These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Laboratory measurement of bottom shear stress on a movable bed  

Microsoft Academic Search

A shear plate was developed to obtain direct measurements of bottom shear stress under nonbreaking surface gravity waves on a movable sand bed. The experiments were conducted under regular wave conditions in a large wave tank where time histories of bottom shear stress and surface elevation were obtained from a shear plate and wave gauges. Measurements were made at scales

Kelly L. Rankin; Richard I. Hires

2000-01-01

2

Bed shear stress measurement using flexible micro-rods  

NASA Astrophysics Data System (ADS)

River morphodynamics is related to turbulent processes; and among influential factors shear stress is one of utter importance. Precise shear stress determination using direct and indirect methods has being investigated in recent years. Also, instantaneous fluctuation in wall shear stress distribution which can potentially affect erosion processes is being discussed currently. Here, a new method of indirect shear stress measurement using PDMS (Polydimethylsiloxan) flexible micro-rods is evaluated. Their flexural behavior in the flow within the boundary inner layer allows for the calculation of instantaneous shear stress values. The method is already used in medical fluid mechanics and now it is adopted for open channel investigations. A series of measurements were performed in order to investigate these micro-rods and their applicability to fluvial studies. This method may improve our understanding of boundary proximity region and enhance our insight into near bed momentum transfer mechanisms.

Farhadi, Alireza; Sindelar, Christine; Habersack, Helmut

2014-05-01

3

Direct Measurement of Wall-Shear Stress of Plane Shear Layer with Plasma Synthetic Jet Actuator  

NASA Astrophysics Data System (ADS)

One of the useful ways to measure the effect of the flow control devise is to use the wall-shear stress sensor to measure the wall-shear stress directly. The sensor used in this paper measures the wall-shear stress, which is reduced by the flow control devise. In this paper, the wall-shear stress of the plane shear layer with the plasma synthetic jet actuator (PSJA) is investigated. PSJA is a flow control device composed of electrodes with A.C. signal. The actuator uses electrohydrodynamic (EHD) effect and induces flow around the electrodes. PSJA has great advantage such as miniaturization, maintenance free, and easy to control compared to other actuators. In this paper, the wall-shear stress of plane shear layer in a low-speed turbulent wind tunnel is observed to measure the effect of the PSJA. The results show that the PSJA changes the flow condition of shear layer by accelerating the flow in shear layer. The wall-shear stress reduces and increases according to the displacement of the wall-shear stress sensor and the actuator.

Higuchi, Takehiro; Ogawara, Kakuji; Mochizuki, Shinsuke

4

Measurement of surface shear stress vector distribution using shear-sensitive liquid crystal coatings  

NASA Astrophysics Data System (ADS)

The global wall shear stress measurement technique using shear-sensitive liquid crystal (SSLC) is extended to wind tunnel measurements. Simple and common everyday equipment is used in the measurement; in particular a tungsten-halogen light bulb provides illumination and a saturation of SSLC coating color change with time is found. Spatial wall shear stress distributions of several typical flows are obtained using this technique, including wall-jet flow, vortex flow generated by a delta wing and junction flow behind a thin cylinder, although the magnitudes are not fully calibrated. The results demonstrate that SSLC technique can be extended to wind tunnel measurements with no complicated facilities used.

Zhao, Ji-Song; Scholz, Peter; Gu, Liang-Xian

2012-10-01

5

Colors Of Liquid Crystals Used To Measure Surface Shear Stresses  

NASA Technical Reports Server (NTRS)

Developmental method of mapping shear stresses on aerodynamic surfaces involves observation, at multiple viewing angles, of colors of liquid-crystal surface coats illuminated by white light. Report describing method referenced in "Liquid Crystals Indicate Directions Of Surface Shear Stresses" (ARC-13379). Resulting maps of surface shear stresses contain valuable data on magnitudes and directions of skin friction forces associated with surface flows; data used to refine mathematical models of aerodynamics for research and design purposes.

Reda, D. C.; Muratore, J. J., Jr.

1996-01-01

6

Measuring the in situ Erosion Shear Stress of Intertidal Sediments with the Cohesive Strength Meter (CSM)  

Microsoft Academic Search

The shear resistance of muddy sediments directly governs the susceptibility of the sediment to erosion by tidal and wave induced currents. Measurements of the natural erosion shear stress are important in modelling estuarine systems and in determining the possible impact of human disturbance. A second-generation erosion instrument the Cohesive Strength Meter (CSM) designed to measure the critical erosion shear stress

T. J. Tolhurst; K. S. Black; S. A. Shayler; S. Mather; I. Black; K. Baker; D. M. Paterson

1999-01-01

7

Shear stress transducer concepts  

NASA Astrophysics Data System (ADS)

The measurement of shear stress in a solid propellant rocket motor can be accomplished by discreet transducers embedded in the propellant-insulation interface. However, shear stress transducers and application techniques have not been generally available. CSD has had experience in the past with this type of transducer, and is currently involved in a program that is evaluating new shear transducer concepts. This paper presents the different types of shear stress transducers available, and shows laboratory data on stability and sensitivity. The potential usefulness and drawbacks of each type are presented.

Francis, E. C.; Thompson, R. E.; Heerema, S. W.

1990-07-01

8

Direct Measurement of Wave-Induced Bottom Shear Stress Under Irregular Waves  

Microsoft Academic Search

\\u000a Wave-induced bottom shear stress is one of most important parameters in modelling of wave hydrodynamics and coastal sediment\\u000a transport, but has not been accurately estimated so far. A new type of shear plate is developed to measure instantaneous wave\\u000a bottom shear stress under both regular and irregular waves. The shear plate directly measures instantaneous horizontal force\\u000a by applying the Wheatstone

Zaijin You; Baoshu Yin; Guang Huo

9

Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet  

PubMed Central

Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. Although exact causes and mechanisms of AV calcification are unclear, previous studies suggest that mechanical forces play a role. Since calcium deposits occur almost exclusively on the aortic surfaces of AV leaflets, it has been hypothesized that adverse patterns of fluid shear stress on the aortic surface of AV leaflets promote calcification. The current study characterizes AV leaflet aortic surface fluid shear stresses using Laser Doppler velocimetry and an in vitro pulsatile flow loop. The valve model used was a native porcine valve mounted on a suturing ring and preserved using 0.15% glutaraldehyde solution. This valve model was inserted in a mounting chamber with sinus geometries, which is made of clear acrylic to provide optical access for measurements. To understand the effects of hemodynamics on fluid shear stress, shear stress was measured across a range of conditions: varying stroke volumes at the same heart rate and varying heart rates at the same stroke volume. Systolic shear stress magnitude was found to be much higher than diastolic shear stress magnitude due to the stronger flow in the sinuses during systole, reaching up to 20 dyn/cm2 at mid-systole. Upon increasing stroke volume, fluid shear stresses increased due to stronger sinus fluid motion. Upon increasing heart rate, fluid shear stresses decreased due to reduced systolic duration that restricted the formation of strong sinus flow. Significant changes in the shear stress waveform were observed at 90 beats/ min, most likely due to altered leaflet dynamics at this higher heart rate. Overall, this study represents the most well-resolved shear stress measurements to date across a range of conditions on the aortic side of the AV. The data presented can be used for further investigation to understand AV biological response to shear stresses. PMID:21416247

Yap, Choon Hwai; Saikrishnan, Neelakantan; Tamilselvan, Gowthami

2011-01-01

10

Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow  

DOEpatents

A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

Armstrong, William D. (Laramie, WY); Naughton, Jonathan (Laramie, WY); Lindberg, William R. (Laramie, WY)

2008-09-02

11

Accuracy and grid convergence of wall shear stress measured by lattice Boltzmann method  

NASA Astrophysics Data System (ADS)

Based on a two-dimensional Poiseuille and Wormersley flow, accuracy and grid convergence of velocity, shear stress and wall shear stress (WSS) measurements were investigated using the single-relaxation-time (SRT) and multiple-relaxation-time (MRT) lattice Boltzmann models under various open and wall boundary conditions. The results showed that grid convergence of shear stress and WSS are not consistent with that of velocity when flow channels are not aligned to the grids, and strongly rely on the used wall boundary conditions. And the MRT model is slightly superior to the SRT when simulating the complicated border flow. Moreover the WSS should be approximately calculated on the fluid nodes closest to walls under the curved boundary (CB) condition but not for the bounce-back (BB) boundary scheme. As applications, distributions of WSS in a wavy-walled channel and distensible carotid artery were simulated which would much more depend on local roughness of vessel intima than channel diameters.

Kang, Xiuying; Dun, Zhiya

2014-04-01

12

Silicon micromachined sensors and sensor arrays for shear-stress measurements in aerodynamic flows  

E-print Network

In this thesis we report on a new micromachined floating-element shear-stress sensor for turbulent boundary layer research. Applications in low shear-stress environments such as turbulent boundary layers require extremely ...

Padmanabhan, Aravind

13

Measurements of Snow Avalanche Basal Shear to Normal Stress Ratios (S/N)  

NASA Astrophysics Data System (ADS)

A long-standing problem in snow science is the value of the basal friction coefficient for dense, flowing avalanches. This parameter is defined by the ratio of shear (S) to normal (N) stress and determines the runout distance of snow avalanches. It is therefore the crucial parameter in hazard mitigation studies. In this paper we present measurements of (S/N). The measurements are made on a large snow chute instrumente with shear/normal force plates, velocity and flow height sensors. We find that a Mohr-Coulomb relation of the form S=c+bN accurately describes the measurements. The Coulomb friction coefficient b ranges between 0.22 and 0.55. Wet snow flows exhibit significant cohesion c ? 500 Pa. These quantitative values allow us to probe the relation between the basal work rate, internal dissipation and gravitational potential. We show that basal shearing is the primary frictional mechanism retarding snow flows. This mechanism shows no velocity dependence, contrary to many postulated constitutive relations for basal shearing in snow avalanches. Furthermore, we investigate how the basal work rate controls the injection of fluctuation energy at the basal surface. Thus, our experimental results and theoretical considerations help clarify the relationship between basal shearing and internal dissipation in snow avalanches.

Bartelt, P. A.; Platzer, K.

2006-12-01

14

Integrated CNT sensors in polymer microchannel for gas-flow shear-stress measurement  

Microsoft Academic Search

We have developed CNT sensors for gas-flow shear stress measurement inside a polymethylmethacrylate (PMMA) microchannel. An array of sensors is fabricated by using dielectrophoretic (DEP) technique to manipulate bundled single-walled carbon nanotubes (SWNTs) across the gold microelectrodes on a PMMA substrate. The sensors are then integrated in a PMMA microchannel, which is fabricated by SU-8 molding\\/hot-embossing technique. Since the sensors

Winnie W. Y. Chow; Wen J. Li; Steve C. H. Tung

2008-01-01

15

Development of a Thermo-Optical Sensor for Measurements of Wall Shear Stress Magnitude and Direction  

Microsoft Academic Search

\\u000a In recent years, investigations regarding novel thermo-optical techniques for the visualization and quantification of wall\\u000a shear stress distributions were conducted, [1], [2], [3]. These techniques correlate the temperature field on a structure\\u000a to the near wall flow. Based on these findings, a new sensor was developed that is capable of measuring skin friction magnitude\\u000a and direction as well as visualizing

Ilka Rudolph; Matthias Reyer; Wolfgang Nitsche

16

Yield shear stress and disaggregating shear stress of human blood  

NASA Astrophysics Data System (ADS)

This review presents two distinct rheological parameters of blood that have the potential to indicate blood circulation adequacy: yield shear stress (YSS) and disaggregating shear stress (DSS). YSS and DSS reflect the strength of red blood cell (RBC) aggregation in suspension under static and dynamic conditions, respectively. YSS, defined as the critical stress to disperse RBC aggregates under static conditions, was found to be dependent upon hematocrit, fibrinogen, and red cell deformability, but not temperature. DSS, defined as the minimum shear stress to disperse RBC aggregates under dynamic conditions, is dependent upon fibrinogen, red cell deformability, and temperature but not hematocrit. Owing to recent advances in measurement technology, these two parameters can be easily measured, and thus, their clinical significance in blood circulation can be verified.

Jung, Jinmu; Lee, Byoung-Kwon; Shin, Sehyun

2014-05-01

17

Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet.  

PubMed

Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. The exact cause and mechanism of the progression of AV calcification is unknown, although mechanical forces have been known to play a role. It is thus important to characterize the mechanical environment of the AV. In the current study, we establish a methodology of measuring shear stresses experienced by the aortic surface of the AV leaflets using an in vitro valve model and adapting the laser Doppler velocimetry (LDV) technique. The valve model was constructed from a fresh porcine aortic valve, which was trimmed and sutured onto a plastic stented ring, and inserted into an idealized three-lobed sinus acrylic chamber. Valve leaflet location was measured by obtaining the location of highest back-scattered LDV laser light intensity. The technique of performing LDV measurements near to biological surfaces as well as the leaflet locating technique was first validated in two phantom flow systems: (1) steady flow within a straight tube with AV leaflet adhered to the wall, and (2) steady flow within the actual valve model. Dynamic shear stresses were then obtained by applying the techniques on the valve model in a physiologic pulsatile flow loop. Results show that aortic surface shear stresses are low during early systole (<5 dyn/cm²) but elevated to its peak during mid to late systole at about 18-20 dyn/cm². Low magnitude shear stress (<5 dyn/cm²) was observed during early diastole and dissipated to zero over the diastolic duration. Systolic shear stress was observed to elevate only with the formation of sinus vortex flow. The presented technique can also be used on other in vitro valve models such as congenitally geometrically malformed valves, or to investigate effects of hemodynamics on valve shear stress. Shear stress data can be used for further experiments investigating effects of fluid shear stress on valve biology, for conditioning tissue engineered AV, and to validate numerical simulations. PMID:21744927

Yap, Choon Hwai; Saikrishnan, Neelakantan; Tamilselvan, Gowthami; Yoganathan, Ajit P

2011-06-01

18

Method for measuring surface shear stress magnitude and direction using liquid crystal coatings  

NASA Technical Reports Server (NTRS)

A method is provided for determining surface shear magnitude and direction at every point on a surface. The surface is covered with a shear stress sensitive liquid crystal coating and illuminated by white light from a normal direction. A video camera is positioned at an oblique angle above the surface to observe the color of the liquid crystal at that angle. The shear magnitude and direction are derived from the color information. A method of calibrating the device is also provided.

Reda, Daniel C. (inventor.)

1995-01-01

19

A laminar-flow chamber assay for measuring bacterial adhesion under shear stress.  

PubMed

Shear stress levels generated by circulating blood have a strong impact on biological processes taking place in the vasculature. It is therefore important to take them into account when studying infectious agents targeting the endothelium. Here we describe a protocol using disposable laminar-flow chambers and video microcopy to study bacterial infections in an environment that mimics the bloodstream. We initially focused on the interaction of Neisseria meningitidis with human endothelial cells and determined that shear stress is an important factor for the pathogen's initial adhesion and for the formation of micro-colonies. The experimental set-up can be used to investigate other pathogens that interact with the endothelium as well as with other sites where shear stress is present. PMID:21993647

Soyer, Magali; Duménil, Guillaume

2012-01-01

20

Dynamic pressure and shear stress measurements on the stator wall of whirling annular seals  

E-print Network

fluctuations decrease along the seal to the exit where increased azimuthal momentum and decreased axial velocity cause them to increase again. A correlation between the ratio of Ta/Re is seen to exist, suggesting that the flow field shear stress and pressure...

Winslow, Robert Bradley

2012-06-07

21

Boundary Shear Stress Along Vegetated Streambanks  

NASA Astrophysics Data System (ADS)

Sediment, a leading cause of water quality impairment, damages aquatic ecosystems and interferes with recreational uses and water treatment processes. Streambank retreat can contribute as much as 85% of watershed sediment yield. Vegetation is an important component of stream restoration designs used to control streambank retreat, but vegetation effects on streambank boundary shear stress (SBSS) need to be quantified. The overall goal of this experiment is to predict boundary shear stress along vegetated streambanks. This goal will be met by determining a method for measuring boundary shear stress in the field along hydraulically rough streambanks, evaluating the effects of streambank vegetation on boundary shear stress in the field, and developing predictive methods based on measurable vegetative properties. First, three streambank vegetation types (herbaceous, shrubbery, and woody) will be modeled in a flume study to examine both boundary shear stress measurement theory and instruments for field use. An appropriate method (law of the wall, Reynold's stresses, TKE, or average wall shear stress) and field instrument (ADV, propeller, or Pitot tube) will be selected, resulting in a field technique to measure SBSS. Predictive methods for estimating SBSS, based on common vegetation measurements, will be developed in the flume study and validated with field data. This research is intended to improve our understanding of the role of riparian vegetation in stream morphology by evaluating the effects of vegetation on boundary shear stress, providing insight to the type and density of vegetation required for streambank stability. The results will also aide in quantifying sediment inputs from streambanks, providing quantitative information for stream restoration projects and watershed management planning.

Clark, L. A.; Wynn, T.

2007-12-01

22

Direct, Real-Time Measurement of Shear Stress-Induced Nitric Oxide Produced from Endothelial Cells In Vitro  

PubMed Central

Nitric oxide (NO) produced by the endothelium is involved in the regulation of vascular tone. Decreased NO production or availability has been linked to endothelial dysfunction in hypercholesterolemia and hypertension. Shear stress-induced NO release is a well-established phenomenon, yet the cellular mechanisms of this response are not completely understood. Experimental limitations have hindered direct, real-time measurements of NO under flow conditions. We have overcome these challenges with a new design for a parallel-plate flow chamber. The chamber consists of two compartments, separated by a Transwell® membrane, which isolates a NO recording electrode located in the upper compartment from flow effects. Endothelial cells are grown on the bottom of the membrane, which is inserted into the chamber flush with the upper plate. We demonstrate for the first time direct real-time NO measurements from endothelial cells with controlled variations in shear stress. Step changes in shear stress from 0.1 dyn/cm2 to 6, 10 or 20 dyn/cm2 elicited a transient decrease in NO followed by an increase to a new steady state. An analysis of NO transport suggests that the initial decrease is due to the increased removal rate by convection as flow increases. Furthermore, the rate at which the NO concentration approaches the new steady state is related to the time-dependent cellular response rather than transport limitations of the measurement configuration. Our design offers a method for studying the kinetics of the signaling mechanisms linking NO production with shear stress as well as pathological conditions involving changes in NO production or availability. PMID:20719252

Andrews, Allison M.; Jaron, Dov; Buerk, Donald G.; Kirby, Patrick L.; Barbee, Kenneth A.

2010-01-01

23

In situ measurements of erosion shear stress and geotechnical shear strength of the intertidal sediments of the experimental managed realignment scheme at Tollesbury, Essex, UK  

NASA Astrophysics Data System (ADS)

Managed realignment is one of several 'soft' engineering options which may reduce the costs of coastal defence, provide a more 'natural' response to the problem of rising sea levels and at the same time deliver environmental, specifically nature conservation, benefits. The success of this technique depends on the ability of the soils and sediments within the site to resist the erosive action of waves and tidal currents and allow sediment accretion to occur, at least at a rate equal to mean sea-level rise. Once a critical shear stress, ?0 crt exerted by the moving fluids over the bed, is exceeded erosion will occur. A cohesive strength meter (CSM) and the fall-cone method were used to gather data, in situ on the strength and stability of sediments from an experimental managed realignment site and an adjacent, established saltmarsh in south-east England. Following six years of regular tidal cover, the underlying agricultural soil appeared both very strong (mean surface shear strength, ? f=228 kPa) and highly resistant to erosion ( ? 0 crt=6.23 N m -2). During this period much of the site had been covered by sediment, and saltmarsh plants ( Salicornia europaea) had become established above the mean high water neap tide (MHWN) level. Above MHWN level (tidal cover time <15%) sediments had greater bulk densities and lower water contents which resulted in a moderate shear strength (? f=11.6 kPa) and resistance to erosion (? 0 crt=2.45 N m -2) . Below MHWN, where sediment accretion rates were greatest, poor consolidation resulted in very high water contents and low bulk densities. These areas were at the highest potential risk of erosion (? 0 crt=1.5 N m -2) and had very low shear strengths (? f=0.33 kPa) . Where sediment exceeded 25 cm depth, gullies formed allowing their banks and adjacent margins to drain faster than the surrounding sediment. This led to a significant increase in bed strength (? f=10.8 kPa) and stability (? 0 crt=4.3 N m -2) . These gullies were probably the early stages of the complex creek patterns characteristic of the adjacent, established saltmarsh. The established saltmarsh was rich in plants and had a well-developed (aggregated) soil structure. These soils had a moderate to high resistance to erosion (? 0 crt=2.45 N m -2) and shear strength (? f=25.6 kPa) . Undrained sediment shear strength, ?f, obtained with the fall-cone apparatus can also provide a useful indication of critical erosion shear stress, ?0 crt . Values of ?0 crt , measured across this site were all relatively large compared with computed bed stresses arising from locally generated waves. Thus this experimental managed realignment site was found to be primarily depositional and was thus successfully achieving the twin aims of protecting the coast from erosion and extending a rich ecosystem.

Watts, C. W.; Tolhurst, T. J.; Black, K. S.; Whitmore, A. P.

2003-11-01

24

Development of Hybrid Sensor Arrays for Sensor Arrays for Simultaneous Measurement of Pressure and Shear Stress Distribution  

NASA Technical Reports Server (NTRS)

This document reports on the progress in developing hybrid sensors for the simultaneous measurement of pressure and shear stress. The key feature for the success of the proposed hybrid sensor array is the ability to deposit Cu-Ni alloy with proper composition (55 - 45) on a silicon wafer to form a strain gage. This alloy strain gage replaces the normally used Si strain gages in MEMS, which are highly nonlinear and temperature dependent. The copper nickel, with proper composition (55 - 45), was successfully deposited on a silicon wafer with a few trials during this period of the project. Pictures of the Cu-Ni alloy strain gage and the x-ray spectra indicating the composition are shown. The planned tests are also reviewed.

2000-01-01

25

Bayesian lensing shear measurement  

NASA Astrophysics Data System (ADS)

We derive an estimator of weak gravitational lensing shear from background galaxy images that avoids noise-induced biases through a rigorous Bayesian treatment of the measurement. The derived shear estimator disposes with the assignment of ellipticities to individual galaxies that is typical of previous approaches to galaxy lensing. Shear estimates from the mean of the Bayesian posterior are unbiased in the limit of large number of background galaxies, regardless of the noise level on individual galaxies. The Bayesian formalism requires a prior, describing the (noiseless) distribution of the target galaxy population over some parameter space; this prior can be constructed from low-noise images of a subsample of the target population, attainable from long integrations of a fraction of the survey field. We find two ways to combine this exact treatment of noise with rigorous treatment of the effects of the instrumental point spread function (PSF) and sampling. The Bayesian model-fitting (BMF) method assigns a likelihood of the pixel data to galaxy models (e.g. Sérsic ellipses), and requires the unlensed distribution of galaxies over the model parameters as a prior. The Bayesian Fourier domain (BFD) method compresses the pixel data to a small set of weighted moments calculated after PSF correction in Fourier space. It requires the unlensed distribution of galaxy moments as a prior, plus derivatives of this prior under applied shear. A numerical test using a simplified model of a biased galaxy measurement process demonstrates that the Bayesian formalism recovers applied shears to <1 part in 103 accuracy as well as providing accurate uncertainty estimates. BFD is the first shear measurement algorithm that is model free and requires no approximations or ad hoc assumptions in correcting for the effects of PSF, noise, or sampling on the galaxy images. These algorithms are good candidates for attaining the part-per-thousand shear inference required for hemisphere-scale weak gravitational lensing surveys. BMF has the drawback that shear biases will occur since galaxies do not fit any finite-parameter model, but has the advantage of being robust to missing data or non-stationary noise. Both BMF and BFD methods are readily extended to use data from multiple exposures and to inference of lensing magnification.

Bernstein, Gary M.; Armstrong, Robert

2014-02-01

26

Shear stress in atherosclerotic plaque determination.  

PubMed

Atherosclerosis initiates at predictable focal sites near arterial branches and curves, where blood flow is disturbed and shear stress is complex. Endothelial shear stress is the tangential stress derived from the friction of the flowing blood on the endothelial surface of the arterial wall. It is a key factor in modulating endothelial cell gene expression and vascular development and remodeling. Increasing evidences suggest that shear stress patterns have a strong relationship with atherosclerotic features. Moreover, variations in the local artery geometry during atherogenesis further modify flow shear stress characteristics, which contribute to the rupture site at the plaque upstream. In this study, we summarize the mechanistic evidences that associate shear stress patterns with determined atherosclerotic plaque features. An enhanced understanding of the relationship and pathophysiological function of shear stress patterns in atherosclerotic plaque features is essential, which may provide early prediction of clinical risk and guide individualized treatment strategies. In the current review, we analyzed the function of shear stress on the determination of atherosclerotic lesion and provided an update on the mechanotransduction of shear stress, gene expression regulation, and atherosclerotic plaque development and rupture. PMID:25165867

Li, Xiaohong; Yang, Qin; Wang, Zuo; Wei, Dangheng

2014-12-01

27

Relative Contributions of Interface Pressure, Shear Stress, and Temperature on Ischemic-induced, Skin-reactive Hyperemia in Healthy Volunteers: A Repeated Measures Laboratory Study.  

PubMed

Although the primary risk factors for pressure ulcer development - pressure, shear, skin temperature, moisture, and friction - have been identified for decades, the relative contribution of each to this risk remains unclear. To confirm the results of and expand upon earlier research into the relative contributions of interface pressures, shear stress, and skin temperature among 4 healthy volunteers, a study involving 6 additional healthy 40- to 75-year-old volunteers was conducted and results of the 2 studies were pooled. All 3 variables (interface pressures, shear stress, and skin temperature) were systematically and randomly varied. In the prone position, volunteers each underwent 18 test conditions representing different combinations of temperature (28? C, 32? C, 36? C), pressure (8.0 and 13.3 kPa), and shear (0, 6.7, and 14.0 kPa) using a computer-controlled indenter applied to the sacrum for 20 minutes exerting weights of 100 g and 200 g to induce 0.98 N and 1.96 N of shear force, respectively. Each condition was tested twice, resulting in a total of 360 trials. Magnitude of postload reactive hyperemia as an index of ischemia was measured by laser Doppler flowmetry. Fixed effects regression models were used to predict 3 different indices of reactive hyperemic magnitude. Friedman tests were performed to compare the reactive hyperemia among 3 different skin temperatures or shear stresses under the same amount of localized pressure. In all regression models, pressure and temperature were highly significant predictors of the extent of reactive hyperemia (P <0.0001 and P <0.0001, respectively); the contributions of shear stress were not statistically significant (P = 0.149). With higher temperature, reactive hyperemia increased significantly, especially at greater localized pressure and shear stress, and the difference was more profound between 32? C and 36? C than between 28? C and 32? C. These results confirm that, in laboratory settings, temperature is an important factor in tissue ischemia. Additional studies examining the relative importance of pressure, shear, and temperature and potential effects of lowering temperature on tissue ischemia in healthy volunteers and patients at risk for pressure ulcer development are warranted. Because deformation at weight-bearing areas often results in blood flow occlusion, actively lowering the temperature may reduce the severity of ischemia and lower pressure ulcer risk. In this study, shear did not appear to contribute to ischemia in the dermal tissues when assessed using laser Doppler; further work is needed to examine its effect on deeper layers, particularly with regard to nonischemic mechanisms. PMID:25654778

Lachenbruch, Charlie; Tzen, Yi-Ting; Brienza, David; Karg, Patricia E; Lachenbruch, Peter A

2015-02-01

28

Time-resolved particle image velocimetry measurements with wall shear stress and uncertainty quantification for the FDA benchmark nozzle model  

E-print Network

We present validation of benchmark experimental data for computational fluid dynamics (CFD) analyses of medical devices using advanced Particle Image Velocimetry (PIV) processing and post-processing techniques. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Time-resolved PIV analysis was performed in five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2,000, 5,000, and 8,000. Images included a two-fold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were comput...

Raben, Jaime S; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

2014-01-01

29

The stress profile in a sheared granular column  

NASA Astrophysics Data System (ADS)

It has been known for several centuries that the normal stress at the base of a column of granular material deviates from the value dictated by the hydrostatic balance. This was explained by Janssen (1895) as being due to the shear stress imposed by the confining walls on the granular column, as a result of grain-wall friction. The question we address in this presentation is, what is the stress field when the column is sheared? Depending on the assumptions on the kinematics, plasticity theories predict that the stress profile is similar either to that in a static column, or to that in a sheared fluid column. Here, we report the results of our experimental study of slow shear of a granular material in a cylindrical Couette cell, in which all components of the stress were measured at the stationary outer cylinder. The stress was measured as a function of distance from the free surface. The results of our experiments are intriguing: the radial normal stress deviates strongly from the predictions of all available theories and previous experimental measurements. The axial shear stress changes sign when a static column is sheared. We describe these results, and speculate as to which type of theory might explain the observations.

Nott, Prabhu; Mehandia, Vishwajeet; Jyotsna Gutam, Kamala

2011-11-01

30

Continuum stress characteristics inside shear bands  

NASA Astrophysics Data System (ADS)

A defining aspect of the large strain, fully developed plastic flow regime, or "critical state", for granular materials undergoing localized failure is the continual growth of new force chains amidst collapse by buckling of old force chains in the persistent shear band. This paper explores the constitutive response inside shear bands, in particular, the birth-death evolution of force chains for a Cosserat medium, whereby closure relationships for stresses and couple stresses satisfy the isostatic condition, albeit in a spatiotemporal average sense only. The continuum stress-equilibrium relations comprise a hyperbolic system of partial differential equations giving rise to characteristic lines referred to in the literature as stress chains.

