Science.gov

Sample records for shades fields

  1. Generalized shading analysis for paraboloidal collector fields

    NASA Technical Reports Server (NTRS)

    Osborn, D. B.

    1980-01-01

    This paper presents the development and results of a generalized shading analysis for a field of point-focus parabolic dish concentrators. Shading of one concentrator by another with attendant loss of energy is a function of the position of the sun and the relative locations of the concentrators within the field. A method is presented for determining the annualized energy loss which includes a trade-off of system life-cycle energy as a function of concentrator spacing and field geometric layout. System energy output is computed on an annualized basis, employing 15 minute-increment environmental data tapes for the year 1976 at Barstow, California. For a land cost of $5000 per acre, lowest system energy cost occurs at about a 25 percent packing fraction (concentrator area/land area) for a typical 1-MWe dish-Stirling solar thermal power plant. Basic equations are given for computing the shading and concomitant energy loss as a function of concentrator center-to-center spacing, field layout site location.

  2. Sun and Shade Leaves: Some Field Investigations.

    ERIC Educational Resources Information Center

    Tomley, David

    1983-01-01

    Several simple experiments illustrating how the light regime affects the final form of dog's mercury (Mercurialis perennis) are provided. These experiments, which can also be done with other plants, focus on differences in the anatomy, morphology, and physiology of sun and shade leaves. (JN)

  3. Assessment of microclimate conditions under artificial shades in a ginseng field

    PubMed Central

    Lee, Kyu Jong; Lee, Byun-Woo; Kang, Je Yong; Lee, Dong Yun; Jang, Soo Won; Kim, Kwang Soo

    2015-01-01

    Background Knowledge on microclimate conditions under artificial shades in a ginseng field would facilitate climate-aware management of ginseng production. Methods Weather data were measured under the shade and outside the shade at two fields located in Gochang-gun and Jeongeup-si, Korea, in 2011 and 2012 seasons to assess temperature and humidity conditions under the shade. An empirical approach was developed and validated for the estimation of leaf wetness duration (LWD) using weather measurements outside the shade as inputs to the model. Results Air temperature and relative humidity were similar between under the shade and outside the shade. For example, temperature conditions favorable for ginseng growth, e.g., between 8°C and 27°C, occurred slightly less frequently in hours during night times under the shade (91%) than outside (92%). Humidity conditions favorable for development of a foliar disease, e.g., relative humidity > 70%, occurred slightly more frequently under the shade (84%) than outside (82%). Effectiveness of correction schemes to an empirical LWD model differed by rainfall conditions for the estimation of LWD under the shade using weather measurements outside the shade as inputs to the model. During dew eligible days, a correction scheme to an empirical LWD model was slightly effective (10%) in reducing estimation errors under the shade. However, another correction approach during rainfall eligible days reduced errors of LWD estimation by 17%. Conclusion Weather measurements outside the shade and LWD estimates derived from these measurements would be useful as inputs for decision support systems to predict ginseng growth and disease development. PMID:26843827

  4. Field shaping arrays: a means to address shading in high field breast MRI

    PubMed Central

    Hancu, Ileana; Lee, Seung-Kyun; Dixon, W. Thomas; Sacolick, Laura; Becerra, Ricardo; Zhang, Zhenghui; McKinnon, Graeme; Alagappan, Vijayanand

    2012-01-01

    Purpose To develop a simple correction approach to mitigate shading in 3T breast MRI. Materials and Methods A slightly modified breast receive (Rx) array, which we termed field shaping array (FSA), was shown to mitigate breast shading at 3T. In this FSA, one Rx element was selectively unblocked and tuned off the Larmor frequency during the transmit (Tx) phase. The current flowing in this element during Tx created a secondary transmit field; the vector addition of this field and the one created directly by the body coil resulted in a more uniform excitation profile over the entire breast area. The receive Rx element was returned to its intended tuning during the Rx phase, ensuring unperturbed signal reception. Results Using the FSA, improved Tx field uniformity better fat suppression, increased image homogeneity and reduced power deposition was seen in all volunteers studied. Conclusion A simple modification of a standard breast Rx array, converting it to a field shaping array, was shown to mitigate breast shading in all volunteers studied. PMID:22730242

  5. Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona

    NASA Astrophysics Data System (ADS)

    Middel, Ariane; Selover, Nancy; Hagen, Björn; Chhetri, Nalini

    2016-05-01

    Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

  6. Effects of shading on spike differentiation and grain yield formation of summer maize in the field

    NASA Astrophysics Data System (ADS)

    Cui, Haiyan; Camberato, James J.; Jin, Libin; Zhang, Jiwang

    2015-09-01

    A field experiment was conducted to study the effects of shading on tassel and ear development and yield formation of three summer maize hybrids Zhenjie 2 (ZJ2), Denghai 605 (DH605), and Zhengdan 958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking stage (R1) to physiological maturity stage (R6) (treatment S1), from the sixth extended leaf stage (V6) to R1 (treatment S2) and from seeding to R6 (treatment S3). Shading had no significant effect on the time from seeding to shoot emergence (VE); however, subsequent growth and development were delayed with shading beyond this point. The differentiation time of both tassel and ear delayed, and female spike (tassel) floret differentiation, sexual organ formation time, and anthesis-silking interval (ASI) were lengthened. After shading, the total number of floret, silk, and fertilization floret reduced significantly; the number of abortive seeds increased, and the total setting percentage among different treatments showed that CK>S2>S1>S3; and the total setting percentages in S1, S2, and S3 of ZD958 were 44, 72, and 15 % respectively. The total floret number of tassel primordium differentiation, fertility rate, and seed setting rate of florets in S3 treatment was the minimum; kernels per ear decreased seriously and single ear setting percentage was only 16 %; although floret degeneration number of S2 during ear differentiation stages increased and floret fertility rate reduced than that of CK, fertilization flower seed production increased and abortive seed decreased after canceling shading. Aborted kernel of S1 increased and kernel dry weight reduced, resulting in a significant decrease of kernel number per ear and kernel weight, and the grain abortive rate of 40-62 %. In conclusion, shading changed the growth and development process and caused infertility of tassel and ear; tassel branches decreased

  7. Shape from shading from images rendered with various surface types and light fields.

    PubMed

    Khang, Byung-Geun; Koenderink, Jan J; Kappers, Astrid M L

    2007-01-01

    Shape constancy is referred to as the tendency for the perceived shape of an object to remain unchanged even under changed viewing and illumination conditions. We investigated, in two experiments, whether shape constancy would hold for images of 3-D solid objects defined by shading only, whose renderings differed in terms of surface material type (bi-directional reflectance distribution functions), light field, light direction, shape, and specularity. Observers were presented with the image of a sphere or an ellipsoid and required to set perceived orientation and cross-section profile on designated points of the image. Results showed that shape judgments varied with all the aforementioned variables except specularity. Shape estimates were more precise with specular than asperity scattering surfaces, collimated than hemispherical diffuse lighting conditions, lower than higher elevations, spherical than ellipsoidal shapes, but not different between surfaces having differing specularity. These results suggest that shape judgments are made largely on the basis of the overall intensity distribution of shading, and that the portions of intensity distribution that are due to nonstructural variables such as surface material type or light field are not excluded in the process of shape estimation, as if being due to structural components. It is concluded that little constancy is expected in the perception of shape from shading. PMID:17972483

  8. Influence of the Exposure Time after Removing of Covering Materials over Shading Tea Field on the Quality of Gyokuro

    NASA Astrophysics Data System (ADS)

    Sakaida, Teruki; Yoshioka, Tetsuya; Nitabaru, Juichi; Nakazono, Kentaro; Kubota, Akira; Nariyama, Hideki

    We revealed the influences of the exposure time after removing of covering materials over shading tea field for making gyokuro on the quality of made tea. As the exposure time increased, the green color of the fresh leaves faded; their total amino acid and theanine contents reduced; and the concentration of dimethyl sulfide, a representative aromatic compound in gyokuro, decreased. In contrast, the catechin content increased. The overall quality of the tea was lowered. These results indicated it was necessary to plucking of tea shoots for short time after removing of covering materials over shading tea field.

  9. AzTEC half square degree survey of the SHADES fields - I. Maps, catalogues and source counts

    NASA Astrophysics Data System (ADS)

    Austermann, J. E.; Dunlop, J. S.; Perera, T. A.; Scott, K. S.; Wilson, G. W.; Aretxaga, I.; Hughes, D. H.; Almaini, O.; Chapin, E. L.; Chapman, S. C.; Cirasuolo, M.; Clements, D. L.; Coppin, K. E. K.; Dunne, L.; Dye, S.; Eales, S. A.; Egami, E.; Farrah, D.; Ferrusca, D.; Flynn, S.; Haig, D.; Halpern, M.; Ibar, E.; Ivison, R. J.; van Kampen, E.; Kang, Y.; Kim, S.; Lacey, C.; Lowenthal, J. D.; Mauskopf, P. D.; McLure, R. J.; Mortier, A. M. J.; Negrello, M.; Oliver, S.; Peacock, J. A.; Pope, A.; Rawlings, S.; Rieke, G.; Roseboom, I.; Rowan-Robinson, M.; Scott, D.; Serjeant, S.; Smail, I.; Swinbank, A. M.; Stevens, J. A.; Velazquez, M.; Wagg, J.; Yun, M. S.

    2010-01-01

    We present the first results from the largest deep extragalactic mm-wavelength survey undertaken to date. These results are derived from maps covering over 0.7deg2, made at λ = 1.1mm, using the AzTEC continuum camera mounted on the James Clerk Maxwell Telescope. The maps were made in the two fields originally targeted at λ = 850μm with the Submillimetre Common-User Bolometer Array (SCUBA) in the SCUBA Half-Degree Extragalactic Survey (SHADES) project, namely the Lockman Hole East (mapped to a depth of 0.9-1.3 mJy rms) and the Subaru/XMM-Newton Deep Field (mapped to a depth of 1.0-1.7 mJy rms). The wealth of existing and forthcoming deep multifrequency data in these two fields will allow the bright mm source population revealed by these new wide-area 1.1mm images to be explored in detail in subsequent papers. Here, we present the maps themselves, a catalogue of 114 high-significance submillimetre galaxy detections, and a thorough statistical analysis leading to the most robust determination to date of the 1.1mm source number counts. These new maps, covering an area nearly three times greater than the SCUBA SHADES maps, currently provide the largest sample of cosmological volumes of the high-redshift Universe in the mm or sub-mm. Through careful comparison, we find that both the Cosmic Evolution Survey (COSMOS) and the Great Observatories Origins Deep Survey (GOODS) North fields, also imaged with AzTEC, contain an excess of mm sources over the new 1.1mm source-count baseline established here. In particular, our new AzTEC/SHADES results indicate that very luminous high-redshift dust enshrouded starbursts (S1.1mm > 3mJy) are 25-50 per cent less common than would have been inferred from these smaller surveys, thus highlighting the potential roles of cosmic variance and clustering in such measurements. We compare number count predictions from recent models of the evolving mm/sub-mm source population to these sub-mm bright galaxy surveys, which provide important

  10. Influence of sun and shade conditions on Gratiana boliviana (Coleoptera: Chrysomelidae) abundance and feeding activity on tropical soda apple (Solanales: Solanaceae) under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical soda apple (Solanum viarum Dunal) is a perennial invasive weed species which has become a serious problem in both agricultural and natural areas of the southeastern United States. A field survey was conducted at a ranch in Madison County, Florida, to assess the effect of sun and shade condi...

  11. Winter wheat and summer shade

    NASA Astrophysics Data System (ADS)

    Artru, S.; Garre, S.; Lassois, L.; Dupraz, C.

    2014-12-01

    Agroforestry research is in full expansion, but uncertainty remains on the performance of combinations of species with regard to the broad range of possible species associations. In addition, the variability of environmental conditions under which agroforestry stands can be successfully developed is unknown. Under Belgian pedoclimatic conditions, tree-crop competition for light might be the principal limiting factor in the agroforestry context. Most studies show that shade stress induces a systematic reduction of final crop yield. However, the response of a specific crop to shade is highly dependent on environmental conditions. In agroforestry systems, the tree canopy reduces the incident radiation for the crop following a dynamic spatio-temporal pattern. In this study, we will report on the efficiency of wheat under artificial dynamic shade in the experimental farm of Gembloux Agro-Bio Tech, Belgium in order to evaluate it's potential for agroforestry purposes in the same region. Wheat productivity and development under artificial shade conditions have been monitored during 1 year and the observations will be continued for 2 more years. We constructed an artificial shade structure, which mimics the light environment observed under hybrid walnut agroforestry trees: periodic fluctuation in radiation transmittance and discontinuous light quantity. We collected information on biomass development, soil state and radiation patterns in the field. Using this data, we evaluated the influence of dynamic shade, light availability and the efficiency with which energy is converted in wheat dry matter under the artificial shade treatment. This, in combination with modeling, will allow a thorough study of the potential of wheat-walnut agroforestry systems in the Hesbaye region in Belgium.

  12. Retractable Sun Shade

    NASA Technical Reports Server (NTRS)

    Frank, A.; Derespinis, S. F.; Mockovciak, John, Jr.

    1986-01-01

    Window-shade type spring roller contains blanket, taken up by rotating cylindrical frame and held by frame over area to be shaded. Blanket made of tough, opaque polyimide material. Readily unfurled by mechanism to protect space it encloses from Sun. Blanket forms arched canopy over space and allows full access to it from below. When shading not needed, retracted mechanism stores blanket compactly. Developed for protecting sensitive Space Shuttle payloads from direct sunlight while cargo-bay doors open. Adapted to shading of greenhouses, swimming pools, and boats.

  13. Dynamic Light and Shade.

    ERIC Educational Resources Information Center

    Hogarth, Burne

    This student artist's handbook provides illustrations and instructions for rendering three-dimensional form with light and shade. Focus is on realistic representation and imitation of natural phenomena. Fifteen chapters cover: (1) "Black-and-White Silhouette; (2) "Minimal Light"; (3) "Five Categories of Light and Shade"; (4) "Single-Source Light";…

  14. Anisotropic Ambient Volume Shading.

    PubMed

    Ament, Marco; Dachsbacher, Carsten

    2016-01-01

    We present a novel method to compute anisotropic shading for direct volume rendering to improve the perception of the orientation and shape of surface-like structures. We determine the scale-aware anisotropy of a shading point by analyzing its ambient region. We sample adjacent points with similar scalar values to perform a principal component analysis by computing the eigenvectors and eigenvalues of the covariance matrix. In particular, we estimate the tangent directions, which serve as the tangent frame for anisotropic bidirectional reflectance distribution functions. Moreover, we exploit the ratio of the eigenvalues to measure the magnitude of the anisotropy at each shading point. Altogether, this allows us to model a data-driven, smooth transition from isotropic to strongly anisotropic volume shading. In this way, the shape of volumetric features can be enhanced significantly by aligning specular highlights along the principal direction of anisotropy. Our algorithm is independent of the transfer function, which allows us to compute all shading parameters once and store them with the data set. We integrated our method in a GPU-based volume renderer, which offers interactive control of the transfer function, light source positions, and viewpoint. Our results demonstrate the benefit of anisotropic shading for visualization to achieve data-driven local illumination for improved perception compared to isotropic shading. PMID:26529745

  15. The SCUBA HAlf Degree Extragalactic Survey (SHADES) - V. Submillimetre properties of near-infrared-selected galaxies in the Subaru/XMM -Newton deep field

    NASA Astrophysics Data System (ADS)

    Takagi, T.; Mortier, A. M. J.; Shimasaku, K.; Coppin, K.; Pope, A.; Ivison, R. J.; Hanami, H.; Serjeant, S.; Clements, D. L.; Priddey, R. S.; Dunlop, J. S.; Takata, T.; Aretxaga, I.; Chapman, S. C.; Eales, S. A.; Farrah, D.; Granato, G. L.; Halpern, M.; Hughes, D. H.; van Kampen, E.; Scott, D.; Sekiguchi, K.; Smail, I.; Vaccari, M.

    2007-11-01

    We have studied the submillimetre (submm) properties of the following classes of near-infrared-selected (NIR-selected) massive galaxies at high redshifts: BzK-selected star-forming galaxies (BzKs); distant red galaxies (DRGs); and extremely red objects (EROs). We used the SCUBA HAlf Degree Extragalactic Survey (SHADES), the largest uniform submm survey to date. Partial overlap of SIRIUS/NIR images and SHADES in Subaru/XMM-Newton deep field has allowed us to identify four submm-bright NIR-selected galaxies, which are detected in the mid-IR, 24μ m, and the radio, 1.4GHz. We find that all of our submm-bright NIR-selected galaxies satisfy the BzK selection criteria, i.e. BzK ≡ (z - K)AB - (B - z)AB >= -0.2, except for one galaxy whose B - z and z - K colours are however close to the BzK colour boundary. Two of the submm-bright NIR-selected galaxies satisfy all of the selection criteria we considered, i.e. they belong to the BzK-DRG-ERO overlapping population, or `extremely red' BzKs. Although these extremely red BzKs are rare (0.25 arcmin-2), up to 20 per cent of this population could be submm galaxies. This fraction is significantly higher than that found for other galaxy populations studied here. Via a stacking analysis, we have detected the 850-μ m flux of submm-faint BzKs and EROs in our SCUBA maps. While the contribution of z ~ 2 BzKs to the submm background is about 10-15 per cent and similar to that from EROs typically at z ~ 1, BzKs have a higher fraction (~30 per cent) of submm flux in resolved sources compared with EROs and submm sources as a whole. From the spectral energy distribution (SED) fitting analysis for both submm-bright and submm-faint BzKs, we found no clear signature that submm-bright BzKs are experiencing a specifically luminous evolutionary phase, compared with submm-faint BzKs. An alternative explanation might be that submm-bright BzKs are more massive than submm-faint ones.

  16. VizieR Online Data Catalog: AzTEC survey of the SHADES fields. II. (Michalowski+, 2012)

    NASA Astrophysics Data System (ADS)

    Michalowski, M. J.; Dunlop, J. S.; Ivison, R. J.; Cirasuolo, M.; Caputi, K. I.; Aretxaga, I.; Arumugam, V.; Austermann, J. E.; Chapin, E. L.; Chapman, S. C.; Coppin, K. E. K.; Egami, E.; Hughes, D. H.; Ibar, E.; Mortier, A. M. J.; Schael, A. M.; Scott, K. S.; Smail, I.; Targett, T. A.; Wagg, J.; Wilson, G. W.; Xu, L.; Yun, M.

    2013-04-01

    We utilized the JCMT/AzTEC 1.1mm maps and catalogues from Austermann et al. (2010, Cat. J/MNRAS/401/160). These data cover 0.7deg2 to an rms depth of 0.9-1.7mJy/beam. We selected all 148 sources presented by Austermann et al. (2010, Cat. J/MNRAS/401/160) with signal-to-noise ratios (S/Ns) > 3.5, and adopted the statistically deboosted 1.1mm flux densities. The VLA 1.4GHz and GMRT 0.61GHz radio data were taken from Ivison et al. (2005MNRAS.364.1025I, 2007, Cat. J/MNRAS/380/199) and Ibar et al. (2009, Cat. J/MNRAS/397/281, 2010MNRAS.401L..53I), respectively. The mid-IR Spitzer data in the Lockman Hole East field are from programmes PID 81 (PI: G. Rieke) and PID 50249 (PI: E. Egami), described in Egami et al. (2004ApJS..154..130E) and Dye et al. (2008MNRAS.386.1107D), whereas in the UDS field the mid-IR data are from the Spitzer Public Legacy Survey of the UKIDSS UDS (PI: J. Dunlop, http://ssc.spitzer.caltech.edu/spitzermission/observingprograms/ legacy/spuds/) described in Caputi et al. (2011MNRAS.413..162C). The optical data in both fields were obtained with Subaru/SuprimeCam, as described in Dye et al. (2006MNRAS.372.1227D) and Furusawa et al. (2008, Cat. J/ApJS/176/1). The near-IR data in both fields are provided by the UKIRT Infrared Deep Sky Survey (UKIDSS; Lawrence et al. 2007, Cat. II/314) with the SXDF/UDS field benefitting from the ultradeep J, H, K coverage provided by the UDS (e.g. Cirasuolo et al. 2010MNRAS.401.1166C), while the Lockman Hole East field is part of the somewhat shallower UKIDSS DXS (Warren et al., 2007MNRAS.375..213W). (5 data files).

  17. Tints, Shades and Frost

    ERIC Educational Resources Information Center

    Sterling, Joan

    2009-01-01

    This article describes a classroom art project inspired by the work of Robert Frost, one of the most acclaimed and beloved American poets of all time. Using tints and shades in a composition, this project demonstrates how quality literature may be incorporated into elementary art lessons in a very useful way, making art an important complement to…

  18. Shades of Gray.

    ERIC Educational Resources Information Center

    Nelson, John C.; Calibeo, Thomas E.

    1998-01-01

    A university's financing choices cover many shades of gray. Some off-balance-sheet financing uses no debt capacity, while others represent or imply full financial commitment. Many others fall in between. The choices made by a number of institutions in financing facility expansions or improvements are discussed, and the Moody's Investors Service…

  19. [Effects of shading on the growth, development and grain yield of summer maize].

    PubMed

    Zhang, Jiwang; Dong, Shuting; Wang, Kongjun; Hu, Changhao; Liu, Peng

    2006-04-01

    Under field condition, this paper studied the effects of shading on the growth, development, and grain yield of summer maize varieties ND108 and YD13. The results showed that shading decreased maize yield significantly, and the effect was differed with different shading period and intensity. With a shading intensity of 50% and 90%, the grain yield of ND108 and YD13 was decreased by 67.5% and 79.4%, and 82.9% and 86.7% when shading at flowering-maturing stage, and by 34.1% and 55.3%, and 47.2%, 65.7% when shading at joining-flowering stage, respectively. Shading at seedling-joining stage had a relatively smaller effect, with the grain yield decreased by 16.9% and 24.5%, and 18.9% and 24.3%, respectively. Shading had a larger effect on YD13 than on ND108, and the effect of shading period was larger than that of shading intensity. Under shading, the growth and development of maize was retarded, and the effect was increased with increasing shading intensity. Shading at joining-flowering stage affected spike differentiation significantly, reflecting in the marked decrease of the numbers of silks and tassels, and the effect was also larger on YD13 than on ND108. The leaf and plant growth was restrained significantly when shading at seedling stage and at flowering-maturing stage. PMID:16836097

  20. Irradiation resistance of intravolume shading elements embedded in photomasks used for CD uniformity control by local intra-field transmission attenuation

    NASA Astrophysics Data System (ADS)

    Zait, Eitan; Ben-Zvi, Guy; Dmitriev, Vladimir; Oshemkov, Sergey; Pforr, Rainer; Hennig, Mario

    2006-05-01

    Intra-field CD variation is, besides OPC errors, a main contributor to the total CD variation budget in IC manufacturing. It is caused mainly by mask CD errors. In advanced memory device manufacturing the minimum features are close to the resolution limit resulting in large mask error enhancement factors hence large intra-field CD variations. Consequently tight CD Control (CDC) of the mask features is required, which results in increasing significantly the cost of mask and hence the litho process costs. Alternatively there is a search for such techniques (1) which will allow improving the intrafield CD control for a given moderate mask and scanner imaging performance. Currently a new technique (2) has been proposed which is based on correcting the printed CD by applying shading elements generated in the substrate bulk of the mask by ultrashort pulsed laser exposure. The blank transmittance across a feature is controlled by changing the density of light scattering pixels. The technique has been demonstrated to be very successful in correcting intra-field CD variations caused by the mask and the projection system (2). A key application criterion of this technique in device manufacturing is the stability of the absorbing pixels against DUV light irradiation being applied during mask projection in scanners. This paper describes the procedures and results of such an investigation. To do it with acceptable effort a special experimental setup has been chosen allowing an evaluation within reasonable time. A 193nm excimer laser with pulse duration of 25 ns has been used for blank irradiation. Accumulated dose equivalent to 100,000 300 mm wafer exposures has been applied to Half Tone PSM mask areas with and without CDC shadowing elements. This allows the discrimination of effects appearing in treated and untreated glass regions. Several intensities have been investigated to define an acceptable threshold intensity to avoid glass compaction or generation of color centers in

  1. Shaded Relief, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic image shows the western side of the volcanically active Kamchatka Peninsula, Russia. The data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). On the left side are four rivers, which flow northwest to the Sea of Okhotsk. These rivers are, from the south to north, Tigil, Amanina, Voyampolka, and Zhilovaya. The broad, flat floodplains of the rivers are shown in blue. These rivers are important spawning grounds for salmon. In the right side of the image is the Sredinnyy Khrebet, the volcanic mountain range that makes up the 3spine2 of the peninsula. The cluster of hills to the lower right is a field of small dormant volcanoes. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and understand the hazards posed by future eruptions.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and

  2. Shape from Shading in Pigeons

    ERIC Educational Resources Information Center

    Cook, Robert G.; Qadri, Muhammad A. J.; Kieres, Art; Commons-Miller, Nicholas

    2012-01-01

    Light is the origin of vision. The pattern of shading reflected from object surfaces is one of several optical features that provide fundamental information about shape and surface orientation. To understand how surface and object shading is processed by birds, six pigeons were tested with differentially illuminated convex and concave curved…

  3. Effectiveness of Different Shade Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle produced in open feedlots are vulnerable to a variety of weather events; under certain conditions heat events can be especially detrimental. Shade structures are often considered as one method of reducing cattle stress. A summer study was conducted during 2007 using instrumented shade struc...

  4. Perceived depth from shading boundaries.

    PubMed

    Kim, Juno; Anstis, Stuart

    2016-01-01

    Shading is well known to provide information the visual system uses to recover the three-dimensional shape of objects. We examined conditions under which patterns in shading promote the experience of a change in depth at contour boundaries, rather than a change in reflectance. In Experiment 1, we used image manipulation to illuminate different regions of a smooth surface from different directions. This manipulation imposed local differences in shading direction across edge contours (delta shading). We found that increasing the angle of delta shading, from 0° to 180°, monotonically increased perceived depth across the edge. Experiment 2 found that the perceptual splitting of shading into separate foreground and background surfaces depended on an assumed light source from above prior. Image regions perceived as foreground structures in upright images appeared farther in depth when the same images were inverted. We also found that the experienced break in surface continuity could promote the experience of amodal completion of colored contours that were ambiguous as to their depth order (Experiment 3). These findings suggest that the visual system can identify occlusion relationships based on monocular variations in local shading direction, but interprets this information according to a light source from above prior of midlevel visual processing. PMID:27271807

  5. Technology reviews: Shading systems

    SciTech Connect

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  6. A direct approach for quantifying stream shading

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive stream water temperature causes thermal stress in fish and invertebrates, decreases dissolved oxygen, and encourages bacterial and algal growth. Solar radiation affects stream temperature. Shade cast by riparian vegetation reduces thermal inputs to stream water. Stream shading standards...

  7. Shade structure design and evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shade structures are often considered as a method of reducing heat stress in feedlot cattle during extreme summer conditions. Design and material selection present challenges to meet a range of criteria that include: cost, effectiveness, durability, low maintenance, and minimal interference with no...

  8. Shaded Relief Color Wrapped, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This shaded relief topographic image shows the western side of the volcanically active Kamchatka Peninsula, Russia. The data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). On the left side are five rivers, which flow northwest to the Sea of Okhotsk. These rivers are, from the south to north, Tigil, Amanina, Voyampolka, Zhilovaya, and Kakhtana. The broad, flat floodplains of the rivers are shown in yellow. These rivers are important spawning grounds for salmon. In the right side of the image is the Sredinnyy Khrebet, the volcanic mountain range that makes up the 3spine2 of the peninsula. The cluster of hills to the lower right is a field of small dormant volcanoes. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and understand the hazards posed by future eruptions.

    This image was generated using topographic data from the Shuttle Radar Topography Mission. Colors show the elevation as measured by SRTM. Each cycle of colors (from red through green back to red) represents an equal amount of elevation difference (400 meters, or 1300 feet)similar to contour lines on a standard topographic map. This image contains about 2300 meters (7500 feet) of total relief. For the shading, a computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast

  9. Topography from shading and stereo

    NASA Technical Reports Server (NTRS)

    Horn, Berthold P.; Caplinger, Michael

    1993-01-01

    Methods exploiting photometric information in images that have been developed in machine vision can be applied to planetary imagery. Present techniques, however, focus on one visual cue, such as shading or binocular stereo, and produce results that are either not very accurate in an absolute sense or provide information only at few points on the surface. We plan to integrate shape from shading, binocular stereo and photometric stereo to yield a robust system for recovering detailed surface shape and surface reflectance information. Such a system will be useful in producing quantitative information from the vast volume of imagery being received, as well as in helping visualize the underlying surface. The work will be carried out on a popular computing platform so that it will be easily accessible to other workers.

  10. Topography from shading and stereo

    NASA Technical Reports Server (NTRS)

    Horn, Berthold P.; Caplinger, Michael

    1992-01-01

    Methods exploiting photometric information in images that have been developed in machine vision can be applied to planetary imagery. Present techniques, however, focus on one visual cue, such as shading or binocular stereo, and produce results that are either not very accurate in an absolute sense or provide information only at few points on the surface. We plan to integrate shape from shading, binocular stereo and photometric stereo to yield a robust system for recovering detailed surface shape and surface reflectance information. Such a system will be useful in producing quantitative information from the vast volume of imagery being received, as well as in helping visualize the underlying surface. The work will be carried out on a popular computing platform so that it will be easily accessible to other workers.

  11. Topography from shading and stereo

    NASA Technical Reports Server (NTRS)

    Horn, Berthold K. P.

    1994-01-01

    Methods exploiting photometric information in images that have been developed in machine vision can be applied to planetary imagery. Integrating shape from shading, binocular stereo, and photometric stereo yields a robust system for recovering detailed surface shape and surface reflectance information. Such a system is useful in producing quantitative information from the vast volume of imagery being received, as well as in helping visualize the underlying surface.

  12. Effects of Shading on Starch Pasting Characteristics of Indica Hybrid Rice (Oryza sativa L.)

    PubMed Central

    Ren, Wan-Jun; Yang, Wen-Yu

    2013-01-01

    Rice is an important staple crop throughout the world, but environmental stress like low-light conditions can negatively impact crop yield and quality. Using pot experiments and field experiments, we studied the effects of shading on starch pasting viscosity and starch content with six rice varieties for three years, using the Rapid Visco Analyser to measure starch pasting viscosity. Shading at different growth stages and in different rice varieties all affected the starch pasting characteristics of rice. The effects of shading on starch pasting viscosity at middle and later growth stages were greater than those at earlier stages. Shading enhanced breakdown but reduced hold viscosity and setback at tillering-elongation stage. Most pasting parameters changed significantly with shading after elongation stage. Furthermore, the responses of different varieties to shading differed markedly. The change scope of starch pasting viscosity in Dexiang 4103 was rather small after heading, while that in IIyou 498 and Gangyou 906 was small before heading. We observed clear tendencies in peak viscosity, breakdown, and pasting temperature of the five rice varieties with shading in 2010 and 2011. Correlation analysis indicated that the rice amylose content was negatively correlated with breakdown, but was positively correlated with setback. Based on our results, IIyou 498, Gangyou 906, and Dexiang 4103 had higher shade endurance, making these varieties most suitable for high-quality rice cultivation in low-light regions. PMID:23861872

  13. Overexpression of phytochrome A and its hyperactive mutant improves shade tolerance and turf quality in creeping bentgrass and zoysiagrass.

    PubMed

    Ganesan, Markkandan; Han, Yun-Jeong; Bae, Tae-Woong; Hwang, Ok-Jin; Chandrasekhar, Thummala; Chandrasekkhar, Thummala; Shin, Ah-Young; Goh, Chang-Hyo; Nishiguchi, Satoshi; Song, In-Ja; Lee, Hyo-Yeon; Kim, Jeong-Il; Song, Pill-Soon

    2012-10-01

    Phytochrome A (phyA) in higher plants is known to function as a far-red/shade light-sensing photoreceptor in suppressing shade avoidance responses (SARs) to shade stress. In this paper, the Avena PHYA gene was introduced into creeping bentgrass (Agrostis stolonifera L.) and zoysiagrass (Zoysia japonica Steud.) to improve turf quality by suppressing the SARs. In addition to wild-type PHYA, a hyperactive mutant gene (S599A-PHYA), in which a phosphorylation site involved in light-signal attenuation was removed, was also transformed into the turfgrasses. Phenotypic traits of the transgenic plants were compared to assess the suppression of SARs under a simulated shade condition and outdoor field conditions after three growth seasons. Under the shade condition, the S599A-PhyA transgenic creeping bentgrass plants showed shade avoidance-suppressing phenotypes with a 45 % shorter leaf lengths, 24 % shorter internode lengths, and twofold increases in chlorophyll concentrations when compared with control plants. Transgenic zoysiagrass plants overexpressing S599A-PHYA also showed shade-tolerant phenotypes under the shade condition with reductions in leaf length (15 %), internode length (30 %), leaf length/width ratio (19 %) and leaf area (22 %), as well as increases in chlorophyll contents (19 %) and runner lengths (30 %) compared to control plants. The phenotypes of transgenic zoysiagrass were also investigated in dense field habitats, and the transgenic turfgrass exhibited shade-tolerant phenotypes similar to those observed under laboratory shade conditions. Therefore, the present study suggests that the hyperactive phyA is effective for the development of shade-tolerant plants, and that the shade tolerance nature is sustained under field conditions. PMID:22644765

  14. The effects of providing portable shade at pasture on dairy cow behavior and physiology.

    PubMed

    Palacio, S; Bergeron, R; Lachance, S; Vasseur, E

    2015-09-01

    Access to pasture has advantages for cows such as reduced lameness and improved udder health, but also may expose cows to stressors such as extreme heat. The objective of this study was to understand how portable shade affected physiological and behavioral responses of pastured dairy cows in a Canadian summer. Over 8wk, a total of 24 lactating Holstein cows were separated into 2 treatments, one with access to shade and a control without access to shade. The cows were pastured in groups of 4, with 3 field sections per treatment. Instantaneous scan sampling of behaviors (drinking, lying, grazing, other) performed in the shade or not were recorded every 5min for 3h/d during the hottest part of the day (peak hours: 1130-1530h) 3d/wk. Ambient temperature, humidity, and vaginal temperature were recorded at 10-min intervals. Daily milk production was also recorded. Differences between treatments by week were analyzed using the generalized linear mixed model with group as random effect and treatment as fixed effect. Cows with shade access were observed at the water trough up to 6.42 times less and lying down up to 1.75 times more. Cows with shade access grazed up to 1.5 times more but only when the temperature-humidity index was above their comfort threshold (≥72) during the hottest part of the day (wk 2). Cows sought shade when it was made available, but spent less than half of their time observed (%) in the shade (40.8±4.67) with the exception of wk 2 when most of the time was spent under the shade (74.3±4.77). Daily lying time was highest during peak hours for cows with shade access. However, no overall difference in total lying time between the 2 treatments was observed. No differences were found in vaginal temperature or milk production between treatments with the exception of wk 1 for daily milk production, which was higher for cows in the control treatment. In conclusion, cows sought shade when it was provided at pasture, whereas cows without access to shade

  15. Field-Grown Grapevine Berries Use Carotenoids and the Associated Xanthophyll Cycles to Acclimate to UV Exposure Differentially in High and Low Light (Shade) Conditions

    PubMed Central

    Joubert, Chandré; Young, Philip R.; Eyéghé-Bickong, Hans A.; Vivier, Melané A.

    2016-01-01

    Light quantity and quality modulate grapevine development and influence berry metabolic processes. Here we studied light as an information signal for developing and ripening grape berries. A Vitis vinifera Sauvignon Blanc field experiment was used to identify the impacts of UVB on core metabolic processes in the berries under both high light (HL) and low light (LL) microclimates. The primary objective was therefore to identify UVB-specific responses on berry processes and metabolites and distinguish them from those responses elicited by variations in light incidence. Canopy manipulation at the bunch zone via early leaf removal, combined with UVB-excluding acrylic sheets installed over the bunch zones resulted in four bunch microclimates: (1) HL (control); (2) LL (control); (3) HL with UVB attenuation and (4) LL with UVB attenuation. Metabolite profiles of three berry developmental stages showed predictable changes to known UV-responsive compound classes in a typical UV acclimation (versus UV damage) response. Interestingly, the berries employed carotenoids and the associated xanthophyll cycles to acclimate to UV exposure and the berry responses differed between HL and LL conditions, particularly in the developmental stages where berries are still photosynthetically active. The developmental stage of the berries was an important factor to consider in interpreting the data. The green berries responded to the different exposure and/or UVB attenuation signals with metabolites that indicate that the berries actively managed its metabolism in relation to the exposure levels, displaying metabolic plasticity in the photosynthesis-related metabolites. Core processes such as photosynthesis, photo-inhibition and acclimation were maintained by differentially modulating metabolites under the four treatments. Ripe berries also responded metabolically to the light quality and quantity, but mostly formed compounds (volatiles and polyphenols) that have direct antioxidant and/or

  16. Partial shade stress test for thin-film photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Silverman, Timothy J.; Deceglie, Michael G.; Deline, Chris; Kurtz, Sarah

    2015-09-01

    Partial shade of monolithic thin-film PV modules can cause reverse-bias conditions leading to permanent damage. In this work, we introduce a partial shade stress test for thin-film PV modules that quantifies permanent performance loss. The test reproduces shading and loading conditions that may occur in the field. It accounts for reversible light-induced performance changes and for the effects of light-enhanced reverse breakdown. We simulated the test procedure using a computer model that predicts the local voltage, current and temperature stress resulting from partial shade. We also performed the test on three commercial module types. Each module type we tested suffered permanent damage during masked ash testing totaling < 2 s of light exposure. During the subsequent stress test these module types lost 4%{11% in Pmp due to widespread formation of new shunts. One module type showed a substantial worsening of the Pmp loss upon light stabilization, underscoring the importance of this practice for proper quantification of damage.

  17. The shading cue in context

    PubMed Central

    Wagemans, Johan; van Doorn, Andrea J; Koenderink, Jan J

    2010-01-01

    The shading cue is supposed to be a major factor in monocular stereopsis. However, the hypothesis is hardly corroborated by available data. For instance, the conventional stimulus used in perception research, which involves a circular disk with monotonic luminance gradient on a uniform surround, is theoretically ‘explained’ by any quadric surface, including spherical caps or cups (the conventional response categories), cylindrical ruts or ridges, and saddle surfaces. Whereas cylindrical ruts or ridges are reported when the outline is changed from circular to square, saddle surfaces are never reported. We introduce a method that allows us to differentiate between such possible responses. We report observations on a number of variations of the conventional stimulus, including variations of shape and quality of the boundary, and contexts that allow the observer to infer illumination direction. We find strong and expected influences of outline shape, but, perhaps surprisingly, we fail to find any influence of context, and only partial influence of outline quality. Moreover, we report appreciable differences within the generic population. We trace some of the idiosyncrasies (as compared to shape from shading algorithms) of the human observer to generic properties of the environment, in particular the fact that many objects are limited in size and elliptically convex over most of their boundaries. PMID:23145221

  18. Effects of Shading on Cercospora Leaf Spot in Bigleaf Hydrangea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shading densities significantly affected severity of Cercospora leaf spot on bigleaf hydrangeas. In general, lower disease severities were associated with higher shading densities. However, significantly differences in disease severities among cultivars could not be detected in higher shading densi...

  19. Effect of shade on atmospheric oxidants (smog)

    SciTech Connect

    Stewart, W.S.; Wilken, D.H.

    1985-01-01

    A series of experiments utilizing atmospheric smog were conducted comparing simultaneously the oxidant level in sunlight and under shade. From the results of the experiments, it is suggested that the undesirable effects of smog in a localized area may be reduced by the planting of shade trees, vines, shrubs and encouraging a denser growth of vegetation.

  20. Selection of Shade Tolerant Tall Fescue Genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue (Schedonorus arundinaceus) is genetically variable for many agronomic traits, so it might be possible to increase its persistence and productivity in shaded agroforestry applications. The objective of this research was to identify high yielding, shade-tolerant genotypes. Seed was obtai...

  1. Herbivory on Temperate Rainforest Seedlings in Sun and Shade: Resistance, Tolerance and Habitat Distribution

    PubMed Central

    Salgado-Luarte, Cristian; Gianoli, Ernesto

    2010-01-01

    Differential herbivory and/or differential plant resistance or tolerance in sun and shade environments may influence plant distribution along the light gradient. Embothrium coccineum is one of the few light-demanding tree species in the temperate rainforest of southern South America, and seedlings are frequently attacked by insects and snails. Herbivory may contribute to the exclusion of E. coccineum from the shade if 1) herbivory pressure is greater in the shade, which in turn can result from shade plants being less resistant or from habitat preferences of herbivores, and/or 2) consequences of damage are more detrimental in the shade, i.e., shade plants are less tolerant. We tested this in a field study with naturally established seedlings in treefall gaps (sun) and forest understory (shade) in a temperate rainforest of southern Chile. Seedlings growing in the sun sustained nearly 40% more herbivore damage and displayed half of the specific leaf area than those growing in the shade. A palatability test showed that a generalist snail consumed ten times more leaf area when fed on shade leaves compared to sun leaves, i.e., plant resistance was greater in sun-grown seedlings. Herbivore abundance (total biomass) was two-fold greater in treefall gaps compared to the forest understory. Undamaged seedlings survived better and showed a slightly higher growth rate in the sun. Whereas simulated herbivory in the shade decreased seedling survival and growth by 34% and 19%, respectively, damaged and undamaged seedlings showed similar survival and growth in the sun. Leaf tissue lost to herbivores in the shade appears to be too expensive to replace under the limiting light conditions of forest understory. Following evaluations of herbivore abundance and plant resistance and tolerance in contrasting light environments, we have shown how herbivory on a light-demanding tree species may contribute to its exclusion from shade sites. Thus, in the shaded forest understory, where the

  2. Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa1[C][W][OPEN

    PubMed Central

    Procko, Carl; Crenshaw, Charisse Michelle; Ljung, Karin; Noel, Joseph Patrick; Chory, Joanne

    2014-01-01

    Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor plants. If shade persists, early flowering and the reallocation of growth resources to stem elongation ultimately affect the yield of harvestable tissues in crop species. Previous studies have shown that hypocotyl growth in low red to far-red shade is largely dependent on the photoreceptor phytochrome B and the phytohormone auxin. However, where shade is perceived in the plant and how auxin regulates growth spatially are less well understood. Using the oilseed and vegetable crop species Brassica rapa, we show that the perception of low red to far-red shade by the cotyledons triggers hypocotyl cell elongation and auxin target gene expression. Furthermore, we find that following shade perception, elevated auxin levels occur in a basipetal gradient away from the cotyledons and that this is coincident with a gradient of auxin target gene induction. These results show that cotyledon-generated auxin regulates hypocotyl elongation. In addition, we find in mature B. rapa plants that simulated shade does not affect seed oil composition but may affect seed yield. This suggests that in field settings where mutual shading between plants may occur, a balance between plant density and seed yield per plant needs to be achieved for maximum oil yield, while oil composition might remain constant. PMID:24891610

  3. Instrument self-shading in underwater optical measurements: experimental data.

    PubMed

    Zibordi, G; Ferrari, G M

    1995-05-20

    Self-shading error of in-water optical measurements has been experimentally estimated for upwelling radiance and irradiance measurements taken just below the water surface. Radiance and irradiance data have been collected with fiber optics that terminated with 1°, 18°, and 2π optics housed in the center of a disk that simulated the size of the instrument. Analysis of measurements taken at 500, 600, and 640 nm in lake waters have shown errors ranging from a few percent up to several tens of percent as a function of the size of the radiometer, the absorption coefficient of the medium, the Sun zenith, and the atmospheric turbidity. Comparisons between experimental and theoretical errors, the latter computed according to a scheme suggested by other authors, have shown absolute differences generally lower than 5% for radiances and lower than 3% for irradiances. Analysis of radiance measurements taken with 1° and 18° fields of view have not shown appreciable differences in the self-shading error. This finding suggests that correction schemes for self-shading error developed for narrow-field-of-view radiance measurements could also be applied to measurements taken with relatively larger fields of view. PMID:21052421

  4. Instrument self-shading in underwater optical measurements: experimental data

    NASA Astrophysics Data System (ADS)

    Zibordi, G.; Ferrari, G. M.

    1995-05-01

    Self-shading error of in-water optical measurements has been experimentally estimated for upwelling radiance and irradiance measurements taken just below the water surface. Radiance and irradiance data have been collected with fiber optics that terminated with 1 deg, 18 deg, and 2 pi optics housed in the center of a disk that simulated the size of the instrument. Analysis of measurements taken at 500, 600, and 640 nm in lake waters have shown errors ranging from a few percent up to several tens of percent as a function of the size of the radiometer, the absorption coefficient of the medium, the Sun zenith, and the atmospheric turbidity. Comparisons between experimental and theoretical errors, the latter computed according to a scheme suggested by other authors, have shown absolute differences generally lower than 5% for radiances and lower than 3% for irradiances. Analysis of radiance measurements taken with 1 deg and 18 deg fields of view have not shown appreciable differences in the self-shading error. This finding suggests that correction schemes for self-shading error developed for narrow-field-of-view radiance measurements could also be applied to measurements taken with relatively larger fields of view.

  5. Series-connected shaded modules to address partial shading conditions in SPV systems

    NASA Astrophysics Data System (ADS)

    Pareek, Smita; Dahiya, Ratna

    2016-03-01

    With the progress of technology and reduced cost of PV cells, the PV systems are being installed in many countries, including India. Even though this method of power generation has sufficient potential but its effective utilization is still lacking. This is because the output power of PV cells depends on many factors like insolation, temperature, climate conditions prevailing nearby, aging, using modules from different technologies/manufacturers or partial shading conditions. Among these factors, partial shading causes major reduction in output power despite the size of PV systems. As a result, the produced power is lower than the expected value. The connection of modules to each other has great impact on output power if they are prone to partial shading conditions. In this paper, PV arrays are investigated under partial shading conditions. The results show that partial shading losses can be minimized by connecting shaded modules in series rather than in parallel.

  6. Partial Shade Stress Test for Thin-Film Photovoltaic Modules: Preprint

    SciTech Connect

    Silverman, Timothy J.; Deceglie, Michael G.; Deline, Chris; Kurtz, Sarah

    2015-09-02

    Partial shade of monolithic thin-film PV modules can cause reverse-bias conditions leading to permanent damage. In this work, we propose a partial shade stress test for thin-film PV modules that quantifies permanent performance loss. We designed the test with the aid of a computer model that predicts the local voltage, current and temperature stress that result from partial shade. The model predicts the module-scale interactions among the illumination pattern, the electrical properties of the photovoltaic material and the thermal properties of the module package. The test reproduces shading and loading conditions that may occur in the field. It accounts for reversible light-induced performance changes and for additional stress that may be introduced by light-enhanced reverse breakdown. We present simulated and experimental results from the application of the proposed test.

  7. Perception of local shape from shading.

    PubMed

    Erens, R G; Kappers, A M; Koenderink, J J

    1993-08-01

    Theoretically, metric solid shape is not determined uniquely by shading. Consequently, human vision has difficulty in categorizing shape when shading is the only cue. In the present research, subjects were required to categorize shaded quadric surfaces. We found that they were rather poor at this task; they confused hyperbolic and elliptic (both convex and concave) shapes easily. When a cast shadow visually indicated the direction of the illuminant, they were able to notice the concavity or convexity of elliptic shapes. However, they still confused elliptic and hyperbolic ones. Finally, when an animated sequence of eight intensity patterns belonging to one quadric shape had been displayed, the subjects were able to categorize the quadrics. However, the results are still quite moderate. Our experiments indicate that local shading structure is only a weak shape cue when presented in the absence of other visual cues. PMID:8361829

  8. Shade color discrimination by men and women.

    PubMed

    Donahue, J L; Goodkind, R J; Schwabacher, W B; Aeppli, D P

    1991-05-01

    Women have traditionally been believed to be more capable of matching colors than men. Because of this factor women should tend to agree with one another more often than men regarding tooth shade selection. This study tested differences in dental color perception between men and women. Six women and six men, all dental students, were selected and given the Farnsworth-Munsell 100 Hue test and the Farnsworth D15 test to rule out any inherent color deficiences. The students then used three different shade guides and three different light sources to match each others' teeth. Students selected shades for the gingival third and incisal third sites of selected maxillary anterior teeth. The students rotated use of the different shade guides and light sources. Descriptive statistics and ANOVA were performed on the data. Generally, there were no statistically significant findings with the use of three light sources and two shade guides for men at the p less than 0.05 level. For women, the light source made a difference. The men, as a group, showed borderline more (63% to 58%) uniform shade selection than the women. PMID:2051396

  9. A novel regulatory circuit underlying plant response to canopy shade

    PubMed Central

    Carabelli, Monica; Possenti, Marco; Sessa, Giovanna; Ciolfi, Andrea; Sassi, Massimiliano; Morelli, Giorgio

    2008-01-01

    A plant growing in the field has the unique ability to sense the presence of other plants growing near by and adjust its growth rate accordingly. This ability to detect neighbors, which is referred to as shade avoidance response, is mediated by members of the phytochrome family which detect light in the red (R) and far-red (FR) region of the spectrum. Work done by several laboratories has shown that low R/FR provides the signal for shade avoidance response during which the elongation of stem-like organs occurs at the expense of leaf development. However, the mechanism by which the low R/FR signal is transduced to attenuate leaf development has remained largely unknown. In the August issue of Genes and Development, we have shown that low R/FR rapidly and transiently arrests the growth of the leaf primordium. By exploiting mutant analysis in combination with genome wide expression profiling, we have identified a novel regulatory circuit underlying plant response to canopy shade. Together, the data demonstrate that the growth arrest induced by low R/FR depends on auxin-induced cytokinin breakdown in pre-procambial cells of developing primordia. In this addendum, we discuss open questions to be addressed in the future. PMID:19704735

  10. A novel regulatory circuit underlying plant response to canopy shade.

    PubMed

    Carabelli, Monica; Possenti, Marco; Sessa, Giovanna; Ciolfi, Andrea; Sassi, Massimiliano; Morelli, Giorgio; Ruberti, Ida

    2008-02-01

    A plant growing in the field has the unique ability to sense the presence of other plants growing near by and adjust its growth rate accordingly. This ability to detect neighbors, which is referred to as shade avoidance response, is mediated by members of the phytochrome family which detect light in the red (R) and far-red (FR) region of the spectrum. Work done by several laboratories has shown that low R/FR provides the signal for shade avoidance response during which the elongation of stem-like organs occurs at the expense of leaf development. However, the mechanism by which the low R/FR signal is transduced to attenuate leaf development has remained largely unknown. In the August issue of Genes and Development, we have shown that low R/FR rapidly and transiently arrests the growth of the leaf primordium. By exploiting mutant analysis in combination with genome wide expression profiling, we have identified a novel regulatory circuit underlying plant response to canopy shade. Together, the data demonstrate that the growth arrest induced by low R/FR depends on auxin-induced cytokinin breakdown in pre-procambial cells of developing primordia. In this addendum, we discuss open questions to be addressed in the future. PMID:19704735

  11. Seeds Use Temperature Cues to Ensure Germination under Nurse-plant Shade in Xeric Kalahari Savannah

    PubMed Central

    Kos, Martijn; Poschlod, Peter

    2007-01-01

    Background and Aims In arid environments many plant species are found associated with the canopies of woody perennials. Favourable conditions for establishment under canopies are likely to be associated with shade, but under canopies shade is distributed patchily and differs in quality. Diurnal temperature fluctuations and maximum temperatures could be reliable indicators of safe sites. Here, an examination is made as to whether canopy-associated species use temperature cues to germinate in shade patches, rather than matrix areas between trees. Methods The study was carried out in arid southern Kalahari savannah (Republic of South Africa). Perennial and annual species associated with Acacia erioloba trees and matrix species were germinated at temperature regimes resembling shaded and unshaded conditions. Soil temperature was measured in the field. Key Results Germination of all fleshy-fruited perennial acacia-associated species and two annual acacia-associated species was inhibited by the temperature regime resembling unshaded conditions compared with at least one of the regimes resembling shaded conditions. Inhibition in perennials decreased with seed mass, probably reflecting that smaller seedlings are more vulnerable to drought. Germination of matrix species was not inhibited by the unshaded temperature regime and in several cases it increased germination compared with shaded temperature regimes or constant temperature. Using phylogenetically independent contrasts a significant positive relationship was found between canopy association and the germination at shade temperatures relative to unshaded temperatures. Conclusions The data support the hypothesis that canopy species have developed mechanisms to prevent germination in open sun conditions. The results and data from the literature show that inhibition of germination at temperature regimes characteristic of open sun conditions can be found in fleshy-fruited species of widely divergent taxonomic groups. It is

  12. QTL Analysis of Shading Sensitive Related Traits in Maize under Two Shading Treatments

    PubMed Central

    Wang, Xiuping; Li, Chaohai

    2012-01-01

    During maize development and reproduction, shading stress is an important abiotic factor influencing grain yield. To elucidate the genetic basis of shading stress in maize, an F2:3 population derived from two inbred lines, Zhong72 and 502, was used to evaluate the performance of six traits under shading treatment and full-light treatment at two locations. The results showed that shading treatment significantly decreased plant height and ear height, reduced stem diameter, delayed day-to-tassel (DTT) and day-to-silk (DTS), and increased anthesis-silking interval (ASI). Forty-three different QTLs were identified for the six measured traits under shading and full light treatment at two locations, including seven QTL for plant height, nine QTL for ear height, six QTL for stem diameter, seven QTL for day-to-tassel, six QTL for day-to-silk, and eight QTL for ASI. Interestingly, three QTLs, qPH4, qEH4a, and qDTT1b were detected under full sunlight and shading treatment at two locations simultaneously, these QTL could be used for selecting elite hybrids with high tolerance to shading and high plant density. And the two QTL, qPH10 and qDTS1a, were only detected under shading treatment at two locations, should be quit for selecting insensitive inbred line in maize breeding procedure by using MAS method. PMID:22723877

  13. Estimating Effective Stream Shade in Riparian Areas

    NASA Astrophysics Data System (ADS)

    Sydow, L.; Link, T. E.; Gravelle, J. A.

    2009-12-01

    Concern about the effects of land cover change on stream temperature dynamics necessitates the quantification of effective stream shade for riparian management and water quality modeling. Accurate quantification of stream shade with radiometers is both challenging and expensive over large areas characterized by complex and spatially variable canopies. To address these challenges, a number of shade estimation methods have been developed for rapid stream cover assessments. The main objective of this study was to determine which of four canopy cover estimation methods best characterized effective shade in harvested and unharvested stream reaches. An associated objective was to understand how canopy cover and type affected the accuracy of the methods. The four methods tested were a manual canopy densiometer, analysis of standard imagery from a digital camera, the Solar Pathfinder, and analysis of hemispherical imagery using Hemiview software. These were compared to measurements of percent incoming shortwave radiation quantified with Hukseflux NR-01 radiometers at each location. Four stream reaches in the Mica Creek Experimental Watershed were used to assess the estimation methods under different amounts and types of canopy cover: an unharvested area, a partial cut, an open clear cut, and a clear cut with dense understory. All estimation methods were most accurate in the most shaded location (dense understory clear cut) and least accurate in the open clear cut, the least shaded location. The values estimated by Hemiview proved to be the most accurate in all four areas, differing from the true value by ~5% on average; the Solar Pathfinder was the second most accurate with an error of ~8%. The results from the digital camera and canopy densiometer were comparable, at ~15% difference from the true value. While Hemiview is the most expensive and time consuming of the four methods, it was the most accurate for estimating effective stream shade in this study.

  14. Effects of Nitrogen and Shading on Root Morphologies, Nutrient Accumulation, and Photosynthetic Parameters in Different Rice Genotypes.

    PubMed

    Pan, Shenggang; Liu, Haidong; Mo, Zhaowen; Patterson, Bob; Duan, Meiyang; Tian, Hua; Hu, Shuijing; Tang, Xiangru

    2016-01-01

    Nitrogen availability and illumination intensity are two key factors which affect rice growth. However, their influences on total nitrogen accumulation, photosynthetic rate, root morphologies, and yields are not fully understood. We conducted two field experiments to (1) evaluate the effects of shading under different N treatments on photosynthetic parameters, root morphologies, total nutrient accumulation, and grain yields of rice; and (2) elucidate the relationship between total nutrient accumulation and root morphologies under different shading conditions and nitrogen treatments. Three nitrogen rates, three shading treatments, and three different rice cultivars were used in two field experiments. Double shading during the grain-filling stage decreased total nutrient accumulation, altered root morphological characteristics, and decreased yields in rice. There were also significant interaction effects between nitrogen and shading on photosynthetic rate, transpiration rate, and total root length, root superficial area, and root volume. Significant interactions were found among cultivars and shading for photosynthetic rate and transpiration rate. Correlation analysis revealed that total nitrogen accumulation (TNA) and potassium accumulation (TKA) were significantly positively correlated with total root length, root superficial area, and root volume. N application could alleviate the detrimental effects of shading on total nutrient accumulation and grain yield in rice. PMID:27557779

  15. Effects of Nitrogen and Shading on Root Morphologies, Nutrient Accumulation, and Photosynthetic Parameters in Different Rice Genotypes

    PubMed Central

    Pan, Shenggang; Liu, Haidong; Mo, Zhaowen; Patterson, Bob; Duan, Meiyang; Tian, Hua; Hu, Shuijing; Tang, Xiangru

    2016-01-01

    Nitrogen availability and illumination intensity are two key factors which affect rice growth. However, their influences on total nitrogen accumulation, photosynthetic rate, root morphologies, and yields are not fully understood. We conducted two field experiments to (1) evaluate the effects of shading under different N treatments on photosynthetic parameters, root morphologies, total nutrient accumulation, and grain yields of rice; and (2) elucidate the relationship between total nutrient accumulation and root morphologies under different shading conditions and nitrogen treatments. Three nitrogen rates, three shading treatments, and three different rice cultivars were used in two field experiments. Double shading during the grain-filling stage decreased total nutrient accumulation, altered root morphological characteristics, and decreased yields in rice. There were also significant interaction effects between nitrogen and shading on photosynthetic rate, transpiration rate, and total root length, root superficial area, and root volume. Significant interactions were found among cultivars and shading for photosynthetic rate and transpiration rate. Correlation analysis revealed that total nitrogen accumulation (TNA) and potassium accumulation (TKA) were significantly positively correlated with total root length, root superficial area, and root volume. N application could alleviate the detrimental effects of shading on total nutrient accumulation and grain yield in rice. PMID:27557779

  16. Computer simulation of shading and blocking: Discussion of accuracy and recommendations

    SciTech Connect

    Lipps, F W

    1992-04-01

    A field of heliostats suffers losses caused by shading and blocking by neighboring heliostats. The complex geometry of multiple shading and blocking events suggests that a processing code is needed to update the boundary vector for each shading or blocking event. A new version, RSABS, (programmer`s manual included) simulates the split-rectangular heliostat. Researchers concluded that the dominant error for the given heliostat geometry is caused by the departure from planarity of the neighboring heliostats. It is recommended that a version of the heliostat simulation be modified to include losses due to nonreflective structural margins, if they occur. Heliostat neighbors should be given true guidance rather than assumed to be parallel, and the resulting nonidentical quadrilateral images should be processed, as in HELIOS, by ignoring overlapping events, rare in optimized fields.

  17. Computer simulation of shading and blocking: Discussion of accuracy and recommendations

    SciTech Connect

    Lipps, F.W. )

    1992-04-01

    A field of heliostats suffers losses caused by shading and blocking by neighboring heliostats. The complex geometry of multiple shading and blocking events suggests that a processing code is needed to update the boundary vector for each shading or blocking event. A new version, RSABS, (programmer's manual included) simulates the split-rectangular heliostat. Researchers concluded that the dominant error for the given heliostat geometry is caused by the departure from planarity of the neighboring heliostats. It is recommended that a version of the heliostat simulation be modified to include losses due to nonreflective structural margins, if they occur. Heliostat neighbors should be given true guidance rather than assumed to be parallel, and the resulting nonidentical quadrilateral images should be processed, as in HELIOS, by ignoring overlapping events, rare in optimized fields.

  18. Effects of Shading on Cerospora Leaf Spot in Bigleaf Hydrangea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shading densities significantly affected disease severities of Cercospora leaf spot on bigleaf hydrangeas. In general, lower disease severities were associated with higher shading densities. However, significantly differences in disease severities among cultivars could not be detected in higher sha...

  19. Gray-shading for the SD-4060 graphics device

    NASA Technical Reports Server (NTRS)

    Gloeckler, C.

    1975-01-01

    Grays, a FORTRAN program, is described which will generate gray shading for the SD-4060 graphics device. The program produces 10 shades of gray ranging from no shading at all to complete coverage of the film frame. The graphing capabilities are summarized and illustrated. The figures displayed are representative of the microfilm output, but the distinction between various intensities is much clearer on the film, especially at the more intense shading.

  20. Illuminating the Mathematics of Lamp Shades

    ERIC Educational Resources Information Center

    Matthews, Michael E.; Gross, Greg

    2008-01-01

    The problem of creating lamp shades to specific design parameters allows rich and interesting explorations in the mathematics of circles and triangles. This interactive project helps students build their spatial reasoning and is especially appropriate during a unit on either the Pythagorean theorem or similar triangles. (Contains 7 figures and 1…

  1. Shape from Shading in Starlings (Sturnus vulgaris)

    PubMed Central

    Qadri, Muhammad A.; Romero, L. Michael; Cook, Robert G.

    2014-01-01

    Birds behave as if they quickly and accurately perceive an object-filled visual world. Beyond the extensive research with pigeons, however, there is a large and important gap in our knowledge about the mechanisms of object perception and recognition in other avian visual systems. The pattern of shading reflected from object surfaces is one important optical feature providing fundamental information about shape. To better understand how surface and object shading is processed by a passerine species, five starlings were tested with differentially illuminated convex and concave curved surfaces in three experiments using a simultaneous visual discrimination procedure. Starlings rapidly learned this shape-from-shading discrimination independent of varied lighting direction, surface color, and camera perspective. Variations in the pattern of lighting through experimental manipulations of camera perspective, surface height, contrast, material specularity, and surface shape were consistent with the hypothesis that the starlings perceived these illuminated surfaces as having three-dimensional shape, similar to results previously collected with pigeons. These similarities across different orders of birds indicate that the relative shading for objects in a visual scene is a highly salient feature for shape processing in birds and is likely a highly conserved visual process that is widely distributed within this class of animal. PMID:25111630

  2. Shade adaptation of photosynthesis in Coffea arabica.

    PubMed

    Friend, D J

    1984-12-01

    The effect of irradiance on the rate of net photosynthesis was measured for mature leaves of coffee grown under five levels of radiation from 100% to 5% daylight. The rate of light-saturated photosynthesis per unit leaf area (PNmax) increased from 2 μmol CO2 m(-2) s(-1) under 5% daylight to 4.4 μmol CO2 m(-2) s(-1) under 100% daylight. The photon flux density (PAR, photosynthetically active radiation) needed for 50% saturation of photosynthesis, as well as the light compensation point, also increased with increasing levels of irradiation during growth. The quantum efficiency of photosynthesis (α), measured by the initial slope of the photosynthetic response to increasing irradiance, was greater under shaded growth conditions. The rate of dark respiration was greatest for plants grown in full daylight. On the basis of the increase in the quantal efficiency of photosynthesis and the low light compensation point when grown under shaded conditions, coffee shows high shade adaptation. Plants adjusted to shade by an increased ability to utilize short-term increases in irradiance above the level of the growth irradiance (measured by the difference between photosynthesis at the growth irradiance, PNg, and PNmax). PMID:24458775

  3. Shape from shading in starlings (Sturnus vulgaris).

    PubMed

    Qadri, Muhammad A J; Romero, L Michael; Cook, Robert G

    2014-11-01

    Birds behave as if they quickly and accurately perceive an object-filled visual world. Beyond the extensive research with pigeons, however, there is a large and important gap in our knowledge about the mechanisms of object perception and recognition in other avian visual systems. The pattern of shading reflected from the surfaces of objects is one important optical feature that provides fundamental information about shape. To better understand how surface and object shading is processed by a passerine species, 5 starlings were tested with differentially illuminated convex and concave curved surfaces in 3 experiments using a simultaneous visual discrimination procedure. Starlings rapidly learned this shape-from-shading discrimination independent of varied lighting direction, surface color, and camera perspective. Variations in the pattern of lighting through experimental manipulations of camera perspective, surface height, contrast, material specularity, and surface shape were consistent with the hypothesis that the starlings perceived these illuminated surfaces as having 3-dimensional shape, similar to results previously collected with pigeons. These similarities across different orders of birds indicate that the relative shading of objects in a visual scene is a highly salient feature for shape processing in birds and is likely a highly conserved visual process that is widely distributed within this class of animal. PMID:25111630

  4. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  5. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  6. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  7. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  8. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  9. Shading Influence on the Sterol Balance of Nicotiana tabacum L. 1

    PubMed Central

    Grunwald, Claus

    1978-01-01

    Tobacco plants (Nicotiana tabacum L.) were grown in the field and the apex was removed at the 42-day stage. Shading screens were set up which produced 0, 26, 67, and 90% shade. Plants were grown an additional 25 days before leaves from top, middle, and bottom stalk positions were harvested. Each leaf group was analyzed for free sterol, steryl ester, steryl glycoside, and acylsteryl glycoside. The free sterol content was lowest in top leaves and highest in bottom leaves; however, the top leaves had more steryl ester than the bottom leaves. Leaf position had no effect on steryl glycosides and acylsteryl glycosides. Shading did not influence the level of any sterol class; but in general, shading increased stigmasterol and decreased sitosterol. This trend was observed for all sterol classes, and the free sterols showed the largest and most consistent change. The younger top leaves showed a greater response than the older bottom leaves, but bottom leaves always had more stigmasterol than sitosterol even without shade. PMID:16660242

  10. Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities.

