation for this pattern is that the cognitive demands of performing complex parental care may require increased brain size. This idea is known as the parental brain hypothesis (PBH). We set out to test the predictions of this hypothesis in wild populations of threespine stickleback (Gasterosteus aculeatus). These fish are commonly known to exhibit (1) uniparental male care and (2) sexual dimorphism in brain size (males>females). To test the PBH, we took advantage of the existence of closely related populations of stickleback that display variation in parental care behavior: common marine threespine sticklebacks (uniparental male care) and white threespine sticklebacks (no care). To begin, we quantified genetic differentiation among two common populations and three white populations from Nova Scotia. We found overall low differentiation among populations, although FST was increased in between-type comparisons. We then measured the brain weights of males and females from all five populations along with two additional common populations from British Columbia. We found that sexual dimorphism in brain size is reversed in white stickleback populations: males have smaller brains than females. Thus, while several alternatives need to be ruled out, the PBH appears to be a reasonable explanation for sexual dimorphism in brain size in threespine sticklebacks. PMID:25473476

  9. Women's hormone levels modulate the motivational salience of facial attractiveness and sexual dimorphism.

    PubMed

    Wang, Hongyi; Hahn, Amanda C; Fisher, Claire I; DeBruine, Lisa M; Jones, Benedict C

    2014-12-01

    The physical attractiveness of faces is positively correlated with both behavioral and neural measures of their motivational salience. Although previous work suggests that hormone levels modulate women's perceptions of others' facial attractiveness, studies have not yet investigated whether hormone levels also modulate the motivational salience of facial characteristics. To address this issue, we investigated the relationships between within-subject changes in women's salivary hormone levels (estradiol, progesterone, testosterone, and estradiol-to-progesterone ratio) and within-subject changes in the motivational salience of attractiveness and sexual dimorphism in male and female faces. The motivational salience of physically attractive faces in general and feminine female faces, but not masculine male faces, was greater in test sessions where women had high testosterone levels. Additionally, the reward value of sexually dimorphic faces in general and attractive female faces, but not attractive male faces, was greater in test sessions where women had high estradiol-to-progesterone ratios. These results provide the first evidence that the motivational salience of facial attractiveness and sexual dimorphism is modulated by within-woman changes in hormone levels. PMID:25244638

  10. Sex biased expression of ghrelin and GHSR associated with sexual size dimorphism in yellow catfish.

    PubMed

    Zhang, Jin; Ma, Wenge; He, Yan; Wu, Junjie; Dawar, Farman Ullah; Ren, Fan; Zhao, Xiaohan; Mei, Jie

    2016-03-10

    Sexual size dimorphism has been observed in many cultivable fish species including yellow catfish, in which male fish grow much faster than female fish. Ghrelin is a potent stimulator of pituitary growth hormone (GH) release and known to potentially promote food intake and body weight gain. In order to investigate the molecular mechanism of sexual size dimorphism in yellow catfish (Pelteobagrus fulvidraco), ghrelin and its functional receptor, growth hormone secretagogue receptor (GHSR) cDNAs were cloned. Real-time PCR indicated that both ghrelin and GHSR were more highly expressed in hypothalamus and gut of male fish than female. During normal larval development, expression of ghrelin and GHSR genes was significantly higher in males than in females. 17a-Methyltestosterone (MT) treatment enhanced the expression of ghrelin in female larval fish and GHSR in both sexes, whereas the expression of ghrelin in male larval fish increased in the beginning, then decreased as the treatment time prolonged. Furthermore, the expression of ghrelin and GHSR in male juvenile was significantly increased compared with female juvenile, in short and long term fasting periods, suggesting that male fish may have a better appetite than female during fasting. Our results demonstrate that sex difference in the expression of ghrelin and GHSR may be involved in sexual size dimorphism by regulating feeding and GH/IGF signaling in yellow catfish. PMID:26692148

  11. Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders

    PubMed Central

    Werling, Donna M.; Parikshak, Neelroop N.; Geschwind, Daniel H.

    2016-01-01

    Autism spectrum disorder (ASD) is more prevalent in males, and the mechanisms behind this sex-differential risk are not fully understood. Two competing, but not mutually exclusive, hypotheses are that ASD risk genes are sex-differentially regulated, or alternatively, that they interact with characteristic sexually dimorphic pathways. Here we characterized sexually dimorphic gene expression in multiple data sets from neurotypical adult and prenatal human neocortical tissue, and evaluated ASD risk genes for evidence of sex-biased expression. We find no evidence for systematic sex-differential expression of ASD risk genes. Instead, we observe that genes expressed at higher levels in males are significantly enriched for genes upregulated in post-mortem autistic brain, including astrocyte and microglia markers. This suggests that it is not sex-differential regulation of ASD risk genes, but rather naturally occurring sexually dimorphic processes, potentially including neuron–glial interactions, that modulate the impact of risk variants and contribute to the sex-skewed prevalence of ASD. PMID:26892004

  12. Vesicular acetylcholine transporter knock-down mice show sexual dimorphism on memory.

    PubMed

    Capettini, Suellem B; Moraes, Márcio F D; Prado, Vânia F; Prado, Marco A M; Pereira, Grace S

    2011-04-25

    The key neural substrates involved in memory and cognitive tasks have been reported to receive important modulation from ovarian hormones. In fact, neurochemical systems associated with cognitive functions, such as the cholinergic system, are, at least in part, under modulation of estrogens. Here we show that vesicular acetylcholine transporter (VAChT) mutant mice, which express lower levels of the VAChT (VAChT KD) and reduced acetylcholine release, present sexual dimorphism on memory. We evaluate short- and long-term object recognition memories (STM and LTM) in both sexes. We have showed previously, and confirm here, that VAChT KDHET male mice present deficits in both STM and LTM object recognition memories in comparison with WT. In contrast, VAChT KDHET female mice present deficit in LTM, but not in STM. To test if the female hormones levels could be a determinant factor on sexual dimorphism observed, we submitted female mice to ovariectomy (OVX) or sham-surgery. After 1 week (1 w), we evaluate STM. Female hormone deprivation promotes STM impairment in VAChT KDHET, but not in WT female mice. Our results strongly suggest that the sexual dimorphism observed in VAChT KDHET mice on STM is due to modulation of cholinergic system by ovarian hormones. PMID:21329745

  13. Sexually dimorphic effect of in vitro fertilization (IVF) on adult mouse fat and liver metabolomes.

    PubMed

    Feuer, Sky K; Donjacour, Annemarie; Simbulan, Rhodel K; Lin, Wingka; Liu, Xiaowei; Maltepe, Emin; Rinaudo, Paolo F

    2014-11-01

    The preimplantation embryo is particularly vulnerable to environmental perturbation, such that nutritional and in vitro stresses restricted exclusively to this stage may alter growth and affect long-term metabolic health. This is particularly relevant to the over 5 million children conceived by in vitro fertilization (IVF). We previously reported that even optimized IVF conditions reprogram mouse postnatal growth, fat deposition, and glucose homeostasis in a sexually dimorphic fashion. To more clearly interrogate the metabolic changes associated with IVF in adulthood, we used nontargeted mass spectrometry to globally profile adult IVF- and in vivo-conceived liver and gonadal adipose tissues. There was a sex- and tissue-specific effect of IVF on adult metabolite signatures indicative of metabolic reprogramming and oxidative stress and reflective of the observed phenotypes. Additionally, we observed a striking effect of IVF on adult sexual dimorphism. Male-female differences in metabolite concentration were exaggerated in hepatic IVF tissue and significantly reduced in IVF adipose tissue, with the majority of changes affecting amino acid and lipid metabolites. We also observed female-specific changes in markers of oxidative stress and adipogenesis, including reduced glutathione, cysteine glutathione disulfide, ophthalmate, urate, and corticosterone. In summary, embryo manipulation and early developmental experiences can affect adult patterns of sexual dimorphism and metabolic physiology. PMID:25211591

  14. The postnatal ontogeny of the sexually dimorphic vocal apparatus in goitred gazelles (Gazella subgutturosa).

    PubMed

    Efremova, Kseniya O; Frey, Roland; Volodin, Ilya A; Fritsch, Guido; Soldatova, Natalia V; Volodina, Elena V

    2016-06-01

    This study quantitatively documents the progressive development of sexual dimorphism of the vocal organs along the ontogeny of the goitred gazelle (Gazella subgutturosa). The major, male-specific secondary sexual features, of vocal anatomy in goitred gazelle are an enlarged larynx and a marked laryngeal descent. These features appear to have evolved by sexual selection and may serve as a model for similar events in male humans. Sexual dimorphism of larynx size and larynx position in adult goitred gazelles is more pronounced than in humans, whereas the vocal anatomy of neonate goitred gazelles does not differ between sexes. This study examines the vocal anatomy of 19 (11 male, 8 female) goitred gazelle specimens across three age-classes, that is, neonates, subadults and mature adults. The postnatal ontogenetic development of the vocal organs up to their respective end states takes considerably longer in males than in females. Both sexes share the same features of vocal morphology but differences emerge in the course of ontogeny, ultimately resulting in the pronounced sexual dimorphism of the vocal apparatus in adults. The main differences comprise larynx size, vocal fold length, vocal tract length, and mobility of the larynx. The resilience of the thyrohyoid ligament and the pharynx, including the soft palate, and the length changes during contraction and relaxation of the extrinsic laryngeal muscles play a decisive role in the mobility of the larynx in both sexes but to substantially different degrees in adult females and males. Goitred gazelles are born with an undescended larynx and, therefore, larynx descent has to develop in the course of ontogeny. This might result from a trade-off between natural selection and sexual selection requiring a temporal separation of different laryngeal functions at birth and shortly after from those later in life. J. Morphol. 277:826-844, 2016. © 2016 Wiley Periodicals, Inc. PMID:26997608

  15. Sexually dimorphic characteristics of the small intestine and colon of prepubescent C57BL/6 mice

    PubMed Central

    2014-01-01

    Background There is increasing appreciation for sexually dimorphic effects, but the molecular mechanisms underlying these effects are only partially understood. In the present study, we explored transcriptomics and epigenetic differences in the small intestine and colon of prepubescent male and female mice. In addition, the microbiota composition of the colonic luminal content has been examined. Methods At postnatal day 14, male and female C57BL/6 mice were sacrificed and the small intestine, colon and content of luminal colon were isolated. Gene expression of both segments of the intestine was analysed by microarray analysis. DNA methylation of the promoter regions of selected sexually dimorphic genes was examined by pyrosequencing. Composition of the microbiota was explored by deep sequencing. Results Sexually dimorphic genes were observed in both segments of the intestine of 2-week-old mouse pups, with a stronger effect in the small intestine. Amongst the total of 349 genes displaying a sexually dimorphic effect in the small intestine and/or colon, several candidates exhibited a previously established function in the intestine (i.e. Nts, Nucb2, Alox5ap and Retnlγ). In addition, differential expression of genes linked to intestinal bowel disease (i.e. Ccr3, Ccl11 and Tnfr) and colorectal cancer development (i.e. Wt1 and Mmp25) was observed between males and females. Amongst the genes displaying significant sexually dimorphic expression, nine genes were histone-modifying enzymes, suggesting that epigenetic mechanisms might be a potential underlying regulatory mechanism. However, our results reveal no significant changes in DNA methylation of analysed CpGs within the selected differentially expressed genes. With respect to the bacterial community composition in the colon, a dominant effect of litter origin was found but no significant sex effect was detected. However, a sex effect on the dominance of specific taxa was observed. Conclusions This study reveals

  16. Anatomic and acoustic sexual dimorphism in the sound emission system of Phoenicoprocta capistrata (Lepidoptera: Arctiidae)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Loeches, Laura; Barro, Alejandro; Pérez, Martha; Coro, Frank

    2009-04-01

    Both sexes of Phoenicoprocta capistrata have functional tymbals. The scanning electron microscopy revealed differences in the morphology of these organs in males and females. Male tymbals have a well-developed striated band, constituted by 21 ± 2 regularly arranged striae whereas female tymbals lack a striated band. This type of sexual dimorphism is rare in Arctiidae. The recording of the sound produced by moths held by the wings revealed that while males produced trains of pulses organized in modulation cycles, females produced clicks at low repetition rate following very irregular patterns. Statistically, there are differences between sexes in terms of the duration of pulses, which were 355 ± 24 μs in the case of males and 289 ± 29 μs for females. The spectral characteristics of the pulses also show sexual dimorphism. Male pulses are more tuned ( Q 10 = 5.2 ± 0.5) than female pulses ( Q 10 = 2.7 ± 0.5) and have a higher best frequency (42 ± 1 kHz vs. 29 ± 2 kHz). To our knowledge, this is the first report on an arctiid moth showing sexual dimorphism in tymbal’s anatomy that leads to a best frequency dimorphism. Males produce sound at mating attempts. The sounds recorded during mating are modulation cycles with the same spectral characteristics as those recorded when males are held by the wings. The morphological and acoustic features of female tymbals could indicate a process of degeneration and adaptation to conditions under which the emission of complex patterns is not necessary.

  17. Sexual Dimorphism in the Response of Mercurialis annua to Stress

    PubMed Central

    Orlofsky, Ezra M.; Kozhoridze, Giorgi; Lyubenova, Lyudmila; Ostrozhenkova, Elena; Winkler, J. Barbro; Schröder, Peter; Bacher, Adelbert; Eisenreich, Wolfgang; Guy, Micha; Golan-Goldhirsh, Avi

    2016-01-01

    The research presented stemmed from the observations that female plants of the annual dioecious Mercurialis annua outlive male plants. This led to the hypothesis that female plants of M. annua would be more tolerant to stress than male plants. This hypothesis was addressed in a comprehensive way, by comparing morphological, biochemical and metabolomics changes in female and male plants during their development and under salinity. There were practically no differences between the genders in vegetative development and physiological parameters. However, under salinity conditions, female plants produced significantly more new reproductive nodes. Gender-linked differences in peroxidase (POD) and glutathione transferases (GSTs) were involved in anti-oxidation, detoxification and developmental processes in M. annua. 1H NMR metabolite profiling of female and male M. annua plants showed that under salinity the activity of the TCA cycle increased. There was also an increase in betaine in both genders, which may be explainable by its osmo-compatible function under salinity. The concentration of ten metabolites changed in both genders, while ‘Female-only-response’ to salinity was detected for five metabolites. In conclusion, dimorphic responses of M. annua plant genders to stress may be attributed to female plants’ capacity to survive and complete the reproductive life cycle. PMID:27128954

  18. Sexual Dimorphism in the Response of Mercurialis annua to Stress.

    PubMed

    Orlofsky, Ezra M; Kozhoridze, Giorgi; Lyubenova, Lyudmila; Ostrozhenkova, Elena; Winkler, J Barbro; Schröder, Peter; Bacher, Adelbert; Eisenreich, Wolfgang; Guy, Micha; Golan-Goldhirsh, Avi

    2016-01-01

    The research presented stemmed from the observations that female plants of the annual dioecious Mercurialis annua outlive male plants. This led to the hypothesis that female plants of M. annua would be more tolerant to stress than male plants. This hypothesis was addressed in a comprehensive way, by comparing morphological, biochemical and metabolomics changes in female and male plants during their development and under salinity. There were practically no differences between the genders in vegetative development and physiological parameters. However, under salinity conditions, female plants produced significantly more new reproductive nodes. Gender-linked differences in peroxidase (POD) and glutathione transferases (GSTs) were involved in anti-oxidation, detoxification and developmental processes in M. annua. ¹H NMR metabolite profiling of female and male M. annua plants showed that under salinity the activity of the TCA cycle increased. There was also an increase in betaine in both genders, which may be explainable by its osmo-compatible function under salinity. The concentration of ten metabolites changed in both genders, while 'Female-only-response' to salinity was detected for five metabolites. In conclusion, dimorphic responses of M. annua plant genders to stress may be attributed to female plants' capacity to survive and complete the reproductive life cycle. PMID:27128954

  19. Hormonal control of polymorphic and sexually dimorphic coloration in the lizard Sceloporus undulatus erythrocheilus.

    PubMed

    Rand, M S

    1992-12-01

    This study investigated the influence of sex steroids on the expression of seasonally labile and sexually dimorphic coloration in the red-lipped plateau lizard. The responses of ventral blue and polymorphic facial coloration to exogenous steroid administration were assessed. Though facial color is usually dimorphic in nature, males and females did not differ in the degree to which they expressed facial coloration following administration of testosterone (T). Both sexes developed significantly more ventral blue coloration than controls, but a fundamental dimorphism in intensity, favoring males, was maintained throughout the experiment. These results indicate that facial coloration is under activational influence of T. The ventral blue coloration is probably organized at sexual maturation, thus manifesting the more vivid expression in males. Males of this subspecies are polymorphic for facial coloration. Administration of T did not cause any lizards to change hue, whether their color morph was yellow or orange or lacked the facial pigments altogether. The difference among color morphs is probably not controlled by differences in circulating steroid concentrations and is hypothesized to be under genetic control. PMID:1490591

  20. Lip morphometry in 600 North Indian adults: a data base study for sexual dimorphism.

    PubMed

    Goel, Archana; Patnaik, Vvg; Puri, Nidhi

    2015-01-01

    The study comprised lip morphometry of 600 North Indian adults (300 males and 300 females). The aim of the study was to create base data of various linear and vertical measurements of the upper and lower lips and width of the mouth. This standard may serve as a guideline for sexual dimorphism as well as for restoration or enhancement of esthetic and plastic surgery for the lips in the north Indian population, which will enable the surgeon to offer a better cosmetic result. Prior informed written consent from all the subjects was obtained. The exclusion and inclusion criteria for the subjects were predefined. The analysis shows the sexual dimorphism in most parameters of lips being greater in males. The results were compared with the available data for north white Americans, Malays, Malaysian Indians, Italians, western Indians and Caucasians. In the population under study, the measurements differ in all dimensions with Malays, Italians and Caucasians and show resemblance to the Malaysian Indians. Knowledge of the proportion between the upper and lower lips helps in surgical correction of the region. This study highlights the applied significance of observations of the present study to forensic, namely racial and sex dimorphic, criteria of identification. PMID:24644225