Tordesillas, Antoinette; Peters, John F.; Shi, Jingyu

2013-06-01

31

Time-dependent polymer rheology under constant stress and under constant shear conditions.  

NASA Technical Reports Server (NTRS)

A kinetic rate theory previously presented for describing non-Newtonian phenomena has been further modified to predict the flow behavior of viscoelastic materials under constant stress conditions. The thixotropic shear stress or shear rate is predicted by the kinetic theory, and the experimental stress or shear rate is obtained by modifying the thixotropic value by a stress or shear rate retardation term. The retardation term stems from a Maxwellian approach for stress retardation. In order to test the validity of this approach, transient and steady-state data were obtained for two solutions of polymethylmethacrylate in diethylphthalate. Both constant stress measurements and constant shear rate data were taken over a broad range.

Lee, K. H.; Brodkey, R. S.

1971-01-01

32

Adjustable shear stress erosion and transport flume  

DOEpatents

A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.

Roberts, Jesse D. (Carlsbad, NM); Jepsen, Richard A. (Carlsbad, NM)

2002-01-01

33

Characterization of fractures subjected to normal and shear stress  

NASA Astrophysics Data System (ADS)

Results from a series of laboratory experiments to determine fracture specific stiffness, for a fracture subjected to shear and normal stress, are presented and analyzed. The experimental work focuses on the determination of relations between normal and shear fracture specific stiffness and between spatial distribution of fracture specific stiffness and fluid flow through the fracture The ratio of shear to normal fracture specific stiffness is experimentally investigated on a fracture subjected to shear as well as normal stress. Synthetic fractures made of gypsum and lucite were prepared with different fracture surface conditions: either well-mated or non-mated. For well-mated fracture surfaces, asperities were created by casting gypsum against sandpaper. A block of gypsum was cast against the sandpaper and then a second block was cast against the first block such that the two contact surfaces were well-mated. The surface roughness was controlled by using the sandpapers with different average grit size. Non-mated fracture surfaces were fabricated with two lucite blocks that were polished (lucite PL) or sand-blasted (lucite SB) along their contact surface. In the experiments, each specimen was subjected to normal and shear loading while the fracture was probed with transmitted and reflected compressional and shear waves. Shear and normal fracture specific stiffnesses were calculated using the displacement discontinuity theory. For non-mated fractures, the stiffness ratio was not sensitive to the application of shear stress and, as normal stress increased, approached a theoretical ratio which was determined assuming that the transmission of compressional and shear waves was equal. The stiffness ratio obtained from well-mated fractures ranged from 0.5 to 1.4, which deviated from the conventional assumption that shear and normal fracture specific stiffness are equal. The stiffness ratio increased with increasing surface roughness and with increasing shear stress. For well-mated surfaces under normal compression and no shear, the theoretical ratio gave a good approximation to experiment measurements. During shear, at constant load, and for well-mated fractures with large surface roughness, the stiffness ratio strongly depended on the shear fracture specific stiffness and increased with shear up to a maximum prior to failure. The spatial variability of fracture specific stiffness along a fracture was investigated seismically on granite specimens with a single fracture. Seismic measurements on intact and fractured granite specimens were obtained as a function of stress. The granite matrix exhibited stress-sensitivity due to the existence of micro-cracks and was weakly anisotropic, with a ratio of about 0.9 for shear wave velocities in two orthogonal directions. For fractured granite specimens, transmission of P- and S- waves across a fracture significantly increased as the fracture compressed. The increase of transmission was interpreted as the increase of fracture specific stiffness. Spectral analysis on the transmitted waves showed that the transmission of high frequency components of the signals increased and the dinant frequency approached the value of the intact specimen. The heterogeneity of the granite material resulted in a +/-8˜12% variation in stiffness, which depended on the selection of an intact standard. Fracture specific stiffness was estimated at the dominant frequency of 0.3 MHz for normal specific stiffness and 0.5 MHz for shear. Fracture specific stiffness was non-uniformly distributed along the fracture plane and changed locally as a function of stress. The spatial variability of stiffness exceeded the variation of stiffness caused by the heterogeneity of granite matrix. It was found that local fracture geometry, e.g. local surface roughness distribution or local micro slope angles, influenced the magnitude of local shear fracture specific stiffness. The more uniform the asperity heights, the stiffer the fracture. Also, high micro-slope angles increased the shear fracture specific stiffness. The seismic res

Choi, Min-Kwang

34

Wall shear stress measured by phase contrast cardiovascular magnetic resonance in children and adolescents with pulmonary arterial hypertension  

PubMed Central

Background Pulmonary arterial hypertension (PAH) is a devastating disease with significant morbidity and mortality. At the macroscopic level, disease progression is observed as a complex interplay between mean pulmonary artery pressure, pulmonary vascular resistance, pulmonary vascular stiffness, arterial size, and flow. Wall shear stress (WSS) is known to mediate or be dependent on a number of these factors. Given that WSS is known to promote architectural vessel remodeling, it is imperative that the changes of this factor be quantified in the presence of PAH. Methods In this study, we analyzed phase contrast imaging of the right pulmonary artery derived from cardiovascular magnetic resonance to quantify the local, temporal and circumferentially averaged WSS of a PAH population and a pediatric control population. In addition, information about flow and relative area change were derived. Results Although the normotensive and PAH shear waveform exhibited a WSS profile which is uniform in magnitude and direction along the vessel circumference at systole, time-averaged WSS (2.2?±?1.6 vs. 6.6?±?3.4 dynes/cm2, P?=?0.018) and systolic WSS (8.2?±?5.0 v. 20.0?±?9.1 dynes/cm2, P?=?0.018) was significantly depressed in the PAH population as compared to the controls. BSA-indexed PA diameter was significantly larger in the PAH population (1.5?±?0.4 vs. 0.7?±?0.1 cm/m2, P?=?0.003). Conclusions In the presence of preserved flow rates through a large PAH pulmonary artery, WSS is significantly decreased. This may have implications for proximal pulmonary artery remodeling and cellular function in the progression of PAH. PMID:24034144

2013-01-01

35

The Concept of Shear Stress in a Solid Material  

ERIC Educational Resources Information Center

Discusses problems encountered in explaining shear stress of a solid in terms of forces on a "pack of cards". Suggest the use of "pure" shear stress rather than "simple" shear stress in presentation to secure a better understanding. Included is an example illustration E occurrence of pure stress. (CC)

Culpin, M. F.

1974-01-01

36

Prediction of plantar shear stress distribution by artificial intelligence methods.  

PubMed

Shear forces under the human foot are thought to be responsible for various foot pathologies such as diabetic plantar ulcers and athletic blisters. Frictional shear forces might also play a role in the metatarsalgia observed among hallux valgus (HaV) and rheumatoid arthritis (RA) patients. Due to the absence of commercial devices capable of measuring shear stress distribution, a number of linear models were developed. All of these have met with limited success. This study used nonlinear methods, specifically neural network and fuzzy logic schemes, to predict the distribution of plantar shear forces based on vertical loading parameters. In total, 73 subjects were recruited; 17 had diabetic neuropathy, 14 had HaV, 9 had RA, 11 had frequent foot blisters, and 22 were healthy. A feed-forward neural network (NN) and adaptive neurofuzzy inference system (NFIS) were built. These systems were then applied to a custom-built platform, which collected plantar pressure and shear stress data as subjects walked over the device. The inputs to both models were peak pressure, peak pressure-time integral, and time to peak pressure, and the output was peak resultant shear. Root-mean-square error (RMSE) values were calculated to test the models' accuracy. RMSE/actual shear ratio varied between 0.27 and 0.40 for NN predictions. Similarly, NFIS estimations resulted in a 0.28-0.37 ratio for local peak values in all subject groups. On the other hand, error percentages for global peak shear values were found to be in the range 11.4-44.1. These results indicate that there is no direct relationship between pressure and shear magnitudes. Future research should aim to decrease error levels by introducing shear stress dependent variables into the models. PMID:19725696

Yavuz, Metin; Ocak, Hasan; Hetherington, Vincent J; Davis, Brian L

2009-09-01

37

ESTIMATION OF EFFECTIVE SHEAR STRESS WORKING ON FLAT SHEET MEMBRANE USING FLUIDIZED MEDIA IN MBRs  

NASA Astrophysics Data System (ADS)

This study was aimed at estimating effective shear stress working on flat sheet membrane by the addition of fluidized media in MBRs. In both of laboratory-scale aeration tanks with and without fluidized media, shear stress variations on membrane surface and water phase velocity variations were measured and MBR operation was conducted. For the evaluation of the effective shear stress working on membrane surface to mitigate membrane surface, simulation of trans-membrane pressure increase was conducted. It was shown that the time-averaged absolute value of shear stress was smaller in the reactor with fluidized media than without fluidized media. However, due to strong turbulence in the reactor with fluidized media caused by interaction between water-phase and media and also due to the direct interaction between membrane surface and fluidized media, standard deviation of shear stress on membrane surface was larger in the reactor with fluidized media than without media. Histograms of shear stress variation data were fitted well to normal distribution curves and mean plus three times of standard deviation was defined to be a maximum shear stress value. By applying the defined maximum shear stress to a membrane fouling model, trans-membrane pressure curve in the MBR experiment was simulated well by the fouling model indicting that the maximum shear stress, not time-averaged shear stress, can be regarded as an effective shear stress to prevent membrane fouling in submerged flat-sheet MBRs.

Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi; Mishima, Iori

38

In Vitro Shear Stress Measurements Using Particle Image Velocimetry in a Family of Carotid Artery Models: Effect of Stenosis Severity, Plaque Eccentricity, and Ulceration  

PubMed Central

Atherosclerotic disease, and the subsequent complications of thrombosis and plaque rupture, has been associated with local shear stress. In the diseased carotid artery, local variations in shear stress are induced by various geometrical features of the stenotic plaque. Greater stenosis severity, plaque eccentricity (symmetry) and plaque ulceration have been associated with increased risk of cerebrovascular events based on clinical trial studies. Using particle image velocimetry, the levels and patterns of shear stress (derived from both laminar and turbulent phases) were studied for a family of eight matched-geometry models incorporating independently varied plaque features – i.e. stenosis severity up to 70%, one of two forms of plaque eccentricity, and the presence of plaque ulceration). The level of laminar (ensemble-averaged) shear stress increased with increasing stenosis severity resulting in 2–16 Pa for free shear stress (FSS) and approximately double (4–36 Pa) for wall shear stress (WSS). Independent of stenosis severity, marked differences were found in the distribution and extent of shear stress between the concentric and eccentric plaque formations. The maximum WSS, found at the apex of the stenosis, decayed significantly steeper along the outer wall of an eccentric model compared to the concentric counterpart, with a 70% eccentric stenosis having 249% steeper decay coinciding with the large outer-wall recirculation zone. The presence of ulceration (in a 50% eccentric plaque) resulted in both elevated FSS and WSS levels that were sustained longer (?20 ms) through the systolic phase compared to the non-ulcerated counterpart model, among other notable differences. Reynolds (turbulent) shear stress, elevated around the point of distal jet detachment, became prominent during the systolic deceleration phase and was widely distributed over the large recirculation zone in the eccentric stenoses. PMID:25007248

Kefayati, Sarah; Milner, Jaques S.; Holdsworth, David W.; Poepping, Tamie L.

2014-01-01

39

Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics.  

PubMed

Evolution of intracranial aneurysms is known to be related to hemodynamic forces such as wall shear stress (WSS) and maximum shear stress (MSS). Estimation of these parameters can be performed using numerical simulations with computational fluid dynamics (CFD), but can also be directly measured with magnetic resonance imaging (MRI) using a time-dependent 3D phase-contrast sequence with encoding of each of the three components of the velocity vectors (7D-MRV). To study the accuracy of 7D-MRV in estimating these parameters in vivo, in comparison with CFD, 7D-MRV and patient-specific CFD modeling was performed for 3 patients who had intracranial aneurysms. Visual and quantitative analyses of the flow pattern and distribution of velocities, MSS, and WSS were performed using the two techniques. Spearman's coefficients of correlation between the two techniques were 0.56 for the velocity field, 0.48 for MSS, and 0.59 for WSS. Visual analysis and Bland-Altman plots showed good agreement for flow pattern and velocities but large discrepancies for MSS and WSS. These results indicate that 7D-MRV can be used in vivo to measure velocity flow fields and for estimating MSS and WSS. Currently, however, this method cannot accurately quantify the latter two parameters. PMID:19161132

Boussel, Loic; Rayz, Vitaliy; Martin, Alastair; Acevedo-Bolton, Gabriel; Lawton, Michael T; Higashida, Randall; Smith, Wade S; Young, William L; Saloner, David

2009-02-01

40

Determining flow type, shear rate and shear stress in magmas from bubble shapes and orientations  

Microsoft Academic Search

We interpret the shear environments that produced bubble textures in obsidian samples using the results of theoretical, numerical and experimental studies on the deformation of bubbles in shear flows. In particular, we use the shapes and orientations of bubbles (vesicles) in obsidian to estimate shear rates and shear stresses, and assess flow type (simple vs. pure shear). This technique can

A. C. Rust; Michael Manga; K. V. Cashman

2003-01-01

41

A Rotary Flow Channel for Shear Stress Sensor Calibration  

NASA Technical Reports Server (NTRS)

A proposed shear sensor calibrator consists of a rotating wheel with the sensor mounted tangential to the rim and positioned in close proximity to the rim. The shear stress generated by the flow at the sensor position is simply tau(sub omega) = (mu)r(omega)/h, where mu is the viscosity of the ambient gas, r the wheel radius, omega the angular velocity of the wheel, and h the width of the gap between the wheel rim and the sensor. With numerical values of mu = 31 (mu)Pa s (neon at room temperature), r = 0.5 m, omega = 754 /s (7200 rpm), and h = 50.8 m, a shear stress of tau(sub omega) = 231 Pa can be generated. An analysis based on one-dimensional flow, with the flow velocity having only an angular component as a function of the axial and radial coordinates, yields corrections to the above simple formula for the curvature of the wheel, flatness of the sensor, and finite width of the wheel. It is assumed that the sensor mount contains a trough (sidewalls) to render a velocity release boundary condition at the edges of the rim. The Taylor number under maximum flow conditions is found to be 62.3, sufficiently low to obviate flow instability. The fact that the parameters entering into the evaluation of the shear stress can be measured to high accuracy with well-defined uncertainties makes the proposed calibrator suitable for a physical standard for shear stress calibration.

Zuckerwar, Allan J.; Scott, Michael A.

2004-01-01

42

A Two-Axis Direct Fluid Shear Stress Sensor  

NASA Technical Reports Server (NTRS)

This innovation is a miniature or micro sized semiconductor sensor design that provides two axis direct non-intrusive measurement of skin friction or wall shear stress in fluid flow. The sensor is fabricated by micro-electro-mechanical system (MEMS) technology, enabling small size and low cost reproductions. The sensors have been fabricated by utilizing MEMS fabrication processes to bond a sensing element wafer to a fluid coupling wafer. This layering technique provides for an out of plane dimension that is on the same order of length as the inplane dimensions. The sensor design has the following characteristics: a shear force collecting plate with dimensions that can be tailored to various application specific requirements such as spatial resolution, temporal resolution and shear force range and resolution. This plate is located coplanar to both the sensor body and flow boundary, and is connected to a dual axis gimbal structure by a connecting column or lever arm. The dual axis gimbal structure has torsional hinges with embedded piezoresistive torsional strain gauges which provide a voltage output that is correlated to the applied shear stress (and excitation current) on force collection plate that is located on the flow boundary surface (hence the transduction method). This combination of design elements create a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from the small shear stress on the flow boundary wall. This design as well as the use of back side electrical contacts establishes a non-intrusive method to quantitatively measure the shear force vector on aerodynamic bodies.

Adcock, Edward E.; Scott, Michael A.; Bajikar, Sateesh S.

2010-01-01

43

Wrinkling of reinforced plates subjected to shear stresses  

NASA Technical Reports Server (NTRS)

An analysis is made here of the problem of long plates with transverse stiffeners subject to shear. A typical example would be a long Wagner beam. The shear stress is calculated at which the web wrinkles and shear stress becomes a maximum. The equation is solved for both a condition of free support and rigidity of support on the edges.

Seydel, Edgar

1931-01-01

44

Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal  

NASA Technical Reports Server (NTRS)

The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

1996-01-01

45

Critical shear stresses in cohesive soils  

E-print Network

was measured by the deflection of a torque indicator connected to the soil sample on a scale calibrated to read directly the average shear on the surface of the soil sample. By varying the rotational speed of the outer cylinder, the shear on the surface... to thank the Department of Civil Engineering, University of Texas, for permitting me to use their scour apparatus for this study, and to acknowledge the guidance in the use of that apparatus provided by l 9 Dr. F. D. Masch of the University of Texas...

Rektorik, Robert James

1964-01-01

46

Application and improvement of Raupach's shear stress partitioning model  

NASA Astrophysics Data System (ADS)

Aeolian processes such as the entrainment, transport and redeposition of sand, soil or snow are able to significantly reshape the earth's surface. In times of increasing desertification and land degradation, often driven by wind erosion, investigations of aeolian processes become more and more important in environmental sciences. The reliable prediction of the sheltering effect of vegetation canopies against sediment erosion, for instance, is a clear practical application of such investigations to identify suitable and sustainable counteractive measures against wind erosion. This study presents an application and improvement of a theoretical model presented by Raupach (Boundary-Layer Meteorology, 1992, Vol.60, 375-395 and Journal of Geophysical Research, 1993, Vol.98, 3023-3029) which allows for quantifying the sheltering effect of vegetation against sediment erosion. The model predicts the shear stress ratios ?S'/? and ?S''/?. Here, ?S is the part of the total shear stress ? that acts on the ground beneath the plants. The spatial peak ?S'' of the surface shear stress is responsible for the onset of particle entrainment whereas the spatial mean ?S' can be used to quantify particle mass fluxes. The precise and accurate prediction of these quantities is essential when modeling wind erosion. Measurements of the surface shear stress distributions ?S(x,y) on the ground beneath live vegetation canopies (plant species: lolium perenne) were performed in a controlled wind tunnel environment to determine the model parameters and to evaluate the model performance. Rigid, non-porous wooden blocks instead of the plants were additionally tested for the purpose of comparison, since previous wind tunnel studies used exclusively artificial plant imitations for their experiments on shear stress partitioning. The model constant c, which is needed to determine the total stress ? for a canopy of interest and which remained rather unspecified to date, was found to be c ? 0.27. It was also found that the model parameter m, which relates ?S'' with ?S' and which is needed to determine the peak surface shear stress ?S'', is rather impractically defined in the original model formulation, because m is identified to be a function of the wind velocity, the roughness element shape and the roughness density. We propose an alternative, more universal definition of an a-parameter as a substitute for the m-parameter simply linearly relating ?S'' with ?S'. This strong linear relation is supported by the measurements and can be made plausible with simple fluid dynamical arguments. The advantage of a over m is that a is solely a function of the roughness element shape. Finally, a method is presented to determine the new a-parameter for different kinds of roughness elements with relatively simple experimental methods.

Walter, B. A.; Lehning, M.; Gromke, C.

2012-12-01

47

Surface shear stress fluctuations in the atmospheric surface layer  

NASA Astrophysics Data System (ADS)

A lightweight, high frequency response (25Hz), floating element sensor was used to measure wall shear stress fluctuations in the atmospheric surface layer formed over a salt flat at the SLTEST site, Utah, USA. The sensor uses a laser position measurement system to track the motion of the floating element which consisted of a 50mm diameter foam disc, as described by Heuer & Marusic (Meas. Sci. Tech., Vol. 16, 1644- -1649, 2005). The measurements were taken as part of an internationally coordinated experimental program designed to make extensive spatial and temporal measurements of velocity, temperature and wall shear stress of the surface layer. Velocity measurements were made with both a 30m high vertical array and a 100m wide horizontal array of sonic anemometers; 18 anemometers in total were employed. Cross-correlations of shear stress and streamwise velocity fluctuations were analysed in an attempt to identify structure angles in the flow. The results were also compared with experimental data from controlled, laboratory turbulent boundary layers having three orders of magnitude lower Reynolds number.

Monty, Jason; Hutchins, Nick; Chong, Min

2005-11-01

48

An Optical MEMS-Based Shear Stress Sensor for High Reynolds Number Applications  

Microsoft Academic Search

In an effort to extend wall shear stress measurements to high Reynolds number flows, a new MEMS- based optical shear stress sensor was fabricated and tested in the 2 feet wind tunnel at the California Institute of Technology for Reynolds numbers of up to 5.6 x 106. The description of this sensor and the test results are reported in this

D. Fourguette; D. Modarress; D. Wilson; M. Koochesfahani; M. Gharib

49

Wall shear stress estimates in coronary artery constrictions  

NASA Technical Reports Server (NTRS)

Wall shear stress estimates from laminar boundary layer theory were found to agree fairly well with the magnitude of shear stress levels along coronary artery constrictions obtained from solutions of the Navier Stokes equations for both steady and pulsatile flow. The relatively simple method can be used for in vivo estimates of wall shear stress in constrictions by using a vessel shape function determined from a coronary angiogram, along with a knowledge of the flow rate.

Back, L. H.; Crawford, D. W.

1992-01-01

50

Wall-Shear Stress Distribution in Turbulent Duct Flow  

NASA Astrophysics Data System (ADS)

The wall-shear stress sensor MPS^3 based on flexible micro-pillars has been used to experimentally assess the two-dimensional wall-shear stress distribution in turbulent duct flow at moderate Reynolds number. A sensor array covering an area of 90x125 viscous length-scales along the streamwise and spanwise direction, respectively and 1-D sensor-lines spanning 125 viscous length-scales have been applied. The results evidence the co-existence of low- and high-shear regions representing ``foot-prints'' of near-wall coherent structures. Applying Taylor's hypothesis allows to crudely assess the streamwise length-scales of the near-wall flow field. Especially the low-shear regions attain streamwise dimensions of approximately 1,000 viscous length-scales. These low-shear regions resemble long meandering bands locally interrupted and deflected by regions of high-shear stress. A qualitative comparison evidences the structures detected in the present study to be similar to wall-shear stress distributions reported in the literature and to structures found in higher regions of the boundary layer. The results allow assessing statistics of the streamwise and spanwise wall-shear stress distribution, such as convection velocities of wall-shear stress fluctuations, two-point-, and auto-correlations. Geometric properties of the streak-like wall-shear stress distributions will also be discussed.

Große, Sebastian; Schröder, Wolfgang

2008-11-01

51

Determining ow type, shear rate and shear stress in magmas from bubble shapes and orientations  

E-print Network

the shear environments that produced bubble textures in obsidian samples using the results of theoretical the shapes and orientations of bubbles (vesicles) in obsidian to estimate shear rates and shear stresses conduits, the origin of pyroclastic obsidian, and the emplacement history and dynamics of obsidian flows

Manga, Michael

52

In vitro measurements of velocity and wall shear stress in a novel sequential anastomotic graft design model under pulsatile flow conditions.  

PubMed

This study documents the superior hemodynamics of a novel coupled sequential anastomoses (SQA) graft design in comparison with the routine conventional end-to-side (ETS) anastomoses in coronary artery bypass grafts (CABG). The flow fields inside three polydimethylsiloxane (PDMS) models of coronary artery bypass grafts, including the coupled SQA graft design, a conventional ETS anastomosis, and a parallel side-to-side (STS) anastomosis, are investigated under pulsatile flow conditions using particle image velocimetry (PIV). The velocity field and distributions of wall shear stress (WSS) in the models are studied and compared with each other. The measurement results and WSS distributions, computed from the near wall velocity gradients reveal that the novel coupled SQA design provides: (i) a uniform and smooth flow at its ETS anastomosis, without any stagnation point on the artery bed and vortex formation in the heel region of the ETS anastomosis within the coronary artery; (ii) more favorable WSS distribution; and (iii) a spare route for the blood flow to the coronary artery, to avoid re-operation in case of re-stenosis in either of the anastomoses. This in vitro investigation complements the previous computational studies of blood flow in this coupled SQA design, and is another necessary step taken toward the clinical application of this novel design. At this point and prior to the clinical adoption of this novel design, in vivo animal trials are warranted, in order to investigate the biological effects and overall performance of this anastomotic configuration in vivo. PMID:25103345

Kabinejadian, Foad; Ghista, Dhanjoo N; Su, Boyang; Nezhadian, Mercedeh Kaabi; Chua, Leok Poh; Yeo, Joon Hock; Leo, Hwa Liang

2014-10-01

53

The role of shear stress in the pathogenesis of atherosclerosis  

Microsoft Academic Search

Although the pathobiology of atherosclerosis is a complex multifactorial process, blood flow-induced shear stress has emerged as an essential feature of atherogenesis. This fluid drag force acting on the vessel wall is mechanotransduced into a biochemical signal that results in changes in vascular behavior. Maintenance of a physiologic, laminar shear stress is known to be crucial for normal vascular functioning,

Kristopher S Cunningham; Avrum I Gotlieb

2005-01-01

54

Prediction of Shear Stress in Cerebral Julia Mikhal  

E-print Network

Prediction of Shear Stress in Cerebral Aneurysms Julia Mikhal Multiscale Modeling & Simulation ­ University of Twente PhD-TW Colloquium ­ April 08, 2010 #12;Cerebral Aneurysm This presentation: Aneurysm for model vessels and aneurysms J.Mikhal: Prediction of Shear Stress in Cerebral Aneurysms #12;Cerebral

Al Hanbali, Ahmad

55

An octahedral shear strain-based measure of SNR for 3D MR elastography  

Microsoft Academic Search

A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, gamma, is directly related to the shear modulus, mu, through the definition of shear stress, tau = mugamma. Therefore,

M. D. J. McGarry; E. E. W. Van Houten; P. R. Perriñez; A. J. Pattison; J. B. Weaver; K. D. Paulsen

2011-01-01

56

Instrumented Bolts Would Measure Shear Forces In Joints  

NASA Technical Reports Server (NTRS)

Bolts instrumented with strain gauges used to measure shear forces. Bolts installed in multiple-bolt lap joints to obtain data on distribution of stresses and deformations in and around joints. Strain gauges indicate share of applied load borne by each individual bolt. In original application, bolted panels made of advanced refractory composite materials designed to withstand use at temperatures up to 4,000 degrees F. Also applicable to other joint materials and measurement of shear loads in other connections such as, shear loads on shafts in pulleys or gears.

Sawyer, James Wayne; Mcwithey, Robert R.

1994-01-01

57

Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry.  

PubMed

Flow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vascular homeostasis. However, the mechanisms by which shear stress activates NO production remain unclear due in part to limitations in measuring NO, especially under flow conditions. Shear stress elicits the release of ATP, but the relative contribution of autocrine stimulation by ATP to flow-induced NO production has not been established. Furthermore, the importance of calcium in shear stress-induced NO production remains controversial, and in particular the role of capacitive calcium entry (CCE) has yet to be determined. We have utilized our unique NO measurement device to investigate the role of ATP autocrine signaling and CCE in shear stress-induced NO production. We found that endogenously released ATP and downstream activation of purinergic receptors and CCE plays a significant role in shear stress-induced NO production. ATP-induced eNOS phophorylation under static conditions is also dependent on CCE. Inhibition of protein kinase C significantly inhibited eNOS phosphorylation and the calcium response. To our knowledge, we are the first to report on the role of CCE in the mechanism of acute shear stress-induced NO response. In addition, our work highlights the importance of ATP autocrine signaling in shear stress-induced NO production. PMID:25386222

Andrews, Allison M; Jaron, Dov; Buerk, Donald G; Barbee, Kenneth A

2014-12-01

58

The origin of persistent shear stress in supercooled liquids  

NASA Astrophysics Data System (ADS)

The persistence of shear stress fluctuations in viscous liquids is a direct consequence of the non-zero shear stress of the local potential minima which couples stress relaxation to transitions between inherent structures. In simulations of 2D and 3D glass forming mixtures, we calculate the distribution of this inherent shear stress and demonstrate that the variance is independent of temperature and obeys a power law in density. The inherent stress is shown to involve only long wavelength fluctuations, evidence of the central role of the static boundary conditions in determining the residual stress left after the minimization of the potential energy. A temperature T? is defined to characterise the crossover from stress relaxation governed by binary collisions at high temperatures to low temperature relaxation dominated by the relaxation of the inherent stress. T? is found to coincide with the breakdown of the Stokes-Einstein scaling of diffusion and viscosity.

Abraham, Sneha; Harrowell, Peter

2012-07-01

59

Red blood cell damage by shear stress for different blood types  

NASA Astrophysics Data System (ADS)

In surgical practice, blood damage caused by medical devices is often a limiting factor in the duration of an acute procedure or in chronic exposures such as hemodialysis. In order to establish guidelines for designing medical devices, a study was conducted to determine the relationship between shear stress and damage to red blood cells using a concentric Couette device. By measuring the hemolysis level for various shear stresses and exposure times, a non-dimensional relationship between shear stress and blood damage for different blood types was established.

Arwatz, Gilad; Bedkowski, Katherine; Smits, Alexander

2011-11-01

60

The shear-stress intensity factor for a centrally cracked stiff-flanged shear web  

NASA Technical Reports Server (NTRS)

By use of the principle of superposition the stiff-flanged shear web is modeled mathematically by an infinite elastic strip with fixed longitudinal edges. The shear-stress intensity factor for a central longitudinal crack is calculated for various values of the ratio of strip width to crack length, h/a, in the range 0.1-10. The interaction of the crack with the boundaries is illustrated by boundary shear-stress distributions for three values of h/a. Some implications of the results for the design of damage-tolerant shear webs are discussed briefly.

Fichter, W. B.