    PubMed

    Holmgren, Milena; Gómez-Aparicio, Lorena; Quero, José Luis; Valladares, Fernando

    2012-06-01

    The combined effects of shade and drought on plant performance and the implications for species interactions are highly debated in plant ecology. Empirical evidence for positive and negative effects of shade on the performance of plants under dry conditions supports two contrasting theoretical models about the role of shade under dry conditions: the trade-off and the facilitation hypotheses. We performed a meta-analysis of field and greenhouse studies evaluating the effects of drought at two or more irradiance levels on nine response variables describing plant physiological condition, growth, and survival. We explored differences in plant response across plant functional types, ecosystem types and methodological approaches. The data were best fit using quadratic models indicating a humped-back shape response to drought along an irradiance gradient for survival, whole plant biomass, maximum photosynthetic capacity, stomatal conductance and maximal photochemical efficiency. Drought effects were ameliorated at intermediate irradiance, becoming more severe at higher or lower light levels. This general pattern was maintained when controlling for potential variations in the strength of the drought treatment among light levels. Our quantitative meta-analysis indicates that dense shade ameliorates drought especially among drought-intolerant and shade-tolerant species. Wet tropical species showed larger negative effects of drought with increasing irradiance than semiarid and cold temperate species. Non-linear responses to irradiance were stronger under field conditions than under controlled greenhouse conditions. Non-linear responses to drought along the irradiance gradient reconciliate opposing views in plant ecology, indicating that facilitation is more likely within certain range of environmental conditions, fading under deep shade, especially for drought-tolerant species. PMID:22083284

  11. Uniform versus Asymmetric Shading Mediates Crown Recession in Conifers

    PubMed Central

    Schoonmaker, Amanda L.; Lieffers, Victor J.; Landhäusser, Simon M.

    2014-01-01

    In this study we explore the impact of asymmetrical vs. uniform crown shading on the mortality and growth of upper and lower branches within tree crowns, for two conifer species: shade intolerant lodgepole pine (Pinus contorta) and shade tolerant white spruce (Picea glauca). We also explore xylem hydraulics, foliar nutrition, and carbohydrate status as drivers for growth and expansion of the lower and upper branches in various types of shading. This study was conducted over a two-year period across 10 regenerating forest sites dominated by lodgepole pine and white spruce, in the lower foothills of Alberta, Canada. Trees were assigned to one of four shading treatments: (1), complete uniform shading of the entire tree, (2) light asymmetric shading where the lower 1/4–1/3 of the tree crown was shaded, (3) heavy asymmetric shading as in (2) except with greater light reduction and (4) control in which no artificial shading occurred and most of the entire crown was exposed to full light. Asymmetrical shading of only the lower crown had a larger negative impact on the bud expansion and growth than did uniform shading, and the effect was stronger in pine relative to spruce. In addition, lower branches in pine also had lower carbon reserves, and reduced xylem-area specific conductivity compared to spruce. For both species, but particularly the pine, the needles of lower branches tended to store less C than upper branches in the asymmetric shade, which could suggest a movement of reserves away from the lower branches. The implications of these findings correspond with the inherent shade tolerance and self-pruning behavior of these conifers and supports a carbon based mechanism for branch mortality – mediated by an asymmetry in light exposure of the crown. PMID:25136823

  12. Digital Shaded-Relief Image of Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image

  13. Composite shade guides and color matching.

    PubMed

    Paolone, Gaetano; Orsini, Giovanna; Manauta, Jordi; Devoto, Walter; Putignano, Angelo

    2014-01-01

    Finding reliable systems that can help the clinician match the color of direct composite restorations is often an issue. After reviewing several composite shade guides available on the market and outlining their main characteristics and limits (unrealistic specimen thickness, not made with the same material the clinician will use, only a few allow to overlap enamel tabs on dentin ones), the authors evaluated the reliability of a system designed to produce self-made standardized "tooth-shaped" shade guide specimens. Small changes in composite enamel thickness may determine huge differences in esthetic outcomes. In conclusion, the results showed that all the specimens demonstrated comparable enamel thickness in all the examined areas (cervical, middle, incisal). PMID:24765625

  14. Shading, a view from the inside.

    PubMed

    Koenderink, Jan J; van Doorn, Andrea; Pont, Sylvia

    2012-01-01

    Shape from shading arose from artistic practice, and later experimental psychology, but its formal structure has only been established recently by computer vision. Some of its algorithms have led to useful applications. Psychology has reversely borrowed these formalisms in attempts to come to grips with shading as a depth cue. Results have been less than spectacular. The reason might well be that these formalisms are all based on Euclidean geometry and physics (radiometry), which, are the right tools in third person accounts, but have little relevance to first person accounts, and thus are biologically (and consequently psychologically) of minor interest. We propose a formal theory of the shading cue in the first person account, 'a view from the inside'. Such a perspective is also required for autonomous robots in AI. This formalism cannot be based on Euclidean geometry, nor on radiometry, but on the structure of pictorial space, and the structure of brightness space. The formalism, though different in kind, has a simple relation to the computer vision accounts. It has great robustness, is free from calibration issues, and allows purely local shape inferences. It is especially suited to biological (and thus AI) implementation. We consider a number of predictions and confront them with available empirical evidence. PMID:21902877

  15. Impact of Photovoltaic Canopy Shade on Outdoor Thermal Comfort in a Hot Desert City

    NASA Astrophysics Data System (ADS)

    Middel, Ariane; Selover, Nancy; Hagen, Björn; Chhetri, Nalini

    2016-04-01

    Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade on thermal comfort through microclimate observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. Six stationary sensors under solar canopies and in nearby sun-exposed and tree-shaded locations monitored 5-min temperature and humidity for a year. On selected clear calm days representative of each season, we conducted hourly microclimate transects from 7:00AM to 6:00PM and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on the Likert scale, increasing thermal comfort in all seasons except winter. The shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shade are equally efficient in semi-arid desert environments. Globe temperature explained 50% of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors include adaptation level, gender, thermal comfort vote, thermal preference, season, and time of day. A regression of perceived comfort on Physiological Equivalent Temperature yielded a neutral temperature of 28.6°C. The acceptable comfort range was 19.1°C-38.1°C with a preferred temperature of 20.8°C. Respondents exposed to above neutral temperatures felt more comfortable if they had been in air-conditioning 5 minutes prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas.

  16. Adjustments in epidermal UV-transmittance of leaves in sun-shade transitions.

    PubMed

    Barnes, Paul W; Kersting, Anna R; Flint, Stephan D; Beyschlag, Wolfram; Ryel, Ronald J

    2013-10-01

    Epidermal UV transmittance (TUV ) and UV-absorbing compounds were measured in sun and shade leaves of Populus tremuloides and Vicia faba exposed to contrasting light environments under field conditions to evaluate UV acclimation potentials and regulatory roles of photosynthetically active radiation (PAR) and UV in UV-shielding. Within a natural canopy of P. tremuloides, TUV ranged from 4 to 98% and showed a strong nonlinear relationship with mid-day horizontal fluxes of PAR [photon flux density (PFD) = 6-1830 µmol m⁻²  s⁻¹]; similar patterns were found for V. faba leaves that developed under a comparable PFD range. A series of field transfer experiments using neutral-density shade cloth and UV blocking/transmitting films indicated that PAR influenced TUV during leaf development to a greater degree than UV, and shade leaves of both species increased their UV-shielding when exposed to full sun; however, this required the presence of UV, with both UV-A and UV-B required for full acclimation. TUV of sun leaves of both species was largely unresponsive to shade either with or without UV. In most, but not all cases, changes in TUV were associated with alterations in the concentration of whole-leaf UV-absorbing compounds. These results suggest that, (1) moderate-to-high levels of PAR alone during leaf development can induce substantial UV-protection in field-grown plants, (2) mature shade leaves have the potential to adjust their UV-shielding which may reduce the detrimental effects of UV that could occur following sudden exposures to high light and (3) under field conditions, PAR and UV play different roles in regulating UV-shielding during and after leaf development. PMID:23330642

  17. Fine Shades of a Sombrero

    NASA Astrophysics Data System (ADS)

    2000-02-01

    In addition to their scientific value, many of the exposures now being obtained by visiting astronomers to ESO's Very Large Telescope (VLT) are also very beautiful. This is certainly true for this new image of the famous early-type spiral galaxy Messier 104 , widely known as the "Sombrero" (the Mexican hat) because of its particular shape. The colour image was made by a combination of three CCD images from the FORS1 multi-mode instrument on VLT ANTU , recently obtained by Peter Barthel from the Kapteyn Institute (Groningen, The Netherlands) during an observing run at the Paranal Observatory. He and Mark Neeser , also from the Kapteyn Institute, produced the composite images. The galaxy fits perfectly into the 6.8 x 6.8 arcmin 2 field-of-view of the FORS1 camera. A great amount of fine detail is revealed, from the structures in the pronounced dust band in the equatorial plane, to many faint background galaxies that shine through the outer regions. The "Sombrero" is located in the constellation Virgo (The Virgin), at a distance of about 50 million light-years. The overall "sharpness" of this colour image corresponds to about 0.7 arcsec which translates into a resolution of about 170 light-years at that distance. About Messier 104 Messier 104 is the 104th object in the famous catalogue of nebulae by French astronomer Charles Messier (1730 - 1817). It was not included in the first two editions (with 45 objects in 1774; 103 in 1781), but Messier soon thereafter added it by hand in his personal copy as a "very faint nebula". The recession velocity, about 1000 km/sec, was first measured by American astronomer Vesto M. Slipher at the Lowell Observatory in 1912; he was also the first to detect the galaxy's rotation. ESO Press Photo 07c/00 ESO Press Photo 07c/00 [Preview; JPEG: 400 x 307; 59k] [Normal; JPEG: 800 x 614; 308k] [Full-Res; JPEG: 2028 x 1556; 2.3Mb] PR Photo 07c/00 has been processed to show the numerous dust bands in the central plane of the Sombrero galaxy (see

  18. Fine Shades of a Sombrero

    NASA Astrophysics Data System (ADS)

    2000-02-01

    In addition to their scientific value, many of the exposures now being obtained by visiting astronomers to ESO's Very Large Telescope (VLT) are also very beautiful. This is certainly true for this new image of the famous early-type spiral galaxy Messier 104 , widely known as the "Sombrero" (the Mexican hat) because of its particular shape. The colour image was made by a combination of three CCD images from the FORS1 multi-mode instrument on VLT ANTU , recently obtained by Peter Barthel from the Kapteyn Institute (Groningen, The Netherlands) during an observing run at the Paranal Observatory. He and Mark Neeser , also from the Kapteyn Institute, produced the composite images. The galaxy fits perfectly into the 6.8 x 6.8 arcmin 2 field-of-view of the FORS1 camera. A great amount of fine detail is revealed, from the structures in the pronounced dust band in the equatorial plane, to many faint background galaxies that shine through the outer regions. The "Sombrero" is located in the constellation Virgo (The Virgin), at a distance of about 50 million light-years. The overall "sharpness" of this colour image corresponds to about 0.7 arcsec which translates into a resolution of about 170 light-years at that distance. About Messier 104 Messier 104 is the 104th object in the famous catalogue of nebulae by French astronomer Charles Messier (1730 - 1817). It was not included in the first two editions (with 45 objects in 1774; 103 in 1781), but Messier soon thereafter added it by hand in his personal copy as a "very faint nebula". The recession velocity, about 1000 km/sec, was first measured by American astronomer Vesto M. Slipher at the Lowell Observatory in 1912; he was also the first to detect the galaxy's rotation. ESO Press Photo 07c/00 ESO Press Photo 07c/00 [Preview; JPEG: 400 x 307; 59k] [Normal; JPEG: 800 x 614; 308k] [Full-Res; JPEG: 2028 x 1556; 2.3Mb] PR Photo 07c/00 has been processed to show the numerous dust bands in the central plane of the Sombrero galaxy (see

  19. Effect of shade on Arabica coffee berry disease development: Toward an agroforestry system to reduce disease impact.

    PubMed

    Mouen Bedimo, J A; Njiayouom, I; Bieysse, D; Ndoumbè Nkeng, M; Cilas, C; Nottéghem, J L

    2008-12-01

    Coffee berry disease (CBD), caused by Colletotrichum kahawae, is a major constraint for Arabica coffee cultivation in Africa. The disease is specific to green berries and can lead to 60% harvest losses. In Cameroon, mixed cropping systems of coffee with other crops, such as fruit trees, are very widespread agricultural practices. Fruit trees are commonly planted at random on coffee farms, providing a heterogeneous shading pattern for coffee trees growing underneath. Based on a recent study of CBD, it is known that those plants can reduce disease incidence. To assess the specific effect of shade, in situ and in vitro disease development was compared between coffee trees shaded artificially by a net and trees located in full sunlight. In the field, assessments confirmed a reduction in CBD on trees grown under shade compared with those grown in full sunlight. Artificial inoculations in the laboratory showed that shade did not have any effect on the intrinsic susceptibility of coffee berries to CBD. Coffee shading mainly acts on environmental parameters in limiting disease incidence. In addition to reducing yield losses, agroforestry system may also be helpful in reducing chemical control of the disease and in diversifying coffee growers' incomes. PMID:19000007

  20. Differential performance of tropical soda apple and its biological control agent Gratiana boliviana (Coleoptera: Chrysomelidae) in open and shaded habitats.

    PubMed

    Diaz, Rodrigo; Aguirre, Carlos; Wheeler, Gregory S; Lapointe, Stephen L; Rosskopf, Erin; Overholt, William A

    2011-12-01

    The leaf feeding beetle Gratiana boliviana Spaeth has been released since 2003 in the southeastern United States for biological control of tropical soda apple, Solanum viarum Dunal. In Florida, G. boliviana can be found on tropical soda apple growing in open pastures as well as in shady wooded areas. The objectives of this study were to determine the effect of light intensity on the performance of tropical soda apple and G. boliviana under greenhouse conditions, and to determine the abundance and mortality of G. boliviana in open and shaded habitats. Leaves growing in the shade were less tough, had higher water and nitrogen content, lower soluble sugars, and less dense and smaller glandular trichomes compared with leaves growing in the open. Plants grew slightly taller and wider under shaded conditions but total biomass was significantly reduced compared with plants grown in the open. In the greenhouse, G. boliviana had higher immature survival, greater folivory, larger adult size, and higher fecundity when reared on shaded plants compared with open plants. Sampling of field populations revealed that the overall abundance of G. boliviana was lower but leaf feeding damage was higher in shaded habitats compared with the open habitats. The percentage of eggs surviving to adult was greater in shaded compared with open habitats. The abundance of predators was higher in the open pasture and was positively correlated with the abundance of G. boliviana. These results indicate that not only plant quality but also habitat structure are important to the performance of weed biological control agents. PMID:22217759

  1. Digital shaded-relief map of Venezuela

    USGS Publications Warehouse

    Garrity, Christopher P.; Hackley, Paul C.; Urbani, Franco

    2004-01-01

    The Digital Shaded-Relief Map of Venezuela is a composite of more than 20 tiles of 90 meter (3 arc second) pixel resolution elevation data, captured during the Shuttle Radar Topography Mission (SRTM) in February 2000. The SRTM, a joint project between the National Geospatial-Intelligence Agency (NGA) and the National Aeronautics and Space Administration (NASA), provides the most accurate and comprehensive international digital elevation dataset ever assembled. The 10-day flight mission aboard the U.S. Space Shuttle Endeavour obtained elevation data for about 80% of the world's landmass at 3-5 meter pixel resolution through the use of synthetic aperture radar (SAR) technology. SAR is desirable because it acquires data along continuous swaths, maintaining data consistency across large areas, independent of cloud cover. Swaths were captured at an altitude of 230 km, and are approximately 225 km wide with varying lengths. Rendering of the shaded-relief image required editing of the raw elevation data to remove numerous holes and anomalously high and low values inherent in the dataset. Customized ArcInfo Arc Macro Language (AML) scripts were written to interpolate areas of null values and generalize irregular elevation spikes and wells. Coastlines and major water bodies used as a clipping mask were extracted from 1:500,000-scale geologic maps of Venezuela (Bellizzia and others, 1976). The shaded-relief image was rendered with an illumination azimuth of 315? and an altitude of 65?. A vertical exaggeration of 2X was applied to the image to enhance land-surface features. Image post-processing techniques were accomplished using conventional desktop imaging software.

  2. Bali, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The volcanic nature of the island of Bali is evident in this shaded relief image generated with data from the Shuttle Radar Topography Mission (SRTM).

    Bali, along with several smaller islands, make up one of the 27 Provinces of Indonesia. It lies over a major subduction zone where the Indo-Australian tectonic plate collides with the Sunda plate, creating one of the most volcanically active regions on the planet.

    The most significant feature on Bali is Gunung Agung, the symmetric, conical mountain at the right-center of the image. This 'stratovolcano,' 3,148 meters (10,308 feet) high, is held sacred in Balinese culture, and last erupted in 1963 after being dormant and thought inactive for 120 years. This violent event resulted in over 1,000 deaths, and coincided with a purification ceremony called Eka Dasa Rudra, meant to restore the balance between nature and man. This most important Balinese rite is held only once per century, and the almost exact correspondence between the beginning of the ceremony and the eruption is though to have great religious significance.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter

  3. Sinai Peninsula, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Sinai Peninsula, located between Africa and Asia, is a result of those two continents pulling apart from each other. Earth's crust is cracking, stretching, and lowering along the two northern branches of the Red Sea, namely the Gulf of Suez, seen here on the west (left), and the Gulf of Aqaba, seen to the east (right). This color-coded shaded relief image shows the triangular nature of the peninsula, with the coast of the Mediterranean Sea forming the northern side of the triangle. The Suez Canal can be seen as the narrow vertical blue line in the upper left connecting the Red Sea to the Mediterranean.

    The peninsula is divided into three distinct parts; the northern region consisting chiefly of sandstone, plains and hills, the central area dominated by the Tih Plateau, and the mountainous southern region where towering peaks abound. Much of the Sinai is deeply dissected by river valleys, or wadis, that eroded during an earlier geologic period and break the surface of the plateau into a series of detached massifs with a few scattered oases.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot

  4. Colored Height and Shaded Relief, Kamchatka Peninsula

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Russia's Kamchatka Peninsula, lying between the Sea of Okhotsk to the west and the Bering Sea and Pacific Ocean to the east, is one of the most active volcanic regions along the Pacific Ring of Fire. It covers an area about the size of Colorado but contains more than 100 volcanoes stretching across the 1000-kilometer-long (620-mile-long) land mass. A dozen or more of these have active vents, with the youngest located along the eastern half of the peninsula. This color-coded shaded relief image, generated with data from the Shuttle Radar Topography Mission (SRTM), shows Kamchatka's volcanic nature to dramatic effect.

    Kliuchevskoi, one of the most active and renowned volcanoes in the world, dominates the main cluster of volcanoes called the Kliuchi group, visible as a circular feature in the center-right of the image. The two other main volcanic ranges lie along northeast-southwest lines, with the older, less active range occupying the center and western half of Kamchatka. The younger, more active belt begins at the southernmost point of the peninsula and continues upward along the Pacific coastline.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction, so northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and brown to white at the highest elevations.

    The Shuttle Radar Topography Mission flew aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60

  5. Preference for C4 shade grasses increases hatchling performance in the butterfly, Bicyclus safitza.

    PubMed

    Nokelainen, Ossi; Ripley, Brad S; van Bergen, Erik; Osborne, Colin P; Brakefield, Paul M

    2016-08-01

    The Miocene radiation of C4 grasses under high-temperature and low ambient CO 2 levels occurred alongside the transformation of a largely forested landscape into savanna. This inevitably changed the host plant regime of herbivores, and the simultaneous diversification of many consumer lineages, including Bicyclus butterflies in Africa, suggests that the radiations of grasses and grazers may be evolutionary linked. We examined mechanisms for this plant-herbivore interaction with the grass-feeding Bicyclus safitza in South Africa. In a controlled environment, we tested oviposition preference and hatchling performance on local grasses with C3 or C4 photosynthetic pathways that grow either in open or shaded habitats. We predicted preference for C3 plants due to a hypothesized lower processing cost and higher palatability to herbivores. In contrast, we found that females preferred C4 shade grasses rather than either C4 grasses from open habitats or C3 grasses. The oviposition preference broadly followed hatchling performance, although hatchling survival was equally good on C4 or C3 shade grasses. This finding was explained by leaf toughness; shade grasses were softer than grasses from open habitats. Field monitoring revealed a preference of adults for shaded habitats, and stable isotope analysis of field-sampled individuals confirmed their preference for C4 grasses as host plants. Our findings suggest that plant-herbivore interactions can influence the direction of selection in a grass-feeding butterfly. Based on this work, we postulate future research to test whether these interactions more generally contribute to radiations in herbivorous insects via expansions into new, unexploited ecological niches. PMID:27551380

  6. Influence of neighboring plants on shading stress resistance and recovery of eelgrass, Zostera marina L.

    PubMed

    Gustafsson, Camilla; Boström, Christoffer

    2013-01-01

    Stressful environments may enhance the occurrence of facilitative interspecific interactions between plants. In several regions, Zostera marina occurs in mixed assemblages. However, the potential effects of plant diversity on stress responses and stability properties of Z. marina are poorly understood. We investigated the resistance and recovery of Z. marina subjected to shading (1 mo) in a field experiment lasting 2.5 mo. We shaded Z. marina planted in mono- and polycultures (Potamogeton perfoliatus, P. pectinatus, P. filiformis) in a factorial design (Shading×Richness) at 2 m depth. We estimated the resistance and recovery of Z. marina by measuring four response variables. Polyculture Z. marina lost proportionally less biomass than monocultures, thus having a greater resistance to shading. In contrast, after a 1 mo recovery period, monocultures exhibited higher biomass gain, and a faster recovery than polycultures. Our results suggest that plant species richness enhances the resistance of Z. marina through facilitative mechanisms, while the faster recovery in monocultures is possibly due to interspecific competition. Our results highlight the need of a much better understanding of the effects of interspecific interactions on ecosystem processes in mixed seagrass meadows, and the preservation of diverse plant assemblages to maintain ecosystem functioning. PMID:23717532

  7. Influence of Neighboring Plants on Shading Stress Resistance and Recovery of Eelgrass, Zostera marina L

    PubMed Central

    Gustafsson, Camilla; Boström, Christoffer

    2013-01-01

    Stressful environments may enhance the occurrence of facilitative interspecific interactions between plants. In several regions, Zostera marina occurs in mixed assemblages. However, the potential effects of plant diversity on stress responses and stability properties of Z. marina are poorly understood. We investigated the resistance and recovery of Z. marina subjected to shading (1 mo) in a field experiment lasting 2.5 mo. We shaded Z. marina planted in mono- and polycultures (Potamogeton perfoliatus, P. pectinatus, P. filiformis) in a factorial design (Shading×Richness) at 2 m depth. We estimated the resistance and recovery of Z. marina by measuring four response variables. Polyculture Z. marina lost proportionally less biomass than monocultures, thus having a greater resistance to shading. In contrast, after a 1 mo recovery period, monocultures exhibited higher biomass gain, and a faster recovery than polycultures. Our results suggest that plant species richness enhances the resistance of Z. marina through facilitative mechanisms, while the faster recovery in monocultures is possibly due to interspecific competition. Our results highlight the need of a much better understanding of the effects of interspecific interactions on ecosystem processes in mixed seagrass meadows, and the preservation of diverse plant assemblages to maintain ecosystem functioning. PMID:23717532

  8. Vitamin D effective ultraviolet wavelengths due to scattering in shade.

    PubMed

    Turnbull, D J; Parisi, A V; Kimlin, M G

    2005-09-01

    Solar UVB radiation (280-320 nm) is an initiator of Vitamin D3 production in the human skin. While numerous studies have been conducted in relation to the biological impact of UV exposure in full sun, less research has investigated the irradiances in shade. The purpose of this study was to determine the levels of UV radiation in relation to Vitamin D3 induction with six commonly encountered shade environments for the larger solar zenith angles observed during autumn and winter. Spectral UV irradiance measurements were made under relatively clear sky conditions at a sub-tropical Southern Hemisphere site for six specific shade environments and solar zenith angle between 35 degrees and 60 degrees to investigate the biologically effective UV irradiances for pre-Vitamin D3 production. Data from this research indicates that pre-Vitamin D3 effective UV wavelengths in the shade were most significant for tree shade and a shade umbrella. Compared to that in full sun, pre-Vitamin D3 effective UV wavelengths were at levels of approximately 52 and 55%, respectively, beneath the shade umbrella and in tree shade. UVB irradiance levels in the shade of a northern facing covered veranda and in a car with windows closed were significantly less than those beneath the shade umbrella, with levels of approximately 11 and 0%, respectively, of those in full sun. Shade is important as a UV minimisation strategy; however, it may also play an important role in providing the human body with adequate levels of UVB radiation for pre-Vitamin D3 production without experiencing the relatively higher levels of UVA irradiances present in full sun. PMID:16005208

  9. Alpine Fault, New Zealand, SRTM Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Alpine fault runs parallel to, and just inland of, much of the west coast of New Zealand's South Island. This view was created from the near-global digital elevation model produced by the Shuttle Radar Topography Mission (SRTM) and is almost 500 kilometers (just over 300 miles) wide. Northwest is toward the top. The fault is extremely distinct in the topographic pattern, nearly slicing this scene in half lengthwise.

    In a regional context, the Alpine fault is part of a system of faults that connects a west dipping subduction zone to the northeast with an east dipping subduction zone to the southwest, both of which occur along the juncture of the Indo-Australian and Pacific tectonic plates. Thus, the fault itself constitutes the major surface manifestation of the plate boundary here. Offsets of streams and ridges evident in the field, and in this view of SRTM data, indicate right-lateral fault motion. But convergence also occurs across the fault, and this causes the continued uplift of the Southern Alps, New Zealand's largest mountain range, along the southeast side of the fault.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast (image top to bottom) direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect

  10. Shade material evaluation based on physiological response of cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle produced in open feedlots are vulnerable to a variety of weather events; under certain conditions heat events can be especially detrimental. Shade structures are often considered as one method of reducing cattle stress. A variety of shading materials are available; selection of a suitable m...

  11. Optimal integration of shading and binocular disparity for depth perception.

    PubMed

    Lovell, Paul G; Bloj, Marina; Harris, Julie M

    2012-01-01

    We explore the relative utility of shape from shading and binocular disparity for depth perception. Ray-traced images either featured a smooth surface illuminated from above (shading-only) or were defined by small dots (disparity-only). Observers judged which of a pair of smoothly curved convex objects had most depth. The shading cue was around half as reliable as the rich disparity information for depth discrimination. Shading- and disparity-defined cues where combined by placing dots in the stimulus image, superimposed upon the shaded surface, resulting in veridical shading and binocular disparity. Independently varying the depth delivered by each channel allowed creation of conflicting disparity-defined and shading-defined depth. We manipulated the reliability of the disparity information by adding disparity noise. As noise levels in the disparity channel were increased, perceived depths and variances shifted toward those of the now more reliable shading cue. Several different models of cue combination were applied to the data. Perceived depths and variances were well predicted by a classic maximum likelihood estimator (MLE) model of cue integration, for all but one observer. We discuss the extent to which MLE is the most parsimonious model to account for observer performance. PMID:22214563

  12. Computerized shade selection and the complex Class IV composite.

    PubMed

    Hovden, Kenneth

    2002-06-01

    By utilizing digital shade mapping, a stratified composite technique, and the proper composite system, the dental practitioner stands a greater chance of meeting patient expectations. In the case presented, the use of the Clear-Match system helped simplify shade selection, which is the greatest variable in success of anterior composite restorations. PMID:12073480

  13. Improving Tall Fescue Shade Tolerance: Identifying Candidate Genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue (Schedonorus arundinaceus) is genetically variable for many agronomic traits, so it might be possible to increase its persistence and productivity in shaded agroforestry applications. The objective of this research was to identify high yielding, shade-tolerant genotypes. Seed was obtai...

  14. Influence of shading on container-grown flowering dogwoods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bare root dogwoods can be successfully grown when transplanted into a container production system. Shade treatments regardless of color or density did have an effect on the plant growth of Cherokee Brave™ and Cherokee Princess dogwood. Plants grown under 50% black and 50% white shade had more heigh...

  15. IMPROVING TALL FESCUE SHADE TOLERANCE: IDENTIFYING CANDIDATE GENOTYPES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue (Schedonorus arundinaceus) is genetically variable for many agronomic traits, so it might be possible to increase its persistence and productivity in shaded agroforestry applications. The objective of this research was to identify high yielding, shade-tolerant genotypes. Seed was obtaine...

  16. Benefits of Providing Shade to Feedlot Cattle of Different Breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress in cattle causes a decrease in feed intake and growth and, in extreme cases, can cause death of vulnerable animals. A simple shade can reduce the animal's radiant heat load by 30% or more. However, for most feedlots, adding shade structures to all pens is cost prohibitive. The objecti...

  17. Shade Material Evaluation Using a Cattle Response Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle produced in open feedlots are vulnerable to a variety of weather events; under certain conditions heat events can be especially detrimental. Shade structures are often considered as one method of reducing cattle stress. A variety of shading materials are available; selection of a suitable mat...

  18. Benefits of providing shade to feedlot cattle of different breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress in cattle causes decreases in feed intake, growth, and efficiency. In extreme cases, heat stress can cause death of vulnerable animals. A simple shade can reduce the animal's radiant heat load by 30% or more. However, for most feedlots, adding shade structures to all pens is cost prohibi...

  19. Ireland, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The island of Ireland comprises a large central lowland of limestone with a relief of hills surrounded by a discontinuous border of coastal mountains which vary greatly in geological structure. The mountain ridges of the south are composed of old red sandstone separated by limestone river valleys. Granite predominates in the mountains of Galway, Mayo and Donegal in the west and north-west and in Counties Down and Wicklow on the east coast, while a basalt plateau covers much of the north-east of the country. The central plain, which is broken in places by low hills, is extensively covered with glacial deposits of clay and sand. It has considerable areas of bog and numerous lakes. The island has seen at least two general glaciations and everywhere ice-smoothed rock, mountain lakes, glacial valleys and deposits of glacial sand, gravel and clay mark the passage of the ice.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial

  20. Shaded Relief of Rio Sao Francisco, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The scrub forest terrain shows relief of about 400 meters (1300 feet). Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. This region has little topographic relief, but even subtle changes in topography have far-reaching effects on regional ecosystems. The image covers an area of 57 km x 79 km and represents one quarter of the 225 km SRTM swath. Colors range from dark blue at water level to white and brown at hill tops. The terrain features that are clearly visible in this image include tributaries of the Sao Francisco, the dark-blue branch-like features visible from top right to bottom left, and on the left edge of the image, and hills rising up from the valley floor. The San Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter

  1. Shaded relief of Bahia State, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic image is the first to show the full 240-kilometer-wide (150 mile)swath collected by the Shuttle Radar Topography Mission (SRTM). The area shown is in the state of Bahia in Brazil. The semi-circular mountains along the left side of the image are the Serra Da Jacobin, which rise to 1100 meters (3600 feet) above sea level. The total relief shown is approximately 800 meters (2600 feet). The top part of the image is the Sertao, a semi-arid region, that is subject to severe droughts during El Nino events. A small portion of the San Francisco River, the longest river (1609 kilometers or 1000 miles) entirely within Brazil, cuts across the upper right corner of the image. This river is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, drought and human influences on ecosystems.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from green at the lowest elevations to reddish at the highest elevations. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C

  2. Effects of shade on physiological changes, oxidative stress, and total antioxidant power in Thai Brahman cattle

    NASA Astrophysics Data System (ADS)

    Aengwanich, Worapol; Kongbuntad, Watee; Boonsorn, Thongchai

    2011-09-01

    The purpose of this study was to assess the effects of artificial shade, tree shade, and no shade on physiological changes, oxidative stress, and total antioxidant power in Thai Brahman cattle. Twenty-one cattle were divided into three groups: cattle maintained under artificial shade, under tree shade, and without shade. On days 1, 7, 14, 21, and 28 of the experimental period, after the cattle were set in individual stalls for 2 h, physiological changes, thiobarbituric acid reactive substances (TBARS), and total antioxidant power were investigated. The results revealed that the respiratory rate, heart rate, sweat rate and the neutrophil/lymphocyte ratio of the no-shade cattle were significantly higher than those of cattle maintained under artificial shade and tree shade ( P < 0.05). During the early period of heat exposure, the total antioxidant power of the no-shade cattle was lower than those of cattle maintained under artificial shade and tree shade, but the total antioxidant power of cattle maintained under artificial shade and tree shade were not different ( P > 0.05). However, rectal temperature and packed cell volume of the cattle in all groups did not differ ( P > 0.05). These results showed that artificial shade and tree shade can protect cattle from sunlight compared to no shade, and that the effectiveness of tree shade for sunlight protection is at an intermediate level.

  3. Benefit of Shading by Nurse Plant Does Not Change along a Stress Gradient in a Coastal Dune

    PubMed Central

    Castanho, Camila de Toledo; Prado, Paulo Inácio

    2014-01-01

    The proximity of adult neighbors often increases the performance of woody seedlings under harsh environmental conditions but this nurse plant effect becomes less intense when abiotic stress is alleviated, as predicted by the stress gradient hypothesis (SGH). Although some studies have tested how the net nurse effect is changed by stress, few studies have tested how the mechanism that drives the facilitative effect of nurse responds to changes in stress. We conducted field experiments in a subtropical coastal dune to test if shading drives the known nurse effect of adults of the tree Guapira opposita on seedling performance of another tree species, Ternstroemia brasiliensis. We transplanted T. brasiliensis seedlings to three neighbor environments: under a G. opposita crown, under artificial shade and without neighbor as a control. Furthermore, assuming that proximity to the seashore correlates with stress intensity, we tested if the potential shade-driven facilitation became less intense as stress decreased. Regardless of the proximity to the seashore, after a year, the survival of T. brasiliensis seedlings was twice as high when the seedlings were under G. opposita or under artificial shade compared to the control, indicating that the nurse effect is driven by shade and that this facilitation mechanism is constant along the stress gradient. However, G. opposita and artificial shade had a negative effect on seedlings growth. Overall, our results showed that the facilitation mechanism behind the nurse effect did not wane as the stress was reduced. Furthermore, in spite of the potential costs in terms of biomass production, our study highlights the potential of nurse plants and artificial shade as techniques to improve the survival of transplanted seedlings used in the restoration of degraded shrubland coastal dunes. PMID:25127399

  4. CHARACTERIZATION OF A TYPE II CHLOROPHYLL A/B-BINDING PROTEIN GENE(LHCB2*PP1) IN PEACH:II. MRNA ABUNDANCE IN DEVELOPING LEAVES EXPOSED TO SUNOR SHADE IN 'LORING'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf development was followed in field grown, mature peach trees (Prunus persica [L.] Batsch, cv Loring) during the first half of the 1995 growing season on shoots exposed to full sunlight or shoots shaded by the canopy. The architecture and size of shaded shoots was significantly different from sh...

  5. Olduvai Gorge, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three striking and important areas of Tanzania in eastern Africa are shown in this color-coded shaded relief image from the Shuttle Radar Topography Mission. The largest circular feature in the center right is the caldera, or central crater, of the extinct volcano Ngorongoro. It is surrounded by a number of smaller volcanoes, all associated with the Great Rift Valley, a geologic fault system that extends for about 4,830 kilometers (2,995 miles) from Syria to central Mozambique.

    Ngorongoro's caldera is 22.5 kilometers (14 miles) across at its widest point and is 610 meters (2,000 feet) deep. Its floor is very level, holding a lake fed by streams running down the caldera wall. It is part of the Ngorongoro Conservation Area and is home to over 75,000 animals. The lakes south of the crater are Lake Eyasi and Lake Manyara, also part of the conservation area.

    The relatively smooth region in the upper left of the image is the Serengeti National Park, the largest in Tanzania. The park encompasses the main part of the Serengeti ecosystem, supporting the greatest remaining concentration of plains game in Africa including more than 3,000,000 large mammals. The animals roam the park freely and in the spectacular migrations, huge herds of wild animals move to other areas of the park in search of greener grazing grounds (requiring over 4,000 tons of grass each day) and water.

    The faint, nearly horizontal line near the center of the image is Olduvai Gorge, made famous by the discovery of remains of the earliest humans to exist. Between 1.9 and 1.2 million years ago a salt lake occupied this area, followed by the appearance of fresh water streams and small ponds. Exposed deposits show rich fossil fauna, many hominid remains and items belonging to one of the oldest stone tool technologies, called Olduwan. The time span of the objects recovered dates from 2,100,000 to 15,000 years ago.

    Two visualization methods were combined to produce the image: shading and

  6. Metameric effect between natural teeth and the shade tabs of a shade guide.

    PubMed

    Corcodel, Nicoleta; Helling, Stephan; Rammelsberg, Peter; Hassel, Alexander J

    2010-06-01

    The objective of this study was to evaluate metameric effects, that is, the dependence of the colours of teeth and shade tabs on the illuminant used. The colours of 49 teeth of 37 participants and of the corresponding shade tabs of the 3D-Master (VITA Zahnfabrik; colour match DeltaE(ab)< 2) were measured using an intra-oral spectrophotometer (VITA Easyshade). Spectral reflectance data (from 400 to 700 nm) were recorded. Commission Internationale de l'Eclairage (CIE) L*a*b* values were calculated for D65 (reference daylight), A (incandescent light), and TL84 (store/office light) as reference illuminants. A modified metamerism index (Mod-M) and hue-angle ratios were calculated to express differences between tooth and tab colour relative to the difference observed under D65 illumination. The Mod-M for teeth and tabs was greater than unity (indicating a greater colour difference relative to D65) by 57.1% for A and by 49.3% for TL84. Hue-angle ratios of teeth and tabs using the test illuminants were different from those obtained using the standard illuminant D65. If teeth and shade tab matching is conducted using daylight illumination, the colour difference may not be the same under other lighting conditions, leading to perceptible, or even unacceptable, colour differences under these conditions. PMID:20572867

  7. Shape-from-shading using the heat equation.

    PubMed

    Robles-Kelly, Antonio; Hancock, Edwin R

    2007-01-01

    This paper offers two new directions to shape-from-shading, namely the use of the heat equation to smooth the field of surface normals and the recovery of surface height using a low-dimensional embedding. Turning our attention to the first of these contributions, we pose the problem of surface normal recovery as that of solving the steady state heat equation subject to the hard constraint that Lambert's law is satisfied. We perform our analysis on a plane perpendicular to the light source direction, where the z component of the surface normal is equal to the normalized image brightness. The x - y or azimuthal component of the surface normal is found by computing the gradient of a scalar field that evolves with time subject to the heat equation. We solve the heat equation for the scalar potential and, hence, recover the azimuthal component of the surface normal from the average image brightness, making use of a simple finite difference method. The second contribution is to pose the problem of recovering the surface height function as that of embedding the field of surface normals on a manifold so as to preserve the pattern of surface height differences and the lattice footprint of the surface normals. We experiment with the resulting method on a variety of real-world image data, where it produces qualitatively good reconstructed surfaces. PMID:17283761

  8. Plant adaptation to dynamically changing environment: the shade avoidance response.

    PubMed

    Ruberti, I; Sessa, G; Ciolfi, A; Possenti, M; Carabelli, M; Morelli, G

    2012-01-01

    The success of competitive interactions between plants determines the chance of survival of individuals and eventually of whole plant species. Shade-tolerant plants have adapted their photosynthesis to function optimally under low-light conditions. These plants are therefore capable of long-term survival under a canopy shade. In contrast, shade-avoiding plants adapt their growth to perceive maximum sunlight and therefore rapidly dominate gaps in a canopy. Daylight contains roughly equal proportions of red and far-red light, but within vegetation that ratio is lowered as a result of red absorption by photosynthetic pigments. This light quality change is perceived through the phytochrome system as an unambiguous signal of the proximity of neighbors resulting in a suite of developmental responses (termed the shade avoidance response) that, when successful, result in the overgrowth of those neighbors. Shoot elongation induced by low red/far-red light may confer high relative fitness in natural dense communities. However, since elongation is often achieved at the expense of leaf and root growth, shade avoidance may lead to reduction in crop plant productivity. Over the past decade, major progresses have been achieved in the understanding of the molecular basis of shade avoidance. However, uncovering the mechanisms underpinning plant response and adaptation to changes in the ratio of red to far-red light is key to design new strategies to precise modulate shade avoidance in time and space without impairing the overall crop ability to compete for light. PMID:21888962

  9. Photovoltaic Shading Testbed for Module-Level Power Electronics

    SciTech Connect

    Deline, C.; Meydbray, J.; Donovan, M.; Forrest, J.

    2012-05-01

    This document describes a repeatable test procedure that attempts to simulate shading situations, as would be experienced by typical residential rooftop photovoltaic (PV) systems. This type of shading test is particularly useful to evaluate the impact of different power conversion setups, including microinverters, DC power optimizers and string inverters, on overall system performance. The performance results are weighted based on annual estimates of shade to predict annual performance improvement. A trial run of the test procedure was conducted with a side by side comparison of a string inverter with a microinverter, both operating on identical 8kW solar arrays. Considering three different shade weighting conditions, the microinverter was found to increase production by 3.7% under light shading, 7.8% under moderate shading, and 12.3% under heavy shading, relative to the reference string inverter case. Detail is provided in this document to allow duplication of the test method at different test installations and for different power electronics devices.

  10. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees.

    PubMed

    Lichtenthaler, Hartmut K; Babani, Fatbardha; Navrátil, Martin; Buschmann, Claus

    2013-11-01

    The chlorophyll (Chl) fluorescence induction kinetics, net photosynthetic CO2 fixation rates P N, and composition of photosynthetic pigments of differently light exposed leaves of several trees were comparatively measured to determine the differences in photosynthetic activity and pigment adaptation of leaves. The functional measurements were carried out with sun, half-shade and shade leaves of seven different trees species. These were: Acer platanoides L., Ginkgo biloba L., Fagus sylvatica L., Platanus x acerifolia Willd., Populus nigra L., Quercus robur L., Tilia cordata Mill. In three cases (beech, ginkgo, and oak), we compared the Chl fluorescence kinetics and photosynthetic rates of blue-shade leaves of the north tree crown receiving only blue sky light but no direct sunlight with that of sun leaves. In these cases, we also determined in detail the pigment composition of all four leaf types. In addition, we determined the quantum irradiance and spectral irradiance of direct sunlight, blue skylight as well as the irradiance in half shade and full shade. The results indicate that sun leaves possess significantly higher mean values for the net CO2 fixation rates P N (7.8-10.7 μmol CO2 m(-2) s(-1) leaf area) and the Chl fluorescence ratio R Fd (3.85-4.46) as compared to shade leaves (mean P N of 2.6-3.8 μmol CO2 m(-2) s(-1) leaf area.; mean R Fd of 1.94-2.56). Sun leaves also exhibit higher mean values for the pigment ratio Chl a/b (3.14-3.31) and considerably lower values for the weight ratio total chlorophylls to total carotenoids, (a + b)/(x + c), (4.07-4.25) as compared to shade leaves (Chl a/b 2.62-2.72) and (a + b)/(x + c) of 5.18-5.54. Blue-shade and half-shade leaves have an intermediate position between sun and shade leaves in all investigated parameters including the ratio F v/F o (maximum quantum yield of PS2 photochemistry) and are significantly different from sun and shade leaves but could not be differentiated from each other. The

  11. A Custom Made Intrinsic Silicone Shade Guide for Indian Population

    PubMed Central

    Behanam, Mohammed; Ahila, S.C.; Jei, J. Brintha

    2016-01-01

    Introduction Replication of natural skin colour in maxillofacial prosthesis has been traditionally done using trial and error method, as concrete shade guides are unavailable till date. Hence a novel custom made intrinsic silicone shade guide has been attempted for Indian population. Aim Reconstruction of maxillofacial defects is challenging, as achieving an aesthetic result is not always easy. A concoction of a novel intrinsic silicone shade guide was contemplated for the study and its reproducibility in clinical practice was analysed. Materials and Methods Medical grade room temperature vulcanising silicone was used for the fabrication of shade tabs. The shade guide consisted of three main groups I, II and III which were divided based upon the hues yellow, red and blue respectively. Five distinct intrinsic pigments were added in definite proportions to subdivide each group of different values from lighter to darker shades. A total number of 15 circular shade tabs comprised the guide. To validate the usage of the guide, visual assessment of colour matching was done by four investigators to investigate the consent of perfect colour correspondence. Data was statistically analysed using kappa coefficients. Results The kappa values were found to be 0.47 to 0.78 for yellow based group I, 0.13 to 0.65 for red based group II, and 0.07 to 0.36 for blue based group III. This revealed that the shade tabs of yellow and red based hues matched well and showed a statistically good colour matching. Conclusion This intrinsic silicone shade guide can be effectively utilised for fabrication of maxillofacial prosthesis with silicone in Indian population. A transparent colour formula with definite proportioning of intrinsic pigments is provided for obtaining an aesthetic match to skin tone. PMID:27190946

  12. France, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of France was generated with data from the Shuttle Radar Topography Mission (SRTM). For this broad view the resolution of the data was reduced to 6 arcseconds (about 185 meters north-south and 127 meters east-west), resampled to a Mercator projection, and the French border outlined. Even at this decreased resolution the variety of landforms comprising the country is readily apparent.

    The upper central part of this scene is dominated by the Paris Basin, which consists of a layered sequence of sedimentary rocks. Fertile soils over much of the area make good agricultural land. The Normandie coast to the upper left is characterized by high, chalk cliffs, while the Brittany coast (the peninsula to the left) is highly indented where deep valleys were drowned by the sea, and the Biscay coast to the southwest is marked by flat, sandy beaches.

    To the south, the Pyrenees form a natural border between France and Spain, and the south-central part of the country is dominated by the ancient Massif Central. Subject to volcanism that has only subsided in the last 10,000 years, these central mountains are separated from the Alps by the north-south trending Rhone River Basin.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to

  13. Australia, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    : shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Location: 45 to 10 degrees South latitude, 112 to 155 degrees East longitude Orientation: North toward the top, Mercator projection Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  14. Guiana Highlands, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2003-01-01

    inspiration for Arthur Conan Doyle's 1912 best-seller 'The Lost World.'

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.

    Location: 0.2 South to 8.7 degrees North latitude, 60 to 67.9 degrees West longitude Orientation: North toward the top Image Data: shaded and colored SRTM30 and GTOPO30 elevation models Data Resolution: SRTM 30 arcsecond (about 928 meters or 1496 feet) Date Acquired: February 2000 for SRTM

  15. Identification of an active fault in the Japanese Alps from DEM-based hill shading

    NASA Astrophysics Data System (ADS)

    Oguchi, Takashi; Aoki, Tatsuto; Matsuta, Nobuhisa

    2003-08-01

    Shaded-relief images created from digital elevation models (DEMs) are helpful in identifying faults in rugged mountains. Unlike airphoto interpretation, the method enhances lineaments by simulating topographic illumination under varied light directions. Interpretation of shaded-relief images of the Japanese Alps led to the discovery of a lineament unrelated to bedrock structure. Field surveys and analysis of large-scale maps and airphotos reveal the lineament to be a fault with high rates of vertical and lateral slip. The new fault is the southernmost segment of a known adjacent fault, and the rate and direction of its slip provide fresh insight into the late Quaternary history of the fault system. Because previous research mistook the fault scarp for a fluvial terrace scarp, discovery of the fault also changed the correlation of river terraces in the Northern Japanese Alps. The new corrections affect Pleistocene glacial chronology in the upstream area.

  16. Do Shallow Cumulus Clouds have the Potential to Trigger Secondary Circulations Via Shading?

    NASA Astrophysics Data System (ADS)

    Gronemeier, Tobias; Kanani-Sühring, Farah; Raasch, Siegfried

    2016-06-01

    The effects on the convective boundary layer (CBL) of shading due to shallow cumulus clouds are investigated. The main question is to see whether clouds are able to produce secondary circulations by shading of the surface (dynamic heterogeneities) and how these dynamic heterogeneities interact with static heterogeneities in terms of the production of secondary circulations. Also the effects of cloud shadows on cloud-field characteristics are analyzed. The effects are studied using large-eddy simulations of a cloud-topped CBL with an idealized surface. Over a homogeneous surface, shadows trigger secondary circulations with different strengths depending on the solar zenith angle θ, with large θ favouring the development of secondary circulations. Over a static heterogeneous surface with a simple striped pattern, the strength of secondary circulations is effectively reduced by dynamic heterogeneities at small θ. At large θ, however, the effect on secondary circulations depends on the orientation of the striped static heterogeneities to the shadow-casting direction of the clouds. The influence of shadows is only small if they are cast perpendicular to the striped heterogeneity, but if stripes and the shadow-casting direction are parallel, secondary circulations are reduced in strength also for large θ. Shadow effects on the cloud-field characteristics vary with θ as well. The results show that small θ favours the development of small clouds with a reduced lifetime while large θ promotes the development of larger clouds with an extended lifetime compared to non-shading clouds.

  17. Shaded relief, color as height Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic image of Patagonia, Argentina shows a spectacular landscape formed by volcanoes, rivers, and wind. The area is located just east of the narrow range of the Andes Mountains, about 100 kilometers (62 miles) east of the border with Chile. Interesting features include basalt-capped mesas with sinkholes (lower center), arcuate ridges of windblown beach sands downwind from a salty desert lake (upper center), young volcanic cones(right), and at least one case of what geologists call 'inverted relief'. This happens when lava flows down a valley in soft material and then the soft material is eroded away leaving the former valley as a ridge of lava. These ridges can be seen on the slopes of the volcano in the upper right. Geologists will use SRTM topographic data to study the interaction of volcanic, climatic and erosional processes.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 1100 meters(3600 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added

  18. Gulf Coast, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    The topography of the Gulf Coast states is well shown in this color-coded shaded relief map generated with data from the Shuttle Radar Topography Mission. The image on the top (see Figure 1) is a standard view showing southern Louisiana, Mississippi, Alabama and the panhandle of Florida. Green colors indicate low elevations, rising through yellow and tan, to white at the highest elevations.

    For the view on the bottom (see Figure 2), elevations below 10 meters (33 feet) above sea level have been colored light blue. These low coastal elevations are especially vulnerable to flooding associated with storm surges. Planners can use data like these to predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C.

    Location: 31 degrees north latitude, 88 degrees west longitude Orientation: North toward the top, Mercator projection Size: 702 by 433 kilometers (435 by 268 miles) Image Data: shaded and colored SRTM

  19. Southern Florida, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The very low topography of southern Florida is evident in this color-coded shaded relief map generated with data from the Shuttle Radar Topography Mission. The image on the left is a standard view, with the green colors indicating low elevations, rising through yellow and tan, to white at the highest elevations. In this exaggerated view even those highest elevations are only about 60 meters (197 feet) above sea level.

    For the view on the right, elevations below 5 meters (16 feet) above sea level have been colored dark blue, and lighter blue indicates elevations below 10 meters (33 feet). This is a dramatic demonstration of how Florida's low topography, especially along the coastline, make it especially vulnerable to flooding associated with storm surges. Planners can use data like these to predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C.

    Location: 27 degrees north latitude, 81 degrees west longitude Orientation: North toward the top, Mercator projection Size: 397 by 445 kilometers (246 by 276 miles) Image

  20. DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES OF GOLD LEAF AND BURNISHED GOLD LEAF WERE USED FOR THE INTERIOR FINISHES. - Anaconda Historic District, Washoe Theater, 305 Main Street, Anaconda, Deer Lodge County, MT

  1. SHADED RELIEF, HILLSHADE, DIGITAL ELEVATION MODEL (DEM), NEVADA

    EPA Science Inventory

    Shaded relief of the state of Nevada developed from 1-degree US Geological Survey (USGS) Digital Elevation Models (DEMs). DEM is a terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form.

  2. SHADED RELIEF, HILLSHADE, DIGITAL ELEVATION MODEL (DEM), ARIZONA

    EPA Science Inventory

    Shaded relief of the state of Arizona developed from 1-degree US Geological Survey (USGS) Digital Elevation Models (DEMs). DEM is a terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form.

  3. Dynamic Shade and Irradiance Simulation of Aquatic Landscapes and Watersheds

    EPA Science Inventory

    Penumbra is a landscape shade and irradiance simulation model that simulates how solar energy spatially and temporally interacts within dynamic ecosystems such as riparian zones, forests, and other terrain that cast topological shadows. Direct and indirect solar energy accumulate...

  4. Lunar Shaded Relief Map Updated with Clementine Data

    NASA Astrophysics Data System (ADS)

    Rosiek, M. R.; Aeschliman, R.

    2001-03-01

    Lunar maps at 1:10,000,000 scale will show elevation in false color superimposed on the shaded relief airbrush base. This series will consist of three map sheets, each portraying two opposite hemispheres.

  5. Shade images of forested areas obtained from Landsat MSS data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1989-01-01

    The objective of this report is to generate a shade (shadow) image of forested areas from Landsat MSS data by implementing a linear mixing model, where shadow is considered as one of the primary components in a pixel. The shade images are related to the observed variation in forest structure; i.e., the proportion of inferred shadow in a pixel is related to different forest ages, forest types, and tree crown cover. The constrained least-squares method is used to generate shade images for forest of eucalyptus and vegetation of 'cerrado' over the Itapeva study area in Brazil. The resulted shade images may explain the difference on ages for forest of eucalyptus and the difference on tree crown cover for vegetation of cerrado.

  6. Shading and shadowing on Canaletto's Piazza San Marco

    NASA Astrophysics Data System (ADS)

    Wijntjes, Maarten W. A.; de Ridder, Huib

    2014-02-01

    Whereas the 17th century painter Canaletto was a master in linear perspective of the architectural elements, he seems to have had considerable difficulty with linear perspective of shadows. A common trick to avoid shadow perspective problems is to set the (solar) illumination direction parallel to the projection screen. We investigated in one painting where Canaletto clearly used this trick, whether he followed this light direction choice consistently through in how he shades the persons. We approached this question with a perceptual experiment where we measured perceived light directions in isolated details of the paintings. Specifically, we controlled whether observers could only see the (cast) shadow, only shading or both. We found different trends in all three conditions. The results indicate that Canaletto probably used different shading than the parallel light direction would predict. We interpret the results as a form or artistic freedom that Canaletto used to shade the persons individually.

  7. Evaluation of the Aurora Application Shade Measurement Accuracy

    SciTech Connect

    2015-12-01

    Aurora is an integrated, Web-based application that helps solar installers perform sales, engineering design, and financial analysis. One of Aurora's key features is its high-resolution remote shading analysis.

  8. 51. (no plate) Lens, lens pedestal, mercury float, shade holder ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. (no plate) Lens, lens pedestal, mercury float, shade holder installation, drawing # 3101, sheet 2 of 2. Approved April 6, 1928. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  9. Determination of the Solar Ultraviolet Transmission in Tree Shade.

    ERIC Educational Resources Information Center

    Parisi, Alfio V.; Kimlin, Michael G.

    1999-01-01

    Presents an activity in which the amount of solar ultraviolet radiation in tree shade is measured at different times of the day and compared with changes in illumination levels and temperature. (Author/WRM)

  10. SHADED-RELIEF GRIDS FOR US EPA REGION 9

    EPA Science Inventory

    Shaded Relief for the mainland US administrative boundary of the US EPA Region 9 developed from the United States Geological Survey (USGS) National Elevation Dataset (NED). The administrative boundary is represented by the state boundaries of California, Nevada, and Arizona.

  11. Shaded-Color Picture Generation of Computer-Defined Arbitrary Shapes

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.; Hermstad, D. L.; Mccoy, D. S.; Clark, J.

    1986-01-01

    SHADE computer program generates realistic color-shaded pictures from computer-defined arbitrary shapes. Objects defined for computer representation displayed as smooth, color-shaded surfaces, including varying degrees of transparency. Results also used for presentation of computational results. By performing color mapping, SHADE colors model surface to display analysis results as pressures, stresses, and temperatures. NASA has used SHADE extensively in sign and analysis of high-performance aircraft. Industry should find applications for SHADE in computer-aided design and computer-aided manufacturing. SHADE written in VAX FORTRAN and MACRO Assembler for either interactive or batch execution.

  12. Shape, Illumination, and Reflectance from Shading.

    PubMed

    Barron, Jonathan T; Malik, Jitendra

    2015-08-01

    A fundamental problem in computer vision is that of inferring the intrinsic, 3D structure of the world from flat, 2D images of that world. Traditional methods for recovering scene properties such as shape, reflectance, or illumination rely on multiple observations of the same scene to overconstrain the problem. Recovering these same properties from a single image seems almost impossible in comparison-there are an infinite number of shapes, paint, and lights that exactly reproduce a single image. However, certain explanations are more likely than others: surfaces tend to be smooth, paint tends to be uniform, and illumination tends to be natural. We therefore pose this problem as one of statistical inference, and define an optimization problem that searches for the most likely explanation of a single image. Our technique can be viewed as a superset of several classic computer vision problems (shape-from-shading, intrinsic images, color constancy, illumination estimation, etc) and outperforms all previous solutions to those constituent problems. PMID:26353003

  13. Infants' discrimination of shapes from shading and cast shadows.

    PubMed

    Sato, Kazuki; Kanazawa, So; Yamaguchi, Masami K

    2016-07-01

    Shadows are powerful cues in the perception of shapes. We can perceive shading and cast shadow implicitly. We investigated infants' ability to detect a single discrepant figure that was depicted by shading or cast shadow and examined the influence of the contrast polarity of shadows on this process. In Experiment 1, we manipulated the blur direction of a shadow to create stimuli that appeared either to be partially shaded or to cast a shadow and then used a preference to test whether this difference would allow 5- to 8-month-old infants to discriminate the figures that adults were able to perceive as different shapes. Only 7- to-8-month-old infants could differentiate one shading figure from cast shadow figures, and vice versa. In Experiment 2, we reversed the contrast polarity of the figure (dark object with a light shadow) and tested whether discrimination was affected. As has been found with adults, infants exposed to this condition were unable to discriminate the contrast-reversed shading and cast shadow figures. Our results suggested that an age of around 7 months is important for development of the ability to perceive shape differences from shading and cast shadows. PMID:27150615

  14. Shade Effects on the Dispersal of Airborne Hemileia vastatrix Uredospores.

    PubMed

    Boudrot, Audrey; Pico, Jimmy; Merle, Isabelle; Granados, Eduardo; Vílchez, Sergio; Tixier, Philippe; Filho, Elías de Melo Virginio; Casanoves, Fernando; Tapia, Ana; Allinne, Clémentine; Rice, Robert A; Avelino, Jacques

    2016-06-01

    Hemileia vastatrix caused a severe epidemic in Central America in 2012-13. The gradual development of that epidemic on nearly a continental scale suggests that dispersal at different scales played a significant role. Shade has been proposed as a way of reducing uredospore dispersal. The effect of shade (two strata: Erythrina poeppigiana below and Chloroleucon eurycyclum above) and full sun on H. vastatrix dispersal was studied with Burkard traps in relation to meteorological records. Annual and daily patterns of dispersal were observed, with peaks of uredospore capture obtained during wet seasons and in the early afternoon. A maximum of 464 uredospores in 1 day (in 14.4 m(3) of air) was recorded in October 2014. Interactions between shade/full sun and meteorological conditions were found. Rainfall, possibly intercepted by tree cover and redistributed by raindrops of higher kinetic energy, was the main driver of uredospore dispersal under shade. Wind gusts reversed this effect, probably by inhibiting water accumulation on leaves. Wind gusts also promoted dispersal under dry conditions in full sun, whereas they had no effect under shaded conditions, probably because the canopy blocked the wind. Our results indicate the importance of managing shade cover differentially in rainy versus dry periods to control the dispersal of airborne H. vastatrix uredospores. PMID:26828230

  15. Transcriptome response of cassava leaves under natural shade.

    PubMed

    Ding, Zehong; Zhang, Yang; Xiao, Yi; Liu, Fangfang; Wang, Minghui; Zhu, Xinguang; Liu, Peng; Sun, Qi; Wang, Wenquan; Peng, Ming; Brutnell, Tom; Li, Pinghua

    2016-01-01

    Cassava is an important staple crop in tropical and sub-tropical areas. As a common farming practice, cassava is usually cultivated intercropping with other crops and subjected to various degrees of shading, which causes reduced productivity. Herein, a comparative transcriptomic analysis was performed on a series of developmental cassava leaves under both full sunlight and natural shade conditions. Gene expression profiles of these two conditions exhibited similar developmental transitions, e.g. genes related to cell wall and basic cellular metabolism were highly expressed in immature leaves, genes involved in lipid metabolism and tetrapyrrole synthesis were highly expressed during the transition stages, and genes related to photosynthesis and carbohydrates metabolism were highly expressed in mature leaves. Compared with the control, shade significantly induced the expression of genes involved in light reaction of photosynthesis, light signaling and DNA synthesis/chromatin structure; however, the genes related to anthocyanins biosynthesis, heat shock, calvin cycle, glycolysis, TCA cycle, mitochondrial electron transport, and starch and sucrose metabolisms were dramatically depressed. Moreover, the shade also influenced the expression of hormone-related genes and transcriptional factors. The findings would improve our understanding of molecular mechanisms of shade response, and shed light on pathways associated with shade-avoidance syndrome for cassava improvement. PMID:27539510

  16. Transcriptome response of cassava leaves under natural shade

    PubMed Central

    Ding, Zehong; Zhang, Yang; Xiao, Yi; Liu, Fangfang; Wang, Minghui; Zhu, Xinguang; Liu, Peng; Sun, Qi; Wang, Wenquan; Peng, Ming; Brutnell, Tom; Li, Pinghua

    2016-01-01

    Cassava is an important staple crop in tropical and sub-tropical areas. As a common farming practice, cassava is usually cultivated intercropping with other crops and subjected to various degrees of shading, which causes reduced productivity. Herein, a comparative transcriptomic analysis was performed on a series of developmental cassava leaves under both full sunlight and natural shade conditions. Gene expression profiles of these two conditions exhibited similar developmental transitions, e.g. genes related to cell wall and basic cellular metabolism were highly expressed in immature leaves, genes involved in lipid metabolism and tetrapyrrole synthesis were highly expressed during the transition stages, and genes related to photosynthesis and carbohydrates metabolism were highly expressed in mature leaves. Compared with the control, shade significantly induced the expression of genes involved in light reaction of photosynthesis, light signaling and DNA synthesis/chromatin structure; however, the genes related to anthocyanins biosynthesis, heat shock, calvin cycle, glycolysis, TCA cycle, mitochondrial electron transport, and starch and sucrose metabolisms were dramatically depressed. Moreover, the shade also influenced the expression of hormone-related genes and transcriptional factors. The findings would improve our understanding of molecular mechanisms of shade response, and shed light on pathways associated with shade-avoidance syndrome for cassava improvement. PMID:27539510

  17. Evaluating the Community Land Model in a pine stand with shading manipulations and 13CO2 labeling

    NASA Astrophysics Data System (ADS)

    Mao, J.; Ricciuto, D. M.; Thornton, P. E.; Warren, J. M.; King, A. W.; Shi, X.; Iversen, C. M.; Norby, R. J.