  1. Effects of sexual dimorphism and landscape composition on the trophic behavior of Greater Prairie-Chicken.

    PubMed

    Blanco-Fontao, Beatriz; Sandercock, Brett K; Obeso, José Ramón; McNew, Lance B; Quevedo, Mario

    2013-01-01

    Partitioning of ecological niche is expected in lekking species that show marked sexual size dimorphism as a consequence of sex-specific ecological constraints. However, niche partitioning is uncertain in species with moderate sexual dimorphism. In addition, the ecological niche of a species may also be affected by landscape composition; particularly, agricultural fragmentation may greatly influence the trophic behavior of herbivores. We studied trophic niche variation in Greater Prairie-Chickens (Tympanuchus cupido), a grouse species that shows moderate sex-dimorphism. Greater Prairie-Chickens are native to tallgrass prairies of North America, although populations persist in less natural mosaics of cropland and native habitats. We used stable isotope analysis of carbon and nitrogen in blood, claws and feathers to assess seasonal differences in trophic niche breadth and individual specialization between male and female Greater Prairie-Chickens, and between birds living in continuous and fragmented landscapes. We found that females showed broader niches and higher individual specialization than males, especially in winter and autumn. However, differences between females and males were smaller in spring when birds converge at leks, suggesting that females and males may exhibit similar feeding behaviors during the lekking period. In addition, we found that birds living in native prairies showed greater annual trophic variability than conspecifics in agricultural mosaic landscapes. Native habitats may provide greater dietary diversity, resulting in greater diversity of feeding strategies. PMID:24244588

  2. Effects of Sexual Dimorphism and Landscape Composition on the Trophic Behavior of Greater Prairie-Chicken

    PubMed Central

    Blanco-Fontao, Beatriz; Sandercock, Brett K.; Obeso, José Ramón; McNew, Lance B.; Quevedo, Mario

    2013-01-01

    Partitioning of ecological niche is expected in lekking species that show marked sexual size dimorphism as a consequence of sex-specific ecological constraints. However, niche partitioning is uncertain in species with moderate sexual dimorphism. In addition, the ecological niche of a species may also be affected by landscape composition; particularly, agricultural fragmentation may greatly influence the trophic behavior of herbivores. We studied trophic niche variation in Greater Prairie-Chickens (Tympanuchus cupido), a grouse species that shows moderate sex-dimorphism. Greater Prairie-Chickens are native to tallgrass prairies of North America, although populations persist in less natural mosaics of cropland and native habitats. We used stable isotope analysis of carbon and nitrogen in blood, claws and feathers to assess seasonal differences in trophic niche breadth and individual specialization between male and female Greater Prairie-Chickens, and between birds living in continuous and fragmented landscapes. We found that females showed broader niches and higher individual specialization than males, especially in winter and autumn. However, differences between females and males were smaller in spring when birds converge at leks, suggesting that females and males may exhibit similar feeding behaviors during the lekking period. In addition, we found that birds living in native prairies showed greater annual trophic variability than conspecifics in agricultural mosaic landscapes. Native habitats may provide greater dietary diversity, resulting in greater diversity of feeding strategies. PMID:24244588

  3. Mitochondrial maintenance failure in aging and role of sexual dimorphism

    PubMed Central

    Tower, John

    2014-01-01

    Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in C. elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation. PMID:25447815

  4. Incorporating an ontogenetic perspective into evolutionary theory of sexual size dimorphism.

    PubMed

    Chou, Chun-Chia; Iwasa, Yoh; Nakazawa, Takefumi

    2016-02-01

    Sexual size dimorphism (SSD) describes divergent body sizes of adult males and females. While SSD has traditionally been explained by sexual and fecundity selection, recent advances in physiology and developmental biology emphasize that SSD would occur proximately because of sexual differences in ontogenetic growth trajectories (i.e., growth rate and duration). Notably, these ontogenetic traits are subject to energetic or time constraints and thus traded off with fitness components (e.g., survival and reproduction). To elucidate the importance of such ontogenetic trade-offs in the evolution of SSD, we developed a new theoretical framework by extending quantitative genetic models for the evolution of sexual dimorphism in which we reinterpret the trait as body size and reformulate sex-specific fitness in size-dependent manners. More specifically, we assume that higher growth rate or longer growth duration leads to larger body size and higher reproductive success but incurs the cost of lower survivorship or shorter reproduction period. We illustrate how two sexes would optimize ontogenetic growth trajectories in sex-specific ways and exhibit divergent body sizes. The present framework provides new insights into the evolutionary theory of SSD and predictions for empirical testing. PMID:26768067

  5. The effects of embryonic treatments with gonadal hormones on sexually dimorphic behavior of chicks.

    PubMed

    Sayag, N; Robinzon, B; Snapir, N; Arnon, E; Grimm, V E

    1991-06-01

    In order to study the role of sex steroids in the differentiation of chick behavior, two groups of experiments were carried out. The first part of the study documented sexual dimorphisms in three behavioral measures in chicks: open-field activity, flocking response, and masculine sexual behavior activated by testosterone (crowing, waltzing, and mating attempts). In the second part, possible organizing influences on these sexually dimorphic behaviors were examined. Male and female embryos were injected with estradiol benzoate (EB) or testosterone propionate (TP). Treatment of males with EB or TP demasculinized all three behaviors. None of the steroid treatments had any effect on the behavior of the females. Plasma testosterone levels of the chicks were not affected by any of these treatments, either before or after testosterone activation. Comb weight was reduced by treatment of male embryos with EB and increased by TP in female embryos, which suggests different mechanism for the development of somatic and behavioral characteristics. The results suggest that exogenous T or E given embryonically can exert similar effects on both sexual behavior and nonreproductive activity of chicks. PMID:2066077

  6. Demographic correlates of sexual size dimorphism and male genital size in the lice Philopterus coarctatus.

    PubMed

    Tryjanowski, Piotr; Adamski, Zbigniew; Dylewska, Magdalena; Bulkai, Lajos; Rózsa, Lajos

    2009-10-01

    Sexual selection is an influential agent of evolution, often shaping the sex ratio, sexual size dimorphism (SSD), and genital size in animals. To explore its effects in ectoparasites, we quantified SSD and male genital size in relation to intensity and sex ratio across subpopulations of Philopterus coarctatus, a philopterid louse of the great grey shrike. SSD was calculated separately for the width and length of the head and abdomen. Presuming that sexual selection affects the evolution of avian lice, we would expect that infestation intensities should covary with sex ratio, relative male size, and relative male genital size, either positively or negatively depending upon presumptions. Contrary to former studies, there was a weak negative relationship between infestation intensity and sex ratio. The relative width of male abdomens exhibited a highly significant negative interaction with the intensity of infestations. In contrast, sex ratio did not predict any of the dimorphism measures. Similarly, male genital size did not covary with the intensity of infestations or sex ratios. These findings may indicate that intensity covaries positively with levels of inbreeding in this species, suggesting that more-inbred subpopulations, wasting less energy for sexual rivalry, can multiply more intensively. Thus, small subpopulations have more frequent males which also possess larger abdomens. Alternatively, however, the same pattern may also arise due to male-biased starvation in overcrowded habitats; thus, males are rarer and have smaller abdomens in larger infrapopulations. PMID:19320542

  7. Male-Specific Fruitless Isoforms Target Neurodevelopmental Genes to Specify a Sexually Dimorphic Nervous System

    PubMed Central

    Neville, Megan C.; Nojima, Tetsuya; Ashley, Elizabeth; Parker, Darren J.; Walker, John; Southall, Tony; Van de Sande, Bram; Marques, Ana C.; Fischer, Bettina; Brand, Andrea H.; Russell, Steven; Ritchie, Michael G.; Aerts, Stein; Goodwin, Stephen F.

    2014-01-01

    Summary Background In Drosophila, male courtship behavior is regulated in large part by the gene fruitless (fru). fru encodes a set of putative transcription factors that promote male sexual behavior by controlling the development of sexually dimorphic neuronal circuitry. Little is known about how Fru proteins function at the level of transcriptional regulation or the role that isoform diversity plays in the formation of a male-specific nervous system. Results To characterize the roles of sex-specific Fru isoforms in specifying male behavior, we generated novel isoform-specific mutants and used a genomic approach to identify direct Fru isoform targets during development. We demonstrate that all Fru isoforms directly target genes involved in the development of the nervous system, with individual isoforms exhibiting unique binding specificities. We observe that fru behavioral phenotypes are specified by either a single isoform or a combination of isoforms. Finally, we illustrate the utility of these data for the identification of novel sexually dimorphic genomic enhancers and novel downstream regulators of male sexual behavior. Conclusions These findings suggest that Fru isoform diversity facilitates both redundancy and specificity in gene expression, and that the regulation of neuronal developmental genes may be the most ancient and conserved role of fru in the specification of a male-specific nervous system. PMID:24440396

  8. Sexual dimorphism in crown units of mandibular deciduous and permanent molars in Australian Aborigines.

    PubMed

    Kondo, S; Townsend, G C

    2004-01-01

    Sexual differences in the crown units of mandibular molars were investigated in Australian Aborigines. The first and second deciduous molars (dm1 and dm2), and first to third permanent molars (M1, M2 and M3) were measured on dental casts using a sliding caliper. Measurements of tooth crowns included overall mesiodistal and buccolingual diameters, as well as the mesiodistal and buccolingual diameters of the trigonid and talonid. Percentage dimorphism values were greater in the talonid dimensions than the trigonid, indicating that sex differences tend to be larger in the later-developing crown units. Sex differences in mesiodistal diameters increased from dm1 to M2 but decreased for M3, the tooth that showed the least dimorphism of all the molars. This result seems to be due to the marked variability in size of the M3 between individuals. PMID:15553268

  9. Inverse Rensch's rule in a frog with female-biased sexual size dimorphism

    NASA Astrophysics Data System (ADS)

    Liao, Wen Bo; Chen, Wei

    2012-05-01

    Rensch's rule claims that sexual size dimorphism (SSD) increases with body size when males are larger but decreases with body size when males are smaller. Chinese wood frog Rana chensinensis is a medium-sized species with female-biased size dimorphism. Using data on body size and age in 27 populations covering the full known size range of the species, we tested the consistency of allometric relationships between the sexes with Rensch's rule and evaluated the hypothesis that SSD is largely a function of age differences between the sexes. The results showed that level of female-biased SSD increased with increasing mean size, supporting the inverse of Rensch's rule. Moreover, most of the variation in SSD can be explained in terms of differences in age between the sexes in populations.

  10. A morphological investigation of sexual and lateral dimorphism in the developing metanephric kidney.

    PubMed

    Short, Kieran M; Smyth, Ian M

    2015-01-01

    Sexual dimorphism is a prominent feature of renal physiology and as a consequence, it differentially affects predisposition to many adult kidney diseases. Furthermore the left and right kidneys differ in terms of their position, size and involvement in congenital malformations of the urogenital tract. We set out to determine whether differences in the program of branching morphogenesis that establishes the basic architecture of the kidney were apparent with respect to either sex or laterality in mouse embryonic kidneys. This was achieved using a combination of optical projection tomography imaging and computational analysis of many spatial metrics describing the branched ureteric tree. We undertook a comprehensive assessment of twelve aspects of ureteric morphology across developmental time and we found no consistent differences between kidneys of different sexes or laterality. These results suggest that dimorphism is established after birth or at a physiological or cellular level that is not reflected in the morphology of the ureteric tree. PMID:26469293

  11. Sneaker Males Affect Fighter Male Body Size and Sexual Size Dimorphism in Salmon.

    PubMed

    Weir, Laura K; Kindsvater, Holly K; Young, Kyle A; Reynolds, John D

    2016-08-01

    Large male body size is typically favored by directional sexual selection through competition for mates. However, alternative male life-history phenotypes, such as "sneakers," should decrease the strength of sexual selection acting on body size of large "fighter" males. We tested this prediction with salmon species; in southern populations, where sneakers are common, fighter males should be smaller than in northern populations, where sneakers are rare, leading to geographical clines in sexual size dimorphism (SSD). Consistent with our prediction, fighter male body size and SSD (fighter male∶female size) increase with latitude in species with sneaker males (Atlantic salmon Salmo salar and masu salmon Oncorhynchus masou) but not in species without sneakers (chum salmon Oncorhynchus keta and pink salmon Oncorhynchus gorbuscha). This is the first evidence that sneaker males affect SSD across populations and species, and it suggests that alternative male mating strategies may shape the evolution of body size. PMID:27420790

  12. Morphology and sexual dimorphism of the many-lined skink in north central New Mexico

    SciTech Connect

    Hathcock, Charles D.; Wright, Marjorie Alys; Gonzales, Gilbert J.; Sias, Donald S.

    2015-08-01

    In 2001 and 2002, a study of many-lined skinks (Plestiodon multivirgatus) was conducted by Los Alamos National Laboratory biologists in north-central New Mexico to determine means and ranges for several morphological characters and to test for sexual dimorphism. Over both years, there were 539 new captures of many-lined skinks, which included 131 hatchlings. The earliest hatchling capture was on 19 June and the latest capture was on 31 August. Hatchling captures peaked on 1 August in 2001 and 6 August in 2002. The age class, sex, snout–vent length (SVL), tail length (TL), mass, head length (HL), and head width (HW) were recorded and individuals were released at the point of capture. Our results indicate that the SVL, mass, HL, and HW did not exhibit sexual dimorphism. The sex ratio was skewed toward females in this study. It is not known whether the many-lined skink has sexual determination based on environmental factors, but the data here suggest that more research is needed. From these observations, we supplement the limited existing knowledge on the morphology of this species.

  13. Sexual dimorphism and feeding ecology of Diamond-backed Terrapins (Malaclemys terrapin)

    USGS Publications Warehouse

    Underwood, Elizabeth B.; Bowers, Sarah; Guzy, Jacquelyn C.; Lovich, Jeffrey E.; Taylor, Carole A.; Gibbons, J. Whitfield; Dorcas, Michael E.

    2013-01-01

    Natural and sexual selection are frequently invoked as causes of sexual size dimorphism in animals. Many species of turtles, including the Diamond-backed Terrapin (Malaclemys terrapin), exhibit sexual dimorphism in body size, possibly enabling the sexes to exploit different resources and reduce intraspecific competition. Female terrapins not only have larger body sizes but also disproportionately larger skulls and jaws relative to males. To better understand the relationship between skull morphology and terrapin feeding ecology, we measured the in-lever to out-lever ratios of 27 male and 33 female terrapin jaws to evaluate biomechanics of the trophic apparatus. In addition, we measured prey handling times by feeding Fiddler Crabs (Uca pugnax), a natural prey item, to 24 terrapins in the laboratory. Our results indicate that although females have disproportionately larger heads, they have similar in:out lever ratios to males, suggesting that differences in adductor muscle mass are more important in determining bite force than jaw in:out lever ratios. Females also had considerably reduced prey handling times. Understanding the factors affecting terrapin feeding ecology can illuminate the potential roles male and female terrapins play as top-down predators that regulate grazing of Periwinkle Snails (Littorina irrorata) on Cord Grass (Spartina alterniflora).

  14. Morphology and sexual dimorphism of the many-lined skink in north central New Mexico

    SciTech Connect

    Hathcock, Charles D.; Wright, Marjorie Alys; Gonzales, Gilbert J.; Sias, Donald S.

    2015-09-04

    In 2001 and 2002, a study of many-lined skinks (Plestiodon multivirgatus) was conducted by Los Alamos National Laboratory biologists in north-central New Mexico to determine means and ranges for several morphological characters and to test for sexual dimorphism. Over both years, there were 539 new captures of many-lined skinks, which included 131 hatchlings. The earliest hatchling capture was on 19 June and the latest capture was on 31 August. Hatchling captures peaked on 1 August in 2001 and 6 August in 2002. The age class, sex, snout–vent length (SVL), tail length (TL), mass, head length (HL), and head width (HW) were recorded and individuals were released at the point of capture. Our results indicate that the SVL, mass, HL, and HW did not exhibit sexual dimorphism. The sex ratio was skewed toward females in this study. It is not known whether the many-lined skink has sexual determination based on environmental factors, but the data here suggest that more research is needed. From these observations, we supplement the limited existing knowledge on the morphology of this species.