1976-01-01

61

ESTIMATION OF SHEAR STRESS WORKING ON SUBMERGED HOLLOW FIBRE MEMBRANE BY CFD METHOD IN MBRs  

NASA Astrophysics Data System (ADS)

This study was conducted to evaluate shear stress working on submerged hollow fibre membrane by CFD (Computation Fluid Dynamics) method in MBRs. Shear stress on hollow fibre membrane caused by aeration was measured directly using a two-direction load sensor. The measurement of water-phase flow velocity was done also by using laser doppler velocimeter. It was confirmed that the shear stress was possible to be evaluated from the water-phase flow velocityby the result of comparison of time average shear stress actually measured with one hollow fibre membrane and the one calculated by the water-phase flow velocity. In the estimation of the water-phase flow velocity using the CFD method, time average water-phase flow velocity estimated by consideration of the fluid resistance of the membrane module nearly coincided with the measured values, and it was shown that it was possible to be estimated also within the membrane module. Moreover, the measured shear stress and drag force well coincided with the values calculated from the estimated water-phase flow velocity outside of membrane module and in the center of membrane module, and it was suggested that the shear stress on the hollow fibre membrane could be estimated by the CFD method in MBRs.

Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi

62

Influence of shear and deviatoric stress on the evolution of permeability in fractured rock  

NASA Astrophysics Data System (ADS)

The evolution of permeability in fractured rock as a function of effective normal stress, shear displacement, and damage remains a complex issue. In this contribution, we report on experiments in which rock surfaces were subject to direct shear under controlled pore pressure and true triaxial stress conditions while permeability was monitored continuously via flow parallel to the shear direction. Shear tests were performed in a pressure vessel under drained conditions on samples of novaculite (Arkansas) and diorite (Coso geothermal field, California). The sample pairs were sheared to 18 mm of total displacement at 5 ?m/s at room temperature and at effective normal stresses on the shear plane ranging from 5 to 20 MPa. Permeability evolution was measured throughout shearing via flow of distilled water from an upstream reservoir discharging downstream of the sample at atmospheric pressure. For diorite and novaculite, initial (preshear) fracture permeability is 0.5-1 × 10-14 m2 and largely independent of the applied effective normal stresses. These permeabilities correspond to equivalent hydraulic apertures of 15-20 ?m. Because of the progressive formation of gouge during shear, the postshear permeability of the diorite fracture drops to a final steady value of 0.5 × 10-17 m2. The behavior is similar in novaculite but the final permeability of 0.5 × 10-16 m2 is obtained only at an effective normal stress of 20 MPa.

Faoro, Igor; Niemeijer, Andre; Marone, Chris; Elsworth, Derek

2009-01-01

63

Production of functional proteins: balance of shear stress and gravity  

NASA Technical Reports Server (NTRS)

The present invention provides a method for production of functional proteins including hormones by renal cells in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-a-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

2004-01-01

64

Production of functional proteins: balance of shear stress and gravity  

NASA Technical Reports Server (NTRS)

The present invention provides a method for production of functional proteins including hormones by renal cells in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-a-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

2007-01-01

65

Production of functional proteins: balance of shear stress and gravity  

NASA Technical Reports Server (NTRS)

A method for the production of functional proteins including hormones by renal cells in a three dimensional culturing process responsive to shear stress uses a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-.alpha.-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D.sub.3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating an in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

2011-01-01

66

Shear Stress Drives Local Variation in Invertebrate Drift in a Large River  

NASA Astrophysics Data System (ADS)

Recent advances in physical stream flow measurements using acoustic Doppler current profilers (ADCPs) have yielded important insights in hydrology and geomorphology related to discharge and processes such as bed sediment incipient motion. These measurements also have underappreciated potential for use in ecological studies. For example, invertebrate drift, or the downstream transport of benthic-derived invertebrates, is a fundamental process in streams and rivers: it is both critical to the maintenance of benthic invertebrate populations and provides a key mechanism of resource delivery to drift-feeding fishes. However, there is substantial uncertainty regarding the factors that drive spatial variation in invertebrate drift, particularly in large rivers. While laboratory studies in flumes have demonstrated the importance of shear stress in initiating invertebrate drift (similar to studies of bed sediment critical shear stress in fluvial geomorphology), field-based evaluations of the relationship between shear stress and drift would be beneficial. Such field studies, however, are rare. Here, we evaluate the relationship between localized shear stress (N/m2) and invertebrate drift concentrations (#/m3) for the Colorado River downstream of Glen Canyon Dam (steady discharge of 228 m3/s during study). Invertebrate drift was quantified at 25 stations throughout the 25 km long Glen Canyon tailwater segment. We link these drift measurements to empirical measurements of water column shear stress derived from ADCP data, taken at the location of each drift sample and 250 m upstream of each drift sampling location (50 total profiles). Invertebrate drift concentrations varied strongly throughout the 25 km reach, and much of this variation can be explained by localized differences in shear stress. Species composition in the drift also varied with shear stress, suggesting that shear stress exerts a differential control on drift initiation for individual taxa. These results indicate that shear stress is an important physical control on benthic macroinvertebrate drift, even at shear stress values lower than those required for bed sediment mobilization. This empirical relationship between shear stress and drift can aid in the prediction of drift concentrations at different discharges and may inform habitat-specific prey density estimates used in bioenergetics models for drift-feeding trout.

Muehlbauer, J. D.; Kennedy, T.; Yackulic, C. B.

2013-12-01

67

Measurements of shear characteristics of textile composites  

Microsoft Academic Search

The paper is devoted to experimental study of shear strength and shear modulus of three types of 3D textile composites based on different reinforcing fibres and matrices and made by various technologies, as well as 2D glass fibre\\/epoxy plastic (GFRP) with lay-up of (±45°). Correct measurement of shear properties of 3D textile composites is a complex problem due to the

Yu. M Tarnopol’skii; V. L Kulakov; A. K Aranautov

2000-01-01

68

Turbulence wall-shear stress sensor for the atmospheric surface layer This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-print Network

-friction measurement, fluctuating surface shear stress, atmospheric boundary layer, atmospheric surface layer (SomeTurbulence wall-shear stress sensor for the atmospheric surface layer This article has been the fluctuating component of the wall-shear stress in the atmospheric surface layer over relatively smooth uniform

Marusic, Ivan

69

The Micro-Pillar Shear-Stress Sensor MPS3 for Turbulent Flow  

PubMed Central

Wall-shear stress results from the relative motion of a fluid over a body surface as a consequence of the no-slip condition of the fluid in the vicinity of the wall. To determine the two-dimensional wall-shear stress distribution is of utter importance in theoretical and applied turbulence research. In this article, characteristics of the Micro-Pillar Shear-Stress Sensor MPS3, which has been shown to offer the potential to measure the two-directional dynamic wall-shear stress distribution in turbulent flows, will be summarized. After a brief general description of the sensor concept, material characteristics, possible sensor-structure related error sources, various sensitivity and distinct sensor performance aspects will be addressed. Especially, pressure-sensitivity related aspects will be discussed. This discussion will serve as ‘design rules’ for possible new fields of applications of the sensor technology. PMID:22574010

Große, Sebastian; Schröder, Wolfgang

2009-01-01

70

Normal stresses in a shear flow of magnetorheological suspensions: viscoelastic versus Maxwell stresses  

E-print Network

1 Normal stresses in a shear flow of magnetorheological suspensions: viscoelastic versus Maxwell Magnetorheological (MR) fluids are suspensions of magnetizable microparticles in a liquid carrier. They present

Paris-Sud XI, Université de

71

The normal stress effect and equilibrium friction coefficient of articular cartilage under steady frictional shear.  

PubMed

During creep or stress relaxation, articular cartilage exhibits a time-dependent friction coefficient which has been shown to reach an equilibrium value, mu eq, as the tissue deformation equilibrates. This study investigates the frictional properties of articular cartilage explants under steady frictional shear and constant compressive strain after the tissue reaches stress-relaxation equilibrium. The two parameters measured are the normal force and frictional torque, from which the friction coefficient was then calculated. It is shown in this experimental study that: (1) Under a prescribed infinitesimal compressive strain, cartilage supports higher compressive normal stress under steady shear than it does in the absence of frictional shear. Furthermore, the normal stress increases with increasing sliding velocity, resulting in a velocity-dependent value of mu eq. The observed normal stress effectively increases the compressive stiffness of cartilage by a factor up to 3.1. (2) Under a prescribed steady frictional shear both the normal stress and frictional shear stress increase, though not proportionally, with increasing compressive strain, producing a decreasing friction coefficient. (3) This velocity-dependent normal stress effect is also shown to result, at least partly, from intrinsic properties of cartilage. The normal stress effect has not been previously reported for articular cartilage, and represents an intriguing mechanical response not commonly encountered in solids, though common in non-Newtonian fluids. PMID:9239561

Wang, H; Ateshian, G A

1997-08-01

72

Vorticity alignment and negative normal stresses in sheared attractive emulsions.  

PubMed

Attractive emulsions near the colloidal glass transition are investigated by rheometry and optical microscopy under shear. We find that (i) the apparent viscosity eta drops with increasing shear rate, then remains approximately constant in a range of shear rates, then continues to decay; (ii) the first normal stress difference N1 transitions sharply from nearly zero to negative in the region of constant shear viscosity; and (iii) correspondingly, cylindrical flocs form, align along the vorticity, and undergo a log-rolling movement. An analysis of the interplay between steric constraints, attractive forces, and composition explains this behavior, which seems universal to several other complex systems. PMID:14995347

Montesi, Alberto; Peña, Alejandro A; Pasquali, Matteo

2004-02-01

73

Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds  

PubMed Central

Establishing a relationship between perfusion rate and fluid shear stress in a 3-dimensional cell culture environment is an ongoing and challenging task faced by tissue engineers. In this study, we explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low and high porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml·min-1. The DOCT results show that the behaviour of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low porosity and high porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore with a mean shear stress of 0.49±0.3 dyn·cm-2 and 0.38±0.2 dyn·cm-2, respectively. In addition, we show that the scaffold’s porosity and interconnectivity can be quantified by combining analyses of the 3-dimensional structural and flow images obtained from DOCT. PMID:19566307

Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.

2009-01-01

74

Bed Shear Stress under Complex Flow Conditions - The Case of Megech River, Ethiopia  

NASA Astrophysics Data System (ADS)

Bed shear stress is a fundamental variable in river studies to link flow conditions to sediment transport. It is, however, difficult to estimate this variable accurately, particularly in complex flow conditions. This study compares shear stress estimated from the log profile, the depth-slope product and outputs from a two-dimensional hydraulic model. Vertical velocity profile observations from Megech River (one of the main rivers flowing into Lake Tana, upper Blue Nile Basin, Ethiopia) using SEBA Mini current meter M1attached with signal counter Z6-SEBA HAD under typical field conditions are used to evaluate the precision of different methods for estimating local boundary shear stress from velocity measurements. Results show that the velocity profile approach gives consistently lesser shear stress estimates. A comparison of the shear stress distributions derived using the two-dimensional hydraulic model and those estimated using the 1D reach-averaged equation (i.e. the depth-slope product) shows a close correspondence. Mean shear stresses determined using local depth and mean channel slope are only 14% greater than those values determined for the same data using local predictions of both depth and energy slope. As the overall mean shear stress provides a useful index of flow strength, this comparison suggests a good level of confidence in using the reach averaged one-dimensional equation, for which data can easily be collected from cross sectional surveys. However, the variance of the modelled shear stress distribution shows some differences by a factor of 3 to that calculated using the mean channel slope because of the larger uncertainity associated with point depth measurements. Although such models using 1D reach averaged equations are limited to different channel characteristics adhering to diverse model assumptions, they can still provide a useful tool for river-rehabilitation design and assessment, including sediment transport studies.

Mehari, Michael; Dessie, Mekete; Abate, Mengiste

2014-05-01

75

Shear strengths of sandstone fractures under true triaxial stresses  

NASA Astrophysics Data System (ADS)

True triaxial shear tests have been performed to determine the peak shear strengths of tension-induced fractures in three Thai sandstones. A polyaxial load frame is used to apply mutually perpendicular lateral stresses (?p and ?o) to the 76 × 76 × 126 mm rectangular block specimens. The normal to the fracture plane makes an angle of 59.1° with the axial (major principal) stress. Results indicate that the lateral stress that is parallel to the fracture plane (?p) can significantly reduce the peak shear strength of the fractures. Under the same normal stress (?n) the fractures under high ?p dilate more than those under low ?p. According to the Coulomb criterion, the friction angle decreases exponentially with increasing ?p/?o ratio and the cohesion decreases with increasing ?p. The lateral stress ?p has insignificant effect on the basic friction angle of the smooth saw-cut surfaces. The fracture shear strengths under ?p = 0 correlate well with those obtained from the direct shear tests. It is postulated that when the fractures are confined laterally by ?p, their asperities are strained into the aperture, and are sheared off more easily compared to those under unconfined condition.

Kapang, Piyanat; Walsri, Chaowarin; Sriapai, Tanapol; Fuenkajorn, Kittitep

2013-03-01

76

Direct measurement of piezoelectric shear coefficient  

NASA Astrophysics Data System (ADS)

Piezoelectric materials exhibit electromechanical coupling which has led to their widespread application for sensors, actuators, and energy harvesters. These materials possess anisotropic behavior with the shear coefficient, and have the largest electromechanical coupling coefficient. However, the shear mode is difficult to measure with existing techniques and thus has not been fully capitalized upon in recent devices. Better understanding of the full shear response with respect to the driving electric field would significantly help the design of optimized piezoelectric shear devices. Here, a simple and low cost direct measurement method based on digital image correlation is developed to characterize the shear response of piezoelectric materials and its nonlinear behavior as a function of external field. The piezoelectric shear coefficient (d15) of a commercial shear plate actuator is investigated in both bipolar and unipolar electric fields. Two different nonlinearities and hysteresis behaviors of the actuators were observed, and the relation between the driving field amplitude and the corresponding d15 coefficient is determined. Moreover, the measured transverse displacement of the plate actuator in simple shear condition is validated through a laser interferometry technique.

Malakooti, Mohammad H.; Sodano, Henry A.

2013-06-01

77

Elevated Shear Stress in Arteriovenous Fistulae: Is There Mechanical Homeostasis?  

NASA Astrophysics Data System (ADS)

Arteriovenous fistulae are created surgically to provide access for dialysis in patients with renal failure. The current hypothesis is that the rapid remodeling occurring after the fistula creation is in part a process to restore the mechanical stresses to some preferred level (i.e. mechanical homeostasis). Given that nearly 50% of fistulae require an intervention after one year, understanding the altered hemodynamic stress is important in improving clinical outcomes. We perform numerical simulations of four patient-specific models of functioning fistulae reconstructed from 3D Doppler ultrasound scans. Our results show that the vessels are subjected to `normal' shear stresses away from the anastomosis; about 1 Pa in the veins and about 2.5 Pa in the arteries. However, simulations show that part of the anastomoses are consistently subjected to very high shear stress (>10Pa) over the cardiac cycle. These elevated values shear stresses are caused by the transitional flows at the anastomoses including flow separation and quasiperiodic vortex shedding. This suggests that the remodeling process lowers shear stress in the fistula but that it is limited as evidenced by the elevated shear at the anastomoses. This constant insult on the arterialized venous wall may explain the process of late fistula failure in which the dialysis access become occluded after years of use.

McGah, Patrick; Leotta, Daniel; Beach, Kirk; Aliseda, Alberto

2011-11-01

78

Ultrasonic measurement of stress in railroad wheels  

Microsoft Academic Search

The equipment described here generates ultrasonic shear waves using an electromagnetic-acoustic transducer. Precise measurement of the velocity of two orthogonally polarized signals determines the birefringence and allows the calculation of stress. It is necessary to account for the effect of metallurgical texture which can contribute to the birefringence and appear as moderate stress. This system sends a signal through the

Raymond E. Schramm

1999-01-01

79

Transverse shear stresses and their sensitivity coefficients in multilayered composite panels  

NASA Technical Reports Server (NTRS)

A computational procedure is presented for the accurate determination of transverse shear stresses and their sensitivity coefficients in flat multilayered composite panels subjected to mechanical and thermal loads. The sensitivity coefficients measure the sensitivity of the transverse shear stresses to variations in the different lamination and material parameters of the panel. The panel is discretized by using either a three-field mixed finite element model based on a two-dimensional first- order shear deformation plate theory or a two-field degenerate solid element with each of the displacement components having a linear variation throughout the thickness of the laminate. The evaluation of transverse shear stresses can be conveniently divided into two phases. The first phase consists of using a superconvergent recovery technique for evaluating the in-plane stresses in the different layers. In the second phase, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of the transverse shear stresses. The effectiveness of the computational procedure is demonstrated by means of numerical examples of multilayered cross-ply panels subjected to transverse loading, uniform temperature change, and uniform temperature gradient through the thickness of the panel. In each case the standard of the comparison is taken to be the exact solution of the three dimensional thermoelasticity equations of the panel.

Noor, Ahmed K.; Kim, Yong H.; Peters, Jeanne M.

1994-01-01

80

Transverse shear stresses and their sensitivity coefficients in multilayered composite panels  

SciTech Connect

A computational procedure is presented for the accurate determination of transverse shear stresses and their sensitivity coefficients in flat multilayered composite panels subjected to mechanical and thermal loads. The sensitivity coefficients measure the sensitivity of the transverse shear stresses to variations in the different lamination and material parameters of the panel. The panel is discretized by using either a three-field mixed finite element model based on a two-dimensional first- order shear deformation plate theory or a two-field degenerate solid element with each of the displacement components having a linear variation throughout the thickness of the laminate. The evaluation of transverse shear stresses can be conveniently divided into two phases. The first phase consists of using a superconvergent recovery technique for evaluating the in-plane stresses in the different layers. In the second phase, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of the transverse shear stresses. The effectiveness of the computational procedure is demonstrated by means of numerical examples of multilayered cross-ply panels subjected to transverse loading, uniform temperature change, and uniform temperature gradient through the thickness of the panel. In each case the standard of the comparison is taken to be the exact solution of the three dimensional thermoelasticity equations of the panel.

Noor, A.K.; Kim, Y.H.; Peters, J.M. [Univ. of Virginia, NASA Langley Research Center, Hampton, VA (United States)

1994-06-01

81

Measurement of shear impedances of viscoelastic fluids  

SciTech Connect

Shear-wave reflection coefficients from a solid/fluid interface are derived for non-Newtonian fluids that can be described by Maxwell, Voigt, and power-law fluid models. Based on model calculations, we have identified the measurable effects on the reflection coefficients due to fluid non-Newtonian behavior. The models are used to interpret the viscosity data obtained by a technique based on shear impedance measurement.

Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, A.C.

1996-12-31

82

Some constraints on levels of shear stress in the crust from observations and theroc  

SciTech Connect

In situ stress determinations in North America, southern Africa, and Australia indicate that on the average the maximum shear stress increases lineary with depth to at least 5.1 km measured in soft rock, such as shale and sandstone, and to 3.7 km in hard rock, including granite and quartzite. Regression lines fitted to the data yield gradients of 3.8 MPa/km and 6.6 MPa/km for soft and hard rock, respectively. Generally, the maximum shear stress in compressional states of stress for which the least principal stress is oriented near vertically is substantially greater than in extensional stress regimes, with the greatest principal stress in a vertical direction. The equations of equilibrium and compatibility can be used to provide functional constraints on the state of stress. If the stress is assumed to vary only with depth z in a given region, then all nonzero components must have the form A+Bz, where A and B are constants which generally differ for various components. This implies that the deviatoric stress changes linearly with depth, and the general solution also allows the directions of the horizontal principal stresses to change monotonically with depth. Solutions to the equations, assuming stress to vary with both z and x, were fit to the observations of Zoback and Roller, who measured stress along a horizontal profile near Palmdale, California. The results indicate that the average shear stress in the upper 8 km of the fault zone is about 3.5 MPa less than the shear stress in the far field, but this far field term, which is part of the solution and has the form A+Bz, cannot be evaluated using the existing constant depth data.

McGarr, A.

1980-11-10

83

Shear Stress Partitioning in Large Patches of Roughness in the Atmospheric Inertial Sublayer  

NASA Technical Reports Server (NTRS)

Drag partition measurements were made in the atmospheric inertial sublayer for six roughness configurations made up of solid elements in staggered arrays of different roughness densities. The roughness was in the form of a patch within a large open area and in the shape of an equilateral triangle with 60 m long sides. Measurements were obtained of the total shear stress (tau) acting on the surfaces, the surface shear stress on the ground between the elements (tau(sub S)) and the drag force on the elements for each roughness array. The measurements indicated that tau(sub S) quickly reduced near the leading edge of the roughness compared with tau, and a tau(sub S) minimum occurs at a normalized distance (x/h, where h is element height) of approx. -42 (downwind of the roughness leading edge is negative), then recovers to a relatively stable value. The location of the minimum appears to scale with element height and not roughness density. The force on the elements decreases exponentially with normalized downwind distance and this rate of change scales with the roughness density, with the rate of change increasing as roughness density increases. Average tau(sub S): tau values for the six roughness surfaces scale predictably as a function of roughness density and in accordance with a shear stress partitioning model. The shear stress partitioning model performed very well in predicting the amount of surface shear stress, given knowledge of the stated input parameters for these patches of roughness. As the shear stress partitioning relationship within the roughness appears to come into equilibrium faster for smaller roughness element sizes it would also appear the shear stress partitioning model can be applied with confidence for smaller patches of smaller roughness elements than those used in this experiment.

Gillies, John A.; Nickling, William G.; King, James

2007-01-01

84

Magnetic field effects on shear and normal stresses in magnetorheological finishing.  

PubMed

We use a recent experimental technique to measure in situ shear and normal stresses during magnetorheological finishing (MRF) of a borosilicate glass over a range of magnetic fields. At low fields shear stresses increase with magnetic field, but become field-independent at higher magnetic fields. Micromechanical models of formation of magnetic particle chains suggest a complex behavior of magnetorheological (MR) fluids that combines fluid- and solid-like responses. We discuss the hypothesis that, at higher fields, slip occurs between magnetic particle chains and the immersed glass part, while the normal stress is governed by the MRF ribbon elasticity. PMID:20940866

Lambropoulos, John C; Miao, Chunlin; Jacobs, Stephen D

2010-09-13

85

Accurate shear measurement with faint sources  

NASA Astrophysics Data System (ADS)

For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

Zhang, Jun; Luo, Wentao; Foucaud, Sebastien

2015-01-01

86

Modulation of GTPase Activity of G Proteins by Fluid Shear Stress and Phospholipid Composition  

NASA Astrophysics Data System (ADS)

Mechanical forces arising from strain, pressure, and fluid shear stress are sensed by cells through an unidentified mechanoreceptor(s) coupled to intracellular signaling pathways. In vascular endothelial cells, fluid shear stress is transduced via pathway(s) involving heterotrimeric guanine nucleotide-binding proteins (G proteins) by molecular mechanisms that are unknown. In the present study, we investigated the activation of purified G proteins reconstituted into phospholipid vesicles. Vesicles containing G proteins were loaded with [? -32P]GTP and subjected to physiological levels of fluid shear stress in a cone-and-plate viscometer. Steady-state GTP hydrolysis was measured as an index of G protein function. Shear stress (0-30 dynes / cm2) activated G proteins in dose-dependent manner (0.48-4.6 pmol/min per ? g of protein). Liposomes containing lysophosphatidylcholine (30 mol%) or treated with benzyl alcohol (40 mM), conditions that increase bilayer fluidity, exhibited 3- to 5-fold enhancement of basal GTPase activity. Conversely, incorporation of cholesterol (24 mol%) into liposomes reduced the activation of G proteins by shear. These results demonstrate the ability of the phospholipid bilayer to mediate the shear stress-induced activation of membrane-bound G proteins in the absence of protein receptors and that bilayer physical properties modulate this response.

Gudi, Sivaramaprasad; Nolan, John P.; Frangos, John A.

1998-03-01

87

Bursts and wall shear stress fluctuations in turbulent boundary layers  

NASA Astrophysics Data System (ADS)

The instantaneous wall shear stress in a flat-plate zero-pressure-gradient boundary layer is examined when made conditional upon the existence of ejections or sweeps directly above the wall sensor. The VITA + LEVEL algorithm operating on uv is used to detect these events, with thresholds that are universal multiples of the local value of shear stress. The results confirm the presence of two principal mechanisms involved in the production of turbulent kinetic energy (i.e., ejections and sweeps) which also account for virtually all that part of the spectral transfer of energy that is universal. Each type of event, however, has a very different effect on the instantaneous wall shear stress. Ejections behave like Townsend's universal 'attached' eddy with conditional correlation length scales that are proportional to the distance from the wall in the logarithmic region. Yet sweeps induce low-wave-number inactive motion at the wall and this is not universal even though the sweep itself is.

Morrison, J. F.; Bradshaw, P.

88

Yield shear stress model of magnetorheological fluids based on exponential distribution  

NASA Astrophysics Data System (ADS)

The magnetic chain model that considers the interaction between particles and the external magnetic field in a magnetorheological fluid has been widely accepted. Based on the chain model, a yield shear stress model of magnetorheological fluids was proposed by introducing the exponential distribution to describe the distribution of angles between the direction of magnetic field and the chain formed by magnetic particles. The main influencing factors were considered in the model, such as magnetic flux density, intensity of magnetic field, particle size, volume fraction of particles, the angle of magnetic chain, and so on. The effect of magnetic flux density on the yield shear stress was discussed. The yield stress of aqueous Fe3O4 magnetreological fluids with volume fraction of 7.6% and 16.2% were measured by a device designed by ourselves. The results indicate that the proposed model can be used for calculation of yield shear stress with acceptable errors.

Guo, Chu-wen; Chen, Fei; Meng, Qing-rui; Dong, Zi-xin

2014-06-01

89

Large-Scale Cosmic Shear Measurements  

E-print Network

We present estimates of the gravitational lensing shear variance obtained from images taken at the CFHT using the UH8K CCD mosaic camera. Six fields were observed for a total of 1 hour each in V and I, resulting in catalogs containing approximately 20,000$ galaxies per field, with properly calibrated and optimally weighted shear estimates. These were averaged in cells of sizes ranging from 1'.875 to 30' to obtain estimates of the cosmic shear variance $$, with uncertainty estimated from the scatter among the estimates for the 6 fields. Our most reliable estimator for cosmic shear is provided by the cross-correlation of the shear measured in the two passbands. At scales $\\lsim 10'$ the results are in good agreement with those of van Waerbeke et al. 2000, Bacon et al. 2000 and Wittman et al. 2000 and with currently fashionable cosmological models. At larger scales the shear variance falls below the theoretical predictions, and on the largest scales we find a null detection of shear variance averaged in 30' cells of $ = (0.28 \\pm 1.84) \\times 10^{-5}$.

Nick Kaiser; Gillian Wilson; Gerard A. Luppino

2000-03-22

90

An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts  

E-print Network

The Cox–Merz rule and Laun’s rule are two empirical relations that allow the estimation of steady shear viscosity and first normal stress difference, respectively, using small amplitude oscillatory shear measurements. The ...

Sharma, Vivek

91

The Strength of the Earth's Crust under Horizontal Shear Stress  

Microsoft Academic Search

Recent theoretical expressions for the change in stress distribution caused by strike-slip faulting are applied to five real faults, and estimates are made of the maximum shear stress relieved in each case. The calculated values lie between 107 and 10 s dynes\\/cm , and reasonable refinements of the assumptions involved in the cMculation (particularly in the value of the coefficient

M. A. Chinnery

1964-01-01

92

Rheometry of granular materials in cylindrical Couette cells: Anomalous stress caused by gravity and shear  

NASA Astrophysics Data System (ADS)

The cylindrical Couette device is commonly employed to study the rheology of fluids, but seldom used for dense granular materials. Plasticity theories used for granular flows predict a stress field that is independent of the shear rate, but otherwise similar to that in fluids. In this paper we report detailed measurements of the stress as a function of depth, and show that the stress profile differs fundamentally from that of fluids, from the predictions of plasticity theories, and from intuitive expectation. In the static state, a part of the weight of the material is transferred to the walls by a downward vertical shear stress, bringing about the well-known Janssen saturation of the stress in vertical columns. When the material is sheared, the vertical shear stress changes sign, and the magnitudes of all components of the stress rise rapidly with depth. These qualitative features are preserved over a range of the Couette gap and shear rate, for smooth and rough walls and two model granular materials. To explain the anomalous rheological response, we consider some hypotheses that seem plausible a priori, but show that none survive after careful analysis of the experimental observations. We argue that the anomalous stress is due to an anisotropic fabric caused by the combined actions of gravity, shear, and frictional walls, for which we present indirect evidence from our experiments. A general theoretical framework for anisotropic plasticity is then presented. The detailed mechanics of how an anisotropic fabric is brought about by the above-mentioned factors is not clear, and promises to be a challenging problem for future investigations.

Gutam, Kamala Jyotsna; Mehandia, Vishwajeet; Nott, Prabhu R.

2013-07-01

93

Production of Functional Proteins: Balance of Shear Stress and Gravity  

NASA Technical Reports Server (NTRS)

The present invention provides for a method of culturing cells and inducing the expression of at least one gene in the cell culture. The method provides for contacting the cell with a transcription factor decoy oligonucleotide sequence directed against a nucleotide sequence encoding a shear stress response element.

Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Haysen, James Howard (Inventor)

2005-01-01

94

WAVE ACTION AND BOTTOM SHEAR STRESSES IN LAKE ERIE  

EPA Science Inventory

For Lake Erie, the amplitudes and periods of wind-driven, surface gravity waves were calculated by means of the SMB hindcasting method. Bottom orbital velocities and bottom shear stresses were then calculated using linear wave theory and Kajiura's (1968) turbulent oscillating bou...