    2016-02-01

    Carbon allocation and flow through ecosystems regulates land surface-atmosphere CO2 exchange and thus is a key, albeit uncertain, component of mechanistic models. The Partitioning in Trees and Soil (PiTS) experiment-model project tracked carbon allocation through a young Pinus taeda stand following pulse labeling with 13CO2 and two levels of shading. The field component of this project provided process-oriented data that were used to evaluate terrestrial biosphere model simulations of rapid shifts in carbon allocation and hydrological dynamics under varying environmental conditions. Here we tested the performance of the Community Land Model version 4 (CLM4) in capturing short-term carbon and water dynamics in relation to manipulative shading treatments and the timing and magnitude of carbon fluxes through various compartments of the ecosystem. When calibrated with pretreatment observations, CLM4 was capable of closely simulating stand-level biomass, transpiration, leaf-level photosynthesis, and pre-labeling 13C values. Over the 3-week treatment period, CLM4 generally reproduced the impacts of shading on soil moisture changes, relative change in stem carbon, and soil CO2 efflux rate. Transpiration under moderate shading was also simulated well by the model, but even with optimization we were not able to simulate the high levels of transpiration observed in the heavy shading treatment, suggesting that the Ball-Berry conductance model is inadequate for these conditions. The calibrated version of CLM4 gave reasonable estimates of label concentration in phloem and in soil surface CO2 after 3 weeks of shade treatment, but it lacks the mechanisms needed to track the labeling pulse through plant tissues on shorter timescales. We developed a conceptual model for photosynthate transport based on the experimental observations, and we discussed conditions under which the hypothesized mechanisms could have an important influence on model behavior in larger-scale applications

  18. SRTM Colored and Shaded Topography: Haro and Kas Hills, India

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On January 26, 2001, the Kachchh region in western India suffered the most deadly earthquake in India's history. This shaded topography view of landforms northeast of the city of Bhuj depicts geologic structures that are of interest in the study the tectonic processes that may have led to that earthquake. However, preliminary field studies indicate that these structures are composed of Mesozoic rocks that are overlain by younger rocks showing little deformation. Thus these structures may be old, not actively growing, and not directly related to the recent earthquake.

    The Haro Hills are on the left and the Kas Hills are on the right. The Haro Hills are an 'anticline,' which is an upwardly convex elongated fold of layered rocks. In this view, the anticline is distinctly ringed by an erosion resistant layer of sandstone. The east-west orientation of the anticline may relate to the crustal compression that has occurred during India's northward movement toward, and collision with, Asia. In contrast, the largest of the Kas Hills appears to be a tilted (to the south) and faulted (on the north) block of layered rocks. Also seen here, the linear feature trending toward the southwest from the image center is an erosion-resistant 'dike,' which is an igneous intrusion into older 'host' rocks along a fault plane or other crack. These features are simple examples of how shaded topography can provide a direct input to geologic studies.

    In this image, colors show the elevation as measured by the Shuttle Radar Topography Mission (SRTM). Colors range from green at the lowest elevations, through yellow and red, to purple at the highest elevations. Elevations here range from near sea level to about 300 meters (about 1000 feet). Shading has been added, with illumination from the north (image top).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same

  19. New Zealand, SRTM Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    New Zealand straddles the juncture of the Indo-Australian and Pacific tectonic plates, two of Earth's major crustal plates. The two plates generally converge in subduction zones, but in a scissor-like pattern, with the Indo-Austalian plate overriding the Pacific plate to the north and the Pacific plate overriding the Indo-Australian plate to the south. New Zealand is 'what happens' in between at and near the cross point of this scissor pattern. Here the convergence has built two major islands that together exhibit very active volcanoes and fault systems, and these geologic features are very evident in the topographic pattern.

    The North Island lies at the southern end of the west-over-east (Indo-Australian over Pacific) plate convergence. The Pacific plate dives under the North Island and this subduction process leads to melting of rocks at depth, the rise of magma to the surface, and the formation of volcanoes and other geothermal features. Most notable are Mount Taranaki on the west coast, and Mounts Ruapehu, Ngauruhoe, and Tongariro just south of the island's centerpoint, all of which are shown with white peaks in this display. The Rotorua geothermal field occurs further northeast and is evident here as a scattering of comparatively small bumps created by smaller volcanic eruptions.

    The South Island straddles the cross point of the subduction scissor pattern and prominently features a fault system that connects the two subduction zones. (The east-over-west (Pacific over Indo-Australian) plate convergence generally occurs south of the South Island.) The Alpine fault is the major strand of this fault system along most of the length of the island, near and generally paralleling the west coast. Its impact upon the topography is unmistakable, forming an extremely sharp and straight northwest boundary to New Zealand's tallest mountains, the Southern Alps. Although offsets on the Alpine fault are generally right-lateral (35-40 millimeters per year) and

  20. Direct Volume Rendering with Shading via Three-Dimensional Textures

    NASA Technical Reports Server (NTRS)

    Van Gelder, Allen; Kim, Kwansik

    1996-01-01

    A new and easy-to-implement method for direct volume rendering that uses 3D texture maps for acceleration, and incorporates directional lighting, is described. The implementation, called Voltx, produces high-quality images at nearly interactive speeds on workstations with hardware support for three-dimensional texture maps. Previously reported methods did not incorporate a light model, and did not address issues of multiple texture maps for large volumes. Our research shows that these extensions impact performance by about a factor of ten. Voltx supports orthographic, perspective, and stereo views. This paper describes the theory and implementation of this technique, and compares it to the shear-warp factorization approach. A rectilinear data set is converted into a three-dimensional texture map containing color and opacity information. Quantized normal vectors and a lookup table provide efficiency. A new tesselation of the sphere is described, which serves as the basis for normal-vector quantization. A new gradient-based shading criterion is described, in which the gradient magnitude is interpreted in the context of the field-data value and the material classification parameters, and not in isolation. In the rendering phase, the texture map is applied to a stack of parallel planes, which effectively cut the texture into many slabs. The slabs are composited to form an image.

  1. Effect of shading by the table coral Acropora Hyacinthus on understory corals. [Acropora; Pocillopora

    SciTech Connect

    Stimson, J.

    1985-02-01

    Field surveys at Enewetak Atoll, Marshall Islands, show that coral density and diversity is much lower beneath Acropora table corals than in adjacent unshaded areas. Additionally, the understory community is predominantly composed of massive and encrusting species, while branching Acropora and Pocillopora predominate in unshaded areas. Results of experiments in which coral fragments were transferred to the shade of table Acropora and to adjacent unshaded areas show that shading slows the growth and leads to higher mortality of branching species, while massive and encrusting species are unaffected. Light measurements made beneath table Acropora show that illumination and irradiance values fall to levels at which most hermatypic corals do not occur. The fast-growing but fragile table Acropora are abundant in a wide variety of atoll habitats and grow rapidly to form a canopy approx. = 50 cm above the substrate. However, table Acropora also have high mortality rates, so that there is continuous production of unshaded areas. The growth and death of tables thus create local disturbances, and the resulting patchwork of recently shaded and unshaded areas may enhance coral diversity in areas of high coral cover.

  2. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize.

    PubMed

    Ren, Baizhao; Cui, Haiyan; Camberato, James J; Dong, Shuting; Liu, Peng; Zhao, Bin; Zhang, Jiwang

    2016-08-01

    A field experiment was conducted to study the effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of two summer maize hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking (R1) to physiological maturity (R6) (S1), from the sixth leaf stage (V6) to R1 (S2), and from seeding to R6 (S3), respectively. The net photosynthetic rate (P n) was significantly decreased after shading. The greatest reduction of P n was found at S3 treatment, followed by S1 and S2 treatments. P n of S3 was decreased by 59 and 48 % for DH605, and 39 and 43 % for ZD958 at tasseling and milk-ripe stages, respectively, compared to that of CK. Additionally, leaf area index (LAI) and chlorophyll content decreased after shading. In terms of mesophyll cell ultrastructure, chloroplast configuration of mesophyll cells dispersed, and part of chloroplast swelled and became circular. Meanwhile, the major characteristics of chloroplasts showed poorly developed thylakoid structure at the early growth stage, blurry lamellar structure, loose grana, and a large gap between slices and warping granum. Then, plasmolysis occurred in mesophyll cells and the endomembrane system was destroyed, which resulted in the dissolution of cell membrane, karyotheca, mitochondria, and some membrane structures. The damaged mesophyll cell ultrastructure led to the decrease of photosynthetic capacity, and thus resulted in significant yield reduction by 45, 11, and 84 % in S1, S2, and S3 treatments, respectively, compared to that of CK. PMID:27437706

  3. Southern California Shaded Relief, Color as Height

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the desert to the mountains to the sea,' this image shows in striking detail the varied topography of Southern California. The data, which cover an area one and a half times the size of New Jersey, were acquired in 15 seconds by the Shuttle Radar Topography Mission (SRTM). The large V-shape across the center of the image is the intersection of the mountains uplifted along two major faults. The San Andreas Fault is the lower part of the 'V' and the Garlock Fault is the upper part. Between the faults is the western Mojave Desert, including the alternate landing site for the Shuttle at Edwards Air Force Base, near the center of the image. The Pacific Coast appears in the lower left of the image, from Oxnard at the left center edge, curving southeast to Los Angeles. The flat blue area along the top is the southern end of California's Central Valley. Along the right edge of the image is NASA's Goldstone Deep Space Tracking Station. Scientists will use data like these to study a broad range of topics, including ecology, the environment, geology, as well as to make assessments of seismic, flood, and wildfire hazards.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 3000 meters (10,000 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar

  4. South America, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2003-01-01

    that indicate the occurrence of simple erosional processes acting upon fairly uniform bedrock. Very smooth plateaus here are remnants of landforms most likely developed under geologic and environmental conditions much different than those present today. Fractures paralleling the coast are likely related to the opening of the Atlantic Ocean as South America drifted away from Africa, starting about 130 million years ago.

    To the southwest, broad lowlands host the Gran Chaco and Pampas regions. The depositional Gran Chaco drainages run almost exclusively from west to east from the Andes Mountains to the western edge of the Brazilian Highlands as a result of the much greater sediment supply from the Andes. Geologic processes on the Pampas are much more diverse, with stream erosion, stream deposition, subsidence, and wind processes all evident, even at the one-kilometer resolution shown here.

    Further south, Patagonia also displays these geologic processes plus more prominent volcanic features, including bumpy mesas, which are lava plateaus with small (and some large) volcanic cones. At its southern tip South America breaks into islands that include Tierra del Fuego and the Straits of Magellan.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was

  5. Zagros Mountains, Iran, SRTM Shaded Relief Anaglyph

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Zagros Mountains in Iran offer a visually stunning topographic display of geologic structure in layered sedimentary rocks. This scene is nearly 100 kilometers (62 miles) wide but is only a small part of similar terrain that covers much of southern Iran. This area is actively undergoing crustal shortening, as global tectonics moves Arabia toward Asia. Consequently, layers of sedimentary rock are folding much like a carpet will fold if pushed. The convex upward folds create structures called anticlines, which are prominently seen here. The convex downward folds (between the anticlines) create structures called synclines, which are mostly buried and hidden by sediments eroding off the anticlines. Layers having differing erosional resistance create distinctive patterns, often sawtooth triangular facets, that encircle the anticlines. Local relief between the higher mountain ridges and their intervening valleys is about 1,200 meters (about 4,000 feet).

    Salt extrusions and salt 'glaciers' are another set of geologic features readily evident in the topography. Salt deposits, likely created by the evaporation of an ancient inland sea, were buried by the sediments that now make up the layers of the anticlines and synclines. But salt is less dense than most other rocks, so it tends to migrate upward through Earth's crust in vertical columns called 'diapirs'. The compressive folding process has probably facilitated the formation of these diapirs, and the diapirs, in turn, are probably enhancing some anticlines by 'inflating' them with salt. Where the diapirs reach the surface, the salt extrudes, much like lava from a volcano, and the salt flows. Two prominent salt flows are evident in the same valley, leaking from neighboring anticlines, just north of the scene center.

    This anaglyph was created by deriving a shaded relief image from the SRTM data, draping it back over the SRTM elevation model, and then generating two differing perspectives, one for each eye

  6. Zagros Mountains, Iran, SRTM Shaded Relief

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Zagros Mountains in Iran offer a visually stunning topographic display of geologic structure in layered sedimentary rocks. This scene is nearly 100 kilometers (62 miles) wide but is only a small part of similar terrain that covers much of southern Iran. This area is actively undergoing crustal shortening, as global tectonics moves Arabia toward Asia. Consequently, layers of sedimentary rock are folding much like a carpet will fold if pushed. The convex upward folds create structures called anticlines, which are prominently seen here. The convex downward folds (between the anticlines) create structures called synclines, which are mostly buried and hidden by sediments eroding off the anticlines. Layers having differing erosional resistance create distinctive patterns, often sawtooth triangular facets, that encircle the anticlines. Local relief between the higher mountain ridges and their intervening valleys is about 1200 meters (about 4000 feet).

    Salt extrusions and salt 'glaciers' are another set of geologic features readily evident in the topography. Salt deposits, likely created by the evaporation of an ancient inland sea, were buried by the sediments that now make up the layers of the anticlines and synclines. But salt is less dense than most other rocks, so it tends to migrate upward through Earth's crust in vertical columns called 'diapirs'. The compressive folding process has probably facilitated the formation of these diapirs, and the diapirs, in turn, are probably enhancing some anticlines by 'inflating' them with salt. Where the diapirs reach the surface, the salt extrudes, much like lava from a volcano, and the salt flows. Two prominent salt flows are evident in the same valley, leaking from neighboring anticlines, just north of the scene center.

    This shaded relief image was created directly from an SRTM elevation model by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear

  7. Shaded relief, color as height, Fiji

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Sovereign Democratic Republic of the Fiji Islands, commonly known as Fiji, is an independent nation consisting of some 332 islands surrounding the Koro Sea in the South Pacific Ocean. This topographic image shows Viti Levu, the largest island in the group. With an area of 10,429 square kilometers (about 4000 square miles), it comprises more than half the area of the Fiji Islands. Suva, the capital city, lies on the southeast shore. The Nakauvadra, the rugged mountain range running from north to south, has several peaks rising above 900 meters (about 3000 feet). Mount Tomanivi, in the upper center, is the highest peak at 1324 meters (4341 feet). The distinct circular feature on the north shore is the Tavua Caldera, the remnant of a large shield volcano that was active about 4 million years ago. Gold has been mined on the margin of the caldera since the 1930's. The Nadrau plateau is the low relief highland in the center of the mountain range. The coastal plains in the west, northwest and southeast account for only 15 percent of Viti Levu's area but are the main centers of agriculture and settlement.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from green at the lowest elevations top ink at the highest elevations. This image contains about 1300 meters(4300 feet) of total relief.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to

  8. Shaded relief, color as height, Salalah, Oman

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This elevation map shows a part of the southern coast of the Arabian Peninsula including parts of the countries of Oman and Yemen. The narrow coastal plain on the right side of the image includes the city of Salahlah, the second largest city in Oman. Various crops, including coconuts, papayas and bananas, are grown on this plain. The abrupt topography of the coastal mountains wrings moisture from the monsoon, enabling agriculture in the otherwise dry environment of the Arabian Peninsula. These mountains are historically significant as well: Some scholars believe these mountains are the 'southern mountains' of the book of Genesis.

    This image brightness corresponds to shading illumination from the right, while colors show the elevation as measured by the Shuttle Radar Topography Mission. Colors range from green at the lowest elevations to brown at the highest elevations. This image contains about 1400 meters (4600 feet) of total relief. The Arabian Sea is colored blue.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI)space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 149 by 40 kilometers (92 by 25 miles) Location: 16.9 deg. North lat., 53.7 deg. East lon. Orientation: North at top right Date Acquired: February 15, 2000 Image: NASA/JPL/NIMA

  9. South America, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2003-01-01

    that indicate the occurrence of simple erosional processes acting upon fairly uniform bedrock. Very smooth plateaus here are remnants of landforms most likely developed under geologic and environmental conditions much different than those present today. Fractures paralleling the coast are likely related to the opening of the Atlantic Ocean as South America drifted away from Africa, starting about 130 million years ago.

    To the southwest, broad lowlands host the Gran Chaco and Pampas regions. The depositional Gran Chaco drainages run almost exclusively from west to east from the Andes Mountains to the western edge of the Brazilian Highlands as a result of the much greater sediment supply from the Andes. Geologic processes on the Pampas are much more diverse, with stream erosion, stream deposition, subsidence, and wind processes all evident, even at the one-kilometer resolution shown here.

    Further south, Patagonia also displays these geologic processes plus more prominent volcanic features, including bumpy mesas, which are lava plateaus with small (and some large) volcanic cones. At its southern tip South America breaks into islands that include Tierra del Fuego and the Straits of Magellan.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was

  10. Dynamics of the shade-avoidance response in Arabidopsis.

    PubMed

    Ciolfi, Andrea; Sessa, Giovanna; Sassi, Massimiliano; Possenti, Marco; Salvucci, Samanta; Carabelli, Monica; Morelli, Giorgio; Ruberti, Ida

    2013-09-01

    Shade-intolerant plants perceive the reduction in the ratio of red light (R) to far-red light (FR) as a warning of competition with neighboring vegetation and display a suite of developmental responses known as shade avoidance. In recent years, major progress has been made in understanding the molecular mechanisms underlying shade avoidance. Despite this, little is known about the dynamics of this response and the cascade of molecular events leading to plant adaptation to a low-R/FR environment. By combining genome-wide expression profiling and computational analyses, we show highly significant overlap between shade avoidance and deetiolation transcript profiles in Arabidopsis (Arabidopsis thaliana). The direction of the response was dissimilar at the early stages of shade avoidance and congruent at the late ones. This latter regulation requires LONG HYPOCOTYL IN FAR RED1/SLENDER IN CANOPY SHADE1 and phytochrome A, which function largely independently to negatively control shade avoidance. Gene network analysis highlights a subnetwork containing ELONGATED HYPOCOTYL5 (HY5), a master regulator of deetiolation, in the wild type and not in phytochrome A mutant upon prolonged low R/FR. Network analysis also highlights a direct connection between HY5 and HY5 HOMOLOG (HYH), a gene functionally implicated in the inhibition of hypocotyl elongation and known to be a direct target of the HY5 transcription factor. Kinetics analysis show that the HYH gene is indeed late induced by low R/FR and that its up-regulation depends on the action of HY5, since it does not occur in hy5 mutant. Therefore, we propose that one way plants adapt to a low-R/FR environment is by enhancing HY5 function. PMID:23893169

  11. Heterotrophic respiration in drained tropical peat temperatures influenced by shading gradient

    NASA Astrophysics Data System (ADS)

    Jauhiainen, Jyrki; Kerojoki, Otto; Silvennoinen, Hanna; Limin, Suwido; Vasander, Harri

    2015-04-01

    Lowland peatlands in Southeast Asia constitute a highly concentrated carbon (C) pool of global significance. These peatlands have formed over periods of several millennia by forest vegetation tolerant to flooding and poor substrates. Uncontrollable drainage and reoccurring wild fires in lack of management after removal of forest cover has impaired the C-storing functions in large reclaimed areas. Intergovernmental Panel on Climate Change (IPCC) reporting sees drained tropical organic soils as one of the largest greenhouse gas emissions releasing terrestrial systems. Vast areas of deforested tropical peatlands do not receive noteworthy shading by vegetation, which increases the amount of solar radiation reaching the peat surface. We studied heterotrophic carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes in tropical peat in conditions, where; (i) peat temperatures were modified by artificial shading (no shade, 28%, 51% and 90% from the full sun exposure), (ii) root respiration was minimized, (iii) nutrient availability for peat decomposer community was changed (NPK fertilization of 0 and 313 kg ha-1). The experiment was repeated at two over 20 years ago drained fallow agricultural- and degraded sites in Central Kalimantan, Indonesia. Enhanced shading created a lasting decrease in peat temperatures, and decreased diurnal temperature fluctuations, in comparison to less shaded plots. The largest peat temperature difference was between the unshaded and 90% shaded peat surface, where the average temperatures within the topmost 50-cm peat profile differed 3 °C, and diurnal temperatures at 5 cm depth varied up to 4.2 °C in the unshaded and 0.4 °C in the 90% shaded conditions. Highest impacts on the heterotrophic CO2 fluxes caused by the treatments were on agricultural land, where 90% shading from the full exposure resulted in a 33% lower CO2 emission average on the unfertilised plots and a 66% lower emission average on the fertilised plots. Correlation

  12. Simplified Method for Modeling the Impact of Arbitrary Partial Shading Conditions on PV Array Performance: Preprint

    SciTech Connect

    MacAlpine, Sara; Deline, Chris

    2015-09-15

    It is often difficult to model the effects of partial shading conditions on PV array performance, as shade losses are nonlinear and depend heavily on a system's particular configuration. This work describes and implements a simple method for modeling shade loss: a database of shade impact results (loss percentages), generated using a validated, detailed simulation tool and encompassing a wide variety of shading scenarios. The database is intended to predict shading losses in crystalline silicon PV arrays and is accessed using basic inputs generally available in any PV simulation tool. Performance predictions using the database are within 1-2% of measured data for several partially shaded PV systems, and within 1% of those predicted by the full, detailed simulation tool on an annual basis. The shade loss database shows potential to considerably improve performance prediction for partially shaded PV systems.

  13. Simplified Method for Modeling the Impact of Arbitrary Partial Shading Conditions on PV Array Performance

    SciTech Connect

    MacAlpine, Sara; Deline, Chris

    2015-06-14

    It is often difficult to model the effects of partial shading conditions on PV array performance, as shade losses are nonlinear and depend heavily on a system's particular configuration. This work describes and implements a simple method for modeling shade loss: a database of shade impact results (loss percentages), generated using a validated, detailed simulation tool and encompassing a wide variety of shading scenarios. The database is intended to predict shading losses in crystalline silicon PV arrays and is accessed using basic inputs generally available in any PV simulation tool. Performance predictions using the database are within 1-2% of measured data for several partially shaded PV systems, and within 1% of those predicted by the full, detailed simulation tool on an annual basis. The shade loss database shows potential to considerably improve performance prediction for partially shaded PV systems.

  14. Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance.

    PubMed

    Pacín, Manuel; Semmoloni, Mariana; Legris, Martina; Finlayson, Scott A; Casal, Jorge J

    2016-08-01

    Shade-avoidance responses require CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) but the mechanisms of action of COP1 under shade have not been elucidated. Using simulated shade and control conditions, we analysed: the transcriptome and the auxin levels of cop1 and phytochrome interacting factor 1 (pif1) pif3 pif4 pif5 (pifq) mutants; the dynamics of ELONGATED HYPOCOTYL 5 (HY5) and LONG HYPOCOTYL IN FAR-RED (HFR1) proteins; and the epistatic relationships between cop1 and pif3, pif4, pif5, hy5 and hfr1 mutations in Arabidopsis thaliana. Despite severely impaired shade-avoidance responses, only a few genes that responded to shade in the wild-type failed to do so in cop1. Shade enhanced the convergence between cop1 and pifq transcriptomes, mainly on shade-avoidance marker genes. Shade failed to increase auxin levels in cop1. Residual shade avoidance in cop1 was not further reduced by the pif3, pif4 or pif5 mutations, suggesting convergent pathways. HFR1 stability decreased under shade in a COP1-dependent manner but shade increased HY5 stability. The cop1 mutant retains responses to shade and is more specifically impaired in shade avoidance. COP1 promotes the degradation of HFR1 under shade, thus increasing the ability of PIFs to control gene expression, increase auxin levels and promote stem growth. PMID:27105120

  15. SHADE: A Shape-Memory-Activated Device Promoting Ankle Dorsiflexion

    NASA Astrophysics Data System (ADS)

    Pittaccio, S.; Viscuso, S.; Rossini, M.; Magoni, L.; Pirovano, S.; Villa, E.; Besseghini, S.; Molteni, F.

    2009-08-01

    Acute post-stroke rehabilitation protocols include passive mobilization as a means to prevent contractures. A device (SHADE) that provides repetitive passive motion to a flaccid ankle by using shape memory alloy actuators could be of great help in providing this treatment. A suitable actuator was designed as a cartridge of approximately 150 × 20 × 15 mm, containing 2.5 m of 0.25 mm diameter NiTi wire. This actuator was activated by Joule’s effect employing a 7 s current input at 0.7 A, which provided 10 N through 76 mm displacement. Cooling and reset by natural convection took 30 s. A prototype of SHADE was assembled with two thermoplastic shells hinged together at the ankle and strapped on the shin and foot. Two actuators were fixed on the upper shell while an inextensible thread connected each NiTi wire to the foot shell. The passive ankle motion (passive range of motion, PROM) generated by SHADE was evaluated optoelectronically on three flaccid patients (58 ± 5 years old); acceptability was assessed by a questionnaire presented to further three flaccid patients (44 ± 11.5 years old) who used SHADE for 5 days, 30 min a day. SHADE was well accepted by all patients, produced good PROM, and caused no pain. The results prove that suitable limb mobilization can be produced by SMA actuators.

  16. Plant Responses to Vegetation Proximity: A Whole Life Avoiding Shade

    PubMed Central

    Roig-Villanova, Irma; Martínez-García, Jaime F.

    2016-01-01

    In high density of vegetation, plants detect neighbors by perceiving changes in light quality through phytochrome photoreceptors. Close vegetation proximity might result in competition for resources, such as light. To face this challenge, plants have evolved two alternative strategies: to either tolerate or avoid shade. Shade-avoiding species generally adapt their development by inducing hypocotyl, stem, and petiole elongation, apical dominance and flowering, and decreasing leaf expansion and yield, a set of responses collectively known as the shade avoidance syndrome (SAS). The SAS responses have been mostly studied at the seedling stage, centered on the increase of hypocotyl elongation. After compiling the main findings about SAS responses in seedlings, this review is focused on the response to shade at adult stages of development, such as petioles of adult leaves, and the little information available on the SAS responses in reproductive tissues. We discuss these responses based on the knowledge about the molecular mechanisms and components with a role in regulating the SAS response of the hypocotyls of Arabidopsis thaliana. The transcriptional networks involved in this process, as well as the communication among the tissues that perceive the shade and the ones that respond to this stimulus will also be briefly commented. PMID:26973679

  17. Shading as a Control Method for Invasive European Frogbit (Hydrocharis morsus-ranae L.)

    PubMed Central

    Zhu, Bin; Ellis, Michael S.; Fancher, Kelly L.; Rudstam, Lars G.

    2014-01-01

    Invasive European frogbit (Hydrocharis morsus-ranae L.) has negative environmental and economic impacts in North American water bodies. It is therefore important to develop effective management tools to control this invasive species. This study investigated shading as a control method for European frogbit in both greenhouse and lake mesocosm experiments. A series of shade treatments (0%, 50%, 60%, 70%, 80%, and 100%) were tested in the greenhouse for three weeks. Results showed that the 100% shade was most effective at controlling European frogbit, and other shade treatments greater than 50% were less effective, reducing frogbit biomass up to 38.2%. There were no differences found in temperature between treatments, but dissolved oxygen decreased as shading increased. A lake mesocosm experiment utilizing 0% shade, 70% shade, and 100% shade treatments was performed in a sheltered inlet of Oneida Lake in New York State for over one month. Resulting European frogbit biomass was significantly (25 times) less in areas treated with the 70% shade and nearly zero with the 100% shade. Shading did not affect temperature but improved DO conditions. Results on the shading effects on submerged macrophytes were not conclusive: no significant differences in changes in species richness and abundance between the three groups at the end of studied period suggested no shading effects; significant differences between the beginning and end communities in the 70% shade and the 100% shade but not in the control group indicated significant impacts of shading. This study is the first one to investigate shading as a control method for European frogbit and it is concluded that a moderately high density shade can effective remove European frogbit likely with minor impacts on the environment. More experiments with larger scales and longer time periods are recommended for further investigation. PMID:24886916

  18. Resprouting as a persistence strategy of tropical forest trees: relations with carbohydrate storage and shade tolerance.

    PubMed

    Poorter, Lourens; Kitajima, Kaoru; Mercado, Pablo; Chubiña, Jose; Melgar, Israel; Prins, Herbert H T

    2010-09-01

    Resprouting is an important persistence strategy for woody species and represents a dominant pathway of regeneration in many plant communities, with potentially large consequences for vegetation dynamics, community composition, and species coexistence. Most of our knowledge of resprouting strategies comes from fire-prone systems, but this cannot be readily applied to other systems where disturbances are less intense. In this study we evaluated sapling responses to stem snapping for 49 moist-forest species and 36 dry-forest species from two Bolivian tropical forests. To this end we compared in a field experiment the survival and height growth of clipped and control saplings for a two-year period, and related this to the shade tolerance, carbohydrate reserves, and the morphological traits (wood density, leaf size) of the species. Nearly all saplings resprouted readily after stem damage, although dry-forest species realized, on average, a better survival and growth after stem damage compared to moist-forest species. Shade-tolerant species were better at resprouting than light-demanding species in moist forest. This resprouting ability is an important prerequisite for successful regeneration in the shaded understory, where saplings frequently suffer damage from falling debris. Survival after stem damage was, surprisingly, only modestly related to stem reserves, and much more strongly related to wood density, possibly because a high wood density enables plants to resist fungi and pathogens and to reduce stem decay. Correlations between sampling performance and functional traits were similar for the two forest types, and for phylogenetically independent contrasts and for cross-species analyses. The consistency of these results suggests that tropical forest species face similar trade-offs in different sites and converge on similar sets of solutions. A high resprouting ability, as well as investments in stem defense and storage reserves, form part of a suite of co

  19. Shade, water and mass: Passive cooling in Andalucia

    SciTech Connect

    Carrasco, V.; Reynolds, J.S.

    1996-10-01

    A thermally massive, ancient patio (courtyard) house in Bornos Spain was monitored for 25 days in summer 1995. Data for light, relative humidity and air temperature were recorded at the floor`s center in the 3-story deep patio. Temperatures were also recorded in one ground floor and one second floor room adjacent to the patio, and on the roof terrace. Victor Carrasco (the owner) kept a daily record of his actions of shading (with a toldo), of watering the patio`s absorbent floor, and of opening windows for night ventilation. The data show the effects of shading, watering and night ventilation. The cycles of temperature and relative humidity in the center of the patio floor reveal a pattern of thermal sailing where skillful manipulations of shading, evaporative cooling, radiation and night ventilation result in indoor comfort despite the highest outside temperatures of this century that occurred in late July 1995.

  20. Modeling Tree Shade Effect on Urban Ground Surface Temperature.

    PubMed

    Napoli, Marco; Massetti, Luciano; Brandani, Giada; Petralli, Martina; Orlandini, Simone

    2016-01-01

    There is growing interest in the role that urban forests can play as urban microclimate modifiers. Tree shade and evapotranspiration affect energy fluxes and mitigate microclimate conditions, with beneficial effects on human health and outdoor comfort. The aim of this study was to investigate surface temperature () variability under the shade of different tree species and to test the capability in predicting of a proposed heat transfer model. Surface temperature data on asphalt and grass under different shading conditions were collected in the Cascine park, Florence, Italy, and were used to test the performance of a one-dimensional heat transfer model integrated with a routine for estimating the effect of plant canopies on surface heat transfer. Shading effects of 10 tree species commonly used in Italian urban settings were determined by considering the infrared radiation and the tree canopy leaf area index (LAI). The results indicate that, on asphalt, was negatively related to the LAI of trees ( reduction ranging from 13.8 to 22.8°C). On grass, this relationship was weaker probably because of the combined effect of shade and grass evapotranspiration on ( reduction ranged from 6.9 to 9.4°C). A sensitivity analysis confirmed that other factors linked to soil water content play an important role in reduction of grassed areas. Our findings suggest that the energy balance model can be effectively used to estimate of the urban pavement under different shading conditions and can be applied to the analysis of microclimate conditions of urban green spaces. PMID:26828170

  1. Becoming less tolerant with age: sugar maple, shade, and ontogeny.

    PubMed

    Sendall, Kerrie M; Lusk, Christopher H; Reich, Peter B

    2015-12-01

    Although shade tolerance is often assumed to be a fixed trait, recent work suggests ontogenetic changes in the light requirements of tree species. We determined the influence of gas exchange, biomass distribution, and self-shading on ontogenetic variation in the instantaneous aboveground carbon balance of Acer saccharum. We quantified the aboveground biomass distributions of 18 juveniles varying in height and growing in low light in a temperate forest understory in Minnesota, USA. Gas exchange rates of leaf and stem tissues were measured, and the crown architecture of each individual was quantified. The YPLANT program was used to estimate the self-shaded fraction of each crown and to model net leaf-level carbon gain. Leaf respiration and photosynthesis per gram of leaf tissue increased with plant size. In contrast, stem respiration rates per gram of stem tissue declined, reflecting a shift in the distribution of stem diameter sizes from smaller (with higher respiration) to larger diameter classes. However, these trends were outweighed by ontogenetic increases in self-shading (which reduces the net photosynthesis realized) and stem mass fraction (which increases the proportion of purely respiratory tissue) in terms of influence on net carbon exchange. As a result, net carbon gain per gram of aboveground plant tissue declined with increasing plant size, and the instantaneous aboveground light compensation point increased. When estimates of root respiration were included to model whole-plant carbon gain and light compensation points, relationships with plant size were even more pronounced. Our findings show how an interplay of gas exchange, self-shading, and biomass distribution shapes ontogenetic changes in shade tolerance. PMID:26318296

  2. Objective measurement of shade color in age estimation

    PubMed Central

    Vaidya, Sharad; Ahuja, Nitin; Bajaj, Puneet; Kapoor, Charu; Sabarwal, Robin; Rajpal, Karan

    2015-01-01

    Introduction: Age estimation is an important subspecialty of forensic medicine. Dental hard tissues are highly resistant to degradation and putrefaction. Enamel is translucent and varies in color from light yellow to grey white. The color of the teeth has been reported to be affected by chronological age. Enamel color may also depend on environmental factors viz. diet, occupational habits, vitamin deficiencies, fluoride level in drinking water etc., It has been found that color changes in dentin vary from white to yellow. Studies have been done to measure the dentin color for age estimation. Aim: To find a correlation between the enamel color and chronological age and secondly to estimate the age of an individual from enamel color. Material and Methods: A total of 300 patients visiting the outpatient department of oral medicine and radiology were selected. Out of those, 150 were men and 150 women. The patients were divided into V groups based on the age. A thorough case history was taken for all the patients. Maxillary Central and Lateral incisor was used for the estimation of shade. The enamel color was evaluated using a VITA classical shade guide. Statistical Analysis: Data were exported to an Excel spread sheet and statistical analysis was performed using the SPSS. Linear regression analysis was used to find correlations between age and enamel shade. Results: In the group 1 and 2 i.e. from 15 to 36 years, the shades A 2 and B 2 (reddish hue) was found to be most common. While in the group 3 and 4, shades ranged from A 3 to B 3 (brownish to yellowish hue). In the patients above 59 years i.e. group 5 the enamel shade with greyish hue was found to be most common. Conclusion: Age determination using enamel color can be tried in forensic cases in the identification of individuals with no birth records. PMID:26816455

  3. Prevalence of Tooth Shade and its Correlation with Skin Colour - A Cross-sectional Study

    PubMed Central

    Kumari, K.V Halini; Choudhury, Gopal Krishna; Vilekar, Abhishek Madhukar; Das, Sitansu Sekhar; Jena, Debkant; Kataraki, Bharat; B.L, Bhavana

    2016-01-01

    Introduction Aesthetics has become an important issue in modern society. Tooth shade is one of the factors in determining aesthetics. Studies have revealed that tooth shade is influenced by age, gender, eye colour, skin colour and other factors. Aim The present study was aimed to assess the prevalence of tooth shade and its correlation with skin colour. Materials and Methods A total of 300 subjects aged 18-20 years were evaluated for tooth shade using Vitapan – 3D shade guide. Anterior teeth were checked under natural light and facial skin colour by Lakme liquid foundation make up as a shade guide. Data was analysed using chi square test and spearman’s correlation. Results Out of 300 students, 114 (38.00%) had A2 tooth shade; the least prevalent tooth shade among Chitradurga population was C1 (4.00%). There was a positive correlation between tooth shade and skin colour which was found to be statistically significant (p <0.05). Conclusion The most prevalent tooth shade among Chitradurga population was A2 and least was C1. There was a significant correlation between tooth shade and skin colour with lighter skin tone subjects having lighter tooth shade hence skin colour can be used as a guide for shade selection. PMID:27042590

  4. Iterative CT shading correction with no prior information

    NASA Astrophysics Data System (ADS)

    Wu, Pengwei; Sun, Xiaonan; Hu, Hongjie; Mao, Tingyu; Zhao, Wei; Sheng, Ke; Cheung, Alice A.; Niu, Tianye

    2015-11-01

    Shading artifacts in CT images are caused by scatter contamination, beam-hardening effect and other non-ideal imaging conditions. The purpose of this study is to propose a novel and general correction framework to eliminate low-frequency shading artifacts in CT images (e.g. cone-beam CT, low-kVp CT) without relying on prior information. The method is based on the general knowledge of the relatively uniform CT number distribution in one tissue component. The CT image is first segmented to construct a template image where each structure is filled with the same CT number of a specific tissue type. Then, by subtracting the ideal template from the CT image, the residual image from various error sources are generated. Since forward projection is an integration process, non-continuous shading artifacts in the image become continuous signals in a line integral. Thus, the residual image is forward projected and its line integral is low-pass filtered in order to estimate the error that causes shading artifacts. A compensation map is reconstructed from the filtered line integral error using a standard FDK algorithm and added back to the original image for shading correction. As the segmented image does not accurately depict a shaded CT image, the proposed scheme is iterated until the variation of the residual image is minimized. The proposed method is evaluated using cone-beam CT images of a Catphan©600 phantom and a pelvis patient, and low-kVp CT angiography images for carotid artery assessment. Compared with the CT image without correction, the proposed method reduces the overall CT number error from over 200 HU to be less than 30 HU and increases the spatial uniformity by a factor of 1.5. Low-contrast object is faithfully retained after the proposed correction. An effective iterative algorithm for shading correction in CT imaging is proposed that is only assisted by general anatomical information without relying on prior knowledge. The proposed method is thus practical

  5. Analytically calculating shading in regular arrays of sun-pointing collectors

    SciTech Connect

    Meller, Yosef

    2010-11-15

    A method is presented for deriving an algorithm for analytically calculating shading of sun-pointing solar collectors by other identical collectors in the field. The method is particularly suited to regularly-spaced collectors, with convex aperture shapes. Using this method, an algorithm suitable for circular-aperture collectors is derived. The algorithm is validated against results obtained using an existing algorithm, and an example for usage of the algorithm as a tool for validating assumptions of an existing algorithm is presented. (author)

  6. Differences in tooth shade value according to age, gender and skin color: A pilot study

    PubMed Central

    Veeraganta, Sumanth K.; Savadi, Ravindra C.; Baroudi, Kusai; Nassani, Mohammad Z.

    2015-01-01

    Purpose of the Study: The purpose was to investigate the differences in tooth shade value according to age, gender and skin color among a sample of the local population in Bengaluru, India. Methodology: The study comprised 100 subjects belonging to both gender between the age groups of 16 years to 55 years. Tooth shade values of permanent maxillary left or right central incisors were recorded using the Vitapan 3D-Master shade guide. Skin color was matched using the Radiance compact makeup shades as a guide. Results: Chi-square statistical test demonstrated that younger subjects have lighter tooth shade values. No statistically significant differences were recorded in tooth shade value according to gender or skin color. Conclusion: Within the limitations of the current study, it can be concluded that tooth shade value is significantly influenced by age. Gender and skin color appear not to have a significant relation to tooth shade value. PMID:26929500

  7. Shape-from-shading is independent of visual attention and may be a 'texton'.

    PubMed

    Braun, J

    1993-01-01

    Shading was used to generate the appearance of an obliquely illuminated surface with spherical indentations and protrusions. The "pop-out" of an apparent indentation among numerous apparent protrusions served as a psychophysical assay for shape-from-shading. Detectability of the pop-out varied with the direction of apparent illumination, a finding which is characteristic for shape-from-shading and which demonstrated the appropriateness of this assay. Observers were able to concurrently detect two shape-from-shading pop-outs in different parts of the display, demonstrating that shape-from-shading is a parallel process. In another experiment, visual attention was engaged by a letter discrimination task. Nevertheless, observers were able to detect a shape-from-shading pop-out concurrently in the unattended part of the display, suggesting that shape-from-shading is independent of visual attention. Thus, shape-from-shading shares some of the characteristics of Julesz' textural stimulus dimensions ('textons'). PMID:8110631

  8. Electron-shading effect on the horizontal aligned growth of carbon nanotubes

    SciTech Connect

    Chai Yang; Xiao Zhiyong; Chan, Philip C. H.

    2009-01-26

    Based on the well-accepted electron-shading theory during plasma processing, we designed microstructures to control the local built-in electric-field on the substrate surface. The distortion magnitude of the electric-field is largest near the sidewalls of the microstructures, creating a horizontal electric-field in this region. We showed that the horizontally aligned carbon nanotubes (CNTs) were grown by making use of this built-in electric-field during the plasma-enhanced chemical vapor deposition process, with a tactical choice of geometries and materials of the microstructures on the substrate. This technique opens up a way to selectively and controllably grow horizontally aligned CNTs on the substrate surface.

  9. Winter shading of blueberry plants in the southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Central Florida, southern highbush blueberries are treated with hydrogen cyanamide to replace lack of chilling and enhance flowering and fruiting. Experiments were conducted to determine the effects of repeated applications of processed kaolin particle and flat-top shade structure on blueberry p...

  10. Shade images of forested areas obtained from LANDSAT MSS data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1989-01-01

    The pixel size in the present day Remote Sensing systems is large enough to include different types of land cover. Depending upon the target area, several components may be present within the pixel. In forested areas, generally, three main components are present: tree canopy, soil (understory), and shadow. The objective is to generate a shade (shadow) image of forested areas from multispectral measurements of LANDSAT MSS (Multispectral Scanner) data by implementing a linear mixing model, where shadow is considered as one of the primary components in a pixel. The shade images are related to the observed variation in forest structure, i.e., the proportion of inferred shadow in a pixel is related to different forest ages, forest types, and tree crown cover. The Constrained Least Squares (CLS) method is used to generate shade images for forest of eucalyptus and vegetation of cerrado using LANDSAT MSS imagery over Itapeva study area in Brazil. The resulted shade images may explain the difference on ages for forest of eucalyptus and the difference on three crown cover for vegetation of cerrado.

  11. VIEW OF SHADED REAR YARD WITH CHAINLINK FENCE AND TERRACING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SHADED REAR YARD WITH CHAINLINK FENCE AND TERRACING, BEHIND 559 BIRCH CIRCLE. VIEW FACING EAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  12. VIEW OF SHADED REAR YARDS AND TERRACING, SHOWING REAR OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SHADED REAR YARDS AND TERRACING, SHOWING REAR OF 527 BIRCH CIRCLE ON LEFT. VIEW FACING NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  13. VIEW OF EAST SIDE OF CEDAR DRIVE, SHOWING SHADED CANOPY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF EAST SIDE OF CEDAR DRIVE, SHOWING SHADED CANOPY FORMED BY MONKEYPOD TREES. VIEW FACING EAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  14. Reproductive efficiency and shade avoidance plasticity under simulated competition.

    PubMed

    Fazlioglu, Fatih; Al-Namazi, Ali; Bonser, Stephen P

    2016-07-01

    Plant strategy and life-history theories make different predictions about reproductive efficiency under competition. While strategy theory suggests under intense competition iteroparous perennial plants delay reproduction and semelparous annuals reproduce quickly, life-history theory predicts both annual and perennial plants increase resource allocation to reproduction under intense competition. We tested (1) how simulated competition influences reproductive efficiency and competitive ability (CA) of different plant life histories and growth forms; (2) whether life history or growth form is associated with CA; (3) whether shade avoidance plasticity is connected to reproductive efficiency under simulated competition. We examined plastic responses of 11 herbaceous species representing different life histories and growth forms to simulated competition (spectral shade). We found that both annual and perennial plants invested more to reproduction under simulated competition in accordance with life-history theory predictions. There was no significant difference between competitive abilities of different life histories, but across growth forms, erect species expressed greater CA (in terms of leaf number) than other growth forms. We also found that shade avoidance plasticity can increase the reproductive efficiency by capitalizing on the early life resource acquisition and conversion of these resources into reproduction. Therefore, we suggest that a reassessment of the interpretation of shade avoidance plasticity is necessary by revealing its role in reproduction, not only in competition of plants. PMID:27547325

  15. Shade Material Evaluation Using a Cattle Response Model and Meteorological Instrumentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shade structures are often considered as one method of reducing stress in feedlot cattle. Selection of a suitable shade material can be difficult without data that quantify material effectiveness for stress reduction. A summer study was conducted during 2007 using instrumented shade structures in ...

  16. Body temperature and behavioral activities of four breeds of heifers in shade and full sun

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heifers from four breeds, eight of each breed, were housed in two types of feedlot pens – one with shade and the other with no shade (exposed to full sun). The breeds were: Black Angus, Charolais (white), MARC I (tan) and MARC III (dark red). The objectives were to determine whether shade made a ...

  17. Effect of shade on summer body temperature and respiration rate of Angus, Brahman, and Romosinuano heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the effect of shade during summer in Florida on rectal temperature and respiration rate, a total of 24 heifers (8 Angus, 8 Brahman, and 8 Romosinuano) were utilized. Heifers were allotted by breed to one of two treatment groups, shade or no shade. Heifers were acclimated to treatments f...

  18. The effect of resin shades on microhardness, polymerization shrinkage, and color change of dental composite resins.

    PubMed

    Jeong, Tae-Sung; Kang, Ho-Seung; Kim, Sung-Ki; Kim, Shin; Kim, Hyung-Il; Kwon, Yong Hoon

    2009-07-01

    The present study sought to evaluate the effect of resin shades on the degree of the polymerization. To this end, response variables affected by the degree of polymerization were examined in this study - namely, microhardness, polymerization shrinkage, and color change. Two commercial composite resins of four different shades were employed in this study: shades A3, A3.5, B3, and C3 of Z250 (Z2) and shades A3, A3.5, B3, and B4 of Solitaire 2 (S2). After light curing, the reflectance/absorbance, microhardness, polymerization shrinkage, and color change of the specimens were measured. On reflectance and absorbance, Z2 and S2 showed similar distribution curves regardless of the resin shade, with shade A3.5 of Z2 and shade A3 of S2 exhibiting the lowest/highest distributions. Similarly for attenuation coefficient and microhardness, the lowest/highest values were exhibited by shade A3.5 of Z2 and shade A3 of S2. On polymerization shrinkage, no statistically significant differences were observed among the different shades of Z2. Similarly for color change, Z2 specimens exhibited only a slight (DeltaE*=0.5-0.9) color change after immersion in distilled water for 10 days, except for shades A3 and A3.5. Taken together, results of the present study suggested that the degree of polymerization of the tested composite resins was minimally affected by resin shade. PMID:19721281

  19. Shading responses of carbon allocation dynamics in mountain grassland

    NASA Astrophysics Data System (ADS)

    Bahn, M.; Lattanzi, F. A.; Brueggemann, N.; Siegwolf, R. T.; Richter, A.

    2012-12-01

    Carbon (C) allocation strongly influences plant and soil processes. Global environmental changes can alter source - sink relations of plants with potential implications for C allocation. Short-term C allocation dynamics in ecosystems and their responses to environmental changes are still poorly understood. To analyze effects of assimilate supply (i.e. C source strength) on ecosystem C allocation dynamics and the role of non-structural carbohydrates, canopy sections of a mountain meadow were pulse labeled with 13CO2 and subsequently shaded for a week or left unshaded (control). Tracer dynamics in above- and belowground sucrose and starch pools were analysed and coupled using compartmental modelling. The hypothesis was tested that shading affects tracer dynamics in non-structural carbohydrates and diminishes the transfer of recently assimilated C to roots and their storage pools. In unshaded plots up to 40% of assimilated C was routed through short-term storage in shoot starch and sucrose to buffer day / night cycles in photosynthesis. Shoot- and root sucrose and shoot starch were kinetically closely related pools. The tracer dynamics of the modelled root sucrose pool corresponded well with those in soil CO2 efflux. Root starch played no role in buffering day / night cycles and likely acted as a seasonal store. Shading strongly reduced sucrose and starch concentrations in shoots but not roots and resulted in a massive reduction of leaf respiration, while root respiration was much less diminished. Shading affected tracer dynamics in sucrose and starch of shoots: shoot starch rapidly lost tracer, while sucrose transiently increased its tracer content. Surprisingly, shading did not alter the dynamics of root carbohydrates. Even under severe C limitation after one week of shading, tracer C continued to be incorporated in root starch. Also the amount of 13C incorporated in phospholipid fatty acids of soil microbial communities was not reduced by shading, though its

  20. High quality GPU rendering with displaced pixel shading

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Choi, Jae

    2006-03-01

    Direct volume rendering via consumer PC hardware has become an efficient tool for volume visualization. In particular, the volumetric ray casting, the most frequently used volume rendering technique, can be implemented by the shading language integrated with graphical processing units (GPU). However, to produce high-quality images offered by GPU-based volume rendering, a higher sampling rate is usually required. In this paper, we present an algorithm to generate high quality images with a small number of slices by utilizing displaced pixel shading technique. Instead of sampling points along a ray with the regular interval, the actual surface location is calculated by the linear interpolation between the outer and inner points, and this location is used as the displaced pixel for the iso-surface illumination. Multi-pass and early Z-culling techniques are applied to improve the rendering speed. The first pass simply locates and stores the exact surface depth of each ray using a few pixel instructions; then, the second pass uses instructions to shade the surface at the previous position. A new 3D edge detector from our previous research is integrated to provide more realistic rendering results compared with the widely used gradient normal estimator. To implement our algorithm, we have made a program named DirectView based on DirectX 9.0c and Microsoft High Level Shading Language (HLSL) for volume rendering. We tested two data sets and discovered that our algorithm can generate smoother and more accurate shading images with a small number of intermediate slices.

  1. Energy Balance Alterations Due to Cropland Conversion in a Tropical Montane Environment: Shaded Coffee to Sugarcane

    NASA Astrophysics Data System (ADS)

    Alvarado-Barrientos, M. S.; Holwerda, F.; Salazar-Martinez, D.

    2014-12-01

    Although land use change (LUC) is an important driver of changes in climate, very limited field observations of atmosphere-landscape interactions exist in tropical montane zones to examine the extent to which LUCs affect climate locally and regionally. The lack of ground observations hampers the evaluation of satellite-derived datasets of land surface parameters as well as the validation of regional climate models. The first results of an ongoing study of the climate effects of a LUC trajectory in the lower montane region (1200 m a.s.l.) of central Veracruz, Mexico, are presented. The radiation balance, turbulent fluxes and soil heat flux were measured in order to obtain field-derived land surface parameters (albedo and Bowen ratio) of two contrasting land uses: shaded coffee (CO) and sugarcane (SU) plantations. Measurements were conducted on days representing different seasons and crop stages during 2014: cold-dry (January), warm-dry (March) and warm-wet (July). Average noon-time albedo was higher for SU than for CO (0.14 vs. 0.11). Soil heat flux was on average 13% and 12% of net radiation for SU and CO, respectively. Preliminary turbulent flux calculations indicate that noon-time Bowen ratio was higher for sugar cane (range: 1.0-1.5) compared to shaded coffee (range: 0.5-1.0). Seasonal (and crop-stage) changes affected the surface parameters of SU mostly. For example, the SU Bowen ratio increased with decreasing soil moisture, indicating soil moisture limitation for transpiration reducing latent heat flux. In contrast, the shaded coffee Bowen ratio remained relatively constant across measuring periods. The energy balance closure was 80% (pending complete eddy covariance data corrections). These results indicate that the conversion of shaded coffee to sugarcane result in a drier and hotter lower atmosphere. Next steps include examining the implications of these local changes for regional climate, with special attention to cloud formation, using a regional model

  2. Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade?

    PubMed Central

    Valladares, Fernando; Gianoli, Ernesto; Saldaña, Alfredo

    2011-01-01

    Background and Aims While the climbing habit allows vines to reach well-lit canopy areas with a minimum investment in support biomass, many of them have to survive under the dim understorey light during certain stages of their life cycle. But, if the growth/survival trade-off widely reported for trees hold for climbing plants, they cannot maximize both light-interception efficiency and shade avoidance (i.e. escaping from the understorey). The seven most important woody climbers occurring in a Chilean temperate evergreen rainforest were studied with the hypothesis that light-capture efficiency of climbers would be positively associated with their abundance in the understorey. Methods Species abundance in the understorey was quantified from their relative frequency and density in field plots, the light environment was quantified by hemispherical photography, the photosynthetic response to light was measured with portable gas-exchange analyser, and the whole shoot light-interception efficiency and carbon gain was estimated with the 3-D computer model Y-plant. Key Results Species differed in specific leaf area, leaf mass fraction, above ground leaf area ratio, light-interception efficiency and potential carbon gain. Abundance of species in the understorey was related to whole shoot features but not to leaf level features such as specific leaf area. Potential carbon gain was inversely related to light-interception efficiency. Mutual shading among leaves within a shoot was very low (<20 %). Conclusions The abundance of climbing plants in this southern rainforest understorey was directly related to their capacity to intercept light efficiently but not to their potential carbon gain. The most abundant climbers in this ecosystem match well with a shade-tolerance syndrome in contrast to the pioneer-like nature of climbers observed in tropical studies. The climbers studied seem to sacrifice high-light searching for coping with the dim understorey light. PMID:21685433

  3. Attenuation of the jasmonate burst, plant defensive traits, and resistance to specialist monarch caterpillars on shaded common milkweed (Asclepias syriaca).

    PubMed

    Agrawal, Anurag A; Kearney, Emily E; Hastings, Amy P; Ramsey, Trey E

    2012-07-01

    Plant responses to herbivory and light competition are often in opposing directions, posing a potential conflict for plants experiencing both stresses. For sun-adapted species, growing in shade typically makes plants more constitutively susceptible to herbivores via reduced structural and chemical resistance traits. Nonetheless, the impact of light environment on induced resistance has been less well-studied, especially in field experiments that link physiological mechanisms to ecological outcomes. Accordingly, we studied induced resistance of common milkweed (Asclepias syriaca, a sun-adapted plant), and linked hormonal responses, resistance traits, and performance of specialist monarch caterpillars (Danaus plexippus) in varying light environments. In natural populations, plants growing under forest-edge shade showed reduced levels of resistance traits (lower leaf toughness, cardenolides, and trichomes) and enhanced light-capture traits (higher specific leaf area, larger leaves, and lower carbon-to-nitrogen ratio) compared to paired plants in full sun. In a field experiment repeated over two years, only milkweeds growing in full sun exhibited induced resistance to monarchs, whereas plants growing in shade were constitutively more susceptible and did not induce resistance. In a more controlled field experiment, plant hormones were higher in the sun (jasmonic acid, salicylic acid, abscisic acid, indole acidic acid) and were induced by herbivory (jasmonic acid and abscisic acid). In particular, the jasmonate burst following herbivory was halved in plants raised in shaded habitats, and this correspondingly reduced latex induction (but not cardenolide induction). Thus, we provide a mechanistic basis for the attenuation of induced plant resistance in low resource environments. Additionally, there appears to be specificity in these interactions, with light-mediated impacts on jasmonate-induction being stronger for latex exudation than cardenolides. PMID:22661306

  4. Typology of building shading elements on Jalan Sudirman corridor in Pekanbaru

    NASA Astrophysics Data System (ADS)

    Faisal, G.; Aldy, P.

    2016-04-01

    In 2013, temperature in Pekanbaru was between 22.60°C and 34.6°C with humidity 79.14 percent. This condition has increase the concern of energy utilization to building comfort. Buildings have the biggest energy consuming due to the use of air conditioner in Pekanbaru. One effort to reduced energy is shading devices application. Application of air conditioner need huge energy, replaced natural circulation with architecture elements to reduced building thermal. This research study about system and building shading devices types that influence building thermal in Pekanbaru so that knowing characteristics and elements form. This study aims to determine and identify of systems and building elements types in Pekanbaru, which the element forms to conquer in climate condition. Qualitative method with rationalistic-paradigm has used to identify typology of building shading devices on Jalan Sudirman corridor. The research orientation on typology theory, thermal theory, and building shading device to identification of building shading device types on Jalan Sudirman corridor. Based on the survey result, there are 2 type of building shading devices on Jalan Sudirman Pekanbaru which is based on forms and quantity of shading. The types are building shading devices based on shading quantity and building shading devices based on shading forms.

  5. Evaluation of Dental Shade Guide Variability Using Cross-Polarized Photography.

    PubMed

    Gurrea, Jon; Gurrea, Marta; Bruguera, August; Sampaio, Camila S; Janal, Malvin; Bonfante, Estevam; Coelho, Paulo G; Hirata, Ronaldo

    2016-01-01

    This study evaluated color variability in the A hue between the VITA Classical (VITA Zahnfabrik) shade guide and four other VITA-coded ceramic shade guides using a Canon EOS 60D camera and software (Photoshop CC, Adobe). A total of 125 photographs were taken, 5 per shade tab for each of 5 shades (A1 to A4) from the following shade guides: VITA Classical (control), IPS e.max Ceram (Ivoclar Vivadent), IPS d.SIGN (Ivoclar Vivadent), Initial ZI (GC), and Creation CC (Creation Willi Geller). Photos were processed with Adobe Photoshop CC to allow standardized evaluation of hue, chroma, and value between shade tabs. None of the VITA-coded shade tabs fully matched the VITA Classical shade tab for hue, chroma, or value. The VITA-coded shade guides evaluated herein showed an overall unmatched shade in all tabs when compared with the control, suggesting that shade selection should be made using the guide produced by the manufacturer of the ceramic intended for the final restoration. PMID:27560681

  6. Shading-based DEM refinement under a comprehensive imaging model

    NASA Astrophysics Data System (ADS)

    Peng, Jianwei; Zhang, Yi; Shan, Jie

    2015-12-01

    This paper introduces an approach to refine coarse digital elevation models (DEMs) based on the shape-from-shading (SfS) technique using a single image. Different from previous studies, this approach is designed for heterogeneous terrain and derived from a comprehensive (extended) imaging model accounting for the combined effect of atmosphere, reflectance, and shading. To solve this intrinsic ill-posed problem, the least squares method and a subsequent optimization procedure are applied in this approach to estimate the shading component, from which the terrain gradient is recovered with a modified optimization method. Integrating the resultant gradients then yields a refined DEM at the same resolution as the input image. The proposed SfS method is evaluated using 30 m Landsat-8 OLI multispectral images and 30 m SRTM DEMs. As demonstrated in this paper, the proposed approach is able to reproduce terrain structures with a higher fidelity; and at medium to large up-scale ratios, can achieve elevation accuracy 20-30% better than the conventional interpolation methods. Further, this property is shown to be stable and independent of topographic complexity. With the ever-increasing public availability of satellite images and DEMs, the developed technique is meaningful for global or local DEM product refinement.

  7. Perception of light source distance from shading patterns.

    PubMed

    Schütt, Heiko H; Baier, Franziska; Fleming, Roland W

    2016-01-01

    Varying the distance of a light source from an object alters both the intensity and spatial distribution of surface shading patterns. We tested whether observers can use such cues to infer light source distance. Participants viewed stereoscopic renderings of rough objects with diffuse and glossy surfaces, which were illuminated by a point source at a range of distances. In one task, they adjusted the position of a small probe dot in three dimensions to report the apparent location of the light in the scene. In a second task, they adjusted the shading on one object (by moving an invisible light source) until it appeared to be illuminated from the same distance as another object. Participants' responses increased linearly with the true light source distance, suggesting that they have clear intuitions about how light source distance affects shading patterns for a variety of different surfaces. However, there were also systematic errors: Subjects overestimated light source distance in the probe adjustment task, and in both experiments, roughness and glossiness affected responses. We find the pattern of results is predicted surprisingly well by a simplistic model based only on the area of the image that exceeds a certain intensity threshold. Thus, although subjects can report light source distance, they may rely on simple--sometimes erroneous--heuristics to do so. PMID:26868887

  8. Photosynthetic flexibility in maize exposed to salinity and shade

    PubMed Central

    Sharwood, Robert E.; Sonawane, Balasaheb V.; Ghannoum, Oula

    2014-01-01

    C4 photosynthesis involves a close collaboration of the C3 and C4 metabolic cycles across the mesophyll and bundle-sheath cells. This study investigated the coordination of C4 photosynthesis in maize plants subjected to two salinity (50 and 100mM NaCl) treatments and one shade (20% of full sunlight) treatment. Photosynthetic efficiency was probed by combining leaf gas-exchange measurements with carbon isotope discrimination and assaying the key carboxylases [ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [nicotinamide adenine dinucleotide phosphate malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] operating in maize leaves. Generally, salinity inhibited plant growth and photosynthesis to a lesser extent than shade. Salinity reduced photosynthesis primarily by reducing stomatal conductance and secondarily by equally reducing Rubisco and PEPC activities; the decarboxylases were inhibited more than the carboxylases. Salinity increased photosynthetic carbon isotope discrimination (Δp) and reduced leaf dry-matter carbon isotope composition (13δ) due to changes in p i/p a (intercellular to ambient CO2 partial pressure), while CO2 leakiness out of the bundle sheath (ϕ) was similar to that in control plants. Acclimation to shade was underpinned by a greater downregulation of PEPC relative to Rubisco activity, and a lesser inhibition of NADP-ME (primary decarboxylase) relative to PEP-CK (secondary decarboxylase). Shade reduced Δp and ɸ without significantly affecting leaf 13δ or p i/p a relative to control plants. Accordingly, shade perturbed the balance between the C3 and C4 cycles during photosynthesis in maize, and demonstrated the flexible partitioning of C4 acid decarboxylation activity between NADP-ME and PEP-CK in response to the environment. This study highlights the need to improve our understanding of the links between leaf 13δ and photosynthetic Δp, and the role

  9. Effects of water level, shade and time on germination and growth of freshwater marsh plants along a simulated successional gradient

    USGS Publications Warehouse

    Kellogg, C.H.; Bridgham, S.D.; Leicht, S.A.

    2003-01-01

    1. We examined the effect of soil organic content (1.4, 3.6, 7.2% soil C), water level (+2, -1, -4 cm from soil surface) and duration (13 or 33 days) on 10 species that varied in abundance during succession in freshwater marshes. We also determined the effect of shade (0, 40, 80% shade) and soil organic content (1.4 and 7.2% soil C) on germination of six species over 62 days with water 0.5 cm below the soil surface. 2. Water level consistently affected species germination on both dates. Above-ground biomass was generally higher with increasing organic content of soil, but shade had little effect on germination or height. 3 The hydrologic zone in which species were found in the field was a good indicator of the response of germination to hydrology. Both early successional species and species wide-spread across the successional gradient show similar germination on all organic contents, while later successional species appear to germinate best at higher organic contents. 4. Successional changes in soils are capable of affecting plant community development, independent of disturbance.

  10. Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses.

    PubMed

    Abou Rajab, Yasmin; Leuschner, Christoph; Barus, Henry; Tjoa, Aiyen; Hertel, Dietrich

    2016-01-01

    One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each) with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species) in Sulawesi (Indonesia) with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground) increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1), total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1). This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1-1.2 Mg C ha-1 yr-1). The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity. PMID:26927428

  11. The Effects of Drought and Shade on the Performance, Morphology and Physiology of Ghanaian Tree Species

    PubMed Central

    Amissah, Lucy; Mohren, Godefridus M. J.; Kyereh, Boateng; Poorter, Lourens

    2015-01-01

    In tropical forests light and water availability are the most important factors for seedling growth and survival but an increasing frequency of drought may affect tree regeneration. One central question is whether drought and shade have interactive effects on seedling growth and survival. Here, we present results of a greenhouse experiment, in which seedlings of 10 Ghanaian tree species were exposed to combinations of strong seasonal drought (continuous watering versus withholding water for nine weeks) and shade (5% irradiance versus 20% irradiance). We evaluated the effects of drought and shade on seedling survival and growth and plasticity of 11 underlying traits related to biomass allocation, morphology and physiology. Seedling survival under dry conditions was higher in shade than in high light, thus providing support for the “facilitation hypothesis” that shade enhances plant performance through improved microclimatic conditions, and rejecting the trade-off hypothesis that drought should have stronger impact in shade because of reduced root investment. Shaded plants had low biomass fraction in roots, in line with the trade-off hypothesis, but they compensated for this with a higher specific root length (i.e., root length per unit root mass), resulting in a similar root length per plant mass and, hence, similar water uptake capacity as high-light plants. The majority (60%) of traits studied responded independently to drought and shade, indicating that within species shade- and drought tolerances are not in trade-off, but largely uncoupled. When individual species responses were analysed, then for most of the traits only one to three species showed significant interactive effects between drought and shade. The uncoupled response of most species to drought and shade should provide ample opportunity for niche differentiation and species coexistence under a range of water and light conditions. Overall our greenhouse results suggest that, in the absence of root

  12. The effects of drought and shade on the performance, morphology and physiology of Ghanaian tree species.

    PubMed

    Amissah, Lucy; Mohren, Godefridus M J; Kyereh, Boateng; Poorter, Lourens

    2015-01-01

    In tropical forests light and water availability are the most important factors for seedling growth and survival but an increasing frequency of drought may affect tree regeneration. One central question is whether drought and shade have interactive effects on seedling growth and survival. Here, we present results of a greenhouse experiment, in which seedlings of 10 Ghanaian tree species were exposed to combinations of strong seasonal drought (continuous watering versus withholding water for nine weeks) and shade (5% irradiance versus 20% irradiance). We evaluated the effects of drought and shade on seedling survival and growth and plasticity of 11 underlying traits related to biomass allocation, morphology and physiology. Seedling survival under dry conditions was higher in shade than in high light, thus providing support for the "facilitation hypothesis" that shade enhances plant performance through improved microclimatic conditions, and rejecting the trade-off hypothesis that drought should have stronger impact in shade because of reduced root investment. Shaded plants had low biomass fraction in roots, in line with the trade-off hypothesis, but they compensated for this with a higher specific root length (i.e., root length per unit root mass), resulting in a similar root length per plant mass and, hence, similar water uptake capacity as high-light plants. The majority (60%) of traits studied responded independently to drought and shade, indicating that within species shade- and drought tolerances are not in trade-off, but largely uncoupled. When individual species responses were analysed, then for most of the traits only one to three species showed significant interactive effects between drought and shade. The uncoupled response of most species to drought and shade should provide ample opportunity for niche differentiation and species coexistence under a range of water and light conditions. Overall our greenhouse results suggest that, in the absence of root

  13. Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses

    PubMed Central

    Abou Rajab, Yasmin; Leuschner, Christoph; Barus, Henry; Tjoa, Aiyen; Hertel, Dietrich

    2016-01-01

    One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each) with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species) in Sulawesi (Indonesia) with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground) increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1), total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1). This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1–1.2 Mg C ha-1 yr-1). The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity. PMID:26927428

  14. Daylighting performance evaluation of a bottom-up motorized roller shade

    SciTech Connect

    Kapsis, K.; Athienitis, A.K.; Zmeureanu, R.G.; Tzempelikos, A.