  15. Sex-specific winter distribution in a sexually dimorphic shorebird is explained by resource partitioning

    PubMed Central

    Duijns, Sjoerd; van Gils, Jan A; Spaans, Bernard; ten Horn, Job; Brugge, Maarten; Piersma, Theunis

    2014-01-01

    Sexual size dimorphism (SSD) implies correlated differences in energetic requirements and feeding opportunities, such that sexes will face different trade-offs in habitat selection. In seasonal migrants, this could result in a differential spatial distribution across the wintering range. To identify the ecological causes of sexual spatial segregation, we studied a sexually dimorphic shorebird, the bar-tailed godwit Limosa lapponica, in which females have a larger body and a longer bill than males. With respect to the trade-offs that these migratory shorebirds experience in their choice of wintering area, northern and colder wintering sites have the benefit of being closer to the Arctic breeding grounds. According to Bergmann's rule, the larger females should incur lower energetic costs per unit of body mass over males, helping them to winter in the cold. However, as the sexes have rather different bill lengths, differences in sex-specific wintering sites could also be due to the vertical distribution of their buried prey, that is, resource partitioning. Here, in a comparison between six main intertidal wintering areas across the entire winter range of the lapponica subspecies in northwest Europe, we show that the percentage of females between sites was not correlated with the cost of wintering, but was positively correlated with the biomass in the bottom layer and negatively with the biomass in the top layer. We conclude that resource partitioning, rather than relative expenditure advantages, best explains the differential spatial distribution of male and female bar-tailed godwits across northwest Europe. PMID:25505527

  16. Sexually Dimorphic Responses to Early Adversity: Implications for Affective Problems and Autism Spectrum Disorder

    PubMed Central

    Davis, Elysia Poggi; Pfaff, Donald

    2014-01-01

    During gestation, development proceeds at a pace that is unmatched by any other stage of the lifecycle. For these reason the human fetus is particularly susceptible not only to organizing influences, but also to pathogenic disorganizing influences. Growing evidence suggests that exposure to prenatal adversity leads to neurological changes that underlie lifetime risks for mental illness. Beginning early in gestation, males and females show differential developmental trajectories and responses to stress. It is likely that sex-dependent organization of neural circuits during the fetal period influences differential vulnerability to mental health problems. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two developmental disorders: affective problems (greater female prevalence) and autism spectrum disorder (greater male prevalence). Recent prospective studies illustrating the neurodevelopmental consequences of fetal exposure to stress and stress hormones for males and females are considered here. Plausible biological mechanisms including the role of the sexually differentiated placenta are discussed. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two sets of developmental disorders: affective problems (greater female prevalence) and autism spectrum disorders (greater male prevalence). PMID:25038479

  17. Morphology and sexual dimorphism of the many-lined skink in north central New Mexico

    DOE PAGESBeta

    Hathcock, Charles D.; Wright, Marjorie Alys; Gonzales, Gilbert J.; Sias, Donald S.

    2015-09-04

    In 2001 and 2002, a study of many-lined skinks (Plestiodon multivirgatus) was conducted by Los Alamos National Laboratory biologists in north-central New Mexico to determine means and ranges for several morphological characters and to test for sexual dimorphism. Over both years, there were 539 new captures of many-lined skinks, which included 131 hatchlings. The earliest hatchling capture was on 19 June and the latest capture was on 31 August. Hatchling captures peaked on 1 August in 2001 and 6 August in 2002. The age class, sex, snout–vent length (SVL), tail length (TL), mass, head length (HL), and head width (HW)more » were recorded and individuals were released at the point of capture. Our results indicate that the SVL, mass, HL, and HW did not exhibit sexual dimorphism. The sex ratio was skewed toward females in this study. It is not known whether the many-lined skink has sexual determination based on environmental factors, but the data here suggest that more research is needed. From these observations, we supplement the limited existing knowledge on the morphology of this species.« less

  18. Investigation of sexual dimorphisms through mouse models and hormone/hormone-disruptor treatments.

    PubMed

    Ipulan, Lerrie Ann; Raga, Dennis; Suzuki, Kentaro; Murashima, Aki; Matsumaru, Daisuke; Cunha, Gerald; Yamada, Gen

    2016-01-01

    Sexual dimorphism in mouse reproductive tissues is observable in adult, post-natal, and embryonic stages. The development of sexually dimorphic tissues starts with an ambisexual structure. It is followed by sex-specific organogenesis as guided by different signaling pathways that occur from late embryonic stages. The measurement of the anogenital distance (AGD), and the observation of the external genitalia are practical ways to distinguish male and female pups at birth and thereafter. Careful observation of the morphological or histological features and the molecular signatures of the external genitalia and perineum enable identification of sex or feminization/masculinization of embryos. Aberrations in hormone signaling via castration or treatment with hormones or hormone disruptors result in dysmorphogenesis of reproductive tissues. Several hormone disruptors have been used to modulate different aspects of hormone action through competitive inhibition and exogenous hormone treatment. Concomitantly, the vast advancement of conditional mutant mouse analysis leads to the frequent utilization of Cre recombination technology in the study of reproductive/urogenital tissue development. Mouse Cre-lines that are tissue-specific and cell-specific are also effective tools in identifying the molecular mechanisms during sexually dimorphic development. Cre-lines applicable to different cell populations in the prostate, seminal vesicles, testis and ovaries, and mammary glands are currently being utilized. In the external genitalia and perineum, Cre lines that examine the signaling pathways of cells of endodermal, ectodermal, and mesenchymal origin reveal the roles of these tissues in the development of the external genitalia. The interaction of hormones and growth factors can be examined further through a variety of techniques available for researchers. Such cumulative information about various technologies is summarized. PMID:26651426

  19. A sexually dimorphic corolla appendage affects pollen removal and floral longevity in gynodioecious Cyananthus delavayi (Campanulaceae).

    PubMed

    Niu, Yang; Zhang, Zhi-Qiang; Liu, Chang-Qiu; Li, Zhi-Min; Sun, Hang

    2015-01-01

    The floral traits of bisexual flowers may evolve in response to selection on both male and female functions, but the relative importance of selection associated with each of these two aspects is poorly resolved. Sexually dimorphic traits in plants with unisexual flowers may reflect gender-specific selection, providing opportunities for gaining an increased understanding of the evolution of specific floral traits. We examined sexually dimorphic patterns of floral traits in perfect and female flowers of the gynodioecious species Cyananthus delavayi. A special corolla appendage, the throat hair, was investigated experimentally to examine its influences on male and female function. We found that perfect flowers have larger corollas and much longer throat hairs than female flowers, while female ones have much exerted stigmas. The presence of throat hairs prolonged the duration of pollen presentation by restricting the amount of pollen removed by pollen-collecting bees during each visit. Floral longevity was negatively related to the rate of pollen removal. When pollen removal rate was limited in perfect flowers, the duration of the female phases diminished with the increased male phase duration. There was a weak negative correlation between throat hair length and seed number per fruit in female flowers, but this correlation was not significant in perfect flowers. These results suggest that throat hairs may enhance male function in terms of prolonged pollen presentation. However, throat hairs have no obvious effect on female function in terms of seed number per fruit. The marked sexual dimorphism of this corolla appendage in C. delavayi is likely to have evolved and been maintained by gender-specific selection. PMID:25603479

  20. Proximate causes of sexual size dimorphism in horseshoe crabs (Limulus Polyphemus) of the Delaware Bay

    USGS Publications Warehouse

    Smith, D.R.; Mandt, M.T.; Macdonald, P.D.M.

    2009-01-01

    The unresolved status of the proximate cause for sexual size dimorphism in horseshoe crabs has practical consequence, because harvest recommendations rely on assumptions about sex-specific growth and maturity. We propose and evaluate competing hypotheses for the proximate cause of sexual size dimorphism in horseshoe crabs (Limulus polyphemus) by comparing size and estimated age frequencies from spring-captured juveniles (n = 9,075) and adults (n = 36,274) to predictions from the competing hypotheses. We found that the number of identifiable juvenile size distributions was greater for females than males and the probability of remaining a juvenile was higher for females than males among older juveniles. These findings are consistent with males maturing earlier than females. Molt increments and mean sizes were similar for male and female juveniles, which is not consistent with differential growth. Among adults, one size distribution accounted for ???90% of females regardless of carapace wear. Also, size ratio of adult females to males was 1.26, and size ratio of the largest adult to largest juvenile female was 1.28. These observations are not consistent with females continuing to molt as adults. Differential-maturity is the most parsimonious explanation for sexual size dimorphism in Delaware Bay horseshoe crabs. In addition, because of a low frequency of juvenile females >195 mm relative to adult females and male-biased sex ratios starting at 105 mm, we hypothesize that females, more than males, migrate as older juveniles and mature in the ocean. Management implications include that (1) minimum size limits, as previously suggested, would not allocate harvest to older adults as intended because size does not indicate age among adult horseshoe crabs in the Delaware Bay population, and (2) the Shuster Horseshoe Crab Reserve, which has reduced harvest on the continental shelf, could be protecting older juveniles and newly mature females from harvest prior to their first

  1. A Sexually Dimorphic Corolla Appendage Affects Pollen Removal and Floral Longevity in Gynodioecious Cyananthus delavayi (Campanulaceae)

    PubMed Central

    Niu, Yang; Zhang, Zhi-Qiang; Liu, Chang-Qiu; Li, Zhi-Min; Sun, Hang

    2015-01-01

    The floral traits of bisexual flowers may evolve in response to selection on both male and female functions, but the relative importance of selection associated with each of these two aspects is poorly resolved. Sexually dimorphic traits in plants with unisexual flowers may reflect gender-specific selection, providing opportunities for gaining an increased understanding of the evolution of specific floral traits. We examined sexually dimorphic patterns of floral traits in perfect and female flowers of the gynodioecious species Cyananthus delavayi. A special corolla appendage, the throat hair, was investigated experimentally to examine its influences on male and female function. We found that perfect flowers have larger corollas and much longer throat hairs than female flowers, while female ones have much exerted stigmas. The presence of throat hairs prolonged the duration of pollen presentation by restricting the amount of pollen removed by pollen-collecting bees during each visit. Floral longevity was negatively related to the rate of pollen removal. When pollen removal rate was limited in perfect flowers, the duration of the female phases diminished with the increased male phase duration. There was a weak negative correlation between throat hair length and seed number per fruit in female flowers, but this correlation was not significant in perfect flowers. These results suggest that throat hairs may enhance male function in terms of prolonged pollen presentation. However, throat hairs have no obvious effect on female function in terms of seed number per fruit. The marked sexual dimorphism of this corolla appendage in C. delavayi is likely to have evolved and been maintained by gender-specific selection. PMID:25603479

  2. Sexual dimorphism of stress response and immune/ inflammatory reaction: the corticotropin releasing hormone perspective

    PubMed Central

    Vamvakopoulos, Nicholas V.

    1995-01-01

    This review higlghts key aspects of corticotropin releasing hormone (CRH) biology of potential relevance to the sexual dimorphism of the stress response and immune/inflammatory reaction, and introduces two important new concepts based on the regulatory potential of the human (h) CRH gene: (1) a proposed mechanism to account for the tissue-specific antithetical responses of hCRH gene expression to glucocorticolds, that may also explain the frequently observed antithetical effects of chronic glucocorticoid administration in clinical practice and (2) a heuristic diagram to illustrate the proposed modulation of the stress response and immune/ inflammatory reaction by steroid hormones, from the perspective of the CRH system. PMID:18475634

  3. Selection in a fluctuating environment and the evolution of sexual dimorphism in the seed beetle Callosobruchus maculatus.

    PubMed

    Hallsson, L R; Björklund, M

    2012-08-01

    Temperature changes in the environment, which realistically include environmental fluctuations, can create both plastic and evolutionary responses of traits. Sexes might differ in either or both of these responses for homologous traits, which in turn has consequences for sexual dimorphism and its evolution. Here, we investigate both immediate changes in and the evolution of sexual dimorphism in response to a changing environment (with and without fluctuations) using the seed beetle Callosobruchus maculatus. We investigate sex differences in plasticity and also the genetic architecture of body mass and developmental time dimorphism to test two existing hypotheses on sex differences in plasticity (adaptive canalization hypothesis and condition dependence hypothesis). We found a decreased sexual size dimorphism in higher temperature and that females responded more plastically than males, supporting the condition dependence hypothesis. However, selection in a fluctuating environment altered sex-specific patterns of genetic and environmental variation, indicating support for the adaptive canalization hypothesis. Genetic correlations between sexes (r(MF) ) were affected by fluctuating selection, suggesting facilitated independent evolution of the sexes. Thus, the selective past of a population is highly important for the understanding of the evolutionary dynamics of sexual dimorphism. PMID:22594940

  4. Development and sexual dimorphism of the pituitary gland

    PubMed Central

    MacMaster, Frank P.; Keshavan, Matcheri; Mirza, Yousha; Carrey, Normand; Upadhyaya, Ameet R.; El-Sheikh, Rhonda; Buhagiar, Christian J; Taormina, S. Preeya; Boyd, Courtney; Lynch, Michelle; Rose, Michelle; Ivey, Jennifer; Moore, Gregory J.; Rosenberg, David R.

    2007-01-01

    The pituitary gland plays a central role in sexual development and brain function. Therefore, we examined the effect of age and gender on pituitary volume in a large sample of healthy children and adults. Volumetric magnetic resonance imaging (MRI) was conducted in one hundred and fifty four (77 males and 77 females) healthy participants. Males were between the ages of 7 to 35 years (16.91 ± 5.89 years) and females were 7 to 35 years of age (16.75 ± 5.75 years). Subjects were divided into subgroups of age (7 to 9, 10 to 13, 14 to 17, 18 to 21, 22 and older) and sex (male/female). Pituitary gland volume differed between sexes when comparing the age groups (F = 3.55, df = 2, 143, p = 0.03). Females demonstrated larger pituitary glands than males in the age 14 to 17 year old groups (p = 0.04). Young (19 years and under) and old (20 years and older) females demonstrated a correlation between pituitary volume and age. Males did not show this relationship. These findings provide additional evidence for gender differences in the normative anatomy of the pituitary and may have relevance for the study of various childhood onset neuropsychiatric disorders in which pituitary dysfunction has been implicated. PMID:17174342

  5. Development and sexual dimorphism of the pituitary gland.

    PubMed

    MacMaster, Frank P; Keshavan, Matcheri; Mirza, Yousha; Carrey, Normand; Upadhyaya, Ameet R; El-Sheikh, Rhonda; Buhagiar, Christian J; Taormina, S Preeya; Boyd, Courtney; Lynch, Michelle; Rose, Michelle; Ivey, Jennifer; Moore, Gregory J; Rosenberg, David R

    2007-02-13

    The pituitary gland plays a central role in sexual development and brain function. Therefore, we examined the effect of age and gender on pituitary volume in a large sample of healthy children and adults. Volumetric magnetic resonance imaging (MRI) was conducted in one hundred and fifty four (77 males and 77 females) healthy participants. Males were between the ages of 7 to 35 years (16.91+/-5.89 years) and females were 7 to 35 years of age (16.75+/-5.75 years). Subjects were divided into subgroups of age (7 to 9, 10 to 13, 14 to 17, 18 to 21, 22 and older) and sex (male/female). Pituitary gland volume differed between sexes when comparing the age groups (F=3.55, df=2, 143, p=0.03). Females demonstrated larger pituitary glands than males in the age 14 to 17 year old groups (p=0.04). Young (19 years and under) and old (20 years and older) females demonstrated a correlation between pituitary volume and age. Males did not show this relationship. These findings provide additional evidence for gender differences in the normative anatomy of the pituitary and may have relevance for the study of various childhood onset neuropsychiatric disorders in which pituitary dysfunction has been implicated. PMID:17174342

  6. Fungal Infection Induces Sex-Specific Transcriptional Changes and Alters Sexual Dimorphism in the Dioecious Plant Silene latifolia

    PubMed Central

    Zemp, Niklaus; Tavares, Raquel; Widmer, Alex

    2015-01-01

    Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia) displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism. PMID:26448481

  7. Fungal Infection Induces Sex-Specific Transcriptional Changes and Alters Sexual Dimorphism in the Dioecious Plant Silene latifolia.

    PubMed

    Zemp, Niklaus; Tavares, Raquel; Widmer, Alex

    2015-10-01

    Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia) displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism. PMID:26448481

  8. Disentangling the contribution of sexual selection and ecology to the evolution of size dimorphism in pinnipeds.

    PubMed

    Krüger, Oliver; Wolf, Jochen B W; Jonker, Rudy M; Hoffman, Joseph I; Trillmich, Fritz

    2014-05-01

    The positive relationship between sexual size dimorphism (SSD) and harem size across pinnipeds is often cited as a textbook example of sexual selection. It assumes that female aggregation selected for large male size via male-male competition. Yet, it is also conceivable that SSD evolved prior to polygyny due to ecological forces. We analyzed 11 life-history traits in 35 pinniped species to determine their coevolutionary dynamics and infer their most likely evolutionary trajectories contrasting these two hypotheses. We find support for SSD having evolved prior to changes in the mating system, either as a consequence of niche partitioning during aquatic foraging or in combination with sexual selection on males to enforce copulations on females. Only subsequently did polygyny evolve, leading to further coevolution as the strength of sexual selection intensified. Evolutionary sequence analyses suggest a polar origin of pinnipeds and indicate that SSD and polygyny are intrinsically linked to a suite of ecological and life-history traits. Overall, this study calls for the inclusion of ecological variables when studying sexual selection and argues for caution when assuming causality between coevolving traits. It provides novel insights into the role of sexual selection for the coevolutionary dynamics of SSD and mating system. PMID:24475921

  9. Morphometric analysis of pelvic sexual dimorphism in a contemporary Western Australian population.

    PubMed

    Franklin, Daniel; Cardini, Andrea; Flavel, Ambika; Marks, Murray K

    2014-09-01

    Requisite to routine casework involving unidentified skeletal remains is the formulation of an accurate biological profile, including sex estimation. Choice of method(s) is invariably related to preservation and by association, available bones. It is vital that the method applied affords statistical quantification of accuracy rates and predictive confidence so that evidentiary requirements for legal submission are satisfied. Achieving the latter necessitates the application of contemporary population-specific standards. This study examines skeletal pelvic dimorphism in contemporary Western Australian individuals to quantify the accuracy of using pelvic measurements to estimate sex and to formulate a series of morphometric standards. The sample comprises pelvic multi-slice computer tomography (MSCT) scans from 200 male and 200 female adults. Following 3D rendering, the 3D coordinates of 24 landmarks are acquired using OsiriX® (v.4.1.1) with 12 inter-landmark linear measurements and two angles acquired using MorphDb. Measurements are analysed using basic descriptive statistics and discriminant functions analyses employing jackknife validation of classification results. All except two linear measurements are dimorphic with sex differences explaining up to 65 % of sample variance. Transverse pelvic outlet and subpubic angle contribute most significantly to sex discrimination with accuracy rates between 100 % (complete pelvis-10 variables) and 81.2 % (ischial length). This study represents the initial forensic research into pelvic sexual dimorphism in a Western Australian population. Given these methods, we conclude that this highly dimorphic bone can be used to classify sex with a high degree of expected accuracy. PMID:24789357

  10. Sexual Dimorphism in White Matter Developmental Trajectories Using Tract-Based Spatial Statistics

    PubMed Central

    Clayden, Jonathan D.; Jentschke, Sebastian; Muñoz, Monica; Cooper, Janine M.; Chadwick, Martin J.; Banks, Tina; Vargha-Khadem, Faraneh; Clark, Christopher A.