95

Mass Transport and Shear Stress in the Carotid Artery Bifurcation  

Microsoft Academic Search

The carotid artery bifurcation (CAB) is one of the leading sites for atherosclerosis, a major cause of death and disability in the developed world. The specific processes by which the complex flow found at the bifurcation and carotid sinus promotes plaque formation and growth are not fully understood. Shear stress, mass transport, and flow residence times are considered key factors.

Riley Gorder; Alberto Aliseda

2010-01-01

96

The Need for a Shear Stress Calibration Standard  

NASA Technical Reports Server (NTRS)

By surveying current research of various micro-electro mechanical systems (MEMS) shear stress sensor development efforts we illustrate the wide variety of methods used to test and characterize these sensors. The different methods of testing these sensors make comparison of results difficult in some cases, and also this comparison is further complicated by the different formats used in reporting the results of these tests. The fact that making these comparisons can be so difficult at times clearly illustrates a need for standardized testing and reporting methodologies. This need indicates that the development of a national or international standard for the calibration of MEMS shear stress sensors should be undertaken. As a first step towards the development of this standard, two types of devices are compared and contrasted. The first type device is a laminar flow channel with two different versions considered: the first built with standard manufacturing techniques and the second with advanced precision manufacturing techniques. The second type of device is a new concept for creating a known shear stress consisting of a rotating wheel with the sensor mounted tangentially to the rim and positioned in close proximity to the rim. The shear stress generated by the flow at the sensor position is simply tau = (mu)r(omega)/h, where mu is the viscosity of the ambient gas, r the wheel radius, omega the angular velocity of the wheel, and h the width of the gap between the wheel rim and the sensor. Additionally, issues related to the development of a standard for shear stress calibration are identified and discussed.

Scott, Michael A.

2004-01-01

97

Impact of shear-thinning and yield-stress drops on solid substrates.  

PubMed

The behaviour of shear-thinning and viscoplastic fluid drops impacting on solid substrates as compared with that of Newtonian drops is studied experimentally by means of high-speed imaging. In particular, the investigation focuses on the morphological aspects of drops after inertial spreading. While the impact morphology of drops of shear-thinning fluids turns out to be qualitatively similar to that of Newtonian fluids, viscoplastic drops can exhibit central drop peaks at the end of inertial spreading. The influence of yield-stress magnitude on drop impact behaviour is qualitatively established by measuring the size of these central drop peaks. The peaks indicate that drop deformation during impact is localized: within a threshold radius, shear-stress effects will not be large enough in magnitude to overcome yield-stress effects, and therefore viscoplastic fluids within this region will not deform from the drop shape prior to impact. PMID:21832342

German, G; Bertola, V

2009-09-16

98

The combined effect of sidestream smoke and dynamic shear stress on endothelial cell inflammatory responses.  

PubMed

Both cigarette smoke and altered shear stress are risk factors for cardiovascular disease. Sidestream smoke is the major component of secondhand smoke. An in vitro model was developed to investigate the combined effect of sidestream smoke and physiologically relevant dynamic shear stress on endothelial cell inflammatory responses. Human coronary artery endothelial cells were exposed to sidestream smoke and dynamic shear stress (at normal or low level) simultaneously, and endothelial cell surface ICAM-1 and thrombomodulin expression was measured using a solid phase ELISA approach. Endothelial cell associated complement activation was assessed by cell surface C1q, C4d and iC3b deposition. The expression of complement inhibitors (C1 inhibitor and CR1) and C1q receptors (gC1qR and cC1qR) was also measured. The results demonstrated that sidestream smoke enhanced endothelial cell surface ICAM-1 expression and caused cell activation. While under normal pulsatile shear stress, endothelial cell surface ICAM-1 expression reduced to baseline level as thrombomodulin expression increased. Physiological dynamic shear stress also induced a significant increase in endothelial cell associated complement activation, through enhanced gC1qR and cC1qR expression. Subsequently, CR1 expression increased as well. Overall, physiological dynamic shear stress reduced endothelial cell activation by enhancing thrombomodulin expression. Physiological flow also enhanced the expression of endothelial cell surface C1q receptors, gC1qR and cC1qR, to promote C1q activation and initiate the classical pathway complement activation, which could be a potential protective mechanism to clear injured or damaged cells. PMID:25467082

Yin, Wei; Ngwe, Ek Ching; Ghebrehiwet, Berhane; Rubenstein, David A

2015-02-01

99

Combined effects of flow-induced shear stress and micropatterned surface morphology on neuronal differentiation of human mesenchymal stem cells.  

PubMed

This study investigated the combined effects of surface morphology and flow-induced shear stress on the neuronal differentiation of human mesenchymal stem cells. First, to examine the effect of surface morphology, three patterns were fabricated using photolithography and compared to the flat substrate. After selecting the most effective surface pattern, flow-induced shear stresses (0.10 and 0.25 Pa) were engaged parallel to the direction of the grooves. The degrees of alignment and neurite outgrowth were measured using digital image processing techniques for up to 10 days. Functional evaluations were also performed by monitoring the intracellular calcium concentration and the expression of synaptophysin, ?-tubulin III, and MAP2. Based on these analyses, the pattern of 5 ?m/5 ?m/3 ?m for groove/ridge/depth, respectively, was selected. Next, shear stresses (0.00, 0.10, 0.25 Pa) were applied to the cells on the selected substrate. The shear stresses affected the expression of those markers. The outgrowth measurements indicated that the shear stresses were effective at day 7. However, the effect of shear stresses tended to decrease at day 10. More cells showed higher calcium concentrations under 0.10 Pa. The alignment was also confirmed. Taken together, these results indicated that a shear stress of 0.10 Pa on the substrate of 5 ?m was most effective. Therefore, such combination of mechanical stimuli and surface pattern is expected to promote neuronal differentiation with regard to functional and morphological changes. PMID:23993713

Jeon, Kang Jin; Park, So Hee; Shin, Ji Won; Kang, Yun Gyeong; Hyun, Jin-Sook; Oh, Min Jae; Kim, Seon Yeon; Shin, Jung-Woog

2014-02-01

100

Shear Stress Increases the Residence Time of Adhesion of Pseudomonas aeruginosa  

Microsoft Academic Search

Although ubiquitous, the processes by which bacteria colonize surfaces remain poorly understood. Here we report results for the influence of the wall shear stress on the early-stage adhesion of Pseudomonas aeruginosa PA14 on glass and polydimethylsiloxane surfaces. We use image analysis to measure the residence time of each adhering bacterium under flow. Our main finding is that, on either surface,

Sigolene Lecuyer; Roberto Rusconi; Yi Shen; Alison Forsyth; Hera Vlamakis; Roberto Kolter; Howard A. Stone

2011-01-01

101

Experimental detection of flow separation over a plain flap by wall shear stress analysis with and without steady blowing  

NASA Astrophysics Data System (ADS)

The present article deals with the flow separation detection over a plain flap at a Reynolds number of 2?106 by the analysis of the wall shear stress fluctuations. Natural flow separation is first considered with the study of the evolution of wall shear stress fluctuations measured along the flap chord when the flap deflection angle is progressively increased. Then, steady blowing is applied and its effect on wall shear stress fluctuations is analysed. For both controlled and uncontrolled cases, flow separation criteria are defined, studied and compared. xml:lang="fr"

Chabert, Timothée; Dandois, Julien; Garnier, Éric; Jacquin, Laurent

2014-06-01

102

A novel in vitro loading system to produce supraphysiologic oscillatory fluid shear stress  

PubMed Central

A multi-well fluid loading (MFL) system was developed to deliver oscillatory subphysiologic to supraphysiologic fluid shear stresses to cell monolayers in vitro using standard multi-well culture plates. Computational fluid dynamics modeling with fluid-structure interactions was used to quantify the squeeze film fluid flow between an axially displaced piston and the well plate surface. Adjusting the cone angle of the piston base modulated the fluid pressure, velocity, and shear stress magnitudes. Modeling results showed that there was near uniform fluid shear stress across the well with a linear drop in pressure across the radius of the well. Using the MFL system, RAW 264.7 osteoclastic cells were exposed to oscillatory fluid shear stresses of 0, 0.5, 1.5, 4, 6, and 17 Pa. Cells were loaded 1 h per day at 1 Hz for two days. Compared to sub-physiologic and physiologic levels, supraphysiologic oscillatory fluid shear induced upregulation of osteoclastic activity as measured by tartrate-resistant acid phosphatase activity and formation of mineral resorption pits. Cell number remained constant across all treatment groups. PMID:24275439

Oest, Megan E.; Miller, Mark A.; Howard, Karen I.; Mann, Kenneth A.

2014-01-01

103

Effect of low shear stress on permeability and occludin expression in porcine artery endothelial cells  

Technology Transfer Automated Retrieval System (TEKTRAN)

INTRODUCTION: Although both fluid shear stress and mass transport of atherogenic substances into the vascular wall are known to be important factors in atherogenesis, there has been little research on the effect of shear stress on vascular permeability. Therefore, the effects of shear stress on the ...

104

Effects of Oxygen Tension and Shear Stress on Human Endothelial Cell Prostacyclin Production  

Microsoft Academic Search

Underin vivoconditions of ischemia and reperfusion, vascular endothelium (EC) experience concurrent changes in oxygen tension, shear stress, and the local concentration of metabolites. These studies explored the combined effects of shear stress and oxygen tension on EC prostacyclin production. EC grown on microcarrier beads were exposed to 120 min of normoxia and basal shear stress by stirring at 20 rpm.

Hiram M. Soler; Michael T. Watkins; Hassan Albadawi; Hiroko Kadowaki; George M. Patton

1997-01-01

105

Critical shear stress for erosion of cohesive soils subjected to temperatures typical of wildfires  

NASA Astrophysics Data System (ADS)

Increased erosion is a well-known response after wildfire. To predict and to model erosion on a landscape scale requires knowledge of the critical shear stress for the initiation of motion of soil particles. As this soil property is temperature-dependent, a quantitative relation between critical shear stress and the temperatures to which the soils have been subjected during a wildfire is required. In this study the critical shear stress was measured in a recirculating flume using samples of forest soil exposed to different temperatures (40°-550°C) for 1 hour. Results were obtained for four replicates of soils derived from three different types of parent material (granitic bedrock, sandstone, and volcanic tuffs). In general, the relation between critical shear stress and temperature can be separated into three different temperature ranges (<175°C 175°C-275°C; >275°C), which are similar to those for water repellency and temperature. The critical shear stress was most variable (1.0-2.0 N m-2) for temperatures <175°C, was a maximum (>2.0 N m-2) between 175° and 275°C, and was essentially constant (0.5-0.8 N m-2) for temperatures >275°C. The changes in critical shear stress with temperature were found to be essentially independent of soil type and suggest that erosion processes in burned watersheds can be modeled more simply than erosion processes in unburned watersheds. Wildfire reduces the spatial variability of soil erodibility associated with unburned watersheds by eliminating the complex effects of vegetation in protecting soils and by reducing the range of cohesion associated with different types of unburned soils. Our results indicate that modeling the erosional response after a wildfire depends primarily on determining the spatial distribution of the maximum soil temperatures that were reached during the wildfire.

Moody, John A.; Smith, J. Dungan; Ragan, B. W.

2005-03-01

106

Critical shear stress for erosion of cohesive soils subjected to temperatures typical of wildfires  

USGS Publications Warehouse

[1] Increased erosion is a well-known response after wildfire. To predict and to model erosion on a landscape scale requires knowledge of the critical shear stress for the initiation of motion of soil particles. As this soil property is temperature-dependent, a quantitative relation between critical shear stress and the temperatures to which the soils have been subjected during a wildfire is required. In this study the critical shear stress was measured in a recirculating flume using samples of forest soil exposed to different temperatures (40??-550??C) for 1 hour. Results were obtained for four replicates of soils derived from three different types of parent material (granitic bedrock, sandstone, and volcanic tuffs). In general, the relation between critical shear stress and temperature can be separated into three different temperature ranges (275??C), which are similar to those for water repellency and temperature. The critical shear stress was most variable (1.0-2.0 N m-2) for temperatures 2.0 N m-2) between 175?? and 275??C, and was essentially constant (0.5-0.8 N m-2) for temperatures >275??C. The changes in critical shear stress with temperature were found to be essentially independent of soil type and suggest that erosion processes in burned watersheds can be modeled more simply than erosion processes in unburned watersheds. Wildfire reduces the spatial variability of soil erodibility associated with unburned watersheds by eliminating the complex effects of vegetation in protecting soils and by reducing the range of cohesion associated with different types of unburned soils. Our results indicate that modeling the erosional response after a wildfire depends primarily on determining the spatial distribution of the maximum soil temperatures that were reached during the wildfire. Copyright 2005 by the American Geophysical Union.

Moody, J.A.; Dungan, Smith J.; Ragan, B.W.

2005-01-01

107

Mode selective generation of guided waves by systematic optimization of the interfacial shear stress profile  

NASA Astrophysics Data System (ADS)

Piezoelectric transducers are commonly used in structural health monitoring systems to generate and measure ultrasonic guided waves (GWs) by applying interfacial shear and normal stresses to the host structure. In most cases, in order to perform damage detection, advanced signal processing techniques are required, since a minimum of two dispersive modes are propagating in the host structure. In this paper, a systematic approach for mode selection is proposed by optimizing the interfacial shear stress profile applied to the host structure, representing the first step of a global optimization of selective mode actuator design. This approach has the potential of reducing the complexity of signal processing tools as the number of propagating modes could be reduced. Using the superposition principle, an analytical method is first developed for GWs excitation by a finite number of uniform segments, each contributing with a given elementary shear stress profile. Based on this, cost functions are defined in order to minimize the undesired modes and amplify the selected mode and the optimization problem is solved with a parallel genetic algorithm optimization framework. Advantages of this method over more conventional transducers tuning approaches are that (1) the shear stress can be explicitly optimized to both excite one mode and suppress other undesired modes, (2) the size of the excitation area is not constrained and mode-selective excitation is still possible even if excitation width is smaller than all excited wavelengths, and (3) the selectivity is increased and the bandwidth extended. The complexity of the optimal shear stress profile obtained is shown considering two cost functions with various optimal excitation widths and number of segments. Results illustrate that the desired mode (A0 or S0) can be excited dominantly over other modes up to a wave power ratio of 1010 using an optimal shear stress profile.

Yazdanpanah Moghadam, Peyman; Quaegebeur, Nicolas; Masson, Patrice

2015-01-01

108

Explicit algebraic Reynolds stress model (EARSM) for compressible shear flows  

NASA Astrophysics Data System (ADS)

We develop an explicit algebraic Reynolds stress model (EARSM) for high-speed compressible shear flows and validate the model with direct numerical simulation (DNS) data of homogeneous shear flow and experimental data of high-speed mixing-layers. Starting from a pressure-strain correlation model that incorporates compressibility effects, the weak-equilibrium assumption is invoked to derive the EARSM closure expression. The resulting closure is fully explicit and physically realizable and is a function of mean flow strain rate, rotation rate, turbulent kinetic energy, dissipation rate, and gradient Mach number. Homogeneous shear flow calculations show that the model captures the asymptotic behavior of DNS quite well. Linear EARSM calculations of a plane supersonic mixing-layer are performed, and comparison with experimental data shows good agreement. Salient results are agreement of streamwise velocity similarity profiles, mixing-layer spreading rates, and capturing the Langley curve trend.

Gomez, Carlos A.; Girimaji, Sharath S.

2014-04-01

109

Shear-Stress Partitioning in Live Plant Canopies and Modifications to Raupach's Model  

NASA Astrophysics Data System (ADS)

The spatial peak surface shear stress {tau _S^'' on the ground beneath vegetation canopies is responsible for the onset of particle entrainment and its precise and accurate prediction is essential when modelling soil, snow or sand erosion. This study investigates shear-stress partitioning, i.e. the fraction of the total fluid stress on the entire canopy that acts directly on the surface, for live vegetation canopies (plant species: Lolium perenne) using measurements in a controlled wind-tunnel environment. Rigid, non-porous wooden blocks instead of the plants were additionally tested for the purpose of comparison since previous wind-tunnel studies used exclusively artificial plant imitations for their experiments on shear-stress partitioning. The drag partitioning model presented by Raupach (Boundary-Layer Meteorol 60:375-395, 1992) and Raupach et al. (J Geophys Res 98:3023-3029, 1993), which allows the prediction of the total shear stress ? on the entire canopy as well as the peak {(tau _S ^''/tau )^{1/2}} and the average {(tau _S^'/tau )^{1/2}} shear-stress ratios, is tested against measurements to determine the model parameters and the model's ability to account for shape differences of various roughness elements. It was found that the constant c, needed to determine the total stress ? and which was unspecified to date, can be assumed a value of about c = 0.27. Values for the model parameter m, which accounts for the difference between the spatial surface average {tau _S^' and the peak {tau _S ^'' shear stress, are difficult to determine because m is a function of the roughness density, the wind velocity and the roughness element shape. A new definition for a parameter a is suggested as a substitute for m. This a parameter is found to be more closely universal and solely a function of the roughness element shape. It is able to predict the peak surface shear stress accurately. Finally, a method is presented to determine the new a parameter for different kinds of roughness elements.

Walter, Benjamin; Gromke, Christof; Lehning, Michael

2012-08-01

110

Direct measurement of shear properties of microfibers.  

PubMed

As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar(®) 119, were also characterized with this system and were found to have G = 16.5 ± 2.1 and 2.42 ± 0.32 GPa, respectively. PMID:25273783

Behlow, H; Saini, D; Oliveira, L; Durham, L; Simpson, J; Serkiz, S M; Skove, M J; Rao, A M

2014-09-01

111

Direct measurement of shear properties of microfibers  

NASA Astrophysics Data System (ADS)

As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar® 119, were also characterized with this system and were found to have G = 16.5 ± 2.1 and 2.42 ± 0.32 GPa, respectively.

Behlow, H.; Saini, D.; Oliveira, L.; Durham, L.; Simpson, J.; Serkiz, S. M.; Skove, M. J.; Rao, A. M.

2014-09-01

112

Non-volcanic tremor driven by large transient shear stresses  

USGS Publications Warehouse

Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude Mw = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface - effectively a frictional failure response to the driving stress. ??2007 Nature Publishing Group.

Rubinstein, J.L.; Vidale, J.E.; Gomberg, J.; Bodin, P.; Creager, K.C.; Malone, S.D.

2007-01-01

113

Application of multiple levels of fluid shear stress to endothelial cells plated on polyacrylamide gels.  

PubMed

Measurements of endothelial cell response to fluid shear stress have previously been performed on unphysiologically rigid substrates. We describe the design and implementation of a microfluidic device that applies discrete levels of shear stress to cells plated on hydrogel-based substrates of physiologically-relevant stiffness. The setup allows for measurements of cell morphology and inflammatory response to the combined stimuli, and identifies mechanisms by which vascular stiffening leads to pathological responses to blood flow. We found that the magnitude of shear stress required to affect endothelial cell morphology and inflammatory response depended on substrate stiffness. Endothelial cells on 100 Pa substrates demonstrate a greater increase in cell area and cortical stiffness and decrease in NF-?B nuclear translocation in response to TNF-? treatment compared to controls than cells plated on 10 kPa substrates. The response of endothelial cells on soft substrates to shear stress depends on the presence of hyaluronan (HA). These results emphasize the importance of substrate stiffness on endothelial function, and elucidate a means by which vascular stiffening in aging and disease can impact the endothelium. PMID:25573790

Galie, P A; van Oosten, A; Chen, C S; Janmey, P A

2015-02-01

114

Mechanical properties of jammed packings of frictionless spheres under applied shear stress  

E-print Network

By minimizing a thermodynamic-like potential, we unbiasedly sample the potential energy landscape of soft and frictionless spheres under constant shear stress. We obtain zero-temperature jammed states under desired shear stresses and investigate their mechanical properties as a function of the shear stress. As a comparison, we also obtain jammed states from the quasistatic-shear sampling in which the shear stress is not well-controlled. Although the yield stresses determined by both samplings show the same power-law scaling with the compression from point $J$, i.e.~the jamming transition point at zero temperature and shear stress, for finite size systems, the quasistatic-shear sampling leads to a lower yield stress and a higher critical volume fraction of point $J$. The shear modulus of jammed solids decreases when increasing the shear stress. However, the shear modulus does not decay to zero at yielding. This discontinuous change of the shear modulus implies the discontinuous nature of the unjamming transition under nonzero shear stress, which is further verified by the observation of a discontinuous jump of the pressure from jammed solids to shear flows. The pressure jump decreases upon decompression and approaches zero at the critical-like point $J$, in analogy with well-known phase transitions under external field. The analysis of force networks in jammed solids reveals that the force distribution is more sensitive to the increase of the shear stress near point $J$. The force network anisotropy increases with the shear stress. Weak particle contacts near the average force and under large shear stresses exhibit asymmetric angle distribution.

Hao Liu; Hua Tong; Ning Xu

2015-02-03

115

CCM proteins control endothelial ?1 integrin dependent response to shear stress.  

PubMed

Hemodynamic shear stress from blood flow on the endothelium critically regulates vascular function in many physiological and pathological situations. Endothelial cells adapt to shear stress by remodeling their cytoskeletal components and subsequently by changing their shape and orientation. We demonstrate that ?1 integrin activation is critically controlled during the mechanoresponse of endothelial cells to shear stress. Indeed, we show that overexpression of the CCM complex, an inhibitor of ?1 integrin activation, blocks endothelial actin rearrangement and cell reorientation in response to shear stress similarly to ?1 integrin silencing. Conversely, depletion of CCM2 protein leads to an elongated "shear-stress-like" phenotype even in the absence of flow. Taken together, our findings reveal the existence of a balance between positive extracellular and negative intracellular signals, i.e. shear stress and CCM complex, for the control of ?1 integrin activation and subsequent adaptation of vascular endothelial cells to mechanostimulation by fluid shear stress. PMID:25432514

Macek Jilkova, Zuzana; Lisowska, Justyna; Manet, Sandra; Verdier, Claude; Deplano, Valerie; Geindreau, Christian; Faurobert, Eva; Albigès-Rizo, Corinne; Duperray, Alain

2014-01-01

116

PEG-albumin supraplasma expansion is due to increased vessel wall shear stress induced by blood viscosity shear thinning  

PubMed Central

We studied the extreme hemodilution to a hematocrit of 11% induced by three plasma expanders: polyethylene glycol (PEG)-conjugated albumin (PEG-Alb), 6% 70-kDa dextran, and 6% 500-kDa dextran. The experimental component of our study relied on microelectrodes and cardiac output to measure both the rheological properties of plasma-expander blood mixtures and nitric oxide (NO) bioavailability in vessel walls. The modeling component consisted of an analysis of the distribution of wall shear stress (WSS) in the microvessels. Our experiments demonstrated that plasma expansion with PEG-Alb caused a state of supraperfusion with cardiac output 40% above baseline, significantly increased NO vessel wall bioavailability, and lowered peripheral vascular resistance. We attributed this behavior to the shear thinning nature of blood and PEG-Alb mixtures. To substantiate this hypothesis, we developed a mathematical model of non-Newtonian blood flow in a vessel. Our model used the Quemada rheological constitutive relationship to express blood viscosity in terms of both hematocrit and shear rate. The model revealed that the net effect of the hemodilution induced by relatively low-viscosity shear thinning PEG-Alb plasma expanders is to reduce overall blood viscosity and to increase the WSS, thus intensifying endothelial NO production. These changes act synergistically, significantly increasing cardiac output and perfusion due to lowered overall peripheral vascular resistance. PMID:22505638

Sriram, Krishna; Tsai, Amy G.; Cabrales, Pedro; Meng, Fantao; Acharya, Seetharama A.; Tartakovsky, Daniel M.

2012-01-01

117

Mechanisms for three kinds of limiting shear stresses appearing in the traction modes of viscous, viscoelastic, and glassy states of lubricants  

NASA Astrophysics Data System (ADS)

We present that the tractional flow of a lubricant shows three kinds of limiting shear stresses at which the shear stresses take place independently of the shear rates in its viscous, viscoelastic, and glassy states. We propose three models on the mechanisms for the limiting shear stresses, based on the data of Brillouin spectra and viscosity of viscoelastic liquids previously reported by us and based on the data of the deformation of glassy polymers referred from others. The Brillouin spectra of a viscoelastic lubricant measured at up to 5 GPa at 25 and 80 °C show that we could not observe a frequency dispersion in sound waves below 0.8 GPa at 80 °C, while we can observe the frequency dispersion above 0.1 MPa at 25 °C owing to the viscosity of the lubricant. This result predicts the viscous limiting shear stress in the viscous state owing to the disappearance of meso-structures by heating and shearing under pressure. The viscosity of a polymer measured around the glass transition temperature (Tg) shows that Tg determined by the viscosity measurement is 27 K lower than that determined by calorimetry. This result predicts the elastic limiting shear stress in the viscoelastic state near the glass transition pressure (Pg) owing to the shear thinning effect by shearing a lubricant film. In addition, there is the plastic limiting shear stress in the glassy state owing to the yield stress at which the tractional flow of a glassy lubricant behaves as a plastic solid.

Kobayashi, H.; Fujita, Y.

2014-06-01

118

Field observations of bed shear stress and sediment resuspension on continental shelves, Alaska and California  

USGS Publications Warehouse

Bed shear stress was estimated using wave and current measurements obtained with the GEOPROBE bottom-tripod system during resuspension events in Norton Sound, Alaska, and on the northern California shelf. The boundary-layer model of Grant and Madsen (1979, Journal of Geophysical Research, 84, 1797-1808) was used to compute the bed shear stress under combined wave-generated and quasi-steady currents. Resuspension events were identified by sudden, large increases in light scattering at 1.9 m above the sea floor. The shear-stress values were used to compute the Shields parameter (??). The results for Norton Sound are in excellent agreement with the Shields threshold criterion; the data for the California shelf plot somewhat above the Shields threshold curve, though generally within the scatter envelope. Although the surface sediments in each area contain substantial fine-grained fractions (mean diameters were 0.007 cm in Norton Sound and 0.002 cm on the California shelf), the results do not indicate significant cohesion, because the sediment was entrained at bed shear-stress values close to those predicted by the modified Shields curve for cohesionless fine-grained particles. We suspect that frequent wave stirring and observed plowing of the surface sediment by benthonic animals maintain a high water content and contribute to the ease with which these materials are resuspended. ?? 1986.

Drake, D.E.; Cacchione, D.A.

1986-01-01

119

Effects of the loss of symmetry on the wall shear stresses in Abdominal Aortic Aneurysms  

E-print Network

Aneurysms A. Introduction Owing to their effect on the endothelial cells, wall shear stresses appear shear stresses. Medium to large size aneurysms (diameter > 4 cm) tend to be non-symmetric due involved non-symmetric models of aneurysm. None of the studies considered the changes in the wall shear

120

Miniature Laser Doppler Velocimeter for Measuring Wall Shear  

NASA Technical Reports Server (NTRS)

A miniature optoelectronic instrument has been invented as a nonintrusive means of measuring a velocity gradient proportional to a shear stress in a flow near a wall. The instrument, which can be mounted flush with the wall, is a variant of a basic laser Doppler velocimeter. The laser Doppler probe volume can be located close enough to the wall (as little as 100 micron from the surface) to lie within the viscosity-dominated sublayer of a turbulent boundary layer. The instrument includes a diode laser, the output of which is shaped by a diffractive optical element (DOE) into two beams that have elliptical cross sections with very high aspect ratios.

Gharib, Morteza; Modarress, Darius; Forouhar, Siamak; Fourguette, Dominique; Taugwalder, Federic; Wilson, Daniel

2005-01-01

121

A New Model to Calculate Friction Coefficients and Shear Stresses in Thermal Drilling  

SciTech Connect

A new analytical model for thermal drilling (also known as friction drilling) has been developed. The model distinguishes itself from recent work of other investigators by improving on two aspects: (1) the new model defines material plastic flow in terms of the yield in shear rather than the yield in compression, and (2) it uses a single, variable friction coefficient instead of assuming two unrelated friction coefficients in fixed values. The time dependence of the shear stress and friction coefficient at the hole walls, which cannot be measured directly in thermal drilling, can be calculated using this model from experimentally-measured values of the instantaneous thrust force and torque. Good matches between the calculated shear strengths and the handbook values for thermally drilling low carbon steel confirm the model's validity.

Qu, Jun [ORNL; Blau, Peter Julian [ORNL

2008-01-01

122

Effect of normal stress during hydration and shear on the shear strength of GCL/textured geomembrane interfaces  

SciTech Connect

A laboratory testing program was performed to evaluate the interface shear strength of a geosynthetic clay liner (GCL)/textured geomembrane interface utilizing two pre-shear inundation methods designed to simulate field conditions. Two commercially-available products were tested, a needlepunched and a stitch-bonded GCL. Oedometer swell tests provided swell data for the two products which were used to design the interface shear testing program. Interface shear tests were performed for (1) GCL samples inundated under a low normal stress for a short time and sheared under a higher normal stress, and (2) GCL samples inundated for a longer period under the design normal stress. The results for the two different GCL materials and the two preshear inundation conditions are compared.