    2010-12-15

    This paper presents an experimental and simulation study for quantifying the daylighting performance of bottom-up roller shades installed in office spaces. The bottom-up shade is a motorized roller shade that opens from top to bottom operating in the opposite direction of a conventional roller shade, so as to cover the bottom part of the window, while allowing daylight to enter from the top part of the window, reaching deeper into the room. A daylighting simulation model, validated with full-scale experiments, was developed in order to establish correlations between the shade position, outdoor illuminance and work plane illuminance for different outdoor conditions. Then, a shading control algorithm was developed for application in any location and orientation. The validated model was employed for a sensitivity analysis of the impact of shade optical properties and control on the potential energy savings due to the use of daylighting. The results showed that Daylight Autonomy for the bottom-up shade is 8-58% higher compared to a conventional roller shade, with a difference of 46% further away from the facade, where the use of electric lighting is needed most of the time. The potential reduction in energy consumption for lighting is 21-41%. (author)

  15. A new perspective on the relationship between cloud shade and point cloudiness

    NASA Astrophysics Data System (ADS)

    Brabec, Marek; Badescu, Viorel; Paulescu, Marius; Dumitrescu, Alexandru

    2016-05-01

    Several simple relationships between cloud shade and point cloudiness have been proposed in the last few decades. The present approach is fundamentally different in that it captures some of the hard restrictions dictated by the bounded range (0, 1)of the cloud shade. Three different models are proposed. The main aim is to produce estimates of the whole conditional distribution of the cloud shade for a given point cloudiness value. The beta-inflated model, which takes into account natural physical constraints of the cloud shade, provides the best results.

  16. Partial Shade Evaluation of Distributed Power Electronics for Photovoltaic Systems: Preprint

    SciTech Connect

    Deline, C.; Meydbrav, J.; Donovan, M.

    2012-06-01

    Site survey data for several residential installations are provided, showing the extent and frequency of shade throughout the year. This background information is used to design a representative shading test that is conducted on two side-by-side 8-kW photovoltaic (PV) installations. One system is equipped with a standard string inverter, while the other is equipped with microinverters on each solar panel. Partial shade is applied to both systems in a comprehensive range of shading conditions, simulating one of three shade extents. Under light shading conditions, the microinverter system produced the equivalent of 4% annual performance improvement, relative to the string inverter system. Under moderate shading conditions, the microinverter system outperformed the string inverter system by 8%, and under heavy shading the microinverter increased relative performance by 12%. In all three cases, the percentage of performance loss that is recovered by the use of distributed power electronics is 40%-50%. Additionally, it was found that certain shading conditions can lead to additional losses in string inverters due to peak-power tracking errors and voltage limitations.

  17. Shade Avoidance Components and Pathways in Adult Plants Revealed by Phenotypic Profiling

    PubMed Central

    Nozue, Kazunari; Tat, An V.; Kumar Devisetty, Upendra; Robinson, Matthew; Mumbach, Maxwell R.; Ichihashi, Yasunori; Lekkala, Saradadevi; Maloof, Julin N.

    2015-01-01

    Shade from neighboring plants limits light for photosynthesis; as a consequence, plants have a variety of strategies to avoid canopy shade and compete with their neighbors for light. Collectively the response to foliar shade is called the shade avoidance syndrome (SAS). The SAS includes elongation of a variety of organs, acceleration of flowering time, and additional physiological responses, which are seen throughout the plant life cycle. However, current mechanistic knowledge is mainly limited to shade-induced elongation of seedlings. Here we use phenotypic profiling of seedling, leaf, and flowering time traits to untangle complex SAS networks. We used over-representation analysis (ORA) of shade-responsive genes, combined with previous annotation, to logically select 59 known and candidate novel mutants for phenotyping. Our analysis reveals shared and separate pathways for each shade avoidance response. In particular, auxin pathway components were required for shade avoidance responses in hypocotyl, petiole, and flowering time, whereas jasmonic acid pathway components were only required for petiole and flowering time responses. Our phenotypic profiling allowed discovery of seventeen novel shade avoidance mutants. Our results demonstrate that logical selection of mutants increased success of phenotypic profiling to dissect complex traits and discover novel components. PMID:25874869

  18. Interactions between Auxin, Microtubules and XTHs Mediate Green Shade- Induced Petiole Elongation in Arabidopsis

    PubMed Central

    Sasidharan, Rashmi; Keuskamp, Diederik H.; Kooke, Rik; Voesenek, Laurentius A. C. J.; Pierik, Ronald

    2014-01-01

    Plants are highly attuned to translating environmental changes to appropriate modifications in growth. Such phenotypic plasticity is observed in dense vegetations, where shading by neighboring plants, triggers rapid unidirectional shoot growth (shade avoidance), such as petiole elongation, which is partly under the control of auxin. This growth is fuelled by cellular expansion requiring cell-wall modification by proteins such as xyloglucan endotransglucosylase/hydrolases (XTHs). Cortical microtubules (cMTs) are highly dynamic cytoskeletal structures that are also implicated in growth regulation. The objective of this study was to investigate the tripartite interaction between auxin, cMTs and XTHs in shade avoidance. Our results indicate a role for cMTs to control rapid petiole elongation in Arabidopsis during shade avoidance. Genetic and pharmacological perturbation of cMTs obliterated shade-induced growth and led to a reduction in XTH activity as well. Furthermore, the cMT disruption repressed the shade-induced expression of a specific set of XTHs. These XTHs were also regulated by the hormone auxin, an important regulator of plant developmental plasticity and also of several shade avoidance responses. Accordingly, the effect of cMT disruption on the shade enhanced XTH expression could be rescued by auxin application. Based on the results we hypothesize that cMTs can mediate petiole elongation during shade avoidance by regulating the expression of cell wall modifying proteins via control of auxin distribution. PMID:24594664

  19. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    NASA Technical Reports Server (NTRS)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  20. Effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations: in vitro study of color masking ability

    PubMed Central

    Oh, Seon-Hee

    2015-01-01

    PURPOSE The aim of the study was to evaluate the effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations. MATERIALS AND METHODS Three different types of disk-shaped zirconia coping specimens (Lava, Cercon, Zirkonzahn: ø10 mm × 0.4 mm) were fabricated and veneered with IPS e.max Press Ceram (shade A2), for total thicknesses of 1 and 1.5 mm. A total of sixty zirconia restoration specimens were divided into six groups based on their coping types and thicknesses. The abutment specimens (ø10 mm × 7 mm) were prepared with gold alloy, base metal (nickel-chromium) alloy, and four different shades (A1, A2, A3, A4) of composite resins. The average L*, a*, b* values of the zirconia specimens on the six abutment specimens were measured with a dental colorimeter, and the statistical significance in the effects of three variables was analyzed by using repeated measures analysis of variance (α=.05).The average shade difference (ΔE) values of the zirconia specimens between the A2 composite resin abutment and other abutments were also evaluated. RESULTS The effects of zirconia specimen thickness (P<.001), abutment shade (P<.001), and type of zirconia copings (P<.003) on the final shade of the zirconia restorations were significant. The average ΔE value of Lava specimens (1 mm) between the A2 composite resin and gold alloy abutments was higher (close to the acceptability threshold of 5.5 ΔE) than th ose between the A2 composite resin and other abutments. CONCLUSION This in-vitro study demonstrated that abutment shade, ceramic thickness, and coping type affected the resulting shade of zirconia restorations. PMID:26576252

  1. Microclimatological and Physiological Controls of Stomatal Conductance and Transpiration of Co-Occurring Seedlings with Varying Shade Tolerance

    NASA Astrophysics Data System (ADS)

    Siegert, C. M.; Levia, D. F.

    2010-12-01

    Forest ecosystems provide a significant portion of fresh water to the hydrologic cycle through transpiration, the majority of which is supplied by saplings and mature trees. However, a smaller, yet measurable, proportion is also supplied by seedlings. The contribution of seedlings is dependent upon physiological characteristics of the species, whose range of habitat is ultimately controlled by microclimate. The objectives of this study were to (1) observe meteorological conditions of two forest microlimates and (2) assess the intra- and interspecific stomatal conductance and transpiration responses of naturally occurring seedlings of varying shade tolerance. Naturally established seedlings in a deciduous forest understory and an adjacent clearing were monitored throughout the 2008 growing season in southeastern Pennsylvania (39°49'N, 75°43'W). Clear spatial and temporal trends of stomatal conductance and transpiration were observed throughout this study. The understory microclimate conditions overall had a lower degree of variability and had consistently lower mean quantum flux density, air temperature, vapor pressure deficit, volumetric water content, and soil temperature than the clearing plot. Shade tolerant understory seedlings (Fagus grandifolia Ehrh. (American beech) and Prunus serotina L. (black cherry)) had significantly lower mean monthly rates of water loss (p = 0.05) than shade intolerant clearing seedlings (P. serotina and Liriodendron tulipifera L. (yellow poplar)). Additionally, water loss by shade grown P. serotina was significantly lower (p = 0.05) than by sun grown P. serotina. Significant intraspecific responses (p = 0.05) were also observed on a monthly basis, with the exception of L. tulipifera. These findings indicate that physiological differences, specifically shade tolerance, play an important role in determining rates of stomatal conductance and transpiration in tree seedlings. To a lesser degree, microclimate variability was also shown

  2. Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology1[OPEN

    PubMed Central

    Chitwood, Daniel H.; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M.; Townsley, Brad T.; Ichihashi, Yasunori; Martinez, Ciera C.; Zumstein, Kristina; Harada, John J.; Maloof, Julin N.; Sinha, Neelima R.

    2015-01-01

    Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315

  3. Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology.

    PubMed

    Chitwood, Daniel H; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M; Townsley, Brad T; Ichihashi, Yasunori; Martinez, Ciera C; Zumstein, Kristina; Harada, John J; Maloof, Julin N; Sinha, Neelima R

    2015-11-01

    Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315

  4. Depth Structure from Asymmetric Shading Supports Face Discrimination

    PubMed Central

    Chen, Chien-Chung; Chen, Chin-Mei; Tyler, Christopher W.

    2013-01-01

    To examine the effect of illumination direction on the ability of observers to discriminate between faces, we manipulated the direction of illumination on scanned 3D face models. In order to dissociate the surface reflectance and illumination components of front-view face images, we introduce a symmetry algorithm that can separate the symmetric and asymmetric components of the face in both low and high spatial frequency bands. Based on this approach, hybrid faces stimuli were constructed with different combinations of symmetric and asymmetric spatial content. Discrimination results with these images showed that asymmetric illumination information biased face perception toward the structure of the shading component, while the symmetric illumination information had little, if any, effect. Measures of perceived depth showed that this property increased systematically with the asymmetric but not the symmetric low spatial frequency component. Together, these results suggest that (1) the asymmetric 3D shading information dramatically affects both the perceived facial information and the perceived depth of the facial structure; and (2) these effects both increase as the illumination direction is shifted to the side. Thus, our results support the hypothesis that face processing has a strong 3D component. PMID:23457484

  5. Riparian shading controls instream spring phytoplankton and benthic algal growth.

    PubMed

    Halliday, S J; Skeffington, R A; Wade, A J; Bowes, M J; Read, D S; Jarvie, H P; Loewenthal, M

    2016-06-15

    Dissolved oxygen (DO) concentrations showed a striking pattern in a multi-year study of the River Enborne, a small river in SE England. In each of three years (2010-2012), maximum DO concentrations were attained in mid-April, preceded by a period of steadily increasing diurnal amplitudes, followed by a steady reduction in both amplitude and concentration. Flow events during the reduction period reduce DO to low concentrations until the following spring. Evidence is presented that this pattern is mainly due to benthic algal growth which is eventually suppressed by the growth of the riparian tree canopy. Nitrate and silicate concentrations are too high to inhibit the growth of either benthic algae or phytoplankton, but phosphate concentrations might have started to reduce growth if the tree canopy development had been delayed. This interpretation is supported by evidence from weekly flow cytometry measurements and analysis of the diurnal, seasonal and annual patterns of nutrient concentrations. As the tree canopy develops, the river switches from an autotrophic to a heterotrophic state. The results support the use of riparian shading to help control algal growth, and highlight the risks of reducing riparian shade. PMID:27192431

  6. The Stevens-Levolor Environmental Simulator and the study of interior shading for energy efficient windows

    NASA Astrophysics Data System (ADS)

    Vandyck, R. L.; Konen, T. P.

    A window systems and experiments in a unique environmental simulator with an artificial sun were tested. It is shown that interior venetian blind shading is an effective window energy management technique. Predictive methods of generating shading coefficients applicable to modern venetian blinds is confirmed. The findings indicating light colored, as well as highly reflective blinds yielded as significant energy savings.

  7. A novel high-throughput in vivo molecular screen for shade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The shade avoidance syndrome (SAS) allows plants to anticipate and avoid shading by neighbouring plants by initiating an elongation growth response. The phytochrome photoreceptors are able to detect a reduction in the red:far red ratio in incident light, the result of selective absorption of red and...

  8. Assessing riparian shade for the Lemhi River, Idaho using LiDAR: A point cloud analysis

    NASA Astrophysics Data System (ADS)

    Spaete, L.; Glenn, N. F.; Shrestha, R.; Shumar, M. L.; Mitchell, J.

    2012-12-01

    Riparian vegetation plays a crucial role in shading streams by reducing the amount of incoming solar insolation that would otherwise reach the water surface, negatively affecting water temperature and photosynthetic organisms within the water column. Unlike incoming solar insolation, riparian shade can be manipulated by adding or removing riparian vegetation, making it attractive for restoration as well as thermal credit trading programs. Before riparian shade can be evaluated in such trading programs, the existing riparian vegetation needs to be quantified. Several studies have investigated the utility of LiDAR derived canopy height models for estimating riparian shade, however, few to no studies have used point cloud data as a direct model input in order to improve the riparian shade estimates. Using point cloud data increases spatial resolution and the ability to extract vegetation shape information without losses due to interpolation/rasterization. In this study, we assessed the ability of LiDAR point cloud data to estimate riparian shade for 32 km of the Lemhi River in north central Idaho. Riparian shade quantification of the point cloud and canopy height models are compared to shade values calculated using established models in practice.

  9. The effects of zilpaterol hydrochloride and shade on blood metabolites of finishing beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of feeding zilpaterol hydrochloride (ZH) and shade were evaluated on blood metabolites and lung score in finishing beef steers. Cattle were fed 0 or 8.33 mg/kg ZH for 21 d with a 3- or 4-d withdrawal before harvest and were housed in open or shaded pens. Blood samples and lung scores w...

  10. Radiometer footprint model to estimate sunlit and shaded components for row crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes a geometric model for computing the relative proportion of sunlit vegetation, shaded vegetation, sunlit soil, and shaded soil appearing in a circular or elliptical radiometer footprint for row crops, where the crop rows were modeled as continuous ellipses. The model was validate...

  11. Shades of Pink: Preschoolers Make Meaning in a Reggio-Inspired Classroom

    ERIC Educational Resources Information Center

    Kim, Bo Sun

    2012-01-01

    Shades of Pink study describes how six preschoolers and their teacher engaged in a collaborative learning project through which they learned about the shades of a color--in this case, pink. As the children learned through experimenting and discussing their theories, they represented ideas using art as a tool for discovery and learning. The study…

  12. 29 CFR 780.505 - Definition of “shade-grown tobacco.”

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Employment or Agricultural Employees in Processing Shade-Grown Tobacco; Exemption From Minimum Wage and... 29 Labor 3 2014-07-01 2014-07-01 false Definition of âshade-grown tobacco.â 780.505 Section 780.505 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF...

  13. 29 CFR 780.506 - Dependence of exemption on shade-grown tobacco operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; Exemption From Minimum Wage and Overtime Pay Requirements Under Section 13(a)(14) Shade-Grown Tobacco § 780... 29 Labor 3 2011-07-01 2011-07-01 false Dependence of exemption on shade-grown tobacco operations. 780.506 Section 780.506 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR...

  14. 29 CFR 780.506 - Dependence of exemption on shade-grown tobacco operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; Exemption From Minimum Wage and Overtime Pay Requirements Under Section 13(a)(14) Shade-Grown Tobacco § 780... 29 Labor 3 2010-07-01 2010-07-01 false Dependence of exemption on shade-grown tobacco operations. 780.506 Section 780.506 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR...

  15. 29 CFR 780.506 - Dependence of exemption on shade-grown tobacco operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; Exemption From Minimum Wage and Overtime Pay Requirements Under Section 13(a)(14) Shade-Grown Tobacco § 780... 29 Labor 3 2013-07-01 2013-07-01 false Dependence of exemption on shade-grown tobacco operations. 780.506 Section 780.506 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR...

  16. 29 CFR 780.506 - Dependence of exemption on shade-grown tobacco operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; Exemption From Minimum Wage and Overtime Pay Requirements Under Section 13(a)(14) Shade-Grown Tobacco § 780... 29 Labor 3 2012-07-01 2012-07-01 false Dependence of exemption on shade-grown tobacco operations. 780.506 Section 780.506 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR...

  17. 29 CFR 780.506 - Dependence of exemption on shade-grown tobacco operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; Exemption From Minimum Wage and Overtime Pay Requirements Under Section 13(a)(14) Shade-Grown Tobacco § 780... 29 Labor 3 2014-07-01 2014-07-01 false Dependence of exemption on shade-grown tobacco operations. 780.506 Section 780.506 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR...

  18. 29 CFR 780.505 - Definition of “shade-grown tobacco.”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Employment or Agricultural Employees in Processing Shade-Grown Tobacco; Exemption From Minimum Wage and... 29 Labor 3 2013-07-01 2013-07-01 false Definition of âshade-grown tobacco.â 780.505 Section 780.505 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF...

  19. 29 CFR 780.505 - Definition of “shade-grown tobacco.”

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Employment or Agricultural Employees in Processing Shade-Grown Tobacco; Exemption From Minimum Wage and... 29 Labor 3 2010-07-01 2010-07-01 false Definition of âshade-grown tobacco.â 780.505 Section 780.505 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF...

  20. 29 CFR 780.505 - Definition of “shade-grown tobacco.”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Employment or Agricultural Employees in Processing Shade-Grown Tobacco; Exemption From Minimum Wage and... 29 Labor 3 2011-07-01 2011-07-01 false Definition of âshade-grown tobacco.â 780.505 Section 780.505 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF...

  1. 29 CFR 780.505 - Definition of “shade-grown tobacco.”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Employment or Agricultural Employees in Processing Shade-Grown Tobacco; Exemption From Minimum Wage and... 29 Labor 3 2012-07-01 2012-07-01 false Definition of âshade-grown tobacco.â 780.505 Section 780.505 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF...

  2. Evaluation of different shades to improve dairy cattle well-being in Argentina

    NASA Astrophysics Data System (ADS)

    Valtorta, S. E.; Leva, Perla E.; Gallardo, Miriam R.

    Two tree shades (TS1 and TS2) and an artificial shade structure (AS) were evaluated using black globe temperatures (BGTs) to assess their effectiveness in reducing heat load. The artificial structure consisted of a black woven polypropylene cloth providing 80% shade, mounted on 2.5-m-high eucalyptus posts. The work was carried out at Rafaela Experimental Station, Argentina, during the summer (January and February) 1994. BGTs and floor temperatures were measured in concrete floor holding pens with and without artifical shade. The results showed no difference between TS1, TS2 and AS, their average BGTs being 30.2 (SD 0.58), 29.0 (SD 0.70) and 30.2 (SD 0.74)°C, respectively. BGTs under all three shades were significantly lower (P<0.01) than the average BGT recorded outside: 35.5 (SD 1.12)°C. Average BGTs in holding pens were 32.4 (SD 1.38) and 39.9 (SD 1.91)°C for shaded and non-shaded areas (P<0.01). The corresponding average floor temperatures were 27.8 (SD 0.68)°C and 47.7 (SD 2.13)°C (P<0.01). To assess the effects of shade on animal well-being, afternoon rectal temperatures (RT) and respiratory rate (respirations per minute, RR) of lactating cows were recorded twice a week. Rectal temperatures were significantly higher for non-shaded cows (P<0.01), mean RT being 40.1 (SD 0.65)°C vs 39.3 (SD 0.42)°C for the shaded animals. Corresponding RRs were 78.9 (SD 18.0) and 60.7 (SD 10.6) (P<0.05). It was concluded that: (1) tree and artificial shades produced similar effects, (2) shading the holding pen with an 80% shading cloth was effective in reducing heat load and floor temperatures, and (3) access to shade in our pasture-based system improved animal well-being.

  3. Evaluation of different shades to improve dairy cattle well-being in Argentina.

    PubMed

    Valtorta, S E; Leva, P E; Gallardo, M R

    1997-11-01

    Two tree shades (TS1 and TS2) and an artificial shade structure (AS) were evaluated using black globe temperatures (BGTs) to assess their effectiveness in reducing heat load. The artificial structure consisted of a black woven polypropylene cloth providing 80% shade, mounted on 2.5-m-high eucalyptus posts. The work was carried out at Rafaela Experimental Station, Argentina, during the summer (January and February) 1994. BGTs and floor temperatures were measured in concrete floor holding pens with and without artificial shade. The results showed no difference between TS1, TS2 and AS, their average BGTs being 30.2 (SD 0.58), 29.0 (SD 0.70) and 30.2 (SD 0.74) degrees C, respectively. BGTs under all three shades were significantly lower (P < 0.01) than the average BGT recorded outside: 35.5 (SD 1.12) degrees C. Average BGTs in holding pens were 32.4 (SD 1.38) and 39.9 (SD 1.91) degrees C for shaded and non-shaded areas (P < 0.01). The corresponding average floor temperatures were 27.8 (SD 0.68) degrees C and 47.7 (SD 2.13) degrees C (P < 0.01). To assess the effects of shade on animal well-being, afternoon rectal temperatures (RT) and respiratory rate (respirations per minute, RR) of lactating cows were recorded twice a week. Rectal temperatures were significantly higher for non-shaded cows (P < 0.01), mean RT being 40.1 (SD 0.65) degrees C vs 39.3 (SD 0.42) degrees C for the shaded animals. Corresponding RRs were 78.9 (SD 18.0) and 60.7 (SD 10.6) (P < 0.05). It was concluded that: (1) tree and artificial shades produced similar effects, (2) shading the holding pen with an 80% shading cloth was effective in reducing heat load and floor temperatures, and (3) access to shade in our pasture-based system improved animal well-being. PMID:9429340

  4. Native bees mediate long-distance pollen dispersal in a shade coffee landscape mosaic

    PubMed Central

    Jha, Shalene; Dick, Christopher W.

    2010-01-01

    Coffee farms are often embedded within a mosaic of agriculture and forest fragments in the world's most biologically diverse tropical regions. Although shade coffee farms can potentially support native pollinator communities, the degree to which these pollinators facilitate gene flow for native trees is unknown. We examined the role of native bees as vectors of gene flow for a reproductively specialized native tree, Miconia affinis, in a shade coffee and remnant forest landscape mosaic. We demonstrate extensive cross-habitat gene flow by native bees, with pollination events spanning more than 1,800 m. Pollen was carried twice as far within shade coffee habitat as in nearby forest, and trees growing within shade coffee farms received pollen from a far greater number of sires than trees within remnant forest. The study shows that shade coffee habitats support specialized native pollinators that enhance the fecundity and genetic diversity of remnant native trees. PMID:20660738

  5. Design of a radiator shade for testing in a simulated lunar environment

    NASA Technical Reports Server (NTRS)

    Huff, Jaimi; Remington, Randy; Tang, Toan

    1992-01-01

    The National Aeronautics and Space Administration (NASA) and The Universities Space Research Association (USRA) have chosen the parabolic/catenary concept from their sponsored Fall 1991 lunar radiation shade project for further testing and development. NASA asked the design team to build a shading device and support structure for testing in a vacuum chamber. Besides the support structure for the catenary shading device, the design team was asked to develop a system for varying the shade shape so that the device can be tested at different focal lengths. The design team developed concept variants and combined the concept variants to form overall designs. Using a decision matrix, an overall design was selected by the team from several overall design alternatives. Concept variants were developed for three primary functions. The three functions were structural support, shape adjustments, and end shielding. The shade adjustment function was divided into two sub-functions, arc length adjustment, and width adjustment.

  6. Mts. Agung and Batur, Bali, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This perspective view shows the major volcanic group of Bali, one 13,000 islands comprising the nation of Indonesia. The conical mountain to the left is Gunung Agung, at 3,148 meters (10,308 feet) the highest point on Bali and an object of great significance in Balinese religion and culture. Agung underwent a major eruption in 1963 after more than 100 years of dormancy, resulting in the loss of over 1,000 lives.

    In the center is the complex structure of Batur volcano, showing a caldera (volcanic crater) left over from a massive catastrophic eruption about 30,000 years ago. Judging from the total volume of the outer crater and the volcano, that once lay above it, approximately 140 cubic kilometers(33.4 cubic miles) of material must have been produced by this eruption, making it one of the largest known volcanic events on Earth. Batur is still active and has erupted at least 22 times since the 1800's.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA

  7. Shaded Relief with Color as Height, St. Louis, Missouri

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The confluence of the Mississippi, Missouri and Illinois rivers are shown in this view of the St. Louis area from the Shuttle Radar Topography Mission. The Mississippi flows from the upper left of the image and first meets the Illinois, flowing southward from the top right. It then joins the Missouri, flowing from the west across the center of the picture. The rivers themselves appear black here, and one can clearly see the green-colored floodplains in which they are contained. These floodplains are at particular risk during times of flooding. The Mississippi forms the state boundary between Illinois (to the right) and Missouri (to the left), with the city of St. Louis located on the Mississippi just below the point where it meets the Missouri. This location at the hub of the major American waterways helped establish St. Louis' reputation as the 'Gateway to the West.'

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. North-facing slopes appear bright and south-facing slopes appear dark. Color coding is directly related to topographic height, with blue and green at the lower elevations, rising through yellow and brown to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery

  8. Shenandoah National Park, Virginia, Shaded Relief with Height as Color

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Shenandoah National Park lies astride part of the Blue Ridge Mountains, which form the southeastern range of the greater Appalachian Mountains in Virginia. The park is well framed by this one-degree of latitude (38-39 north) by one-degree of longitude (78-79 west) cell of Shuttle Radar Topography Mission data, and it appears here as the most prominent ridge trending diagonally across the scene. Skyline Drive, a 169-kilometer (105-mile) road that winds along the crest of the mountains through the length the park, provides vistas of the surrounding landscape. The Shenandoah River flows through the valley to the west, with Massanutten Mountain standing between the river's north and south forks. Unusually pronounced meanders of both river forks are very evident near the top center of this scene. Massanutten Mountain itself is an unusually distinctive landform also, consisting of highly elongated looping folds of sedimentary rock. The rolling Piedmont country lies to the southeast of the park, with Charlottesville located at the bottom center of the scene.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to bluish-white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers

  9. Shaded Relief of South Africa, Northern Cape Province

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Located north of the Swartberg Mountains in South Africa's Northern Cape Province, this topographic image shows a portion of the Great Karoo region. Karoo is an indigenous word for 'dry thirst land.' The semi-arid area is known for its unique variety of flora and fauna. The topography of the area, with a total relief of 200 meters (650 feet), reveals much about the geologic history of the area. The linear features seen in the image are near-vertical walls of once-molten rock, or dikes, that have intruded the bedrock. The dikes are more resistant to weathering and, therefore, form the linear wall-like features seen in the image. In relatively flat arid areas such as this, small changes in the topography can have large impacts on the water resources and the local ecosystem. These data can be used by biologists to study the distribution and range of the different plants and animals. Geologists can also use the data to study the geologic history of this area in more detail.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from green at the lowest elevations to reddish at the highest elevations. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data

  10. Shaded Relief with Color as Height, California Mosaic

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The diversity of landforms that make up the state of California is evident in this new rendition of the 3-D topography of the state. The Central Valley, flanked on the east by the Sierra Nevada, dominates the scene with San Francisco and Monterey Bays clearly visible at left center. Other features of interest include Lake Tahoe at the edge to the right of San Francisco, Mono Lake below Lake Tahoe, and the Salton Sea at the lower right. The prominent sideways 'V' in the southern part of the state is the intersection of the Garlock and San Andreas Faults - to the east is the Mojave Desert. Offshore are the Channel Islands and to the right of them lies the city of Los Angeles.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. North-facing slopes appear bright and south-facing slopes appear dark. Color coding is directly related to topographic height, with blue and green at the lower elevations, rising through yellow and brown to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth

  11. Shaded Relief Image of Saint Pierre and Miquelon

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image shows two islands, Miquelon and Saint Pierre, located south of Newfoundland, Canada. These islands, along with five smaller islands, are a self-governing territory of France. A thin barrier beach divides Miquelon, with Grande Miquelon to the north and Petite Miquelonto the south. Saint Pierre Island is located to the lower right. With the islandsi location in the north Atlantic Ocean and their deep water ports, fishing is the major part of the economy. The maximum elevation of the island is 240 meters (787 feet). The land mass of the islands is about 242 square kilometers, or 1.5 times the size of Washington DC.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASAis Jet Propulsion

  12. Dairy cattle prefer shade over sprinklers: effects on behavior and physiology.

    PubMed

    Schütz, K E; Rogers, A R; Cox, N R; Webster, J R; Tucker, C B

    2011-01-01

    Cattle will readily use shade in warm weather, but less is known about voluntary use of sprinklers. We examined preferences of 96 Holstein-Friesian dairy cows (milk yield: 12.7±3.48 kg per day; mean±SD) for sprinklers, shade, or ambient conditions after walking 2.0 km or 0.3 km before afternoon milking (n=48 cows/distance). Each cow was individually tested on 3 consecutive days with a different paired choice each day: 1) shade or sprinklers, 2) shade or ambient conditions, 3) sprinklers or ambient conditions. Average air temperature during testing was 22.3°C. Cows preferred shade over sprinklers (62 vs. 38% ± 5.0%; mean ± SE) and shade over ambient conditions (65 vs. 35% ± 5.1%; mean±SE). Cows showed no preference between sprinklers and ambient conditions (44% of the cows chose sprinklers, SE=5.3%). The preference for shade over sprinklers and ambient conditions increased with air temperature, solar radiation, and wind speed. Walking distance did not influence the preference for any treatment. Respiration rate was decreased most by sprinklers (38% decrease) but also decreased in shade and ambient conditions (17 and 13% decrease, respectively; standard error of the difference=4.7%). Similarly, surface temperature was decreased most by sprinklers (11.4% decrease), compared with that by shade (1.0% decrease), or that by ambient conditions (1.4% increase; standard error of the difference=1.82%). Furthermore, sprinklers reduced insect avoidance behaviors, including number of tail flicks and hoof stamps. In conclusion, dairy cattle preferred to use shade in summer despite sprinklers being more efficient in decreasing heat load and insect avoidance behavior. PMID:21183037

  13. Potential energy savings with exterior shades in large office buildings and the impact of discomfort glare

    SciTech Connect

    Hoffmann, Sabine; Lee, Eleanor

    2015-04-01

    Exterior shades are highly efficient for reducing solar load in commercial buildings. Their impact on net energy use depends on the annual energy balance of heating, cooling, fan and lighting energy. This paper discusses the overall energy use intensity of various external shading systems for a prototypical large office building split into the different types of energy use and for different orientations and window sizes. Lighting energy was calculated for a constant lighting power as well as for dimmed lighting fixtures (daylighting control). In Section 3, slat angles and solar cut-off angles were varied for fixed exterior slat shading systems. While the most light-blocking shades performed best for the case without daylighting controls, the optimum cut-off angle with daylighting controls was found to be 30 deg for the office building prototype used in Chicago and Houston. For large window-to-wall (WWR) ratios, window related annual energy use could be reduced by at least 70 % without daylighting control and by a minimum of 86 % with daylighting control in average over all orientations. The occurrence of discomfort glare was is considered in Section 4 of the paper, which looks at the performance of commercially available exterior shading systems when an interior shade is used in addition to the exterior shade during hours when occupants would experience discomfort glare. Glare control impacts overall energy use intensity significantly for exterior shades with high transmittance, especially when daylighting controls are used. In these cases, exterior shades are only beneficial for window-to-wall areas ≥ 45% in the hot Houston climate. For smaller windows and in a heating/cooling climate like Chicago, exterior shades can increase energy consumption

  14. Shaded Relief Mosaic of Umnak Island, Aleutian Islands, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image is a shaded relief mosaic of Umnak Island in Alaska's Aleutian Islands.

    It was created with Airsar data that was geocoded and combined into this mosaic as part of a NASA-funded Alaska Digital Elevation Model Project at the Alaska Synthetic Aperture Radar Facility (ASF) at the University of Alaska Geophysical Institute in Fairbanks, Alaska.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  15. Shaded Relief with Height as Color, Yucatan Peninsula, Mexico

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This shaded relief image of Mexico's Yucatan Peninsula show a subtle, but unmistakable, indication of the Chicxulub impact crater. Most scientists now agree that this impact was the cause of the Cretatious-Tertiary Extinction, the event 65 million years ago that marked the sudden extinction of the dinosaurs as well as the majority of life then on Earth.

    Most of the peninsula is visible here, along with the island of Cozumel off the east coast. The Yucatan is a plateau composed mostly of limestone and is an area of very low relief with elevations varying by less than a few hundred meters (about 500 feet.) In this computer-enhanced image the topography has been greatly exaggerated to highlight a semicircular trough, the darker green arcing line at the upper left corner of the peninsula. This trough is only about 3 to 5 meters (10 to 15 feet) deep and is about 5 km. wide (3 miles), so subtle that if you walked across it you probably would not notice it, and is a surface expression of the crater's outer boundary. Scientists believe the impact, which was centered just off the coast in the Caribbean, altered the subsurface rocks such that the overlying limestone sediments, which formed later and erode very easily, would preferentially erode on the vicinity of the crater rim. This formed the trough as well as numerous sinkholes (called cenotes) which are visible as small circular depressions.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwestern slopes appear bright and southeastern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    For a smaller, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] (Large

  16. Mt. Elgon, Africa, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The striking contrast of geologic structures in Africa is shown in this shaded relief image of Mt. Elgon on the left and a section of the Great Rift Valley on the right.

    Mt. Elgon is a solitary extinct volcano straddling the border between Uganda and Kenya, and at 4,321 meters (14,178 feet) tall is the eighth highest mountain in Africa. It is positioned on the Pre-Cambriam bedrock of the Trans Nzoia Plateau, and is similar to other such volcanoes in East Africa in that it is associated with the formation of the Rift Valley. However one thing that sets Mt. Elgon apart is its age.

    Although there is no verifiable evidence of its earliest volcanic activity, Mt. Elgon is estimated to be at least 24 million years old, making it the oldest extinct volcano in East Africa. This presents a striking comparison to Mt. Kilimanjaro, the highest mountain in Africa at 5,895 meters (19,341 feet), which is just over one million years old. Judging by the diameter of its base, it is a common belief among geological experts that Mt. Elgon was once the highest mountains in Africa, however erosion has played a significant role in reducing the height to its present value.

    Juxtaposed with this impressive mountain is a section of the Great Rift Valley, a geological fault system that extends for about 4,830 kilometers (2,995 miles) from Syria to central Mozambique. Erosion has concealed some sections, but in some sections like that shown here, there are sheer cliffs several thousand feet high. The present configuration of the valley, which dates from the mid-Pleistocene epoch, results from a rifting process associated with thermal currents in the Earth's mantle.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly

  17. Landsat - SRTM Shaded Relief Comparison, Los Angeles and Vicinity

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Digital elevation models (DEMs), such as those produced by the Shuttle Radar Topography Mission (SRTM), allow user-controlled visualization of the Earth's landforms that is not possible using satellite imagery alone. This three-view comparison shows Los Angeles, Calif., and vicinity, with a Landsat image (only) on the left, a shaded relief rendering of the SRTM DEM on the right, and a merge of the two data sets in the middle. Note that topographic expression in the Landsat image alone is very subtle due to the fairly high sun angle (63 degrees above the horizon) during the satellite overflight in late morning of a mid-Spring day (May 4, 2001). In contrast, computer generated topographic shading of the DEM provides a pure and bold image of topographic expression with a user specified illumination direction. The middle image shows how combining the Landsat and DEM shaded relief can result in a topographically enhanced satellite image in which the information content of both data sets is merged into a single view.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and helps in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA

  18. Spectrophotometric Study of the Effect of Luting Agents on the Resultant Shade of Ceramic Veneers: An Invitro Study

    PubMed Central

    Kale, Yogesh; Pustake, Swati; Bijjaragi, Shobha; Pustake, Bhushan

    2015-01-01

    Introduction Dentistry has found practically the best available aesthetic answer, is ceramic restoration. There are various factors that contribute to the success of ceramic veneers, like colour of underlying tooth, thickness if ceramics and the type of underlying luting cement. Shade selection and matching remains still challenge, however the shade of luting agent used for cementation of veneers produces a change in resultant shade of veneers. Aim To compare and analyze the spectrophotometric effect of opaque and transparent luting agent on resultant shade of ceramic veneers made of 2L1.5 shade (Vitapan 3D-Masters) and B2 shade (Vitapan Classic). Materials and Methods Out of 15 ceramic veneers of 2L1.5 shade (VITAPAN 3D- Master), seven teeth cemented with opaque cement and eight teeth with transparent cement shade of dual cure resin cement (Variolink IITM). Out of 10 ceramic veneers of B2 shade (VITAPAN Classic), five teeth were cemented with opaque cement and other five teeth with transparent cement shade of dual cure resin cement (Variolink IITM). Spectrophotometric (Macbeth U.S.A.) analysis of all ceramic veneer crowns done with optiview software and readings were recorded in Commission Internationale de I’ Eclairge {CIELAB} system and dE value was calculated. Statistical Analysis Statistical analysis was done by using Paired t-test. Results Spectrophotometric analysis of all the veneers cemented with opaque luting agent were lighter in shade due to significant change in dL value. Veneers cemented with transparent luting agent were darker in shade due to significant change in the dL value. Conclusion Opaque luting agent gives lighter shade and transparent luting agent gives darker shade to ceramic veneers fabricated with 2L1.5 and B2 shades. PMID:26501014

  19. Metabolomic analysis using ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS) uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea.

    PubMed

    Zhang, Qunfeng; Shi, Yuanzhi; Ma, Lifeng; Yi, Xiaoyun; Ruan, Jianyun

    2014-01-01

    To investigate the effect of light intensity and temperature on the biosynthesis and accumulation of quality-related metabolites, field grown tea plants were shaded by Black Net and Nano-insulating Film (with additional 2-4°C cooling effect) with un-shaded plants as a control. Young shoots were subjected to UPLC-Q-TOF MS followed by multivariate statistical analysis. Most flavonoid metabolites (mainly flavan-3-ols, flavonols and their glycosides) decreased significantly in the shading treatments, while the contents of chlorophyll, β-carotene, neoxanthin and free amino acids, caffeine, benzoic acid derivatives and phenylpropanoids increased. Comparison between two shading treatments indicated that the lower temperature under Nano shading decreased flavonols and their glycosides but increased accumulation of flavan-3-ols and proanthocyanidins. The comparison also showed a greater effect of temperature on galloylation of catechins than light intensity. Taken together, there might be competition for substrates between the up- and down-stream branches of the phenylpropanoid/flavonoid pathway, which was influenced by light intensity and temperature. PMID:25390340

  20. An appraisal of the classic forest succession paradigm with the shade tolerance index.

    PubMed

    Lienard, Jean; Florescu, Ionut; Strigul, Nikolay

    2015-01-01

    In this paper we revisit the classic theory of forest succession that relates shade tolerance and species replacement and assess its validity to understand patch-mosaic patterns of forested ecosystems of the USA. We introduce a macroscopic parameter called the "shade tolerance index" and compare it to the classic continuum index in southern Wisconsin forests. We exemplify shade tolerance driven succession in White Pine-Eastern Hemlock forests using computer simulations and analyzing approximated chronosequence data from the USDA FIA forest inventory. We describe this parameter across the last 50 years in the ecoregions of mainland USA, and demonstrate that it does not correlate with the usual macroscopic characteristics of stand age, biomass, basal area, and biodiversity measures. We characterize the dynamics of shade tolerance index using transition matrices and delimit geographical areas based on the relevance of shade tolerance to explain forest succession. We conclude that shade tolerance driven succession is linked to climatic variables and can be considered as a primary driving factor of forest dynamics mostly in central-north and northeastern areas in the USA. Overall, the shade tolerance index constitutes a new quantitative approach that can be used to understand and predict succession of forested ecosystems and biogeographic patterns. PMID:25658092

  1. Adolescents’ use of purpose built shade in secondary schools: cluster randomised controlled trial

    PubMed Central

    White, Vanessa; Wakefield, Melanie A; Jamsen, Kris M; White, Victoria; Livingston, Patricia M; English, Dallas R; Simpson, Julie A

    2009-01-01

    Objective To examine whether students use or avoid newly shaded areas created by shade sails installed at schools. Design Cluster randomised controlled trial with secondary schools as the unit of randomisation. Setting 51 secondary schools with limited available shade, in Australia, assessed over two spring and summer terms. Participants Students outside at lunch times. Intervention Purpose built shade sails were installed in winter 2005 at full sun study sites to increase available shade for students in the school grounds. Main outcome measure Mean number of students using the primary study sites during weekly observations at lunch time. Results Over the study period the mean change in students using the primary study site from pre-test to post-test was 2.63 (95% confidence interval 0.87 to 4.39) students in intervention schools and −0.03 (−1.16 to 1.09) students in control schools. The difference in mean change between groups was 2.67 (0.65 to 4.68) students (P=0.011). Conclusions Students used rather than avoided newly shaded areas provided by purpose built shade sails at secondary schools in this trial, suggesting a practical means of reducing adolescents’ exposure to ultraviolet radiation. Trial registration Exempt. PMID:19223344

  2. An Appraisal of the Classic Forest Succession Paradigm with the Shade Tolerance Index

    PubMed Central

    Lienard, Jean; Florescu, Ionut; Strigul, Nikolay

    2015-01-01

    In this paper we revisit the classic theory of forest succession that relates shade tolerance and species replacement and assess its validity to understand patch-mosaic patterns of forested ecosystems of the USA. We introduce a macroscopic parameter called the “shade tolerance index” and compare it to the classic continuum index in southern Wisconsin forests. We exemplify shade tolerance driven succession in White Pine-Eastern Hemlock forests using computer simulations and analyzing approximated chronosequence data from the USDA FIA forest inventory. We describe this parameter across the last 50 years in the ecoregions of mainland USA, and demonstrate that it does not correlate with the usual macroscopic characteristics of stand age, biomass, basal area, and biodiversity measures. We characterize the dynamics of shade tolerance index using transition matrices and delimit geographical areas based on the relevance of shade tolerance to explain forest succession. We conclude that shade tolerance driven succession is linked to climatic variables and can be considered as a primary driving factor of forest dynamics mostly in central-north and northeastern areas in the USA. Overall, the shade tolerance index constitutes a new quantitative approach that can be used to understand and predict succession of forested ecosystems and biogeographic patterns. PMID:25658092

  3. Are sun- and shade-type anatomy required for the acclimation of Neoregelia cruenta?

    PubMed

    Reinert, Fernanda; Leal-Costa, Marcos V; Junqueira, Nícia E; Tavares, Eliana S

    2013-01-01

    Sun and shade plants are often discriminated by a number of sun- and shade-type anatomies. Nonetheless, we propose that among tank-bromeliads, changes in rosette architecture satisfy the requirements for coping with contrasting light levels. The tank-bromeliad Neoregelia cruenta naturally colonises sub-habitats ranging from full exposure to direct sunlight, to shaded environments in sand ridge plains. We quantified anatomical and morphological traits of leaves and rosettes of N. cruenta grown under sun and shade conditions. Cells with undulated lateral walls within the water parenchyma are for the first time described for the family. Under high light, leaf blades were wider, shorter, and yellowish. The rosette diameter of sun plants was less than half that of shade plants. Sun leaves overlapped with neighbouring leaves for most of their length, forming a cylindrical rosette where water accumulates. Shade leaves only overlapped in the centre of the rosette. Most anatomical traits were similar under both growth conditions. Stomata were absent from the base of sun leaves, which is probably explained by limited gas exchange at the base of the tight sun-type rosette. Data suggest that the ability of N. cruenta to acclimate to sun and shade is better explained by changes in rosette architecture than by leaf anatomy. PMID:23828343

  4. Hypothenemus hampei (Coleoptera: Curculionidae) and its interactions with Azteca instabilis and Pheidole synanthropica (Hymenoptera: Formicidae) in a shade coffee agroecosystem.

    PubMed

    Jiménez-Soto, Estelí; Cruz-Rodríguez, Juan A; Vandermeer, John; Perfecto, Ivette

    2013-10-01

    The coffee berry borer is currently the most important insect pest of coffee worldwide. In shaded coffee farms such as Finca Irlanda in Chiapas, Mexico, natural enemies limit coffee berry borer and potentially prevent outbreaks. This research aimed to determine the effect of ants on coffee berry borer damage and to describe behaviors of Azteca instabilis F. Smith and Pheidole synanthropica (Longino 2009) when encountering the coffee berry borer. To these ends, an ant survey was conducted in a 2,500-m(2) plot within the farm. A 4- by 4-m coordinate system was established, and the coffee plant or shade tree closest to the coordinate point was sampled using tuna fish for a total of 168 coffee plants and 46 shade trees sampled. In addition, up to 100 berries were harvested from 138 coffee plants to measure damage and verify the presence of the coffee berry borer. Behavior was determined in the field by placing live coffee berry borer adults on berries and video recording all attacks. Results showed that plants with ants had less percentage of damaged berries and shorter coffee berry borer galleries than plants without ants. However, the length of galleries in plants with A. instabilis showed no significant differences from plants without ants. P. synanthropica was observed carrying coffee berry borer to the nest in 50% of the cases, whereas A. instabilis threw coffee berry borer off of the coffee plant in 79% of the cases. Results indicate that the presence of these species of ants reduce coffee berry borer damage and suggest that different behaviors could explain the pattern of coffee berry borer attack in this agroecosystem. PMID:24331603

  5. Seeing the landscape for the trees: Metrics to guide riparian shade management in river catchments

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew F.; Wilby, Robert L.

    2015-05-01

    Rising water temperature (Tw) due to anthropogenic climate change may have serious consequences for river ecosystems. Conservation and/or expansion of riparian shade could counter warming and buy time for ecosystems to adapt. However, sensitivity of river reaches to direct solar radiation is highly heterogeneous in space and time, so benefits of shading are also expected to be site specific. We use a network of high-resolution temperature measurements from two upland rivers in the UK, in conjunction with topographic shade modeling, to assess the relative significance of landscape and riparian shade to the thermal behavior of river reaches. Trees occupy 7% of the study catchments (comparable with the UK national average) yet shade covers 52% of the area and is concentrated along river corridors. Riparian shade is most beneficial for managing Tw at distances 5-20 km downstream from the source of the rivers where discharge is modest, flow is dominated by near-surface hydrological pathways, there is a wide floodplain with little landscape shade, and where cumulative solar exposure times are sufficient to affect Tw. For the rivers studied, we find that approximately 0.5 km of complete shade is necessary to off-set Tw by 1°C during July (the month with peak Tw) at a headwater site; whereas 1.1 km of shade is required 25 km downstream. Further research is needed to assess the integrated effect of future changes in air temperature, sunshine duration, direct solar radiation, and downward diffuse radiation on Tw to help tree planting schemes achieve intended outcomes.

  6. Influence of resin cement shade on the color and translucency of ceramic veneers

    PubMed Central

    HERNANDES, Daiana Kelly Lopes; ARRAIS, Cesar Augusto Galvão; de LIMA, Erick; CESAR, Paulo Francisco; RODRIGUES, José Augusto

    2016-01-01

    ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C* ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable. PMID:27556211

  7. Ontogeny, understorey light interception and simulated carbon gain of juvenile rainforest evergreens differing in shade tolerance

    PubMed Central

    Lusk, Christopher H.; Pérez-Millaqueo, Manuel Matías; Piper, Frida I.; Saldaña, Alfredo

    2011-01-01

    Background and Aims A long-running debate centres on whether shade tolerance of tree seedlings is mainly a function of traits maximizing net carbon gain in low light, or of traits minimizing carbon loss. To test these alternatives, leaf display, light-interception efficiency, and simulated net daily carbon gain of juvenile temperate evergreens of differing shade tolerance were measured, and how these variables are influenced by ontogeny was queried. Methods The biomass distribution of juveniles (17–740 mm tall) of seven temperate rainforest evergreens growing in low (approx. 4 %) light in the understorey of a second-growth stand was quantified. Daytime and night-time gas exchange rates of leaves were also determined, and crown architecture was recorded digitally. YPLANT was used to model light interception and carbon gain. Results An index of species shade tolerance correlated closely with photosynthetic capacities and respiration rates per unit mass of leaves, but only weakly with respiration per unit area. Accumulation of many leaf cohorts by shade-tolerant species meant that their ratios of foliage area to biomass (LAR) decreased more gradually with ontogeny than those of light-demanders, but also increased self-shading; this depressed the foliage silhouette-to-area ratio (STAR), which was used as an index of light-interception efficiency. As a result, displayed leaf area ratio (LARd = LAR × STAR) of large seedlings was not related to species shade tolerance. Self-shading also caused simulated net daily carbon assimilation rates of shade-tolerant species to decrease with ontogeny, leading to a negative correlation of shade tolerance with net daily carbon gain of large (500 mm tall) seedlings in the understorey. Conclusions The results suggest that efficiency of energy capture is not an important correlate of shade tolerance in temperate rainforest evergreens. Ontogenetic increases in self-shading largely nullify the potential carbon gain advantages expected

  8. Solar Heat Gain Through Fenestration Systems Containing Shading: Procedures for Estimating Performance from Minimal Data

    SciTech Connect

    Klems, J.H.

    2000-08-01

    The computational methods for calculating the properties of glazing systems containing shading from the properties of their components have been developed, but the measurement standards and property data bases necessary to apply them have not. It is shown that with a drastic simplifying assumption these methods can be used to calculate system solar-optical properties and solar heat gain coefficients for arbitrary glazing systems, while requiring limited data about the shading. Detailed formulas are presented, and performance multipliers are defined for the approximate treatment of simple glazings with shading. As higher accuracy is demanded, the formulas become very complicated.

  9. A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis

    PubMed Central

    Sessa, Giovanna; Carabelli, Monica; Sassi, Massimiliano; Ciolfi, Andrea; Possenti, Marco; Mittempergher, Francesca; Becker, Jorg; Morelli, Giorgio; Ruberti, Ida

    2005-01-01

    Plants grown under dense canopies perceive through the phytochrome system a reduction in the ratio of red to far-red light as a warning of competition, and this triggers a series of morphological changes to avoid shade. Several phytochrome signaling intermediates acting as positive regulators of accelerated elongation growth and induction of flowering in shade avoidance have been identified. Here we report that a negative regulatory mechanism ensures that in the presence of far-red-rich light an exaggerated plant response does not occur. Strikingly, this unpredicted negative regulatory mechanism is centrally involved in the attenuation of virtually all plant responses to canopy shade. PMID:16322556

  10. A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis.

    PubMed

    Sessa, Giovanna; Carabelli, Monica; Sassi, Massimiliano; Ciolfi, Andrea; Possenti, Marco; Mittempergher, Francesca; Becker, Jorg; Morelli, Giorgio; Ruberti, Ida

    2005-12-01

    Plants grown under dense canopies perceive through the phytochrome system a reduction in the ratio of red to far-red light as a warning of competition, and this triggers a series of morphological changes to avoid shade. Several phytochrome signaling intermediates acting as positive regulators of accelerated elongation growth and induction of flowering in shade avoidance have been identified. Here we report that a negative regulatory mechanism ensures that in the presence of far-red-rich light an exaggerated plant response does not occur. Strikingly, this unpredicted negative regulatory mechanism is centrally involved in the attenuation of virtually all plant responses to canopy shade. PMID:16322556

  11. Effect of time and weather on preference, frequency, and duration of shade use by horses.

    PubMed

    Holcomb, K E; Stull, C L

    2016-04-01

    The Federation of Animal Science Societies (FASS) recommends providing access to shade for horses in hot, sunny weather at equine facilities. Previously, we found that healthy, mature domestic horses use shade with behavioral and physiological benefits during those weather conditions. The objective of this study was to characterize preference, frequency, and duration of shade use by healthy, mature horses in a Bureau of Land Management (BLM) holding facility during hot, sunny weather. The study took place at the BLM's Palomino Valley Wild Horse and Burro Center in Reno, NV, from Aug. 10 to Oct. 1, 2014. Freestanding shade structures were constructed in each of 2 drylot pens with shade cloth covering the top that blocked 98% of UV radiation. A group of 4 mares was placed in each of the 2 pens. After a 2-d acclimation period, data were recorded for 5 d, the horses were moved to the opposite pen, and data collected for an additional 5 d. This schedule was repeated for a total of 4 consecutive trials and 32 horses. Footage from time-lapse cameras was viewed at 10 s intervals between 0930 and 1700 h to record each horse's position relative to shade. Dosimeters secured to horses' halters recorded UV exposure. Automated weather stations recorded daytime ambient temperature (mean 25.9°C [SD 5.8]), relative humidity (mean 25.4% [SD 17.1]), black globe temperature (mean 29.3°C [SD 6.5] in shade and 35.8°C [SD 8.0] in unshaded area), and solar radiation (mean 595 W/m [SD 235]). Horses spent 10.9% more time in shade than by chance ( < 0.0001) within the drylots across all 40 study days. Mean daily time spent in shade was 107.9 min/horse (SD 66.9), comprising 17.1 bouts (SD 12.1) with an average bout length of 6.3 min (SD 3.4). The mean daily UV Index experienced by horses in these partially shaded drylots was 1.52 (SD 0.58) compared with 3.4 (SD 1.5) for a control instrument in the sun. Horses used shade more on the sunniest days and greater than just by chance at all hours

  12. Cuttlefish see shape from shading, fine-tuning coloration in response to pictorial depth cues and directional illumination.

    PubMed

    Zylinski, Sarah; Osorio, D; Johnsen, Sonke

    2016-03-16

    Humans use shading as a cue to three-dimensional form by combining low-level information about light intensity with high-level knowledge about objects and the environment. Here, we examine how cuttlefish Sepia officinalis respond to light and shadow to shade the white square (WS) feature in their body pattern. Cuttlefish display the WS in the presence of pebble-like objects, and they can shade it to render the appearance of surface curvature to a human observer, which might benefit camouflage. Here we test how they colour the WS on visual backgrounds containing two-dimensional circular stimuli, some of which were shaded to suggest surface curvature, whereas others were uniformly coloured or divided into dark and light semicircles. WS shading, measured by lateral asymmetry, was greatest when the animal rested on a background of shaded circles and three-dimensional hemispheres, and less on plain white circles or black/white semicircles. In addition, shading was enhanced when light fell from the lighter side of the shaded stimulus, as expected for real convex surfaces. Thus, the cuttlefish acts as if it perceives surface curvature from shading, and takes account of the direction of illumination. However, the direction of WS shading is insensitive to the directions of background shading and illumination; instead the cuttlefish tend to turn to face the light source. PMID:26984626

  13. A scaleable methodology for assessing the impacts of urban shade on the summer electricity use of residential homes

    NASA Astrophysics Data System (ADS)

    Taylor, Robert Vanderlei

    Our cities are experiencing unprecedented growth while net global temperatures continue to trend warmer making sustainable urban development and energy conservation pressing public issues. This research explores how urban landscaping -- in particular trees and buildings -- affect summer electricity use in residential homes. I studied the interactions of urban shade and temperature to explore how vegetation distribution and intensity could play a meaningful role in heat mitigation in urban environments. Only a few studies have reconciled modeled electricity savings from tree shade with actual electricity consumption data. This research proposes a methodology for modeling the isolated effects of urban shade (tree shade vs building shade) on buildings' summertime electricity consumption from micro to mesoscales, empirically validating the modeled shade with actual electricity billing data, and comparing the electric energetic impact of tree shade effects with building shade effects. This proposed methodology seeks to resolve three primary research questions: 1) What are the modeled quantities of urban shade associated with the area of interest (AOI)? 2) To what extent do the effects of shading from trees and buildings mitigate summertime heat in the AOI? 2) To what extent do the shade effects from trees and buildings reduce summertime electricity consumption in the AOI?

  14. Pando Province, Northern Bolivia, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Pando Province, Bolivia, and adjacent parts of Brazil and Peru are seen in this visualization of Shuttle Radar Topography Mission (SRTM) elevation data covering part of the Amazon Basin. Most of this region is covered by tropical rainforest and is still largely unaltered by development, though new roads are providing increased access to the area, leading to changes in the landscape. SRTM data provide the first detailed three-dimensional look at the landforms of this region, and the Amazon Basin in its entirety, and will be particularly helpful in understanding the hydrologic patterns as environmental management becomes increasingly important.

    River drainage across this area flows generally east-northeast away from the nearby Andes Mountains. The most prominent river channels seen here are the Purus River in the northwest (upper left) and the Madre de Dios River, which crosses the south central (lower central) part of this view. The Beni and Mamore Rivers combine with the Madre de Dios in the eastern (right central) area to form the Madeira River, which flows northeast to eventually meet the Amazon River near Manaus.

    The Trans-Amazon Highway crosses the northern half of the scene, and subtle evidence of rainforest clear cutting, facilitated by this easy access, is apparent just north of the scene center, even at the low resolution of this display (740 m or 2428 feet). As seen here, clear cutting patterns in the rainforest typically show a pattern of parallel lines. SRTM mapped the shape of the Earths solid surface (not exclusively the ground surface), which includes to some degree land covers such as forests. Thus, SRTM data are capable of revealing deforestation patterns.

    For a smaller, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] (image size: 184k JPEG)

    A combination of visualization methods was used to produce this image, based on shading and color coding. A shade image was derived by

  15. SRTM Colored Height and Shaded Relief: Pinon Canyon region, Colorado

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Erosional features are prominent in this view of southern Colorado taken by the Shuttle Radar Topography Mission (SRTM). The area covers about 20,000 square kilometers and is located about 50 kilometers south of Pueblo, Colorado. The prominent mountains near the left edge of the image are the Spanish Peaks, remnants of a 20 million year old volcano. Rising 2,100 meters (7,000 ft) above the plains to the east, these igneous rock formations with intrusions of eroded sedimentary rock historically served as guiding landmarks for travelers on the Mountain Branch of the Santa Fe Trail.

    Near the center of the image is the Pinon Canyon Maneuver Site, a training area for soldiers of the U.S. Army from nearby Fort Carson. The site supports a diverse ecosystem with large numbers of big and small game, fisheries, non-game wildlife, forest, range land and mineral resources. It is bounded on the east by the dramatic topography of the Purgatoire River Canyon, a 100 meter (328 foot) deep scenic red canyon with flowing streams, sandstone formations, and exposed geologic processes.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. Southern slopes appear bright and northern slopes appear dark. Color coding is directly related to topographic height, with blue and green at the lower elevations, rising through yellow and brown to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added

  16. The dynamical influences of cloud shading on simulated supercell thunderstorms

    NASA Astrophysics Data System (ADS)

    Frame, Jeffrey

    2008-10-01

    Numerical simulations of supercell thunderstorms which include parameterized radiative transfer and surface fluxes are performed using the Advanced Regional Prediction System (ARPS) model. The tilted independent column approximation (TICA) is adopted for use in the ARPS model because the existing method of parameterized radiative transfer, the independent column approximation (ICA), permits only the vertical transfer of shortwave radiation. The computed radiative fluxes from both the TICA and ICA are compared to output from a three-dimensional Monte Carlo radiative transfer solver and it is determined that the TICA fluxes more closely match those from the Monte Carlo model than do those from the ICA. Additionally, the TICA is able to capture the extensions of shadows that occur when the solar zenith angle deviates significantly from zero, which cannot be captured by the ICA. The maximum low-level air temperature deficits within the modeled cloud shadows is 1.5 to 2.0 K, which is only about half that previously observed. The loss of strong solar heating of the model surface within the shaded regions cools the surface temperatures, and changes the sign of the sensible heat flux near the edge of the shadow. This stabilizes the model surface layer and suppresses vertical mixing at low levels within the shaded area. This reduction in vertical mixing means that higher momentum air from aloft is prevented from mixing with air near the surface that has lost momentum to surface friction. The net result of this is a shallower, but more intense vertically-sheared layer near the surface. As the supercell's rear-flank gust front propagates into this modified shear layer, the layer of cold outflow air becomes shallower and it accelerates eastward. In the case of a stationary storm, the cold outflow undercuts the updraft and mesocyclone, depriving them of warm and moist inflow, and ultimately weakening the storm. These results are not likely applicable to all simulations of

  17. Shaded Relief with Height as Color, Iturralde Structure, Bolivia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An 8-kilometer (5-mile) wide crater of possible impact origin is shown in this view of an isolated part of the Bolivian Amazon from the Shuttle Radar Topography Mission. The circular feature at the center-left of the image, known as the Iturralde Structure, is possibly the Earth's most recent 'big' impact event recording collision with a meteor or comet that might have occurred between 11,000 and 30,000 years ago.

    Although the structure was identified on satellite photographs in the mid-1980s, its location is so remote that it has only been visited by scientific investigators twice, most recently by a team from NASA's Goddard Space Flight Center in September 2002. Lying in an area of very low relief, the landform is a quasi-circular closed depression only about 20 meters (66 feet) in depth, with sharply defined sub-angular 'rim' materials. It resembles a 'cookie cutter' in that its appearance 'cuts' the heavily vegetated soft-sediments and pampas of this part of Bolivia. The SRTM data have provided investigators with the first topographic map of the site and will allow studies of its three-dimensional structure crucial to determining whether it actually is of impact origin.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. North-facing slopes appear bright and south-facing slopes appear dark. Color coding is directly related to topographic height, with brown and green at the lower elevations, rising through yellow and brown to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on Feb. 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. The Shuttle Radar Topography

  18. San Gabriel Mountains, California, Shaded relief, color as height

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic image shows the relationship of the urban area of Pasadena, California to the natural contours of the land. The image includes the alluvial plain on which Pasadena and the Jet Propulsion Laboratory sit, and the steep range of the San Gabriel Mountains. The mountain front and the arcuate valley running from upper left to the lower right are active fault zones, along which the mountains are rising. The chaparral-covered slopes above Pasadena are also a prime area for wildfires and mudslides. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards for cities along the front of active mountain ranges.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C

  19. Perspective View with Color-Coded Shaded Relief, Panama Canal

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This perspective view shows the Panama Canal with the Gulf of Panama in the foreground and the Caribbean Sea in the distance. The canal runs northwest-southeast from the city of Colon on the Atlantic side to Panama City on the Pacific side. Water levels are maintained along its length by three reservoirs, the largest of which is Lake Gatun, visible at the right center of the image. Built by the U.S. Army Corps of Engineers between 1904 and 1914, the canal extends for approximately 50 miles, and is widely considered to be one of the world's great engineering achievements.

    This shaded relief perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM). A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM, and range from green at the lowest elevations to white at the highest elevations.