    2016-01-01

    Abstract Increasing evidence is emerging for sexual dimorphism in the trajectory of white matter development in children assessed using volumetric magnetic resonance imaging (MRI) and more recently diffusion MRI. Recent studies using diffusion MRI have examined cohorts with a wide age range (typically between 5 and 30 years) showing focal regions of differential diffusivity and fractional anisotropy (FA) and have implicated puberty as a possible contributory factor. To further investigate possible dimorphic trajectories in a young cohort, presumably closer to the expected onset of puberty, we used tract-based spatial statistics to investigate diffusion metrics. The cohort consisted of 23 males and 30 females between the ages of 8 and 16 years. Differences in diffusion metrics were corrected for age, total brain volume, and full scale IQ. In contrast to previous studies showing focal differences between males and females, widespread sexually dimorphic trajectories in structural white matter development were observed. These differences were characterized by more advanced development in females compared to males indicated by lower mean diffusivity, radial and axial diffusivity, and higher FA in females. This difference appeared to be larger at lower ages (8–9 years) with diffusion measures from males and females tending to converge between 10 and 14 years of age. Males showed a steeper slope for age-diffusion metric correlations compared to females, who either did not correlate with age or correlated in fewer regions. Further studies are now warranted to determine the role of hormones on the observed differences, particularly in 8–9-year-old children. PMID:26446207

  11. Sexually dimorphic morphology and swimming performance relationships in wild-type zebrafish Danio rerio.

    PubMed

    Conradsen, C; McGuigan, K

    2015-11-01

    This study compared prolonged swimming performance (Ucrit ) between male and female Danio rerio, and characterized how body shape was associated with this performance measure in each sex. When swimming in small (n = 6) mixed-sex groups at 28 °C, males swam, on average, over 10 cm s(-1) faster than females despite being significantly smaller. Body shape was sexually dimorphic, with males and females exhibiting small, but statistically significant differences in most aspects of body shape. Body shape explained 18 and 43% of the variation in Ucrit among males and females. In general, effects of body shape on swimming performance appeared to be sex limited, whereby different aspects of body shape affected performance in each sex, although the contribution of the distance between pelvic and anal fins to swimming performance was weakly sexually antagonistic. PMID:26416508

  12. Allometry of sexual size dimorphism in dioecious plants: do plants obey Rensch's rule?

    PubMed

    Kavanagh, P H; Lehnebach, C A; Shea, M J; Burns, K C

    2011-11-01

    Rensch's rule refers to a pattern in sexual size dimorphism (SSD) in which SSD decreases with body size when females are the larger sex and increases with body size when males are the larger sex. Many animal taxa conform to Rensch's rule, but it has yet to be investigated in plants. Using herbarium collections from New Zealand, we characterized the size of leaves and stems of 297 individuals from 38 dioecious plant species belonging to three distantly related phylogenetic lineages. Statistical comparisons of leaf sizes between males and females showed evidence for Rensch's rule in two of the three lineages, indicating SSD decreases with leaf size when females produce larger leaves and increases with leaf size when males produce larger leaves. A similar pattern in SSD was observed for stem sizes. However, in this instance, females of small-stemmed species produced much larger stems than did males, but as stem sizes increased, SSD often disappeared. We hypothesize that sexual dimorphism in stem sizes results from selection for larger stems in females, which must provide mechanical support for seeds, fruits, and dispersal vectors, and that scaling relationships in leaf sizes result from correlated evolution with stem sizes. The overall results suggest that selection for larger female stem sizes to support the weight of offspring can give rise to Rensch's rule in dioecious plants. PMID:22030729

  13. Sexual dimorphism in scent substances and cuticular lipids of adult Papilio protenor butterflies.

    PubMed

    Omura, Hisashi; Yanai, Nanako; Honda, Keiichi

    2012-01-01

    Adults of Papilio protenor demetrius emit a faint odour; the male odour is notably stronger than that of the females. The extracts of whole individuals of each sex comprised 53 compounds regarded as cuticular lipid components, of which the 17 major compounds were straight-chain alkanes and alkenes with 23-31 carbon atoms, higher fatty acids, long-chain aliphatic ketones, squalene, and cholesterol. However, highly volatile compounds were not detected in the whole individual extracts. Eight of the 17 major compounds showed a significant sex difference in relative abundance per individual. Principal component analysis, using the major compounds as variables, revealed a marked sexual dimorphism in the chemical composition of cuticular lipids. From the extracts of 10 dissected individuals of each sex, 21 highly volatile compounds were identified in amounts of less than 200 ng/individual. Among them, linalool and 2,3-butanediol showed a significantly larger amount in males than in females, indicating that the adult odour is also sexually dimorphic. Moreover, both sexes shared several odoriferous compounds, such as heptanal, nonanal, methyl salicylate, benzyl alcohol, and benzoic acid. The faint odour of P. protenor adults, perceivable by the human nose, appears to originate from these volatile compounds. PMID:22888540

  14. Sexual dimorphism in lung function responses to acute influenza A infection

    PubMed Central

    Larcombe, Alexander N.; Foong, Rachel E.; Bozanich, Elizabeth M.; Berry, Luke J.; Garratt, Luke W.; Gualano, Rosa C.; Jones, Jessica E.; Dousha, Lovisa F.; Zosky, Graeme R.; Sly, Peter D.

    2011-01-01

    Please cite this paper as: Larcombe et al. (2011) Sexual dimorphism in lung function responses to acute influenza A infection. Influenza and Other Respiratory Viruses 5(5), 334–342. Background  Males are generally more susceptible to respiratory infections; however, there are few data on the physiological responses to such infections in males and females. Objectives  To determine whether sexual dimorphism exists in the physiological/inflammatory responses of weanling and adult BALB/c mice to influenza. Methods  Weanling and adult mice of both sexes were inoculated with influenza A or appropriate control solution. Respiratory mechanics, responsiveness to methacholine (MCh), viral titre and bronchoalveolar lavage (BAL) cellular inflammation/cytokines were measured 4 (acute) and 21 (resolution) days post‐inoculation. Results  Acute infection impaired lung function and induced hyperresponsiveness and cellular inflammation in both sexes at both ages. Males and females responded differently with female mice developing greater abnormalities in tissue damping and elastance and greater MCh responsiveness at both ages. BAL inflammation, cytokines and lung viral titres were similar between the sexes. At resolution, all parameters had returned to baseline levels in adults and weanling males; however, female weanlings had persisting hyperresponsiveness. Conclusions  We identified significant differences in the physiological responses of male and female mice to infection with influenza A, which occurred in the absence of variation in viral titre and cellular inflammation. PMID:21668688

  15. Molecular Phylogeny of Echiuran Worms (Phylum: Annelida) Reveals Evolutionary Pattern of Feeding Mode and Sexual Dimorphism

    PubMed Central

    Goto, Ryutaro; Okamoto, Tomoko; Ishikawa, Hiroshi; Hamamura, Yoichi; Kato, Makoto

    2013-01-01

    The Echiura, or spoon worms, are a group of marine worms, most of which live in burrows in soft sediments. This annelid-like animal group was once considered as a separate phylum because of the absence of segmentation, although recent molecular analyses have placed it within the annelids. In this study, we elucidate the interfamily relationships of echiuran worms and their evolutionary pattern of feeding mode and sexual dimorphism, by performing molecular phylogenetic analyses using four genes (18S, 28S, H3, and COI) of representatives of all extant echiuran families. Our results suggest that Echiura is monophyletic and comprises two unexpected groups: [Echiuridae+Urechidae+Thalassematidae] and [Bonelliidae+Ikedidae]. This grouping agrees with the presence/absence of marked sexual dimorphism involving dwarf males and the paired/non-paired configuration of the gonoducts (genital sacs). Furthermore, the data supports the sister group relationship of Echiuridae and Urechidae. These two families share the character of having anal chaetae rings around the posterior trunk as a synapomorphy. The analyses also suggest that deposit feeding is a basal feeding mode in echiurans and that filter feeding originated once in the common ancestor of Urechidae. Overall, our results contradict the currently accepted order-level classification, especially in that Echiuroinea is polyphyletic, and provide novel insights into the evolution of echiuran worms. PMID:23457618

  16. Antenatal maternal protein deprivation: sexually dimorphic programming of the pancreatic renin-angiotensin system.

    PubMed

    Goyal, Ravi; Wong, Christine; Van Wickle, Jonathan; Longo, Lawrence D

    2013-06-01

    As an underlying mechanism of antenatal maternal malnutrition-induced type 2 diabetes mellitus (T2DM), alterations in the local pancreatic renin-angiotensin system (RAS) may play a significant role. We tested the hypothesis that antenatal maternal protein deprivation (AMPD) leads to increased activity of the local pancreatic RAS, with associated hyperglycemia in the adult progeny. Mice dams were fed either control or 50% protein restricted diet (AMPD) starting one week before conception and maintained during complete gestation. Our results demonstrate low birth weight (control 1.5 ± 0.03 and AMPD 1.3 ± 0.03) and sexually dimorphic programming of the pancreatic RAS, with development of hyperglycemia only in the female mice offspring as a consequence of AMPD. No significant difference in serum insulin concentration was observed; however, AMPD was associated with increased mRNA and protein expression of angiotensinogen, renin and angiotensin-converting enzyme (ACE)-1 in male and female offspring. Of importance, mRNA and protein expression of ACE 2 and angiotensin II receptors was up-regulated only in the male offspring, as a consequence of AMPD. We conclude that sexually dimorphic programming of the pancreatic RAS expression is associated with AMPD diet-mediated development of hyperglycemia. PMID:22898440

  17. Determination of sexual dimorphism via maxillary first molar teeth in Himachali population

    PubMed Central

    Singla, Swati; Gupta, Rakhi; Puri, Abhiney; Bansal, Sucheta; Singla, Smita; Nangia, Rajat

    2015-01-01

    Context: Sex determination of skeletal remains forms part of archaeological and medicolegal examinations. It is an aspect of forensic odontology. Forensic odontology primarily deals with identification, based on recognition of unique features present in an individual's dental structures. Correct sex determination limits the pool of missing persons to just one half of the population. Aim of Study: Purpose of this study is to evaluate the existence of sexual dimorphism and variation in left and right maxillary first molars using bucco-lingual and mesio-distal dimensions in population of Sirmour District, H.P. Materials and Methods: Base sample comprised 100 subjects (50 males and 50 females) of an age group ranging from 17 to 25 years. Statistical Analysis Used: Unpaired t-test. Results: It was observed that the comparison of mean values of bucco-lingual and mesio-distal parameters showed highly statistically significant differences between males and females, measured both intraorally and on study casts. There were no significant differences between the mean values of both the parameters on the left side as compared to right side. Conclusion: The study concludes that sexual dimorphism is population specific. Among Himachali people, mesio-distal dimensions and bucco-lingual dimensions of first molar can aid in sex determination. PMID:26005295

  18. Sexually dimorphic, developmental, and chronobiological behavioral profiles of a mouse mania model.

    PubMed

    Saul, Michael C; Stevenson, Sharon A; Gammie, Stephen C

    2013-01-01

    Bipolar disorders are heritable psychiatric conditions often abstracted by separate animal models for mania and depression. The principal mania models involve transgenic manipulations or treatment with stimulants. An additional approach involves analysis of naturally occurring mania models including an inbred strain our lab has recently characterized, the Madison (MSN) mouse strain. These mice show a suite of behavioral and neural genetic alterations analogous to manic aspects of bipolar disorders. In the current study, we extended the MSN strain's behavioral phenotype in new directions by examining in-cage locomotor activity. We found that MSN activity presentation is sexually dimorphic, with MSN females showing higher in-cage activity than MSN males. When investigating development, we found that MSN mice display stable locomotor hyperactivity already observable when first assayed at 28 days postnatal. Using continuous monitoring and analysis for 1 month, we did not find evidence of spontaneous bipolarism in MSN mice. However, we did find that the MSN strain displayed an altered diurnal activity profile, getting up earlier and going to sleep earlier than control mice. Long photoperiods were associated with increased in-cage activity in MSN, but not in the control strain. The results of these experiments reinforce the face validity of the MSN strain as a complex mania model, adding sexual dimorphism, an altered diurnal activity profile, and seasonality to the suite of interesting dispositional phenomena related to mania seen in MSN mice. PMID:23967278

  19. A possible instance of sexual dimorphism in the tails of two oviraptorosaur dinosaurs

    PubMed Central

    IV, W. Scott Persons; Funston, Gregory F.; Currie, Philip J.; Norell, Mark A.

    2015-01-01

    The hypothesis that oviraptorosaurs used tail-feather displays in courtship behavior previously predicted that oviraptorosaurs would be found to display sexually dimorphic caudal osteology. MPC-D 100/1002 and MPC-D 100/1127 are two specimens of the oviraptorosaur Khaan mckennai. Although similar in absolute size and in virtually all other anatomical details, the anterior haemal spines of MPC-D 100/1002 exceed those of MPC-D 100/1127 in ventral depth and develop a hitherto unreported “spearhead” shape. This dissimilarity cannot be readily explained as pathologic and is too extreme to be reasonably attributed to the amount of individual variation expected among con-specifics. Instead, this discrepancy in haemal spine morphology may be attributable to sexual dimorphism. The haemal spine form of MPC-D 100/1002 offers greater surface area for caudal muscle insertions. On this basis, MPC-D 100/1002 is regarded as most probably male, and MPC-D 100/1127 is regarded as most probably female. PMID:25824625

  20. Sexually dimorphic patterns of space use throughout ontogeny in the spotted hyena (Crocuta crocuta)

    USGS Publications Warehouse

    Boydston, E.E.; Kapheim, K.M.; Van Horn, R. C.; Smale, L.; Holekamp, K.E.

    2005-01-01

    Observational and telemetry data were used in a geographic information system database to document the ontogenetic development of sexually dimorphic patterns of space use among free-living spotted hyenas Crocuta crocuta in Kenya. No measures of space use were sexually dimorphic among den-dwelling cubs, nor were sex differences apparent among hyenas that had ceased using dens for shelter until these animals were c. 30 months of age. Significant sex differences emerged late in the third year of life, and persisted throughout the remainder of the life span; males were found farther from the geographic centre of the natal territory than were females, and the mean size of individual 95% utility distributions was larger for males than females. Most dispersal events by radio-collared males were preceded by a series of exploratory excursions outside the natal territory. All collared males dispersed, but no collared females did so. Most dispersing males moved only one or two home ranges away at dispersal, roughly 8-10 km distant from the natal territory, before settling in a new social group. ?? 2005 The Zoological Society of London.

  1. Sexual Dimorphism and Allometric Effects Associated With the Wing Shape of Seven Moth Species of Sphingidae (Lepidoptera: Bombycoidea).