Hewitt, R.D.; Soydemir, C. [Haley and Aldrich, Inc., Cambridge, MA (United States); Stulgis, R.P. [Haley and Aldrich, Inc., Manchester, NH (United States); Coombs, M.T. [Tufts Univ., Medford, MA (United States)

1997-11-01

123

Spatial Stress and Strain Distributions of Viscoelastic Layers in Oscillatory Shear  

PubMed Central

One of the standard experimental probes of a viscoelastic material is to measure the response of a layer trapped between parallel surfaces, imposing either periodic stress or strain at one boundary and measuring the other. The relative phase between stress and strain yields solid-like and liquid-like properties, called the storage and loss moduli, respectively, which are then captured over a range of imposed frequencies. Rarely are the full spatial distributions of shear and normal stresses considered, primarily because they cannot be measured except at boundaries and the information was not deemed of particular interest in theoretical studies. Likewise, strain distributions throughout the layer were traditionally ignored except in a classical protocol of Ferry, Adler and Sawyer, based on snapshots of standing shear waves. Recent investigations of thin lung mucus layers exposed to oscillatory stress (breathing) and strain (coordinated cilia), however, suggest that the wide range of healthy conditions and environmental or disease assaults lead to conditions that are quite disparate from the “surface loading” and “gap loading” conditions that characterize classical rheometers. In this article, we extend our previous linear and nonlinear models of boundary stresses in controlled oscillatory strain to the entire layer. To illustrate non-intuitive heterogeneous responses, we characterize experimental conditions and material parameter ranges where the maximum stresses migrate into the channel interior. PMID:22547900

Lindley, Brandon S.; Forest, M. Gregory; Smith, Breannan D.; Mitran, Sorin M.; Hill, David B.

2010-01-01

124

Dynamic and shear stress rheological properties of guar galactomannans and its hydrolyzed derivatives.  

PubMed

Guar galactomannan from seed of Cyamopsis tetragonolobus was hydrolyzed using acid (HCl), base [Ba(OH)2] and enzyme (mannanase) method to obtain depolymerized substances with possible functional applications as soluble dietary fiber. Rheological behavior of crude, purified, and depolymerized guar gum solutions was studied at 25°C, using shear stress and dynamic oscillatory measurements, performed with controlled stress rheometer Bohlin CVO (Malvern Instruments) fitted with cone-and-plate geometry. The various guar gums solutions with different viscosities exhibited shear-thinning behavior at high shear rate and Newtonian behavior at low shear rate. At low shear rate, sigma crude guar gum (SCGG), crude guar gum (CGG), acid hydrolyzed guar gum (AHGG) and enzyme hydrolyzed guar gum (EHGG) exhibited viscosities of 18.59, 1.346, 0.149 and 0.022Pas, respectively. Oscillatory experiments (G?, G') of gums solutions showed typical behavior of weak viscoelastic gel. All investigated guar gums were further used for glucose bio-accessibility using a novel in vitro small intestinal model (SIM). All gums solutions resulted in 20% reduction in simulated glucose absorption, indicating a non-significant functionality difference between various guar gums. So, it can be concluded that hydrolyzed guar gums without disturbing their rheological and physiological behavior would be useful for incorporation in various food products as soluble dietary fiber. PMID:25256551

Hussain, Majid; Bakalis, Serafim; Gouseti, Ourania; Zahoor, Tahir; Anjum, Faqir Muhammad; Shahid, Muhammad

2015-01-01

125

Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress  

NASA Technical Reports Server (NTRS)

Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

2003-01-01

126

An Evaluation of the Iosipescu Specimen for Composite Materials Shear Property Measurement  

Microsoft Academic Search

A detailed evaluation of the suitability of the Iosipescu specimen tested in the modified Wyoming fixture is presented. A linear finite element model of the specimen is used to assess the uniformity of the shear stress field in the vicinity of the notch, and demonstrate the effect of the nonuniform stress field upon strain gage measurements used for the determination

J. Morton; H. Ho; M. Y. Tsai; G. L. Farley

1992-01-01

127

Shear stress activation of nuclear receptor PXR in endothelial detoxification  

PubMed Central

Endothelial cells (ECs) are constantly exposed to xenobiotics and endobiotics or their metabolites, which perturb EC function, as well as to shear stress, which plays a crucial role in vascular homeostasis. Pregnane X receptor (PXR) is a nuclear receptor and a key regulator of the detoxification of xeno- and endobiotics. Here we show that laminar shear stress (LSS), the atheroprotective flow, activates PXR in ECs, whereas oscillatory shear stress, the atheroprone flow, suppresses PXR. LSS activation of PXR in cultured ECs led to the increased expression of a PXR target gene, multidrug resistance 1 (MDR1). An in vivo study using rats showed that the expression of MDR1 was significantly higher in the endothelium from the descending thoracic aorta, where flow is mostly laminar, than from the inner curvature of aortic arch, where flow is disturbed. Functionally, LSS-activated PXR protects ECs from apoptosis triggered by doxorubicin via the induction of MDR1 and other detoxification genes. PXR also suppressed the expression of proinflammatory adhesion molecules and monocyte adhesion in response to TNF-? and lipopolysaccharide. Overexpression of a constitutively active PXR in rat carotid arteries potently attenuated proinflammatory responses. In addition, cDNA microarray revealed a large number of the PXR-activated endothelial genes whose products are responsible for major steps of detoxification, including phase I and II metabolizing enzymes and transporters. These detoxification genes in ECs are induced by LSS in ECs in a PXR-dependent manner. In conclusion, our results indicate that PXR represents a flow-activated detoxification system to protect ECs against damage by xeno- and endobiotics. PMID:23878263

Wang, Xiaohong; Fang, Xi; Zhou, Jing; Chen, Zhen; Zhao, Beilei; Xiao, Lei; Liu, Ao; Li, Yi-Shuan J.; Shyy, John Y.-J.; Guan, Youfei; Chien, Shu; Wang, Nanping

2013-01-01

128

Modeling bed shear-stress fluctuations in a shallow tidal channel  

NASA Astrophysics Data System (ADS)

Mathis et al. (2013) developed a model for predicting the instantaneous fluctuations of the wall shear-stress in turbulent boundary layers. This model is based on an inner-outer scale interaction mechanism, incorporating superposition, and amplitude-modulation effects, and the only input required for the model is a time series measurement of the streamwise velocity signal taken in the logarithmic region of the flow. The present study applies this new approach for the first time to environmental flows, for which the near-bed information is typically inaccessible. The data used here are acoustic Doppler velocimeter time series measurements from a shallow tidal channel (Suisun Slough in North San Francisco Bay). We first extract segments of data sharing properties with canonical turbulent boundary layers. The wall (bed) shear-stress model is then applied to these selected data. Statistical and spectral analysis demonstrates that the field data predictions are consistent with laboratory and DNS results. The model is also applied to the whole available data set to demonstrate, even for situations far from the canonical boundary layer case, its ability to preserve the overall Reynolds number trend. The predicted instantaneous bed stress is highly skewed and amplitude modulated with the variations in the large-scale streamwise velocity. Finally, the model is compared to conventional methods employed to predict the bed shear-stress. A large disparity is observed, but the present model is the only one able to predict both the correct spectral content and the probability density function.

Mathis, R.; Marusic, I.; Cabrit, O.; Jones, N. L.; Ivey, G. N.

2014-05-01

129

Instantaneous Wall Shear Stress and Velocity Fluctuations in Turbulent Pipe Flow  

NASA Astrophysics Data System (ADS)

Simultaneous measurement of velocity fluctuations (u') and the instantaneous wall shear stress (?_w) were carried out in a high Reynolds number pipe flow (water) facility designed and constructed in collaboration with D.P. Lathropfootnote now at Emory University, Atlanta, Ga.. Constant temperature anemometry with a flush-mounted film probe for ?w and a cylindrical hot-film boundary layer probe for u' were used for the measurements. An hypothesis relating ?w and u', motivated by an analogy between energy transfer in wavenumber space and momentum transfer across a boundary layer in physical space will be proposed. The Reynolds number range for fluctuating wall shear stress data in pipe flow has been increased by one order of magnitude over that reported in the literature. The behavior of quantities such as the rms/mean and the higher moments of ?'w will be presented with an analysis of their uncertainties.

Bhiladvala, Rustom; San Gil, Inigo; Sreenivasan, K. R.

1996-11-01

130

Analysis of bonded joints. [shear stress and stress-strain diagrams  

NASA Technical Reports Server (NTRS)

A refined elastic analysis of bonded joints which accounts for transverse shear deformation and transverse normal stress was developed to obtain the stresses and displacements in the adherends and in the bond. The displacements were expanded in terms of polynomials in the thicknesswise coordinate; the coefficients of these polynomials were functions of the axial coordinate. The stress distribution was obtained in terms of these coefficients by using strain-displacement and stress-strain relations. The governing differential equations were obtained by integrating the equations of equilibrium, and were solved. The boundary conditions (interface or support) were satisfied to complete the analysis. Single-lap, flush, and double-lap joints were analyzed, along with the effects of adhesive properties, plate thicknesses, material properties, and plate taper on maximum peel and shear stresses in the bond. The results obtained by using the thin-beam analysis available in the literature were compared with the results obtained by using the refined analysis. In general, thin-beam analysis yielded reasonably accurate results, but in certain cases the errors were high. Numerical investigations showed that the maximum peel and shear stresses in the bond can be reduced by (1) using a combination of flexible and stiff bonds, (2) using stiffer lap plates, and (3) tapering the plates.

Srinivas, S.

1975-01-01

131

Two-Axis Direct Fluid Shear Stress Sensor for Aerodynamic Applications  

NASA Technical Reports Server (NTRS)

This miniature or micro-sized semiconductor sensor design provides direct, nonintrusive measurement of skin friction or wall shear stress in fluid flow situations in a two-axis configuration. The sensor is fabricated by microelectromechanical system (MEMS) technology, enabling small size and multiple, low-cost reproductions. The sensors may be fabricated by bonding a sensing element wafer to a fluid-coupling element wafer. Using this layered machine structure provides a truly three-dimensional device.

Bajikar, Sateesh S.; Scott, Michael A.; Adcock, Edward E.

2011-01-01

132

A review of Reynolds stress models for turbulent shear flows  

NASA Technical Reports Server (NTRS)

A detailed review of recent developments in Reynolds stress modeling for incompressible turbulent shear flows is provided. The mathematical foundations of both two-equation models and full second-order closures are explored in depth. It is shown how these models can be systematically derived for two-dimensional mean turbulent flows that are close to equilibrium. A variety of examples are provided to demonstrate how well properly calibrated versions of these models perform for such flows. However, substantial problems remain for the description of more complex turbulent flows where there are large departures from equilibrium. Recent efforts to extend Reynolds stress models to nonequilibrium turbulent flows are discussed briefly along with the major modeling issues relevant to practical naval hydrodynamics applications.

Speziale, Charles G.

1995-01-01

133

Spatio-Temporal Surface Shear-Stress Variability in Live Plant Canopies and Cube Arrays  

NASA Astrophysics Data System (ADS)

This study presents spatiotemporally-resolved measurements of surface shear-stress ? s in live plant canopies and rigid wooden cube arrays to identify the sheltering capability against sediment erosion of these different roughness elements. Live plants have highly irregular structures that can be extremely flexible and porous resulting in considerable changes to the drag and flow regimes relative to rigid imitations mainly used in other wind-tunnel studies. Mean velocity and kinematic Reynolds stress profiles show that well-developed natural boundary layers were generated above the 8 m long wind-tunnel test section covered with the roughness elements at four different roughness densities ( ? = 0, 0.017, 0.08, 0.18). Speed-up around the cubes caused higher peak surface shear stress than in experiments with plants at all roughness densities, demonstrating the more effective sheltering ability of the plants. The sheltered areas in the lee of the plants are significantly narrower with higher surface shear stress than those found in the lee of the cubes, and are dependent on the wind speed due to the plants ability to streamline with the flow. This streamlining behaviour results in a decreasing sheltering effect at increasing wind speeds and in lower net turbulence production than in experiments with cubes. Turbulence intensity distributions suggest a suppression of horseshoe vortices in the plant case. Comparison of the surface shear-stress measurements with sediment erosion patterns shows that the fraction of time a threshold skin friction velocity is exceeded can be used to assess erosion of, and deposition on, that surface.

Walter, Benjamin; Gromke, Christof; Leonard, Katherine C.; Manes, Costantino; Lehning, Michael

2012-05-01

134

Shear Stress-Induced Release of Prostaglandin H2 in Arterioles of Hypertensive Rats  

Microsoft Academic Search

The nitric oxide-mediated portion of shear stress-induced dilation of rat gracilis muscle arterioles was shown to be impaired in spontaneously hypertensive rats (SHR). Because shear stress-induced dilation is primarily mediated by endothelium-derived prostaglandins in rat cremasteric arterioles, we hypothesized that in the cremasteric vascular bed the mediation of shear stress-induced dilation by prostaglandins is altered in hypertension. At a constant

An Huang; Dong Sun; Akos Koller

135

Deformation measurements of composite multi-span beam shear specimens by Moire interferometry  

NASA Technical Reports Server (NTRS)

Experimental analyses were performed for determination of in plane deformations and shear strains in unidirectional and quasi-isotropic graphite-epoxy beams. Forty-eight ply beams were subjected to 5 point and 3 point flexure. Whole field measurements were recorded at load levels from about 20% to more than 90% of failure loads. Contour maps of U and W displacement fields were obtained by moire interferometry, using reference gratings of 2400 lines/mm. Clearly defined fringes with fringe orders exceeding 1000 were obtained. Whole field contour maps of shear strains were obtained by a method developed for these tests. Various anomalous effects were detected in the displacement fields. Their analysis indicated excess shear strains in resin rich zones in regions of shear tractions; free edge shear strains in quasi-isotropic specimens in regions of normal stresses; and shear stresses associated with cyclic shear compliances of quasi-isotropic plies in regions of shear tractions. Their contributions could occur independently or in superposition. Qualitative analyses addressed questions of relaxation; influence of contact stress distribution; specimen failure; effect of specimen overhang; nonlinearity; and qualities of 5 and 3 point flexure tests.

Post, D.; Czarnek, R.; Joh, D.; Wood, J.

1984-01-01

136

Microvascular Endothelial Cells Migrate Upstream and Align Against the Shear Stress Field Created by Impinging Flow  

PubMed Central

At present, little is known about how endothelial cells respond to spatial variations in fluid shear stress such as those that occur locally during embryonic development, at heart valve leaflets, and at sites of aneurysm formation. We built an impinging flow device that exposes endothelial cells to gradients of shear stress. Using this device, we investigated the response of microvascular endothelial cells to shear-stress gradients that ranged from 0 to a peak shear stress of 9–210 dyn/cm2. We observe that at high confluency, these cells migrate against the direction of fluid flow and concentrate in the region of maximum wall shear stress, whereas low-density microvascular endothelial cells that lack cell-cell contacts migrate in the flow direction. In addition, the cells align parallel to the flow at low wall shear stresses but orient perpendicularly to the flow direction above a critical threshold in local wall shear stress. Our observations suggest that endothelial cells are exquisitely sensitive to both magnitude and spatial gradients in wall shear stress. The impinging flow device provides a, to our knowledge, novel means to study endothelial cell migration and polarization in response to gradients in physical forces such as wall shear stress. PMID:24461011

Ostrowski, Maggie A.; Huang, Ngan F.; Walker, Travis W.; Verwijlen, Tom; Poplawski, Charlotte; Khoo, Amanda S.; Cooke, John P.; Fuller, Gerald G.; Dunn, Alexander R.

2014-01-01

137

Effects of shear stress cultivation on cell membrane disruption and intracellular calcium concentration in sonoporation of endothelial cells  

PubMed Central

Microbubble facilitated ultrasound (US) application can enhance intracellular delivery of drugs and genes in endothelial cells cultured in static condition by transiently disrupting the cell membrane, or sonoporation. However, endothelial cells in vivo that are constantly exposed to blood flow may exhibit different sonoporation characteristics. This study investigates the effects of shear stress cultivation on sonoporation of endothelial cells in terms of membrane disruption and changes in the intracellular calcium concentration ([Ca2+]i). Sonoporation experiments were conducted using murine brain microvascular endothelial (bEnd.3) cells and human umbilical vein endothelial cells (HUVECs) cultured under static or shear stress (5 dyne/cm2 for 5 days) condition in a microchannel environment. The cells were exposed to a short US tone burst (1.25 MHz, 8 ?s duration, 0.24 MPa) in the presence of Definity™ microbubbles to facilitate sonoporation. Membrane disruption was assessed by propidium iodide (PI) and changes in [Ca2+]i measured by fura-2AM. Results from this study show that shear stress cultivation significantly reduced the impact of ultrasound-driven microbubbles activities on endothelial cells. Cells cultured under shear stress condition exhibited much lower percentage with membrane disruption and changes in [Ca2+]i compared to statically cultured cells. The maximum increases of PI uptake and [Ca2+]i were also significantly lower in the shear stress cultured cells. In addition, the extent of [Ca2+]i waves in shear cultured HUVECs was reduced compared to the statically cultured cells. PMID:20863503

Park, Juyoung; Fan, Zhenzhen; Deng, Cheri X.

2010-01-01

138

Sitting and endothelial dysfunction: The role of shear stress  

PubMed Central

Summary Sedentary activity is a modifiable life-style behavior and a key component in the etiology of atherosclerotic cardiovascular disease (ACVD). US adults and children spend more than half their waking time in sedentary pursuits. Sedentary activity has been shown to result in impaired insulin sensitivity, impaired metabolic function and attenuated endothelial function, which are classic markers of ACVD. Sedentary activity is defined as ‘sitting without otherwise being active.’ This behavior promotes reduced muscular activity of the lower extremities which decreases leg blood flow, increases blood pooling in the calf, augments mean arterial pressure, and deforms arterial segments resulting in low mean shear stress (SS). SS activates distinct physiological mechanisms which have been proposed to be protective against ACVD; specifically through a SS-induced endothelium-derived nitric oxide mechanism. Reduced bioavailability of nitric oxide creates a pro-oxidant milieu resulting in increased oxidative stress. There is sufficient evidence which demonstrates that endothelial function is attenuated in the presence of oxidative stress. Sedentary activity results in low SS in the lower extremities which may result in increased oxidative stress and impaired endothelial function. This review furthers the use of sitting as model to study the effects of inactivity, discusses possible physiological mechanisms and suggests future directions. PMID:23197245

Thosar, Saurabh S.; Johnson, Blair D.; Johnston, Jeanne D.; Wallace, Janet P.

2012-01-01

139

On stress and strain in a continuous-discontinuous shear zone undergoing simple shear and volume loss  

NASA Astrophysics Data System (ADS)

I summarise observations within a continuous-discontinuous shear zone to discuss the local stress and strain conditions experienced within a mixed rheology shear zone undergoing volume loss and deformation approximating simple shear. The Chrystalls Beach Complex, New Zealand, comprises phacoids formed from dismembered beds by layer-parallel extension, enclosed within a relatively incompetent matrix. Local extension is generally subparallel to the regional direction of shortening, and overall it appears that layer-parallel extension is a geometrical necessity in low angle shear zones where significant flattening occurs in response to simple shear accompanied by volume loss. Preferential stress loading of phacoids is predicted by fibre-loading theory, and the failure of phacoids by brittle fracture is thereby governed by fibre stresses transferred from the matrix. The principal stress orientations in a phacoid are likely rotated relative to the matrix, and either parallel or perpendicular to the phacoid-matrix interface. As preferential loading of phacoids decreases the stress level in the matrix, an increased volume fraction of phacoids increases the strength of the shear zone as a whole. However, only small matrix volume fractions are required for the composite to act nearly as weak as the matrix.

Fagereng, Å.

2013-05-01

140

Bed Forms Modulating Temporal Peaks on Near-Bank Shear Stresses, the Wabash River Case  

NASA Astrophysics Data System (ADS)

There is a great body of experimental work showing how bed forms modulate bed roughness, flow field structure, and sediment transport rates in straight flumes. Recently, it was observed that migrating bed forms produce temporal and spatial peaks of shear stresses along the outer bank of an experimental meandering channel. These stresses are about 50% larger than the shear stresses exerted by the mean near-bank flow. As fluvial erosion bank erosion rates are typically linearly related to applied shear stress, the migration rate of the bend may be significantly increased. However, this hypothesis has never been tested in the field, where bed forms could be more complex than those found in experimental cases. Herein, only fluvial erosion is considered, while geotechnical processes occurring at the outer bank are not accounted for. Detailed measurements of hydrodynamics (using acoustic Doppler profiler), bed morphology (using multibeam and RTK GPS) and bank morphology (using laser scanner) were conducted at two bends on the Wabash River along the Illinois and Indiana Stateline. The bed morphology exhibited different scales of bed forms, ranging from dunes to ripples. Using Wavelet analysis to discriminate the bed morphology it was possible to separate the ripples and dunes structures resulting in a bed without bed forms, which shows the typical erosion (outer bank)/deposition (inner bank) arrangement in meandering channels. Using a fully three-dimensional Reynolds-Averaged Navier-Stokes (RANS) numerical model, two cases are simulated: [1] bend with bed forms, and [2] bend without bed forms to test the above hypothesis. The results show that the three-dimensional flow field is compares well to that observed for both scenarios. Further, peaks in shear stresses along the outer bank are indeed observed, which are correlated to the location of the bed forms with respect to the bend. Further conclusion and its importance for long-term morphodynamics of meandering channels are described.

Abad, J. D.; Frias, C. E.; Langendoen, E. J.; Best, J.; Rhoads, B. L.; Konsoer, K. M.; Garcia, M. H.

2013-12-01

141

XIAP is essential for shear stress-enhanced Tyr-576 phosphorylation of FAK  

SciTech Connect

Research highlights: {yields} Laminar shear stress phosphorylates Tyr-576 in FAK. {yields} XIAP is essential for shear stress-induced phosphorylation of Tyr-576. {yields} XIAP knockdown induces shear stress-triggered translocation of FAK into nucleus. {yields} XIAP regulates ERK activation by maintaining the Src-accessible location of FAK. -- Abstract: In endothelial cells, X-chromosome linked inhibitor of apoptosis protein (XIAP) regulates cell survival, migration and adhesion. We have recently found that XIAP recruits focal adhesion kinase (FAK) into integrin-associated focal adhesions, controlling cell migration. However, little is understood about the molecular mechanisms by which FAK modulation is controlled by XIAP. In this study, we show that XIAP modulates FAK activity through the control of FAK phosphorylation. In bovine aortic endothelial cells (BAEC), phosphorylation of Tyr-576 in FAK is elevated by laminar shear stress. This elevated phosphorylation appears to be responsible for shear stress-stimulated ERK activation. We found that XIAP knockdown reduces shear stress-enhanced phosphorylation of Tyr-576 and induces shear stress-triggered translocation of FAK into nucleus. Nuclear translocation of FAK reduces contact between FAK and Src, a kinase which phosphorylates Tyr-576. This spatial segregation of FAK from Src decreases Tyr-576 phosphorylation and thus shear-stimulated ERK activation. Taken together, our results demonstrate that XIAP plays a key role in shear stress-stimulated ERK activation by maintaining the Src-accessible location of FAK.

Ahn, Sunyoung [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook Univiersity, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of)] [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook Univiersity, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of); Park, Heonyong, E-mail: heonyong@dankook.ac.kr [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook Univiersity, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of)] [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook Univiersity, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of)

2010-08-20

142

Control of circumferential wall stress and luminal shear stress within intact vascular segments perfused ex vivo.  

PubMed

Proportional, integral, and derivative (PID) controllers have proven to be robust in controlling many applications, and remain the most widely used control system architecture. The purpose of this work was to use this architecture for designing and tuning two PID controllers. The first was used to control the physiologic arterial circumferential wall stress (CWS) and the second to control the physiologic arterial shear stress (SS) imposed on intact vascular segments that were implanted into an ex vivo vascular perfusion system (EVPS). In order to most accurately control the stresses imposed onto vascular segments perfused ex vivo, analytical models were derived to calculate the CWS and SS. The mid-vein-wall CWS was calculated using the classical Lame solution for thick-walled cylinders in combination with the intraluminal pressure and outer diameter measurements. Similarly, the SS was calculated using the Hagen-Poiseuille equation in combination with the flow rate and outer diameter measurements. Performance of each controller was assessed by calculating the root mean square of the error (RMSE) between the desired and measured process variables. The performance experiments were repeated ten times (N=10) and an average RMSE was reported for each controller. RMSE standard deviations were calculated to demonstrate the reproducibility of the results. Sterile methods were utilized for making blood gas and temperature measurements in order to maintain physiologic levels within the EVPS. Physiologic blood gases (pH, pO(2), and pCO(2)) and temperature within the EVPS were very stable and controlled manually. Blood gas and temperature levels were recorded hourly for several (N=9) 24 h perfusion experiments. RMSE values for CWS control (0.427+/-0.027 KPa) indicated that the system was able to generate a physiologic CWS wave form within 0.5% error of the peak desired CWS over each cardiac cycle. RMSE values for SS control (0.005+/-0.0007 dynescm(2)) indicated that the system was able to generate a physiologic SS wave form within 0.3% error of the peak desired SS over each cardiac cycle. Physiologic pH, pO(2), pCO(2), and temperature levels were precisely maintained within the EVPS. The built-in capabilities and overall performance of the EVPS described in this study provide us with a novel tool for measuring molecular responses of intact vascular segments exposed to precisely simulated arterial biomechanical conditions. PMID:19045510

El-Kurdi, Mohammed S; Vipperman, Jeffrey S; Vorp, David A

2008-10-01

143

The Effect of Shear and Deviatoric Stress on Permeability Evolution in Fractured Diorite and Novaculite  

NASA Astrophysics Data System (ADS)

The evolution of the permeability in fractured rocks, subject to changing stress conditions is a complex issue. In this contribution, we report on experiments in which rock surfaces were sheared under controlled pore pressure and true-triaxial stress conditions while permeability was monitored via flow parallel to the shear direction. Direct shear tests were performed in a pressure vessel under drained conditions on samples of novaculite and of diorite (Coso Geothermal field, CA). Smoothed-faced, prismatic blocks were roughened by grinding with 60# grit, assembled face-to-face, and jacketed within a sealed membrane. Normal stress was applied by a hydraulic ram, and confining- and pore-pressures were maintained via high precision servo- controlled pressure intensifiers. The sample pairs are sheared to 18 mm of final displacement at 5 ?m/sec, at room temperature, and at effective normal stresses ranging from 5 to 20 MPa. Permeability evolution is measured throughout shearing via flow of distilled water from an upstream reservoir at 0.1 MPa and discharged at atmospheric pressure. The permeability of the smooth fracture in novaculite varied only slightly with applied effective normal stress (0.5×10^{-14} m2 at 5 MPa, 10^{-14} m2 at 10 MPa and 10^{-14} m2 at 20 MPa). The corresponding hydraulic apertures were respectively 20 ?m, 15 ?m and 13 ?m. In all three tests, permeability dropped one order of magnitude upon shearing. Steady state values for permeability and shear strength were typically reached after ~ 10 mm of load point displacement. An associated reduction of ~10 ?m was observed in the hydraulic apertures. Similar behavior was recorded in the diorite sample but only at the highest effective normal stresses. The initial permeability of ~10^{-13 m2 dropped four orders of magnitude before reaching a steady state value. This corresponds to a reduction in hydraulic aperture of ~23 ?m, reaching a steady state magnitude of ~1.5 ?m. At lower effective normal stresses diorite shows different behavior. At 5 MPa the initial permeability of 0.5×10^{-14} m2 increases to 10^{-14} m2 at peak strength and drops to 0.5×10^{-14} m2 during steady state frictional sliding. This corresponds to a hydraulic aperture of 20 ?m. At 10 MPa the initial permeability of 10^{-14} m2 (hydraulic aperture 14 ?m) reduces to 10-16 m2 (hydraulic aperture of 2.8 ?m) at peak shear strength, and then partly recovers by one order of magnitude to reach a final steady permeability of 10^{-15} m2 (final hydraulic aperture of 5 ?m). We observe that permeability decreases with an increase in the applied normal load. Moreover, shearing results in a permeability reduction in all cases, and is more pronounced at higher normal stress levels. This is presumably the result of mechanical removal (wear or fracturing) of asperities along the sliding contacts. The removed material subsequently clogs the fracture, reducing the permeability. Chemical analyses of pore fluids will be reported.

Faoro, I.; Elsworth, D.; Marone, C.; Niemeijer, A.

2006-12-01

144

Healing and Shear Stress Reduction on Single Fracture of Rock Salt and Limestone under Slide-Hold-Slide Direct Shear Condition  

NASA Astrophysics Data System (ADS)

In order to clarify the influence of the holding state on the shear strength in the shear process of a single rock fracture, slide-hold-slide (SHS) direct shear-flow coupling tests were carried out on single rock fractures at several confining stresses and under saturated/unsaturated conditions (Kishida, et al., 2011). Consequently, the mortar specimen could be confirmed as the significant shear strength recovery on the SHS process. In this research, the SHS direct shear tests are carried out on the halite (rock salt) and the limestone. In the case of rock salt, a single tensile fracture is artificially created by cutting away. On the other hand, the limestone has a natural rock joint. The experiments are carried out under various normal confining stress conditions and are employed various holding period at the residual state. Figure 1 shows the shear stress - shear displacement of the SHS direct shear experiments on the rock salt. From all cases, the shear stress increases at the initial phase of the experiments, and then, the shear stress reaches at the peak shear strength. After that, the shear stress slightly decreases such as strain softening. Finally, the shear stress reaches to the residual stress state. In every SHS processes, the shear stress is reducing in various hold period. And then, the shear stress is increasing in the process of re-sliding. The shear stress in the process of re-sliding takes over the value at the start time of the holding process. The shear stress reaches at the peak, and then, it reaches the residual stress state. In all cases, as the holding period becomes longer, it is confirmed that the decrement of the shear stress in the holding process is increasing and the increment of the shear stress at the re-sliding process is increasing. Therefore, it is confirmed that the time dependence of shear strength recovery can be observed. In addition, Dieterich's A constant value for the regression lines (Dieterich, 1972, 1994) is plotted against the normal confining stress. From this plot, the dependency of the normal confining stress can be confirmed during the relative short holding period.; Figure 1. The SHS direct shear on the tensile single joint of rock salt

Kishida, K.; Yano, T.; Yasuhara, H.