    SRTM, launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: scale varies in this perspective image Location: 9.0 degrees North latitude, 79.8 degrees West longitude Orientation

  20. Perspective view of shaded relief, color as height, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view of Patagonia, Argentina shows a spectacular landscape formed by volcanoes, rivers, and wind. The area is located just east of the narrow range of the Andes Mountains, about 100 kilometers (62 miles) east of the border with Chile. Interesting features include basalt-capped mesas (top) and young volcanic cones (left foreground). Geologists will use SRTM topographic data to study the interaction of volcanic, climatic and erosional processes.

    This shaded relief perspective view was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 1100 meters (3600 feet) of total relief. To emphasize subtle differences in topography, the relief is exaggerated by a factor of 5.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI)space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC

  1. Shaded Relief with Height as Color, Mount Meru, Tanzania

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Mount Meru is an active volcano located just 70 kilometers (44 miles) west of Mount Kilimanjaro. It reaches 4,566 meters (14,978 feet) in height but has lost much of its bulk due to an eastward volcanic blast sometime in its distant past, perhaps similar to the eruption of Mount Saint Helens in Washington State in 1980. Mount Meru most recently had a minor eruption about a century ago. The several small cones and craters seen in the vicinity probably reflect numerous episodes of volcanic activity. Mount Meru is the topographic centerpiece of Arusha National Park. Its fertile slopes rise above the surrounding savanna and support a forest that hosts diverse wildlife, including nearly 400 species of birds, and also monkeys and leopards.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in June. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to blue and white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space

  2. Perspective View with Color-Coded Shaded Relief, Central Panama

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This perspective view shows central Panama, with the remnants of the extinct volcano El Valle in the foreground and the Caribbean Sea in the distance. El Valle underwent an explosive eruption about 3 million years ago, forming a crater 5 kilometers (3.1 miles) across, one of the largest in the Americas. The crater subsequently filled with water forming a huge lake, but about 12,000 years ago a breach at the present site of the waterfall Choro de las Mozas caused it to drain, forming the present valley. Within the crater is the town of El Valle de Anton, whose 600-meter (1,968-foot) elevation and resulting cooler climate make it a popular tourist and vacation site.

    The lake in the distance is Lake Gatun, at the west end of the Panama Canal. The canal itself extends to the southwest (to the right in this northeast facing view) but is hidden by the intervening terrain.

    This shaded relief perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM). A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM, and range from green at the lowest elevations to white at the highest elevations.

    SRTM, launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) and the

  3. Determination of the usage of shade structures via a dosimetry technique.

    PubMed

    Parisi, Alfio V; Eley, Robert; Downs, Nathan

    2012-01-01

    A measurement system is described that allows an objective review and evaluation of the amount of use by different population groups of provided shade structures. It employs the comparison of the erythemal UV exposure measured with dosimeters to either the vertex or forehead to that in full sun. The technique has been developed using three shade structures and found to provide a linear relationship with an R(2) of 0.99 between the exposure ratio and the time spent in the shade for the solar zenith angle range of 19-53° and for both low- and high-cloud levels. It provides an objective determination of the amount of shade use by population groups that have set periods of time outdoors. PMID:22332953

  4. The Art of Being Flexible: How to Escape from Shade, Salt, and Drought1

    PubMed Central

    Pierik, Ronald; Testerink, Christa

    2014-01-01

    Environmental stresses, such as shading of the shoot, drought, and soil salinity, threaten plant growth, yield, and survival. Plants can alleviate the impact of these stresses through various modes of phenotypic plasticity, such as shade avoidance and halotropism. Here, we review the current state of knowledge regarding the mechanisms that control plant developmental responses to shade, salt, and drought stress. We discuss plant hormones and cellular signaling pathways that control shoot branching and elongation responses to shade and root architecture modulation in response to drought and salinity. Because belowground stresses also result in aboveground changes and vice versa, we then outline how a wider palette of plant phenotypic traits is affected by the individual stresses. Consequently, we argue for a research agenda that integrates multiple plant organs, responses, and stresses. This will generate the scientific understanding needed for future crop improvement programs aiming at crops that can maintain yields under variable and suboptimal conditions. PMID:24972713

  5. Ornamental and Shade Tree Pest Control: A Guide for Commercial Applicators.

    ERIC Educational Resources Information Center

    Khan, M. S.

    This is a training manual for commercial pesticide applicators. It gives information for identification and control of diseases, insects, mites, weeds, and vertebrate pests of shade and ornamental trees. Phytotoxicity, environmental concerns, and pesticide application information is also given. (BB)

  6. Auxin-mediated plant architectural changes in response to shade and high temperature.

    PubMed

    de Wit, Mieke; Lorrain, Séverine; Fankhauser, Christian

    2014-05-01

    The remarkable plasticity of their architecture allows plants to adjust growth to the environment and to overcome adverse conditions. Two examples of environmental stresses that drastically affect shoot development are imminent shade and high temperature. Plants in crowded environments and plants in elevated ambient temperature display very similar phenotypic adaptations of elongated hypocotyls in seedlings and elevated and elongated leaves at later developmental stages. The comparable growth responses to shade and high temperature are partly regulated through shared signaling pathways, of which the phytohormone auxin and the phytochrome interacting factors (PIFs) are important components. During both shade- and temperature-induced elongation growth auxin biosynthesis and signaling are upregulated in a PIF-dependent manner. In this review we will discuss recent progress in our understanding of how auxin mediates architectural adaptations to shade and high temperature. PMID:24011166

  7. Analysis of Photovoltaic (PV) Module during Partial Shading based on Simplified Two-Diode Model

    NASA Astrophysics Data System (ADS)

    Chitti Babu, B.; Gurjar, Suresh; Meher, Ashish

    2015-02-01

    Generally, the characteristics of photovoltaic (PV) array are largely affected by solar temperature, solar irradiance, shading patterns, array configuration and location of shading modules. Partial shading is due to moving clouds and shadows of nearby obstacles and can cause a significant degradation in the output of PV system. Hence, the characteristics of PV array get more multifaceted with multiple peaks. The ultimate aim of the paper is to analyze the performance of PV module during such adverse condition based on simplified two-diode model. To reduce the computational time, the simplified two-diode model has a photocurrent source in parallel with two ideal diodes. Only four parameters are required to be calculated from datasheet in order to simulate the model. Moreover, the performance of PV array is evaluated at different shaded patterns and it is found that the model has less computational time and gives accurate results.

  8. Measurement of bidirectional optical properties of complex shading devices

    SciTech Connect

    Klems, J.H.; Warner, J.L.

    1995-01-01

    A new method of predicting the solar heat gain through complex fenestration systems involving nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bidirectional radiative transmittance and reflectance of each layer of a fenestration system. The properties of systems containing these layers are then built up computationally from the measured layer properties using a transmission/multiple-reflection calculation. The calculation produces the total directional-hemispherical transmittance of the fenestration system and the layer-by-layer absorptances. These properties are in turn combined with layer-specific measurements of the inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain coefficient. This paper describes the method of measuring the spatially averaged bidirectional optical properties using an automated, large-sample gonioradiometer/photometer, termed a ``Scanning Radiometer.`` Property measurements are presented for one of the most optically complex systems in common use, a venetian blind. These measurements will form the basis for optical system calculations used to test the method of determining performance.

  9. Microleakage in class V gingiva-shaded composite resin restorations

    PubMed Central

    Poggio, Claudio; Chiesa, Marco; Dagna, Alberto; Colombo, Marco; Scribante, Andrea

    2012-01-01

    Summary The purpose of this study was to evaluate the microleakage in Class V cavities restored with a new gingiva-shaded microhybrid composite resin and with a conventional microhybrid composite resin using three different dentin bonding systems (DBS). Class V cavities were prepared in sixty freshly extracted human teeth with the incisal margin in enamel and the apical margin in dentin/cementum. Restored specimens, after thermocycling, were placed in 2% methylene blue solution for 24 hours. Longitudinal sections were obtained and studied with a stereomicroscope for assessment of the microleakage according to degree of dye penetration (scale 0–3). Data were analyzed with Kruskal-Wallis test and with Mann-Whitney U-test. In this study there was no leakage in enamel: all the cavities showed no dye penetration at the incisal margins (located in enamel). None of the DBS used eliminated microleakage in apical margins (located in dentin or cementum): three-step total-etch and single-step self-etch were more effective in reducing microleakage in dentin margins when compared with two-step total-etch. This in vitro study concluded that microleakage in Class V cavities restored with the composite resins tested is similar. PMID:22783451

  10. Is Shade Beneficial for Mediterranean Shrubs Experiencing Periods of Extreme Drought and Late-winter Frosts?

    PubMed Central

    Valladares, Fernando; Zaragoza-Castells, Joana; Sánchez-Gómez, David; Matesanz, Silvia; Alonso, Beatriz; Portsmuth, Angelika; Delgado, Antonio; Atkin, Owen K.

    2008-01-01

    Background and Aims Plants are naturally exposed to multiple, frequently interactive stress factors, most of which are becoming more severe due to global change. Established plants have been reported to facilitate the establishment of juvenile plants, but net effects of plant–plant interactions are difficult to assess due to complex interactions among environmental factors. An investigation was carried out in order to determine how two dominant evergreen shrubs (Quercus ilex and Arctostaphylos uva-ursi) co-occurring in continental, Mediterranean habitats respond to multiple abiotic stresses and whether the shaded understorey conditions ameliorate the negative effects of drought and winter frosts on the physiology of leaves. Methods Microclimate and ecophysiology of sun and shade plants were studied at a continental plateau in central Spain during 2004–2005, with 2005 being one of the driest and hottest years on record; several late-winter frosts also occurred in 2005. Key Results Daytime air temperature and vapour pressure deficit were lower in the shade than in the sun, but soil moisture was also lower in the shade during the spring and summer of 2005, and night-time temperatures were higher in the shade. Water potential, photochemical efficiency, light-saturated photosynthesis, stomatal conductance and leaf 13C composition differed between sun and shade individuals throughout the seasons, but differences were species specific. Shade was beneficial for leaf-level physiology in Q. ilex during winter, detrimental during spring for both species, and of little consequence in summer. Conclusions The results suggest that beneficial effects of shade can be eclipsed by reduced soil moisture during dry years, which are expected to be more frequent in the most likely climate change scenarios for the Mediterranean region. PMID:18819947

  11. Radiopacity of different shades of resin-based restorative materials compared to human and bovine teeth.

    PubMed

    Pekkan, Gurel; Ozcan, Mutlu

    2012-01-01

    This study evaluated the radiopacity of different shades of resin-based restorative materials and compared the results to human and bovine dental hard tissues. Disk specimens 6 mm in diameter and 1 mm thick (N = 220, n = 10) were prepared from the following restorative materials: · eight shades of nanofilled composite (Aelite Aesthetic Enamel), · seven shades of nanohybrid composite (Grandio Universal), · six shades of photopolymerized polyacid modified compomer (Glasiosite), and · one shade of hybrid composite (X-tra fil U). Human canine dentin (n = 10), bovine enamel (n = 10), and an aluminum (Al) step wedge were used as references. The optical density values of each material were measured from radiographic images using a transmission densitometer. Al step wedge thickness and optical density values were plotted, and equivalent Al thickness (eq Al) values were determined for radiopacity measurements of each material. The data were analyzed using a non-parametric one-way ANOVA (Kruskal-Wallis), and multiple comparisons were made with a Student-Newman-Keuls post hoc test (a = 0.05). Different shades of resin-based restorative materials tested did not reveal statistically significant differences within each material group (p > 0.05). Radiopacity values of the resin-based restorative materials investigated varied depending on their types; however, within different shades of one material type, radiopacity values were comparable. Every shade of nanocomposite material other than Aelite Aesthetic Enamel Incisal LT Gray showed comparable radiopacity to human dentin. Other materials tested demonstrated higher radiopacity compared to human dentin and bovine enamel. PMID:22782058

  12. Photovoltaic Shading Testbed for Module-Level Power Electronics: 2014 Update

    SciTech Connect

    Deline, C.; Meydbray, J.; Donovan, M.

    2014-08-01

    The 2012 NREL report 'Photovoltaic Shading Testbed for Module-Level Power Electronics' provides a standard methodology for estimating the performance benefit of distributed power electronics under partial shading conditions. Since the release of the report, experiments have been conducted for a number of products and for different system configurations. Drawing from these experiences, updates to the test and analysis methods are recommended. Proposed changes in data processing have the benefit of reducing the sensitivity to measurement errors and weather variability, as well as bringing the updated performance score in line with measured and simulated values of the shade recovery benefit of distributed PV power electronics. Also, due to the emergence of new technologies including sub-module embedded power electronics, the shading method has been extended to include power electronics that operate at a finer granularity than the module level. An update to the method is proposed to account for these emerging technologies that respond to shading differently than module-level devices. The partial shading test remains a repeatable test procedure that attempts to simulate shading situations as would be experienced by typical residential or commercial rooftop photovoltaic (PV) systems. Performance data for multiple products tested using this method are discussed, based on equipment from Enphase, Solar Edge, Maxim Integrated and SMA. In general, the annual recovery of shading losses from the module-level electronics evaluated is 25-35%, with the major difference between different trials being related to the number of parallel strings in the test installation rather than differences between the equipment tested.

  13. Simulated herbivory does not constrain phenotypic plasticity to shade through ontogeny in a relict tree.

    PubMed

    Pardo, A; García, F M; Valladares, F; Pulido, F

    2016-07-01

    Ecological limits to phenotypic plasticity (PP), induced by simultaneous biotic and abiotic factors, can prevent organisms from exhibiting optimal plasticity, and in turn lead to decreased fitness. Herbivory is an important biotic stressor and may limit plant functional responses to challenging environmental conditions such as shading. In this study we investigated whether plant functional responses and PP to shade are constrained by herbivory, and whether such constraints are due to direct effects based on resource limitation by considering ontogeny. We used as a model system the relict tree Prunus lusitanica and implemented an indoor experiment to quantify the response of saplings of different ages to shade and herbivory. We measured five functional traits and quantitatively calculated PP. Results showed that herbivory did not constrain functional responses or PP to shade except for shoot:root ratio (SR), which, despite showing a high PP in damaged saplings, decreased under shade instead of increasing. Damaged saplings of older age did not exhibit reduced constraints on functional responses to shade and generally presented a lower PP than damaged saplings of younger age. Our findings suggest that herbivory-mediated constraints on plant plasticity to shade may not be as widespread as previously thought. Nonetheless, the negative effect of herbivory on SR plastic expression to shade could be detrimental for plant fitness. Finally, our results suggest a secondary role of direct effects (resource-based) on P. lusitanica plasticity limitation. Further studies should quantify plant resources in order to gain a better understanding of this seldom-explored subject. PMID:26991208

  14. Seedling development in buckwheat and the discovery of the photomorphogenic shade-avoidance response.

    PubMed

    Kutschera, U; Briggs, W R

    2013-11-01

    Numerous botanists of the early 19th century investigated the effect of sunlight on plant development, but no clear picture developed. One hundred and fifty years ago, Julius Sachs (1863) systematically analysed the light-plant relationships, using developing garden nasturtium (Tropaeolum majus) and seedlings of buckwheat (Fagopyron esculentum) as experimental material. From these studies, Sachs elucidated the phenomenon of photomorphogenesis (plant development under the influence of daylight) and the associated 'shade-avoidance response'. We have reproduced the classical buckwheat experiments of Sachs (1863) and document the original shade-avoidance syndrome with reference to hypocotyl elongation and cotyledon development in darkness (skotomorphogenesis), white light and shade induced by a canopy of green leaves. In subsequent publications, Sachs elaborated his concepts of 1863 and postulated the occurrence of 'flower-inducing substances'. In addition, he argued that the shade-avoidance response in cereals, such as wheat and maize, is responsible for lodging in crowded plant communities. We discuss these processes with respect to the red- to far-red light/phytochrome B relationships. Finally, we summarise the phytochrome B-phytohormone (auxin, brassinosteroids) connection within the cells of shaded Arabidopsis plants, and present a simple model to illustrate the shade-avoidance syndrome. In addition, we address the relationship between plant density and health of the corresponding population, a topic that was raised for the first time by Sachs (1863) in his seminal paper and elaborated in his textbooks. PMID:24112603

  15. Seasonal contrasts in the response of coffee ants to agroforestry shade-tree management.

    PubMed

    Teodoro, A V; Sousa-Souto, L; Klein, A-M; Tscharntke, T

    2010-12-01

    In many tropical landscapes, agroforestry systems are the last forested ecosystems, providing shade, having higher humidity, mitigating potential droughts, and possessing more species than any other crop system. Here, we tested the hypothesis that higher levels of shade and associated humidity in agroforestry enhance coffee ant richness more during the dry than rainy season, comparing ant richness in 22 plots of three coffee agroforestry types in coastal Ecuador: simple-shade agroforests (intensively managed with low tree species diversity), complex-shade agroforests (extensively managed with intermediate tree species diversity) and abandoned coffee agroforests (abandoned for 10-15 yr and resembling secondary forests). Seasonality affected responses of ant richness but not composition to agroforestry management, in that most species were observed in abandoned coffee agroforests in the dry season. In the rainy season, however, most species were found in simple-shade agroforests, and complex agroforestry being intermediate. Foraging coffee ants species composition did not change differently according to agroforestry type and season. Results show that shade appears to be most important in the dry seasons, while a mosaic of different land-use types may provide adequate environmental conditions to ant species, maximizing landscape-wide richness throughout the year. PMID:22182538

  16. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  17. Color Shaded-Relief and Surface-Classification Maps of the Fish Creek Area, Harrison Bay Quadrangle, Northern Alaska

    USGS Publications Warehouse

    Mars, John L.; Garrity, Christopher P.; Houseknecht, David W.; Amoroso, Lee; Meares, Donald C.

    2007-01-01

    Introduction The northeastern part of the National Petroleum Reserve in Alaska (NPRA) has become an area of active petroleum exploration during the past five years. Recent leasing and exploration drilling in the NPRA requires the U.S. Bureau of Land Management (BLM) to manage and monitor a variety of surface activities that include seismic surveying, exploration drilling, oil-field development drilling, construction of oil-production facilities, and construction of pipelines and access roads. BLM evaluates a variety of permit applications, environmental impact studies, and other documents that require rapid compilation and analysis of data pertaining to surface and subsurface geology, hydrology, and biology. In addition, BLM must monitor these activities and assess their impacts on the natural environment. Timely and accurate completion of these land-management tasks requires elevation, hydrologic, geologic, petroleum-activity, and cadastral data, all integrated in digital formats at a higher resolution than is currently available in nondigital (paper) formats. To support these land-management tasks, a series of maps was generated from remotely sensed data in an area of high petroleum-industry activity (fig. 1). The maps cover an area from approximately latitude 70?00' N. to 70?30' N. and from longitude 151?00' W. to 153?10' W. The area includes the Alpine oil field in the east, the Husky Inigok exploration well (site of a landing strip) in the west, many of the exploration wells drilled in NPRA since 2000, and the route of a proposed pipeline to carry oil from discovery wells in NPRA to the Alpine oil field. This map area is referred to as the 'Fish Creek area' after a creek that flows through the region. The map series includes (1) a color shaded-relief map based on 5-m-resolution data (sheet 1), (2) a surface-classification map based on 30-m-resolution data (sheet 2), and (3) a 5-m-resolution shaded relief-surface classification map that combines the shaded

  18. Shaded Relief with Height as Color, North America

    NASA Technical Reports Server (NTRS)

    2003-01-01

    , and Manitoba to North Dakota and Minnesota, huge striations clearly show the flow pattern of the glaciers. And southwest of Lakes Michigan, Huron, and Erie, arcing ridges of sediment, called terminal moraines, show where glaciers dumped sediment at their melting ends.

    In eastern Canada, New York, and New England, the terrain has been scoured by glaciers, and eroded by streams, particularly along fractures in the bedrock. In Labrador and Quebec, the Mistastin, Manicougan, and Clearwater Lakes meteor impact craters can also be seen. Further south, narrow curving ridges of upturned and eroded layered rocks form most of the Appalachian Mountains. In contrast, around the Caribbean Sea region (Yucatan, Florida, and the Bahamas), flat-lying, stable limestone platforms are common, while the most eastern islands of the Caribbean include active volcanoes along another convergence zone of tectonic plates.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National

  19. Utilising shade to optimize UV exposure for vitamin D

    NASA Astrophysics Data System (ADS)

    Turnbull, D. J.; Parisi, A. V.

    2008-06-01

    Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For a diffuse UV exposure of 1/3 MED, solar zenith angles smaller than approximately 50° can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-315 nm) radiation without experiencing the high levels of UVA observed in full sun.

  20. Utilising shade to optimize UV exposure for vitamin D

    NASA Astrophysics Data System (ADS)

    Turnbull, D. J.; Parisi, A. V.

    2008-01-01

    Numerous studies have stated that humans need to utilise full sun radiation, at certain times of the day, to assist the body in synthesising the required levels of vitamin D3. The time needed to be spent in the full sun depends on a number of factors, for example, age, skin type, latitude, solar zenith angle. Current Australian guidelines suggest exposure to approximately 1/6 to 1/3 of a minimum erythemal dose (MED), depending on age, would be appropriate to provide adequate vitamin D3 levels. The aim of the study was to determine the exposure times to diffuse solar UV to receive exposures of 1/6 and 1/3 MED for a changing solar zenith angle in order to assess the possible role that diffuse UV (scattered radiation) may play in vitamin D3 effective UV exposures (UVD3). Diffuse and global erythemal UV measurements were conducted at five minute intervals over a twelve month period for a solar zenith angle range of 4° to 80° at a latitude of 27.6° S. For diffuse UV exposures of 1/6 and 1/3 MED, solar zenith angles smaller than 60° and 50° respectively can be utilised for exposure times of less than 10 min. Spectral measurements showed that, for a solar zenith angle of 40°, the UVA (315-400 nm) in the diffuse component of the solar UV is reduced by approximately 62% compared to the UVA in the global UV, whereas UVD3 wavelengths are only reduced by approximately 43%. At certain latitudes, diffuse UV under shade may play an important role in providing the human body with adequate levels of UVD3 (290-330 nm) radiation without experiencing the high levels of damaging UVA observed in full sun.

  1. Climate-change refugia: shading reef corals by turbidity.

    PubMed

    Cacciapaglia, Chris; van Woesik, Robert

    2016-03-01

    Coral reefs have recently experienced an unprecedented decline as the world's oceans continue to warm. Yet global climate models reveal a heterogeneously warming ocean, which has initiated a search for refuges, where corals may survive in the near future. We hypothesized that some turbid nearshore environments may act as climate-change refuges, shading corals from the harmful interaction between high sea-surface temperatures and high irradiance. We took a hierarchical Bayesian approach to determine the expected distribution of 12 coral species in the Indian and Pacific Oceans, between the latitudes 37°N and 37°S, under representative concentration pathway 8.5 (W m(-2) ) by 2100. The turbid nearshore refuges identified in this study were located between latitudes 20-30°N and 15-25°S, where there was a strong coupling between turbidity and tidal fluctuations. Our model predicts that turbidity will mitigate high temperature bleaching for 9% of shallow reef habitat (to 30 m depth) - habitat that was previously considered inhospitable under ocean warming. Our model also predicted that turbidity will protect some coral species more than others from climate-change-associated thermal stress. We also identified locations where consistently high turbidity will likely reduce irradiance to <250 μmol m(-2)  s(-1) , and predict that 16% of reef-coral habitat ≤30 m will preclude coral growth and reef development. Thus, protecting the turbid nearshore refuges identified in this study, particularly in the northwestern Hawaiian Islands, the northern Philippines, the Ryukyu Islands (Japan), eastern Vietnam, western and eastern Australia, New Caledonia, the northern Red Sea, and the Arabian Gulf, should become part of a judicious global strategy for reef-coral persistence under climate change. PMID:26695523

  2. Correlation between grain orientation and the shade of color etching

    SciTech Connect

    Szabo, Peter J.; Kardos, I.

    2010-08-15

    Color etching is an extremely effective metallographic technique not only for making grains well visible, but also for making them distinguishable for automated image analyzers. During color etching, a thin film is formed on the surface of the specimen. The thickness of this layer is in the order of magnitude of the visible light and since both the metal-film boundary and the film surface reflect light, an interference occurs. A wavelength-component of the white line is eliminated and its complementary color will be seen on the surface. As the thickness changes, the colors also change grain by grain. The thickness of the film is dependent on several factors, mostly on the type of the phase. However, different color shades can be observed on the surfaces of single phase materials, which phenomenon is caused by the different crystallographic orientations of the grains. This paper shows a combined color etching electron backscatter diffraction (EBSD) investigation of cast iron. An area of the surface of a gray cast iron specimen was etched. Colors were characterized by their luminescence and their red, green and blue intensity. An EBSD orientation map was taken from the same area and the orientations of the individual grains were determined. Results showed that a strong correlation was found between the luminescence and the R, G, B intensity of the color and the angle between the specimen normal and the < 100> direction, while such correlation was not observed between the color parameters and the < 110 > and < 111> directions, respectively. This indicates that film thickness is sensitive to the < 100> direction of the crystal.

  3. Africa in SRTM 3-D, Anaglyph of Shaded Relief

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This stereoscopic shaded relief image shows Africa's topography as measured by the Shuttle Radar Topography Mission (SRTM) in February 2000. Also shown are Madagascar, the Arabian Peninsula, and other adjacent regions. Previously, much of the topography here was not mapped in detail. Digital elevation data, such as provided by SRTM, are in high demand by scientists studying earthquakes, volcanism, and erosion patterns and for use in mapping and modeling hazards to human habitation. But the shape of Earth's surface affects nearly every natural process and human endeavor that occurs there, so elevation data are used in a wide range of applications. The image shown here is greatly reduced from the original data resolution, but still provides a good overview of the continent's landforms. It is best viewed while panning at full resolution while using image display software.

    The northern part of the continent consists of a system of basins and plateaus, with several volcanic uplands whose uplift has been matched by subsidence in the large surrounding basins. Many of these basins have been infilled with sand and gravel, creating the vast Saharan lands. The Atlas Mountains in the northwest were created by convergence of the African and Eurasian tectonic plates.

    The geography of the central latitudes of Africa is dominated by the Great Rift Valley, extending from Lake Nyasa to the Red Sea, and splitting into two arms to enclose an interior plateau and the nearly circular Lake Victoria, visible in the right center of the image. To the west lies the Congo Basin, a vast, shallow depression that rises to form an almost circular rim of highlands.

    Most of the southern part of the continent rests on a concave plateau comprising the Kalahari Basin and a mountainous fringe, skirted by a coastal plain that widens out in Mozambique in the southeast.

    Specific noteworthy features one may wish to explore in this scene include (1) the Richat Structure in

  4. Shaded Relief with Height as Color, North America

    NASA Technical Reports Server (NTRS)

    2003-01-01

    , and Manitoba to North Dakota and Minnesota, huge striations clearly show the flow pattern of the glaciers. And southwest of Lakes Michigan, Huron, and Erie, arcing ridges of sediment, called terminal moraines, show where glaciers dumped sediment at their melting ends.

    In eastern Canada, New York, and New England, the terrain has been scoured by glaciers, and eroded by streams, particularly along fractures in the bedrock. In Labrador and Quebec, the Mistastin, Manicougan, and Clearwater Lakes meteor impact craters can also be seen. Further south, narrow curving ridges of upturned and eroded layered rocks form most of the Appalachian Mountains. In contrast, around the Caribbean Sea region (Yucatan, Florida, and the Bahamas), flat-lying, stable limestone platforms are common, while the most eastern islands of the Caribbean include active volcanoes along another convergence zone of tectonic plates.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National

  5. Primary Production and Photoadaptation in Light- and Shade-Adapted Colonies of the Symbiotic Coral, Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Porter, J. W.; Muscatine, L.; Dubinsky, Z.; Falkowski, P. G.

    1984-08-01

    Photoadaptation by photosynthetic organisms to lowered light intensities occurs in part through changes in pigment concentrations and in characteristics of the photosynthetic response curve. We have characterized photoadaptive responses of light- and shade-adapted colonies of the reef coral Stylophora pistillata, which possesses symbiotic algae (zooxanthellae) and grows naturally under a variety of light intensities in the highly cavernous reefs of the Red Sea. Shade-adapted corals have significantly more chlorophyll per individual zooxanthella cell than light-adapted corals (2.98 compared to 12.97 pg chlorophyll a per cell), but not a significantly different number of cells per unit area (1.00 × 106 cells per square centimetre), with the result that the mass of chlorophyll per unit area is greater for shade-adapted corals than for light-adapted corals. Tissue nitrogen content per unit area is significantly lower (p < 0.05) in shade-adapted corals, correlating with a decrease in polyp density (0.10 > p > 0.05) in shade forms. These biomass characteristics are concomitant with a variety of functional responses to natural light intensities. Rate of photosynthesis at saturating light intensities is the same per unit area in both forms (20.2 μ g O2 cm-2 h-1 for shade specimens; 18.8 for light specimens); but it is significantly different when measured by amount of chlorophyll (1.6 μ g O2 (chl a)-1 h-1 for shade specimens compared with 5.0 for light specimens). The initial slope of the P:I curve, α , is significantly higher for shade specimens by area (0.21 for shade corals compared with 0.12 for light corals), but significantly lower for shade specimens by amount of chlorophyll a (0.01 for specimens from shade compared to 0.04 for specimens growing in the light). Ik (the point at which maximum production begins) is significantly lower for shade specimens (138 μ mol m-2 s-1 for shade compared to 273 for light), and likewise Ic (the compensation point at which net

  6. Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers' net returns in West Africa.

    PubMed

    Bisseleua Daghela, Hervé Bertin; Bisseleua, Hervé Bertin Daghela; Fotio, Daniel; Yede; Missoup, Alain Didier; Vidal, Stefan

    2013-01-01

    Cocoa agroforests can significantly support biodiversity, yet intensification of farming practices is degrading agroforestry habitats and compromising ecosystem services such as biological pest control. Effective conservation strategies depend on the type of relationship between agricultural matrix, biodiversity and ecosystem services, but to date the shape of this relationship is unknown. We linked shade index calculated from eight vegetation variables, with insect pests and beneficial insects (ants, wasps and spiders) in 20 cocoa agroforests differing in woody and herbaceous vegetation diversity. We measured herbivory and predatory rates, and quantified resulting increases in cocoa yield and net returns. We found that number of spider webs and wasp nests significantly decreased with increasing density of exotic shade tree species. Greater species richness of native shade tree species was associated with a higher number of wasp nests and spider webs while species richness of understory plants did not have a strong impact on these beneficial species. Species richness of ants, wasp nests and spider webs peaked at higher levels of plant species richness. The number of herbivore species (mirid bugs and cocoa pod borers) and the rate of herbivory on cocoa pods decreased with increasing shade index. Shade index was negatively related to yield, with yield significantly higher at shade and herb covers<50%. However, higher inputs in the cocoa farms do not necessarily result in a higher net return. In conclusion, our study shows the importance of a diverse shade canopy in reducing damage caused by cocoa pests. It also highlights the importance of conservation initiatives in tropical agroforestry landscapes. PMID:23520451

  7. Shade Tree Diversity, Cocoa Pest Damage, Yield Compensating Inputs and Farmers' Net Returns in West Africa

    PubMed Central

    Daghela Bisseleua, Hervé Bertin; Fotio, Daniel; Yede; Missoup, Alain Didier; Vidal, Stefan

    2013-01-01

    Cocoa agroforests can significantly support biodiversity, yet intensification of farming practices is degrading agroforestry habitats and compromising ecosystem services such as biological pest control. Effective conservation strategies depend on the type of relationship between agricultural matrix, biodiversity and ecosystem services, but to date the shape of this relationship is unknown. We linked shade index calculated from eight vegetation variables, with insect pests and beneficial insects (ants, wasps and spiders) in 20 cocoa agroforests differing in woody and herbaceous vegetation diversity. We measured herbivory and predatory rates, and quantified resulting increases in cocoa yield and net returns. We found that number of spider webs and wasp nests significantly decreased with increasing density of exotic shade tree species. Greater species richness of native shade tree species was associated with a higher number of wasp nests and spider webs while species richness of understory plants did not have a strong impact on these beneficial species. Species richness of ants, wasp nests and spider webs peaked at higher levels of plant species richness. The number of herbivore species (mirid bugs and cocoa pod borers) and the rate of herbivory on cocoa pods decreased with increasing shade index. Shade index was negatively related to yield, with yield significantly higher at shade and herb covers<50%. However, higher inputs in the cocoa farms do not necessarily result in a higher net return. In conclusion, our study shows the importance of a diverse shade canopy in reducing damage caused by cocoa pests. It also highlights the importance of conservation initiatives in tropical agroforestry landscapes. PMID:23520451

  8. Dynamics of the Shade-Avoidance Response in Arabidopsis1[W

    PubMed Central

    Ciolfi, Andrea; Sessa, Giovanna; Sassi, Massimiliano; Possenti, Marco; Salvucci, Samanta; Carabelli, Monica; Morelli, Giorgio; Ruberti, Ida

    2013-01-01

    Shade-intolerant plants perceive the reduction in the ratio of red light (R) to far-red light (FR) as a warning of competition with neighboring vegetation and display a suite of developmental responses known as shade avoidance. In recent years, major progress has been made in understanding the molecular mechanisms underlying shade avoidance. Despite this, little is known about the dynamics of this response and the cascade of molecular events leading to plant adaptation to a low-R/FR environment. By combining genome-wide expression profiling and computational analyses, we show highly significant overlap between shade avoidance and deetiolation transcript profiles in Arabidopsis (Arabidopsis thaliana). The direction of the response was dissimilar at the early stages of shade avoidance and congruent at the late ones. This latter regulation requires LONG HYPOCOTYL IN FAR RED1/SLENDER IN CANOPY SHADE1 and phytochrome A, which function largely independently to negatively control shade avoidance. Gene network analysis highlights a subnetwork containing ELONGATED HYPOCOTYL5 (HY5), a master regulator of deetiolation, in the wild type and not in phytochrome A mutant upon prolonged low R/FR. Network analysis also highlights a direct connection between HY5 and HY5 HOMOLOG (HYH), a gene functionally implicated in the inhibition of hypocotyl elongation and known to be a direct target of the HY5 transcription factor. Kinetics analysis show that the HYH gene is indeed late induced by low R/FR and that its up-regulation depends on the action of HY5, since it does not occur in hy5 mutant. Therefore, we propose that one way plants adapt to a low-R/FR environment is by enhancing HY5 function. PMID:23893169

  9. Influence of shade tolerance and development stage on the allometry of ten temperate tree species.

    PubMed

    Franceschini, Tony; Schneider, Robert

    2014-11-01

    Allometry studies the change in scale between two dimensions of an organism. The metabolic theory of ecology predicts invariant allometric scaling exponents, while empirical studies evidenced inter- and intra-specific variations. This work aimed at identifying the sources of variations of the allometric exponents at both inter- and intra-specific levels using stem analysis from 9,363 trees for ten Eastern Canada species with a large shade-tolerance gradient. Specifically, the yearly allometric exponents, α(v,DBH) [volume (v) and diameter at breast height (DBH)], β(v,h) [v and height (h)], and γ(h,DBH) (h and DBH) were modelled as a function of tree age for each species. α(v,DBH), and γ(h,DBH) increased with tree age and then reached a plateau ranging from 2.45 to 3.12 for α(v,DBH), and 0.874-1.48 for γ(h,DBH). Pine species presented a local maximum. No effect of tree age on β(v,h) was found for conifers, while it increased until a plateau ranging from 3.71 to 5.16 for broadleaves. The influence of shade tolerance on the growth trajectories was then explored. In the juvenile stage, α(v,DBH), and γ(h,DBH) increased with shade tolerance while β(v,h) was shade-tolerance independent. In the mature stage, β(v,h) increased with shade tolerance, whereas γ(h,DBH) decreased and α(v,DBH) was shade-tolerance independent. The interaction between development stage and shade tolerance for allometric exponents demonstrates the importance of the changing functional requirements of trees for resource allocation at both the inter- and intra-specific level. These results indicate the need to also integrate specific functional traits, growth strategies and allocation, in allometric theoretical frameworks. PMID:25168006

  10. Evaluating the Community Land Model in a pine stand with shading manipulations and 13CO2 labeling

    DOE PAGESBeta

    Mao, Jiafu; Ricciuto, Daniel M.; Thornton, Peter E.; Warren, Jeffrey M.; King, Anthony Wayne; Shi, Xiaoying; Iversen, Colleen M.; Norby, Richard J.

    2016-02-03

    Carbon partitioning and flow through ecosystems regulates land surface atmosphere CO2 exchange and thus is a key, albeit uncertain component of mechanistic models. The Partitioning in Trees and Soil (PiTS) experiment-model project tracked C partitioning through a young Pinus taeda stand following pulse-labeling with 13CO2 and two levels of shading. The field component of this project provided process-oriented data that was used to evaluate and improve terrestrial biosphere model simulations of rapid shifts in carbon partitioning and hydrological dynamics under varying environmental conditions. Here we tested the performance of the Community Land Model version 4 (CLM4) in capturing short-term carbonmore » and water dynamics in relation to manipulative shading treatments, and the timing and magnitude of carbon fluxes through various compartments of the ecosystem. To constrain CLM4 to closely simulate pretreatment conditions, we calibrated select model parameters with the pretreatment observational data. Compared to CLM4 simulations with default parameters, CLM4 with calibrated model parameters was better able to simulate pretreatment vegetation carbon pools, light response curves, and other initial states and fluxes of carbon and water. Over a 3-week treatment period, the calibrated CLM4 generally reproduced the impacts of shading on average soil moisture at 15-95 cm depth, transpiration, relative change in stem carbon, and soil CO2 efflux rate, although some discrepancies in the estimation of magnitudes and temporal evolutions existed. CLM4, however, was not able to track the progression of the 13CO2 label from the atmosphere through foliage, phloem, roots or surface soil CO2 efflux, even when optimized model parameters were used. This model bias arises, in part, from the lack of a short-term non-structural carbohydrate storage pool and progressive timing of within-plant transport, thus indicating a need for future work to improve the allocation routines in CLM4

  11. Evaluating the Community Land Model in a pine stand with 13CO2 labeling and shading manipulations

    DOE PAGESBeta

    Mao, Jiafu; Ricciuto, Daniel M; Thornton, Peter E; Warren, Jeffrey M.; King, Anthony Wayne; Shi, Xiaoying; Iversen, Colleen M; Norby, Richard J

    2016-01-01

    Carbon partitioning and flow through ecosystems regulates land surface atmosphere CO2 exchange and thus is a key, albeit uncertain component of mechanistic models. The Partitioning in Trees and Soil (PiTS) experiment-model project tracked C partitioning through a young Pinus taeda stand following pulse-labeling with 13CO2 and two levels of shading. The field component of this project provided process-oriented data that was used to evaluate and improve terrestrial biosphere model simulations of rapid shifts in carbon partitioning and hydrological dynamics under varying environmental conditions. Here we tested the performance of the Community Land Model version 4 (CLM4) in capturing short-term carbonmore » and water dynamics in relation to manipulative shading treatments, and the timing and magnitude of carbon fluxes through various compartments of the ecosystem. To constrain CLM4 to closely simulate pretreatment conditions, we calibrated select model parameters with the pretreatment observational data. Compared to CLM4 simulations with default parameters, CLM4 with calibrated model parameters was better able to simulate pretreatment vegetation carbon pools, light response curves, and other initial states and fluxes of carbon and water. Over a 3-week treatment period, the calibrated CLM4 generally reproduced the impacts of shading on average soil moisture at 15-95 cm depth, transpiration, relative change in stem carbon, and soil CO2 efflux rate, although some discrepancies in the estimation of magnitudes and temporal evolutions existed. CLM4, however, was not able to track the progression of the 13CO2 label from the atmosphere through foliage, phloem, roots or surface soil CO2 efflux, even when optimized model parameters were used. This model bias arises, in part, from the lack of a short-term non-structural carbohydrate storage pool and progressive timing of within-plant transport, thus indicating a need for future work to improve the allocation routines in CLM4

  12. Evaluating the Community Land Model in a pine stand with 13CO2 labeling and shading manipulations

    SciTech Connect

    Mao, Jiafu; Ricciuto, Daniel M; Thornton, Peter E; Warren, Jeffrey M.; King, Anthony Wayne; Shi, Xiaoying; Iversen, Colleen M; Norby, Richard J

    2016-01-01

    Carbon partitioning and flow through ecosystems regulates land surface atmosphere CO2 exchange and thus is a key, albeit uncertain component of mechanistic models. The Partitioning in Trees and Soil (PiTS) experiment-model project tracked C partitioning through a young Pinus taeda stand following pulse-labeling with 13CO2 and two levels of shading. The field component of this project provided process-oriented data that was used to evaluate and improve terrestrial biosphere model simulations of rapid shifts in carbon partitioning and hydrological dynamics under varying environmental conditions. Here we tested the performance of the Community Land Model version 4 (CLM4) in capturing short-term carbon and water dynamics in relation to manipulative shading treatments, and the timing and magnitude of carbon fluxes through various compartments of the ecosystem. To constrain CLM4 to closely simulate pretreatment conditions, we calibrated select model parameters with the pretreatment observational data. Compared to CLM4 simulations with default parameters, CLM4 with calibrated model parameters was better able to simulate pretreatment vegetation carbon pools, light response curves, and other initial states and fluxes of carbon and water. Over a 3-week treatment period, the calibrated CLM4 generally reproduced the impacts of shading on average soil moisture at 15-95 cm depth, transpiration, relative change in stem carbon, and soil CO2 efflux rate, although some discrepancies in the estimation of magnitudes and temporal evolutions existed. CLM4, however, was not able to track the progression of the 13CO2 label from the atmosphere through foliage, phloem, roots or surface soil CO2 efflux, even when optimized model parameters were used. This model bias arises, in part, from the lack of a short-term non-structural carbohydrate storage pool and progressive timing of within-plant transport, thus indicating a need for future work to improve the allocation routines in CLM4. Overall

  13. Evaluating the Community Land Model in a pine stand with 13CO2 labeling and shading manipulations

    NASA Astrophysics Data System (ADS)

    Mao, J.; Ricciuto, D. M.; Thornton, P. E.; Warren, J. M.; King, A. W.; Shi, X.; Iversen, C. M.; Norby, R. J.

    2015-05-01

    Carbon allocation and flow through ecosystems regulate land surface-atmosphere CO2 exchange and thus is a key, albeit uncertain, component of mechanistic models. The Partitioning in Trees and Soil (PiTS) experiment-model project tracked carbon allocation through a young Pinus taeda stand following pulse-labeling with 13CO2 and two levels of shading. The field component of this project provided process-oriented data that was used to evaluate and improve terrestrial biosphere model simulations of rapid shifts in carbon allocation and hydrological dynamics under varying environmental conditions. Here we tested the performance of the Community Land Model version 4 (CLM4) in capturing short-term carbon and water dynamics in relation to manipulative shading treatments, and the timing and magnitude of carbon fluxes through various compartments of the ecosystem. For CLM4 to closely simulate pretreatment conditions, we calibrated select model parameters with pretreatment observational data. Compared to CLM4 simulations with default parameters, CLM4 with calibrated model parameters was able to better simulate pretreatment vegetation carbon pools, light response curves, and other initial states and fluxes of carbon and water. Over a 3 week treatment period, the calibrated CLM4 generally reproduced the impacts of shading on average soil moisture at 15-95 cm depth, transpiration, relative change in stem carbon, and soil CO2 efflux rate, although some discrepancies in the estimation of magnitudes and temporal evolutions existed. CLM4, however, was not able to track the progression of the 13CO2 label from the atmosphere through foliage, phloem, roots or surface soil CO2 efflux, even when optimized model parameters were used. This model bias arises, in part, from the lack of a short-term non-structural carbohydrate storage pool and progressive timing of within-plant transport, thus indicating a need for future work to improve the allocation routines in CLM4. Overall, these types

  14. Implementation of window shading models into dynamic whole-building simulation

    NASA Astrophysics Data System (ADS)

    Lomanowski, Bartosz Aleksander

    An important consideration in energy efficient building design is the management of solar gain, as it is the largest and most variable gain in a building. The design of buildings with highly glazed facades, as well as decreased energy transfer rates through better insulated and tighter envelopes are causing interior spaces to become highly sensitive to solar gain. Shading devices such as operable slat-type louver blinds are very effective in controlling solar gain, yet their impact on peak cooing loads and annual energy consumption is poorly understood. With the ever-increasing role of building energy simulation tools in the design of energy efficient buildings, there is a clear need to model windows with shading devices to assess their impact on building performance. Recent efforts at the University of Waterloo's Advanced Glazing Systems Laboratory (AGSL) in window shading research have produced a set of flexible shading models. These models were developed with emphasis on generality and computational efficiency, ideally suited for integration into building simulation. The objective of the current research is to develop a complex fenestration facility within a general purpose integrated building simulation software tool, ESP-r, using the AGSL shading models. The strategy for implementation of the AGSL shading models is the addition of a new multi-layer construction within ESP-r, the Complex Fenestration Construction (CFC). The CFC is based on the standard ESP-r multi-layer nodal structure and finite control volume numerical model, with additional measures for coping with the complexities that arise in the solar, convective and radiant exchanges between glazing/shading layers, the interior zone and exterior surroundings. The CFC algorithms process the solar, convective and radiant properties of the glazing/shading system at each time-step, making it possible to add control (e.g., changing the slat angle of a slat-type blind) at the time-step level. Thermal

  15. Transcriptome Analysis of Shade-Induced Inhibition on Leaf Size in Relay Intercropped Soybean

    PubMed Central

    Gong, Wanzhuo; Qi, Pengfei; Du, Junbo; Sun, Xin; Wu, Xiaoling; Song, Chun; Liu, Weiguo; Wu, Yushan; Yu, Xiaobo; Yong, Taiwen; Wang, Xiaochun; Yang, Feng; Yan, Yanhong; Yang, Wenyu

    2014-01-01

    Multi-species intercropping is a sustainable agricultural practice worldwide used to utilize resources more efficiently. In intercropping systems, short crops often grow under vegetative shade of tall crops. Soybean, one important legume, is often planted in intercropping. However, little is known about the mechanisms of shade inhibition effect on leaf size in soybean leaves at the transcriptome level. We analyzed the transcriptome of shaded soybean leaves via RNA-Seq technology. We found that transcription 1085 genes in mature leaves and 1847 genes in young leaves were significantly affected by shade. Gene ontology analyses showed that expression of genes enriched in polysaccharide metabolism was down-regulated, but genes enriched in auxin stimulus were up-regulated in mature leaves; and genes enriched in cell cycling, DNA-replication were down-regulated in young leaves. These results suggest that the inhibition of higher auxin content and shortage of sugar supply on cell division and cell expansion contribute to smaller and thinner leaf morphology, which highlights potential research targets such as auxin and sugar regulation on leaves for crop adaptation to shade in intercropping. PMID:24886785

  16. Regulation of Black Pepper Inflorescence Quantity by Shading at Different Growth Stages.

    PubMed

    Zu, Chao; Wu, Guiping; Li, Zhigang; Yang, Jianfeng; Wang, Can; Yu, Huan; Wu, Huasong

    2016-07-01

    Black pepper is a perennial plant that can bloom throughout the year. It is generally expected that pepper inflorescence quantity could be minimized at the nonfull-bloom stage. The objective of this study was to find an appropriate shading measure that could inhibit blooming at other growing stages except the full-bloom stage and did not cause any reduction in pepper yield and quality. In this study, pepper trees were shaded up to 15%, 30%, 60% and 75%, respectively, and the inflorescence quantity, photosynthetic characteristics, pepper yield and quality traits were investigated at every growing stage. The results showed that the effect of shading on pepper yield decreased as time progressed. Shading treatment did not alter the composition of piperine and volatile oil, but reduced the moisture content. Based on the correlation between photosynthetic parameter and inflorescence number, the appropriate shading intensities for regulating inflorescence quantity at different phenological stages were determined. Moreover, it was found that the regulation of inflorescence quantity could be achieved by controlling leaf temperature during recovery to filling period. This research outcome also will give us some guidelines to develop other management strategies that control leaf temperature and regulate inflorescence quantity to consequently improve pepper yield. PMID:27144907

  17. Tracking the global maximum power point of PV arrays under partial shading conditions

    NASA Astrophysics Data System (ADS)

    Fennich, Meryem

    This thesis presents the theoretical and simulation studies of the global maximum power point tracking (MPPT) for photovoltaic systems under partial shading. The main goal is to track the maximum power point of the photovoltaic module so that the maximum possible power can be extracted from the photovoltaic panels. When several panels are connected in series with some of them shaded partially either due to clouds or shadows from neighboring buildings, several local maxima appear in the power vs. voltage curve. A power increment based MPPT algorithm is effective in identifying the global maximum from the several local maxima. Several existing MPPT algorithms are explored and the state-of-the-art power increment method is simulated and tested for various partial shading conditions. The current-voltage and power-voltage characteristics of the PV model are studied under different partial shading conditions, along with five different cases demonstrating how the MPPT algorithm performs when shading switches from one state to another. Each case is supplemented with simulation results. The method of tracking the Global MPP is based on controlling the DC-DC converter connected to the output of the PV array. A complete system simulation including the PV array, the direct current to direct current (DC-DC) converter and the MPPT is presented and tested using MATLAB software. The simulation results show that the MPPT algorithm works very well with the buck converter, while the boost converter needs further changes and implementation.

  18. Could shading reduce the negative impacts of drought on coffee? A morphophysiological analysis.

    PubMed

    Cavatte, Paulo C; Oliveira, Alvaro A G; Morais, Leandro E; Martins, Samuel C V; Sanglard, Lílian M V P; DaMatta, Fábio M

    2012-02-01

    Based on indirect evidence, it was previously suggested that shading could attenuate the negative impacts of drought on coffee (Coffea arabica), a tropical crop species native to shady environments. A variety (47) of morphological and physiological traits were examined in plants grown in 30-l pots in either full sunlight or 85% shade for 8 months, after which a 4-month water shortage was implemented. Overall, the traits showed weak or negligible responses to the light × water interaction, explaining less than 10% of the total data variation. Only slight variations in biomass allocation were observed in the combined shade and drought treatment. Differences in relative growth rates were mainly associated with physiological and not with morphological adjustments. In high light, drought constrained the photosynthetic rate through stomatal limitations with no sign of apparent photoinhibition; in low light, such constraints were apparently linked to biochemical factors. Sun-grown plants displayed osmotic adjustments, decreased tissue elasticities and improved long-term water use efficiencies, especially under drought. Regardless of the water availability, higher concentrations of lipids, total phenols, total soluble sugars and lignin were found in high light compared to shade conditions, in contrast to the effects on cellulose and hemicellulose concentrations. Proline concentrations increased in water-deprived plants, particularly those grown under full sun. Phenotypic plasticity was much higher in response to the light than to the water supply. Overall, shading did not alleviate the negative impacts of drought on the coffee tree. PMID:21939445

  19. Transcriptome analysis of shade-induced inhibition on leaf size in relay intercropped soybean.

    PubMed

    Gong, Wanzhuo; Qi, Pengfei; Du, Junbo; Sun, Xin; Wu, Xiaoling; Song, Chun; Liu, Weiguo; Wu, Yushan; Yu, Xiaobo; Yong, Taiwen; Wang, Xiaochun; Yang, Feng; Yan, Yanhong; Yang, Wenyu

    2014-01-01

    Multi-species intercropping is a sustainable agricultural practice worldwide used to utilize resources more efficiently. In intercropping systems, short crops often grow under vegetative shade of tall crops. Soybean, one important legume, is often planted in intercropping. However, little is known about the mechanisms of shade inhibition effect on leaf size in soybean leaves at the transcriptome level. We analyzed the transcriptome of shaded soybean leaves via RNA-Seq technology. We found that transcription 1085 genes in mature leaves and 1847 genes in young leaves were significantly affected by shade. Gene ontology analyses showed that expression of genes enriched in polysaccharide metabolism was down-regulated, but genes enriched in auxin stimulus were up-regulated in mature leaves; and genes enriched in cell cycling, DNA-replication were down-regulated in young leaves. These results suggest that the inhibition of higher auxin content and shortage of sugar supply on cell division and cell expansion contribute to smaller and thinner leaf morphology, which highlights potential research targets such as auxin and sugar regulation on leaves for crop adaptation to shade in intercropping. PMID:24886785

  20. Africa in SRTM 3-D, Anaglyph of Shaded Relief

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This stereoscopic shaded relief image shows Africa's topography as measured by the Shuttle Radar Topography Mission (SRTM) in February 2000. Also shown are Madagascar, the Arabian Peninsula, and other adjacent regions. Previously, much of the topography here was not mapped in detail. Digital elevation data, such as provided by SRTM, are in high demand by scientists studying earthquakes, volcanism, and erosion patterns and for use in mapping and modeling hazards to human habitation. But the shape of Earth's surface affects nearly every natural process and human endeavor that occurs there, so elevation data are used in a wide range of applications. The image shown here is greatly reduced from the original data resolution, but still provides a good overview of the continent's landforms. It is best viewed while panning at full resolution while using image display software.

    The northern part of the continent consists of a system of basins and plateaus, with several volcanic uplands whose uplift has been matched by subsidence in the large surrounding basins. Many of these basins have been infilled with sand and gravel, creating the vast Saharan lands. The Atlas Mountains in the northwest were created by convergence of the African and Eurasian tectonic plates.

    The geography of the central latitudes of Africa is dominated by the Great Rift Valley, extending from Lake Nyasa to the Red Sea, and splitting into two arms to enclose an interior plateau and the nearly circular Lake Victoria, visible in the right center of the image. To the west lies the Congo Basin, a vast, shallow depression that rises to form an almost circular rim of highlands.

    Most of the southern part of the continent rests on a concave plateau comprising the Kalahari Basin and a mountainous fringe, skirted by a coastal plain that widens out in Mozambique in the southeast.

    Specific noteworthy features one may wish to explore in this scene include (1) the Richat Structure in

  1. Optical and color stabilities of paint-on resins for shade modification of restorative resins.

    PubMed

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji; Homma, Tetsuya; Takahashi, Hideo

    2004-06-01

    The purpose of this study was to examine the optical and color stabilities of the paint-on resin used for shade modification of restorative resins. Three shades of paint-on resin and two crown and bridge resins were used. The light transmittance characteristics of the materials during accelerated aging tests such as water immersion, toothbrush abrasion, ultraviolet (UV) light irradiation, and staining tests were measured. Discolorations of materials resulting from tests were also determined. There were no significant effects of water immersion, toothbrush abrasion and UV light irradiation on the light transmittance and visible color change of paint-on resins, whereas the staining tests significantly decreased the light transmittance and increased color change of the translucent shades of materials. Our results indicate that the paint-on resins exhibit stable optical properties and color appearance, which are at least as good as the crown and bridge resins. PMID:15287561

  2. High resolution shading modeling and performance simulation of sun-tracking photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Capdevila, Hugo; Marola, Andrea; Herrerías, Martín

    2013-09-01

    A set of tools is being developed to increase the accuracy of energy conversion predictions for one and two axis vertical trackers. The work is centered on demonstrating accuracy improvements through finer resolution of simulation time steps, along with a more realistic calculation of mutual shading losses. The shading analysis tool is embedded in a CAD software environment and provides enhanced functionality to define arbitrary tracker geometry, module placement and string layout. Topographical aspects of the site are represented based on digital elevation model data and integrated as 3D surfaces for the tracker deployment. A dedicated energy conversion algorithm reproduces the complex behavior associated with partial shading of the PV array through solution of the system's electrical circuit. Effects of time step resolution and module layout are presented for an existing two-axis-tracking CPV plant.

  3. Toward fast color-shaded images of CAD/CAM geometry

    NASA Astrophysics Data System (ADS)

    Sabella, P.; Wozny, M. J.

    1983-11-01

    It is pointed out that the growing demand for advanced three-dimensional (3-D) geometric modeling capabilities in mechanical CAD/CAM (Computer-Aided-Design/Computer-Aided-Manufacturing) systems is related to the need to attack complex design problems more directly and automatically. The advantages are being recognized of having an effective human-computer interface for handling complex 3-D geometry with a color-shaded image capability, in addition to a highly interactive line-drawing capability. A description is given of a software processor for rendering high-quality, color-shaded 'snapshots' directly and rapidly from commercial 3-D CAD/CAM systems. Attention is given to the importance of color-shaded images, the software processor architecture, color and illumination attributes, geometry-defining data, display type associativities, viw definition, polygonal approximation, scan conversion, and the Raster 4K rendering algorithm, and Raster4K performance.

  4. Photoinhibition and drought in Mediterranean woody saplings: scaling effects and interactions in sun and shade phenotypes.

    PubMed

    Valladares, Fernando; Dobarro, Iker; Sánchez-Gómez, David; Pearcy, Robert W

    2005-01-01

    Interacting effects of high light and drought on the performance of sun and shade phenotypes were experimentally undertaken following survival, chlorophyll fluorescence and gas exchange in 2-year-old saplings of four Mediterranean trees (Quercus ilex and Q. coccifera as water-saving species, and Pistacia lentiscus and P. terebinthus as water-spending species). Half of the saplings were grown in full sunlight and the other half in the shade (6% sunlight). Half of each combination of species-phenotype was exposed to high light during a simulated late-summer drought. Light absorptance and gas exchange were scaled up to the whole plant with the 3-D geometrical model, Y-Plant. Quercus species were more plastic and tolerated high light and water stress better than Pistacia species, surviving longer and in drier soils, and exhibiting a less pronounced photoinhibition. There was no evidence of disadvantage for shade phenotypes under high light with increasing drought. By contrast, shade phenotypes survived longer despite larger initial decreases in photochemical efficiency and higher sensitivity to drought than sun phenotypes. The enhanced control of transpiration during drought in water-saving versus water-spending species (and also in shade versus sun phenotypes in three out of the four species) allowed extended survival. Photoinhibition reduced whole crown carbon gain in high light by c. 3% and affected significantly more the shaded leaves of a given plant (reducing their carbon gain by up to 7%) than those exposed to direct sunlight. Despite this apparently minor impact, whole plant carbon gain reduction by photoinhibition negatively correlated with survival and drought tolerance. The implications for succession and forest regeneration in arid environments, particularly under a global change scenario, are discussed. PMID:15569705

  5. Processing techniques for the production of an experimental computer-generated shaded-relief map

    USGS Publications Warehouse

    Judd, Damon D.

    1986-01-01

    The data consisted of forty-eight 1° by 1° blocks of resampled digital elevation model (DEM) data. These data were digitally mosaicked and assigned colors based on intervals of elevation values. The color-coded data set was then used to create a shaded-relief image that was photographically composited with cartographic line information to produce a shaded-relief map. The majority of the processing was completed at the National Mapping Division EROS Data Center in Sioux Falls, South Dakota.

  6. Shade-induced stem elongation in rice seedlings: Implication of tissue-specific phytohormone regulation.

    PubMed

    Liu, Huihui; Yang, Chuanwei; Li, Lin

    2016-07-01

    A better understanding of shade avoidance syndrome (SAS) is an urgent need because of its effect on energy reallocation. Leverage-related mechanism in crops is of potential economic interest for agricultural applications. Here we report the SAS phenotype at tissue level rice seedlings. Tissue-specific RNA-sequencing indicates auxin plays different roles between coleoptile and the first leaf. Phenotypes of wild type treated by gibberellin and brassinosteroid biosynthesis inhibitors and of related mutants suggest these two hormones positively regulate SAS. Our work reveals the diversity of hormone responses in different organs and different species in shade conditions. PMID:26888633

  7. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    PubMed

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter

  8. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China

    PubMed Central

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R2 = 0.85 & T2: R2 = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m-2 of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat

  9. Anaglyph: Shaded Relief and Height as Brightness, Iturralde Structure, Bolivia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An 8-kilometer (5-mile) wide crater of possible impact origin is shown in this anaglyph view of an isolated part of the Bolivian Amazon derived from a Shuttle Radar Topography Mission (SRTM) elevation model. The circular feature at the center of the image, known as the Iturralde Structure, is possibly the Earth's most recent 'big' impact event recording collision with a meteor or comet that might have occurred between 11,000 and 30,000 years ago.

    Although the structure was identified on satellite photographs in the mid-1980s, its location is so remote that it has only been visited by scientific investigators twice, most recently by a team from NASA's Goddard Space Flight Center in September 2002. Lying in an area of very low relief, the landform is a quasi-circular closed depression only about 20 meters (66 feet) in depth, with sharply defined sub-angular 'rim' materials. It resembles a 'cookie cutter' in that its appearance 'cuts' the heavily vegetated soft-sediments and pampas of this part of Bolivia. The SRTM data have provided investigators with the first topographic map of the site and will allow studies of its three-dimensional structure crucial to determining whether it actually is of impact origin.

    Thick vegetation in part defines the surface that the SRTM radar sees as it maps the terrain. Much of the local 'topography' in this area is a measure of tree height (typically up to 13 meters, or 40 feet). This effect is easily seen here, where the ground surface relief is very low. Interpretative separation of the ground surface and vegetative features typically relies upon recognition of their characteristic patterns.

    This anaglyph was created by deriving an image of the terrain from the SRTM data, draping it back over the SRTM elevation model, and then generating two differing perspectives, one for each eye. The terrain image depicts a combination of topographic shading (north slopes bright) and topographic height (higher elevations bright). When

  10. The effects of zilpaterol hydrochloride and shade on blood metabolites and lung score of finishing beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of feeding zilpaterol hydrochloride (ZH) and shade were evaluated on blood metabolites and lung score in finishing beef steers. Cattle were fed 0 or 8.33 mg/kg ZH for 21 d with a 3- or 4-d withdrawal before harvest and were housed in open or shaded pens. Blood samples and lung scores w...

  11. Access to shade changes behavioral and physiological attributes of dairy cows during the hot season in the subtropics.

    PubMed

    Vizzotto, E F; Fischer, V; Thaler Neto, A; Abreu, A S; Stumpf, M T; Werncke, D; Schmidt, F A; McManus, C M

    2015-09-01

    The effect of shade on behavior and physiological attributes of grazing cows in a high altitude subtropical zone is not well established. This work aimed to investigate how social and ingestive behaviors, as well as physiological and other attributes of dairy cows such as milk production, change in a subtropical environment during the hot season either with or without free access to shade. Fourteen lactating cows were kept on pasture either with no shade or with free access to shade for 5 days and their behavior was recorded with instantaneous scan sampled every 10 min, from sunrise, 0530 h (Greenwich mean time, GMT-0200 h) to sunset, 2100 h (GMT-0200 h). Behavior traits included (1) time spent in activities such as grazing, ruminating, resting, lying, standing, walking, seeking shade and staying in the proximity to the water trough and (2) number of events such as water ingestion, aggressive interactions, as well as competition for shade and water. Physiological attributes such as heart and respiratory rates, rectal temperature, number of rumen movements, panting score, as well as milk yield, were evaluated. Time spent in behavioral activities, number of behavioral events and physiological attributes varied between groups (with and without access to shade). Cows with no shade showed increased respiratory and heart rates and panting score at 1300 h, higher values for time of permanence near the water trough, number of competition and aggression events for shade. On the other hand, they showed lower values for time spent resting while lying, ruminating while standing, seeking shade. Access to shade did not change time spent lying, standing, walking with the head up, ruminating while lying, resting while standing, as well as milk yield and number of ruminal movements. Significant interactions between access to shade and days of measurements were detected for time spent walking, ruminating, grazing, resting, number of water ingestion events, competition events near

  12. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    PubMed

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  13. System implications of aperture-shade design for the SIRTF Observatory

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Brooks, W. F.; Maa, S.

    1987-01-01

    The 1-m-aperture Space Infrared Telescope Facility (SIRTF) will operate with a sensitivity limited only by the zodiacal background. This sensitivity requirement places severe restrictions on the amount of stray light which can reach the focal plane from off-axis sources such as the sun or earth limb. In addition, radiation from these sources can degrade the lifetime of the telescope and instrument cryogenic system which is now planned for two years before the first servicing. Since the aperture of the telescope represents a break in the telescope insulation system and is effectively the first element in the optical train, the aperture shade is a key system component. The mass, length, and temperature of the shade should be minimized to reduce system cost while maximizing the telescope lifetime and stray light performance. The independent geometric parameters that characterize an asymmetrical shade for a 600 km, 28 deg orbit were identified, and the system sensitivity to the three most important shade parameters were explored. Despite the higher heat loads compared to previously studied polar orbit missions, the analysis determined that passive radiators of a reasonable size are sufficient to meet the system requirements. An optimized design for the SIRTF mission, based on the sensitivity analysis, is proposed.

  14. Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae)

    PubMed Central

    Ma, Ren-Yi; Zhang, Jiao-Lin; Cavaleri, Molly A.; Sterck, Frank; Strijk, Joeri S.; Cao, Kun-Fang

    2015-01-01

    Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn), which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems. PMID:26461108

  15. Color-coded Topography and Shaded Relief Maps of the Lunar Hemispheres

    NASA Astrophysics Data System (ADS)

    Rosiek, M. R.; Kirk, R.; Howington-Kraus, E.