    PubMed

    de Camargo, Willian Rogers Ferreira; de Camargo, Nícholas Ferreira; Corrêa, Danilo do Carmo Vieira; de Camargo, Amabílio J Aires; Diniz, Ivone Rezende

    2015-01-01

    Sexual dimorphism is a pronounced pattern of intraspecific variation in Lepidoptera. However, moths of the family Sphingidae (Lepidoptera: Bombycoidea) are considered exceptions to this rule. We used geometric morphometric techniques to detect shape and size sexual dimorphism in the fore and hindwings of seven hawkmoth species. The shape variables produced were then subjected to a discriminant analysis. The allometric effects were measured with a simple regression between the canonical variables and the centroid size. We also used the normalized residuals to assess the nonallometric component of shape variation with a t-test. The deformations in wing shape between sexes per species were assessed with a regression between the nonreduced shape variables and the residuals. We found sexual dimorphism in both wings in all analyzed species, and that the allometric effects were responsible for much of the wing shape variation between the sexes. However, when we removed the size effects, we observed shape sexual dimorphism. It is very common for females to be larger than males in Lepidoptera, so it is expected that the shape of structures such as wings suffers deformations in order to preserve their function. However, sources of variation other than allometry could be a reflection of different reproductive flight behavior (long flights in search for sexual mates in males, and flight in search for host plants in females). PMID:26206895

  2. Sexual Dimorphism and Allometric Effects Associated With the Wing Shape of Seven Moth Species of Sphingidae (Lepidoptera: Bombycoidea)

    PubMed Central

    de Camargo, Nícholas Ferreira; Corrêa, Danilo do Carmo Vieira; de Camargo, Amabílio J. Aires; Diniz, Ivone Rezende

    2015-01-01

    Sexual dimorphism is a pronounced pattern of intraspecific variation in Lepidoptera. However, moths of the family Sphingidae (Lepidoptera: Bombycoidea) are considered exceptions to this rule. We used geometric morphometric techniques to detect shape and size sexual dimorphism in the fore and hindwings of seven hawkmoth species. The shape variables produced were then subjected to a discriminant analysis. The allometric effects were measured with a simple regression between the canonical variables and the centroid size. We also used the normalized residuals to assess the nonallometric component of shape variation with a t-test. The deformations in wing shape between sexes per species were assessed with a regression between the nonreduced shape variables and the residuals. We found sexual dimorphism in both wings in all analyzed species, and that the allometric effects were responsible for much of the wing shape variation between the sexes. However, when we removed the size effects, we observed shape sexual dimorphism. It is very common for females to be larger than males in Lepidoptera, so it is expected that the shape of structures such as wings suffers deformations in order to preserve their function. However, sources of variation other than allometry could be a reflection of different reproductive flight behavior (long flights in search for sexual mates in males, and flight in search for host plants in females). PMID:26206895

  3. Sex differences in lizard escape decisions vary with latitude, but not sexual dimorphism.

    PubMed

    Samia, Diogo S M; Møller, Anders Pape; Blumstein, Daniel T; Stankowich, Theodore; Cooper, William E

    2015-04-22

    Sexual selection is a powerful evolutionary mechanism that has shaped the physiology, behaviour and morphology of the sexes to the extent that it can reduce viability while promoting traits that enhance reproductive success. Predation is one of the underlying mechanisms accounting for viability costs of sexual displays. Therefore, we should expect that individuals of the two sexes adjust their anti-predator behaviour in response to changes in predation risk. We conducted a meta-analysis of 28 studies (42 species) of sex differences in risk-taking behaviour in lizards and tested whether these differences could be explained by sexual dichromatism, by sexual size dimorphism or by latitude. Latitude was the best predictor of the interspecific heterogeneity in sex-specific behaviour. Males did not change their escape behaviour with latitude, whereas females had increasingly reduced wariness at higher latitudes. We hypothesize that this sex difference in risk-taking behaviour is linked to sex-specific environmental constraints that more strongly affect the reproductive effort of females than males. This novel latitudinal effect on sex-specific anti-predator behaviour has important implications for responses to climate change and for the relative roles of natural and sexual selection in different species. PMID:25788595

  4. Sex differences in lizard escape decisions vary with latitude, but not sexual dimorphism

    PubMed Central

    Samia, Diogo S. M.; Møller, Anders Pape; Blumstein, Daniel T.; Stankowich, Theodore; Cooper, William E.

    2015-01-01

    Sexual selection is a powerful evolutionary mechanism that has shaped the physiology, behaviour and morphology of the sexes to the extent that it can reduce viability while promoting traits that enhance reproductive success. Predation is one of the underlying mechanisms accounting for viability costs of sexual displays. Therefore, we should expect that individuals of the two sexes adjust their anti-predator behaviour in response to changes in predation risk. We conducted a meta-analysis of 28 studies (42 species) of sex differences in risk-taking behaviour in lizards and tested whether these differences could be explained by sexual dichromatism, by sexual size dimorphism or by latitude. Latitude was the best predictor of the interspecific heterogeneity in sex-specific behaviour. Males did not change their escape behaviour with latitude, whereas females had increasingly reduced wariness at higher latitudes. We hypothesize that this sex difference in risk-taking behaviour is linked to sex-specific environmental constraints that more strongly affect the reproductive effort of females than males. This novel latitudinal effect on sex-specific anti-predator behaviour has important implications for responses to climate change and for the relative roles of natural and sexual selection in different species. PMID:25788595

  5. Sexual Shape Dimorphism of the Mangrove Crab Ucides cordatus (Linnaeus, 1763) (Decapoda, Ucididae) Accessed through Geometric Morphometric

    PubMed Central

    Alencar, C. E. R. D.; Lima-Filho, P. A.; Molina, W. F.; Freire, F. A. M.

    2014-01-01

    Sexual dimorphism is often observed in Crustaceans. Considering the great diversity of this subphylum, only few reports are found in the literature and most are mainly based on traditional morphometry. The present study uses geometric morphometrics analysis to identify sexual dimorphism by shape variation in the overexploited semiterrestrial crab Ucides cordatus, species with great social and economic importance in South America. Comparative morphology analyses were performed by using the outer face of the propodus of major cheliped, dorsal and anterior region of carapace shape. Significant differences in shape between sexes were detected in these body areas. The causes of dimorphism presented in this species are not clear but, analogous to other possibly associated species, it may be inferred that the causes are with adaptations to body ability of reproductive potential (females), and of reproductive behaviour and agonistics encounters (males). Additional analyses on courtship displays and other reproductive aspects should provide better comprehension of functionality of this morphological differentiation. PMID:25383362

  6. Sexual Dimorphism in the Andromonoecious Euphorbia nicaeensis: Effects of Gender and Inflorescence Development

    PubMed Central

    Narbona, Eduardo; Ortiz, Pedro Luis; Arista, Montserrat

    2008-01-01

    Background and Aims In andromonoecious taxa with separate floral types along the inflorescence, architectural or plastic effects can simulate floral sexual dimorphism. Both the primary and secondary sexual characteristics of the cyathia of the protogynous andromonoecious species Euphorbia nicaeensis were analysed according to their sex and arrangement on the inflorescence. Methods The production of male and hermaphrodite cyathia at each inflorescence level was surveyed in two natural populations. The longevity, size, pollen production and viability, and nectar secretion of both types of cyathia were checked between inflorescence levels and between sexes at the only level at which they occur together. This sampling method makes it possible to know whether differences between cyathia types are based on sex or are attributable to inflorescence development. Key Results Male cyathia were produced predominantly at the first and second inflorescence levels, whereas at levels 3–5, the cyathia were almost exclusively hermaphrodite. Viable pollen production by male cyathia at the second inflorescence level was higher than that of hermaphrodite cyathia at the third level but, when males and hermaphrodites at the same level were compared, their pollen production was similar. Male and hermaphrodite cyathia were similar in size, irrespective of the inflorescence level, although the exclusively hermaphrodite cyathia of the last level were smaller. Both cyathium types produced similar amounts of sugar. However, male cyathia produced nectar during their whole lifespans, whereas hermaphrodites produced it exclusively during their male phase. Moreover, the nectary activity of male cyathia started earlier in the day than that of hermaphrodites. Conclusions An apparent floral dimorphism exists in the primary sexual characteristics of Euphorbia nicaeensis because differences in pollen production between cyathium types are due to theirs positions. Similarly, differences affecting most

  7. A mirccroarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: A sexual dimorphism exists in body fat distribution; females deposit relatively more fat in subcutaneous/inguinal depots whereas males deposit more fat in the intra-abdominal/gonadal depot. Our objective was to systematically document depot- and sex-related differences in the accumulatio...

  8. Sexually dimorphic stress and innate immunological responses of Brahman cattle following an intravenous corticotropin-releasing hormone (CRH) challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to characterize potential sexually dimorphic stress and immunological responses following corticotrophin-releasing hormone (CRH) challenge. Six female (heifers) and five male (bulls) Brahman calves (264 ± 12 days of age) were challenged with 0.5 micrograms of CRH/kg body weig...

  9. A mircroarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A sexual dimorphism exists in body fat distribution; females deposit relatively more fat in subcutaneous/inguinal depots whereas males deposit more fat in the intra-abdominal/gonadal depot. Our objective was to systematically document depot- and sex-related differences in the accumulation of adipose...

  10. Sexual dimorphism of the internal mandibular chamber in Fayum Pliohyracidae (Mammalia)

    USGS Publications Warehouse

    de Blieux, D.D.; Baumrind, M.R.; Simons, E.L.; Chatrath, P.S.; Meyer, G.E.; Attia, Y.S.

    2006-01-01

    An internal mandibular fenestra and chamber are found in many fossil hyracoids. The internal mandibular fenestra is located on the lingual surface of the mandibular corpus and opens into a chamber within the mandible. The mandibular chamber is maximally developed in late Eocene Thyrohyrax meyeri and early Oligocene Thyrohyrax domorictus from the Fayum Province of Egypt. The function of this chamber is unknown as it is not found in extant hyraxes, nor is it known to occur in any other mammal. In Thyrohyrax, this feature appears to be sexually dimorphic because it is confined to roughly one half of the specimens that otherwise cannot be separated by dental characteristics or measurements. It has been suggested that the chamber is found in females based on the presumed distribution of this character in other fossil hyracoids. Fossils from Fayum Quarry L-41, preserving the sexually dimorphic anterior dentition, show that, in Thyrohyrax meyeri and Thyrohyrax domorictus, the internal mandibular chamber is found in males. In Thyrohyrax litholagus, an internal mandibular fenestra and inflated mandibular chamber occurs in males whereas females show the variable presence of an internal mandibular fossa or fenestra but lack an expanded chamber. Other genera show differing patterns of sexual variation in which some Fayum hyracoids have an internal mandibular fenestra in both sexes but with the greatest development of the mandibular chamber occurring in males. We review functions proposed for the internal mandibular chamber and suggest that it housed a laryngeal air sac that may have had a vocal function by acting as a resonating chamber. ?? 2006 by the Society of Vertebrate Paleontology.

  11. Sexually dimorphic alterations of brain cortical dominance in rats prenatally exposed to TCDD.

    PubMed

    Zareba, Grazyna; Hojo, Rieko; Zareba, Karolina M; Watanabe, Chiho; Markowski, Vincent P; Baggs, Raymond B; Weiss, Bernard

    2002-01-01

    Sexually dimorphic patterns of cortical lateralization are documented extensively in both human and animal brains. Male rats tend to exhibit pronounced right hemisphere dominance compared with females, whereas females typically exhibit more diffuse lateralization patterns and greater left hemisphere bias compared with males. Prenatal TCDD (2,3,7,8 tetrachlorodibenzo-p-dioxin) exposure produces demasculinization of male offspring sexual behavior. In previous studies, we showed a reversal of cortical dominance in rats after prenatal TCDD exposure on gestational day 18 (GD 18). The current study aimed to determine the nature of changes observed in rats exposed to TCDD on GD 8. In addition, locomotor activity was measured in male and female offspring on postnatal day (PND) 30, 60 and 90. Pregnant females were given, via gavage, a single dose of 0, 20, 60 or 180 ng kg(-1) TCDD on GD 8. Cortical depth measurements were taken in selected brain regions in offspring 3 months old that had been exposed to the 180 ng kg(-1) dose. Areas 2, 3, 17, 18a and 39 at bregmas -1.8, -3.8 and -5.8 were analyzed by quantifying digitized, enhanced images produced by a photomicroscope fitted with a special color camera. In both male and female offspring, cortical thicknesses in control brains exceeded those of exposed brains. In several brain areas of male offspring exposed to TCDD, right hemispheric dominance reversed to left hemispheric dominance. Female offspring brains showed a contrary move towards right hemisphere dominance. Motor activity in juvenile and mature animals did not differ among dose groups. These data demonstrate that prenatal exposure to TCDD reduces cortical thickness and alters the normal pattern of cortical asymmetry, a finding consistent with the sexually dimorphic behavioral effects induced by this agent. PMID:11920938

  12. Transcriptomic Analyses of Sexual Dimorphism of the Zebrafish Liver and the Effect of Sex Hormones

    PubMed Central

    Zheng, Weiling; Xu, Hongyan; Lam, Siew Hong; Luo, Huaien; Karuturi, R. Krishna Murthy; Gong, Zhiyuan

    2013-01-01

    The liver is one of the most sex-dimorphic organs in both oviparous and viviparous animals. In order to understand the molecular basis of the difference between male and female livers, high-throughput RNA-SAGE (serial analysis of gene expression) sequencing was performed for zebrafish livers of both sexes and their transcriptomes were compared. Both sexes had abundantly expressed genes involved in translation, coagulation and lipid metabolism, consistent with the general function of the liver. For sex-biased transcripts, from in addition to the high enrichment of vitellogenin transcripts in spawning female livers, which constituted nearly 80% of total mRNA, it is apparent that the female-biased genes were mostly involved in ribosome/translation, estrogen pathway, lipid transport, etc, while the male-biased genes were enriched for oxidation reduction, carbohydrate metabolism, coagulation, protein transport and localization, etc. Sexual dimorphism on xenobiotic metabolism and anti-oxidation was also noted and it is likely that retinol x receptor (RXR) and liver x receptor (LXR) play central roles in regulating the sexual differences of lipid and cholesterol metabolisms. Consistent with high ribosomal/translational activities in the female liver, female-biased genes were significantly regulated by two important transcription factors, Myc and Mycn. In contrast, Male livers showed activation of transcription factors Ppargc1b, Hnf4a, and Stat4, which regulate lipid and glucose metabolisms and various cellular activities. The transcriptomic responses to sex hormones, 17β-estradiol (E2) or 11-keto testosterone (KT11), were also investigated in both male and female livers and we found that female livers were relatively insensitive to sex hormone disturbance, while the male livers were readily affected. E2 feminized male liver by up-regulating female-biased transcripts and down-regulating male-biased transcripts. The information obtained in this study provides comprehensive

  13. Cognitive Ecology in Hummingbirds: The Role of Sexual Dimorphism and Its Anatomical Correlates on Memory

    PubMed Central

    González-Gómez, Paulina L.; Madrid-Lopez, Natalia; Salazar, Juan E.; Suárez, Rodrigo; Razeto-Barry, Pablo; Mpodozis, Jorge; Bozinovic, Francisco; Vásquez, Rodrigo A.

    2014-01-01

    In scatter-hoarding species, several behavioral and neuroanatomical adaptations allow them to store and retrieve thousands of food items per year. Nectarivorous animals face a similar scenario having to remember quality, location and replenishment schedules of several nectar sources. In the green-backed firecrown hummingbird (Sephanoides sephanoides), males are territorial and have the ability to accurately keep track of nectar characteristics of their defended food sources. In contrast, females display an opportunistic strategy, performing rapid intrusions into males territories. In response, males behave aggressively during the non-reproductive season. In addition, females have higher energetic demands due to higher thermoregulatory costs and travel times. The natural scenario of this species led us to compared cognitive abilities and hippocampal size between males and females. Males were able to remember nectar location and renewal rates significantly better than females. However, the hippocampal formation was significantly larger in females than males. We discuss these findings in terms of sexually dimorphic use of spatial resources and variable patterns of brain dimorphisms in birds. PMID:24599049

  14. The effects of stress on social preferences are sexually dimorphic in prairie voles.

    PubMed Central

    DeVries, A C; DeVries, M B; Taymans, S E; Carter, C S

    1996-01-01

    Prairie voles (Microtus ochrogaster) are monogamous rodents that form pair bonds characterized by a preference for a familiar social partner. In male prairie voles, exposure to either the stress of swimming or exogenous injections of corticosterone facilitate the development of a social preference for a female with which the male was paired after injection or swimming. Conversely, adrenalectomy inhibits partner preference formation in males and the behavioral effects of adrenalectomy are reversed by corticosterone replacement. In female prairie voles, swim stress interferes with the development of social preferences and corticosterone treatments inhibit the formation of partner preferences, while adrenalectomized females form preferences more quickly than adrenally intact controls. Because sex differences in both behavior and physiology are typically reduced in monogamous species, we initially predicted that male and female prairie voles would exhibit similar behavioral responses to corticosterone. However, our findings suggest an unanticipated sexual dimorphism in the physiological processes modulating social preferences. This dimorphic involvement of stress hormones in pair bonding provides a proximate mechanism for regulating social organization, while permitting males and females to adapt their reproductive strategies in response to environmental challenges. PMID:8876248

  15. Sexual size dimorphism and allometric growth of Morelet's crocodiles in captivity.

    PubMed

    Barrios-Quiroz, Gabriel; Casas-Andreu, Gustavo; Escobedo-Galván, Armando H

    2012-03-01

    Few studies have conducted morphological analyses of crocodilians, and little information exists on differences between size-classes and sexes in Neotropical crocodilians. In this study, we measured nine morphological traits in 121 captive Morelet's crocodiles Crocodylus moreletii (81 females and 40 males). Our results revealed that individuals < 2 m total length do not exhibit sexual dimorphism in morphometric characteristics. However, for crocodiles over 2 m in length, males were significantly larger than females in terms of dorsal-cranial length, cranial width, snout width and snout-ventral length. In general, morphological traits demonstrated a strongly significant relationship with total length at the smaller size class of 150-200 cm length. However, in the highest size class of 250-300 cm length (large adult males), morphological traits were no longer significantly related with total length. Male crocodiles demonstrated allometric growth of cranial morphology with significantly greater increase in cranial width, snout width, and mid-snout width relative to total length at higher size classes. Morphological dimorphism and allometric growth may be associated with adaptive strategies for reproductive success. PMID:22379988

  16. Worldwide variation in life-span sexual dimorphism and sex-specific environmental mortality rates.

    PubMed

    Teriokhin, Anatoly T; Budilova, Elena V; Thomas, Frederic; Guegan, Jean-Francois

    2004-08-01

    In all human populations mean life span of women generally exceeds that of men, but the extent of this sexual dimorphism varies across different regions of the world. Our purpose here is to study, using global demographic and environmental data, the general tendency of this variation and local deviations from it. We used data on male and female life history traits and environmental conditions for 227 countries and autonomous territories; for each country or territory the life-span dimorphism was defined as the difference between mean life spans of women and men. The general tendency is an increase of life-span dimorphism with increasing average male-female life span; this tendency can be explained using a demographic model based on the Makeham-Gompertz equation. Roughly, the life-span dimorphism increases with the average life span because of an increase in the duration of expressing sex- and age-dependent mortality described by the second (exponential) term of the Makeham-Gompertz equation. Thus we investigated the differences in male and female environmental mortality described by the first term of the Makeham-Gompertz equation fitted to the data. The general pattern that resulted was an increase in male mortality at the highest and lowest latitudes. One plausible explanation is that specific factors tied to extreme latitudes influence males more strongly than females. In particular, alcohol consumption increases with increasing latitude and, on the contrary, infection pressures increase with decreasing latitude. This finding agrees with other observations, such as an increase in male mortality excess in Europe and Christian countries and an increase in female mortality excess in Asia and Muslim countries. An increase in the excess of female mortality may also be due to increased maternal mortality caused by an increase in fertility. However, this relation is not linear: In regions with the highest fertility (e.g., in Africa) the excess of female mortality is

  17. Sexually dimorphic myeloid inflammatory and metabolic responses to diet-induced obesity.

    PubMed

    Griffin, C; Lanzetta, N; Eter, L; Singer, K

    2016-08-01

    It is well known in clinical and animal studies that women and men have different disease risk as well as different disease physiology. Women of reproductive age are protected from metabolic and cardiovascular disease compared with postmenopausal women and men. Most murine studies are skewed toward the use of male mice to study obesity-induced metabolic dysfunction because of similar protection in female mice. We have investigated dietary obesity in a mouse model and have directly compared inflammatory responses in males and females. In this review we will summarize what is known about sex differences in diet-induced inflammation and will summarize our data on this topic. It is clear that sex differences in high-fat diet-induced inflammatory activation are due to cell intrinsic differences in hematopoietic responses to obesogenic cues, but further research is needed to understand what leads to sexually dimorphic responses. PMID:27252473

  18. Sexual dimorphism in epigenomicresponses of stem cells to extreme fetal growth

    PubMed Central

    Delahaye, Fabien; Wijetunga, N. Ari; Heo, Hye J.; Tozour, Jessica N.; Zhao, Yong Mei; Greally, John M.; Einstein, Francine H.