2012-12-01

145

Comparison of actual and allowable stress values for out-of-plane shear on masonry walls  

SciTech Connect

This paper presents research results from the testing of 16 masonry wall specimens in direct out-of-plane shear. The wall specimens were two courses high and 1.2 m (48 in.) long. The walls were nongrouted and were constructed with face-shell bedding only. The testing apparatus was configured such that failure mechanisms other than direct out-of-plane shear (i.e., those resulting from flexural and axial loads) were minimized. Shear stress values from the 16 wall tests are compared with allowable shear stress values obtained in ACI 530 / ASCE 5 / TMS 402. These results show that the code allowable shear stress values appear to be unconservative for this application of out-of-plane shear. It was found that the walls tested failed in out-of-shear at an average shear force of 69.8 kN (15,696 lb). This force produced an average shear stress of 0.349 MPa (50.65 psi) based on parabolic stress distribution and 0.885 Mpa (128.36 psi) for pure shear stress.

Henderson, R.C.; Wilson, G.S.; Crouch, L.K.; Sneed, W.A. Jr.

1999-07-01

146

Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).  

SciTech Connect

A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

2010-09-01

147

Lateral shearing interferometer with variable shearing for measurement of a small beam.  

PubMed

A lateral shearing interferometer with variable shearing for measurement of a small beam is proposed. The interferometer is composed of a polarization beam splitter, a thick birefringent plate, a quarter-wave plate, a mirror, and an image sensor. The shearing amount can be tiny by using the thick birefringent plate as the shear generator. The shearing amount of the interferometer can be continuously adjusted by rotating the thick birefringent plate, and 2D interferograms can be obtained by rotating the thick birefringent plate along the mutually perpendicular directions. The optical path difference is compensated with a double lateral shearing by using a quarter-wave plate and a mirror. The interferometer is verified by simulation and experiment; the experiment result is well coincident with the simulation result. The usefulness of the interferometer is verified. PMID:24686657

Liu, Lei; Zeng, Aijun; Zhu, Linglin; Huang, Huijie

2014-04-01

148

Observations of wave shear stress on a steep beach  

NASA Astrophysics Data System (ADS)

are presented of the wave shear stress on a steeply sloping beach. Above the wave boundary layer (WBL), positive values of were observed and are attributed to a combination of both wave shoaling due to the large-scale bed slope, and dissipation due to wave breaking, in agreement with the wave theory of Zou et al. (2003). Within the WBL, observed vertical profiles of were also in good agreement with theory, in cases where the wave height was small. As wave heights increased, however, the WBL profile of generally did not agree with theory. Near-simultaneous rotary sonar observations of the bed suggest the disagreement with theory was due to the presence of orbital-scale ripples, which the present theory does not accommodate.

Wilson, G. W.; Hay, A. E.; Bowen, A. J.

2014-11-01

149

Wrinkling Phenomena of Thin Flat Plates Subjected to Shear Stresses  

NASA Technical Reports Server (NTRS)

This report covers a series of tests on thin flat elastic strips restrained at two parallel edges and subjected to shear by conversely directed stresses. Theoretical treatments, particularly those of Lilly, Southwell and Skan, and Timoshenko are briefly outlined. The problem to be solved by these tests was to find out whether, and to what extent the conditions and assumptions upon which the calculations are based are complied with in the tests. Three materials were used: celluloid, duralumin, brass. Owing to the high elastic deformability of celluloid, it was not only possible to observe the beginning but also to ascertain the type of deflection. The test data on celluloid was affirmed by the experiments with duralumin and brass.

Bollenrath, F

1931-01-01

150

Flow Instability and Wall Shear Stress Ocillation in Intracranial Aneurysms  

NASA Astrophysics Data System (ADS)

We investigate the flow dynamics and oscillatory behavior of wall shear stress (WSS) vectors in intracranial aneurysms using high-order spectral/hp simulations. We analyze four patient- specific internal carotid arteries laden with aneurysms of different characteristics : a wide-necked saccular aneurysm, a hemisphere-shaped aneurysm, a narrower-necked saccular aneurysm, and a case with two adjacent saccular aneurysms. Simulations show that the pulsatile flow in aneurysms may be subject to a hydrodynamic instability during the decelerating systolic phase resulting in a high-frequency oscillation in the range of 30-50 Hz. When the aneurysmal flow becomes unstable, both the magnitude and the directions of WSS vectors fluctuate. In particular, the WSS vectors around the flow impingement region exhibit significant spatial and temporal changes in direction as well as in magnitude.

Baek, Hyoungsu; Jayamaran, Mahesh; Richardson, Peter; Karniadakis, George

2009-11-01

151

Surface temperatures and glassy state investigations in tribology, part 3. [limiting shear stress rheological model  

NASA Technical Reports Server (NTRS)

Research related to the development of the limiting shear stress rheological model is reported. Techniques were developed for subjecting lubricants to isothermal compression in order to obtain relevant determinations of the limiting shear stress and elastic shear modulus. The isothermal compression limiting shear stress was found to predict very well the maximum traction for a given lubricant. Small amounts of side slip and twist incorporated in the model were shown to have great influence on the rising portion of the traction curve at low slide-roll ratio. The shear rheological model was also applied to a Grubin-like elastohydrodynamic inlet analysis for predicting film thicknesses when employing the limiting shear stress model material behavior.

Bair, S.; Winer, W. O.

1980-01-01

152

Disbond monitoring in adhesive joints using shear stress optical fiber sensors  

NASA Astrophysics Data System (ADS)

We present dedicated shear stress optical fiber sensors for in situ disbond monitoring of adhesive bonds. The shear stress sensitivity of these sensors is about 60 pm MPa-1, which corresponds to a shear strain sensing resolution of 50 ??. By integrating a combination of three such sensors in the adhesive bond line of a single lap joint, we can assess the internal shear stress distribution when the joint is tensile loaded. Disbonding of this joint was initiated by cyclic tensile loading, and the sensor responses were monitored during this process. Our results show that this sensing system can detect disbonds as small as 100 ?m.

Sulejmani, Sanne; Sonnenfeld, Camille; Geernaert, Thomas; Luyckx, Geert; Mergo, Pawel; Urbanczyk, Waclaw; Chah, Karima; Thienpont, Hugo; Berghmans, Francis

2014-07-01

153

First normal stress difference and crystallization in a dense sheared granular fluid  

E-print Network

First normal stress difference and crystallization in a dense sheared granular fluid Meheboob Alam (August 28, 2002) The first normal stress difference (N1) and the microstructure in a dense sheared is defined in compressive sense) in a granular fluid and also in elastic hard-sphere fluids. Here we show

Luding, Stefan

154

Wall shear stress and endothelial cells dysfunction in the context of abdominal aortic aneurysms  

E-print Network

Wall shear stress and endothelial cells dysfunction in the context of abdominal aortic aneurysms Z7342,13384 Marseille Keywords: wall shear stress, abdominal aortic aneurysm, endothelial cells, mechanotransduction 1. Introduction The formation of aneurysm of abdominal aorta (AAA), is a multi

Paris-Sud XI, Université de

155

The role of osteogenic index, octahedral shear stress and dilatational stress in the ossification of a fracture callus.  

PubMed

The exact mechanism by which mechanical stimulus regulates the healing process of a bone fracture is not understood. This has led to the development of several hypotheses that predict the pattern of differentiation of tissue during healing that may arise from characteristic fields of stress or strain at the fracture. These have so far remained unproved because data on stress fields in actual fracture tissue have been unavailable until recently. Thus the present study examines the predictive performance of the hypothesis proposed in J Orthop Res 6 (1988) 736, against measured and calculated data reported in J Biomech 33 (2000) 415, using a 2D FEM of a clinical fracture. The hypothesis was used to predict the influence of stress fields present in the Gardner et al. tissues at four temporal stages during healing. These predictions were then correlated with callus-size, rate of endochondral ossification and ossification pattern subsequently observed by Gardner et al. in the clinical fracture. Results corroborate the hypothesis that high octahedral shear stresses may increase the size of the callus during the initial phase of healing, and they also suggest that this may be true during the later stages of the fracture fixation period. However, compressive dilatational stresses were not found to inhibit endochondral ossification, as suggested by the hypothesis. Although high shear stresses were found in regions indicative of fibrous tissue as postulated by the hypothesis, this was not found to be the case for high tensile dilatational stresses. Also, contour diagrams of Osteogenic index (I) indicated only limited correlation with callus maturation and the pattern of healing. Therefore, the hypothesis was not wholly successful in predicting healing pattern. PMID:15234685

Gardner, Trevor Noel; Mishra, Sanjay; Marks, Laurence

2004-07-01

156

Experimental assessment of Owen's second hypothesis on surface shear stress induced by a fluid during sediment saltation  

NASA Astrophysics Data System (ADS)

widely used, yet thus far unproven, fluid dynamical hypothesis originally presented by P. R. Owen 50 years ago, states that the surface shear stress induced by a fluid on the ground during equilibrium sediment saltation is constant and independent of the magnitude of the fluid velocity and consequently the particle mass flux. This hypothesis is one of the key elements in almost all current model descriptions of sediment erosion. We measured the surface shear stress in a drifting-sand wind tunnel and found Owen's hypothesis being merely an approximation of the real situation. A significant decrease of the fluid stress with increasing wind velocities was measured for low to intermediate particle mass fluxes. For high particle mass fluxes, Owen's hypothesis essentially holds, although a slight increase of the fluid stress was measured.

Walter, B.; Horender, S.; Voegeli, C.; Lehning, M.

2014-09-01

157

Forced free-shear layer measurements  

NASA Technical Reports Server (NTRS)

Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.

Leboeuf, Richard L.

1994-01-01

158

The fluid shear stress distribution on the membrane of leukocytes in the microcirculation.  

PubMed

Recent in-vivo and in-vitro evidence indicates that fluid shear stress on the membrane of leukocytes has a powerful control over several aspects of their cell function. This evidence raises a question about the magnitude of the fluid shear stress on leukocytes in the circulation. The flow of plasma on the surface of a leukocyte at a very low Reynolds number is governed by the Stokes equation for the motion of a Newtonian fluid. We numerically estimated the distribution of fluid shear stress on a leukocyte membrane in a microvessel for the cases when the leukocyte is freely suspended, as well as rolling along or attached to a microvessel wall. The results indicate that the fluid shear stress distribution on the leukocyte membrane is nonuniform with a sharp increase when the leukocyte makes membrane attachment to the microvessel wall. In a microvessel (10 microns diameter), the fluid shear stress on the membrane of a freely suspended leukocyte (8 microns diameter) is estimated to be several times larger than the wall shear stress exerted by the undisturbed Poiseuille flow, and increases on an adherent leukocyte up to ten times. High temporal stress gradients are present in freely suspended leukocytes in shear flow due to cell rotation, which are proportional to the local shear rate. In comparison, the temporal stress gradients are reduced on the membrane of leukocytes that are rolling or firmly adhered to the endothelium. High temporal gradients of shear stress are also present on the endothelial wall. At a plasma viscosity of 1 cPoise, the peak shear stresses for suspended and adherent leukocytes are of the order of 10 dyn/cm2 and 100 dyn/cm2, respectively. PMID:14618922

Sugihara-Seki, Masako; Schmid-Schönbein, Geert W

2003-10-01

159

Characteristics of the response of the iliac artery to wall shear stress in the anaesthetized pig  

PubMed Central

The functional significance of shear stress-induced vasodilatation in large conduit arteries is unclear since changes in the diameter have little effect on the resistance to blood flow. However, changes in diameter have a relatively large effect on wall shear stress which suggests that the function of flow-mediated dilatation is to reduce wall shear stress. The mean and pulsatile components of shear stress vary widely throughout the arterial system and areas of low mean and high amplitude of wall shear stress are prone to the development of atheroma. In this study, using an in vivo model with the ability to control flow rate and amplitude of flow independently, we investigated the characteristics of the response of the iliac artery to variations in both the mean and amplitude of wall shear stress. The results of this study confirm that increases in mean wall shear stress are an important stimulus for the release of nitric oxide by the endothelium as indicated by changes in arterial diameter and show for the first time, in vivo, that increases in the amplitude of the pulsatile component of shear stress have a small but significant inhibitory effect on this response. A negative feedback mechanism was identified whereby increases in shear stress brought about by increases in blood flow are reduced by the release of nitric oxide from the endothelium causing dilatation of the artery, thus decreasing the stimulus to cell adhesion and, through a direct action of nitric oxide, inhibiting the process of cell adhesion. The results also provide an explanation for the uneven distribution of atheroma throughout the arterial system, which is related to the ratio of pulsatile to mean shear stress and consequent variability in the production of NO. PMID:17412772

Kelly, R F; Snow, H M

2007-01-01

160

Quadruple LVDT local rotational displacement measurement in torsional shear tests  

Microsoft Academic Search

Experience has shown that to obtain pre-failure deformability of geomaterials in laboratory element tests, it is imperative to make local strain measurements. For torsional shear tests, the local measurement is complicated by coupling of the axial, radial, and rotational movement experienced by the soil specimen during shear. The rotational displacement must be isolated from other modes of movement for the

An-Bin Huang; Yao-Tao Huang; Yuan-Yu Tai; Fu-Jen Ho; Jun-Min Chang

2007-01-01

161

Normalization of flow-mediated dilation to shear stress area under the curve eliminates the impact of variable hyperemic stimulus  

PubMed Central

Background Normalization of brachial artery flow-mediated dilation (FMD) to individual shear stress area under the curve (peak FMD:SSAUC ratio) has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of FMD normalization to shear stress in reducing measurement variability. Methods Five different magnitudes of reactive hyperemia-induced shear stress were applied to 20 healthy, physically active young adults (25.3 ± 0. 6 yrs; 10 men, 10 women) by manipulating forearm cuff occlusion duration: 1, 2, 3, 4, and 5 min, in a randomized order. A venous blood draw was performed for determination of baseline whole blood viscosity and hematocrit. The magnitude of occlusion-induced forearm ischemia was quantified by dual-wavelength near-infrared spectrometry (NIRS). Brachial artery diameters and velocities were obtained via high-resolution ultrasound. The SSAUC was individually calculated for the duration of time-to-peak dilation. Results One-way repeated measures ANOVA demonstrated distinct magnitudes of occlusion-induced ischemia (volume and peak), hyperemic shear stress, and peak FMD responses (all p < 0.0001) across forearm occlusion durations. Differences in peak FMD were abolished when normalizing FMD to SSAUC (p = 0.785). Conclusion Our data confirm that normalization of FMD to SSAUC eliminates the influences of variable shear stress and solidifies the utility of FMD:SSAUC ratio as an index of endothelial function. PMID:18771594

Padilla, Jaume; Johnson, Blair D; Newcomer, Sean C; Wilhite, Daniel P; Mickleborough, Timothy D; Fly, Alyce D; Mather, Kieren J; Wallace, Janet P

2008-01-01

162

Studies on stress distribution in pavements subjected to surface shear forces.  

PubMed

It has been pointed out by some researchers that road pavements are subjected to vertical stress due to vehicles on them as well as shear stress at the time of braking or acceleration of vehicles. In this paper, the results of elastic analysis to obtain the rigorous solution for an elastic two-layer system subjected to surface shear stress are described and it is shown that the effect of shear stresses applied at the surface gives rise to fairly large stresses in the system. On the basis of these findings, the author attempts to explain why pavement failure takes place frequently at places such as crossings and curved parts where pavements are subjected to high magnitude of surface shear stresses. PMID:24522154

Kimura, Tsutomu

2014-01-01

163

Onset of flow in a confined colloidal glass under an imposed shear stress  

E-print Network

A confined colloidal glass, under the imposition of a uniform shear stress, is investigated using numerical simulations. Both at macro- and microscales, the consequent dynamics during the onset of flow is studied. When the imposed stress is gradually decreased, the time scale for the onset of steady flow diverges, associated with long-lived spatial heterogeneities. Near this yield-stress regime, persistent creep in the form of shear-banded structures is observed.

Pinaki Chaudhuri; Jürgen Horbach

2014-10-26

164

An Intriguing Empirical Rule for Computing The First Normal Stress Difference from Steady Shear Viscosity Data for Polymer Solutions and Melts  

E-print Network

1 An Intriguing Empirical Rule for Computing The First Normal Stress Difference from Steady Shear 02139-4307. November 18, 2011 Abstract The Cox-Merz rule and Laun's rule are two empirical relations small amplitude oscillatory shear measurements. The validity of the Cox-Merz rule and Laun's rule imply

165

Galanin Protects against Nerve Injury after Shear Stress in Primary Cultured Rat Cortical Neurons  

PubMed Central

The neuropeptide galanin and its receptors (GalR) are found to be up-regulated in brains suffering from nerve injury, but the specific role played by galanin remains unclear. This study aimed to explore the neuroprotective role of galanin after shear stress induced nerve injury in the primary cultured cortical neurons of rats. Our results demonstrated that no significant changes in cell death and viability were found after galanin treatment when subjected to a shear stress of 5 dyn/cm2 for 12 h, after increasing magnitude of shear stress to 10 dyn/cm2 for 12 h, cell death was significantly increased, while galanin can inhibit the nerve injury induced by shear stress with 10 dyn/cm2 for 12 h. Moreover, Gal2-11 (an agonist of GalR2/3) could also effectively inhibit shear stress-induced nerve injury of primary cultured cortical neurons in rats. Although GalR2 is involved in the galanin protection mechanism, there was no GalR3 expression in this system. Moreover, galanin increased the excitatory postsynaptic currents (EPSCs), which can effectively inhibit the physiological effects of shear stress. Galanin was also found to inhibit the activation of p53 and Bax, and further reversed the down regulation of Bcl-2 induced by shear stress. Our results strongly demonstrated that galanin plays a neuroprotective role in injured cortical neurons of rats. PMID:23691051

Li, Ping; Huang, Yan; Gong, Xianghui; Zhou, Gang; Jia, Xiaoling; Zheng, Lisha; Fan, Yubo

2013-01-01

166

Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior.  

PubMed

Arterial hemodynamic shear stress and blood vessel stiffening both significantly influence the arterial endothelial cell (EC) phenotype and atherosclerosis progression, and both have been shown to signal through cell-matrix adhesions. However, the cooperative effects of fluid shear stress and matrix stiffness on ECs remain unknown. To investigate these cooperative effects, we cultured bovine aortic ECs on hydrogels matching the elasticity of the intima of compliant, young, or stiff, aging arteries. The cells were then exposed to laminar fluid shear stress of 12 dyn/cm(2). Cells grown on more compliant matrices displayed increased elongation and tighter EC-cell junctions. Notably, cells cultured on more compliant substrates also showed decreased RhoA activation under laminar shear stress. Additionally, endothelial nitric oxide synthase and extracellular signal-regulated kinase phosphorylation in response to fluid shear stress occurred more rapidly in ECs cultured on more compliant substrates, and nitric oxide production was enhanced. Together, our results demonstrate that a signaling cross talk between stiffness and fluid shear stress exists within the vascular microenvironment, and, importantly, matrices mimicking young and healthy blood vessels can promote and augment the atheroprotective signals induced by fluid shear stress. These data suggest that targeting intimal stiffening and/or the EC response to intima stiffening clinically may improve vascular health. PMID:25650915

Kohn, Julie C; Zhou, Dennis W; Bordeleau, François; Zhou, Allen L; Mason, Brooke N; Mitchell, Michael J; King, Michael R; Reinhart-King, Cynthia A

2015-02-01

167

Energy consumption in terms of shear stress for two types of membrane bioreactors used for municipal wastewater treatment processes  

NASA Astrophysics Data System (ADS)

Two types of submerged membrane bioreactors (MBR): hollow fiber (HF) and hollow sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power and the blower power demand per unit of permeate volume. Results showed that for the system geometries considered, in terms the of the blower power, the HF MBR requires less power compared to HS MBR. However, in terms of blower power per unit of permeate volume, the HS MBR requires less energy. The analysis of shear stress over the membrane surface was made using computational fluid dynamics (CFD) modelling. Experimental measurements for the HF MBR were compared with the CFD model and an error less that 8% was obtained. For the HS MBR, experimental measurements of velocity profiles were made and an error of 11% was found. This work uses an empirical relationship to determine the shear stress based on the ratio of aeration blower power to tank volume. This relationship is used in bubble column reactors and it is extrapolate to determine shear stress on MBR systems. This relationship proved to be overestimated by 28% compared to experimental measurements and CFD results. Therefore, a corrective factor is included in the relationship in order to account for the membrane placed inside the bioreactor.

Ratkovich, Nicolas; Bentzen, Thomas R.; Rasmussen, Michael R.

2012-10-01

168

A Micromachined Geometric Moire Interferometric Floating-Element Shear Stress Sensor  

NASA Technical Reports Server (NTRS)

This paper presents the development of a floating-element shear stress sensor that permits the direct measurement of skin friction based on geometric Moir interferometry. The sensor was fabricated using an aligned wafer-bond/thin-back process producing optical gratings on the backside of a floating element and on the top surface of the support wafer. Experimental characterization indicates a static sensitivity of 0.26 microns/Pa, a resonant frequency of 1.7 kHz, and a noise floor of 6.2 mPa/(square root)Hz.

Horowitz, S.; Chen, T.; Chandrasekaran, V.; Tedjojuwono, K.; Nishida, T.; Cattafesta, L.; Sheplak, M.

2004-01-01

169

An ultrasonic technique for measuring stress in fasteners  

NASA Astrophysics Data System (ADS)

High temperature bolting alloys are extensively used in the thermal power generation industry as for example, reheat ESV and Governor valve studs. Remnant life assessment methodologies and plant maintenance procedures require the monitoring of the operational stress levels in these fasteners. Some conventional ultrasonic techniques require longitudinal wave measurements to be undertaken when the nut on the bolt is loosened and then re-tightened. Other techniques use a combination of shear waves and longitudinal waves. In this paper, the problems and pitfalls associated with various ultrasonic techniques for measuring stress in bolts, is discussed. An ultrasonic technique developed for measuring the stress in Durehete 1055 bolts is presented. Material from a textured rolled bar has been used as a test bed in the development work. The technique uses shear wave birefringence and compression waves at several frequencies to measure texture, fastener length and the average stress. The technique was developed by making ultrasonic measurements on bolts tensioned in universal testing machines and a hydraulic nut. The ultrasonic measurements of residual stress have been checked against strain gauge measurements. The Durehete bolts have a hollow cylinder geometry of restricted dimensions, which significantly alters compression and shear wave velocities from bulk values and introduces hoop stresses which can be measured by rotating the polarization of the shear wave probe. Modelling of the experimental results has been undertaken using theories for the elastic wave propagation through waveguides. The dispersion equations allow the velocity and length of the fastener to be measured ultrasonically in some situations where the length of the fastener can not be measured directly with a vernier caliper or micrometer and/or where it is undesirable to loosen nuts to take calibration readings of the shear and compression wave velocities.

Stevens, K. J.; Day, P.; Byron, D.

1999-12-01

170

Contact Pressure and Shear Stress Analysis on Conforming Contact Problem  

NASA Astrophysics Data System (ADS)

Two methods to solve a conforming contact problem are proposed. First method is general and can be applicable to the contact case between elastic arbitrary shape bodies. For verification FEA is performed on the convex-concave sphere contact, and the result of this method is well corresponding to the FEA result. However, the accuracy deteriorates when the mesh aspect ratio is extremely large. This phenomenon is caused by the usage of numerical integration for the calculation of influence coefficient. The second method is devised to avoid this problem, while this improved method is applicable only to the case when the contact area can be considered to be on a cylinder surface. By using this method, the contact pressure can be obtained without the deterioration even in the case of edge load occurring between ball bearing race shoulder and ball. The results of the contact pressure and the shear stress that is necessary for bearing life estimation are compared with the FEA result, which showed well correspondence.

Nagatani, Haruo; Imou, Akitoshi

171

Estimates of bottom roughness length and bottom shear stress in South San Francisco Bay, California  

USGS Publications Warehouse

A field investigation of the hydrodynamics and the resuspension and transport of participate matter in a bottom boundary layer was carried out in South San Francisco Bay (South Bay), California, during March-April 1995. Using broadband acoustic Doppler current profilers, detailed measurements of turbulent mean velocity distribution within 1.5 m above bed have been obtained. A global method of data analysis was used for estimating bottom roughness length zo and bottom shear stress (or friction velocities u*). Field data have been examined by dividing the time series of velocity profiles into 24-hour periods and independently analyzing the velocity profile time series by flooding and ebbing periods. The global method of solution gives consistent properties of bottom roughness length zo and bottom shear stress values (or friction velocities u*) in South Bay. Estimated mean values of zo and u* for flooding and ebbing cycles are different. The differences in mean zo and u* are shown to be caused by tidal current flood-ebb inequality, rather than the flooding or ebbing of tidal currents. The bed shear stress correlates well with a reference velocity; the slope of the correlation defines a drag coefficient. Forty-three days of field data in South Bay show two regimes of zo (and drag coefficient) as a function of a reference velocity. When the mean velocity is >25-30 cm s-1, the ln zo (and thus the drag coefficient) is inversely proportional to the reference velocity. The cause for the reduction of roughness length is hypothesized as sediment erosion due to intensifying tidal currents thereby reducing bed roughness. When the mean velocity is <25-30 cm s-1, the correlation between zo and the reference velocity is less clear. A plausible explanation of scattered values of zo under this condition may be sediment deposition. Measured sediment data were inadequate to support this hypothesis, but the proposed hypothesis warrants further field investigation.

Cheng, R.T.; Ling, C.-H.; Gartner, J.W.; Wang, P.-F.

1999-01-01

172

Visualising shear stress distribution inside flow geometries containing pharmaceutical powder excipients using photo stress analysis tomography and DEM simulations  

NASA Astrophysics Data System (ADS)

For the first time, photo stress analysis tomography (PSAT) is applied to probe the distribution of maximum shear stress and direction of major principal stress field within `powder' assemblies inside hopper geometries, and further supported by discrete element model (DEM) simulations. The results show that for decrease in hopper angle, the direction of major principle stress aligns with the direction of gravity which could promote flow rate under dynamic conditions. Conversely, the propensity of developing relatively more non-homogeneous distribution of shear resistance zones inside powder assemblies increases with the hopper angle, which could subsequently decrease their macroscopic flow rate.

Albaraki, Saeed; Antony, S. Joseph.; Arowosola, C. Babatunde

2013-06-01

173

Nucleation and Propagation of Dynamic Earthquake Rupture Under Constrained Stochastic Shear Stress  

Microsoft Academic Search

Nucleation, propagation and arrest of dynamic rupture are strongly influenced by the distribution of shear stress on the fault plane. Whether or not a seismic instability grows into a moderate to large earthquake, but also the temporal properties (propagation velocity, slip velocity) of sustained rupture depend on the statistical properties of the initial stress fields. Though the incipient stresses are

J. Ripperger; P. M. Mai; J. Ampuero

2005-01-01

174

Measuring Environmental Stress  

ERIC Educational Resources Information Center

Infrared remote sensors, plus photometric interpretation and digital data analysis are being used to record the stresses on air, water, vegetation and soil. Directly recorded photographic information has been the most effective recording media for remote sensing. (BT)

Walker, John E.; Dahm, Douglas B.

1975-01-01

175

FLOCCULATION OF FINE-GRAINED LAKE SEDIMENTS DUE TO A UNIFORM SHEAR STRESS  

EPA Science Inventory

Experiments were performed to investigate the effects of fluid shear on the flocculation of fine-grained lake sediments in fresh water. In these experiments, a Couette viscometer was used to apply a uniform shear stress to a sediment suspension. he sediments were from the Detroit...

176

Figure 1: Multiplex logarithmic microfluidic perfusion array for probing shear stress effects on stem cells. (A)  

E-print Network

on stem cells. (A) Microfluidic perfusion systems exhibit more defined shear stress profiles and consume) for a typical soluble factor (MW~20 kDa) secreted by mouse embryonic stem cells (mESCs) investigated EMBRYONIC STEM CELLS Y.C. Toh1 and J. Voldman1* 1 Massachusetts Institute of Technology, USA ABSTRACT Shear

Voldman, Joel

177

Frequency-dependent response of the vascular endothelium to pulsatile shear stress  

Technology Transfer Automated Retrieval System (TEKTRAN)

Most cells of the circulatory system are exposed to shear forces that occur at the frequency of the heartbeat. However, as a result of the complicated blood flow patterns that occur at arterial branches, small regions of the arterial wall experience fluctuations in shear stress that are dominated by...

178

P-104: Shearing Effects of Stressed Liquid Crystals with Various Liquid Crystal Domain Sizes  

Microsoft Academic Search

Stressed liquid crystals (SLCs) are fast light modulating materials based on polymer\\/liquid crystal composites. We used polarizing microscopy and fluorescence confocal microscopy to investigate liquid crystal domain sizes and shearing mechanism for SLCs with different domain sizes. We observed the stretch of polymer matrices and the reshaping of liquid crystal domains in SLCs during shearing. In addition, we demonstrated the

Guoqiang Zhang; John L. West; Anatoliy Glushchenko; Ivan Smalyukh; Oleg Lavrentovich

2005-01-01

179

Experimental studies of shear stress and flow separation in low Reynolds number flows  

E-print Network

Presented here is an experimental investigation of the kinematic theory of separation in unsteady two-dimensional flows, and an evaluation of a novel optical shear stress sensor. Fixed separation in the rotor-oscillator ...