    2002-03-01

    A new set of U.S. Geological Survey 1:10 million scale lunar maps combines color-coded topography with shaded relief data and nomenclature. Topographic data are from the Clementine laser altimeter and photogrammetric data collected from Clementine images.

  16. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland

    PubMed Central

    Bahn, Michael; Lattanzi, Fernando A; Hasibeder, Roland; Wild, Birgit; Koranda, Marianne; Danese, Valentina; Brüggemann, Nicolas; Schmitt, Michael; Siegwolf, Rolf; Richter, Andreas

    2013-01-01

    Carbon (C) allocation strongly influences plant and soil processes. Short-term C allocation dynamics in ecosystems and their responses to environmental changes are still poorly understood. Using in situ 13CO2 pulse labeling, we studied the effects of 1 wk of shading on the transfer of recent photoassimilates between sugars and starch of above- and belowground plant organs and to soil microbial communities of a mountain meadow. C allocation to roots and microbial communities was rapid. Shading strongly reduced sucrose and starch concentrations in shoots, but not roots, and affected tracer dynamics in sucrose and starch of shoots, but not roots: recent C was slowly incorporated into root starch irrespective of the shading treatment. Shading reduced leaf respiration more strongly than root respiration. It caused no reduction in the amount of 13C incorporated into fungi and Gram-negative bacteria, but increased its residence time. These findings suggest that, under interrupted C supply, belowground C allocation (as reflected by the amount of tracer allocated to root starch, soil microbial communities and belowground respiration) was maintained at the expense of aboveground C status, and that C source strength may affect the turnover of recent plant-derived C in soil microbial communities. PMID:23383758

  17. Interactions between carbon sequestration and shade tree diversity in a smallholder coffee cooperative in El Salvador.

    PubMed

    Richards, Meryl Breton; Méndez, V Ernesto

    2014-04-01

    Agroforestry systems have substantial potential to conserve native biodiversity and provide ecosystem services. In particular, agroforestry systems have the potential to conserve native tree diversity and sequester carbon for climate change mitigation. However, little research has been conducted on the temporal stability of species diversity and aboveground carbon stocks in these systems or the relation between species diversity and aboveground carbon sequestration. We measured changes in shade-tree diversity and shade-tree carbon stocks in 14 plots of a 35-ha coffee cooperative over 9 years and analyzed relations between species diversity and carbon sequestration. Carbon sequestration was positively correlated with initial species richness of shade trees. Species diversity of shade trees did not change significantly over the study period, but carbon stocks increased due to tree growth. Our results show a potential for carbon sequestration and long-term biodiversity conservation in smallholder coffee agroforestry systems and illustrate the opportunity for synergies between biodiversity conservation and climate change mitigation. PMID:24283921

  18. Effects of Host Resistance and Shading Density on the Disease Severity of Hydrangea Leaf Spot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf spot, caused by Cercospora hydrangeae Ellis & Everh., is a common disease of bigleaf hydrangea (Hydrangea macrophylla) in ornamental nurseries and gardens. Experiments were conducted to determine the effects of cultivars and shading density on the disease severity. Two year-old plants of six bi...

  19. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland

    NASA Astrophysics Data System (ADS)

    Bahn, Michael; Lattanzi, Fernando A.; Hasibeder, Roland; Wild, Birgit; Koranda, Marianne; Danese, Valentina; Brüggemann, Nicolas; Schmitt, Michael; Siegwolf, Rolf; Richter, Andreas

    2014-05-01

    Carbon (C) allocation strongly influences plant and soil processes. Short-term C allocation dynamics in ecosystems and their responses to environmental changes are still poorly understood. Using in situ 13CO2 pulse labeling, we studied the effects of one week of shading on the transfer of recent photoassimilates between sugars and starch of above- and belowground plant organs and to soil microbial communities of a mountain meadow. C allocation to roots and microbial communities was rapid. Shading strongly reduced sucrose and starch concentrations in shoots, but not roots, and affected tracer dynamics in sucrose and starch of shoots, but not roots: recent C was slowly incorporated into root starch irrespective of the shading treatment. Shading reduced leaf respiration more strongly than root respiration. It caused no reduction in the amount of 13C incorporated into fungi and gram-negative bacteria, but increased its residence time. These findings suggest that, under interrupted C supply, belowground C allocation (as reflected by the amount of tracer allocated to root starch, soil microbial communities and belowground respiration) was maintained at the expense of aboveground C status, and that C source strength may affect the turnover of recent plant-derived C in soil microbial communities. (Reference: Bahn et al. 2013. New Phytologist 198:116-126)

  20. Preliminary design of a radiator shading device for a lunar outpost

    NASA Technical Reports Server (NTRS)

    Barron, Carlos; Castro, Norma I.; Phillips, Brian

    1991-01-01

    The National Aeronautics and Space Administration is designing a thermal control system for an outpost to be placed permanently on the Moon. One of the functions of the thermal control system is to reject waste heat, which can be accomplished through a radiator. At the lunar equator and during the lunar midday, an unshaded radiator absorbs more heat than it rejects. This problem can be solved by using a shading device to reduce radiation incident on the radiator. The design team was asked to develop concepts for reducing the radiation incident on the radiator and for deploying the radiator and shade system for a 10 kW and a 25 kW heat rejection system. The design team was also asked to develop the best concepts into preliminary design. From the several alternatives developed by the design team, the best one was selected using a decision matrix. Preliminary design of the best concept include support structure, stress analyses, and thermal performance. In addition, the team developed ideas for removing lunar dust from the shading device. The final design solution consisted of a winged radiator shading system with a rail support structure and a scissors mechanism for deployment. The total radiator area required was calculated to be 389 sq m for the 10 kW heat rejection system and 973 sq m for the 25 kW heat rejection system.

  1. Diseases of Ornamental and Shade Trees, Shrubs, Vines, and Ground Covers.

    ERIC Educational Resources Information Center

    Nichols, Lester P.

    This agriculture extension service publication from Pennsylvania State University covers the identification and control of common ornamental trees, shrubs, and ground cover diseases. The publication is divided into sections. The first section discusses the diseases of ornamental and shade trees, including general diseases and diseases of specific…

  2. Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae).

    PubMed

    Ma, Ren-Yi; Zhang, Jiao-Lin; Cavaleri, Molly A; Sterck, Frank; Strijk, Joeri S; Cao, Kun-Fang

    2015-01-01

    Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn), which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems. PMID:26461108

  3. Soil heat flux calculation for sunlit and shaded surfaces under row crops: 2. Model Test

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method to calculate surface soil heat flux (G0) as a function of net radiation to the soil (RN,S) was developed that accounts for positional variability across a row crop interrow. The method divides the interrow into separate sections, which may be shaded, partially sunlit, or fully sunlit, and c...

  4. Portrayal of Tanning, Clothing Fashion and Shade Use in Australian Women's Magazines, 1987-2005

    ERIC Educational Resources Information Center

    Dixon, Helen; Dobbinson, Suzanne; Wakefield, Melanie; Jamsen, Kris; McLeod, Kim

    2008-01-01

    To examine modelling of outcomes relevant to sun protection in Australian women's magazines, content analysis was performed on 538 spring and summer issues of popular women's magazines from 1987 to 2005. A total of 4949 full-colour images of Caucasian females were coded for depth of tan, extent of clothing cover, use of shade and setting. Logistic…

  5. Shape-from-shading depends on visual, gravitational, and body-orientation cues.

    PubMed

    Jenkin, Heather L; Jenkin, Michael R; Dyde, Richard T; Harris, Laurence R

    2004-01-01

    The perception of shading-defined form results from an interaction between shading cues and the frames of reference within which those cues are interpreted. In the absence of a clear source of illumination, the definition of 'up' becomes critical to deducing the perceived shape from a particular pattern of shading. In our experiments, twelve subjects adjusted the orientation of a planar disc painted with a linear luminance gradient from one side to the other, until the disc appeared maximally convex-that is, until the luminance gradient induced the maximum perception of a three-dimensional shape. The vision, gravity, and body-orientation cues were altered relative to each other. Visual cues were manipulated by the York Tilted Room facility, and body cues were altered by simply lying on one side. The orientation of the disc that appeared maximally convex varied in a systematic fashion with these manipulations. We present a model in which the direction of perceptual 'up' is determined from the sum of three weighted vectors corresponding to the vision, gravity, and body-orientation cues. The model predicts the perceived direction of 'up', contributes to our understanding of how shape-from-shading is deduced, and also predicts the confidence with which the 'up' direction is perceived. PMID:15729912

  6. Responses to shading of naturalized and non-naturalized exotic woody species

    PubMed Central

    Feng, Yanhao; van Kleunen, Mark

    2014-01-01

    Background and Aims Recent studies have suggested that responses to shading gradients may play an important role in establishment success of exotic plants, but hitherto few studies have tested this. Therefore, a common-garden experiment was conducted using multiple Asian woody plant species that were introduced to Europe >100 years ago in order to test whether naturalized and non-naturalized species differ in their responses to shading. Specifically, a test was carried out to determine whether naturalized exotic woody species maintained better growth under shaded conditions, and whether they expressed greater (morphological and physiological) adaptive plasticity in response to shading, relative to non-naturalized species. Methods Nineteen naturalized and 19 non-naturalized exotic woody species were grown under five light levels ranging from 100 to 7 % of ambient light. For all plants, growth performance (i.e. biomass), morphological and CO2 assimilation characteristics were measured. For the CO2 assimilation characteristics, CO2 assimilation rate was measured at 1200 μmol m–2 s–1 (i.e. saturated light intensity, A1200), 50 μmol m–2 s–1 (i.e. low light intensity, A50) and 0 μmol m–2 s–1 (A0, i.e. dark respiration). Key Results Overall, the naturalized and non-naturalized species did not differ greatly in biomass production and measured morphological and CO2 assimilation characteristics across the light gradient. However, it was found that naturalized species grew taller and reduced total leaf area more than non-naturalized species in response to shading. It was also found that naturalized species were more capable of maintaining a high CO2 assimilation rate at low light intensity (A50) when grown under shading. Conclusions The results indicate that there is no clear evidence that the naturalized species possess a superior response to shading over non-naturalized species, at least not at the early stage of their growth. However, the higher CO2

  7. The effects of zilpaterol hydrochloride and shade on blood metabolites of finishing beef steers.

    PubMed

    Hales, K E; Foote, A P; Jones, S A; Shackelford, S D; Boyd, B M; Erickson, G E

    2016-07-01

    The effects of feeding zilpaterol hydrochloride (ZH) and shade were evaluated on blood metabolites in finishing beef steers ( = 480). Cattle were fed 0 or 8.33 mg/kg of diet DM ZH for 21 d with a 3- or 4-d withdrawal before harvest and were housed in open or shaded pens. Blood samples were collected the day before ZH was fed and on the day the cattle were shipped to the commercial abattoir. Lactate concentration was not different between cattle fed ZH in open or shaded pens ( = 0.12). Nonetheless, a tendency for a diet × time interaction was detected for lactate concentration ( = 0.09), in which it was greater in cattle fed the control diet in open pens before being fed ZH. Cortisol concentration was less before and after ZH was fed ( = 0.01). Glucose was greater for cattle fed the control diet than cattle fed ZH for 21 d ( = 0.03). Cattle fed in open vs. shaded pens did not differ in glucose concentration ( = 0.12), whereas glucose concentrations were greater before ZH was fed than after ( = 0.02). In contrast, plasma urea nitrogen (PUN) concentration was not different in response to diet ( = 0.24), housing type ( = 0.65), or before vs. after being fed ZH ( = 0.60). Lactate concentrations were not different across diet or shade treatments before ZH was fed, whereas after ZH, lactate concentrations were greater in control cattle than cattle fed ZH. Additionally, cortisol was less after feeding ZH. Glucose was greater before than after feeding ZH. PMID:27482680

  8. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.).

    PubMed

    Zhao, Daqiu; Hao, Zhaojun; Tao, Jun

    2012-12-01

    Herbaceous peony (Paeonia lactiflora Pall.) is an important ornamental plant used in urban green spaces, but little is known about whether it can grow in a shaded environment or understory. In this study, effects of shade on plant growth and flower quality in the herbaceous peony were investigated. The results showed that P. lactiflora morphology parameters, including plant height, leaf number, stem diameter, branch number, node number and plant crown width, were higher in plants grown with sun exposure compared to those grown in shade; however, opposite trends were observed for the top and middle leaf areas of the plant. Compared with sun exposure, shade decreased P. lactiflora photosynthetic capacity, light saturation point (LSP) and light compensation point (LCP) and increased the apparent quantum yield (AQY), mainly due to declined stomatal conduction (Gs). These decreases caused the soluble sugar, soluble protein and malondialdehyde (MDA) contents to decline, which led to delayed initial flowering date, prolonged flowering time, reduced flower fresh weight, increased flower diameter and faded flower color. Through cloning and expression analysis of anthocyanin biosynthetic genes, we determined that the fading of flower color was the result of reduced anthocyanin content, which was caused by the combined activity of anthocyanin biosynthesis genes and, in particular, of the upstream phenylalanine ammonialyase gene (PlPAL) and chalcone synthase gene (PlCHS). These results could provide us with a theoretical basis for further application of P. lactiflora in the greening of urban spaces and an understanding of the mechanisms behind the changes induced by shade. PMID:23141672

  9. Coding of shape from shading in area V4 of the macaque monkey

    PubMed Central

    2009-01-01

    Background The shading of an object provides an important cue for recognition, especially for determining its 3D shape. However, neuronal mechanisms that allow the recovery of 3D shape from shading are poorly understood. The aim of our study was to determine the neuronal basis of 3D shape from shading coding in area V4 of the awake macaque monkey. Results We recorded the responses of V4 cells to stimuli presented parafoveally while the monkeys fixated a central spot. We used a set of stimuli made of 8 different 3D shapes illuminated from 4 directions (from above, the left, the right and below) and different 2D controls for each stimulus. The results show that V4 neurons present a broad selectivity to 3D shape and illumination direction, but without a preference for a unique illumination direction. However, 3D shape and illumination direction selectivities are correlated suggesting that V4 neurons can use the direction of illumination present in complex patterns of shading present on the surface of objects. In addition, a vast majority of V4 neurons (78%) have statistically different responses to the 3D and 2D versions of the stimuli, while responses to 3D are not systematically stronger than those to 2D controls. However, a hierarchical cluster analysis showed that the different classes of stimuli (3D, 2D controls) are clustered in the V4 cells response space suggesting a coding of 3D stimuli based on the population response. The different illumination directions also tend to be clustered in this space. Conclusion Together, these results show that area V4 participates, at the population level, in the coding of complex shape from the shading patterns coming from the illumination of the surface of corrugated objects. Hence V4 provides important information for one of the steps of cortical processing of the 3D aspect of objects in natural light environment. PMID:19948014

  10. Making biodiversity-friendly cocoa pay: combining yield, certification, and REDD for shade management.

    PubMed

    Waldron, A; Justicia, R; Smith, L E

    2015-03-01

    The twin United Nations' Millennium Development Goals of biodiversity preservation and poverty reduction both strongly depend on actions in the tropics. In particular, traditional agroforestry could be critical to both biological conservation and human livelihoods in human-altered rainforest areas. However, traditional agroforestry is rapidly disappearing, because the system itself is economically precarious, and because the forest trees that shade traditional crops are now perceived to be overly detrimental to agricultural yield. Here, we show a case where the commonly used agroforestry shade metric, canopy cover, would indeed suggest complete removal of shade trees to maximize yield, with strongly negative biodiversity and climate implications. However, a yield over 50% higher was achievable if approximately 100 shade trees per hectare were planted in a spatially organized fashion, a win-win for biodiversity and the smallholder. The higher yield option was detected by optimizing simultaneously for canopy cover, and a second shade metric, neighboring tree density, which was designed to better capture the yield value of ecological services flowing from forest trees. Nevertheless, even a 50% yield increase may prove insufficient to stop farmers converting away from traditional agroforestry. To further increase agroforestry rents, we apply our results to the design of a sustainable certification (eco-labelling) scheme for cocoa-based products in a biodiversity hotspot, and consider their implications for the use of the United Nations REDD (reducing emissions from deforestation and forest degradation) program in agroforestry systems. Combining yield boost, certification, and REDD has the potential to incentivize eco-friendly agroforestry and lift smallholders out of poverty, simultaneously. PMID:26263660

  11. Multi-waveband solar irradiance on tree-shaded vertical and horizontal surfaces: cloud-free and partly cloudy skies.

    PubMed

    Grant, R H; Heisler, G M

    2001-01-01

    Irradiance measurements of short wave (SW), photosynthetically active (PAR), ultraviolet-A (UVA) and ultraviolet-B (UVB) solar radiations were made on horizontal and vertical surfaces in the shade of trees under cloud-free and partly cloudy skies. All measurements were referenced to the irradiance of a horizontal surface above the canopy. For horizontal shaded surfaces under cloud-free skies, the values of the ratio (Rh) of below- to above-canopy horizontal irradiance were similar for the UVA and UVB wavebands and for the SW and PAR wavebands. However, Rh for the UV wavebands differed from that for the PAR and SW wavebands. Overall, values of Rh in the shade typically varied as PAR < SW < UVA < UVB. The irradiance ratios for vertical surface in the shade typically varied as UVB > UVA = SW > PAR. In absolute terms, UVB irradiance (Ih) on tree-shaded horizontal surfaces increased relative to a cloud-free sky when a translucent cirroform cloud was in front of the sun, but decreased when the cloud was in a region of sky away from the sun. Translucent cirroform cloud cover also tended to decrease the UVB irradiance (Iv) for a shaded vertical surface (either facing the sun or south) relative to that under cloud-free skies, regardless of where the clouds were in the sky. In all other wavebands the shaded Ih and Iv increased under translucent cirroform cloud cover relative to cloud-free skies, regardless of where the clouds were in the sky. PMID:11202362

  12. Characterization of tub4(P287L) , a β-tubulin mutant, revealed new aspects of microtubule regulation in shade.

    PubMed

    Yu, Jie; Qiu, Hong; Liu, Xin; Wang, Meiling; Gao, Yongli; Chory, Joanne; Tao, Yi

    2015-09-01

    When sun plants, such as Arabidopsis thaliana, are under canopy shade, elongation of stems/petioles will be induced as one of the most prominent responses. Plant hormones mediate the elongation growth. However, how environmental and hormonal signals are translated into cell expansion activity that leads to the elongation growth remains elusive. Through forward genetic study, we identified shade avoidance2 (sav2) mutant, which contains a P287L mutation in β-TUBULIN 4. Cortical microtubules (cMTs) play a key role in anisotropic cell growth. Hypocotyls of sav2 are wild type-like in white light, but are short and highly swollen in shade and dark. We showed that shade not only induces cMT rearrangement, but also affects cMT stability and dynamics of plus ends. Even though auxin and brassinosteroids are required for shade-induced hypocotyl elongation, they had little effect on shade-induced rearrangement of cMTs. Blocking auxin transport suppressed dark phenotypes of sav2, while overexpressing EB1b-GFP, a microtubule plus-end binding protein, rescued sav2 in both shade and dark, suggesting that tub4(P287L) represents a unique type of tubulin mutation that does not affect cMT function in supporting cell elongation, but may affect the ability of cMTs to respond properly to growth promoting stimuli. PMID:25899068

  13. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    SciTech Connect

    Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew; Hoffmann, Sabine; Thanachareonkit, Anothai; Li, Zhengrong; Ding, Yong

    2015-05-29

    As rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the U.S. model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shading products, and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24%–66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30%–80% reductions in perimeter zone HVAC electricity use in Beijing and 18%–38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.

  14. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    DOE PAGESBeta

    Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew; Hoffmann, Sabine; Thanachareonkit, Anothai; Li, Zhengrong; Ding, Yong

    2015-05-29

    As rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the U.S. model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shading products,more » and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24%–66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30%–80% reductions in perimeter zone HVAC electricity use in Beijing and 18%–38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.« less

  15. Tanning Shade Gradations of Models in Mainstream Fitness and Muscle Enthusiast Magazines: Implications for Skin Cancer Prevention in Men.

    PubMed

    Basch, Corey H; Hillyer, Grace Clarke; Ethan, Danna; Berdnik, Alyssa; Basch, Charles E

    2015-07-01

    Tanned skin has been associated with perceptions of fitness and social desirability. Portrayal of models in magazines may reflect and perpetuate these perceptions. Limited research has investigated tanning shade gradations of models in men's versus women's fitness and muscle enthusiast magazines. Such findings are relevant in light of increased incidence and prevalence of melanoma in the United States. This study evaluated and compared tanning shade gradations of adult Caucasian male and female model images in mainstream fitness and muscle enthusiast magazines. Sixty-nine U.S. magazine issues (spring and summer, 2013) were utilized. Two independent reviewers rated tanning shade gradations of adult Caucasian male and female model images on magazines' covers, advertisements, and feature articles. Shade gradations were assessed using stock photographs of Caucasian models with varying levels of tanned skin on an 8-shade scale. A total of 4,683 images were evaluated. Darkest tanning shades were found among males in muscle enthusiast magazines and lightest among females in women's mainstream fitness magazines. By gender, male model images were 54% more likely to portray a darker tanning shade. In this study, images in men's (vs. women's) fitness and muscle enthusiast magazines portrayed Caucasian models with darker skin shades. Despite these magazines' fitness-related messages, pro-tanning images may promote attitudes and behaviors associated with higher skin cancer risk. To date, this is the first study to explore tanning shades in men's magazines of these genres. Further research is necessary to identify effects of exposure to these images among male readers. PMID:25038234

  16. Color, Race, and English Language Teaching: Shades of Meaning

    ERIC Educational Resources Information Center

    Curtis, Andy, Ed.; Romney, Mary, Ed.

    2006-01-01

    The unique contribution of this book is to bring together Critical Race Theory and narrative inquiry and apply them specifically to a largely overlooked area of experience within the field of TESOL: What does it mean to be a TESOL professional of color? To address this question, TESOL professionals of color from all over the world, representing a…

  17. Shades of Green: Growing Environmentalism through Art Education

    ERIC Educational Resources Information Center

    Inwood, Hilary

    2010-01-01

    As a university-based art educator inspired by the efforts of environmental artists, the author has been working to share their achievements with students and teachers through eco-art education. She aims to continue this work through this article by sharing recent developments in this emerging field of inquiry. In hopes of encouraging art…

  18. Thermal energy dissipation and its components in two developmental stages of a shade-tolerant species, Nothofagus nitida, and a shade-intolerant species, Nothofagus dombeyi.

    PubMed

    Reyes-Díaz, Marjorie; Ivanov, Alexander G; Huner, Norman P A; Alberdi, Miren; Corcuera, Luis J; Bravo, León A

    2009-05-01

    Nothofagus dombeyi (Mirb.) Blume and Nothofagus nitida (Phil.) Krasser, two evergreens in the South Chilean forest, regenerate in open habitats and under the canopy, respectively. Both overtop the forest canopy when they are in the adult stage, suggesting that their photoprotective mechanisms differ in ontogenetic dynamics. We postulated that N. nitida, a shade-tolerant species increases its capacity to tolerate photoinhibitory conditions (low temperature and high irradiance) by thermal energy dissipation of excess energy during its transition from the seedling to the adult stage, whereas N. dombeyi, a shade-intolerant species, maintains a high capacity for photoprotection by thermal energy dissipation from the seedling to the adult stage. To test this hypothesis, the main photoprotective mechanisms in plants - the fast- and slow-relaxing components of thermal energy dissipation (NPQ, non-photochemical quenching) NPQ(F) and NPQ(S), respectively, and state transitions - were studied in seedlings and adults of both species grown in their natural habitats and in a common garden. In adults, NPQ(F) and NPQ(S) did not differ between species and seasons. The greatest differences in these parameters were observed in seedlings. The xanthophyll cycle was more active in N. dombeyi seedlings than in N. nitida seedlings at low temperature and high irradiance, consistent with a higher NPQ(F) in N. dombeyi. Under all study conditions, N. nitida seedlings had higher NPQ(S) than N. dombeyi seedlings. The state transition capability was higher in N. nitida seedlings than in N. dombeyi seedlings. Therefore, although (shade-intolerant) N. dombeyi was able to thermally dissipate the excess absorbed energy, under natural conditions its photochemical energy quenching was efficient in both developmental stages, decreasing its need for thermal dissipation. In contrast, the seedlings of N. nitida were more sensitive to photoinhibition than the adult trees, suggesting a change from shade

  19. Solar heat gain through fenestration systems containing shading: Summary of procedures for estimating performance from minimal data

    SciTech Connect

    Klems, Joseph H.

    2001-03-01

    The computational methods for calculating the properties of glazing systems containing shading from the properties of their components have been developed, but the measurement standards and property data bases necessary to apply them have not. It is shown that with a drastic simplifying assumption these methods can be used to calculate system solar-optical properties and solar heat gain coefficients for arbitrary glazing systems, while requiring limited data about the shading. Detailed formulas are presented, and performance multipliers are defined for the approximate treatment of simple glazings with shading. As higher accuracy is demanded, the formulas become very complicated.

  20. The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing in shade-tolerance

    PubMed Central

    Pons, Thijs L.; Poorter, Hendrik

    2014-01-01

    The carbon balance is defined here as the partitioning of daily whole-plant gross CO2 assimilation (A) in C available for growth and C required for respiration (R). A scales positively with growth irradiance and there is evidence for an irradiance dependence of R as well. Here we ask if R as a fraction of A is also irradiance dependent, whether there are systematic differences in C-balance between shade-tolerant and shade-intolerant species, and what the causes could be. Growth, gas exchange, chemical composition and leaf structure were analyzed for two shade-tolerant and three shade-intolerant herbaceous species that were hydroponically grown in a growth room at five irradiances from 20 μmol m−2 s−1 (1.2 mol m−2 day−1) to 500 μmol m−2 s−1 (30 mol m−2 day−1). Growth analysis showed little difference between species in unit leaf rate (dry mass increase per unit leaf area) at low irradiance, but lower rates for the shade-tolerant species at high irradiance, mainly as a result of their lower light-saturated rate of photosynthesis. This resulted in lower relative growth rates in these conditions. Daily whole-plant R scaled with A in a very tight manner, giving a remarkably constant R/A ratio of around 0.3 for all but the lowest irradiance. Although some shade-intolerant species showed tendencies toward a higher R/A and inefficiencies in terms of carbon and nitrogen investment in their leaves, no conclusive evidence was found for systematic differences in C-balance between the shade-tolerant and intolerant species at the lowest irradiance. Leaf tissue of the shade-tolerant species was characterized by high dry matter percentages, C-concentration and construction costs, which could be associated with a better defense in shade environments where leaf longevity matters. We conclude that shade-intolerant species have a competitive advantage at high irradiance due to superior potential growth rates, but that shade-tolerance is not necessarily associated

  1. Development and implementation of the Clinical Tooth Shade Differentiation Course – an evaluation over 3 years

    PubMed Central

    Olms, Constanze; Haak, Rainer; Jakstat, Holger A.

    2016-01-01

    Objective: Tooth shade differentiation concerns the identification and classification of tooth shades. The objective of this project was to implement the Clinical Tooth Shade Differentiation Course in the preclinical stage of studies and to evaluate the students' perspective over a period of 3 years. Methodology: The course is planned for a duration of 10 weeks with two 45-minute sessions per semester week. The entire attendance time was 10:15 h. 2 lectures of 90 minutes each, 2 seminars of 60 min each and 2 teaching units with the phantom head and role playing took place. In addition to the various parameters of tooth shade, changes in tooth shade and the basics of dental esthetics, clinical procedures for manual and digital tooth shade determination were explained and practiced. 96% (69 of 72) of the students participated in the first evaluation in 2012/2013 (T1), and 68% of these were women. In the following year, 2013/2014 (T2), 92% (45 of 48 students) took part; 62% of these were women and 38% men. The 2014/2015 evaluation (T3) comprised 94% (45 of 48 students). Of these, 67% were women. Results: In the evaluation, the students gave the course a positive grade. The questions in "General/Organization" were given a mean (M) of 1.5 (SD=0.7) in T1 and T2 , and 1.2 (SD=0.3) in T3. The "Overall Assessment" yielded MT1=1.6 (SD=0.6), MT2=1.5 (SD=0.5) and MT3=1.1 (SD=0.3). In T1 and T2, the item "The instructor actively involved the students in the course" was given a mean of 2.1 (SD=0.9), and in T3 a mean of 1.2 (SD=0.5). Conclusions: The course presented here conceptually shows how practical dental skills can be taught in a theoretical and clinical context. Educational objectives from the role of a dental expert were taken from the national competence-based catalog of educational objectives for dentistry and can also be supplemented. The objectives can be transferred to other dental faculties. PMID:26958650

  2. Estimation of sunlit/shaded light-use efficiency of cropland using tower-based multi-angle remote sensing data and eddy covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Fu, D.; Chen, B.; Zhang, L.

    2014-12-01

    The light-use efficiency (LUE, ɛ) is one of critical parameters in the terrestrial ecosystem production studies. However, it is still a challenge how to up-scale LUE from canopy to the landscape/regional scales. One potential solution is to use automated multi-angle tower-based remote sensing platforms, which observe canopy reflectance with high spatial, temporal, spectral and angle resolution. Although some published paper on the LUE in boreal and temperate forests had used continuous multi-angle measurements of the surface reflectance, lack of study in literature investigated the vegetation physiological parameters of cropland using the surface reflectance with high spatio-temporal and high spectral data with multiple angles. To improve our understanding of physiological status of cropland, the maize within the footprint of the Daman Superstation flux tower site of Heihe Watershed Allied Telemetry Experiment Research (HiWATER) was employed in this study. Based on the observed reflectance and flux data, a Bidirectional Reflectance Distribution Function (BRDF) of vegetation index (Photochemical Reflectance Index, PRI and Vegetation Index using the Universal Pattern Decomposition method, VIUPD) at continuous time series was established by integrating of a semi-empirical kernel-driven BRDF model (RossThick-LiSparse), a footprint model (the Simple Analytical Footprint model on Eulerian coordinates for scalar Flux, SAFE-f) and a LUE model. Besides, based on the sky-condition (direct/diffused radiation) data, the relationships between the vegetation index (PRI and VIUPD) and sunlit/shaded LUE under corresponding sky conditions were established. Taking maize field as an example, the measurements were obtained during June to August, 2012. The relationships between PRI and ɛ for sunlit and shaded leaves were: PRIsu=0.06339×log(ɛsu) + 0.04882,PRIsh= 0.02675×log(ɛsh) + 0.01619, where, the subscript su, sh represent sunlit and shaded leaves respectively; p< 0.0001, R2

  3. Estimation of sunlit/shaded light-use efficiency of cropland using tower-based multi-angle remote sensing data and eddy covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Fu, Dongjie; Chen, Baozhang; Zhang, Lifu

    2015-04-01

    The light-use efficiency (LUE) is one of critical parameters in the terrestrial ecosystem production studies. However, it is still a challenge how to up-scale LUE from canopy to the landscape/regional scales. One potential solution is to use automated multi-angle tower-based remote sensing platforms, which observe canopy reflectance with high spatial, temporal, spectral and angle resolution. Although some published paper on the LUE in boreal and temperate forests had used continuous multi-angle measurements of the surface reflectance, lack of study in literature investigated the vegetation physiological parameters of cropland using the surface reflectance with high spatio-temporal and high spectral data with multiple angles. To improve our understanding of physiological status of cropland, the maize within the footprint of the Daman Superstation flux tower site of Heihe Watershed Allied Telemetry Experiment Research (HiWATER) was employed in this study. Based on the observed reflectance and flux data, a Bidirectional Reflectance Distribution Function (BRDF) of vegetation index (Photochemical Reflectance Index, PRI and Vegetation Index using the Universal Pattern Decomposition method, VIUPD) at continuous time series was established by integrating of a semi-empirical kernel-driven BRDF model (RossThick-LiSparse), a footprint model (the Simple Analytical Footprint model on Eulerian coordinates for scalar Flux, SAFE-f) and a LUE model. Besides, based on the sky-condition (direct/diffused radiation) data, the relationships between the vegetation index (PRI and VIUPD) and sunlit/shaded LUE under corresponding sky conditions were established. Taking maize field as an example, the measurements were obtained during June to August, 2012. The relationships between PRI and LUE for sunlit and shaded leaves were: PRIsu=0.06339×log(LUEsu) + 0.04882, PRIsh= 0.02675×log(LUEsh) + 0.01619, where, the subscript su, sh represent sunlit and shaded leaves respectively; p< 0.0001, R2

  4. Technique for fabricating individualized dentures with a gingiva-shade composite resin.

    PubMed

    Park, Beom-Woo; Kim, Nam-Jin; Lee, Jonghyuk; Lee, Hae-Hyoung

    2016-05-01

    More natural dental esthetics have been sought by patients who wear conventional complete or partial dentures. Recently, gingiva-shade composite resins (GSCRs) have become available for replicating soft tissue for both fixed and removable prostheses. The technique presented is for fabricating individualized complete dentures. First the acrylic resin is mixed with a coloring agent and processed to modify the base shade of the denture. GSCRs are light polymerized onto a prepared space on the buccal surfaces of denture base to replicate the appearance of gingival tissues including blood vessels. The technique provides an outstanding natural, gingiva-like, appearance and allows complete dentures to harmonize with the individual patient's surrounding oral tissues. PMID:26794697

  5. Shade Trading: An Emerging Riparian Forest-Based Payment for Ecosystem Services Market in Oregon, USA

    NASA Astrophysics Data System (ADS)

    Guillozet, Kathleen

    2015-10-01

    This paper describes the regulatory and compliance context for Oregon's emerging ecosystem services (ES) market in riparian shade to meet water quality obligations. In Oregon's market as with many other ES programs, contracts and other regulatory documents not only delimit the obligations and liabilities of different parties, but also constitute a primary mechanism through which ES service delivery is measured. Through a review of compliance criteria I find that under Oregon's shade trades, permittees are held to a number of input-based criteria, which essentially affirm that parties comply with predetermined practices and procedures, and one `pseudo output based' criterion, in which ES delivery is estimated through a model. The case presented in the paper critically engages with the challenges of measuring ES and in assessing the outcomes of ES projects. It places these challenges as interrelated and proposes that market designers, policymakers, and other stakeholders should consider explicit efficacy, efficiency, and equity targets.

  6. Shade Trading: An Emerging Riparian Forest-Based Payment for Ecosystem Services Market in Oregon, USA.

    PubMed

    Guillozet, Kathleen

    2015-10-01

    This paper describes the regulatory and compliance context for Oregon's emerging ecosystem services (ES) market in riparian shade to meet water quality obligations. In Oregon's market as with many other ES programs, contracts and other regulatory documents not only delimit the obligations and liabilities of different parties, but also constitute a primary mechanism through which ES service delivery is measured. Through a review of compliance criteria I find that under Oregon's shade trades, permittees are held to a number of input-based criteria, which essentially affirm that parties comply with predetermined practices and procedures, and one 'pseudo output based' criterion, in which ES delivery is estimated through a model. The case presented in the paper critically engages with the challenges of measuring ES and in assessing the outcomes of ES projects. It places these challenges as interrelated and proposes that market designers, policymakers, and other stakeholders should consider explicit efficacy, efficiency, and equity targets. PMID:26099569

  7. The epidermis coordinates auxin-induced stem growth in response to shade.

    PubMed

    Procko, Carl; Burko, Yogev; Jaillais, Yvon; Ljung, Karin; Long, Jeff A; Chory, Joanne

    2016-07-01

    Growth of a complex multicellular organism requires coordinated changes in diverse cell types. These cellular changes generate organs of the correct size, shape, and functionality. In plants, the growth hormone auxin induces stem elongation in response to shade; however, which cell types of the stem perceive the auxin signal and contribute to organ growth is poorly understood. Here, we blocked the transcriptional response to auxin within specific tissues to show that auxin signaling is required in many cell types for correct hypocotyl growth in shade, with a key role for the epidermis. Combining genetic manipulations in Arabidopsis thaliana with transcriptional profiling of the hypocotyl epidermis from Brassica rapa, we show that auxin acts in the epidermis in part by inducing activity of the locally acting, growth-promoting brassinosteroid pathway. Our findings clarify cell-specific auxin function in the hypocotyl and highlight the complexity of cell type interactions within a growing organ. PMID:27401556

  8. Stereo and shading contribute independently to shape convexity-concavity discrimination.

    PubMed

    Aubin, Mercédès; Arguin, Martin

    2014-01-01

    The present study examined the joint contribution of shading and stereopsis to the perception of shape convexity-concavity. The stimuli were the images of a synthetic convex 3-D shape seen from viewpoints leading to ambiguity as to its convexity. Illumination came from either above or below, and from either the right or the left, and stimuli were presented dichoptically with normal binocular disparity, reversed disparity, or no disparity. Participants responded "convex" more often when the lighting came from above than from below. Also, participants responded that the shape was convex more often with normal than with zero disparity, and more often with zero disparity than with reversed stereopsis. The effects of lighting direction and display mode were additive--that is, they did not interact. This indicates that shading and stereopsis contribute independently to shape perception. PMID:25109021

  9. 3D shape reconstruction of medical images using a perspective shape-from-shading method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Han, Jiu-qiang

    2008-06-01

    A 3D shape reconstruction approach for medical images using a shape-from-shading (SFS) method was proposed in this paper. A new reflectance map equation of medical images was analyzed with the assumption that the Lambertian reflectance surface was irradiated by a point light source located at the light center and the image was formed under perspective projection. The corresponding static Hamilton-Jacobi (H-J) equation of the reflectance map equation was established. So the shape-from-shading problem turned into solving the viscosity solution of the static H-J equation. Then with the conception of a viscosity vanishing approximation, the Lax-Friedrichs fast sweeping numerical method was used to compute the viscosity solution of the H-J equation and a new iterative SFS algorithm was gained. Finally, experiments on both synthetic images and real medical images were performed to illustrate the efficiency of the proposed SFS method.

  10. Metabolomic analysis of the effect of shade treatment on the nutritional and sensory qualities of green tea.

    PubMed

    Lee, Lan-Sook; Choi, Ji Hea; Son, Nari; Kim, Sang-Hee; Park, Jong-Dae; Jang, Dae-Ja; Jeong, Yoonhwa; Kim, Hyun-Jin

    2013-01-16

    We analyzed metabolites from a 50% aqueous methanol extract of green teas treated with different shade periods (0, 15, 18, and 20 days) to investigate the effect of low light on their nutritional and sensory qualities. The shaded groups could be clearly distinguished from the control (0 day), and the 20 day group was separated from the 15 and 18 day groups. The shade treatment increased quercetin-galactosylrutinoside, kaempferol-glucosylrutinoside, epicatechin gallate, epigallocatechin gallate, tryptophan, phenylalanine, theanine, glutamine, glutamate, and caffeine levels but decreased quercetin-glucosylrutinoside, kaempferol-glucoside, gallocatechin, and epigallocatechin levels. Further studies on the nutritional benefits of these metabolites are needed. However, this result, along with the sensory evaluation and color measurement data, suggests that shade treatment improves the nutritional and sensory quality of green tea. Thus, we proposed a metabolomic pathway related to the effect of low light, which could elucidate the relationship between low light and tea quality. PMID:23256790

  11. Surface layer response to topographic solar shading in Antarctica's dry valleys

    NASA Astrophysics Data System (ADS)

    Katurji, Marwan; Zawar-Reza, Peyman; Zhong, Shiyuan

    2013-11-01

    The effects of topographic shading on local flow transitioning and atmospheric surface layer properties are investigated using observational data from the Miers Valley, one of the dry valleys of Antarctica. A unique data set was collected during a 9 day period in the summer of 2012 using an eddy covariance system and a sound detection and ranging that provided vertical profiles of wind and turbulence characteristics in the surface layer and the lower part of the boundary layer within the Miers Valley. This data set is ideal for investigating the dynamics of flow transitioning due to topographic shading, without the atmosphere experiencing complete darkness. The lack of atmospheric humidity, soil moisture, and surface vegetation in the dry valleys creates an atmosphere within which the microclimatic responses are amplified, and as a result, the valley atmosphere is extremely sensitive to solar radiation. The entire measured valley boundary layer (up to 250 m above ground level) feels the transition from an unstable to a stable stratification as the surface temperature drops by 10°C in response to the topographic shading. Wavelet analysis reveals the dynamics of flow deceleration, stagnation, and oscillations as the flow transitions from an unstable to a stable boundary layer. The larger air mass (along valley) scales to the longer terrain fetch, and as the shade is cast over the valley, it retains some of the longer wavelengths of the flow. The cross-valley component influenced by the slopes is quicker to adjust to short-period oscillations and takes around three more hours before it couples with the oscillatory pattern of the along-valley flow.

  12. Sun/shade conditions affect recruitment and local adaptation of a columnar cactus in dry forests

    PubMed Central

    Miranda-Jácome, Antonio; Montaña, Carlos; Fornoni, Juan

    2013-01-01

    Background and Aims Facilitation among plants in water-limited environments (i.e. where evapotranspiration overcomes the availability of water during the growing season) has been considered a local adaptation to water and light conditions. Among cacti, early life-history stages can benefit from the facilitative effects of nurse plants that reduce solar radiation and water stress. However, whether light condition itself acts as an agent of selection through facilitation remains untested. The aim of this study was to determine (1) whether light conditions affect seedling recruitment, (2) whether the positive effect of shade on seedling recruitment is more intense under more stressful conditions and (3) whether shade condition (facilitation) reduces the magnitude of local adaptation on seedling recruitment relative to full sunlight conditions. Methods A reciprocal transplant experiment, coupled with the artificial manipulation of sun/shade conditions, was performed to test for the effects of local adaptation on germination, seedling survival and growth, using two demes of the columnar cactus Pilosocereus leucocephalus, representing different intensities of stressful conditions. Key Results Full sunlight conditions reduced recruitment success and supported the expectation of lower recruitment in more stressful environments. Significant local adaptation was mainly detected under full sunlight conditions, indicating that this environmental factor acts as an agent of selection at both sites. Conclusions The results supported the expectation that the magnitude of local adaptation, driven by the effects of facilitative nurse plants, is less intense under reduced stressful conditions. This study is the first to demonstrate that sun/shade conditions act as a selective agent accounting for local adaptation in water-limited environments, and that facilitation provided by nurse plants in these environments can attenuate the patterns of local adaptation among plants benefiting

  13. Black wildebeest seek shade less and use solar orientation behavior more than do blue wildebeest.

    PubMed

    Lease, Hilary M; Murray, Ian W; Fuller, Andrea; Hetem, Robyn S

    2014-10-01

    Many ungulates, including wildebeest, seek shade and orient their bodies relative to incoming solar radiation in order to reduce environmental heat loads. Blue (Connochaetes taurinus) and black wildebeest (Connochaetes gnou), which co-exist artificially in some reserves in South Africa, are thought to adopt different thermoregulatory behaviors to mitigate high environmental heat loads. However, whether or not blue and black wildebeest use different behaviors to reduce heat loads in regions where they co-occur has never previously been examined. We compared the shade seeking and solar orientation behavior of free-ranging blue and black wildebeest in summer at three locations in South Africa where both species co-occur. We found that blue wildebeest exhibited more shade seeking behavior than did black wildebeest at all times of day, at all study sites. Black wildebeest remained in the sun but were more likely than blue wildebeest to orient their bodies parallel to the sun at all study sites, a behavior which reduces the amount of surface area exposed to incoming radiation. Black wildebeest were most likely to employ parallel solar orientation during the hottest times of the day when the sun was not directly overhead (i.e., solar noon ± 1 hour). We thus demonstrate that co-occurring blue and black wildebeest use different thermoregulatory behaviors to reduce high heat loads. It is possible that the lack of shade in the historical distribution of black wildebeest led to selective pressure for reliance on solar orientation. Differences in thermoregulatory behavior can affect species-specific heat loads, habitat use, body mass, fitness and grazing activity. Such differences may also allow blue and black wildebeest to inhabit separate microclimates within the same habitat, provided there is sufficient heterogeneity in vegetation structure, potentially facilitating reproductive isolation. PMID:25436964

  14. Self-shading in cork oak seedlings: Functional implications in heterogeneous light environments

    NASA Astrophysics Data System (ADS)

    Esteso-Martínez, Jordán; Peguero-Pina, José Javier; Valladares, Fernando; Morales, Fermín; Gil-Pelegrín, Eustaquio

    2010-07-01

    The high self-shading found in Quercus suber seedlings has been interpreted as a feature common for plants growing in high light environments. But many studies reveal that Q. suber has high survival rates under low-light conditions, so a high degree of self-shading could be the consequence of a foliage composed of many small leaves, with no drawbacks for coping with low light. A characterization of the light environment in a Q. suber stand together with a study of photosynthetic parameters of full sunlight-exposed (FSLE) and self-shaded (SS) leaves were carried out to tackle this apparent contradiction. Although the number of sunflecks longer than 120 min during the 3 months of measurements was low, the occurrence of at least one sunfleck longer than 120 min per day in the understory of the forest studied was very common. Sunflecks shorter than 30 min promoted an increase in net photosynthesis ( A) in FSLE leaves, but not in SS leaves. However, sunflecks longer than 60 min led to a very strong decrease in A and in actual photosystem II efficiency (Φ PSII) in FSLE leaves, when compared to sunflecks shorter than 30 min. In SS leaves, changes were, again, negligible. The multi-layered foliage of Q. suber seedlings allowed i) FSLE leaves to obtain the maximum photosynthetic yield for short sunflecks, and ii) SS leaves to increase their contribution to the photosynthesis of the whole plant for long sunflecks, thus, optimizing the use of light by FSLE and SS leaves during short and long sunflecks respectively. Therefore, shoot architecture of Q. suber seedlings involving high levels of self-shading allows to adequately cope with the low but highly heterogeneous light conditions of the understory, particularly when sunflecks of contrasting durations take place as it is frequently the case for evergreen Mediterranean forests.

  15. Shade-Induced Action Potentials in Helianthus annuus L. Originate Primarily from the Epicotyl

    PubMed Central

    Stephens, Nicholas R; Cleland, Robert E; Van Volkenburgh, Elizabeth

    2006-01-01

    Repeated observations that shading (a drastic reduction in illumination rate) increased the generation of spikes (rapidly reversed depolarizations) in leaves and stems of many cucumber and sunflower plants suggests a phenomenon widespread among plant organs and species. Although shaded leaves occasionally generate spikes and have been suggested to trigger systemic action potentials (APs) in sunflower stems, we never found leaf-generated spikes to propagate out of the leaf and into the stem. On the contrary, our data consistently implicate the epicotyl as the location where most spikes and APs (propagating spikes) originate. Microelectrode studies of light and shading responses in mesophyll cells of leaf strips and in epidermis/cortex cells of epicotyl segments confirm this conclusion and show that spike induction is not confined to intact plants. 90% of the epicotyl-generated APs undergo basipetal propagation to the lower epicotyl, hypocotyl and root. They propagate with an average rate of 2 ± 0.3 mm s−1 and always undergo a large decrement from the hypocotyl to the root. The few epicotyl-derived APs that can be tracked to leaf blades (< 10%) undergo either a large decrement or fail to be transmitted at all. Occasionally (5% of the observations) spikes were be generated in hypocotyl and lower epicotyl that moved towards the upper epicotyl unaltered, decremented, or amplified. This study confirms that plant APs arise to natural, nontraumatic changes. In simultaneous recordings with epicotyl growth, AP generation was found to parallel the acceleration of stem growth under shade. The possible relatedness of both processes must be further investigated. PMID:19521471

  16. Mapping the spectral variability in photosynthetic and non-photosynthetic vegetation, soils, and shade using AVIRIS

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Smith, Milton O.; Sabol, Donald E.; Adams, John B.; Ustin, Susan L.

    1992-01-01

    The primary objective of this research was to map as many spectrally distinct types of green vegetation (GV), non-photosynthetic vegetation (NPV), shade, and soil (endmembers) in an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene as is warranted by the spectral variability of the data. Once determined, a secondary objective was to interpret these endmembers and their abundances spatially and spectrally in an ecological context.

  17. Survey of radiation intensities at the rivers Lafnitz and Pinka using hemispherical images and analysis of the shading effect of the riparian vegetation.

    NASA Astrophysics Data System (ADS)

    Holzapfel, Gerda; Hlousek, Christoph; Rauch, Hans Peter; Bartel, Wolfgang

    2014-05-01

    Climate change scenarios predict an increase of temperature about 2 to 2.5°C until 2040 for Austrian lowlands. Especially the pannonian area in eastern Austria, with hot and dry summers and high temperatures is affected by these forecasts. These changes in global climate will also lead to negative consequences for freshwater ecosystems by an increase in water temperature. If there is sufficient natural bank vegetation in riparian areas, the increasing resilience of those freshwater ecosystems will be supported, whereas negative impacts such as the rise of river water temperature will be balanced. This study shows the degree of riparian vegetation as a shading element at the two investigated rivers Lafnitz and Pinka, located in eastern Austria. In field surveys hemispherical photographs were gathered on 95 points in the middle as well as the banks of both rivers. Subsequent surrounding riparian vegetation and terrain was surveyed by means of vegetation composition, height, density and vegetation overhang into the river as well as river size and bank inclination. Hemispherical Photographs were processed by the software Hemiview 2.1 and provide resulting global site factors, which inform about radiation reduction caused by riparian vegetation. With the global site factors, vegetation and river morphology data of the 95 selected sites the shading potential of predominant riparian vegetation types was investigated. Results show the most impacting parameters on solar radiation passage through riparian vegetation.

  18. Shade-grown coffee in Puerto Rico: Opportunities to preserve biodiversity while reinvigorating a struggling agricultural commodity

    USGS Publications Warehouse

    Borkhataria, R.; Collazo, J.A.; Groom, M.J.; Jordan-Garcia, A.

    2012-01-01

    Shade-grown coffee contributes to biodiversity conservation and has many ecological benefits. We reviewed historical trends in coffee production and interviewed 100 coffee growers in 1999 to determine current management practices and attitudes toward the cultivation of sun and shade coffee in Puerto Rico. We discuss the outlook for the coffee industry in the 21st century and implications for biodiversity conservation, hoping lessons from Puerto Rico will apply to the international coffee industry. Throughout the 20th century, government intervention, including subsidies and technical assistance, supported coffee farming in Puerto Rico. In an effort to modernize coffee production and increase yields, the conversion from shade to sun coffee plantations was encouraged. Despite government support, the amount of land devoted to this once dominant agricultural commodity declined markedly between 1982 and 2007 (84%), due to labor shortages, low income, and catastrophic hurricanes. We found that a return to shaded plantations would be embraced by most farmers. Growers of shaded coffee were generally happier with their cultivation practices (89.3% satisfied) than growers of sun coffee (60.9% satisfied), valued biodiversity, and were willing to cultivate coffee under shade if given similar incentives to those received for farming sun coffee. The future of the coffee industry in Puerto Rico may depend on government programs that capitalize upon emerging markets for sustainably produced, shade-grown coffee. We conclude that where governments have close ties to the coffee industry, they should strive to wed economic development with the conservation of biodiversity and associated ecological services by providing support and incentives for the production of shade coffee. ?? 2011 Elsevier B.V.

  19. Effect of shading devices on building energy use and peak demand in Minnesota. Research report

    SciTech Connect

    Hunn, B.D.; Jones, J.W.; Grasso, M.M.; Hitzfelder, D.D.

    1990-12-01

    The report presents the results of an analytical study of the effect of shading devices on annual heating, cooling, and total energy use, on peak electric demand, and on energy cost savings in single-family residences, a small office, a school, and a high-rise office in Minneapolis, Minnesota. Using an hour-by-hour building energy analysis model, savings were simulated for interior and exterior shading devices. Energy cost savings were calculated using Northern States Power (NSP) Company utility rates; however, no analysis of the costs of installing and operating these devices was made. Results are presented in terms of annual energy cost savings and peak electric demand reductions, with each shading device in place, as compared to baseline reference cases for three prototypical residences and a prototypical small office, elementary school, and high-rise office building. The devices are ranked in terms of energy cost savings, as well as peak demand reduction. While the best-performing devices have annual cooling energy savings ranging up to over 30%, the annual energy cost savings (at NSP utility rates in effect in 1989) range up to only 4% for the residences and 10% for the office buildings, but less than 1% for the school. Summer peak electric demand reductions are more significant: up to 20% for the residences, 12% for the offices, and 3% for the school.

  20. Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis

    PubMed Central

    Hersch, Micha; Lorrain, Séverine; de Wit, Mieke; Trevisan, Martine; Ljung, Karin; Bergmann, Sven; Fankhauser, Christian

    2014-01-01

    Plants such as Arabidopsis thaliana respond to foliar shade and neighbors who may become competitors for light resources by elongation growth to secure access to unfiltered sunlight. Challenges faced during this shade avoidance response (SAR) are different under a light-absorbing canopy and during neighbor detection where light remains abundant. In both situations, elongation growth depends on auxin and transcription factors of the phytochrome interacting factor (PIF) class. Using a computational modeling approach to study the SAR regulatory network, we identify and experimentally validate a previously unidentified role for long hypocotyl in far red 1, a negative regulator of the PIFs. Moreover, we find that during neighbor detection, growth is promoted primarily by the production of auxin. In contrast, in true shade, the system operates with less auxin but with an increased sensitivity to the hormonal signal. Our data suggest that this latter signal is less robust, which may reflect a cost-to-robustness tradeoff, a system trait long recognized by engineers and forming the basis of information theory. PMID:24733935

  1. Object-Based Analysis of LIDAR Geometric Features for Vegetation Detection in Shaded Areas

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ching; Lin, ChinSu; Tsai, Ming-Da; Lin, Chun-Lin

    2016-06-01

    The extraction of land cover information from remote sensing data is a complex process. Spectral information has been widely utilized in classifying remote sensing images. However, shadows limit the use of multispectral images because they result in loss of spectral radiometric information. In addition, true reflectance may be underestimated in shaded areas. In land cover classification, shaded areas are often left unclassified or simply assigned as a shadow class. Vegetation indices from remote sensing measurement are radiation-based measurements computed through spectral combination. They indicate vegetation properties and play an important role in remote sensing of forests. Airborne light detection and ranging (LiDAR) technology is an active remote sensing technique that produces a true orthophoto at a single wavelength. This study investigated three types of geometric lidar features where NDVI values fail to represent meaningful forest information. The three features include echo width, normalized eigenvalue, and standard deviation of the unit weight observation of the plane adjustment, and they can be derived from waveform data and discrete point clouds. Various feature combinations were carried out to evaluate the compensation of the three lidar features to vegetation detection in shaded areas. Echo width was found to outperform the other two features. Furthermore, surface characteristics estimated by echo width were similar to that by normalized eigenvalues. Compared to the combination of only NDVI and mean height difference, those including one of the three features had a positive effect on the detection of vegetation class.

  2. Influence of translucence/opacity and shade in the flexural strength of lithium disilicate ceramics

    PubMed Central

    Santos, Mila Oliveira; do Amaral, Flávia Lucisano Botelho; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany

    2015-01-01

    Background: Lithium disilicate ceramic system consists of glass ceramic ingots with different grades of translucence which may influence its flexural strength. Aims: To assess the three-point flexural strength of the different lithium disilicate-based ceramic ingots (IPS e.max Press/Ivoclar Vivadent) with different levels of translucence and shade. Materials and Methods: Six groups of ceramic ingots were selected to represent different levels of translucence and shade (HTA1, HTBL2, LTA2, LTB2, MO2, and HO). They measured 25 mm × 5 mm × 2 mm (n = 10), according to ISO 6872 specifications, and tested on a universal test machine (EMIC). Statistical Analysis Used: A one-way analysis of variance (ANOVA) was used (α = 0.05). Results: The results (in MPa) were: HTA1 = 392.98; HTBL2 = 390.74; LTA2 = 390.46; LTB2 = 389.92; MO2 = 390.43; HO = 391.96. ANOVA showed no significant difference among groups (P = 0.1528). Conclusions: Different levels of translucence, opacity and shade of ingots did not affect their mechanical strength, and the use of these ceramics should be guided by the esthetic demands of each clinical situation. PMID:26430304

  3. Management strategy, shade, and landscape composition effects on urban landscape plant quality and arthropod abundance.

    PubMed

    Braman, S K; Latimer, J G; Oetting, R D; McQueen, R D; Eckberg, T B; Prinster, M

    2000-10-01

    Intensity and type of management, the cultural variable shade, and the combination of woody and herbaceous annual and perennial plants were evaluated for their effect on key landscape arthropod pests. Azalea lace bugs, Stephanitis pyrioides (Scott), and twolined spittlebugs, Prosapia bicincta (Say), were most effectively suppressed in landscape designed with resistant plant species of woody ornamentals and turf. Landscapes containing susceptible plant counterparts were heavily infested by these two insect species in untreated control plots. A traditional management program of prescribed herbicide, insecticide, and fungicide applications effectively suppressed azalea lace bug and produced a high-quality landscape. Targeted integrated pest management with solely horticultural oils resulted in intermediate levels of azalea lace bug. Neither program completely controlled twolined spittlebug on hollies or turf. Carabidae, Staphylinidae, Formicidae, and Araneae were not reduced by any management strategy. Lace bugs (Stephanitis) were more common in plots with 50% shade than those in full sun. Spittlebugs (Prosapia) were more common in the shade during 1996 and in the sun during 1997. Spiders and ants were more often collected in full sun plots. Carabids, staphylinids, and spiders were more commonly collected from pitfall traps in turf than in wood-chip mulched plant beds, whereas ants were equally common in both locations. The addition of herbaceous plants to the landscape beds had little effect on pest insect abundance. PMID:11057719

  4. The Extraction of 3D Shape from Texture and Shading in the Human Brain

    PubMed Central

    Georgieva, Svetlana S.; Todd, James T.; Peeters, Ronald

    2008-01-01

    We used functional magnetic resonance imaging to investigate the human cortical areas involved in processing 3-dimensional (3D) shape from texture (SfT) and shading. The stimuli included monocular images of randomly shaped 3D surfaces and a wide variety of 2-dimensional (2D) controls. The results of both passive and active experiments reveal that the extraction of 3D SfT involves the bilateral caudal inferior temporal gyrus (caudal ITG), lateral occipital sulcus (LOS) and several bilateral sites along the intraparietal sulcus. These areas are largely consistent with those involved in the processing of 3D shape from motion and stereo. The experiments also demonstrate, however, that the analysis of 3D shape from shading is primarily restricted to the caudal ITG areas. Additional results from psychophysical experiments reveal that this difference in neuronal substrate cannot be explained by a difference in strength between the 2 cues. These results underscore the importance of the posterior part of the lateral occipital complex for the extraction of visual 3D shape information from all depth cues, and they suggest strongly that the importance of shading is diminished relative to other cues for the analysis of 3D shape in parietal regions. PMID:18281304

  5. Detection of the mandibular canal via shaded surface display and multiplanar reconstruction of CT data.

    PubMed

    Solar, P; Gahleitner, A; Bednar, A; Rodinger, S; Watzek, G

    2001-03-01

    The purpose of this study was to evaluate the sensitivity of conventional two-dimensional (2D) multisection images (multiplanar rendering, MPR) and registered three-dimensional (3D) shaded surface images (shaded surface display, SSD) of standard axial computed tomography (CT) data for detecting the mandibular canal (MC) in the lower jaw of 136 patients. The patients, who had different indications for mandibular CT, were examined using standard axial CT scanning. Two post-processing programs were used for 3D visualization of the data sets. The cross-sectional rendered images and the shaded surface 3D images were graded for detection of the MC, the presence of artefacts, overall quality and clinical relevance. A 3D display of the MC was achieved using the MPR technique in 100% with high image quality. The surface rendered display depicted the MC in 80%. Artefacts markedly degraded the 3D displays obtained using the surface rendering technique; thus, SSD is an inappropriate technique for imaging the entire MC without manual segmentation. MPR-CT improves the sensitivity of CT imaging in the detection of the MC with very little time needed for post-processing compared with the SSD method. This post-processing modality should, therefore, be considered for serial studies of patients undergoing dental CT. The sensitivity of the MPR method is even superior to the standard axial CT slices. PMID:11394371

  6. Advances in stream shade modelling. Accounting for canopy overhang and off-centre view

    NASA Astrophysics Data System (ADS)

    Davies-Colley, R.; Meleason, M. A.; Rutherford, K.

    2005-05-01

    Riparian shade controls the stream thermal regime and light for photosynthesis of stream plants. The quantity difn (diffuse non-interceptance), defined as the proportion of incident lighting received under a sky of uniform brightness, is useful for general specification of stream light exposure, having the virtue that it can be measured directly with common light sensors of appropriate spatial and spectral character. A simple model (implemented in EXCEL-VBA) (Davies-Colley & Rutherford Ecol. Engrg in press) successfully reproduces the broad empirical trend of decreasing difn at the channel centre with increasing ratio of canopy height to stream width. We have now refined this model to account for (a) foliage overhanging the channel (for trees of different canopy form), and (b) off-centre view of the shade (rather than just the channel centre view). We use two extreme geometries bounding real (meandering) streams: the `canyon' model simulates an infinite straight canal, whereas the `cylinder' model simulates a stream meandering so tightly that its geometry collapses into an isolated pool in the forest. The model has been validated using a physical `rooftop' model of the cylinder case, with which it is possible to measure shade with different geometries.

  7. Comparison of the translucency of shaded zirconia all-ceramic systems

    PubMed Central

    Ulusoy, Mutahhar

    2014-01-01

    PURPOSE The purpose of this study was to evaluate and compare the translucency of shaded zirconia all-ceramic systems. MATERIALS AND METHODS Translucency of 3 different zirconia all-ceramic systems colored by different techniques was compared with a lithium disilicate glass-ceramic (IPS e.max Press). Square-shaped specimens with 0.5 mm thickness were fabricated from In-Ceram YZ, ICE Zirkon and Katana systems in A1, A2 and A3.5 shades according to Vitapan Classical shade tab (n=11). Specimens were then veneered and glazed with corresponding veneer ceramic recommended by each zirconia system manufacturer and the total thickness was set to 1.5 mm. Translucency measurements were performed with VITA Easyshade Compact spectrophotometer after each stage and translucency parameter was calculated. Data were statistically analyzed with repeated measures ANOVA and Tukey multiple comparison test. RESULTS The control group was significantly more translucent than the zirconia systems (P<.05). ICE Zirkon cores showed the least translucency; neither In-Ceram YZ nor Katana systems were superior to each other in terms of translucency. Translucency of all specimens was decreased after veneering, and the translucency rankings were changed. CONCLUSION Coloring technique did not have a significant effect on translucency of zirconia cores. Although zirconia systems were less translucent than lithium disilicate glass ceramic, they had partial translucency and there were translucency differences among the zirconia systems. Chroma affected the translucency of precolored zirconia cores. PMID:25352964

  8. The role of frames of reference in the development of responsiveness to shading information.

    PubMed

    Yonas, A; Kuskowski, M; Sternfels, S

    1979-06-01

    The use of frames of reference in interpreting shading information in pictures was studied with children from 3 to 8 years of age. After learning to discriminate tactually between a convexity and a concavity, the subjects were presented a photograph of the convexity and the concavity in which the only information for differential shape was provided by the relationship between the orientation of the shading on the shapes and the frames of reference. By changing the position of the subject's head, rotating the display, and changing the location of the source of illumination, the relevance of egocentric, environmental, and lighting-specified frames of reference was manipulated. Children in this age range were found to be sensitive to shading information for depth, both when that information was specified by only a single frame of reference and when all three frames of reference were relevant. Differences in the responsiveness to individual frames of reference were found: the egocentric (head-retina) frame of reference was most effective, followed by the environmental reference frame, and finally by the frame of reference based on the location of the light source in the space surrounding the photograph. Responsiveness to the environmental and lighting-based frames of reference increased with age, while responsiveness to the egocentric frame of reference was high for all age groups and did not increase with age. PMID:487887

  9. Experimental investigation on the characteristics of a solar cell under different illumination intensities and shading areas

    NASA Astrophysics Data System (ADS)

    Xiao, W. B.; Hu, F. Y.; He, X. D.; Zhang, H. M.; Wu, H. M.

    2015-06-01

    The characteristics of a solar cell, the short-circuit current ( I sc ), the open-circuit voltage ( V oc ), the maximum power point ( V m , I m ), the fill factor ( FF) and the photoelectric conversion efficiency ( η) under different illumination intensities and shading areas have been experimentally investigated. The work factor ω is given by ω = (1 - A/ A 0) × S/ S 0, where A 0 is the total solar cell area, A the shading area, S 0 the benchmark reference irradiation level, and S the new level of the irradiation, is introduced to take the light intensity and shading area into account. The results show that Isc and Im increase on an approximately linear increasing way with ω, but V oc and V m approach the saturation levels. The reason is that the current is a linear function of ω, and the relationship of the voltage to ω is logarithmic. We also found I sc ( V m ) to depend more on ω than I m ( V oc ). In addition, we observed that η tended to increase linearly with ω, but FF tended to converge to saturation. The reason for the behavior of η is the reduction in the contact resistance and in the electron-hole recombination with increasing ω. However, FF is mainly determined by V oc . The improvement in the solar cell performance with increasing ω results from an increase in the current, but not in the voltage or the fill factor.