    2014-01-01

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34+ hematopoietic stem/progenitor cells (HSPCs) showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction (IUGR) is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age (LGA) growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular aging and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life. PMID:25300954

  19. Reproductive and resource benefits to large female body size in a mammal with female-biased sexual size dimorphism

    SciTech Connect

    Fokidis, H.B., T.S. Risch and T.C. Glenn

    2007-01-01

    Factors underlying the evolution of female-biased sexual size dimorphism in mammals are poorly understood. In an effort to better understand these factors we tested whether larger female southern flying squirrels, Glaucomys volans, gained reproductive advantages (larger litters or more male mates) and direct resource benefits, such as larger home ranges or access to more food (i.e. mast-producing trees). As dimorphism can vary with age in precocial breeding species, we compared females during their first reproduction and during a subsequent breeding attempt. Females were not significantly larger or heavier than males at first reproduction, but became about 7% heavier and 22% larger than males at subsequent breeding. Larger females produced larger litters and had home ranges containing a greater proportion of upland hardwood trees. Female body size was not associated with either multiple male mating or home range size, but females with larger home ranges had higher indexes of body condition. Females in precocial breeding flying squirrels initiate reproduction before sexual size dimorphism is evident, and thus, may be allocating resources to both reproduction and growth simultaneously, or delaying growth entirely. Larger females produce more pups and have access to more food resources. Thus, selection for increased female size may partly explain how female-biased sexual size dimorphism is maintained in this species.

  20. Women's height, reproductive success and the evolution of sexual dimorphism in modern humans.

    PubMed Central

    Nettle, Daniel

    2002-01-01

    Recent studies have shown that, in contemporary populations, tall men have greater reproductive success than shorter men. This appears to be due to their greater ability to attract mates. To our knowledge, no comparable results have yet been reported for women. This study used data from Britain's National Child Development Study to examine the life histories of a nationally representative group of women. Height was weakly but significantly related to reproductive success. The relationship was U-shaped, with deficits at the extremes of height. This pattern was largely due to poor health among extremely tall and extremely short women. However, the maximum reproductive success was found below the mean height for women. Thus, selection appears to be sexually disruptive in this population, favouring tall men and short women. Over evolutionary time, such a situation tends to maintain sexual dimorphism. Men do not use stature as a positive mate-choice criterion as women do. It is argued that there is good evolutionary reason for this, because men are orientated towards cues of fertility, and female height, being positively related to age of sexual maturity, is not such a cue. PMID:12350254

  1. Body Size, Fecundity, and Sexual Size Dimorphism in the Neotropical Cricket Macroanaxipha macilenta (Saussure) (Orthoptera: Gryllidae).

    PubMed

    Cueva Del Castillo, R

    2015-04-01

    Body size is directly or indirectly correlated with fitness. Body size, which conveys maximal fitness, often differs between sexes. Sexual size dimorphism (SSD) evolves because body size tends to be related to reproductive success through different pathways in males and females. In general, female insects are larger than males, suggesting that natural selection for high female fecundity could be stronger than sexual selection in males. I assessed the role of body size and fecundity in SSD in the Neotropical cricket Macroanaxipha macilenta (Saussure). This species shows a SSD bias toward males. Females did not present a correlation between number of eggs and body size. Nonetheless, there were fluctuations in the number of eggs carried by females during the sampling period, and the size of females that were collected carrying eggs was larger than that of females collected with no eggs. Since mating induces vitellogenesis in some cricket species, differences in female body size might suggest male mate choice. Sexual selection in the body size of males of M. macilenta may possibly be stronger than the selection of female fecundity. Even so, no mating behavior was observed during the field observations, including audible male calling or courtship songs, yet males may produce ultrasonic calls due to their size. If female body size in M. macilenta is not directly related to fecundity, the lack of a correlated response to selection on female body size could represent an alternate evolutionary pathway in the evolution of body size and SSD in insects. PMID:26013128

  2. Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila.

    PubMed

    Yuan, Quan; Song, Yuanquan; Yang, Chung-Hui; Jan, Lily Yeh; Jan, Yuh Nung

    2014-01-01

    Intraspecific male-male aggression, which is important for sexual selection, is regulated by environment, experience and internal states through largely undefined molecular and cellular mechanisms. To understand the basic neural pathway underlying the modulation of this innate behavior, we established a behavioral assay in Drosophila melanogaster and investigated the relationship between sexual experience and aggression. In the presence of mating partners, adult male flies exhibited elevated levels of aggression, which was largely suppressed by prior exposure to females via a sexually dimorphic neural mechanism. The suppression involved the ability of male flies to detect females by contact chemosensation through the pheromone-sensing ion channel ppk29 and was mediated by male-specific GABAergic neurons acting on the GABAA receptor RDL in target cells. Silencing or activating this circuit led to dis-inhibition or elimination of sex-related aggression, respectively. We propose that the GABAergic inhibition represents a critical cellular mechanism that enables prior experience to modulate aggression. PMID:24241395

  3. Sexual Dimorphism in the Expression of Mitochondria-Related Genes in Rat Heart at Different Ages

    PubMed Central

    Vijay, Vikrant; Han, Tao; Moland, Carrie L.; Kwekel, Joshua C.; Fuscoe, James C.; Desai, Varsha G.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Moreover, sex and age are considered major risk factors in the development of CVDs. Mitochondria are vital for normal cardiac function, and regulation of mitochondrial structure and function may impact susceptibility to CVD. To identify potential role of mitochondria in sex-related differences in susceptibility to CVD, we analyzed the basal expression levels of mitochondria-related genes in the hearts of male and female rats. Whole genome expression profiling was performed in the hearts of young (8-week), adult (21-week), and old (78-week) male and female Fischer 344 rats and the expression of 670 unique genes related to various mitochondrial functions was analyzed. A significant (p<0.05) sexual dimorphism in expression levels of 46, 114, and 41 genes was observed in young, adult and old rats, respectively. Gene Ontology analysis revealed the influence of sex on various biological pathways related to cardiac energy metabolism at different ages. The expression of genes involved in fatty acid metabolism was significantly different between the sexes in young and adult rat hearts. Adult male rats also showed higher expression of genes associated with the pyruvate dehydrogenase complex compared to females. In young and adult hearts, sexual dimorphism was not noted in genes encoding oxidative phosphorylation. In old rats, however, a majority of genes involved in oxidative phosphorylation had higher expression in females compared to males. Such basal differences between the sexes in cardiac expression of genes associated with energy metabolism may indicate a likely involvement of mitochondria in susceptibility to CVDs. In addition, female rats showed lower expression levels of apoptotic genes in hearts compared to males at all ages, which may have implications for better preservation of cardiac mass in females than in males. PMID:25615628

  4. Sexual Dimorphism in Circadian Physiology Is Altered in LXRα Deficient Mice

    PubMed Central

    Feillet, Céline; Guérin, Sophie; Lonchampt, Michel; Dacquet, Catherine; Gustafsson, Jan-Åke; Delaunay, Franck; Teboul, Michèle

    2016-01-01

    The mammalian circadian timing system coordinates key molecular, cellular and physiological processes along the 24-h cycle. Accumulating evidence suggests that many clock-controlled processes display a sexual dimorphism. In mammals this is well exemplified by the difference between the male and female circadian patterns of glucocorticoid hormone secretion and clock gene expression. Here we show that the non-circadian nuclear receptor and metabolic sensor Liver X Receptor alpha (LXRα) which is known to regulate glucocorticoid production in mice modulates the sex specific circadian pattern of plasma corticosterone. Lxrα-/- males display a blunted corticosterone profile while females show higher amplitude as compared to wild type animals. Wild type males are significantly slower than females to resynchronize their locomotor activity rhythm after an 8 h phase advance but this difference is abrogated in Lxrα-/- males which display a female-like phenotype. We also show that circadian expression patterns of liver 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and Phosphoenolpyruvate carboxykinase (Pepck) differ between sexes and are differentially altered in Lxrα-/- animals. These changes are associated with a damped profile of plasma glucose oscillation in males but not in females. Sex specific alteration of the insulin and leptin circadian profiles were observed in Lxα-/- females and could be explained by the change in corticosterone profile. Together this data indicates that LXRα is a determinant of sexually dimorphic circadian patterns of key physiological parameters. The discovery of this unanticipated role for LXRα in circadian physiology underscores the importance of addressing sex differences in chronobiology studies and future LXRα targeted therapies. PMID:26938655

  5. Does life history shape sexual size dimorphism in anurans? A comparative analysis

    PubMed Central

    2013-01-01

    Background The evolution of sexual size dimorphism (SSD) is likely constrained by life history. Using phylogenetic comparative methods, we examined correlations between SSD among anurans and their life history traits, including egg size, clutch size, mating combat, and parental care behaviour. We used sexual dimorphism index (SDI = Body-sizefemale /Body-sizemale –1) as the measurement for SSD. Body size, life history and phylogenetic data were collected from published literature. Data were analysed at two levels: all anuran species and within individual families. Results Female-biased SSD is the predominant form in anurans. SSD decreases along with the body size increase, following the prediction of Rensch’s rule, but the magnitude of decrease is very small. More importantly, female body size is positively correlated with both fecundity related traits, egg size and clutch size, and SDI is also positively correlated with clutch size, suggesting fecundity advantage may have driven the evolution of female body size and consequently leads to the evolution of female-biased SSD. Furthermore, the presence of parental care, male parental care in particular, is negatively correlated with SDI, indicating that species with parental care tend to have a smaller SDI. A negative correlation between clutch size and parental care further suggests that parental care likely reduces the fecundity selection pressure on female body size. On the other hand, there is a general lack of significant correlation between SDI and the presence of male combat behaviour, which is surprising and contradictory to previous studies. Conclusions We find clear evidence to support the ‘fecundity advantage hypothesis’ and the ‘parental care hypothesis’ in shaping SSD in anurans. Nevertheless, the relationships of both parental care and combat behaviour to the evolution of SSD are complex in anurans and the extreme diversity of life history traits may have masked some potential interesting

  6. Sexual Dimorphism in Circadian Physiology Is Altered in LXRα Deficient Mice.

    PubMed

    Feillet, Céline; Guérin, Sophie; Lonchampt, Michel; Dacquet, Catherine; Gustafsson, Jan-Åke; Delaunay, Franck; Teboul, Michèle

    2016-01-01

    The mammalian circadian timing system coordinates key molecular, cellular and physiological processes along the 24-h cycle. Accumulating evidence suggests that many clock-controlled processes display a sexual dimorphism. In mammals this is well exemplified by the difference between the male and female circadian patterns of glucocorticoid hormone secretion and clock gene expression. Here we show that the non-circadian nuclear receptor and metabolic sensor Liver X Receptor alpha (LXRα) which is known to regulate glucocorticoid production in mice modulates the sex specific circadian pattern of plasma corticosterone. Lxrα(-/-) males display a blunted corticosterone profile while females show higher amplitude as compared to wild type animals. Wild type males are significantly slower than females to resynchronize their locomotor activity rhythm after an 8 h phase advance but this difference is abrogated in Lxrα(-/-) males which display a female-like phenotype. We also show that circadian expression patterns of liver 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and Phosphoenolpyruvate carboxykinase (Pepck) differ between sexes and are differentially altered in Lxrα(-/-) animals. These changes are associated with a damped profile of plasma glucose oscillation in males but not in females. Sex specific alteration of the insulin and leptin circadian profiles were observed in Lxα(-/-) females and could be explained by the change in corticosterone profile. Together this data indicates that LXRα is a determinant of sexually dimorphic circadian patterns of key physiological parameters. The discovery of this unanticipated role for LXRα in circadian physiology underscores the importance of addressing sex differences in chronobiology studies and future LXRα targeted therapies. PMID:26938655

  7. Sexual dimorphism of brain aromatase activity in medaka: induction of a female phenotype by estradiol.

    PubMed Central

    Melo, A C; Ramsdell, J S

    2001-01-01

    In this study we identified sex-dependent dimorphism of brain aromatase in the teleost medaka and examined its regulation by sex steriods. We first investigated differential distribution of brain aromatase activity in sexually mature male and female medaka in serial coronal sections of the brain and identified the hypothalamic nuclei contained in each section using the brain atlas of medaka. In the brain of male medaka, high levels of activity are localized in sections containing the preoptic (POA) and suprachiasmatic nuclei (SC) (63-75 fmol/hr) and low levels in the nuclei periventricular dorsalis (HD), ventralis (HV), and caudalis (Hc), nuclei diffusus of lobulus inferiores (NDIL), and nuclei tuberi anteriores (TA) and posteriores (TP) (< 25 fmol/hr). In the brain of female medaka high aromatase activity is localized in sections containing the HD, HV, Hc, NDIL, TA, and TP (85-80 fmol/hr) and highly variable levels in the POA and SC (23-70 fmol/hr). The concentration and time dependency of the exposure of male medaka to estradiol on the total brain aromatase activity and morphologic sex characteristics were determined next. Estradiol increased the activity of brain aromatase in a concentration-dependent manner at 2.5 and 25 microg/L, but the increase was lower at higher concentrations of the hormone. The effect was time dependent, gradually increasing up to the fifth day of exposure, after which it reached a plateau. Estradiol induction of brain aromatase analyzed using Lineweaver-Burke plots of saturation assays revealed a non-first-order reaction. The results indicate that a positive feedback mechanism regulates brain aromatase and imply that the sexual dimorphic distribution of aromatase may be highly sensitive to physiologic cues and environmental perturbations in fish. PMID:11333187

  8. Transcriptomic Analyses Reveal Novel Genes with Sexually Dimorphic Expression in Yellow Catfish (Pelteobagrus fulvidraco) Brain.

    PubMed

    Lu, Jianguo; Zheng, Min; Zheng, Jiajia; Liu, Jian; Liu, Yongzhuang; Peng, Lina; Wang, Pingping; Zhang, Xiaofeng; Wang, Qiushi; Luan, Peixian; Mahbooband, Shahid; Sun, Xiaowen

    2015-10-01

    Yellow catfish (Pelteobagrus fulvidraco) is a pivotal freshwater aquaculture species in China. It shows sexual size dimorphism favoring male in growth. Whole transcriptome approach is required to get the overview of genetic toolkit for understanding the sex determination mechanism aiming at devising its monosex production. Beside gonads, the brain is also considered as a major organ for vertebrate reproduction. Transcriptomic analyses on the brain and of different developmental stages will provide the dynamic view necessary for better understanding its sex determination. In this regard, we have performed a de novo assembly of yellow catfish brain transcriptome by high throughput Illumina sequencing. A total number of 154,507 contigs were obtained with the lengths ranging from 201 to 27,822 bp and N50 of 2,101 bp, as well as 20,699 unigenes were identified. Of these unigenes, 13 and 54 unigenes were detected to be XY-specifically expressed genes (SEGs) for one and 2-year-old yellow catfish, while the corresponding numbers of XX-SEGs for those two stages were 19 and 13, respectively. Our work identifies a set of annotated genes that are candidate factors affecting sexual dimorphism as well as simple sequence repeat (SSR) and single nucleotide variation (SNV) in yellow catfish. To validate the expression patterns of the sex-related genes, we performed quantitative real-time PCR (qRT-PCR) indicating the reliability and accuracy of our analysis. The results in our study may enhance our understanding of yellow catfish sex determination and potentially help to improve the production of all-male yellow catfish for aquaculture. PMID:26242754

  9. Nested Levels of Adaptive Divergence: The Genetic Basis of Craniofacial Divergence and Ecological Sexual Dimorphism

    PubMed Central

    Parsons, Kevin J.; Wang, Jason; Anderson, Graeme; Albertson, R. Craig

    2015-01-01

    Exemplary systems for adaptive divergence are often characterized by their large degrees of phenotypic variation. This variation represents the outcome of generations of diversifying selection. However, adaptive radiations can also contain a hierarchy of differentiation nested within them where species display only subtle phenotypic differences that still have substantial effects on ecology, function, and ultimately fitness. Sexual dimorphisms are also common in species displaying adaptive divergence and can be the result of differential selection between sexes that produce ecological differences between sexes. Understanding the genetic basis of subtle variation (between certain species or sexes) is therefore important for understanding the process of adaptive divergence. Using cichlids from the dramatic adaptive radiation of Lake Malawi, we focus on understanding the genetic basis of two aspects of relatively subtle phenotypic variation. This included a morphometric comparison of the patterns of craniofacial divergence between two ecologically similar species in relation to the larger adaptive radiation of Malawi, and male–female morphological divergence between their F2 hybrids. We then genetically map craniofacial traits within the context of sex and locate several regions of the genome that contribute to variation in craniofacial shape that is relevant to sexual dimorphism within species and subtle divergence between closely related species, and possibly to craniofacial divergence in the Malawi radiation as a whole. To enhance our search for candidate genes we take advantage of population genomic data and a genetic map that is anchored to the cichlid genome to determine which genes within our QTL regions are associated with SNPs that are alternatively fixed between species. This study provides a holistic understanding of the genetic underpinnings of adaptive divergence in craniofacial shape. PMID:26038365

  10. Sexually dimorphic adaptations in basal maternal stress physiology during pregnancy and implications for fetal development.