Weldon, Matthew J. (Matthew Jacob)

2007-01-01

180

Fluorescent molecular rotor for the study of membrane fluidity in endothelial cells under fluid shear stress  

NASA Astrophysics Data System (ADS)

Molecular rotors are fluorescent probes that change quantum yield with the viscosity of their environment. When integrated into the cell membrane, they can be used to probe viscosity changes of the membrane. Fluid shear stress is hypothesized to increase membrane fluidity in the membrane of endothelial cells, a change that leads to the activation of heterotrimetric G proteins, thus activating a signal transduction cascade. This hypothesis was examined using a molecular rotor, 9-dicyanovinyl-julolidine (DCVJ) as membrane probe. The principal response, a decease of fluorescence intensity caused by increased membrane fluidity, was obtained by adding a fluidity-increasing agent to the cells. In a parallel-plate flow chamber, a confluent layer of DCVJ-labeled human umbilical cord venous endothelial cells were exposed to different levels of fluid shear stress. With increased shear, a reduced fluorescence intensity was observed, indicating an increase of membrane fluidity. Step changes of fluid shear stress caused an approximately linear drop of fluorescence within 5 seconds, showing fast and almost full recovery after shear stopped. A linear relationship between shear stress and membrane fluidity changes was also observed. This study not only shows the suitability of the molecular rotor DCVJ as a membrane fluidity probe, but also provides evidence for the direct link between fluid shear stress and membrane fluidity, and suggests that the membrane is the primary flow mechanosensor of the cell.

Haidekker, Mark A.; Frangos, John A.

2000-04-01

181

Hemodynamic Shear Stress and Endothelial Dysfunction in Hemodialysis Access  

PubMed Central

Surgically-created blood conduits used for chronic hemodialysis, including native arteriovenous fistulas (AVFs) and synthetic AV grafts (AVGs), are the lifeline for kidney failure patients. Unfortunately, each has its own limitations: AVFs often fail to mature to become useful for dialysis and AVGs often fail due to stenosis as a result of neointimal hyperplasia, which preferentially forms at the graft-venous anastomosis. No clinical therapies are currently available to significantly promote AVF maturation or prevent neointimal hyperplasia in AVGs. Central to devising strategies to solve these problems is a complete mechanistic understanding of the pathophysiological processes. The pathology of arteriovenous access problems is likely multi-factorial. This review focuses on the roles of fluid-wall shear stress (WSS) and endothelial cells (ECs). In arteriovenous access, shunting of arterial blood flow directly into the vein drastically alters the hemodynamics in the vein. These hemodynamic changes are likely major contributors to non-maturation of an AVF vein and/or formation of neointimal hyperplasia at the venous anastomosis of an AVG. ECs separate blood from other vascular wall cells and also influence the phenotype of these other cells. In arteriovenous access, the responses of ECs to aberrant WSS may subsequently lead to AVF non-maturation and/or AVG stenosis. This review provides an overview of the methods for characterizing blood flow and calculating WSS in arteriovenous access and discusses EC responses to arteriovenous hemodynamics. This review also discusses the role of WSS in the pathology of arteriovenous access, as well as confounding factors that modulate the impact of WSS. PMID:25309636

Fitts, Michelle K.; Pike, Daniel B.; Anderson, Kasey; Shiu, Yan-Ting

2014-01-01

182

Hemodynamic Shear Stress and Endothelial Dysfunction in Hemodialysis Access.  

PubMed

Surgically-created blood conduits used for chronic hemodialysis, including native arteriovenous fistulas (AVFs) and synthetic AV grafts (AVGs), are the lifeline for kidney failure patients. Unfortunately, each has its own limitations: AVFs often fail to mature to become useful for dialysis and AVGs often fail due to stenosis as a result of neointimal hyperplasia, which preferentially forms at the graft-venous anastomosis. No clinical therapies are currently available to significantly promote AVF maturation or prevent neointimal hyperplasia in AVGs. Central to devising strategies to solve these problems is a complete mechanistic understanding of the pathophysiological processes. The pathology of arteriovenous access problems is likely multi-factorial. This review focuses on the roles of fluid-wall shear stress (WSS) and endothelial cells (ECs). In arteriovenous access, shunting of arterial blood flow directly into the vein drastically alters the hemodynamics in the vein. These hemodynamic changes are likely major contributors to non-maturation of an AVF vein and/or formation of neointimal hyperplasia at the venous anastomosis of an AVG. ECs separate blood from other vascular wall cells and also influence the phenotype of these other cells. In arteriovenous access, the responses of ECs to aberrant WSS may subsequently lead to AVF non-maturation and/or AVG stenosis. This review provides an overview of the methods for characterizing blood flow and calculating WSS in arteriovenous access and discusses EC responses to arteriovenous hemodynamics. This review also discusses the role of WSS in the pathology of arteriovenous access, as well as confounding factors that modulate the impact of WSS. PMID:25309636

Fitts, Michelle K; Pike, Daniel B; Anderson, Kasey; Shiu, Yan-Ting

2014-01-01

183

Association of SIRT1 expression with shear stress induced endothelial progenitor cell differentiation.  

PubMed

Shear stress imposed by blood flow is crucial for differentiation of endothelial progenitor cells (EPCs). Histone deacetylase SIRT1 has been shown to play a pivotal role in many physiological processes. However, association of SIRT1 expression with shear stress-induced EPC differentiation remains to be elucidated. The present study was designed to determine the effect of SIRT1 on EPC differentiation induced by shear stress, and to seek the underlying mechanisms. Human umbilical cord blood-derived EPCs were exposed to laminar shear stress of 15 dyn/cm(2) by parallel plate flow chamber system. Shear stress enhanced EPC differentiation toward endothelial cells (ECs) while inhibited to smooth muscle cells (SMCs). The expressions of phospho-Akt, SIRT1 and histone H3 acetylation (Ac-H3) in EPCs were detected after exposure to shear stress for 2, 6, 12, and 24 h, respectively. Shear stress significantly activated Akt phosphorylation, augmented SIRT1 expression and downregulated Ac-H3. SIRT1 siRNA in EPCs diminished the expression of EC markers, but increased the expression of SMC markers, and resulted in upregulation of Ac-H3. Whereas, resveratrol, an activator of SIRT1, had the opposite effects on both EPC differentiation and histone H3 acetylation. Wortmannin, an inhibitor of PI3-kinase, suppressed endothelial differentiation of EPCs, decreased SIRT1, and upregulated Ac-H3 expression. In addition, SIRT1 promoted tube formation of EPCs in matrix gels. These results provided a mechanobiological basis of shear stress-induced EPC differentiation into ECs and suggest that PI3k/Akt-SIRT1-Ac-H3 pathway is crucial in such a process. PMID:22740055

Cheng, Bin-Bin; Yan, Zhi-Qiang; Yao, Qing-Ping; Shen, Bao-Rong; Wang, Ji-Yao; Gao, Li-Zhi; Li, Yu-Qing; Yuan, Hai-Tao; Qi, Ying-Xin; Jiang, Zong-Lai

2012-12-01

184

Flow stress determination in orthogonal cutting process combining the primary and the secondary shear zones  

Microsoft Academic Search

The rheological model of workpiece materials in the machining simulation plays an important role. More researchers have studied\\u000a the flow stress identification, generally based on the strain, strain rate and temperatures of the only primary shear zone\\u000a (PSZ), and there is not much about the influence of the secondary shear zone (SSZ) on the determination of the flow stress\\u000a equation.

G. M. Pittalà; M. Monno

2010-01-01

185

Association between Ischemic Stroke and Vascular Shear Stress in the Carotid Artery  

PubMed Central

Background and Purpose Vascular shear stress is essential for maintaining the morphology and function of endothelial cells. We hypothesized that shear stress in the internal carotid artery (ICA) may differ between patients with ischemic stroke and healthy control subjects. Methods ICA shear stress was calculated in 143 controls and 122 patients with ischemic stroke who had a normal ICA or an ICA with <50% stenosis. The stroke group included patients who presented with a first-ever or recurrent ischemic stroke but excluded cardioembolic stroke and uncertain etiologies. Of the 122 patients, 107 (87.7%) and 15 (12.3%) patients were categorized as first-ever and recurrent stroke, respectively. Results Carotid diameters were significantly larger, and both peak-systolic and end-diastolic velocities were significantly lower in patients with ischemic stroke than in controls (all p values <0.05). Mean values of peak-systolic and end-diastolic shear stress in both ICAs were significantly lower in patients with ischemic stroke in models that adjusted for age, sex, and vascular risk factors (p for trend <0.05). The ICA shear stress was lowest in patients with recurrent stroke or the subtype of small-vessel occlusion. Higher peak-systolic and end-diastolic shear stresses in both ICAs were independently and negatively associated with ischemic stroke after adjusting for potential confounders (all p values <0.05). Conclusions ICA shear stresses were significantly lower in patients with ischemic stroke than in control subjects. Future studies should attempt to define the causal relationship between carotid arterial shear stress and ischemic stroke. PMID:24829599

Lee, Jun-Young; Rosenson, Robert S.

2014-01-01

186

On the stress distribution in a thin rectangular plate subjected to shear  

E-print Network

of the Shear Stress Distri- bution Curves in Order of an Increas? ing ~rs ShoMing the Relationship betsteen Le Distribution Curves and the ~rs Ratios, Comparison of the Theoretical and Exper- imenta3. Shear Stress Distribution of' Plate (2 x ?860) 0 g pl... Average Stress, g difference in these Stresses, %max (Theoretica1) ) 'f max (Experimental), gmax (Exeter. ) vs g of C~ (Theo. ), ~rs. ~ 0 ~ ~ 0 Values of "+~" Ca1culated from ELemen- tary Beam Theory for Plate- (2 x 860) ~ ~ ~ ~ ~ /1 and Mrs t 1...

Travis, Darol Duane

2012-06-07

187

An Octahedral Shear Strain Based measure of SNR for 3D MR Elastography  

PubMed Central

A signal to noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for MR elastography, where motion-based SNR measures are commonly used. The shear strain, ?, is directly related to the shear modulus, ?, through the definition of shear stress, ? = ??. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects. PMID:21654044

McGarry, MDJ; Van Houten, EEW; Perriñez, PR; Pattison, AJ; Weaver, JB; Paulsen, KD

2011-01-01

188

An octahedral shear strain-based measure of SNR for 3D MR elastography  

NASA Astrophysics Data System (ADS)

A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, ?, is directly related to the shear modulus, ?, through the definition of shear stress, ? = ??. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and the human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects.

McGarry, M. D. J.; Van Houten, E. E. W.; Perriñez, P. R.; Pattison, A. J.; Weaver, J. B.; Paulsen, K. D.

2011-07-01

189

An octahedral shear strain-based measure of SNR for 3D MR elastography.  

PubMed

A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, ?, is directly related to the shear modulus, ?, through the definition of shear stress, ? = ??. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and the human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects. PMID:21654044

McGarry, M D J; Van Houten, E E W; Perriñez, P R; Pattison, A J; Weaver, J B; Paulsen, K D

2011-07-01

190

Macro-scale Topology Optimization for Controlling Internal Shear Stress in a Porous Scaffold Bioreactor  

E-print Network

Shear stress is an important physical factor that regulates proliferation, migration and morphogenesis. In particular, the homeostasis of blood vessels is dependent on shear stress. To mimic this process ex vivo, efforts have been made to seed scaffolds with vascular and other cell types in the presence of growth factors and under pulsatile flow conditions. However, the resulting bioreactors lack information on shear stress and flow distributions within the scaffold. Consequently, it is difficult to interpret the effects of shear stress on cell function. Such knowledge would enable researchers to improve upon cell culture protocols. Recent work has focused on optimizing the microstructural parameters of the scaffold to fine tune the shear stress. In this study, we have adopted a different approach whereby flows are redirected throughout the bioreactor along channels patterned in the porous scaffold to yield shear stress distributions that are optimized for uniformity centered on a target value. A topology optimization algorithm coupled to computational fluid dynamics simulations was devised to this end. The channel topology in the porous scaffold was varied using a combination of genetic algorithm and fuzzy logic. The method is validated by experiments using magnetic resonance imaging (MRI) readouts of the flow field.

K. Youssef; J. J. Mack; M. L. Iruela-Arispe; L. -S. Bouchard

2012-01-09

191

Arterial Shear Stress Reduces Eph-B4 Expression in Adult Human Veins  

PubMed Central

Vein graft adaptation to the arterial environment is characterized by loss of venous identity, with reduced Ephrin type-B receptor 4 (Eph-B4) expression but without increased Ephrin-B2 expression. We examined changes of vessel identity of human saphenous veins in a flow circuit in which shear stress could be precisely controlled. Medium circulated at arterial or venous magnitudes of laminar shear stress for 24 hours; histologic, protein, and RNA analyses of vein segments were performed. Vein endothelium remained viable and functional, with platelet endothelial cell adhesion molecule (PECAM)-expressing cells on the luminal surface. Venous Eph-B4 expression diminished (p = .002), Ephrin-B2 expression was not induced (p = .268), and expression of osteopontin (p = .002) was increased with exposure to arterial magnitudes of shear stress. Similar changes were not found in veins placed under venous flow or static conditions. These data show that human saphenous veins remain viable during ex vivo application of shear stress in a bioreactor, without loss of the venous endothelium. Arterial magnitudes of shear stress cause loss of venous identity without gain of arterial identity in human veins perfused ex vivo. Shear stress alone, without immunologic or hormonal influence, is capable of inducing changes in vessel identity and, specifically, loss of venous identity. PMID:25191151

Model, Lynn S.; Hall, Michael R.; Wong, Daniel J.; Muto, Akihito; Kondo, Yuka; Ziegler, Kenneth R.; Feigel, Amanda; Quint, Clay; Niklason, Laura; Dardik, Alan

2014-01-01

192

Lysophosphatidic acid induces shear stress-dependent contraction in mouse aortic strip in situ.  

PubMed

We previously reported that lysophosphatidic acid (LPA) regulates Ca²? influx of fluid flow in stimulated endothelial cells and that LPA and shear stress showed increment and suppressive effects on phenylephrine-induced vasoconstriction and acetylcholine-induced vasodilatation, respectively. However, a vasoconstrictive effect of LPA alone in the presence of shear stress was not found. The present study examined the effect of LPA alone in the presence of shear stress on Ca²? responses in endothelial and smooth muscle cells and contraction in mouse aortic strip using real-time 2-photon laser scanning microscopy and a custom-made parallel-plate flow chamber. Application of micromolar LPA and high shear stress elicited movement of endothelial cells after Ca²? responses. The endothelial cells moved along the major axis of smooth muscle cells, a direction that was identical to that found during vasoconstriction evoked by the application of phenylephrine. The frequency of Ca²? oscillations in smooth muscle cells was highest according to endothelial movement. Vasoconstriction evoked by LPA and shear stress was significantly reduced by the application of a thromboxane A? receptor antagonist, a cyclooxygenase inhibitor, and a thromboxane synthase inhibitor. These results suggest that micromolar LPA and high shear stress elicit vasoconstriction that is caused by Ca²?-dependent contraction in medial smooth muscle cells. Thromboxane A? may be involved in that response. PMID:24084212

Niioka, Takeharu; Ohata, Hisayuki; Momose, Kazutaka; Honda, Kazuo

2013-12-01

193

Arterial shear stress reduces eph-b4 expression in adult human veins.  

PubMed

Vein graft adaptation to the arterial environment is characterized by loss of venous identity, with reduced Ephrin type-B receptor 4 (Eph-B4) expression but without increased Ephrin-B2 expression. We examined changes of vessel identity of human saphenous veins in a flow circuit in which shear stress could be precisely controlled. Medium circulated at arterial or venous magnitudes of laminar shear stress for 24 hours; histologic, protein, and RNA analyses of vein segments were performed. Vein endothelium remained viable and functional, with platelet endothelial cell adhesion molecule (PECAM)-expressing cells on the luminal surface. Venous Eph-B4 expression diminished (p = .002), Ephrin-B2 expression was not induced (p = .268), and expression of osteopontin (p = .002) was increased with exposure to arterial magnitudes of shear stress. Similar changes were not found in veins placed under venous flow or static conditions. These data show that human saphenous veins remain viable during ex vivo application of shear stress in a bioreactor, without loss of the venous endothelium. Arterial magnitudes of shear stress cause loss of venous identity without gain of arterial identity in human veins perfused ex vivo. Shear stress alone, without immunologic or hormonal influence, is capable of inducing changes in vessel identity and, specifically, loss of venous identity. PMID:25191151

Model, Lynn S; Hall, Michael R; Wong, Daniel J; Muto, Akihito; Kondo, Yuka; Ziegler, Kenneth R; Feigel, Amanda; Quint, Clay; Niklason, Laura; Dardik, Alan

2014-09-01

194

Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells.  

PubMed

Responses of vascular endothelial cells to mechanical shear stresses resulting from blood flow are involved in regulation of blood flow, in structural adaptation of vessels, and in vascular disease. Interior surfaces of blood vessels are lined with a layer of bound or adsorbed macromolecules, known as the endothelial surface layer (ESL). In vivo investigations have shown that this layer has a width of order 1 microm, that it substantially impedes plasma flow, and that it excludes flowing red blood cells. Here, the effect of the ESL on transmission of shear stress to endothelial cells is examined using a theoretical model. The layer is assumed to consist of a matrix of molecular chains extending from the surface, held in tension by a slight increase in colloid osmotic pressure relative to that in free-flowing plasma. It is shown that, under physiological conditions, shear stress is transmitted to the endothelial surface almost entirely by the matrix, and fluid shear stresses on endothelial cell membranes are very small. Rapid fluctuations in shear stress are strongly attenuated by the layer. The ESL may therefore play an important role in sensing of shear stress by endothelial cells. PMID:11381171

Secomb, T W; Hsu, R; Pries, A R

2001-01-01

195

Monocyte recruitment to endothelial cells in response to oscillatory shear stress  

PubMed Central

Leukocyte recruitment to endothelial cells is a critical event in inflammatory responses. The spatial, temporal gradients of shear stress, topology, and outcome of cellular interactions that underlie these responses have so far been inferred from static imaging of tissue sections or studies of statically cultured cells. In this report, we developed micro-electromechanical systems (MEMS) sensors, comparable to a single endothelial cell (EC) in size, to link real-time shear stress with monocyte/EC binding kinetics in a complex flow environment, simulating the moving and unsteady separation point at the arterial bifurcation with high spatial and temporal resolution. In response to oscillatory shear stress (?) at ± 2.6 dyn/cm2 at a time-averaged shear stress (?ave) = 0 and 0.5 Hz, individual monocytes displayed unique to-and-fro trajectories undergoing rolling, binding, and dissociation with other monocyte, followed by solid adhesion on EC. Our study quantified individual monocyte/EC binding kinetics in terms of displacement and velocity profiles. Oscillatory flow induces up-regulation of adhesion molecules and cytokines to mediate monocyte/EC interactions over a dynamic range of shear stress ± 2.6 dyn/cm2 (P= 0.50, n= 10).—Hsiai, T. K., Cho, S. K., Wong, P. K., Ing, M., Salazar, A., Sevanian, A., Navab, M., Demer, L. L., Ho, C.-M. Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB J. 17, 1648–1657 (2003) PMID:12958171

Hsiai, Tzung K.; Cho, Sung K.; Wong, Pak K.; Ing, Mike; Salazar, Adler; Sevanian, Alex; Navab, Mohamad; Demer, Linda L.; Ho, Chih-Ming

2014-01-01

196

Macro-scale topology optimization for controlling internal shear stress in a porous scaffold bioreactor.  

PubMed

Shear stress is an important physical factor that regulates proliferation, migration, and morphogenesis. In particular, the homeostasis of blood vessels is dependent on shear stress. To mimic this process ex vivo, efforts have been made to seed scaffolds with vascular and other cell types in the presence of growth factors and under pulsatile flow conditions. However, the resulting bioreactors lack information on shear stress and flow distributions within the scaffold. Consequently, it is difficult to interpret the effects of shear stress on cell function. Such knowledge would enable researchers to improve upon cell culture protocols. Recent work has focused on optimizing the microstructural parameters of the scaffold to fine tune the shear stress. In this study, we have adopted a different approach whereby flows are redirected throughout the bioreactor along channels patterned in the porous scaffold to yield shear stress distributions that are optimized for uniformity centered on a target value. A topology optimization algorithm coupled to computational fluid dynamics simulations was devised to this end. The channel topology in the porous scaffold was varied using a combination of genetic algorithm and fuzzy logic. The method is validated by experiments using magnetic resonance imaging readouts of the flow field. PMID:22252902

Youssef, K; Mack, J J; Iruela-Arispe, M L; Bouchard, L-S

2012-07-01

197

Concentration Polarization of High-Density Lipoprotein and Its Relation with Shear Stress in an In Vitro Model  

PubMed Central

The purpose of this study was to determine the concentration polarization of high-density lipoprotein (HDL) at the surface of the carotid artery under conditions of steady flow and to establish its relationship with shear stress using an in vitro vascular simulation model of carotid bifurcation. Shear stress, HDL concentration at the surface, and the ratio of HDL concentration at the surface to concentration in bulk flow were measured at different locations within the model under high-speed (1.451 m/s) and low-speed (0.559 m/s) flow. HDL showed concentration polarization at the surface of the carotid artery model, particularly in the internal carotid artery sinus. With decreasing flow velocity, the shear stress at the surface also decreased, and HDL concentration polarization increased. The concentration polarization of HDL was negatively and strongly correlated with shear stress at both low- (r = ?0.872, P < .001) and high-speed flow (r = ?0.592, P = .0018). PMID:19753319

Meng, Wei; Yu, Fengxu; Chen, Huaiqing; Zhang, Jianmin; Zhang, Eryong; Dian, Ke; Shi, Yingkang

2009-01-01

198

Acute shear stress direction dictates adherent cell remodeling and verifies shear profile of spinning disk assays  

NASA Astrophysics Data System (ADS)

Several methods have been developed to quantify population level changes in cell attachment strength given its large heterogeneity. One such method is the rotating disk chamber or ‘spinning disk’ in which a range of shear forces are applied to attached cells to quantify detachment force, i.e. attachment strength, which can be heterogeneous within cell populations. However, computing the exact force vectors that act upon cells is complicated by complex flow fields and variable cell morphologies. Recent observations suggest that cells may remodel their morphology and align during acute shear exposure, but contrary to intuition, shear is not orthogonal to the radial direction. Here we theoretically derive the magnitude and direction of applied shear and demonstrate that cells, under certain physiological conditions, align in this direction within minutes. Shear force magnitude is also experimentally verified which validates that for spread cells shear forces and not torque or drag dominate in this assay, and demonstrates that the applied force per cell area is largely independent of initial morphology. These findings suggest that direct quantified comparison of the effects of shear on a wide array of cell types and conditions can be made with confidence using this assay without the need for computational or numerical modeling.

Fuhrmann, Alexander; Engler, Adam J.

2015-02-01

199

Acute shear stress direction dictates adherent cell remodeling and verifies shear profile of spinning disk assays.  

PubMed

Several methods have been developed to quantify population level changes in cell attachment strength given its large heterogeneity. One such method is the rotating disk chamber or 'spinning disk' in which a range of shear forces are applied to attached cells to quantify detachment force, i.e. attachment strength, which can be heterogeneous within cell populations. However, computing the exact force vectors that act upon cells is complicated by complex flow fields and variable cell morphologies. Recent observations suggest that cells may remodel their morphology and align during acute shear exposure, but contrary to intuition, shear is not orthogonal to the radial direction. Here we theoretically derive the magnitude and direction of applied shear and demonstrate that cells, under certain physiological conditions, align in this direction within minutes. Shear force magnitude is also experimentally verified which validates that for spread cells shear forces and not torque or drag dominate in this assay, and demonstrates that the applied force per cell area is largely independent of initial morphology. These findings suggest that direct quantified comparison of the effects of shear on a wide array of cell types and conditions can be made with confidence using this assay without the need for computational or numerical modeling. PMID:25619322

Fuhrmann, Alexander; Engler, Adam J

2015-01-01

200

Natural convection flow near a vertical plate that applies a shear stress to a viscous fluid.  

PubMed

The unsteady natural convection flow of an incompressible viscous fluid near a vertical plate that applies an arbitrary shear stress to the fluid is studied using the Laplace transform technique. The fluid flow is due to both the shear and the heating of the plate. Closed-form expressions for velocity and temperature are established under the usual Boussinesq approximation. For illustration purposes, two special cases are considered and the influence of pertinent parameters on the fluid motion is graphically underlined. The required time to reach the steady state in the case of oscillating shear stresses on the boundary is also determined. PMID:24278110

Rubbab, Qammar; Vieru, Dumitru; Fetecau, Corina; Fetecau, Constantin

2013-01-01

201

Measuring shear strength of soft-tissue adhesives.  

PubMed

A method for evaluating strength of adhesives for hydrogels and soft tissues is presented. Quantitative measurements of shear strength for applications in tissue engineering and biomedicine are performed in torsion using a rheometer. Small, disk shaped specimens of soft biological tissues and/or hydrogels (8 mm diameter, 1-2 mm thick) are mounted onto rheometer tools and then bonded together using the adhesive to be tested. The torsional loading geometry imposes simple shear without deforming the planar adhesive bond, in contrast to the lap-shear test. It retains the advantages of the napkin ring test while reducing artifacts due to cutting and handling soft specimens. The method is demonstrated by measuring the shear strength of two types of biomedical adhesives (cyanoacrylate and polyethylene glycol-based) between model hydrogels (gelatin) and tissues (corneal stroma and skin). PMID:22323271

Wang, Muzhou; Kornfield, Julia A

2012-04-01

202

Glycocalyx acting as a mechanotransducer of fluid shear stress  

E-print Network

It is widely recognized that fluid shearing forces acting on endothelial cells (ECs) have a profound effect on EC morphology, structure and function. Recent investigations in vivo have indicated the presence of a thick ...

Yao, Yu, Ph. D. Massachusetts Institute of Technology

2005-01-01

203

Composite material shear property measurement using the Iosipescu specimen  

NASA Technical Reports Server (NTRS)

A detailed evaluation of the suitability of the Iosipescu specimen tested in the modified Wyoming fixture is presented. Finite element analysis and moire interferometry are used to assess the uniformity of the shear stress field in the test section of unidirectional and cross-ply graphite-epoxy composites. The nonuniformity of the strain field and the sensitivity of some fiber orientations to the specimen/fixture contact mechanics are discussed. The shear responses obtained for unidirectional and cross-ply graphite-epoxy composites are discussed and problems associated with anomalous behavior are addressed. An experimental determination of the shear response of a range of material systems using strain gage instrumentation and moire interferometry is performed.

Ho, Henjen; Budiman, Haryanto T.; Tsai, Ming-Yi; Morton, John; Farley, Gary L.

1992-01-01

204

On the expected relationships among apparent stress, static stress drop, effective shear fracture energy, and efficiency  

USGS Publications Warehouse

We consider expected relationships between apparent stress ??a and static stress drop ????s using a standard energy balance and find ??a = ????s (0.5 - ??), where ?? is stress overshoot. A simple implementation of this balance is to assume overshoot is constant; then apparent stress should vary linearly with stress drop, consistent with spectral theories (Brune, 1970) and dynamic crack models (Madariaga, 1976). Normalizing this expression by the static stress drop defines an efficiency ??sw = ??sa/????s as follows from Savage and Wood (1971). We use this measure of efficiency to analyze data from one of a number of observational studies that find apparent stress to increase with seismic moment, namely earthquakes recorded in the Cajon Pass borehole by Abercrombie (1995). Increases in apparent stress with event size could reflect an increase in seismic efficiency; however, ??sw for the Cajon earthquakes shows no such increase and is approximately constant over the entire moment range. Thus, apparent stress and stress drop co-vary, as expected from the energy balance at constant overshoot. The median value of ??sw for the Cajon earthquakes is four times lower than ??sw for laboratory events. Thus, these Cajon-recorded earthquakes have relatively low and approximately constant efficiency. As the energy balance requires ??sw = 0.5 - ??, overshoot can be estimated directly from the Savage-Wood efficiency; overshoot is positive for Cajon Pass earthquakes. Variations in apparent stress with seismic moment for these earthquakes result primarily from systematic variations in static stress drop with seismic moment and do not require a relative decrease in sliding resistance with increasing event size (dynamic weakening). Based on the comparison of field and lab determinations of the Savage-Wood efficiency, we suggest the criterion ??sw > 0.3 as a test for dynamic weakening in excess of that seen in the lab.

Beeler, N.M.; Wong, T.-F.; Hickman, S.H.

2003-01-01

205

The SDSS Coadd: Cosmic Shear Measurement  

SciTech Connect

Stripe 82 in the Sloan Digital Sky Survey was observed multiple times, allowing deeper images to be constructed by coadding the data. Here we analyze the ellipticities of background galaxies in this 275 square degree region, searching for evidence of distortions due to cosmic shear. The E-mode is detected in both real and Fourier space with > 5-{sigma} significance on degree scales, while the B-mode is consistent with zero as expected. The amplitude of the signal constrains the combination of the matter density {Omega}{sub m} and fluctuation amplitude {sigma}{sub 8} to be {Omega}{sub m}{sup 0.7} {sigma}{sub 8} = 0.276{sub -0.050}{sup +0.036}.