  10. 16S rRNA assessment of the influence of shading on early-successional biofilms in experimental streams.

    PubMed

    Lehmann, Katja; Singer, Andrew; Bowes, Michael J; Ings, Nicola L; Field, Dawn; Bell, Thomas

    2015-12-01

    Elevated nutrient levels can lead to excessive biofilm growth, but reducing nutrient pollution is often challenging. There is therefore interest in developing control measures for biofilm growth in nutrient-rich rivers that could act as complement to direct reductions in nutrient load. Shading of rivers is one option that can mitigate blooms, but few studies have experimentally examined the differences in biofilm communities grown under shaded and unshaded conditions. We investigated the assembly and diversity of biofilm communities using in situ mesocosms within the River Thames (UK). Biofilm composition was surveyed by 454 sequencing of 16S amplicons (∼400 bp length covering regions V6/V7). The results confirm the importance of sunlight for biofilm community assembly; a resource that was utilized by a relatively small number of dominant taxa, leading to significantly less diversity than in shaded communities. These differences between unshaded and shaded treatments were either because of differences in resource utilization or loss of diatom-structures as habitats for bacteria. We observed more co-occurrence patterns and network interactions in the shaded communities. This lends further support to the proposal that increased river shading can help mitigate the effects from macronutrient pollution in rivers. PMID:26499485

  11. Photoinhibition of photosystem I under high light in the shade-established tropical tree species Psychotria rubra

    PubMed Central

    Huang, Wei; Zhang, Shi-Bao; Zhang, Jiao-Lin; Hu, Hong

    2015-01-01

    The photosynthetic sensitivity to high light differs among understory plants of shade- and sun- established tree species. Shade-established tree species are sensitive to high light but the underlying photosynthetic mechanism has not been fully resolved. In the present study, we examined the responses of photosystem I (PSI) and photosystem II (PSII) to high light in shade leaves of a shade-established tree species Psychotria rubra and a sun-established tree species Pometia tomentosa. After exposure to 2000 μmol photons m–2 s–1 for 2 h, the maximum photo-oxidizable P700 (Pm) decreased by 40 and 9% in P. rubra and P. tomentosa, respectively. These results indicate that the shade-established species P. rubra is incapable of protecting PSI under high light. Strong photoinhibition of PSII under high light led to large depression of electron transfer from PSII to PSI and then prevented further photodamage to PSI. During the high light treatment of 2000 μmol photons m–2 s–1, PSI photoinhibition in P. rubra was accompanied with high levels of cyclic electron flow (CEF) and P700 oxidation ratio. Therefore, we propose that PSI photoinhibition under high light in P. rubra is dependent on electron transfer from PSII to PSI, and CEF is unlikely to play a major role in photoprotection for PSI in P. rubra. These findings suggest that photoinhibition of PSI is another important mechanism underlying why shade-established species cannot survive under high light. PMID:26483816

  12. 16S rRNA assessment of the influence of shading on early-successional biofilms in experimental streams

    PubMed Central

    Lehmann, Katja; Singer, Andrew; Bowes, Michael J.; Ings, Nicola L.; Field, Dawn; Bell, Thomas

    2015-01-01

    Elevated nutrient levels can lead to excessive biofilm growth, but reducing nutrient pollution is often challenging. There is therefore interest in developing control measures for biofilm growth in nutrient-rich rivers that could act as complement to direct reductions in nutrient load. Shading of rivers is one option that can mitigate blooms, but few studies have experimentally examined the differences in biofilm communities grown under shaded and unshaded conditions. We investigated the assembly and diversity of biofilm communities using in situ mesocosms within the River Thames (UK). Biofilm composition was surveyed by 454 sequencing of 16S amplicons (∼400 bp length covering regions V6/V7). The results confirm the importance of sunlight for biofilm community assembly; a resource that was utilized by a relatively small number of dominant taxa, leading to significantly less diversity than in shaded communities. These differences between unshaded and shaded treatments were either because of differences in resource utilization or loss of diatom-structures as habitats for bacteria. We observed more co-occurrence patterns and network interactions in the shaded communities. This lends further support to the proposal that increased river shading can help mitigate the effects from macronutrient pollution in rivers. PMID:26499485

  13. Involvement of cotton gene GhFPF1 in the regulation of shade avoidance responses in Arabidopsis thaliana.

    PubMed

    Wang, Xiaoyan; Pang, Chaoyou; Wei, Hengling; Yu, Shuxun

    2015-01-01

    Phytochrome system perceives the reduction in the ratio of red to far-red light when plants are grown under dense canopy. This signal, regarded as a warning of competition, will trigger a series of phenotypic changes to avoid shade. Progress has been made for several phytochrome signaling intermediates acting as positive regulators of accelerated elongation growth and promotion of flowering in shade-avoidance has been identified. Recently, a FPF1 homolog GhFPF1 was identified in upland cotton. Our data supported that transgenic Arabidopsis of over-expressing GhFPF1 displayed a constitutive shade-avoiding phenotype resembling phyB mutants in several respects such as accelerated elongation of hypocotyl and petioles, upward of leaf movement, and promoted flowering. In this addendum, by dissection of GhFPF1 acting as a component of shade-avoidance responses we suppose that GhFPF1 might influence the timing of the floral transition independently of shade-mediated early flowering. Furthermore, the opposite changes of IAA content in transgenic leaves and stems suggested that alteration of IAA storage and release took place during shade-avoidance responses. PMID:26337193

  14. Involvement of cotton gene GhFPF1 in the regulation of shade avoidance responses in Arabidopsis thaliana

    PubMed Central

    Wang, Xiaoyan; Pang, Chaoyou; Wei, Hengling; Yu, Shuxun

    2015-01-01

    Phytochrome system perceives the reduction in the ratio of red to far-red light when plants are grown under dense canopy. This signal, regarded as a warning of competition, will trigger a series of phenotypic changes to avoid shade. Progress has been made for several phytochrome signaling intermediates acting as positive regulators of accelerated elongation growth and promotion of flowering in shade-avoidance has been identified. Recently, a FPF1 homolog GhFPF1 was identified in upland cotton. Our data supported that transgenic Arabidopsis of over-expressing GhFPF1 displayed a constitutive shade-avoiding phenotype resembling phyB mutants in several respects such as accelerated elongation of hypocotyl and petioles, upward of leaf movement, and promoted flowering. In this addendum, by dissection of GhFPF1 acting as a component of shade-avoidance responses we suppose that GhFPF1 might influence the timing of the floral transition independently of shade-mediated early flowering. Furthermore, the opposite changes of IAA content in transgenic leaves and stems suggested that alteration of IAA storage and release took place during shade-avoidance responses. PMID:26337193

  15. The contribution of dynamic changes in photosynthesis to shade tolerance of two conifer species.

    PubMed

    Ma, Ziyu; Behling, Shawn; Ford, E David

    2014-07-01

    Generally 'shade tolerance' refers to the capacity of a plant to exist at low light levels but characteristics of shade can vary and must be taken into account in defining the term. We studied Abies amabilis Dougl. ex J.Forbes and Tsuga heterophylla (Raf.) Sarg. under a forest canopy in the northwest of the Olympic Peninsula, USA, which has low annual sunshine hours and frequent overcast days. Using BF3 sunshine sensors, we surveyed diffuse and total light received by saplings growing under a range of canopy openness up to 30%. We measured variation in photosynthetic capacity over the growing season and within days and estimated photosynthesis induction in relation to ambient light. Three components of shade tolerance are associated with variation in light climate: (i) Total light on the floor of an 88-year stand of naturally regenerated T. heterophylla was greater on overcast than clear days. Light on overcast days varied throughout the day sometimes with a cyclical pattern. (ii) Photosynthetic capacity, Amax, varied both through the growing season and within days. Amax was generally greater in the latter part of the growing season, being limited by temperature and stomatal conductance, gs, at times during the early part. Saplings in more shaded areas had lower Amax and in the latter part of the growing season Amax was found to decline from mid-afternoon. (iii) Two patterns of photosynthesis induction to increased light were found. In a mean ambient light of 139 μmol m(-2) s(-1), induction had a curvilinear response to a step increase in light with a mean time constant, τ, of 112.3 s. In a mean ambient light of 74 μmol m(-2) s(-1), induction had a two-part increase: one with τ1 of 11.3 s and the other with τ2 of 184.0 s. These are the smallest published values of τ to date. (iv) Both variation in photosynthetic capacity and induction are components of shade tolerance where light varies over time. Amax acclimates to seasonal and diurnal

  16. Partial shading of lateral branches affects growth, and foliage nitrogen- and water-use efficiencies in the conifer Cunninghamia lanceolata growing in a warm monsoon climate.

    PubMed

    Dong, Tingfa; Li, Junyu; Zhang, Yuanbin; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2015-06-01

    The degree to which branches are autonomous in their acclimation responses to alteration in light environment is still poorly understood. We investigated the effects of shading of the sapling crown of Cunninghamia lanceolata (Lamb.) Hook on the whole-tree and mid-crown branch growth and current-year foliage structure and physiology. Four treatments providing 0, 50, 75 and 90% shading compared with full daylight (denoted as Treatment(0), Treatment(50%), Treatment(75%) and Treatment(90%), and Shaded(0), Shaded(50%), Shaded(75%) and Shaded(90%) for the shaded branches and Sunlit(0), Sunlit(50%), Sunlit(75%) and Sunlit(90%) for the opposite sunlit branches under natural light conditions, respectively), were applied over two consecutive growing seasons. Shading treatments decreased the growth of basal stem diameter, leaf dry mass per unit leaf area, stomatal conductance, transpiration rate, the ratio of water-soluble to structural leaf nitrogen content, photosynthetic nitrogen-use efficiency and instantaneous and long-term (estimated from carbon isotope composition) water-use efficiency in shaded branches. Differences between shaded and sunlit branches increased with increasing severity and duration of shading. A non-autonomous, partly compensatory behavior of non-shaded branches was observed for most traits, thus reflecting the dependence between the traits of sunlit branches and the severity of shading of the opposite crown half. The results collectively indicated that tree growth and branch and leaf acclimation responses of C. lanceolata are not only affected by the local light environment, but also by relative within-crown light conditions. We argue that such a non-autonomous branch response to changes in light conditions can improve whole-tree resource optimization. These results contribute to better understanding of tree growth and utilization of water and nitrogen under heterogeneous light conditions within tree canopies. PMID:26032625

  17. Effect of summer conditions and shade on the production and metabolism of Holstein dairy cows on pasture in temperate climate.

    PubMed

    Van Laer, E; Tuyttens, F A M; Ampe, B; Sonck, B; Moons, C P H; Vandaele, L

    2015-09-01

    For dairy cattle on pasture in temperate regions, it is largely unknown to what degree hot summer conditions impact energy metabolism, milk yield and milk composition and how effective shade is in reducing these negative effects. During the summer of 2012, a herd of Holstein cows was kept on pasture without access to shade (treatment NS). During the summers of 2011 and 2013, the herd was divided into a group with (treatment S) and a group without (treatment NS) access to shade. Shade was provided by young trees combined with shade cloths (80% reduction in solar radiation). A weather station registered the local climatic conditions on open pasture, from which we calculated daily average Heat Load Index (HLI) values. The effects of HLI and shade on rectal temperature (RT), blood plasma indicators of hyperventilation and metabolic changes due to heat stress, milk yield and milk composition were investigated. RT increased with increasing HLI, but was less for S cows than for NS cows (by 0.02°C and 0.03°C increase per unit increase of HLI, respectively). Hyperchloraemia (an increased blood plasma concentration of Cl-), a sign of hyperventilation, increased for NS cows but not for S cows. The plasma concentration of alkaline phosphatase, a regulator of energy metabolism in the liver, decreased with increasing HLI for NS cows only. Access to shade, thus, reduced the effect of HLI on RT, hyperchloraemia and the regulation of metabolism by the liver. As HLI increased, the plasma concentration of cholesterol decreased (indicating increased lipolysis) and the plasma concentration of creatinine increased (indicating increased protein catabolism). These effects did not differ between S and NS cows. For NS cows, after a lag-time of 2 days, the milk yield decreased with increasing HLI. For S cows, the milk yield was unaffected by HLI and its quadratic factor. The milk concentrations of lactose, protein and fat decreased as HLI increased, but only the effect on milk protein

  18. Light Quality-Mediated Petiole Elongation in Arabidopsis during Shade Avoidance Involves Cell Wall Modification by Xyloglucan Endotransglucosylase/Hydrolases1[C][W][OA

    PubMed Central

    Sasidharan, Rashmi; Chinnappa, C.C.; Staal, Marten; Elzenga, J. Theo M.; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Voesenek, Laurentius A.C.J.; Pierik, Ronald

    2010-01-01

    Some plants can avoid shaded conditions via rapid shoot elongation, thus growing into better lit areas in a canopy. Cell wall-modifying mechanisms promoting this elongation response, therefore, are important regulatory points during shade avoidance. Two major cell wall-modifying protein families are expansins and xyloglucan endotransglucosylase/hydrolases (XTHs). The role of these proteins during shade avoidance was studied in Arabidopsis (Arabidopsis thaliana). In response to two shade cues, low red to far-red light (implying neighbor proximity) and green shade (mimicking dense canopy conditions), Arabidopsis showed classic shade avoidance features: petiole elongation and leaf hyponasty. Measurement of the apoplastic proton flux in green shade-treated petioles revealed a rapid efflux of protons into the apoplast within minutes, unlike white light controls. This apoplastic acidification probably provides the acidic pH required for the optimal activity of cell wall-modifying proteins like expansins and XTHs. Acid-induced extension, expansin susceptibility, and extractable expansin activity were similar in petioles from white light- and shade-treated plants. XTH activity, however, was high in petioles exposed to shade treatments. Five XTH genes (XTH9, -15, -16, -17, and -19) were positively regulated by low red to far-red light conditions, while the latter four and XTH22 showed a significant up-regulation also in response to green shade. Consistently, knockout mutants for two of these XTH genes also had reduced or absent shade avoidance responses to these light signals. These results point toward the cell wall as a vital regulatory point during shade avoidance. PMID:20688978

  19. In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis

    PubMed Central

    Brouwer, Bastiaan; Gardeström, Per; Keech, Olivier

    2014-01-01

    Phytochrome is thought to control the induction of leaf senescence directly, however, the signalling and molecular mechanisms remain unclear. In the present study, an ecophysiological approach was used to establish a functional connection between phytochrome signalling and the physiological processes underlying the induction of leaf senescence in response to shade. With shade it is important to distinguish between complete and partial shading, during which either the whole or only a part of the plant is shaded, respectively. It is first shown here that, while PHYB is required to maintain chlorophyll content in a completely shaded plant, only PHYA is involved in maintaining the leaf chlorophyll content in response to partial plant shading. Second, it is shown that leaf yellowing associated with strong partial shading in phyA-mutant plants actually correlates to a decreased biosynthesis of chlorophyll rather than to an increase of its degradation. Third, it is shown that the physiological impact of this decreased biosynthesis of chlorophyll in strongly shaded phyA-mutant leaves is accompanied by a decreased capacity to adjust the Light Compensation Point. However, the increased leaf yellowing in phyA-mutant plants is not accompanied by an increase of senescence-specific molecular markers, which argues against a direct role of PHYA in inducing leaf senescence in response to partial shade. In conclusion, it is proposed that PHYA, but not PHYB, is essential for fine-tuning the chlorophyll biosynthetic pathway in response to partial shading. In turn, this mechanism allows the shaded leaf to adjust its photosynthetic machinery to very low irradiances, thus maintaining a positive carbon balance and repressing the induction of leaf senescence, which can occur under prolonged periods of shade. PMID:24604733

  20. Shade trees reduce building energy use and CO2 emissions from power plants

    SciTech Connect

    Akbari, H.

    2001-11-01

    Urban shade trees offer significant benefits in reducing building air-conditioning demand and improving urban air quality by reducing smog. The savings associated with these benefits vary by climate region and can be up to $200 per tree. The cost of planting trees and maintaining them can vary from $10 to $500 per tree. Tree-planting programs can be designed to have lower costs so that they offer potential savings to communities that plant trees. Our calculations suggest that urban trees play a major role in sequestering C02 and thereby delay global warming. We estimate that a tree planted in Los Angeles avoids the combustion of 18 kg of carbon annually, even though it sequesters only 4.5-11 kg (as it would if growing in a forest). In this sense, one shade tree in Los Angeles is equivalent to three to five forest trees. In a recent analysis for Baton Rouge, Sacramento, and Salt Lake City, we estimated that planting an average of four shade trees per house (each with a top view cross section of 50 m2) would lead to an annual reduction in carbon emissions from power plants of 16,000, 41,000, and 9000 t, respectively (the per-tree reduction in carbon emissions is about 10-11 kg per year). These reductions only account for the direct reduction in the net cooling- and heating-energy use of buildings. Once the impact of the community cooling is included, these savings are increased by at least 25 percent.

  1. Hydrocarbon emissions from twelve urban shade trees of the Los Angeles, California, Air Basin

    NASA Astrophysics Data System (ADS)

    Corchnoy, Stephanie B.; Arey, Janet; Atkinson, Roger

    The large-scale planting of shade trees in urban areas to counteract heat-island effects and to minimize energy use is currently being discussed. Among the costs to be considered in a cost/benefit analysis of such a program is the potential for additional reactive organic compounds in the atmosphere due to emissions from these trees. In this program, 15 species of potential shade trees for the Los Angeles Air Basin were studied and emission rates were determined for 11 of these trees, with one further tree (Crape myrtle) exhibiting no detectable emissions. The emission rates normalized to dry leaf weight and corrected to 30°C were (in μg g -1 h -1), ranked from lowest to highest emission rate: Crape myrtle, none detected; Camphor, 0.03; Aleppo pine, 0.15; Deodar cedar, 0.29; Italian Stone pine, 0.42; Monterey pine, 0.90; Brazilian pepper, 1.3; Canary Island pine, 1.7; Ginkgo, 3.0; California pepper, 3.7; Liquidambar, 37; Carrotwood, 49. In addition to the emission rates per unit biomass, the biomass per tree must be factored into any assessment of the relative merits of the various trees, since some trees have higher biomass constants than others. The present data shows that there are large differences in emission rates among different tree species and this should be factored into decision-making as to which shade trees to plant. Based solely on the presently determined emission rates, the Crape myrtle and Camphor tree are good choices for large-scale planting, while the Carrotwood tree and Liquidambar are poor choices due to their high isoprene emission rates.

  2. Influence of the feldspathic ceramic thickness and shade on the microhardness of dual resin cement.

    PubMed

    Soares, Carlos José; da Silva, Natéricia Rezende; Fonseca, Rodrigo Borges

    2006-01-01

    This study evaluated the microhardness of a dual resin cement under the influence of thickness and shade of a feldspathic ceramic. Ninety-five bovine incisors were selected; the crowns, with the roots removed, were embedded in a polystyrene resin and were randomly divided into 19 groups (n=5). On the buccal surface, a standardized cavity, 4.0 mm in diameter and 1.0 mm in depth, was prepared. Ceramic restorations (Noritake Ex 3) were manufactured with 4.0 mm diameter and 1, 2 and 4-mm thicknesses at shades A1, A2, A3, A3.5 and A4. A dual resin cement (Rely X-ARC) was inserted into the prepared cavity. A mylar strip was positioned over the prepared cavity, and light curing was performed for 40 seconds following the protocols: controls-without insertion of the restoration at distances of 0.0, 1.0, 2.0 and 4.0 mm. The remaining groups had the restorations positioned between the resin cement and light source during polymerization. The Vickers hardness test was performed on the cement layer with 50 g of load application for 30 seconds, with 5 indentations for each sample. Two-way ANOVA (5 x 3) and Tukey test (alpha = 0.05) were used to compare the results. The chemical curing of the dual resin cement was not sufficient to compensate for the energy attenuation promoted by the interposition of A3.5 and A4 ceramic material with 4-mm of thickness. The thickness had a greater influence on the cement microhardness than the ceramic restoration shade. PMID:16802648

  3. Improving Shade Modelling in a Regional River Temperature Model Using Fine-Scale LIDAR Data

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Loicq, P.; Moatar, F.; Beaufort, A.; Melin, E.; Jullian, Y.

    2015-12-01

    Air temperature is often considered as a proxy of the stream temperature to model the distribution areas of aquatic species water temperature is not available at a regional scale. To simulate the water temperature at a regional scale (105 km²), a physically-based model using the equilibrium temperature concept and including upstream-downstream propagation of the thermal signal was developed and applied to the entire Loire basin (Beaufort et al., submitted). This model, called T-NET (Temperature-NETwork) is based on a hydrographical network topology. Computations are made hourly on 52,000 reaches which average 1.7 km long in the Loire drainage basin. The model gives a median Root Mean Square Error of 1.8°C at hourly time step on the basis of 128 water temperature stations (2008-2012). In that version of the model, tree shadings is modelled by a constant factor proportional to the vegetation cover on 10 meters sides the river reaches. According to sensitivity analysis, improving the shade representation would enhance T-NET accuracy, especially for the maximum daily temperatures, which are currently not very well modelized. This study evaluates the most efficient way (accuracy/computing time) to improve the shade model thanks to 1-m resolution LIDAR data available on tributary of the LoireRiver (317 km long and an area of 8280 km²). Two methods are tested and compared: the first one is a spatially explicit computation of the cast shadow for every LIDAR pixel. The second is based on averaged vegetation cover characteristics of buffers and reaches of variable size. Validation of the water temperature model is made against 4 temperature sensors well spread along the stream, as well as two airborne thermal infrared imageries acquired in summer 2014 and winter 2015 over a 80 km reach. The poster will present the optimal length- and crosswise scale to characterize the vegetation from LIDAR data.

  4. Implications of mountain shading on calculating energy for snowmelt using unstructured triangular meshes

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Spiteri, R.

    2012-12-01

    In many parts of the world, the snowmelt energy balance is dominated by net solar shortwave radiation. This is the case in the Canadian Rocky Mountains, where clear skies dominate the winter and spring. In mountainous regions, irradiance at the snow surface is not only affected by solar angles, atmospheric transmittance, and the slope and aspect of immediate topography, but also by horizon-shadows, i.e., shadows from surrounding terrain. Many hydrological models do not consider such horizon-shadows and the accumulation of errors in estimating solar irradiance by neglecting horizon-shadows may lead to significant errors in calculating the timing and rate of snowmelt due to the seasonal storage of internal energy in the snowpack. An unstructured triangular-mesh-based horizon-shading model is compared to standard self-shading algorithms in the Marmot Creek Research Basin (MCRB), Alberta, Canada. A systematic basin-wide over-prediction (basin mean expressed as phase change mass (assumed constant albedo of 0.8): 14 mm, maximum: 200 mm) in net shortwave radiation is observed when only self-shading is considered. The horizon-shadow model is run at a point scale at three sites throughout the MCRB to investigate the effects of topographic scale on the model results. In addition, the model results are compared to measurements of mountain shadows via orthorectified timelapse digital photographs and measured surface irradiance. The horizon-model irradiance data are used to drive a point-scale energy balance model, SNOBAL, via The Cold Regions Hydrological Model, an HRU-based hydrologic model. Melt timing is shown to differ by up to four days by neglecting horizon-shadows. It is further hypothesized that the errors might be much larger in basins with more rugged topography. Finally, a consideration of the intersection of unstructured-mesh and HRU landscape representations is discussed.

  5. Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight.

    PubMed

    Krause, G Heinrich; Winter, Klaus; Matsubara, Shizue; Krause, Barbara; Jahns, Peter; Virgo, Aurelio; Aranda, Jorge; García, Milton

    2012-09-01

    High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40 % ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight. PMID:22466529

  6. Shade treatment affects structure and recovery of invasive C4 African grass Echinochloa pyramidalis.

    PubMed

    López Rosas, Hugo; Moreno-Casasola, Patricia; Espejel González, Verónica E

    2015-03-01

    Echinochloa pyramidalis (Lam.) Hitchc. & Chase is an African grass with C4 photosynthesis, high biomass production, and high vegetative propagation that is tolerant to grazing and able to grow in flooded and dry conditions. Thus, it is highly invasive in tropical freshwater marshes where it is intentionally planted by ranchers to increase cattle production. This invasion is reducing plant biodiversity by increasing the invader's aerial coverage, changing wetland hydrology and causing soil physicochemical changes such as vertical accretion. Reducing the dominance of this species and increasing the density of native wetland species is a difficult, expensive, and time-consuming process. We applied a series of disturbance treatments aimed at eliminating E. pyramidalis and recovering the native vegetation of a partially invaded freshwater marsh. Treatments included physical (cutting, soil disking, transplanting individuals of the key native species Sagittaria lancifolia subsp. media (Micheli) Bogin, and/or reducing light with shade mesh) and/or chemical (spraying Round-Up™ herbicide) disturbances. At the end of the experiment, four of the five treatments used were effective in increasing the cover and biomass of native species and reducing that of E. pyramidalis. The combination of these treatments should be used to generate a proposal for the restoration of tropical wetlands invaded by non-native grasses. A promising treatment is using soil disked to soften the soil and destroy belowground structures such as roots and rhizomes. This treatment would be more promising if combined with the use of shade cloth. If it is desirable not to impact the soil or if there is not enough budget to make an effort to include active restoration disking soil, the use of shade cloth will suffice, although the recovery of native vegetation will be slower. PMID:25859337

  7. Shade trees reduce building energy use and CO2 emissions from power plants.

    PubMed

    Akbari, H

    2002-01-01

    Urban shade trees offer significant benefits in reducing building air-conditioning demand and improving urban air quality by reducing smog. The savings associated with these benefits vary by climate region and can be up to $200 per tree. The cost of planting trees and maintaining them can vary from $10 to $500 per tree. Tree-planting programs can be designed to have lower costs so that they offer potential savings to communities that plant trees. Our calculations suggest that urban trees play a major role in sequestering CO2 and thereby delay global warming. We estimate that a tree planted in Los Angeles avoids the combustion of 18 kg of carbon annually, even though it sequesters only 4.5-11 kg (as it would if growing in a forest). In this sense, one shade tree in Los Angeles is equivalent to three to five forest trees. In a recent analysis for Baton Rouge, Sacramento, and Salt Lake City, we estimated that planting an average of four shade trees per house (each with a top view cross section of 50 m2) would lead to an annual reduction in carbon emissions from power plants of 16,000, 41,000, and 9000 t, respectively (the per-tree reduction in carbon emissions is about 10-11 kg per year). These reductions only account for the direct reduction in the net cooling- and heating-energy use of buildings. Once the impact of the community cooling is included, these savings are increased by at least 25%. PMID:11833899

  8. Shade treatment affects structure and recovery of invasive C4 African grass Echinochloa pyramidalis

    PubMed Central

    López Rosas, Hugo; Moreno-Casasola, Patricia; Espejel González, Verónica E

    2015-01-01

    Echinochloa pyramidalis (Lam.) Hitchc. & Chase is an African grass with C4 photosynthesis, high biomass production, and high vegetative propagation that is tolerant to grazing and able to grow in flooded and dry conditions. Thus, it is highly invasive in tropical freshwater marshes where it is intentionally planted by ranchers to increase cattle production. This invasion is reducing plant biodiversity by increasing the invader's aerial coverage, changing wetland hydrology and causing soil physicochemical changes such as vertical accretion. Reducing the dominance of this species and increasing the density of native wetland species is a difficult, expensive, and time-consuming process. We applied a series of disturbance treatments aimed at eliminating E. pyramidalis and recovering the native vegetation of a partially invaded freshwater marsh. Treatments included physical (cutting, soil disking, transplanting individuals of the key native species Sagittaria lancifolia subsp. media (Micheli) Bogin, and/or reducing light with shade mesh) and/or chemical (spraying Round-Up™ herbicide) disturbances. At the end of the experiment, four of the five treatments used were effective in increasing the cover and biomass of native species and reducing that of E. pyramidalis. The combination of these treatments should be used to generate a proposal for the restoration of tropical wetlands invaded by non-native grasses. A promising treatment is using soil disked to soften the soil and destroy belowground structures such as roots and rhizomes. This treatment would be more promising if combined with the use of shade cloth. If it is desirable not to impact the soil or if there is not enough budget to make an effort to include active restoration disking soil, the use of shade cloth will suffice, although the recovery of native vegetation will be slower. PMID:25859337

  9. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules

    SciTech Connect

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu; Garris, Rebekah L.; Alam, Muhammad Ashraful; Deline, Chris; Kurtz, Sarah

    2015-06-14

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature and current density compared to masks covering entire cells.

  10. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules: Preprint

    SciTech Connect

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu; Garris, Rebekah L.; Alam, Muhammad Ashraful; Deline, Chris; Kurtz, Sarah

    2015-09-02

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature and current density compared to masks covering entire cells.

  11. Determination of the Annual Shading Potential of Salix Purpurea Coppice using Hemispherical Photographs

    NASA Astrophysics Data System (ADS)

    Holzapfel, G.; Weihs, P.; Stockreiter, L.; Hoffmann, E.

    2012-04-01

    The European Water Framework Directive (WFD) aims to achieve a good ecological potential and good surface water chemical status for all surface waters. Widely constant shading with riparian vegetation is the potential natural plant cover condition and plays a key role by the implementation of the WFD. The shading effect of vegetation is considered to be particularly relevant for small and medium sized rivers with slow flow velocity. Soil Bioengineering measures effect technical (e.g. soil protection), ecological and socio-economical issues on river systems. Positive ecological effects are based on the development of the used plants and result among others in shading of the water body. Natural bank vegetation provides very important niches for terrestrial and aquatic stages and reduces the incident solar radiation up to 95%. Consequently large riparian wooded areas form a microclimate that leads to a decrease of water temperature or prevent an increase. They even reduce evaporation and increase the relative air humidity which contributes to reducing water temperature and enlarges the oxygen uptake capacity. Accordingly the daily variations of temperature and those of oxygen content are definitely lower in vegetated areas. This issue is especially important considering climate change scenarios with increasing water temperatures. From an ecological point of view it is essential to quantify the processes. There are different ways to characterize densities of vegetation. Most of them - such as the method by Braun-Blanquet and Londo - rely on estimations of the dominance of species. Applying this kind of procedures on riparian vegetation result in uncertainties due to the strong variations in height and densities. Hemispherical photographs are a standardized method in forest ecology under more or less uniform forest stand conditions. However it is now hardly used for riparian vegetation stands. Questions that will be addressed are the determination of annual stand

  12. Proper restorative material selection, digital processes allow highly esthetic shade match combined with layered porcelain.

    PubMed

    Kahng, Luke S

    2014-03-01

    Today's digital technologies are affording dentists and laboratory technicians more control over material choices for creating restorations and fabricating dental prostheses. Digital processes can potentially enable technicians to create ideal marginal areas and account for the thickness and support of layering porcelain over substructures in the design process. In this case report of a restoration of a single central incisor, a number of issues are addressed that are central to using the newest digital technology. As demonstrated, shade selection is a crucial early step in any restorative case preparation. PMID:24773196

  13. Aerial dispersal and drying of Peronospora tabacina conidia in tobacco shade tents

    PubMed Central

    Aylor, Donald E.; Taylor, Gordon S.

    1982-01-01

    Blue mold of tobacco is caused by the fungus Peronospora tabacina. Its spores are released in the morning when the relative humidity falls, but they require free water for germination. Traditionally, the walls of the shade tents are raised to control the pathogen by drying leaves. We show that raising the walls does not materially speed drying. It does, however, increase the wind speed at least 20 m inside the tent and spread spores farther. Because germination is not reduced, raising the walls may actually spread blue mold. PMID:16593150

  14. Fate of Photosynthetic Fixed Carbon in Light- and Shade-Adapted Colonies of the Symbiotic Coral Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Muscatine, L.; Falkowski, P. G.; Porter, J. W.; Dubinsky, Z.

    1984-08-01

    The total daily flux of photosynthetically fixed carbon in light- and shade-adapted phenotypes of the symbiotic coral, Stylophora pistillata, was quantified. Light adapted corals fixed four times as much carbon and respired twice as much as shade corals. Specific growth rates of zooxanthellae in situ were estimated from average daily mitotic indices and from ammonium uptake rates (nitrate uptake or nitrate reductase activity could not be demonstrated). Specific growth rates were very low, demonstrating that of the total net carbon fixed daily, only a small fraction (less than 5%) goes into zooxanthellae cell growth. The balance of the net fixed carbon (more than 95%) is translocated to the host. New and conventional methods of measuring total daily translocation were compared. The `growth rate' method, which does not employ 14C, emerged as superior to the conventional in vitro and in vivo methods. The contribution of translocated carbon to animal maintenance respiration (CZAR) was 143% in light corals and 58% in shade corals. Thus, translocation in the former could supply not only the total daily carbon needed for respiration but also a fraction of the carbon needed for growth. Whereas light-adapted corals released only 6%, shade-adapted corals released almost half of their total fixed carbon as dissolved or particulate organic material. This much higher throughput of organic carbon may possibly benefit the heterotrophic microbial community in shade environments.

  15. Large eddy simulation of shading effects on NO 2 and O 3 concentrations within an idealised street canyon

    NASA Astrophysics Data System (ADS)

    Grawe, David; Cai, Xiao-Ming; Harrison, Roy M.

    A large eddy simulation (LES) model that accounts for chemical reactions between oxides of nitrogen and ozone has been used to investigate the effect of local shading within an idealised street canyon on pollutant concentrations. It has shown that local shading can have a substantial impact on kerbside concentrations (>6 ppb difference for some situations presented) and that this may need to be taken into account to set up numerical model runs as well as sampling sites. A sensitivity study has been performed to investigate the effect of various governing parameters. A strong influence was found for the actual reduction of the photolytic rate constant within the shaded areas. A near linear relationship appeared between the reduction and the effect on pollutant concentrations. The chemical regime above and within the street canyon (determined by background concentrations aloft and emission rates at the ground) was also shown to be of high importance. The geometrical layout of the shading within the canyon and the wind speed in the canyon was shown to affect the spatial distribution of the shading effect rather than its overall magnitude.

  16. Effect of artificial shading on the tannin accumulation and aromatic composition of the Grillo cultivar (Vitis vinifera L.)

    PubMed Central

    2013-01-01

    Background White wine quality, especially in warm climates, is affected by sunlight and heat stress. These factors increase the probability that ambering processes will occur and reduce the potential flavour compounds. This study aimed to investigate the effect of sunlight reduction on the accumulation of polyphenolic and aromatic compounds. Results This study was conducted in a commercial vineyard containing V. vinifera L. cv Grillo. Opaque polypropylene boxes (100% shading) and high-density polyethylene (HDPE) net bags (50% shading) were applied at fruit set. The effect of the shaded treatments was compared to the exposed fruit treatment. The shaded treatments resulted in heavier berries and lower must sugar contents than the exposed treatments. Proanthocyanidins and total polyphenol levels were similar in the exposed and bagged grapes; however, the levels were always lower in the boxed fruit. At harvest, the highest aroma level was measured in the boxed fruits. Conclusions The boxed fruit had less sugar, fewer proanthocyanidins and more flavours than the exposed grapes. The reduction in flavanols reactive to p-dimethylamino-cinnamaldehyde as (+)-catechin equivalents and total skin proanthocyanidins is an important result for the white winemaking process. In addition, the higher level of aromatic compounds in shaded grapes at harvest is an important contribution to the development of different wine styles. PMID:24195612

  17. An individual-based forest model links canopy dynamics and shade tolerances along a soil moisture gradient

    PubMed Central

    Liénard, Jean; Strigul, Nikolay

    2016-01-01

    Understanding how forested ecosystems respond to climatic changes is a challenging problem as forest self-organization occurs simultaneously across multiple scales. Here, we explore the hypothesis that soil water availability shapes above-ground competition and gap dynamics, and ultimately alters the dominance of shade tolerant and intolerant species along the moisture gradient. We adapt a spatially explicit individual-based model with simultaneous crown and root competitions. Simulations show that the transition from xeric to mesic soils is accompanied by an increase in shade-tolerant species similar to the patterns documented in the North American forests. This transition is accompanied by a change from water to sunlight competitions, and happens at three successive stages: (i) mostly water-limited parkland, (ii) simultaneously water- and sunlight-limited closed canopy forests featuring a very sparse understory, and (iii) mostly sunlight-limited forests with a populated understory. This pattern is caused by contrasting successional dynamics that favour either shade-tolerant or shade-intolerant species, depending on soil moisture and understory density. This work demonstrates that forest patterns along environmental gradients can emerge from spatial competition without physiological trade-offs between shade and growth tolerance. Mechanistic understanding of population processes involved in the forest–parkland–desert transition will improve our ability to explain species distributions and predict forest responses to climatic changes. PMID:26998329

  18. An individual-based forest model links canopy dynamics and shade tolerances along a soil moisture gradient.

    PubMed

    Liénard, Jean; Strigul, Nikolay

    2016-02-01

    Understanding how forested ecosystems respond to climatic changes is a challenging problem as forest self-organization occurs simultaneously across multiple scales. Here, we explore the hypothesis that soil water availability shapes above-ground competition and gap dynamics, and ultimately alters the dominance of shade tolerant and intolerant species along the moisture gradient. We adapt a spatially explicit individual-based model with simultaneous crown and root competitions. Simulations show that the transition from xeric to mesic soils is accompanied by an increase in shade-tolerant species similar to the patterns documented in the North American forests. This transition is accompanied by a change from water to sunlight competitions, and happens at three successive stages: (i) mostly water-limited parkland, (ii) simultaneously water- and sunlight-limited closed canopy forests featuring a very sparse understory, and (iii) mostly sunlight-limited forests with a populated understory. This pattern is caused by contrasting successional dynamics that favour either shade-tolerant or shade-intolerant species, depending on soil moisture and understory density. This work demonstrates that forest patterns along environmental gradients can emerge from spatial competition without physiological trade-offs between shade and growth tolerance. Mechanistic understanding of population processes involved in the forest-parkland-desert transition will improve our ability to explain species distributions and predict forest responses to climatic changes. PMID:26998329

  19. Photosynthetic traits of Siebold's beech seedlings in changing light conditions by removal of shading trees under elevated CO₂.

    PubMed

    Watanabe, M; Kitaoka, S; Eguchi, N; Watanabe, Y; Satomura, T; Takagi, K; Satoh, F; Koike, T

    2016-01-01

    The purpose of this study was to obtain basic information on acclimation capacity of photosynthesis in Siebold's beech seedlings to increasing light intensity under future elevated CO2 conditions. We monitored leaf photosynthetic traits of these seedlings in changing light conditions (before removal of shade trees, the year after removal of shade trees and after acclimation to open conditions) in a 10-year free air CO2 enrichment experiment in northern Japan. Elevated CO2 did not affect photosynthetic traits such as leaf mass per area, nitrogen content and biochemical photosynthetic capacity of chloroplasts (i.e. maximum rate of carboxylation and maximum rate of electron transport) before removal of the shade trees and after acclimation to open conditions; in fact, a higher net photosynthetic rate was maintained under elevated CO2 . However, in the year after removal of the shade trees, there was no increase in photosynthesis rate under elevated CO2 conditions. This was not due to photoinhibition. In ambient CO2 conditions, leaf mass per area and nitrogen content were higher in the year after removal of shade trees than before, whereas there was no increase under elevated CO2 conditions. These results indicate that elevated CO2 delays the acclimation of photosynthetic traits of Siebold's beech seedlings to increasing light intensity. PMID:26307372

  20. Growth effects of shading and sedimentation in two tropical seagrass species: Implications for port management and impact assessment.

    PubMed

    Benham, Claudia F; Beavis, Sara G; Hendry, Rebecca A; Jackson, Emma L

    2016-08-15

    Seagrass meadows in many parts of the globe are threatened by a range of processes including port development, dredging and land clearing in coastal catchments, which can reduce water clarity and increase sedimentation pressure. As rates of seagrass loss increase, there is an urgent need to understand the potential impacts of development on these critical species. This research compares the effects of shading and burial by fine sand on two seagrass species Zostera muelleri and Halophila ovalis in Port Curtis Bay, an industrial harbour located on the continental margin adjacent to the Great Barrier Reef Heritage Area, Australia. The research finds that shading in combination with burial causes a significant decline in growth rates in both species, but that burial ≥10mm reduces growth rates to a greater extent than shading. The paper concludes by discussing the implications of these findings for port management and impact assessment. PMID:27269385

  1. Light-scattering properties of a woven shade-screen material used for daylighting and solar heat-gain control

    SciTech Connect

    Jonsson, Jacob; Jonsson, Jacob C.; Lee, Eleanor S.; Rubin, Mike

    2008-08-01

    Shade-screens are widely used in commercial buildings as a way to limit the amount of direct sunlight that can disturb people in the building. The shade screens also reduce the solar heat-gain through glazing the system. Modern energy and daylighting analysis software such as EnergyPlus and Radiance require complete scattering properties of the scattering materials in the system. In this paper a shade screen used in the LBNL daylighting testbed is characterized using a photogoniometer and a normal angle of incidence integrating sphere. The data is used to create a complete bi-directional scattering distribution function (BSDF) that can be used in simulation programs. The resulting BSDF is compared to a model BADFs, both directly and by calculating the solar heat-gain coefficient for a dual pane system using Window 6.

  2. Effect of summer conditions and shade on behavioural indicators of thermal discomfort in Holstein dairy and Belgian Blue beef cattle on pasture.

    PubMed

    Van Laer, E; Moons, C P H; Ampe, B; Sonck, B; Vandaele, L; De Campeneere, S; Tuyttens, F A M

    2015-09-01

    Using behavioural indicators of thermal discomfort, that is, shade seeking, panting scores (PS) and respiration rate (RR), we evaluated the effect of hot summer conditions and shade, for a herd of adult Holstein dairy cows and a herd of Belgian Blue beef cows kept on pasture in a temperate area (Belgium). During the summer of 2012, both herds were kept on pasture without access to shade (NS). During the summers of 2011 and 2013 each herd was divided into one group with (S) and one without (NS) access to shade. Shade was provided by young trees with shade cloth (80% reduction in solar radiation) hung between them. For S cows, we investigated how shade use was related to hot conditions as quantified by six climatic indices. The heat load index (HLI), which incorporates air temperature and humidity, solar radiation and wind speed, was the best predictor of the six indices tested. In 2011, there was a relatively high threshold for use of shade. When HLI=90, shade use probability reached 17% for dairy cows and 27% for beef cows. In 2013, however, at HLI=90, shade use probability reached 48% for dairy cows and 41% for beef cows. For animals from the NS treatment we determined the effect of hot summer conditions on RR and PS (with 0=no panting and 4.5=extreme panting). In both types of cattle, an increase in black globe temperature was the best predictor for increasing RR and PS. Furthermore, we determined how the effect of hot summer conditions on RR and PS was affected by the use of shade. Under hot conditions (black globe temperature ⩾ 30°C), >50% of the animals under shade retained normal PS and RR (PS<1 and RR<90 breaths per minute), whereas normal RR and PS were significantly less prevalent for animals outside shade. Our findings suggest that, even in temperate summers, heat can induce thermal discomfort in cattle, as evidenced by increases in shade use, RR and PS, and that shade increases thermal comfort. PMID:25994098

  3. Shading correction of camera captured document image with depth map information

    NASA Astrophysics Data System (ADS)

    Wu, Chyuan-Tyng; Allebach, Jan P.

    2015-01-01

    Camera modules have become more popular in consumer electronics and office products. As a consequence, people have many opportunities to use a camera-based device to record a hardcopy document in their daily lives. However, it is easy to let undesired shading into the captured document image through the camera. Sometimes, this non-uniformity may degrade the readability of the contents. In order to mitigate this artifact, some solutions have been developed. But most of them are only suitable for particular types of documents. In this paper, we introduce a content-independent and shape-independent method that will lessen the shading effects in captured document images. We want to reconstruct the image such that the result will look like a document image captured under a uniform lighting source. Our method utilizes the 3D depth map of the document surface and a look-up table strategy. We will first discuss the model and the assumptions that we used for the approach. Then, the process of creating and utilizing the look-up table will be described in the paper. We implement this algorithm with our prototype 3D scanner, which also uses a camera module to capture a 2D image of the object. Some experimental results will be presented to show the effectiveness of our method. Both flat and curved surface document examples will be included.

  4. Performance of Integrated Systems of Automated Roller Shade Systems and Daylight Responsive Dimming Systems

    SciTech Connect

    Park, Byoung-Chul; Choi, An-Seop; Jeong, Jae-Weon; Lee, Eleanor S.

    2010-07-08

    Daylight responsive dimming systems have been used in few buildings to date because they require improvements to improve reliability. The key underlying factor contributing to poor performance is the variability of the ratio of the photosensor signal to daylight workplane illuminance in accordance with sun position, sky condition, and fenestration condition. Therefore, this paper describes the integrated systems between automated roller shade systems and daylight responsive dimming systems with an improved closed-loop proportional control algorithm, and the relative performance of the integrated systems and single systems. The concept of the improved closed-loop proportional control algorithm for the integrated systems is to predict the varying correlation of photosensor signal to daylight workplane illuminance according to roller shade height and sky conditions for improvement of the system accuracy. In this study, the performance of the integrated systems with two improved closed-loop proportional control algorithms was compared with that of the current (modified) closed-loop proportional control algorithm. In the results, the average maintenance percentage and the average discrepancies of the target illuminance, as well as the average time under 90percent of target illuminance for the integrated systems significantly improved in comparison with the current closed-loop proportional control algorithm for daylight responsive dimming systems as a single system.

  5. Initial characterization of shade avoidance response suggests functional diversity between Populus phytochrome B genes.

    SciTech Connect

    Karve, Abhijit A; Weston, David; Jawdy, Sara; Gunter, Lee E; Allen, Sara M; Yang, Xiaohan; Wullschleger, Stan D; Tuskan, Gerald A

    2012-01-01

    Shade avoidance signaling in higher plants involves perception of the incident red/far-red (R/FR) light by phytochromes and the modulation of downstream transcriptional networks to regulate developmental plasticity in relation to heterogeneous light environments. In this study, we characterized the expression and functional features of Populus phytochrome (PHY) gene family as well as the transcriptional responses of Populus to the changes in R/FR light. Expression data indicated that PHYA is the predominant PHY in the dark grown Populus seedling whereas PHYBs are most abundant in mature tissue types. Out of three Populus PHYs, PHYA is light labile and localized to cytosol in dark whereas both PHYB1 and PHYB2 are light stable and are localized to nucleus in mesophyll protoplasts. When expressed in Arabidopsis, PHYB1 rescued Arabidopsis phyB mutant phenotype whereas PHYB2 did not, suggesting functional diversification between these two gene family members. However, phenotypes of transgenic Populus lines with altered expression of PHYB1, PHYB2 or both and the expression of candidate shade response genes in these transgenic lines suggest that PHYB1 and PHYB2 may have distinct yet overlapping functions. The RNAseq results and analysis of Populus exposed to enriched-FR light indicate that genes associated in cell wall modification and brassinosteroid signaling were induced under far red light. Overall our data indicate that Populus transcriptional responses are at least partially conserved with Arabidopsis.

  6. Portrayal of tanning, clothing fashion and shade use in Australian women's magazines, 1987-2005.

    PubMed

    Dixon, Helen; Dobbinson, Suzanne; Wakefield, Melanie; Jamsen, Kris; McLeod, Kim

    2008-10-01

    To examine modelling of outcomes relevant to sun protection in Australian women's magazines, content analysis was performed on 538 spring and summer issues of popular women's magazines from 1987 to 2005. A total of 4949 full-colour images of Caucasian females were coded for depth of tan, extent of clothing cover, use of shade and setting. Logistic regression using robust standard errors to adjust for clustering on magazine was used to assess the relationship between these outcomes and year, setting and model's physical characteristics. Most models portrayed outdoors did not wear hats (89%) and were not in shade (87%). Between 1987 and 2005, the proportion of models depicted wearing hats decreased and the proportion of models portrayed with moderate to dark tans declined and then later increased. Younger women were more likely to be portrayed with a darker tan and more of their body exposed. Models with more susceptible phenotypes (paler hair and eye colour) were less likely to be depicted with a darker tan. Darker tans and poor sun-protective behaviour were most common among models depicted at beaches/pools. Implicit messages about sun protection in popular Australian women's magazines contradict public health messages concerning skin cancer prevention. PMID:18000026

  7. Pinus sylvestris switches respiration substrates under shading but not during drought.

    PubMed

    Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Gleixner, Gerd; Popp, Jürgen; Trumbore, Susan; Hartmann, Henrik

    2015-08-01

    Reduced carbon (C) assimilation during prolonged drought forces trees to rely on stored C to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major C storage pool and apparently the main respiratory substrate in plants, strongly declines with decreasing plant hydration. Yet no empirical evidence has been produced to what degree other C storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to C limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ(13) C of respired CO2 and concentrations of the major storage compounds, that is, carbohydrates, lipids and amino acids. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees, the fraction of carbohydrates used in respiration did not decline but respiration rates were strongly reduced. The lower consumption and potentially allocation from other organs may have caused initial carbohydrate content to remain constant during the experiment. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate shift cannot provide an efficient means to counterbalance C limitation under natural drought. PMID:25944481

  8. Different responses to shade of evergreen and deciduous oak seedlings and the effect of acorn size

    NASA Astrophysics Data System (ADS)

    Ke, Guo; Werger, Marinus J. A.

    1999-11-01

    An evergreen oak species, Cyclobalanopsis multinervis, and a deciduous oak species, Quercus aliena var. acuteserrata were grown from acorns under two light levels (full sunlight and shade at about 18 % of full sunlight, simulating the light intensities in forest clearings and gaps, respectively) for one growing season. Three hypotheses were tested: (i) the deciduous species grows faster than the evergreen species in forest gaps and clearings; (ii) the deciduous species responds more strongly in terms of growth and morphology to variation in light climate than the evergreen species; and (iii) seedling size is positively correlated to acorn size. The results showed: (i) at both light levels, the deciduous seedlings gained significantly more growth in biomass and height than the evergreen seedlings; (ii) both species produced significantly more biomass in full sunlight than in shade, without showing any significant difference in height between treatments. Increase in light intensity improved the growth of the deciduous seedlings more strongly; (iii) at a similar age, the deciduous seedlings showed a greater response in leaf morphology and biomass allocation to variation in light levels, but when compared at a similar size, biomass allocation patterns did not differ significantly between species; (iv) bigger acorns tended to produce larger seedlings, larger leaf sizes and more leaf area, between and within species. These differences demonstrate that the deciduous species is gap-dependent and has the advantage over the evergreen species in forest gaps and clearings.

  9. Derivation of planetary topography using multi-image shape-from-shading

    USGS Publications Warehouse

    Lohse, V.; Heipke, C.; Kirk, R.L.

    2006-01-01

    In many cases, the derivation of high-resolution digital terrain models (DTMs) from planetary surfaces using conventional digital image matching is a problem. The matching methods need at least one stereo pair of images with sufficient texture. However, many space missions provide only a few stereo images and planetary surfaces often possess insufficient texture. This paper describes a method for the generation of high-resolution DTMs from planetary surfaces, which has the potential to overcome the described problem. The suggested method, developed by our group, is based on shape-from-shading using an arbitrary number of digital optical images, and is termed "multi-image shape-from-shading" (MI-SFS). The paper contains an explanation of the theory of MI-SFS, followed by a presentation of current results, which were obtained using images from NASA's lunar mission Clementine, and constitute the first practical application with our method using extraterrestrial imagery. The lunar surface is reconstructed under the assumption of different kinds of reflectance models (e.g. Lommel-Seeliger and Lambert). The represented results show that the derivation of a high-resolution DTM of real digital planetary images by means of MI-SFS is feasible. ?? 2006 Elsevier Ltd. All rights reserved.

  10. Pinus sylvestris switches respiration substrates under shading but not during drought

    NASA Astrophysics Data System (ADS)

    Hartmann, Henrik; Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Poppp, Jürgen; Trumbore, Susan

    2015-04-01

    Reduced carbon assimilation during prolonged drought forces trees to rely on stored carbon to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major carbon storage pool and main respiratory substrate in plants, strongly declines with deceasing plant hydration. Yet, no empirical evidence has been produced to what degree other carbon storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to carbon limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ13C of respired CO2and concentrations of the major storage compounds, i.e. carbohydrates (COH), lipids and amino acids. Generally, respiration was dominated by the most abundant substrate. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees respiration was strongly reduced and fueled with carbohydrates from also strongly reduced carbon assimilation. Initial COH content was maintained during drought probably due to reduced COH mobilization and use and the maintained COH content may have prevented lipid catabolism via sugar signaling. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate change cannot provide an efficient means to counterbalance carbon limitation under natural drought.

  11. Effects of Shade Treatments on Photosynthetic Characteristics, Chloroplast Ultrastructure, and Physiology of Anoectochilus roxburghii

    PubMed Central

    Shao, Qingsong; Wang, Hongzhen; Guo, Haipeng; Zhou, Aicun; Huang, Yuqiu; Sun, Yulu; Li, Mingyan

    2014-01-01

    Anoectochilus roxburghii was grown under different shade treatments–50%, 30%, 20%, and 5% of natural irradiance–to evaluate its photosynthetic characteristics, chloroplast ultrastructure, and physiology. The highest net photosynthetic rates and stomatal conductance were observed under 30% irradiance, followed in descending order by 20%, 5%, and 50% treatments. As irradiance decreased from 50% to 30%, electron transport rate and photochemical quenching increased, while non-photochemical quenching indexes declined. Reductions in irradiance significantly increased Chl a and Chl b contents and decreased Chl a/b ratios. Chloroplast ultrastructure generally displayed the best development in leaves subjected to 30% irradiance. Under 50% irradiance, leaf protein content remained relatively stable during the first 20 days of treatment, and then increased rapidly. The highest peroxidase and superoxide dismutase levels, and the lowest catalase activities, were observed in plants subjected to the 50% irradiance treatment. Soluble sugar and malondialdehyde contents were positively correlated with irradiance levels. Modulation of chloroplast development, accomplished by increasing the number of thylakoids and grana containing photosynthetic pigments, is an important shade tolerance mechanism in A. roxburghii. PMID:24516523

  12. Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii.

    PubMed

    Shao, Qingsong; Wang, Hongzhen; Guo, Haipeng; Zhou, Aicun; Huang, Yuqiu; Sun, Yulu; Li, Mingyan

    2014-01-01

    Anoectochilus roxburghii was grown under different shade treatments-50%, 30%, 20%, and 5% of natural irradiance-to evaluate its photosynthetic characteristics, chloroplast ultrastructure, and physiology. The highest net photosynthetic rates and stomatal conductance were observed under 30% irradiance, followed in descending order by 20%, 5%, and 50% treatments. As irradiance decreased from 50% to 30%, electron transport rate and photochemical quenching increased, while non-photochemical quenching indexes declined. Reductions in irradiance significantly increased Chl a and Chl b contents and decreased Chl a/b ratios. Chloroplast ultrastructure generally displayed the best development in leaves subjected to 30% irradiance. Under 50% irradiance, leaf protein content remained relatively stable during the first 20 days of treatment, and then increased rapidly. The highest peroxidase and superoxide dismutase levels, and the lowest catalase activities, were observed in plants subjected to the 50% irradiance treatment. Soluble sugar and malondialdehyde contents were positively correlated with irradiance levels. Modulation of chloroplast development, accomplished by increasing the number of thylakoids and grana containing photosynthetic pigments, is an important shade tolerance mechanism in A. roxburghii. PMID:24516523

  13. Table lamp with dynamically controlled lighting distribution and uniformly illuminated luminous shade

    DOEpatents

    Siminovitch, Michael J.; Page, Erik R.

    2002-01-01

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) or other lamps arranged vertically, i.e. one lamp above the other, with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum ensures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. In a particular configuration, the reflective septum is bowl shaped, with the upper CFL sitting in the bowl, and a luminous shade hanging down from the bowl. The lower CFL provides both task lighting and uniform shade luminance. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. However, other types of lamps, including incandescent, halogen, and LEDs can also be used in the fixture. The lighting system may be designed for the home, hospitality, office or other environments.

  14. Analysis and Modeling of Parallel Photovoltaic Systems under Partial Shading Conditions

    NASA Astrophysics Data System (ADS)

    Buddala, Santhoshi Snigdha

    Since the industrial revolution, fossil fuels like petroleum, coal, oil, natural gas and other non-renewable energy sources have been used as the primary energy source. The consumption of fossil fuels releases various harmful gases into the atmosphere as byproducts which are hazardous in nature and they tend to deplete the protective layers and affect the overall environmental balance. Also the fossil fuels are bounded resources of energy and rapid depletion of these sources of energy, have prompted the need to investigate alternate sources of energy called renewable energy. One such promising source of renewable energy is the solar/photovoltaic energy. This work focuses on investigating a new solar array architecture with solar cells connected in parallel configuration. By retaining the structural simplicity of the parallel architecture, a theoretical small signal model of the solar cell is proposed and modeled to analyze the variations in the module parameters when subjected to partial shading conditions. Simulations were run in SPICE to validate the model implemented in Matlab. The voltage limitations of the proposed architecture are addressed by adopting a simple dc-dc boost converter and evaluating the performance of the architecture in terms of efficiencies by comparing it with the traditional architectures. SPICE simulations are used to compare the architectures and identify the best one in terms of power conversion efficiency under partial shading conditions.

  15. Shading of colours in production of ceramic wares - reasons of formation

    NASA Astrophysics Data System (ADS)

    Partyka, J.; Lis, J.; Szwendke, P.; Wójczyk, M.

    2011-10-01

    One of the most important problems we have to deal with in the ceramic whiteware production is maintaining the stable tonality of colour of the glazes and the decoration of the ceramic products. This difficulties are especially significant for the large batches of production like for example the ceramic titles. The manufacturing of the one assortment for a few days requires the multiple preparation of the glazes and decorative materials. Similar problems occur during the renewing of the production of the given assortment after a longer period of time. The presented paper shows the results of the research covering this topics carried on in The Department of The Ceramic Technology on the AGH Krakow Poland. It is presented the kinds of the factors that can influence the formation of the shadings of coloured glazes: way of mixing of the glaze with stains, time of the mixing and the firing curves. The obtained results of the colour differences ΔE00, calculated from the "Cie L a b" measurements shows that the most important factor that influences the arising of the colour shading is the change of the firing condition and the sequence of the homogenization as the second important.

  16. Effects of light shading and climatic conditions on the metabolic behavior of flonicamid in red bell pepper.

    PubMed

    Jung, Da-I; Farha, Waziha; Abd El-Aty, A M; Kim, Sung-Woo; Rahman, Md Musfiqur; Choi, Jeong-Heui; Kabir, Md Humayun; Im, So Jeong; Lee, Young-Jun; Truong, Lieu T B; Shin, Ho-Chul; Im, Geon-Jae; Shim, Jae-Han

    2016-03-01

    The degradation behavior of flonicamid and its metabolites (4-trifluoromethylnicotinic acid (TFNA) and N-(4-trifluoromethylnicotinoyl) glycine (TFNG)) was evaluated in red bell pepper over a period of 90 days under glass house conditions, including high temperature, low and high humidity, and in a vinyl house covered with high density polyethylene light shade covering film (35 and 75%). Flonicamid (10% active ingredient) was applied (via foliar application) to all fruits, including those groups grown under normal conditions (glass house) or under no shade cover (vinyl house). Samples were extracted using a Quick, Easy, Cheap, Effective, Rugged, and Safe "QuEChERS" method and analyzed using liquid chromatography-tandem mass spectrometry (LC/MS/MS). The method performance, including linearity, recovery, limits of detection (LOD), and quantitation (LOQ), was satisfactory. Throughout the experimental period, the residual levels of flonicamid and TFNG were not uniform, whereas that of TFNA remained constant. The total sum of the residues (flonicamid and its metabolites) was higher in the vinyl house with shade cover than in the glass house, under various conditions. The total residues were significantly higher when the treatment was applied under high light shade (75%). The flonicamid half-life decreased from 47.2 days (under normal conditions) to 28.4 days (at high temperatures) in the glass house, while it increased from 47.9 days (no shade cover) to 66 days (75% light shading) in the vinyl house. High humidity leads to decreases in the total sum of flonicamid residues in red bell pepper grown in a glass house, because it leads to an increase in the rate of water loss, which in turn accelerates the volatilization of the pesticide. For safety reasons, it is advisable to grow red bell pepper under glass house conditions because of the effects of solar radiation, which increases the rate of flonicamid degradation into its metabolites. PMID:26846294

  17. Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand

    PubMed Central

    Nock, Charles A.; Geihofer, Daniela; Grabner, Michael; Baker, Patrick J.; Bunyavejchewin, Sarayudh; Hietz, Peter

    2009-01-01

    Background and Aims Wood density is a key variable for understanding life history strategies in tropical trees. Differences in wood density and its radial variation were related to the shade-tolerance of six canopy tree species in seasonally dry tropical forest in Thailand. In addition, using tree ring measurements, the influence of tree size, age and annual increment on radial density gradients was analysed. Methods Wood density was determined from tree cores using X-ray densitometry. X-ray films were digitized and images were measured, resulting in a continuous density profile for each sample. Mixed models were then developed to analyse differences in average wood density and in radial gradients in density among the six tree species, as well as the effects of tree age, size and annual increment on radial increases in Melia azedarach. Key Results Average wood density generally reflected differences in shade-tolerance, varying by nearly a factor of two. Radial gradients occurred in all species, ranging from an increase of (approx. 70%) in the shade-intolerant Melia azedarach to a decrease of approx. 13% in the shade-tolerant Neolitsea obtusifolia, but the slopes of radial gradients were generally unrelated to shade-tolerance. For Melia azedarach, radial increases were most-parsimoniously explained by log-transformed tree age and annual increment rather than by tree size. Conclusions The results indicate that average wood density generally reflects differences in shade-tolerance in seasonally dry tropical forests; however, inferences based on wood density alone are potentially misleading for species with complex life histories. In addition, the findings suggest that a ‘whole-tree’ view of life history and biomechanics is important for understanding patterns of radial variation in wood density. Finally, accounting for wood density gradients is likely to improve the accuracy of estimates of stem biomass and carbon in tropical trees. PMID:19454592

  18. Effect of immersion into solutions at various pH on the color stability of composite resins with different shades

    PubMed Central

    Moon, Ji-Deok; Seon, Eun-Mi; Son, Sung-Ae; Jung, Kyoung-Hwa; Kwon, Yong-Hoon

    2015-01-01

    Objectives This study examined the color changes of a resin composite with different shades upon exposure to water with different pH. Materials and Methods Nanohybrid resin composites (Filtek Z350XT, 3M ESPE) with four different shades (A2, A3, B1, and B2) were immersed in water with three different pH (pH 3, 6, and 9) for 14 day. The CIE L*a*b* color coordinates of the specimens were evaluated before and after immersion in the solutions. The color difference (ΔE*) and the translucency parameter (TP) were calculated using the color coordinates. Results ΔE* ranged from 0.33 to 1.58, and the values were affected significantly by the pH. The specimens immersed in a pH 6 solution showed the highest ΔE* values (0.87 - 1.58). The specimens with a B1 shade showed the lowest ΔE* change compared to the other shades. TP ranged from 7.01 to 9.46 depending on the pH and resin shade. The TP difference between before and after immersion in the pH solutions was less than 1.0. Conclusions The resulting change of color of the tested specimens did not appear to be clinically problematic because the color difference was < 1.6 in the acidic, neutral, and alkaline solutions regardless of the resin shade, i.e., the color change was imperceptible. PMID:26587412

  19. [Effects of shade and competition of Chenopodium album on photosynthesis, fluorescence and growth characteristics of Flaveria bidentis].