    PubMed

    Giesbrecht, Gerald F; Campbell, Tavis; Letourneau, Nicole

    2015-06-01

    There is clear evidence of reciprocal exchange of information between the mother and fetus during pregnancy but the majority of research in this area has focussed on the fetus as a recipient of signals from the mother. Specifically, physiological signals produced by the maternal stress systems in response to the environment may carry valuable information about the state of the external world. Prenatal stress produces sex-specific adaptations within fetal physiology that have pervasive and long-lasting effects on development. Little is known, however, about the effects of sex-specific fetal signals on maternal adaptations to pregnancy. The current prospective study examined sexually dimorphic adaptations within maternal stress physiology, including the hypothalamic-adrenal-pituitary (HPA) axis and the autonomic nervous system (ANS) and associations with fetal growth. Using diurnal suites of saliva collected in early and late pregnancy, we demonstrate that basal cortisol and salivary alpha-amylase (sAA) differ by fetal sex. Women carrying female fetuses displayed greater autonomic arousal and flatter (but more elevated) diurnal cortisol patterns compared to women carrying males. Women with flatter daytime cortisol trajectories and more blunted sAA awakening responses also had infants with lower birth weight. These maternal adaptations are consistent with sexually dimorphic fetal developmental/evolutionary adaptation strategies that favor growth for males and conservation of resources for females. The findings provide new evidence to suggest that the fetus contributes to maternal HPA axis and ANS regulation during pregnancy and that these systems also contribute to the regulation of fetal growth. PMID:25827961

  11. Sexually dimorphic innate immunological responses of pre-pubertal Brahman cattle following an intravenous lipopolysaccharide challenge.

    PubMed

    Carroll, Jeffery A; Burdick Sanchez, Nicole C; Hulbert, Lindsey E; Ballou, Michael A; Dailey, Jeffery W; Caldwell, Lisa C; Vann, Rhonda C; Welsh, Thomas H; Randel, Ronald D

    2015-08-15

    This study was designed to characterize potential sexually dimorphic immunological responses following a lipopolysaccharide (LPS) challenge in beef cattle. Six female (heifers) and five male (bulls) Brahman calves (average age=253 ± 19.9 and 288 ± 47.9 days; average body weight=194 ± 11 kg and 247 ± 19 kg for heifers and bulls, respectively) were challenged with LPS (0.25 μg LPS/kg body weight). Following administration of LPS, all cattle displayed increased sickness behavior beginning at 0.5h, with heifers on average displaying less sickness behavior than bulls. A febrile response was observed in all animals following LPS administration, with a maximum response observed from 4 to 5.5h. The average rectal temperature response was greater in heifers than bulls. In all cattle there were elevated serum concentrations of cortisol from 0.5 to 8h, TNF-α from 1 to 2.5h, IL-6 from 2 to 8h, and IFN-γ from 2.5 to 7h after LPS challenge. Additionally, serum concentrations of TNF-α were greater in heifers than bulls from 1.5 to 2h after the LPS challenge. Concentrations of IFN-γ were also greater on average in bulls than heifers. Leukopenia occurred from 1 to 8h, with a decreased neutrophil to lymphocyte ratio for the first 5h among all calves. These data demonstrate the existence of a sexually dimorphic acute-phase response in pre-pubertal Brahman calves. Specifically, heifers may have a more robust acute response to LPS challenge, even though bulls display more signs of sickness. PMID:26144890

  12. Eye movements reveal sexually dimorphic deficits in children with fetal alcohol spectrum disorder

    PubMed Central

    Paolozza, Angelina; Munn, Rebecca; Munoz, Douglas P.; Reynolds, James N.

    2015-01-01

    Background: We examined the accuracy and characteristics of saccadic eye movements in children with fetal alcohol spectrum disorder (FASD) compared with typically developing control children. Previous studies have found that children with FASD produce saccades that are quantifiably different from controls. Additionally, animal studies have found sex-based differences for behavioral effects after prenatal alcohol exposure. Therefore, we hypothesized that eye movement measures will show sexually dimorphic results. Methods: Children (aged 5–18 years) with FASD (n = 71) and typically developing controls (n = 113) performed a visually-guided saccade task. Saccade metrics and behavior were analyzed for sex and group differences. Results: Female control participants had greater amplitude saccades than control males or females with FASD. Accuracy was significantly poorer in the FASD group, especially in males, which introduced significantly greater variability in the data. Therefore, we conducted additional analyses including only those trials in which the first saccade successfully reached the target within a ± 1° window. In this restricted amplitude dataset, the females with FASD made saccades with significantly lower velocity and longer duration, whereas the males with FASD did not differ from the control group. Additionally, the mean and peak deceleration were selectively decreased in the females with FASD. Conclusions: These data support the hypothesis that children with FASD exhibit specific deficits in eye movement control and sensory-motor integration associated with cerebellar and/or brain stem circuits. Moreover, prenatal alcohol exposure may have a sexually dimorphic impact on eye movement metrics, with males and females exhibiting differential patterns of deficit. PMID:25814922

  13. Neonatal oxytocin manipulations have long-lasting, sexually dimorphic effects on vasopressin receptors.

    PubMed

    Bales, K L; Plotsky, P M; Young, L J; Lim, M M; Grotte, N; Ferrer, E; Carter, C S

    2007-01-01

    Developmental exposure to oxytocin (OT) or oxytocin antagonists (OTAs) has been shown to cause long-lasting and often sexually dimorphic effects on social behaviors in prairie voles (Microtus ochrogaster). Because regulation of social behavior in monogamous mammals involves central receptors for OT, arginine vasopressin (AVP), and dopamine, we examined the hypothesis that the long-lasting, developmental effects of exposure to neonatal OT or OTA might reflect changes in the expression of receptors for these peptides. On postnatal day 1, prairie voles were injected intraperitoneally with either OT (1 mg/kg), an OTA (0.1 mg/kg), saline vehicle, or were handled only. At approximately 60 days of age, vasopressin V1a receptors, OT receptors (OTR) and dopamine D2 receptor binding were quantified using receptor autoradiography in brain tissue taken from males and females. Significant treatment effects on V1a binding were found in the bed nucleus of the stria terminalis (BNST), cingulate cortex (CgCtx), mediodorsal thalamus (MdThal), medial preoptic area of the hypothalamus (MPOA), and lateral septum (LS). The CgCtx, MPOA, ventral pallidum, and LS also showed significant sex by treatment interactions on V1a binding. No significant treatment or sex differences were observed for D2 receptor binding. No significant treatment difference was observed for OTR receptor binding, and only a marginal sex difference. Changes in the neuropeptide receptor expression, especially the V1a receptor, may help to explain sexually dimorphic changes in behavior that follow comparable neonatal manipulations. PMID:17055176

  14. Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga ectocarpus.

    PubMed

    Lipinska, Agnieszka; Cormier, Alexandre; Luthringer, Rémy; Peters, Akira F; Corre, Erwan; Gachon, Claire M M; Cock, J Mark; Coelho, Susana M

    2015-06-01

    Males and females often have marked phenotypic differences, and the expression of these dissimilarities invariably involves sex differences in gene expression. Sex-biased gene expression has been well characterized in animal species, where a high proportion of the genome may be differentially regulated in males and females during development. Male-biased genes tend to evolve more rapidly than female-biased genes, implying differences in the strength of the selective forces acting on the two sexes. Analyses of sex-biased gene expression have focused on organisms that exhibit separate sexes during the diploid phase of the life cycle (diploid sexual systems), but the genetic nature of the sexual system is expected to influence the evolutionary trajectories of sex-biased genes. We analyze here the patterns of sex-biased gene expression in Ectocarpus, a brown alga with haploid sex determination (dioicy) and a low level of phenotypic sexual dimorphism. In Ectocarpus, female-biased genes were found to be evolving as rapidly as male-biased genes. Moreover, genes expressed at fertility showed faster rates of evolution than genes expressed in immature gametophytes. Both male- and female-biased genes had a greater proportion of sites experiencing positive selection, suggesting that their accelerated evolution is at least partly driven by adaptive evolution. Gene duplication appears to have played a significant role in the generation of sex-biased genes in Ectocarpus, expanding previous models that propose this mechanism for the resolution of sexual antagonism in diploid systems. The patterns of sex-biased gene expression in Ectocarpus are consistent both with predicted characteristics of UV (haploid) sexual systems and with the distinctive aspects of this organism's reproductive biology. PMID:25725430

  15. Sexual dimorphism in sister species of Leucoraja skate and its relationship to reproductive strategy and life history.

    PubMed

    Martinez, Christopher M; Rohlf, F James; Frisk, Michael G

    2016-03-01

    Instances of sexual dimorphism occur in a great variety of forms and manifestations. Most skates (Batoidea: Rajoidei) display some level of body shape dimorphism in which the pectoral fins of mature males develop to create a distinct bell-shaped body not found in females. This particular form of dimorphism is present in each of the sister species Leucoraja erinacea and Leucoraja ocellata, but differences between sexes are much greater in the former. In order to understand the nature and potential causes of pectoral dimorphism, we used geometric morphometrics to investigate allometry of fin shape in L. erinacea and L. ocellata and its relationship to the development of reproductive organs, based on previous work on the bonnethead shark, Sphyrna tiburo. We found that allometric trajectories of overall pectoral shape were different in both species of skate, but only L. erinacea varied significantly with respect to endoskeleton development. Male maturation was characterized by a number of sex-specific morphological changes, which appeared concurrently in developmental timing with elongation of cartilage-supported claspers. We suggest that external sexual dimorphism of pectoral fins in skates is a byproduct of skeletal growth needed for clasper development. Further, the magnitude of male shape change appears to be linked to the differential life histories of species. This work reports for the first time that pectoral dimorphism is a persistent feature in rajoid fishes, occurring in varying degrees across several genera. Lastly, our results suggest that pectoral morphology may be useful as a relative indicator of reproductive strategy in some species. PMID:26771079

  16. Sexual dimorphism in hepatic gene expression and the response to dietary carbohydrate manipulation in the zebrafish (Danio rerio)

    PubMed Central

    Robison, Barrie D.; Drew, Robert E.; Murdoch, Gordon K.; Powell, Madison; Rodnick, Kenneth J.; Settles, Matt; Stone, David; Churchill, Erin; Hill, Rodney A.; Papasani, Madhusudhan R.; Lewis, Solange S.; Hardy, Ronald W.

    2011-01-01

    In this study, we tested for the presence of sexual dimorphism in the hepatic transcriptome of the adult zebrafish and examined the effect of long term manipulation of dietary carbohydrate on gene expression in both sexes. Zebrafish were fed diets comprised of 0%, 15%, 25%, or 35% carbohydrate from the larval stage through sexual maturity, then sampled for hepatic tissue, growth, proximate body composition, and retention efficiencies. Using Affymetrix microarrays and qRT-PCR, we observed substantial sexual dimorphism in the hepatic transcriptome. Males up-regulated genes associated with oxidative metabolism, carbohydrate metabolism, energy production, and amelioration of oxidative stress, while females had higher expression levels of genes associated with translation. Restriction of dietary carbohydrate (0% diet) significantly affected hepatic gene expression, growth performance, retention efficiencies of protein and energy, and percentages of moisture, lipid, and ash. The response of some genes to dietary manipulation varied by sex; with increased dietary carbohydrate, males up-regulated genes associated with oxidative metabolism (e.g. hadhβ) while females up-regulated genes associated with glucose phosphorylation (e.g. glucokinase). Our data support the use of the zebrafish model for the study of fish nutritional genomics, but highlight the importance of accounting for sexual dimorphism in these studies. PMID:20483215

  17. Sexual size and shape dimorphism and allometric scaling patterns in head traits in the New Zealand common gecko Woodworthia maculatus.

    PubMed

    Kelly, Clint D

    2015-08-01

    Sexual dimorphism in shape and size is widespread across animal taxa and arises when natural or sexual selection operates differently on the sexes. Male and female common geckos (Woodworthia maculatus; formerly Hoplodactylus maculatus) in New Zealand do not appear to experience different viability selection pressure, nor do males appear to be under intense pre-copulatory sexual selection. It was therefore predicted that this species would be sexually monomorphic with regard to body size and the size and shape of the head. In line with the prediction, there was no sexual difference in head width, depth, or length or in lateral head shape. However, contrary to prediction, males had a larger body and lateral head size than females. This study suggests that males, at least on Maud Island, NZ, might be under stronger pre-copulatory sexual selection than previously recognized and thus have evolved larger heads (i.e. lateral head size) for use in male combat for females. Allometric scaling patterns do not differ between the sexes and suggest that head width and depth are under directional selection whereas lateral head size is under stabilizing selection. Diet ecology - an agent of natural selection common to both sexes - is likely largely responsible for the observed patterns of head size and shape and the lack of sexual dimorphism in them. PMID:25958103

  18. Sexual Dimorphism in Adverse Pregnancy Outcomes - A Retrospective Australian Population Study 1981-2011

    PubMed Central

    Verburg, Petra E.; Tucker, Graeme; Scheil, Wendy; Erwich, Jan Jaap H. M.; Dekker, Gus A.; Roberts, Claire Trelford

    2016-01-01

    Objectives Sexual inequality starts in utero. The contribution of biological sex to the developmental origins of health and disease is increasingly recognized. The aim of this study was to assess and interpret sexual dimorphisms for three major adverse pregnancy outcomes which affect the health of the neonate, child and potentially adult. Methods Retrospective population-based study of 574,358 South Australian singleton live births during 1981–2011. The incidence of three major adverse pregnancy outcomes [preterm birth (PTB), pregnancy induced hypertensive disorders (PIHD) and gestational diabetes mellitus (GDM)] in relation to fetal sex was compared according to traditional and fetus-at-risk (FAR) approaches. Results The traditional approach showed male predominance for PTB [20–24 weeks: Relative Risk (RR) M/F 1.351, 95%-CI 1.274–1.445], spontaneous PTB [25–29 weeks: RR M/F 1.118, 95%-CI 1.044–1.197%], GDM [RR M/F 1.042, 95%-CI 1.011–1.074], overall PIHD [RR M/F 1.053, 95%-CI 1.034–1.072] and PIHD with term birth [RR M/F 1.074, 95%-CI 1.044–1.105]. The FAR approach showed that males were at increased risk for PTB [20–24 weeks: RR M/F 1.273, 95%-CI 1.087–1.490], for spontaneous PTB [25–29 weeks: RR M/F 1.269, 95%-CI 1.143–1.410] and PIHD with term birth [RR M/F 1.074, 95%-CI 1.044–1.105%]. The traditional approach demonstrated female predominance for iatrogenic PTB [25–29 weeks: RR M/F 0.857, 95%-CI 0.780–0.941] and PIHD associated with PTB [25–29 weeks: RR M/F 0.686, 95%-CI 0.581–0.811]. The FAR approach showed that females were at increased risk for PIHD with PTB [25–29 weeks: RR M/F 0.779, 95%-CI 0.648–0.937]. Conclusions This study confirms the presence of sexual dimorphisms and presents a coherent framework based on two analytical approaches to assess and interpret the sexual dimorphisms for major adverse pregnancy outcomes. The mechanisms by which these occur remain elusive, but sex differences in placental gene

  19. Sexually dimorphic expression of Mafb regulates masculinization of the embryonic urethral formation

    PubMed Central

    Suzuki, Kentaro; Numata, Tomokazu; Suzuki, Hiroko; Raga, Dennis Diana; Ipulan, Lerrie Ann; Yokoyama, Chikako; Matsushita, Shoko; Hamada, Michito; Nakagata, Naomi; Nishinakamura, Ryuichi; Kume, Shoen; Takahashi, Satoru; Yamada, Gen

    2014-01-01

    Masculinization of external genitalia is an essential process in the formation of the male reproductive system. Prominent characteristics of this masculinization are the organ size and the sexual differentiation of the urethra. Although androgen is a pivotal inducer of the masculinization, the regulatory mechanism under the control of androgen is still unknown. Here, we address this longstanding question about how androgen induces masculinization of the embryonic external genitalia through the identification of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (Mafb) gene. Mafb is expressed prominently in the mesenchyme of male genital tubercle (GT), the anlage of external genitalia. MAFB expression is rarely detected in the mesenchyme of female GTs. However, exposure to exogenous androgen induces its mesenchymal expression in female GTs. Furthermore, MAFB expression is prominently down-regulated in male GTs of androgen receptor (Ar) KO mice, indicating that AR signaling is necessary for its expression. It is revealed that Mafb KO male GTs exhibit defective embryonic urethral formation, giving insight into the common human congenital anomaly hypospadias. However, the size of Mafb KO male GTs is similar with that of wild-type males. Moreover, androgen treatment fails to induce urethral masculinization of the GTs in Mafb KO mice. The current results provide evidence that Mafb is an androgen-inducible, sexually dimorphic regulator of embryonic urethral masculinization. PMID:25362053

  20. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases.