    PubMed

    Yang, Qing; Li, Jing-Shi; Guo, Ai-Ying; Qi, Yan-Ling; Li, Yan-Sheng; Zhang, Feng-Juan

    2014-09-01

    It is necessary to elucidate its growth mechanism in order to prevent and control the further spread of Flaveria bidentis, an invasive plant in China. The effects of shading (shading rate of 0, 50% and 80%, respectively) and planting pattern (single cropping of F. bidentis, single cropping of Chenopodium album and their intercropping) on germination rate, fluorescence characteristics and growth characteristics of the two plants were investigated. The results showed that moderate shading contributed to emergence rate, but emergence rate of F. bidentis was not uniform, which was one of important factors as a stronger invader. With the increasing light intensity, net photosynthetic rate (Pn), photochemical quenching (qP), electron transport rate of PS II (ETR), quantum yield of PS II (Y), non-photochemical quenching (qN), water use efficiency (WUE), shoot bio-mass rate (SMR), crown width (CW) and dry biomass (DM) increased, specific leaf area (SLA) decreased, LMR of F. bidentis significantly increased, LMR of C. album changed insignificantly, and the increment of DM of F. bidentis was higher than that of C. album. In 80% shade treatment, Pn and DM of F. bidentis were lower than those of C. album. In natural light treatment, Pn, qN, WUE and relative competitive index (RCI) were the highest, CW and DM of intercropped F. bidentis and Pn, Y of C. album were significantly lower than that of the respective single treatment. F. bidentis had higher light saturation point (LSP) and light compensation point (LCP). In conclusion, the shade-tolerant ability of F. bidentis was weaker than that of C. album, but it was reversed in natural light treatment. The two plants adapted to the weak light in 80% shade treatment by increasing SLA and decreasing LMR. F. bidentis improved competition under natural light by increasing SMR and decreasing CW. PMID:25757302

  20. Comparative Analysis on the Performance of a Short String of Series-Connected and Parallel-Connected Photovoltaic Array Under Partial Shading

    NASA Astrophysics Data System (ADS)

    Vijayalekshmy, S.; Rama Iyer, S.; Beevi, Bisharathu

    2015-09-01

    The output power from the photovoltaic (PV) array decreases and the array exhibit multiple peaks when it is subjected to partial shading (PS). The power loss in the PV array varies with the array configuration, physical location and the shading pattern. This paper compares the relative performance of a PV array consisting of a short string of three PV modules for two different configurations. The mismatch loss, shading loss, fill factor and the power loss due to the failure in tracking of the global maximum power point, of a series string with bypass diodes and short parallel string are analysed using MATLAB/Simulink model. The performance of the system is investigated for three different conditions of solar insolation for the same shading pattern. Results indicate that there is considerable power loss due to shading in a series string during PS than in a parallel string with same number of modules.

  1. Merged Shape from Shading and Shape from Stereo for Planetary Topographic Mapping

    NASA Astrophysics Data System (ADS)

    Tyler, Laurence; Cook, Tony; Barnes, Dave; Parr, Gerhard; Kirk, Randolph

    2014-05-01

    Digital Elevation Models (DEMs) of the Moon and Mars have traditionally been produced from stereo imagery from orbit, or from the surface landers or rovers. One core component of image-based DEM generation is stereo matching to find correspondences between images taken from different viewpoints. Stereo matchers that rely mostly on textural features in the images can fail to find enough matched points in areas lacking in contrast or surface texture. This can lead to blank or topographically noisy areas in resulting DEMs. Fine depth detail may also be lacking due to limited precision and quantisation of the pixel matching process. Shape from shading (SFS), a two dimensional version of photoclinometry, utilizes the properties of light reflecting off surfaces to build up localised slope maps, which can subsequently be combined to extract topography. This works especially well on homogeneous surfaces and can recover fine detail. However the cartographic accuracy can be affected by changes in brightness due to differences in surface material, albedo and light scattering properties, and also by the presence of shadows. We describe here experimental research for the Planetary Robotics Vision Data Exploitation EU FP7 project (PRoViDE) into using stereo generated depth maps in conjunction with SFS to recover both coarse and fine detail of planetary surface DEMs. Our Large Deformation Optimisation Shape From Shading (LDOSFS) algorithm uses image data, illumination, viewing geometry and camera parameters to produce a DEM. A stereo-derived depth map can be used as an initial seed if available. The software uses separate Bidirectional Reflectance Distribution Function (BRDF) and SFS modules for iterative processing and to make the code more portable for future development. Three BRDF models are currently implemented: Lambertian, Blinn-Phong, and Oren-Nayar. A version of the Hapke reflectance function, which is more appropriate for planetary surfaces, is under development

  2. SRTM Perspective of Colored Height and Shaded Relief Laguna Mellquina, Andes Mountains, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This depiction of an area south of San Martin de Los Andes, Argentina, is the first Shuttle Radar Topography Mission (SRTM)view of the Andes Mountains, the tallest mountain chain in the western hemisphere. This particular site does not include the higher Andes peaks, but it does include steep-sided valleys and other distinctive landforms carved by Pleistocene glaciers. Elevations here range from about 700 to 2,440 meters (2,300 to 8,000 feet). This region is very active tectonically and volcanically, and the landforms provide a record of the changes that have occurred over many thousands of years. Large lakes fill the broad mountain valleys, and the spectacular scenery here makes this area a popular resort destination for Argentinians.

    Three visualization methods were combined to produce this image: shading, color coding of topographic height and a perspective view. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations. The perspective is toward the west, 20 degrees off horizontal with 2X vertical exaggeration. The back (west) edge of the data set forms a false skyline within the Andes Range.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and

  3. SRTM Colored Height and Shaded Relief: Laguna Mellquina, Andes Mountains, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This depiction of an area south of San Martin de Los Andes, Argentina, is the first Shuttle Radar Topography Mission (SRTM) view of the Andes Mountains, the tallest mountain chain in the western hemisphere. This particular site does not include the higher Andes peaks, but it does include steep-sided valleys and other distinctive landforms carved by Pleistocene glaciers. Elevations here range from about 700 to 2,440 meters(2,300 to 8,000 feet). This region is very active tectonically and volcanically, and the landforms provide a record of the changes that have occurred over many thousands of years. Large lakes fill the broad mountain valleys, and the spectacular scenery here makes this area a popular resort destination for Argentinians.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of

  4. Does Acacia dealbata express shade tolerance in Mediterranean forest ecosystems of South America?

    PubMed Central

    Aguilera, Narciso; Sanhueza, Carolina; Guedes, Lubia M; Becerra, José; Carrasco, Sebastián; Hernández, Víctor

    2015-01-01

    The distribution of Acacia dealbata Link (Fabaceae) in its non-native range is associated with disturbed areas. However, the possibility that it can penetrate the native forest during the invasion process cannot be ruled out. This statement is supported by the fact that this species has been experimentally established successfully under the canopy of native forest. Nonetheless, it is unknown whether A. dealbata can express shade tolerance traits to help increase its invasive potential. We investigated the shade tolerance of A. dealbata under the canopy of two native forests and one non-native for three consecutive years, as well as its early growth and photosynthetic performance at low light intensities (9, 30, and 70 μmol m−2sec−1) under controlled conditions. We found many A. dealbata plants surviving and growing under the canopy of native and non-native forests. The number of plants of this invasive species remained almost constant under the canopy of native forests during the years of study. However, the largest number of A. dealbata plants was found under the canopy of non-native forest. In every case, the distribution pattern varied with a highest density of plants in forest edges decreasing progressively toward the inside. Germination and early growth of A. dealbata were slow but successful at three low light intensities tested under controlled conditions. For all tested light regimes, we observed that in this species, most of the energy was dissipated by photochemical processes, in accordance with the high photosynthetic rates that this plant showed, despite the really low light intensities under which it was grown. Our study reveals that A. dealbata expressed shade tolerance traits under the canopy of native and non-native forests. This behavior is supported by the efficient photosynthetic performance that A. dealbata showed at low light intensities. Therefore, these results suggest that Mediterranean forest ecosystems of South America can become

  5. Davenport Ranges, Northern Territory, Australia, SRTM Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Davenport Ranges of central Australia have been inferred to be among the oldest persisting landforms on Earth, founded on the belief that the interior of Australia has been tectonically stable for at least 700 million years. New rock age dating techniques indicate that substantial erosion has probably occurred over that time period and that the landforms are not nearly that old, but landscape evolution certainly occurs much slower here (at least now) than is typical across Earth's surface.

    Regardless of their antiquity, the Davenport Ranges exhibit a striking landform pattern as shown in this display of elevation data from the Shuttle Radar Topography Mission (SRTM). Quartzites and other erosion resistant strata form ridges within anticlinal (arched up) and synclinal (arched down) ovals and zigzags. These structures, if not the landforms, likely date back at least hundreds of millions of years, to a time when tectonic forces were active. Maximum local relief is only about 60 meters (about 200 feet), which is enough to contrast greatly with the extremely low relief surrounding terrain.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northeast-southwest (image top to bottom) direction, so that northeast slopes appear bright and southwest slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To

  6. SRTM Colored Height and Shaded Relief: Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during the Shuttle Radar Topography Mission (SRTM) on February 12, 2000. Sredinnyy Khrebet, the mountain range that makes up the spine of the peninsula, is a chain of active volcanic peaks. Pleistocene and recent glaciers have carved the broad valleys and jagged ridges that are common here. The relative youth of the volcanism is revealed by the topography as infilling and smoothing of the otherwise rugged terrain by lava, ash, and pyroclastic flows, particularly surrounding the high peaks in the south central part of the image. Elevations here range from near sea level up to 2,618 meters (8,590 feet).

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space

  7. Exposure Effects on the Productivity of Commercial Bombus impatiens (Hymenoptera: Apidae) Quads During Bloom in Watermelon Fields.

    PubMed

    Marchese, J I; Johnson, G J; Delaney, D A

    2015-08-01

    In light of population declines of honey bees (Apis mellifera L.), research has refocused attention on alternative pollinators and their potential to fulfill pollination services within economically important agricultural crops. Bumble bees are one such alternative, and within the past 20 yr, these pollinators have been reared and sold as commercial pollinators. Investigation into their use has been limited and more research is needed to improve pollinator effectiveness in field settings. Quad pollination units of the commercially reared native bumble bee species, the common eastern bumble bee (Bombus impatiens Cresson), were monitored and evaluated for productivity during peak watermelon [Citrullus lanatus (Thunberg) Matsumura & Nakai] bloom in southern Delaware. Differing colony exposures including various shade structure designs and natural shade were compared to assess the quality of the shade in regards to bumble bee activity during watermelon bloom. Quads receiving different nest treatments were evaluated on the basis of foraging activity and colony weight gain. Results indicated that colonies within quads provided with artificial or natural shade had significantly more foraging activity, weighed more, and produced more cells than colonies in quads placed in the field with no shade. Colonies within quads provided with artificial and natural shade peaked later in terms of foraging and weight gain, suggesting that growers could extend harvest to take advantage of later markets and possible movement into fields that were planted later. PMID:26470323

  8. Electric Double Layer Capacitor (EDLC) based Mismatching Losses Reduction under Fast-Shaded Conditions of PV Modules

    NASA Astrophysics Data System (ADS)

    Syafaruddin; Tanaka, Yasuyuki; Karatepe, Engin; Hiyama, Takashi

    Fast-moving irradiance condition is one of problems that need to be solved in the non-stationary conventional maximum power point (MPP) trackers of PV system. Under sudden irradiance changes, the output power is changed drastically that leads to the shifting in MPP voltage. Conventional MPP algorithms may start continuously to search for finding the optimum point. However, suddenly another shadow can occur prior to complete removing of previous shadow. Continuing the tracking process under this condition will cause to lose energy. This paper presents the electric double layer capacitor (EDLC) as the power compensation method for improving the maximum power transfer of PV system under short-term period of shading. Several scenarios are tested in this work by measurement the percentage of power compensation, for instance the effect of capacitor size to the period of shading, the effects of shading period to the level shading intensity and cell temperature. This paper is directly purposed to reduce the power losses for moving objects powered by solar energy, such as solar car and solar boat systems.

  9. Effects of shade and feeding zilpaterol hydrochloride to finishing steers on performance, carcass quality, mobility, and body temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crossbred steers (n=480) were utilized to study the effects of shade and feeding zilpaterol hydrochloride (ZH) on performance, carcass quality, mobility, and body temperature (BT). A randomized block design with a 2×2 factorial arrangement of treatments was conducted with four replicates per treatme...

  10. Effects of shade and feeding zilpaterol hydrochloride to finishing steers on performance, carcass quality, heat stress, mobility, and body temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Steers (n = 480) were used to study the effects of shade and feeding zilpaterol hydrochloride (ZH) on performance, carcass quality, heat stress, mobility, and body temperature (BT). A randomized block design with a 2 × 2 factorial arrangement of treatments was used with 4 replicates per treatment. F...

  11. Perception of aspen and sun/shade sugar maple leaf soluble extracts by larvae of Malacosoma disstria.

    PubMed

    Panzuto, M; Lorenzetti, F; Mauffette, Y; Albert, P J

    2001-10-01

    We investigated the behavioral feeding preference and the chemoreception of leaf polar extracts from trembling aspen, Populus tremuloides, and from sun and shade sugar maple, Acer saccharum, by larvae of the polyphagous forest tent caterpillar, Malacosoma disstria, a defoliator of deciduous forests in the Northern Hemisphere. Three polar extracts were obtained from each tree species: a total extract, a water fraction, and a methanol fraction. M. disstria larvae were allowed ad libitum access to an artificial diet from eclosion to the fifth instar. Two-choice cafeteria tests were performed comparing the mean (+/-SE) surface area eaten of the total extracts, and the following order of preference was obtained: aspen > sun maple > shade maple. Tests with the other fractions showed that M. disstria larvae preferred the total aspen extract to its water fraction, and the latter to its methanol fraction. The response to sun maple was similar to aspen. However, for the shade maple experiment, there was no difference between the total extract and its water fraction. Electrophysiological recordings for aspen showed that the sugar-sensitive cell elicited more spikes to the water fraction, followed by the total extract, and finally the methanol fraction. Spike activity to stimulations of sun and shade maple extracts revealed a similar trend, where methanol fraction > water fraction > total extract. Our findings are discussed in light of previously known information about this insect's performance on these host plants. PMID:11710605

  12. Effects of prolonged drought on the anatomy of sun and shade needles in young Norway spruce trees.

    PubMed

    Gebauer, Roman; Volařík, Daniel; Urban, Josef; Børja, Isabella; Nagy, Nina Elisabeth; Eldhuset, Toril Drabløs; Krokene, Paal

    2015-11-01

    Predicted increases in the frequency and duration of drought are expected to negatively affect tree vitality, but we know little about how water shortage will influence needle anatomy and thereby the trees' photosynthetic and hydraulic capacity. In this study, we evaluated anatomical changes in sun and shade needles of 20-year-old Norway spruce trees exposed to artificial drought stress. Canopy position was found to be important for needle structure, as sun needles had significantly higher values than shade needles for all anatomical traits (i.e., cross-sectional needle area, number of tracheids in needle, needle hydraulic conductivity, and tracheid lumen area), except proportion of xylem area per cross-sectional needle area. In sun needles, drought reduced all trait values by 10-40%, whereas in shade needles, only tracheid maximum diameter was reduced by drought. Due to the relatively weaker response of shade needles than sun needles in drought-stressed trees, the difference between the two needle types was reduced by 25% in the drought-stressed trees compared to the control trees. The observed changes in needle anatomy provide new understanding of how Norway spruce adapts to drought stress and may improve predictions of how forests will respond to global climate change. PMID:26640676

  13. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways.

    PubMed

    Domingos, Sara; Scafidi, Pietro; Cardoso, Vania; Leitao, Antonio E; Di Lorenzo, Rosario; Oliveira, Cristina M; Goulao, Luis F

    2015-01-01

    Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA) concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways. PMID:26157448

  14. Asian citrus psyllids and shade: Survival of Diaphorina citri on Murraya exotica foliage exposed to different levels of light

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using shade cloths of different densities, potted individuals of Murraya exotica (Rutaceae) were exposed to levels of photosynthetic radiation (PAR) varying from 48 µmol photons per meter2 per second to 1562 µmol photons per meter2 per second (average of three readings taken at noon during condition...

  15. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways

    PubMed Central

    Domingos, Sara; Scafidi, Pietro; Cardoso, Vania; Leitao, Antonio E.; Di Lorenzo, Rosario; Oliveira, Cristina M.; Goulao, Luis F.

    2015-01-01

    Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA) concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways. PMID:26157448

  16. Soil heat flux calculation for sunlit and shaded surfaces under row crops: 1 - Model Development and sensitivity analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil heat flux at the surface (G0) is strongly influenced by whether the soil is shaded or sunlit, and therefore can have large spatial variability for incomplete vegetation cover, such as across the interrows of row crops. Most practical soil-plant-atmosphere energy balance models calculate G0 as a...

  17. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants

    PubMed Central

    Tao, Yi; Ferrer, Jean-Luc; Ljung, Karin; Pojer, Florence; Hong, Fangxin; Long, Jeff A.; Li, Lin; Moreno, Javier E.; Bowman, Marianne E.; Ivans, Lauren J.; Cheng, Youfa; Lim, Jason; Zhao, Yunde; Ballaré, Carlos L.; Sandberg, Göran; Noel, Joseph P.; Chory, Joanne

    2008-01-01

    SUMMARY Plants grown at high densities perceive a decrease in the red to far-red (R:FR) ratio of incoming light, resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants. These changes in light quality trigger a series of responses known collectively as the shade avoidance syndrome. During shade avoidance, stems elongate at the expense of leaf and storage organ expansion, branching is inhibited, and flowering is accelerated. We identified several loci in Arabidopsis, mutations in which lead to plants defective in multiple shade avoidance outputs. Here we describe SAV3, an aminotransferase, and show that SAV3 catalyzes the formation of indole-3-pyruvic acid (IPA) from L-tryptophan (L-Trp), the first step in a previously proposed, but uncharacterized, auxin biosynthetic pathway. This pathway is rapidly deployed to biosynthesize auxin at the high levels required to initiate the multiple changes in body plan associated with shade avoidance. PMID:18394996

  18. Perceptual organization of shape, color, shade, and lighting in visual and pictorial objects

    PubMed Central

    Pinna, Baingio

    2012-01-01

    The main questions we asked in this work are the following: Where are representations of shape, color, depth, and lighting mostly located? Does their formation take time to develop? How do they contribute to determining and defining a visual object, and how do they differ? How do visual artists use them to create objects and scenes? Is the way artists use them related to the way we perceive them? To answer these questions, we studied the microgenetic development of the object perception and formation. Our hypothesis is that the main object properties are extracted in sequential order and in the same order that these roles are also used by artists and children of different age to paint objects. The results supported the microgenesis of object formation according to the following sequence: contours, color, shading, and lighting. PMID:23145283

  19. Perceptual organization of shape, color, shade, and lighting in visual and pictorial objects.

    PubMed

    Pinna, Baingio

    2012-01-01

    THE MAIN QUESTIONS WE ASKED IN THIS WORK ARE THE FOLLOWING: Where are representations of shape, color, depth, and lighting mostly located? Does their formation take time to develop? How do they contribute to determining and defining a visual object, and how do they differ? How do visual artists use them to create objects and scenes? Is the way artists use them related to the way we perceive them? To answer these questions, we studied the microgenetic development of the object perception and formation. Our hypothesis is that the main object properties are extracted in sequential order and in the same order that these roles are also used by artists and children of different age to paint objects. The results supported the microgenesis of object formation according to the following sequence: contours, color, shading, and lighting. PMID:23145283

  20. Partial improvements in the flavor quality of soybean seeds using intercropping systems with appropriate shading.

    PubMed

    Liu, Jiang; Yang, Cai-qiong; Zhang, Qing; Lou, Ying; Wu, Hai-jun; Deng, Jun-cai; Yang, Feng; Yang, Wen-yu

    2016-09-15

    The profiles of isoflavone and fatty acids constitute important quality traits in soybean seeds, for making soy-based functional food products, due to their important contributions to the flavor and nutritional value of these products. In general, the composition of these constituents in raw soybeans is affected by cultivation factors, such as sunlight; however, the relationship of the isoflavone and fatty acid profiles with cultivation factors is not well understood. This study evaluated the isoflavone and fatty acid profiles in soybeans grown under a maize-soybean relay strip intercropping system with different row spacings, and with changes in the photosynthetic active radiation (PAR) transmittance. The effects of PAR on the isoflavone and fatty acid contents were found to be quadratic. Appropriate intercropping shading may reduce the bitterness of soybeans caused by soy aglycone and could improve their fatty acid composition. PMID:27080886

  1. Shaded Relief with Height as Color and Landsat, Yucatan Peninsula, Mexico

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The top picture is a shaded relief image of the northwest corner of Mexico's Yucatan Peninsula generated from Shuttle Radar Topography Mission (SRTM) data, and shows a subtle, but unmistakable, indication of the Chicxulub impact crater. Most scientists now agree that this impact was the cause of the Cretatious-Tertiary Extinction, the event 65 million years ago that marked the sudden extinction of the dinosaurs as well as the majority of life on Earth. The pattern of the crater's rim is marked by a trough, the darker green semicircular line near the center of the picture. This trough is only about 3 to 5 meters (10 - 15 feet) deep and is about 5 km (3 miles) wide; so subtle that if you walked across it you probably would not notice it. It is the surface expression of the buried crater's outer boundary. Scientists believe the impact, which was centered just off the coast in the Caribbean, altered the subsurface rocks such that the overlying limestone sediments, which formed later and erode very easily, would preferentially erode along the crater rim. This formed the trough as well as numerous sinkholes (called cenotes) which are visible as small circular depressions.

    The bottom picture is the same area viewed by the Landsat satellite, and was made by displaying the Thematic Mapper's Band 7 (mid-infrared), Band 4 (near-infrared) and Band 2 (green) as red, green and blue. These colors were chosen to maximize the contrast between different vegetation and land cover types, with native vegetation and cultivated land showing as green, yellow and magenta, and urban areas as white. The circular white area near the center of the image is Merida, a city of about 720,000 population. Notice that in the SRTM image, which shows only topography, the city is not visible, while in the Landsat image, which does not show elevations, the trough is not visible.

    Two visualization methods were combined to produce the SRTM image: shading and color coding of topographic height. The

  2. Ethnicity, Well-Being, and the Organization of Labor among Shade Tobacco Workers

    PubMed Central

    Duke, Michael

    2011-01-01

    The cultivation and processing of shade tobacco in the Connecticut River Valley (United States) is highly specialized and labor intensive, and dependent on a multi-ethnic workforce of migrant farmworkers from Latin America and the West Indies. Production is structured through an ethnically reified division of labor, constituted by historical migration patterns, English language ability, and racially-informed perceptions of what constitutes a ‘good worker’. Regardless of position, these workers find themselves geographically and socially isolated, and subjected to hazardous and exploitative working conditions. This paper will explore the effects of these conditions on workers’ physical and emotional well-being. Using Foucault’s notion of governmentality, the paper demonstrates the ways in which these deleterious effects are embedded in workers’ internalizing of race and ethnicity as naturalizing principles for self-regulation and the organization of work, and in neoliberal forces that produce a surplus of temporary, highly mobile workers from the global south. PMID:21777125

  3. Shaded Relief and Radar Image with Color as Height, Madrid, Spain

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The white, mottled area in the right-center of this image from NASA's Shuttle Radar Topography Mission (SRTM) is Madrid, the capital of Spain. Located on the Meseta Central, a vast plateau covering about 40 percent of the country, this city of 3 million is very near the exact geographic center of the Iberian Peninsula. The Meseta is rimmed by mountains and slopes gently to the west and to the series of rivers that form the boundary with Portugal. The plateau is mostly covered with dry grasslands, olive groves and forested hills.

    Madrid is situated in the middle of the Meseta, and at an elevation of 646 meters (2,119 feet) above sea level is the highest capital city in Europe. To the northwest of Madrid, and visible in the upper left of the image, is the Sistema Central mountain chain that forms the 'dorsal spine' of the Meseta and divides it into northern and southern subregions. Rising to about 2,500 meters (8,200 feet), these mountains display some glacial features and are snow-capped for most of the year. Offering almost year-round winter sports, the mountains are also important to the climate of Madrid.

    Three visualization methods were combined to produce this image: shading and color coding of topographic height and radar image intensity. The shade image was derived by computing topographic slope in the northwest-southeast direction. North-facing slopes appear bright and south-facing slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and brown to white at the highest elevations. The shade image was combined with the radar intensity image in the flat areas.

    Elevation data used in this image was acquired by the SRTM aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was

  4. Motion recovery in light-attenuating media from image-shading variations.

    PubMed

    Yu, C H; Negahdaripour, S

    1992-07-01

    One of the requirements for providing some autonomy in the operation of robotic vehicles is an accurate knowledge of position, orientation, and motion relative to nearby objects and the environment. Passive-vision sensing provides a useful tool for extracting such information from the images of the scene. Some applications, including the operation of undersea vehicles, involve working under artificial lighting in an attenuating medium. The extraction of motion, position, and orientation information requires models of image brightness that incorporate the effects that are due to the illumination attenuation and the illumination variation resulting from the motion of the light source. We investigate the problem of motion recovery from image-shading variations for a configuration common in many undersea applications. On the basis of the image model developed earlier [J. Opt. Soc. Am. A 8, 217 (1991)], we show that the motion of a vehicle can be determined in closed form by using three Lambertian planar surfaces as optical beacons. PMID:1634966

  5. Solar Census - Perfecting the Art of Automated, Remote Solar Shading Assessments (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    To validate the work completed by Solar Census as part of the Department of Energy SunShot Incubator 8 award, NREL validated the performanec of the Solar Census Surveyor tool against the industry standard Solmetric SunEye measurements for 4 residential sites in California who experienced light to heavy shading. Using the a two one-sided test (TOST) of statistical equivalence, NREL found that the mean differences between the Solar Census and SunEye mean solar access values for Annual, Summer, and Winter readings fall within the 95% confidence intervals and the confidence intervals themselves fall within the tolerances of +/- 5 SAVs, the Solar Census calculations are statistically equivalent to the SunEye measurements.

  6. Database Integrity Monitoring for Synthetic Vision Systems Using Machine Vision and SHADE

    NASA Technical Reports Server (NTRS)

    Cooper, Eric G.; Young, Steven D.

    2005-01-01

    In an effort to increase situational awareness, the aviation industry is investigating technologies that allow pilots to visualize what is outside of the aircraft during periods of low-visibility. One of these technologies, referred to as Synthetic Vision Systems (SVS), provides the pilot with real-time computer-generated images of obstacles, terrain features, runways, and other aircraft regardless of weather conditions. To help ensure the integrity of such systems, methods of verifying the accuracy of synthetically-derived display elements using onboard remote sensing technologies are under investigation. One such method is based on a shadow detection and extraction (SHADE) algorithm that transforms computer-generated digital elevation data into a reference domain that enables direct comparison with radar measurements. This paper describes machine vision techniques for making this comparison and discusses preliminary results from application to actual flight data.

  7. Dynamic Antagonism between Phytochromes and PIF Family Basic Helix-Loop-Helix Factors Induces Selective Reciprocal Responses to Light and Shade in a Rapidly Responsive Transcriptional Network in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants respond to shade-modulated light signals via phytochrome (phy)-induced adaptive changes, termed shade avoidance. To examine the roles of Phytochrome-Interacting basic helix-loop-helix Factors, PIF1, 3, 4, and 5, in relaying such signals to the transcriptional network, we compared the shade-re...

  8. Acclimation of Plant Populations to Shade: Photosynthesis, Respiration, and Carbon Use Efficiency

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2005-01-01

    Cloudy days cause an abrupt reduction in daily photosynthetic photon flux (PPF), but we have a poor understanding of how plants acclimate to this change. We used a unique lo-chamber, steady-state, gas-exchange system to continuously measure daily photosynthesis and night respiration of populations of a starch accumulator [tomato (Lycopersicone scukntum Mill. cv. Micro-Tina)] and a sucrose accumulator [lettuce (Latuca sativa L ev. Grand Rapids)] over 42 days. AI1 measurements were done at elevated CO2, (1200micr-/mol) avoid any CO2 limitations and included both shoots and roots. We integrated photosynthesis and respiration measurements separately to determine daily net carbon gain and carbon use efficiency (CUE) as the ratio of daily net C gain to total day-time C fixed over the 42-day period. After 16 to 20 days of growth in constant PPF, plants in some chambers were subjected to an abrupt PPF reduction to simulate shade or a series of cloudy days. The immediate effect and the long term acclimation rate w'ere assessed from canopy quantum yield and carbon use efficiency. The effect of shade on carbon use efficiency and acclimation was much slower than predicted by widely used growth models. It took 12 days for tomato populations to recover their original CUE and lettuce CUE never completely acclimated. Tomatoes, the starch accumulator, acclimated to low light more rapidly than lettuce, the sucrose accumulator. Plant growth models should be modified to include the photosynthesis/respiration imbalance and resulting inefficiency of carbon gain associated with changing PIT conditions on cloudy days.

  9. Instream cover and shade mediate avian predation on trout in semi-natural streams

    USGS Publications Warehouse

    Penaluna, Brooke E.; Dunham, Jason B.; Noakes, David L. G.

    2015-01-01

    Piscivory by birds can be significant, particularly on fish in small streams and during seasonal low flow when available cover from predators can be limited. Yet, how varying amounts of cover may change the extent of predation mortality from avian predators on fish is not clear. We evaluated size-selective survival of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in replicated semi-natural stream sections. These sections provided high (0.01 m2 of cover per m2 of stream) or low (0.002 m2 of cover per m2 of stream) levels of instream cover available to trout and were closed to emigration. Each fish was individually tagged, allowing us to track retention of individuals during the course of the 36-day experiment, which we attributed to survival from predators, because fish had no other way to leave the streams. Although other avian predators may have been active in our system and not detected, the only predator observed was the belted kingfisher Megaceryle alcyon, which is known to prey heavily on fish. In both treatments, trout >20.4 cm were not preyed upon indicating an increased ability to prey upon on smaller individuals. Increased availability of cover improved survival of trout by 12% in high relative to low cover stream sections. Trout also survived better in stream sections with greater shade, a factor we could not control in our system. Collectively, these findings indicate that instream cover and shade from avian predators can play an important role in driving survival of fish in small streams or during periods of low flow.

  10. Shading and Watering as a Tool to Mitigate the Impacts of Climate Change in Sea Turtle Nests

    PubMed Central

    Hill, Jacob E.; Paladino, Frank V.; Spotila, James R.; Tomillo, Pilar Santidrián

    2015-01-01

    Increasing sand temperatures resulting from climate change may negatively impact sea turtle nests by altering sex ratios and decreasing reproductive output. We analyzed the effect of nest shading and watering on sand temperatures as climate mitigation strategies in a beach hatchery at Playa Grande, Costa Rica. We set up plots and placed thermocouples at depths of 45cm and 75cm. Half of the plots were shaded and half were exposed to the sun. Within these exposure treatments, we applied three watering treatments over one month, replicating local climatic conditions experienced in this area. We also examined gravimetric water content of sand by collecting sand samples the day before watering began, the day after watering was complete, and one month after completion. Shading had the largest impact on sand temperature, followed by watering and depth. All watering treatments lowered sand temperature, but the effect varied with depth. Temperatures in plots that received water returned to control levels within 10 days after watering stopped. Water content increased at both depths in the two highest water treatments, and 30 days after the end of water application remained higher than plots with low water. While the impacts of watering on sand temperature dissipate rapidly after the end of application, the impacts on water content are much more lasting. Although less effective at lowering sand temperatures than shading, watering may benefit sea turtle clutches by offsetting negative impacts of low levels of rain in particularly dry areas. Prior to implementing such strategies, the natural conditions at the location of interest (e.g. clutch depth, environmental conditions, and beach characteristics) and natural hatchling sex ratios should be taken into consideration. These results provide insight into the effectiveness of nest shading and watering as climate mitigation techniques and illustrate important points of consideration in the crafting of such strategies. PMID

  11. Influence of the light-curing unit, storage time and shade of a dental composite resin on the fluorescence

    NASA Astrophysics Data System (ADS)

    Queiroz, R. S.; Bandéca, M. C.; Calixto, L. R.; Gaiao, U.; Cuin, A.; Porto-Neto, S. T.

    2010-07-01

    The aim of this study was to determine the influence of three light-curing units, storage times and colors of the dental composite resin on the fluorescence. The specimens (diameter 10.0 ± 0.1 mm, thickness 1.0 ± 0.1 mm) were made using a stainless steel mold. The mold was filled with the microhybrid composite resin and a polyethylene film covered each side of the mold. After this, a glass slide was placed on the top of the mold. To standardize the top surface of the specimens a circular weight (1 kg) with an orifice to pass the light tip of the LCU was placed on the top surface and photo-activated during 40 s. Five specimens were made for each group. The groups were divided into 9 groups following the LCUs (one QTH and two LEDs), storage times (immediately after curing, 24 hours, 7 and 30 days) and colors (shades: A2E, A2D, and TC) of the composite resin. After photo-activation, the specimens were storage in artificial saliva during the storage times proposed to each group at 37°C and 100% humidity. The analysis of variance (ANOVA) and Tukey’s posthoc tests showed no significant difference between storage times (immediately, 24 hours and 30 days) ( P > 0.05). The means of fluorescence had difference significant to color and light-curing unit used to all period of storage ( P < 0.05). The colors had difference significant between them (shades: A2D < A2E < TC) ( P < 0.05). The Ultraled (LED) and Ultralux (QTH) when used the TC shade showed higher than Radii (LED), however to A2E shade and A2D shade any difference were found ( P > 0.05).

  12. Computing and monitoring potential of public spaces by shading analysis using 3d lidar data and advanced image analysis

    NASA Astrophysics Data System (ADS)

    Zwolinski, A.; Jarzemski, M.

    2015-04-01

    The paper regards specific context of public spaces in "shadow" of tall buildings located in European cities. Majority of tall buildings in European cities were built in last 15 years. Tall buildings appear mainly in city centres, directly at important public spaces being viable environment for inhabitants with variety of public functions (open spaces, green areas, recreation places, shops, services etc.). All these amenities and services are under direct impact of extensive shading coming from the tall buildings. The paper focuses on analyses and representation of impact of shading from tall buildings on various public spaces in cities using 3D city models. Computer environment of 3D city models in cityGML standard uses 3D LiDAR data as one of data types for definition of 3D cities. The structure of cityGML allows analytic applications using existing computer tools, as well as developing new techniques to estimate extent of shading coming from high-risers, affecting life in public spaces. These measurable shading parameters in specific time are crucial for proper functioning, viability and attractiveness of public spaces - finally it is extremely important for location of tall buildings at main public spaces in cities. The paper explores impact of shading from tall buildings in different spatial contexts on the background of using cityGML models based on core LIDAR data to support controlled urban development in sense of viable public spaces. The article is prepared within research project 2TaLL: Application of 3D Virtual City Models in Urban Analyses of Tall Buildings, realized as a part of Polish-Norway Grants.

  13. Field Temperature and Anthocyanins in Merlot Grape Berries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On field-grown vines, temperatures of 'Merlot' grape clusters were monitored and controlled from pre-veraison until harvest to produce a dynamic range of berry temperatures in both sun-exposed and shaded fruit. Ten combinations of temperature and solar radiation exposure were applied, and resulting ...

  14. Field Temperature and Anthocyanins in Merlot Grape Berries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On field-grown vines, the temperatures of 'Merlot' grape clusters were monitored and controlled from pre-veraison until harvest to produce a dynamic range of berry temperatures in both sun-exposed and shaded fruit. Ten combinations of temperature and solar radiation exposure were applied and the res...

  15. The Regulation of Cell Wall Extensibility during Shade Avoidance: A Study Using Two Contrasting Ecotypes of Stellaria longipes1[C][OA

    PubMed Central

    Sasidharan, Rashmi; Chinnappa, C.C.; Voesenek, Laurentius A.C.J.; Pierik, Ronald

    2008-01-01

    Shade avoidance in plants involves rapid shoot elongation to grow toward the light. Cell wall-modifying mechanisms are vital regulatory points for control of these elongation responses. Two protein families involved in cell wall modification are expansins and xyloglucan endotransglucosylase/hydrolases. We used an alpine and a prairie ecotype of Stellaria longipes differing in their response to shade to study the regulation of cell wall extensibility in response to low red to far-red ratio (R/FR), an early neighbor detection signal, and dense canopy shade (green shade: low R/FR, blue, and total light intensity). Alpine plants were nonresponsive to low R/FR, while prairie plants elongated rapidly. These responses reflect adaptation to the dense vegetation of the prairie habitat, unlike the alpine plants, which almost never encounter shade. Under green shade, both ecotypes rapidly elongate, showing that alpine plants can react only to a deep shade treatment. Xyloglucan endotransglucosylase/hydrolase activity was strongly regulated by green shade and low blue light conditions but not by low R/FR. Expansin activity, expressed as acid-induced extension, correlated with growth responses to all light changes. Expansin genes cloned from the internodes of the two ecotypes showed differential regulation in response to the light manipulations. This regulation was ecotype and light signal specific and correlated with the growth responses. Our results imply that elongation responses to shade require the regulation of cell wall extensibility via the control of expansin gene expression. Ecotypic differences demonstrate how responses to environmental stimuli are differently regulated to survive a particular habitat. PMID:18768908

  16. A comparative study of physiological and morphological seedling traits associated with shade tolerance in introduced red oak (Quercus rubra) and native hardwood tree species in southwestern Germany.

    PubMed

    Kuehne, Christian; Nosko, Peter; Horwath, Tobias; Bauhus, Jürgen

    2014-02-01

    Northern red oak (Quercus rubra L.), a moderately shade-tolerant tree species, is failing to regenerate throughout its native North American range, while successful recruitment in Central Europe has been observed since its introduction. To examine whether comparative photosynthetic performance could explain the regeneration success of this non-native species in Central Europe, we compared the physiological and morphological seedling traits of red oak with three co-occurring tree species under three canopy types in southwestern Germany. Native species included a moderately shade-tolerant native oak (Quercus robur L.) and two shade-tolerant species (Acer pseudoplatanus L. and Carpinus betulus L.). The photosynthetic traits of non-native red oak seedlings were similar to those reported for this species in the native range, where shade-tolerant competitors readily outperform red oak under low light conditions. However, compared with native shade-tolerant species in Europe, red oak seedlings photosynthesized efficiently, especially under closed canopies and in small canopy gaps, exhibiting high photosynthetic capacity, low leaf dark respiration and leaf-level light compensation points that were similar to the more shade-tolerant species. The superior net carbon gain of red oak seedlings at low and moderate light levels was likely facilitated by high leaf areas and reflected by seedling dry masses that were greater than the observed native European species. A competitive advantage for red oak was not evident because relative height growth was inferior to seedlings of co-occurring species. In North America, the inability of seedlings to compete with shade-tolerant tree species in deeply shaded understories is central to the problem of poor oak recruitment. Our study suggests that the ability of non-native red oak to perform equally well to native shade-tolerant species under a variety of light conditions could contribute to the consistent success of red oak regeneration

  17. [Seasonal variations in biomass and salidroside content in roots of Rhodiola sachalinensis as affected by gauze and red film shading].

    PubMed

    Yan, Xiufeng; Wang, Yang; Guo, Shenglei; Shang, Xinhai

    2004-03-01

    Rhodiola sachalinensis A. Bor, a perennial herb, belonging to the family Crassulaceae, is mainly distributed in mountains at the altitudes of 1,700-2,500 m. It is a typical alpine plant and a very important medicinal plant with high activities of anti-fatigue, anti-senescence, and anti-radiation, due to the secondary metabolite salidroside in its root. Our previous findings have proven that red light promotes salidroside synthesis remarkably but decreases biomass insignificantly, resulting in a higher yield of salidroside in roots of Rh. sachalinensis in a greenhouse. In order to investigate the influences of shading and red light on seasonal variations in biomass and salidroside content in Rh. sachalinensis roots, the effects on 3 or 4 years old Rh. sachalinensis plants in a nursery in Daxinganling Mountain (124 degrees 02' E, 50 degrees 30' N) were studied in 2001. Compared to the control (CK) of full sunlight, 6 treatments with neutral transparent film and gauze, or red film alone had been conducted for 131 days. In treatment I, Rh. sachalinensis was shaded with neutral transparent film and gauze to achieve an irradiance 51.8% of full sunlight. In treatment II, the plants were shaded by red film alone, but the irradiance was as that in treatment I. In treatments III, IV, V and VI, neutral transparent film and gauze were originally used on May 8, then shifted to red film on Jun 3, July 4, August 4 and September 2, respectively and all experiments stopped on September 16, 2001. Rh. sachalinensis roots were harvested on 2-4th from June to September and finally on September 16, and root-biomass and salidroside content were measured. Root-biomass in plants decreased significantly under shading with neutral transparent film and gauze compared to the control with full sunlight, but little variations in salidroside content and yield. In comparison with shading by neutral transparent film and gauze, root-biomass reduced lightly and salidroside content and yield in roots

  18. San Andreas Fault, Southern California, Shaded relief, wrapped color as height

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic image vividly displays California's famous San Andreas Fault along the southwestern edge of the Mojave Desert, 75 kilometers (46 miles) north of downtown Los Angeles. The entire segment of the fault shown in this image last ruptured during the Fort Tejon earthquake of 1857. This was one of the greatest earthquakes ever recorded in the U.S., and it left an amazing surface rupture scar over 350 kilometers in length along the San Andreas. Were the Fort Tejon shock to happen today, the damage would run into billions of dollars, and the loss of life would likely be substantial, as the communities of Wrightwood, Palmdale, and Lancaster (among others) all lie upon or near the 1857 rupture area. The San Gabriel Mountains fill the lower left half of the image. At the extreme lower left is Pasadena. High resolution topographic data such as these are used by geologists to study the role of active tectonics in shaping the landscape, and to produce earthquake hazard maps.

    This image was generated using topographic data from the Shuttle Radar Topography Mission. Colors show the elevation as measured by SRTM. Each cycle of colors (from pink through blue back to pink) represents an equal amount of elevation difference (400 meters, or 1300 feet) similar to contour lines on a standard topographic map. This image contains about 2400 meters (8000 feet) of total relief. For the shading, a computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to

  19. Nabro and Mallahle Volcanoes, Eritrea and Ethiopia, SRTM Colored Height and Shaded Relief

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The area known as the Afar Triangle is located at the northern end of the East Africa Rift, where it approaches the southeastern end of the Red Sea and the southwestern end of the Gulf of Aden. The East African Rift, the Red Sea, and the Gulf of Aden are all zones where Earth's crust is pulling apart in a process known as crustal spreading. Their three-way meeting is known as a triple junction, and their spreading creates a triangular topographic depression for which the area was named.

    Not surprisingly, the topographic effects of crustal spreading are more dramatic in the Afar Triangle than anywhere else upon Earth's landmasses. The spreading is primarily evident as patterns of numerous tension cracks. But some of these cracks provide conduits for magma to rise to the surface to form volcanoes.

    Shown here are a few of the volcanoes of the Afar Triangle. The larger two are Nabro Volcano (upper right, in Eritrea) and Mallahle Volcano (lower left, in Ethiopia). Nabro Volcano shows clear evidence of multiple episodes of activity that resulted in a crater in a crater in a crater. Many volcanoes in this area are active, including one nearby that last erupted in 1990.

    This image was created directly from an SRTM elevation model. A shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. The shade image was then combined with a color coding of topographic height, with green at the lower elevations, rising through yellow, orange, and red, up to purple at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three

  20. Mount Saint Helens, Washington, USA, SRTM Perspective: Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Mount Saint Helens is a prime example of how Earth's topographic form can greatly change even within our lifetimes. The mountain is one of several prominent volcanoes of the Cascade Range that stretches from British Columbia, Canada, southward through Washington, Oregon, and into northern California. Mount Adams (left background) and Mount Hood (right background) are also seen in this view, which was created entirely from elevation data produced by the Shuttle Radar Topography Mission.

    Prior to 1980, Mount Saint Helens had a shape roughly similar to other Cascade peaks, a tall, bold, irregular conic form that rose to 2950 meters (9677 feet). However, the explosive eruption of May 18, 1980, caused the upper 400 meters (1300 feet) of the mountain to collapse, slide, and spread northward, covering much of the adjacent terrain (lower left), leaving a crater atop the greatly shortened mountain. Subsequent eruptions built a volcanic dome within the crater, and the high rainfall of this area lead to substantial erosion of the poorly consolidated landslide material.

    Eruptions at Mount Saint Helens subsided in 1986, but renewed volcanic activity here and at other Cascade volcanoes is inevitable. Predicting such eruptions still presents challenges, but migration of magma within these volcanoes often produces distinctive seismic activity and minor but measurable topographic changes that can give warning of a potential eruption.

    Three visualization methods were combined to produce this image: shading of topographic slopes, color coding of topographic height, and then projection into a perspective view. The shade image was derived by computing topographic slope in the northeast-southwest (left to right) direction, so that northeast slopes appear bright and southwest slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. The perspective

  1. Tweed Extinct Volcano, Australia, Stereo Pair of SRTM Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 Australia is the only continent without any current volcanic activity, but it hosts one of the world's largest extinct volcanoes, the Tweed Volcano. Rock dating methods indicate that eruptions here lasted about three million years, ending about 20 million years ago. Twenty million years of erosion has left this landform deeply eroded yet very recognizable, appearing as a caldera with a central peak. The central peak is not an old remnant landform but is instead the erosional stub of the volcanic neck (the central pipe that carried the magma upward). It is surrounded by ring dikes, which are circular sheets of magma that solidified and now form erosion-resistant ridges. The central peak is named Mount Warning.

    Topography plays a central role in envisioning the volcano at its climax and in deciphering the landscape evolution that has occurred since then. Low-relief uplands interspersed between deeply eroded canyons form a radial pattern that clearly defines the shape and extent of the original volcanic dome. Erosion is most extensive on the eastern side because the eroding streams drained directly to the ocean and therefore had the steepest gradients. This asymmetry of erosion has been extreme enough that the volcano has been hollowed out by the east-flowing drainage, forming an 'erosional caldera'. Calderas usually form as the result of collapse where magmas retreat within an active volcano. If collapse occurred here, erosion may have removed the evidence, but it produced a similar landform itself.

    Three visualization methods were combined to produce this image: shading, color coding, and synthetic stereoscopy. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the

  2. Landsat with SRTM Shaded Relief, Los Angeles and Vicinity from Space

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Los Angeles and vicinity seen from space, as viewed by the Landsat 7 satellite from an altitude of 437 miles on May 4, 2001. North is at the top. Topographic shading has been enhanced using an elevation data set acquired by the Space Shuttle Endeavour in February 2000. Downtown Los Angeles is just south of the image center, with L.A. and Long Beach harbors to the south, Santa Monica Bay to the west, San Fernando Valley to the northwest, San Gabriel Valley to the east, and Orange County to the southeast. The San Andreas fault forms the straight diagonal mountain front bordering the Mojave Desert at the top of the image. At full resolution, features on the ground as small as 15 meters (49 feet) across can be distinguished, including street patterns and large buildings, as well as boats and their wakes on the ocean. More than ten million people live within this scene.

    This image was generated by first geographically matching the Landsat scene to a Shuttle Radar Topography Mission (SRTM) elevation model. A measure of topographic slope along a southeast-northwest trend was then calculated, such that southeast facing slopes appear bright and northwest facing slopes appear dark. This slope image was then added to the enhanced Landsat scene in order to intensify the appearance of topography. Topographic shading was subtle in the original Landsat scene due to the fairly high sun angle (63 degrees above the horizon) during the satellite overflight in late morning of a mid-Spring day.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and helps in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the

  3. Simi Valley, California, Perspective View of Shaded Relief, color as height

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic perspective view shows an area of Ventura County, California, including Simi Valley in the center of the image. The view is toward the East. At the lower left is the Santa Clara River Valley. The mountains along the left of the image are Oak Ridge, known to be an active zone of seismic uplift. San Fernando Valley is smooth area at top. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards in regions such as Southern California.

    This shaded relief perspective view was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to red at the highest elevations. This image contains about 750 meters (2500 feet) of total relief. To emphasize subtle differences in topography, the relief is exaggerated by a factor of 5.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and

  4. Evaluation of a High-Sensitivity GPS Receiver for Kinematics Application in Regions with High Shading

    NASA Astrophysics Data System (ADS)

    Suhandri, H. F.; Becker, D.; Kleusberg, A.

    2009-04-01

    GPS positioning has been very much improved with high-sensitivity GPS (HSGPS) receivers. This kind of receiver can track the signal until 20-25dB below the level of conventional receivers. Obviously, no problem occurs when GPS technology is used for air and ocean vehicles navigation; sufficient and/or redundant signals can be easily acquired due to good hemispherical signal reception. A problem arises whenever signals cannot be traced anymore, if not enough satellites are available or if there is very weak signal reception in forest areas or between buildings. Those situations cannot be avoided or eliminated in land vehicle navigation. The HSGPS technology tries to solve those problems by tracking signals below the normal signal threshold of non-HSGPS receivers. This paper discusses the two factors of availability and accuracy in the context of navigation with HSGPS receivers. In order to investigate these issues some scenarios of receivers-placing will be examined which represent various receiver environments: good hemispherical signal reception, strong signal shading environment and indoor environment. The signal availability and accuracy are investigated during observation sessions of several hours by comparing the measurements of the HSGPS receiver with the measurements of a conventional, non-HSGPS receiver. As expected, the non-HSGPS receiver yields the same level of availability as the HSGPS receiver in an environment with good hemispherical signal reception. When both receivers are located in an environment with significant signal shading, the percentage of availability will significantly decay for the non-HSGPS receiver whereas the availability of the HSGPS receiver is much less reduced. However the results from the HSGPS receiver in this case are at a significantly reduced accuracy level. The accuracy level is assessed by using three parameters: i) the difference between the C/A code and the carrier phase in order to investigate how big the multipath and

  5. Reduction of front-metallization grid shading in concentrator cells through laser micro-grooved cover glass

    NASA Astrophysics Data System (ADS)

    García-Linares, Pablo; Voarino, Philippe; Dominguez, César; Dellea, Olivier; Besson, Pierre; Fugier, Pascal; Baudrit, Mathieu

    2015-09-01

    Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (ISC) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions and away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications.

  6. Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses.

    PubMed

    Quero, José Luis; Villar, Rafael; Marañón, Teodoro; Zamora, Regino

    2006-01-01

    Here, we investigated the physiological and structural leaf responses of seedlings of two evergreen and two deciduous Quercus species, grown in a glasshouse and subjected to contrasted conditions of light (low, medium and high irradiance) and water (continuous watering vs 2-months drought). The impact of drought on photosynthetic rate was strongest in high irradiance, while the impact of shade on photosynthetic rate was strongest with high water supply, contradicting the hypothesis of allocation trade-off. Multivariate causal models were evaluated using d-sep method. The model that best fitted the dataset proposed that the variation in specific leaf area affects photosynthetic rate and leaf nitrogen concentration, and this trait determines stomatal conductance, which also affects photosynthetic rate. Shade conditions seemed to ameliorate, or at least not aggravate, the drought impact on oak seedlings, therefore, the drought response on leaf performance depended on the light environment. PMID:16684241

  7. Reduction of front-metallization grid shading in concentrator cells through laser micro-grooved cover glass

    SciTech Connect

    García-Linares, Pablo Voarino, Philippe; Besson, Pierre; Baudrit, Mathieu; Dominguez, César; Dellea, Olivier; Fugier, Pascal

    2015-09-28

    Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (I{sub SC}) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions and away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications.

  8. Real geographies and virtual landscapes: exploring the influence on place and space on mortality Lexis surfaces using shaded contour maps.

    PubMed

    Minton, Jonathan

    2014-07-01

    This paper describes how shaded contour plots, applied to mortality data from the Human Mortality Database, can be used to compare between nations, and start to tease out some of the ways that place and space matters. A number of shaded contour plots are presented, in order to describe the age, period and cohort effects which are apparent within them. They show variations between different subpopulations within the same nation, over time, and between nations. In illustrating these intra- and international variations in the patterns, we hope to encourage the development of hypotheses about the influence of such factors on mortality rates. We conclude with a brief discussion about how such hypotheses might be developed into statistical models, allowing for more rigourous testing of hypotheses and projection across time, place and space. PMID:25113591

  9. Visual Comfort Analysis of Innovative Interior and Exterior Shading Systems for Commercial Buildings using High Resolution Luminance Images

    SciTech Connect

    Konis, Kyle; Lee, Eleanor; Clear, Robert

    2011-01-11

    The objective of this study was to explore how calibrated high dynamic range (HDR) images (luminance maps) acquired in real world daylit environments can be used to characterize, evaluate, and compare visual comfort conditions of innovative facade shading and light-redirecting systems. Detailed (1536 x 1536 pixel) luminance maps were time-lapse acquired from two view positions in an unoccupied full scale testbed facility. These maps were analyzed using existing visual comfort metrics to quantify how innovative interior and exterior shading systems compare to conventional systems under real sun and sky conditions over a solstice-to-solstice test interval. The results provide a case study in the challenges and potential of methods of visualizing, evaluating and summarizing daily and seasonal variation of visual comfort conditions computed from large sets of image data.

  10. From ecophysiology to phenomics: some implications of photoprotection and shade-sun acclimation in situ for dynamics of thylakoids in vitro.

    PubMed

    Matsubara, Shizue; Förster, Britta; Waterman, Melinda; Robinson, Sharon A; Pogson, Barry J; Gunning, Brian; Osmond, Barry

    2012-12-19

    Half a century of research into the physiology and biochemistry of sun-shade acclimation in diverse plants has provided reality checks for contemporary understanding of thylakoid membrane dynamics. This paper reviews recent insights into photosynthetic efficiency and photoprotection from studies of two xanthophyll cycles in old shade leaves from the inner canopy of the tropical trees Inga sapindoides and Persea americana (avocado). It then presents new physiological data from avocado on the time frames of the slow coordinated photosynthetic development of sink leaves in sunlight and on the slow renovation of photosynthetic properties in old leaves during sun to shade and shade to sun acclimation. In so doing, it grapples with issues in vivo that seem relevant to our increasingly sophisticated understanding of ΔpH-dependent, xanthophyll-pigment-stabilized non-photochemical quenching in the antenna of PSII in thylakoid membranes in vitro. PMID:23148277

  11. Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps

    PubMed Central

    Nieto-Lugilde, Diego; Lenoir, Jonathan; Abdulhak, Sylvain; Aeschimann, David; Dullinger, Stefan; Gégout, Jean-Claude; Guisan, Antoine; Pauli, Harald; Renaud, Julien; Theurillat, Jean-Paul; Thuiller, Wilfried; Van Es, Jérémie; Vittoz, Pascal; Willner, Wolfgang; Wohlgemuth, Thomas; Zimmermann, Niklaus E.; Svenning, Jens-Christian

    2015-01-01

    The role of competition for light among plants has long been recognised at local scales, but its importance for plant species distributions at larger spatial scales has generally been ignored. Tree cover modifies the local abiotic conditions below the canopy, notably by reducing light availability, and thus, also the performance of species that are not adapted to low-light conditions. However, this local effect may propagate to coarser spatial grains, by affecting colonisation probabilities and local extinction risks of herbs and shrubs. To assess the effect of tree cover at both the plot- and landscape-grain sizes (approximately 10-m and 1-km), we fit Generalised Linear Models (GLMs) for the plot-level distributions of 960 species of herbs and shrubs using 6,935 vegetation plots across the European Alps. We ran four models with different combinations of variables (climate, soil and tree cover) at both spatial grains for each species. We used partial regressions to evaluate the independent effects of plot- and landscape-grain tree cover on plot-level plant communities. Finally, the effects on species-specific elevational range limits were assessed by simulating a removal experiment comparing the species distributions under high and low tree cover. Accounting for tree cover improved the model performance, with the probability of the presence of shade-tolerant species increasing with increasing tree cover, whereas shade-intolerant species showed the opposite pattern. The tree cover effect occurred consistently at both the plot and landscape spatial grains, albeit most strongly at the former. Importantly, tree cover at the two grain sizes had partially independent effects on plot-level plant communities. With high tree cover, shade-intolerant species exhibited narrower elevational ranges than with low tree cover whereas shade-tolerant species showed wider elevational ranges at both limits. These findings suggest that forecasts of climate-related range shifts for herb

  12. The impact of a shade coffee certification program on forest conservation using remote sensing and household data

    SciTech Connect

    Takahashi, Ryo; Todo, Yasuyuki

    2014-01-15

    In recent years, shade coffee certification programs have attracted increasing attention from forest conservation and development organizations. The certification programs could be expected to promote forest conservation by providing a premium price to shade coffee producers. However, little is known about the significance of the conservation efforts generated by certification programs. In particular, the relationship between the impact of the certification and producer characteristics has yet to be examined. The purpose of this study, which was conducted in Ethiopia, was to examine the impact of a shade coffee certification program on forest conservation and its relationship with the socioeconomic characteristics of the producers. Remote sensing data of 2005 and 2010 was used to gauge the changes in forest area. Employing a probit model, we found that a forest coffee area being certified increased the probability of forest conservation by 19.3 percentage points relative to forest coffee areas lacking certification. We also found that although economically poor producers tended to engage in forest clearing, the forest coffee certification program had a significant impact on these producers. This result suggests that the certification program significantly affects the behaviors of economically poor producers and motivates these producers to conserve the forest. -- Highlights: • We employed the probit mode to evaluate the impact of the shade coffee certification on forest conservation in Ethiopia. • We estimated how the impact of the certification varied among producers with different characteristics. • The certification increased the probability of conserving forest by 19.3 percentage points. • Certification program motivated the economically poor producers to conserve the forest.

  13. Effects of a tartar control whitening dentifrice on tooth shade in a population with long-standing natural stain.

    PubMed

    Gerlach, R W; Barker, M L; Hyde, J D; Jones, M B; Cordero, R E

    2001-01-01

    Changing and whitening tooth color in people with long-standing tooth stain without excessive hard tissue abrasion may represent one of the more difficult challenges for whitening dentifrices. An eight-week clinical trial was conducted to evaluate change in tooth color by a silica-based, enamel-safe tartar control whitening dentifrice compared to a marketed baking soda dentifrice control. First, a screening exercise was conducted to identify individuals with long-standing extrinsic dental stain. This exercise targeted adults who reported "stained teeth" and coffee/tea drinking or smoking, but who had no recent history of dental prophylaxis. Targeted subjects were examined for stain (Lobene Index) and tooth shade/color (Vita). A total of 291 adults having extrinsic stain and discolored teeth were enrolled in the study. Subjects were randomized to one of the two treatment groups, and all dentifrice use was unsupervised. Tooth color was measured at 4 and 8 weeks from shade values collected from the 8 incisors, and averages were determined from a linear ordering of the shade guide. A total of 278 evaluable subjects completed the 8-week study. Overall, the tartar control whitening dentifrice group experienced an improvement in color, differing statistically from baseline (p < 0.001) and from the marketed control (p < 0.05). Safety profiles for the two dentifrices were generally similar. Among patients with long-standing extrinsic stain, use of the tartar control whitening dentifrice resulted in superior overall tooth shade and reduced maximum or worst color compared to the marketed baking soda dentifrice control. PMID:11476014

  14. Translucency and color match with a shade guide of esthetic brackets with the aid of a spectroradiometer

    PubMed Central

    Lee, Yong-Keun; Bin, Yu

    2016-01-01

    ABSTRACT Objective: Since the color of esthetic brackets should match that of teeth, the aims of this study were to determine the color and translucency of esthetic brackets by means of the clinically relevant use of a spectroradiometer, and to compare the color of brackets with that of a commercial shade guide. Methods: The color of central and tie-wing regions of four plastic and four ceramic brackets was measured according to the CIE L*a*b* color scale over white and black backgrounds. Brackets were classified into five groups based on their composition. The color of Vitapan Classical Shade Guide tabs was also measured. Translucency parameter (TP) and contrast ratio (CR) were calculated to determine translucency. Results: Color differences between brackets and the shade guide tabs were 10.4 - 34.5 ∆E*ab units. TP and CR values for the central region were 16.4 - 27.7 and 0.38 - 0.58, whereas for the tie-wings they were 24.0 - 39.9 and 0.25 - 0.45, respectively. The color coordinates, TP and CR values were significantly influenced by bracket composition and brand (p < 0.05). Conclusions: Esthetic brackets investigated herein showed unacceptable color differences (∆E*ab > 5.5) compared with the shade guide tabs. Differences in the translucency of brackets by brand were within the visually perceptible range (∆CR > 0.07). Therefore, brackets showing the best matching performance for each case should be selected considering esthetic and functional demands. PMID:27275619

  15. Shade avoidance 6 encodes an Arabidopsis flap endonuclease required for maintenance of genome integrity and development.

    PubMed

    Zhang, Yijuan; Wen, Chunhong; Liu, Songbai; Zheng, Li; Shen, Binghui; Tao, Yi

    2016-02-18

    Flap endonuclease-1 (FEN1) belongs to the Rad2 family of structure-specific nucleases. It is required for several DNA metabolic pathways, including DNA replication and DNA damage repair. Here, we have identified a shade avoidance mutant, sav6, which reduces the mRNA splicing efficiency of SAV6. We have demonstrated that SAV6 is an FEN1 homologue that shows double-flap endonuclease and gap-dependent endonuclease activity, but lacks exonuclease activity. sav6 mutants are hypersensitive to DNA damage induced by ultraviolet (UV)-C radiation and reagents that induce double-stranded DNA breaks, but exhibit normal responses to chemicals that block DNA replication. Signalling components that respond to DNA damage are constitutively activated in sav6 mutants. These data indicate that SAV6 is required for DNA damage repair and the maintenance of genome integrity. Mutant sav6 plants also show reduced root apical meristem (RAM) size and defective quiescent centre (QC) development. The expression of SMR7, a cell cycle regulatory gene, and ERF115 and PSK5, regulators of QC division, is increased in sav6 mutants. Their constitutive induction is likely due to the elevated DNA damage responses in sav6 and may lead to defects in the development of the RAM and QC. Therefore, SAV6 assures proper root development through maintenance of genome integrity. PMID:26721386

  16. Shaded Relief and Radar Image with Color as Height, Bosporus Strait and Istanbul, Turkey

    NASA Technical Reports Server (NTRS)

    2002-01-01

    faults close to Istanbul that could kill many more than the 1999 event.

    Three visualization methods were combined to produce this image: shading and color coding of topographic height and radar image intensity. The shade image was derived by computing topographic slope in the northwest-southeast direction. Northwest-facing slopes appear dark and southeast-facing slopes appear bright. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and brown to white at the highest elevations. The shade image was combined with the radar intensity image to add detail, especially in the flat areas.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 2x2 degrees (168 by 222 kilometers; 104 by 138 miles) Location: 40-42 degrees North latitude, 28-30 degrees East longitude Orientation: North toward the top Image Data: shaded and colored SRTM elevation model, with SRTM radar intensity added Original Data Resolution: SRTM 1 arcsecond (about 30 meters or 98 feet) Date Acquired: February 2000 (SRTM))

  17. Simulation studies and practical tests using multi-image shape from shading

    NASA Astrophysics Data System (ADS)

    Heipke, Christian; Piechullek, Christian; Ebner, Heinrich

    Multi-image shape from shading (MI-SFS) is a surface reconstruction method, which has been studied intensively by our group over the last years. Our goal is to develop a method incorporating MI-SFS and image matching for use in planetary science. MI-SFS directly relates the grey values of one or more images to the heights of a digital terrain model (DTM) and the parameters of a radiometric surface model, which describes the surface reflectance behaviour. The DTM heights as well as the parameters of the radiometric model are estimated from the image grey values in a least squares adjustment. In this paper, we shortly review the principles of MI-SFS and analyse its characteristics using theoretical investigations and a practical example. Throughout the text, a comparison of two widely used reflectance models in planetary science, the well-known Lambert and the Lommel-Seeliger reflectance models, is given together with an investigation into the pros and cons of using more than one image and, thus, of MI-SFS compared to classical SFS. Results from a practical test using digitised aerial images are described, which demonstrate the potential of MI-SFS and its advantages over single image SFS.

  18. LRO-LAMP detection of geologically young craters within lunar permanently shaded regions

    NASA Astrophysics Data System (ADS)

    Mandt, Kathleen E.; Greathouse, Thomas K.; Retherford, Kurt D.; Randall Gladstone, G.; Jordan, Andrew P.; Lemelin, Myriam; Koeber, Steven D.; Bowman-Cisneros, Ernest; Wesley Patterson, G.; Robinson, Mark; Lucey, Paul G.; Hendrix, Amanda R.; Hurley, Dana; Stickle, Angela M.; Pryor, Wayne

    2016-07-01

    The upper 25-100 nm of the lunar regolith within the permanently shaded regions (PSRs) of the Moon has been demonstrated to have significantly higher surface porosity than the average lunar regolith by observations that the Lyman-α albedo measured by the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) is lower in the PSRs than the surrounding region. We find that two areas within the lunar south polar PSRs have significantly brighter Lyman-α albedos and correlate with the ejecta blankets of two small craters (<2 km diameter). This higher albedo is likely due to the ejecta blankets having significantly lower surface porosity than the surrounding PSRs. Furthermore, the ejecta blankets have much higher Circular Polarization Ratios (CPR), as measured by LRO Mini-RF, indicating increased surface roughness compared to the surrounding terrain. These combined observations suggest the detection of two craters that are very young on geologic timescales. From these observations we derive age limits for the two craters of 7-420 million years (Myr) based on dust transport processes and the radar brightness of the disconnected halos of the ejecta blankets.

  19. Implication of mountain shading and topographic scaling on energy for snowmelt

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Spiteri, R.

    2011-12-01

    In many parts of the world, snowmelt energetics are dominated by incoming solar radiation. This is the case in the Canadian Rockies, where sunny winters result in high insolation. Solar irradiance on the snow surface is affected by the atmosphere, the slope and aspect of the immediate topography, and shading from surrounding terrain. Errors in estimating solar irradiation are cumulative over a season and ca