    PubMed

    Dragin, Nadine; Bismuth, Jacky; Cizeron-Clairac, Géraldine; Biferi, Maria Grazia; Berthault, Claire; Serraf, Alain; Nottin, Rémi; Klatzmann, David; Cumano, Ana; Barkats, Martine; Le Panse, Rozen; Berrih-Aknin, Sonia

    2016-04-01

    Autoimmune diseases affect 5% to 8% of the population, and females are more susceptible to these diseases than males. Here, we analyzed human thymic transcriptome and revealed sex-associated differences in the expression of tissue-specific antigens that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. We hypothesized that the level of AIRE is linked to sexual dimorphism susceptibility to autoimmune diseases. In human and mouse thymus, females expressed less AIRE (mRNA and protein) than males after puberty. These results were confirmed in purified murine thymic epithelial cells (TECs). We also demonstrated that AIRE expression is related to sexual hormones, as male castration decreased AIRE thymic expression and estrogen receptor α-deficient mice did not show a sex disparity for AIRE expression. Moreover, estrogen treatment resulted in downregulation of AIRE expression in cultured human TECs, human thymic tissue grafted to immunodeficient mice, and murine fetal thymus organ cultures. AIRE levels in human thymus grafted in immunodeficient mice depended upon the sex of the recipient. Estrogen also upregulated the number of methylated CpG sites in the AIRE promoter. Together, our results indicate that in females, estrogen induces epigenetic changes in the AIRE gene, leading to reduced AIRE expression under a threshold that increases female susceptibility to autoimmune diseases. PMID:26999605

  1. Estimating the sex-specific effects of genes on facial attractiveness and sexual dimorphism.

    PubMed

    Mitchem, Dorian G; Purkey, Alicia M; Grebe, Nicholas M; Carey, Gregory; Garver-Apgar, Christine E; Bates, Timothy C; Arden, Rosalind; Hewitt, John K; Medland, Sarah E; Martin, Nicholas G; Zietsch, Brendan P; Keller, Matthew C

    2014-05-01

    Human facial attractiveness and facial sexual dimorphism (masculinity-femininity) are important facets of mate choice and are hypothesized to honestly advertise genetic quality. However, it is unclear whether genes influencing facial attractiveness and masculinity-femininity have similar, opposing, or independent effects across sex, and the heritability of these phenotypes is poorly characterized. To investigate these issues, we assessed facial attractiveness and facial masculinity-femininity in the largest genetically informative sample (n = 1,580 same- and opposite-sex twin pairs and siblings) to assess these questions to date. The heritability was ~0.50-0.70 for attractiveness and ~0.40-0.50 for facial masculinity-femininity, indicating that, despite ostensible selection on genes influencing these traits, substantial genetic variation persists in both. Importantly, we found evidence for intralocus sexual conflict, whereby alleles that increase masculinity in males have the same effect in females. Additionally, genetic influences on attractiveness were shared across the sexes, suggesting that attractive fathers tend to have attractive daughters and attractive mothers tend to have attractive sons. PMID:24213680

  2. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases

    PubMed Central

    Dragin, Nadine; Bismuth, Jacky; Cizeron-Clairac, Géraldine; Biferi, Maria Grazia; Berthault, Claire; Serraf, Alain; Nottin, Rémi; Klatzmann, David; Cumano, Ana; Barkats, Martine; Le Panse, Rozen

    2016-01-01

    Autoimmune diseases affect 5% to 8% of the population, and females are more susceptible to these diseases than males. Here, we analyzed human thymic transcriptome and revealed sex-associated differences in the expression of tissue-specific antigens that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. We hypothesized that the level of AIRE is linked to sexual dimorphism susceptibility to autoimmune diseases. In human and mouse thymus, females expressed less AIRE (mRNA and protein) than males after puberty. These results were confirmed in purified murine thymic epithelial cells (TECs). We also demonstrated that AIRE expression is related to sexual hormones, as male castration decreased AIRE thymic expression and estrogen receptor α–deficient mice did not show a sex disparity for AIRE expression. Moreover, estrogen treatment resulted in downregulation of AIRE expression in cultured human TECs, human thymic tissue grafted to immunodeficient mice, and murine fetal thymus organ cultures. AIRE levels in human thymus grafted in immunodeficient mice depended upon the sex of the recipient. Estrogen also upregulated the number of methylated CpG sites in the AIRE promoter. Together, our results indicate that in females, estrogen induces epigenetic changes in the AIRE gene, leading to reduced AIRE expression under a threshold that increases female susceptibility to autoimmune diseases. PMID:26999605

  3. Energetic consequences of sexual size dimorphism in nestling red-winged blackbirds

    SciTech Connect

    Fiala, K.L.,; Congdon, J.D.

    1983-01-01

    The energy budget of nestling Red-winged Blackbirds (Agelaius phoeniceus) was determined using doubly labeled water (/sup 3/HH/sup 18/O) to measure field metabolic rate (FMR) and body component data to measure growth energy. Sex-specific measurements permitted the evaluation of the effects of this species' substantial sexual size dimorphism on FMR and total energetics. FMR averaged CO/sub 2/ release of 5.12 mL.g/sup -1/.h/sup -1/, or 0.129 kJ.g/sup -1/.h/sup -1/, with no significant differences between the sexes. Daytime FMRs of CO/sub 2/ production (5.34 mL.g/sup -1/.h/sup -1/) were higher, but not significantly so, than nighttime FMRs (4.45 mL.g/sup -1/.h/sup -1/). Water influx averaged 0.95 mL.g/sup -1/.d/sup -1/, with daytime rates (1.22 mL.g/sup -1/.d/sup -1/) significantly higher than nighttime (0.40 mL.g/sup -1/d/sup -1/) rates. Total assimilated energy from hatching to fledging was 1014 and 797 kJ for male and female nestlings, respectively. The sexual differences in total energetics reflected differences in body size of the nestlings and suggest that there is a greater cost to the parents in raising males than in raising females.

  4. Sexual dimorphisms in swimming behavior, cerebral metabolic activity and adrenoceptors in adult zebrafish (Danio rerio).

    PubMed

    Ampatzis, Konstantinos; Dermon, Catherine R

    2016-10-01

    Sexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination. For this, aspects of anxiety-like behavior (including reduced exploration, increased freezing behavior and erratic movement) of male and female adult zebrafish were tested in a novel tank paradigm and after habituation. Male and female zebrafish showed significant differences in their swimming activity in response to novelty, with females showing less anxiety spending more time in the upper tank level. When fish have habituated, regional cerebral glucose uptake, an index of neuronal activity, and brain adrenoceptors' (ARs) expression (α2-ARs and β-ARs) were determined using in vivo 2-[(14)C]-deoxyglucose methodology and in vitro neurotransmitter receptors quantitative autoradiography, respectively. Intriguingly, females exhibited higher glucose utilization than males in hypothalamic brain areas. Adrenoceptor's expression pattern was dimorphic in zebrafish telencephalic, preoptic, hypothalamic nuclei, central gray, and cerebellum, similarly to birds and mammals. Specifically, the lateral zone of dorsal telencephalon (Dl), an area related to spatial cognition, homologous to the mammalian hippocampus, showed higher α2-AR densities in females. In contrast, male cerebellum included higher densities of β-ARs in comparison to female. Taken together, our data demonstrate a well-defined sex discriminant cerebral metabolic activity and ARs' pattern in zebrafish, possibly contributing to male-female differences in the swimming behavior. PMID:27363927

  5. The eunuch phenomenon: adaptive evolution of genital emasculation in sexually dimorphic spiders.

    PubMed

    Kuntner, Matjaž; Agnarsson, Ingi; Li, Daiqin

    2015-02-01

    Under natural and sexual selection traits often evolve that secure paternity or maternity through self-sacrifice to predators, rivals, offspring, or partners. Emasculation-males removing their genitals-is an unusual example of such behaviours. Known only in insects and spiders, the phenomenon's adaptiveness is difficult to explain, yet its repeated origins and association with sexual size dimorphism (SSD) and sexual cannibalism suggest an adaptive significance. In spiders, emasculation of paired male sperm-transferring organs - secondary genitals - (hereafter, palps), results in 'eunuchs'. This behaviour has been hypothesized to be adaptive because (i) males plug female genitals with their severed palps (plugging hypothesis), (ii) males remove their palps to become better fighters in male-male contests (better-fighter hypothesis), perhaps reaching higher agility due to reduced total body mass (gloves-off hypothesis), and (iii) males achieve prolonged sperm transfer through severed genitals (remote-copulation hypothesis). Prior research has provided evidence in support of these hypotheses in some orb-weaving spiders but these explanations are far from general. Seeking broad macroevolutionary patterns of spider emasculation, we review the known occurrences, weigh the evidence in support of the hypotheses in each known case, and redefine more precisely the particular cases of emasculation depending on its timing in relation to maturation and mating: 'pre-maturation', 'mating', and 'post-mating'. We use a genus-level spider phylogeny to explore emasculation evolution and to investigate potential evolutionary linkage between emasculation, SSD, lesser genital damage (embolic breakage), and sexual cannibalism (females consuming their mates). We find a complex pattern of spider emasculation evolution, all cases confined to Araneoidea: emasculation evolved at least five and up to 11 times, was lost at least four times, and became further modified at least once. We also find

  6. Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain

    PubMed Central

    2014-01-01

    Background Most animal species exhibit sexually dimorphic behaviors, many of which are linked to reproduction. A number of these behaviors, including blood feeding in female mosquitoes, contribute to the global spread of vector-borne illnesses. However, knowledge concerning the genetic basis of sexually dimorphic traits is limited in any organism, including mosquitoes, especially with respect to differences in the developing nervous system. Methods Custom microarrays were used to examine global differences in female vs. male gene expression in the developing pupal head of the dengue vector mosquito, Aedes aegypti. The spatial expression patterns of a subset of differentially expressed transcripts were examined in the developing female vs. male pupal brain through in situ hybridization experiments. Small interfering RNA (siRNA)-mediated knockdown studies were used to assess the putative role of Doublesex, a terminal component of the sex determination pathway, in the regulation of sex-specific gene expression observed in the developing pupal brain. Results Transcripts (2,527), many of which were linked to proteolysis, the proteasome, metabolism, catabolic, and biosynthetic processes, ion transport, cell growth, and proliferation, were found to be differentially expressed in A. aegypti female vs. male pupal heads. Analysis of the spatial expression patterns for a subset of dimorphically expressed genes in the pupal brain validated the data set and also facilitated the identification of brain regions with dimorphic gene expression. In many cases, dimorphic gene expression localized to the optic lobe. Sex-specific differences in gene expression were also detected in the antennal lobe and mushroom body. siRNA-mediated gene targeting experiments demonstrated that Doublesex, a transcription factor with consensus binding sites located adjacent to many dimorphically expressed transcripts that function in neural development, is required for regulation of sex-specific gene

  7. Sex allocation according to multiple sexually dimorphic traits of both parents in the barn swallow (Hirundo rustica).

    PubMed

    Romano, A; Romano, M; Caprioli, M; Costanzo, A; Parolini, M; Rubolini, D; Saino, N

    2015-06-01

    Parents should differentially invest in sons or daughters depending on the sex-specific fitness returns from male and female offspring. In species with sexually selected heritable male characters, highly ornamented fathers should overproduce sons, which will be more sexually attractive than sons of less ornamented fathers. Because of genetic correlations between the sexes, females that express traits which are under selection in males should also overproduce sons. However, sex allocation strategies may consist in reaction norms leading to spatiotemporal variation in the association between offspring sex ratio (SR) and parental phenotype. We analysed offspring SR in barn swallows (Hirundo rustica) over 8 years in relation to two sexually dimorphic traits: tail length and melanin-based ventral plumage coloration. The proportion of sons increased with maternal plumage darkness and paternal tail length, consistently with sexual dimorphism in these traits. The size of the effect of these parental traits on SR was large compared to other studies of offspring SR in birds. Barn swallows thus manipulate offspring SR to overproduce 'sexy sons' and potentially to mitigate the costs of intralocus sexually antagonistic selection. Interannual variation in the relationships between offspring SR and parental traits was observed which may suggest phenotypic plasticity in sex allocation and provides a proximate explanation for inconsistent results of studies of sex allocation in relation to sexual ornamentation in birds. PMID:25913917

  8. Size-assortative mating and sexual size dimorphism are predictable from simple mechanics of mate-grasping behavior

    PubMed Central

    2010-01-01

    Background A major challenge in evolutionary biology is to understand the typically complex interactions between diverse counter-balancing factors of Darwinian selection for size assortative mating and sexual size dimorphism. It appears that rarely a simple mechanism could provide a major explanation of these phenomena. Mechanics of behaviors can predict animal morphology, such like adaptations to locomotion in animals from various of taxa, but its potential to predict size-assortative mating and its evolutionary consequences has been less explored. Mate-grasping by males, using specialized adaptive morphologies of their forelegs, midlegs or even antennae wrapped around female body at specific locations, is a general mating strategy of many animals, but the contribution of the mechanics of this wide-spread behavior to the evolution of mating behavior and sexual size dimorphism has been largely ignored. Results Here, we explore the consequences of a simple, and previously ignored, fact that in a grasping posture the position of the male's grasping appendages relative to the female's body is often a function of body size difference between the sexes. Using an approach taken from robot mechanics we model coercive grasping of females by water strider Gerris gracilicornis males during mating initiation struggles. We determine that the male optimal size (relative to the female size), which gives the males the highest grasping force, properly predicts the experimentally measured highest mating success. Through field sampling and simulation modeling of a natural population we determine that the simple mechanical model, which ignores most of the other hypothetical counter-balancing selection pressures on body size, is sufficient to account for size-assortative mating pattern as well as species-specific sexual dimorphism in body size of G. gracilicornis. Conclusion The results indicate how a simple and previously overlooked physical mechanism common in many taxa is

  9. Sexual Niche Segregation and Gender-Specific Individual Specialisation in a Highly Dimorphic Marine Mammal

    PubMed Central

    Kernaléguen, Laëtitia; Cherel, Yves; Knox, Travis C.; Baylis, Alastair M. M.; Arnould, John P. Y.

    2015-01-01

    While sexual segregation is expected in highly dimorphic species, the local environment is a major factor driving the degree of resource partitioning within a population. Sexual and individual niche segregation was investigated in the Australian fur seal (Arctocephalus pusillus doriferus), which is a benthic foraging species restricted to the shallow continental shelf region of south-eastern Australia. Tracking data and the isotopic values of plasma, red blood cells and whiskers were combined to document spatial and dietary niche segregation throughout the year. Tracking data indicated that, in winter, males and females overlapped in their foraging habitat. All individuals stayed within central Bass Strait, relatively close (< 220 km) to the breeding colony. Accordingly, both genders exhibited similar plasma and red cell δ13C values. However, males exhibited greater δ13C intra-individual variation along the length of their whisker than females. This suggests that males exploited a greater diversity of foraging habitats throughout the year than their female counterparts, which are restricted in their foraging grounds by the need to regularly return to the breeding colony to suckle their pup. The degree of dietary sexual segregation was also surprisingly low, both sexes exhibiting a great overlap in their δ15N values. Yet, males displayed higher δ15N values than females, suggesting they fed upon a higher proportion of higher trophic level prey. Given that males and females exploit different resources (mainly foraging habitats), the degree of individual specialisation might differ between the sexes. Higher degrees of individual specialisation would be expected in males which exploit a greater range of resources. However, comparable levels of inter-individual variation in δ15N whisker values were found in the sampled males and females, and, surprisingly, all males exhibited similar seasonal and inter-annual variation in their δ13C whisker values, suggesting they

  10. Sexual Niche Segregation and Gender-Specific Individual Specialisation in a Highly Dimorphic Marine Mammal.

    PubMed

    Kernaléguen, Laëtitia; Cherel, Yves; Knox, Travis C; Baylis, Alastair M M; Arnould, John P Y

    2015-01-01

    While sexual segregation is expected in highly dimorphic species, the local environment is a major factor driving the degree of resource partitioning within a population. Sexual and individual niche segregation was investigated in the Australian fur seal (Arctocephalus pusillus doriferus), which is a benthic foraging species restricted to the shallow continental shelf region of south-eastern Australia. Tracking data and the isotopic values of plasma, red blood cells and whiskers were combined to document spatial and dietary niche segregation throughout the year. Tracking data indicated that, in winter, males and females overlapped in their foraging habitat. All individuals stayed within central Bass Strait, relatively close (< 220 km) to the breeding colony. Accordingly, both genders exhibited similar plasma and red cell δ13C values. However, males exhibited greater δ13C intra-individual variation along the length of their whisker than females. This suggests that males exploited a greater diversity of foraging habitats throughout the year than their female counterparts, which are restricted in their foraging grounds by the need to regularly return to the breeding colony to suckle their pup. The degree of dietary sexual segregation was also surprisingly low, both sexes exhibiting a great overlap in their δ15N values. Yet, males displayed higher δ15N values than females, suggesting they fed upon a higher proportion of higher trophic level prey. Given that males and females exploit different resources (mainly foraging habitats), the degree of individual specialisation might differ between the sexes. Higher degrees of individual specialisation would be expected in males which exploit a greater range of resources. However, comparable levels of inter-individual variation in δ15N whisker values were found in the sampled males and females, and, surprisingly, all males exhibited similar seasonal and inter-annual variation in their δ13C whisker values, suggesting they