Lin, Huan; /Fermilab; Dodelson, Scott; /Fermilab /Chicago U., EFI /Chicago U., KICP; Seo, Hee-Jong; /UC, Berkeley; Soares-Santos, Marcelle; /Fermilab; Annis, James; /Fermilab; Hao, Jiangang; /Fermilab; Johnston, David; /Fermilab; Kubo, Jeffrey M.; /Fermilab; Reis, Ribamar R.R.; /Fermilab /Rio de Janeiro Federal U.; Simet, Melanie; /Chicago U., EFI /Chicago U., KICP

2011-11-01

206

The FASEB Journal Research Communication Fluid shear stress primes mouse embryonic stem cells  

E-print Network

The FASEB Journal · Research Communication Fluid shear stress primes mouse embryonic stem cells the increasing use of perfusion culture in stem cell research, it is unclear how changes in the stem cell stress is a ubiquitous environmen- tal cue experienced by stem cells when they are being differentiated

Voldman, Joel

207

Shear flow generation by Reynolds stress and suppression of resistive g-modes  

SciTech Connect

Suppression of resistive g-mode turbulence by background shear flow generated from a small external flow source and amplified by the fluctuation-induced Reynolds stress is demonstrated and analyzed. The model leads to a paradigm for the low-to-high (L-H) confinement mode transition. To demonstrate the L-H transition model, single-helicity nonlinear fluid simulations using the vorticity equation for the electrostatic potential, the pressure fluctuation equation and the background poloidal flow equation are used in the sheared slab configuration. The relative efficiency of the external flow and the Reynolds stress for producing shear flow depends on the poloidal flow damping parameter {nu} which is given by neoclassical theory. For large {nu}, the external flow is a dominant contribution to the total background poloidal shear flow and its strength predicted by the neoclassical theory is not enough to suppress the turbulence significantly. In contrast, for small {nu}, we show that the fluctuations drive a Reynolds stress that becomes large and suddenly, at some critical point in time, shear flow much larger than the external flow is generated and leads to an abrupt, order unity reduction of the turbulent transport just like that of the L-H transition in tokamak experiments. It is also found that, even in the case of no external flow, the shear flow generation due to the Reynolds stress occurs through the nonlinear interaction of the resistive g-modes and reduces the transport. To supplement the numerical solutions we derive the Landau equation for the mode amplitude of the resistive g-mode taking into account the fluctuation-induced shear flow and analyze the opposite action of the Reynolds stress in the resistive g turbulence compared with the classical shear flow Kelvin-Helmholtz (K-H) driven turbulence.

Sugama, H. [National Inst. for Fusion Science, Nagoya (Japan); Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

1993-08-01

208

Measured shear rates in large dry and wet snow avalanches  

Microsoft Academic Search

We present estimates of internal shear rates of real-scale avalanches that are based on velocity measurements. Optical velocity sensors installed on the instrument pylon at the Swiss Vallée de la Sionne test site are used to measure flow velocities at different flow heights of three large dry and wet snow avalanches. Possible sources of error in the correlation analysis of

Martin Kern; Perry Bartelt; Betty Sovilla; Othmar Buser

2009-01-01

209

Shear stress distribution in the trabeculae of human vertebral bone.  

PubMed

The statistical distribution of von Mises stress in the trabeculae of human vertebral cancellous bone was estimated using large-scale finite element models. The goal was to test the hypothesis that average trabecular von Mises stress is correlated to the maximum trabecular level von Mises stress. The hypothesis was proposed to explain the close experimental correlation between apparent strength and stiffness of human cancellous bone tissue. A three-parameter Weibull function described the probability distribution of the estimated von Mises stress (r2>0.99 for each of 23 cases). The mean von Mises stress was linearly related to the standard deviation (r2=0.63) supporting the hypothesis that average and maximum magnitude stress would be correlated. The coefficient of variation (COV) of the von Mises stress was nonlinearly related to apparent compressive strength, apparent stiffness, and bone volume fraction (adjusted r2=0.66, 0.56, 0.54, respectively) by a saturating exponential function [COV = A + B exp(-x/C)]. The COV of the stress was higher for low volume fraction tissue (<0.12) consistent with the weakness of low volume fraction tissue and suggesting that stress variation is better controlled in higher volume fraction tissue. We propose that the average stress and standard deviation of the stress are both controlled by bone remodeling in response to applied loading. PMID:11144980

Fyhrie, D P; Hoshaw, S J; Hamid, M S; Hou, F J

2000-01-01

210

Shear stress-induced mechanotransduction protein deregulation and vasculopathy in a mouse model of progeria  

PubMed Central

Introduction A mouse model of progeria derived by insertion of the human mutant LMNA gene (mLMNA), producing mutant lamin A, shows loss of smooth muscle cells in the media of the ascending aorta. We hypothesized that high shear stress, in the presence of mutant lamin A, induces this vasculopathy and tried to define the molecular and cellular basis for aortic vasculopathy. Methods Ascending and descending aortas from wild type (WT) and mLMNA+ mice were compared using proteomics, Western blots, PCR and immunostaining. To determine whether high fluidic shear stress, known to occur in the ascending aorta, contributed to the vasculopathy, we exposed descending aortas of mLMNA+ mice, with no apparent vasculopathy, to 75 dynes/cm2 shear stress for 30 minutes using a microfluidic system. Results When the mice were one year of age, expression of several mechanotransduction proteins in the ascending aorta, including vimentin, decreased in mLMNA+ mice but no decrease occurred in the descending aorta. High fluidic shear stress produced a significant reduction in vimentin of mLMNA+ mice but not in similarly treated WT mice. Conclusions The occurrence of mutant lamin A and high shear stress correlate with a reduction in the level of mechanotransduction proteins in smooth muscle cells of the media. Reduction of these proteins may contribute over time to development of vasculopathy in the ascending aorta in progeria syndrome. PMID:24661531

2014-01-01

211

Cultivation of shear stress sensitive microorganisms in disposable bag reactor systems.  

PubMed

Technical scale (?5l) cultivations of shear stress sensitive microorganisms are often difficult to perform, as common bioreactors are usually designed to maximize the oxygen input into the culture medium. This is achieved by mechanical stirrers, causing high shear stress. Examples for shear stress sensitive microorganisms, for which no specific cultivation systems exist, are many anaerobic bacteria and fungi, such as basidiomycetes. In this work a disposable bag bioreactor developed for cultivation of mammalian cells was investigated to evaluate its potential to cultivate shear stress sensitive anaerobic Eubacterium ramulus and shear stress sensitive basidiomycetes Flammulina velutipes and Pleurotus sapidus. All cultivations were compared with conventional stainless steel stirred tank reactors (STR) cultivations. Good growth of all investigated microorganisms cultivated in the bag reactor was found. E. ramulus showed growth rates of ?=0.56 h?¹ (bag) and ?=0.53 h?¹ (STR). Differences concerning morphology, enzymatic activities and growth in fungal cultivations were observed. In the bag reactor growth in form of small, independent pellets was observed while STR cultivations showed intense aggregation. F. velutipes reached higher biomass concentrations (21.2 g l?¹ DCW vs. 16.8 g l?¹ DCW) and up to 2-fold higher peptidolytic activities in comparison to cell cultivation in stirred tank reactors. PMID:23892193

Jonczyk, Patrick; Takenberg, Meike; Hartwig, Steffen; Beutel, Sascha; Berger, Ralf G; Scheper, Thomas

2013-09-20

212

Nitric oxide secretion by endothelial cells in response to fluid shear stress, aspirin, and temperature.  

PubMed

Current vascular grafts have a high incidence of failure, especially in the grafts less than 6 mm in diameter, due to thrombus formation. Nitric oxide (NO) is released by endothelium and has some beneficial influences such as an antithrombotic effect. We hypothesized that applying different shear stress regiments and low temperature or aspirin would result in an increase in the amount of NO release from human umbilical vein endothelial cells (HUVECs) and decrease in platelet aggregation in the same manner as expected in vivo. HUVECs were cultured into the intraluminal surface of silicone tubes. HUVECs were subjected for 60 min to different parameters of shear stress, temperature, aspirin, and platelets or a combination in a perfusion bioreactor by monitoring NO secretion. We found that shear stress leads to an elevation of NO production in HUVECS, independent of the shear stress magnitude (0.9 or 1.8 dyne/cm(2) ). The magnitude of this response increased with a decrease in temperature. Our results also show that by addition of platelets in combination with aspirin to media circulation, no thrombus formation occurred during the test time. Presence of aspirin resulted in marked increase in NO levels. In conclusion, shear stresses, temperature lowering, and aspirin increase the amount of NO release from HUVECs. Also no thrombus formation was detected in our experimental setting. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 1231-1237, 2015. PMID:24838707

Kabirian, Fatemeh; Amoabediny, Ghassem; Haghighipour, Nooshin; Salehi-Nik, Nasim; Zandieh-Doulabi, Behrouz

2015-03-01

213

Dispersive Aortic Cannulas Reduce Aortic Wall Shear Stress Affecting Atherosclerotic Plaque Embolization.  

PubMed

Neurologic complications during on-pump cardiovascular surgery are often induced by mobilization of atherosclerotic plaques, which is directly related to enhanced wall shear stress. In the present study, we numerically evaluated the impact of dispersive aortic cannulas on aortic blood flow characteristics, with special regard to the resulting wall shear stress profiles. An idealized numerical model of the human aorta and its branches was created and used to model straight as well as bent dispersive aortic cannulas with meshlike tips inserted in the distal ascending aorta. Standard cannulas with straight beveled or bent tips served as controls. Using a recently optimized computing method, simulations of pulsatile and nonpulsatile extracorporeal circulation were performed. Dispersive aortic cannulas reduced the maximum and average aortic wall shear stress values to approximately 50% of those with control cannulas, while the difference in local values was even larger. Moreover, under pulsatile circulation, dispersive cannulas shortened the time period during which wall shear stress values were increased. The turbulent kinetic energy was also diminished by utilizing dispersive cannulas, reducing the risk of hemolysis. In summary, dispersive aortic cannulas decrease aortic wall shear stress and turbulence during extracorporeal circulation and may therefore reduce the risk of endothelial and blood cell damage as well as that of neurologic complications caused by atherosclerotic plaque mobilization. PMID:25205180

Assmann, Alexander; Gül, Fethi; Benim, Ali Cemal; Joos, Franz; Akhyari, Payam; Lichtenberg, Artur

2014-09-10

214

A flexible micromachined optical sensor for simultaneous measurement of pressure and shear force distribution on foot  

NASA Astrophysics Data System (ADS)

Lower limb complications associated with diabetes include the development of plantar ulcers that can lead to infection and subsequent amputation. While it is known from force plate analyses that there are medial/lateral and anterior/posterior shear components of the ground reaction force, there is little known about the actual distribution of this force during daily activities, nor about the role that shear plays in causing plantar ulceration. Furthermore, one critical reason why these data have not been obtained previously is the lack of a validated, widely used, commercially available shear sensor, in part because of the various technical issues associated with shear measurement. Here we have developed novel means of tranducing plantar shear and pressure stress via a new microfabricated optical system. The pressure/shear sensor consists of an array of optical waveguides lying in perpendicular rows and columns separated by elastomeric pads. A map of pressure and shear stress is constructed based on observed macro bending through the intensity attenuation from the physical deformation of two adjacent perpendicular optical waveguides. The uniqueness of the sensor is in its batch fabrication process, which involves injection molding and embossing techniques with Polydimethylsiloxane (PDMS) as the optical medium. Here we present the preliminary results of the prototype. The sensor has been shown to have low noise and responds linearly to applied loads. The smallest detectable force on each sensor element based on the current setup is ~0.1 N. The smallest area we have resolved in our mesh sensor is currently 950x950?m2

Wang, Wei-Chih; Panergo, Reynold R.; Galvanin, Christopher M.; Ledoux, William; Sangeorzan, Bruce; Reinhall, Per G.

2003-07-01

215

Shear wave speed and dispersion measurements using crawling wave chirps.  

PubMed

This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented. PMID:24658144

Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J

2014-10-01

216

Flexible shear stress sensor skin for aerodynamics applications  

Microsoft Academic Search

Packaging for a large distributed sensing system is a challenging topic. Using flexible skin technology solves many of these problems. Combining with the newly developed backside contact technique, sensor packaging is made even easier by completely avoiding the fragile bonding wires. This paper describes the improved flexible MEMS technology and its application to the fabrication and packaging of practical shear

Fukang Jiang; Yong Xu; Tianxiang Weng; Zhigang Han; Yu-Chong Tai; Adam Huang; Chih-Ming Ho; Scott Newbern

2000-01-01

217

Finite element model investigation of fault shear stress accumulation due to elastic loading and viscous relaxation.  

NASA Astrophysics Data System (ADS)

Shear stresses on faults drive earthquake ruptures. Therefore their initial spatial distributions along faults become one of the first order controls on how large an earthquake grows, and their interseismic accumulation between earthquakes strongly influences the seismogenic potential of a fault. Here we investigate in a generic fault zone model using a finite element code, how the accumulation of shear stress along faults are influenced by the type of asperity (geometrical vs. stress), interseismic loading rate, and the viscoelastic properties of the fault zone and adjacent materials. Shear stress accumulation along faults during the interseismic period is usually considered to be the result of slow elastic tectonic loading on frictionally locked fault interfaces. However, many rocks exhibit viscoelastic behavior over geological time scales. Thus if fault rocks and the surrounding host rock exhibit such time-dependent deformational behavior, interseismic loading of stresses along faults may not be simply described by time-independent linear elastic solutions. Time-dependent viscoelastic deformation relaxes stress over time and can alter the spatial pattern of stress heterogeneity along faults. Preliminary results of the modeling suggest that spatial diffusion of stress heterogeneities can occur due to viscoelastic effects especially when geometrical complexity is introduced at the fault surface. The interplay between relaxation time constants and tectonic loading rate will be further investigated to identify whether a particular rheology or tectonic setting is prone to stress relaxation effects due to viscous deformation.

Sone, Hiroki

2014-05-01

218

Localized shear deformation and softening of bulk metallic glass: stress or temperature driven?  

PubMed Central

Metallic glasses due to their unique combination of physical and chemical properties have a great potential in various applications: materials for construction, medical, MEMs devices and so on. The deformation mechanism in metallic glasses is very much different from that in conventional crystalline materials and not yet fully understood. Here we are trying to find out what drives shear deformation in metallic glasses. The compression experiments of the bulk metallic glassy (BMG) samples coated with tin, Rose metal and indium were performed. There were no melting sites of the coating observed near individual shear bands. Melting occurred only near fracture surface, near microcracks and in the places of shear band concentrations. The results indicate that shear banding is rather a stress driven process while the temperature rise that was observed takes place due to friction forces in the viscous supercooled liquid thin layer in the shear bands. PMID:24100784

Ketov, S. V.; Louzguine-Luzgin, D. V.

2013-01-01

219

Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks  

Microsoft Academic Search

Employing nonequilibrium molecular-dynamics methods the effects of two energy loss mechanisms on viscosity, stress, and granular-temperature in assemblies of nearly rigid, inelastic frictional disks undergoing steady-state shearing are calculated. Energy introduced into the system through forced shearing is dissipated by inelastic normal forces or through frictional sliding during collisions resulting in a natural steady-state kinetic energy density (granular-temperature) that depends

Otis R. Walton; ROBERT L. BRAUN

1986-01-01

220

Computation of the fluid-induced shear stress in bioreactor-cultured 3D cell systems  

Microsoft Academic Search

Fluid-induced shear is known to enhance chondrogenesis on animal cells. We have developed a computational fluid dynamic model of the flow through chondrocyte seeded scaffolds cultured inside a novel bioreactor in which the culture medium flows through the constructs' microstructure. The median shear stress imposed to the cells in the bioreactor culture, as predicted by the CFD model, is 3·10-3

F. Boschetti; M. T. Raimondi; G. B. Fiore; G. Dubini; L. Falcone; A. Remuzzi; E. Marinoni; M. Marazzi; R. Pietrabissa

2002-01-01

221

Novel high bandwidth wall shear stress sensor for ultrasonic cleaning applications  

NASA Astrophysics Data System (ADS)

Ultrasonic cleaning is due to the action of cavitation bubbles. The details of the cleaning mechanisms are not revealed or confirmed experimentally, yet several studies suggest that the wall shear stresses generated are very high, i.e. of the order of several thousand Pascal. Ultrasonic cleaning applications span a wide range from semiconductor manufacturing, to low pressure membrane cleaning, and the in the medical field cleaning of surgical instruments. We have developed a novel sensor to monitor and quantify cleaning activity which is (1) very sturdy, (2) has a high bandwidth of several megahertz, (3) is cheap in manufacturing costs, and (4) of very small size. We analyze the sensor signal by comparing its response time correlated to single laser induced cavitation bubbles using high-speed photography. Additionally, we will present first measurements in ultrasonic cleaning bathes using again high-speed photography. A preliminary discussion on the working mechanism of the sensor will be presented.

Gonzalez-Avila, S. Roberto; Prabowo, Firdaus; Ohl, Claus-Dieter

2010-11-01

222

Migration arising from gradients in shear stress: Particle distributions in Poiseuille flow  

NASA Technical Reports Server (NTRS)

Experimental evidence for the existence of shear induced migration processes is reviewed and the mechanism by Leighton and Acrivos (1987b) is described in detail. The proposed mechanism is shown to lead to the existence of an additional shear induced migration in the presence of gradients in shear stress such as would be found in Poiseuille flow, and which may be used to predict the amplitude of the observed short-term viscosity increase. The concentration and velocity profiles which result from such a migration are discussed in detail and are compared to the experimental observations of Karnis, Goldsmith and Mason (1966).

Leighton, D. T., Jr.

1988-01-01

223

Exercise-Mediated Wall Shear Stress Increases Mitochondrial Biogenesis in Vascular Endothelium  

PubMed Central

Objective Enhancing structural and functional integrity of mitochondria is an emerging therapeutic option against endothelial dysfunction. In this study, we sought to investigate the effect of fluid shear stress on mitochondrial biogenesis and mitochondrial respiratory function in endothelial cells (ECs) using in vitro and in vivo complementary studies. Methods and Results Human aortic- or umbilical vein-derived ECs were exposed to laminar shear stress (20 dyne/cm2) for various durations using a cone-and-plate shear apparatus. We observed significant increases in the expression of key genes related to mitochondrial biogenesis and mitochondrial quality control as well as mtDNA content and mitochondrial mass under the shear stress conditions. Mitochondrial respiratory function was enhanced when cells were intermittently exposed to laminar shear stress for 72 hrs. Also, shear-exposed cells showed diminished glycolysis and decreased mitochondrial membrane potential (??m). Likewise, in in vivo experiments, mice that were subjected to a voluntary wheel running exercise for 5 weeks showed significantly higher mitochondrial content determined by en face staining in the conduit (greater and lesser curvature of the aortic arch and thoracic aorta) and muscle feed (femoral artery) arteries compared to the sedentary control mice. Interestingly, however, the mitochondrial biogenesis was not observed in the mesenteric artery. This region-specific adaptation is likely due to the differential blood flow redistribution during exercise in the different vessel beds. Conclusion Taken together, our findings suggest that exercise enhances mitochondrial biogenesis in vascular endothelium through a shear stress-dependent mechanism. Our findings may suggest a novel mitochondrial pathway by which a chronic exercise may be beneficial for vascular function. PMID:25375175

Kim, Boa; Lee, Hojun; Kawata, Keisuke; Park, Joon-Young

2014-01-01

224

The Adaptive Remodeling of Endothelial Glycocalyx in Response to Fluid Shear Stress  

PubMed Central

The endothelial glycocalyx is vital for mechanotransduction and endothelial barrier integrity. We previously demonstrated the early changes in glycocalyx organization during the initial 30 min of shear exposure. In the present study, we tested the hypothesis that long-term shear stress induces further remodeling of the glycocalyx resulting in a robust layer, and explored the responses of membrane rafts and the actin cytoskeleton. After exposure to shear stress for 24 h, the glycocalyx components heparan sulfate, chondroitin sulfate, glypican-1 and syndecan-1, were enhanced on the apical surface, with nearly uniform spatial distributions close to baseline levels that differed greatly from the 30 min distributions. Heparan sulfate and glypican-1 still clustered near the cell boundaries after 24 h of shear, but caveolin-1/caveolae and actin were enhanced and concentrated across the apical aspects of the cell. Our findings also suggest the GM1-labelled membrane rafts were associated with caveolae and glypican-1/heparan sulfate and varied in concert with these components. We conclude that remodeling of the glycocalyx to long-term shear stress is associated with the changes in membrane rafts and the actin cytoskeleton. This study reveals a space- and time- dependent reorganization of the glycocalyx that may underlie alterations in mechanotransduction mechanisms over the time course of shear exposure. PMID:24465988

Zeng, Ye; Tarbell, John M.

2014-01-01

225

Revealing the Role of Phosphatidylserine in Shear Stress –Mediated Protection in Endothelial Cells  

PubMed Central

Previous studies have demonstrated that endothelial cells exposed to laminar shear stress are protected from apoptotic stimuli such as tumor necrosis factor (TNF)-?. The authors investigated the role of phosphatidylserine (PS) in this phenomenon. Western blot analysis of cleaved caspase 3 was used as an indicator of apoptosis and revealed that in the absence of serine, cells exposed to laminar shear stress were unable to protect against TNF-?-induced apoptosis, in contrast to sheared cells grown in regular medium It was also found that shear-induced activation of the Akt pathway was significantly decreased in cells grown without serine. In addition, quantitation of PS using a novel isotopic labeling technique involving the use of formalin revealed that stearoyl-oleic PS (18:0/18:1) did not increase during shear treatment. These findings suggest that basal levels of PS are required to activate survival pathways in endothelial cells and thereby contribute to the overall protective mechanism initiated by shear stress. PMID:18663626

Freed, Julie K.; Shortreed, Michael R.; Kleefisch, Christopher J.; Smith, Lloyd M.; Greene, Andrew S.

2008-01-01

226

Revealing the role of phosphatidylserine in shear stress-mediated protection in endothelial cells.  

PubMed

Previous studies have demonstrated that endothelial cells exposed to laminar shear stress are protected from apoptotic stimuli such as tumor necrosis factor (TNF)-alpha. The authors investigated the role of phosphatidylserine (PS) in this phenomenon. Western blot analysis of cleaved caspase 3 was used as an indicator of apoptosis and revealed that in the absence of serine, endothelial cells exposed to laminar shear stress were unable to protect against TNF-alpha-induced apoptosis, in contrast to sheared cells grown in regular medium. It was also found that shear-induced activation of the Akt pathway was significantly decreased in cells grown without serine. In addition, quantitation of PS using a novel isotopic labeling technique involving the use of formalin revealed that stearoyl-oleic PS (18:0/18:1) did not increase during shear treatment. These findings suggest that basal levels of PS are required to activate survival pathways in endothelial cells and thereby contribute to the overall protective mechanism initiated by shear stress. PMID:18663626

Freed, Julie K; Shortreed, Michael R; Kleefisch, Christopher J; Smith, Lloyd M; Greene, Andrew S

2008-01-01

227

Liquid crystals for surface shear stress visualization on wind turbine airfoils  

NASA Astrophysics Data System (ADS)

Experiments were conducted on the Sandia 17-m vertical axis wind turbine to test the liquid-crystal/surface-shear-stress visualization technique in field environments. A Sandia natural-laminar-flow airfoil served as the test surface. Initial feasibility experiments were conducted under high-tip-speed-ratio, high-Reynolds-number conditions, which resulted in low angle-of-attack, quasi-steady flow fields. Data acquisition was accomplished with a tower-mounted movie camera and 35 mm color film. Liquid crystal coatings sensitive only to surface shear stress, and insensitive to temperature changes for temperatures below 50 C, were utilized. Observations of coating color changes showed the liquid crystal technique capable of visualizing surface shear stress distributions, including (by contrast) regions of separated flow, under field-test conditions.

Reda, D. C.; Smith, R. W.; Bryant, T. C.; Schluter, L. L.

228

Imaging the cellular response to transient shear stress using stroboscopic digital holography.  

PubMed

We use stroboscopic quantitative phase microscopy to study cell deformation and the response to cavitation bubbles and transient shear stress resulting from laser-induced breakdown of an optically trapped nanoparticle. A bi-directional transient displacement of cytoplasm is observed during expansion and collapse of the cavitation bubble. In some cases, cell deformation is only observable at the microsecond time scale without any permanent change in cell shape or optical thickness. On a time scale of seconds, the cellular response to shear stress and cytoplasm deformation typically leads to retraction of the cellular edge most exposed to the flow, rounding of the cell body and, in some cases, loss of cellular dry mass. These results give a new insight into the cellular response to cavitation induced shear stress and related plasma membrane permeabilization. This study also demonstrates that laser-induced breakdown of a nanoparticle offers localized cavitation, which interacts with a single cell but without causing cell lysis. PMID:22191911

Antkowiak, Maciej; Arita, Yoshihiko; Dholakia, Kishan; Gunn-Moore, Frank

2011-12-01

229

Runge-Kutta method for wall shear stress of blood flow in stenosed artery  

NASA Astrophysics Data System (ADS)

A mathematical model of blood flow through stenotic artery is considered. A stenosis is defined as the partial occlusion of the blood vessels due to the accumulation of cholesterols, fats and the abnormal growth of tissue on the artery walls. The development of stenosis in the artery is one of the factors that cause problem in blood circulation system. This study was conducted to determine the wall shear stress of blood flow in stenosed artery. Modified mathematical model is used to analyze the relationship of the wall shear stress versus the length and height of stenosis. The existing models that have been created by previous researchers are solved using fourth order Runge-Kutta method. Numerical results show that the wall shear stress is proportionate to the length and height of stenosis.

Awaludin, Izyan Syazana; Ahmad, Rokiah@Rozita

2014-06-01

230

Plastic Coupling and Stress Relaxation During Nonproportional Axial-Shear Strain-Controlled Loading  

NASA Technical Reports Server (NTRS)

A nonproportional strain-controlled load path consisting of two segments was applied to the cobalt-based alloy Haynes 188 at 650 C. The first segment was purely axial; the aria1 strain was then held constant while the shear strain was increased during the second segment. The alloy exhibited about a 95-percent reduction in axial stress (298 to 15 MPa during shear straining. This reduction was due primarily to plastic coupling, but time-dependent stress relaxation also occurred. A rate-independent plasticity model approximated the stress reduction due to plastic coupling reasonably well, but as expected was unable to account for time-dependent stress relaxation. A viscoplasticity model capable of predicting the interaction between stress relaxation and plastic coupling also predicted the plastic coupling reasonably well. The accuracy of the viscoplastic model is shown to depend greatly upon the set of nonunique material parameters, which must be characterized from a sufficiently large range of load histories.

Lissenden, Cliff J.; Arnold, Steven M.; Saleeb, Atef F.

2001-01-01

231

Method and apparatus for measuring stress  

DOEpatents

A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

Thompson, R.B.

1983-07-28

232

Method and apparatus for measuring stress  

DOEpatents

A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

Thompson, R. Bruce (Ames, IA)

1985-06-11

233

Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells.  

PubMed

There is evidence suggesting that fluid shear stress activates phospholipid turnover in endothelial cells, but it is not clear which phospholipids are involved in the transduction of the flow signal. Cultured human umbilical-vein endothelial cells were prelabeled with [14C]-arachidonic acid and subjected to laminar shear stresses of 0.4, 1.4 and 22 dyn/cm2 for times up to 30 min, after which the distribution of the radioactivity in the phospholipids was determined. We observed decreases in labeled phosphatidylinositol, phosphatidylethanolamine and phosphatidic acid at 10-30 s, and increases in labeled diacylglycerol (DG) and free arachidonate, as well as a simultaneous elevation in inositol 1,4,5-triphosphate (IP3) levels. A second peak in IP3 levels was observed 10 min after the onset of shear. This is in contrast with agonist-stimulated endothelial cells, where IP3 levels go back to initial values within a few minutes after stimulation. The flow-induced IP3 response was the same in the presence or absence of ATP and serum in the perfusing medium. These results are consistent with the activation of phospholipase C, phospholipase A2 and DG lipase by shear stress. This suggests that several phospholipids are involved in the production of free arachidonic acid and DG, which are likely to be important mediators of the shear stress signal. In addition, flow may lead to a chronic stimulation of endothelial-cell metabolism. PMID:1489890

Bhagyalakshmi, A; Berthiaume, F; Reich, K M; Frangos, J A

1992-01-01

234

Hydrogen sulfide impairs shear stress-induced vasodilation in mouse coronary arteries.  

PubMed

Hydrogen sulfide has emerged as an important endothelium-dependent vasodilator, but its role in shear stress-mediated dilation of coronary arteries is unclear. We examined the role of H2S on shear stress-mediated dilation of isolated mouse coronary arteries. In these vessels, Na2S produced concentration-dependent dilation, which was significantly inhibited by iberiotoxin and by 4-aminopyridine. In addition, BK and Kv currents in mouse coronary smooth muscle cells were directly activated by Na2S, suggesting that H2S produced vasodilation through BK and Kv channel activation. Using a pressure servo controller system, freshly isolated mouse coronary arteries were subjected to physiological levels of shear stress (1 to 25 dynes/cm(2)) and produced graded dilatory responses, but such effects were diminished in the presence of 100 ?M Na2S. Pre-incubation with the cystathionine ?-lyase inhibitor, D,L-propargylglycine (PPG), resulted in a paradoxical augmentation of shear stress-mediated vasodilation. However, in the presence of L-NAME or in coronary arteries from eNOS knockout mice, PPG inhibited shear stress-mediated vasodilation, suggesting an interaction between NO and H2S signaling. Na2S inhibited eNOS activity in cultured mouse aortic endothelial cells and reduced the level of phospho-eNOS(serine 1177). These results suggest that both NO and H2S are important shear stress-mediated vasodilators in mouse coronary arteries but there is a complex interaction between these two signaling pathways that results in paradoxical vasoconstrictive effects of H2S through inhibition of NO generation. PMID:24793048

Chai, Qiang; Lu, Tong; Wang, Xaio-Li; Lee, Hon-Chi

2015-02-01

235

Bottom shear stress and SSC control on the morphological evolution of estuarine intertidal mudflats  

NASA Astrophysics Data System (ADS)

The supply and fate of fine-grained suspended sediment is of primary importance to the functioning and evolution of estuaries. Intertidal mudflats are habitats of high ecological value: feeding ground for birds, fish species and other biota. Estuarine intertidal mudflats can also contain buried contaminants that can be potentially released in the estuarine system. Thus physical processes such as erosion and sedimentation are fundamental from both applied and environmental viewpoint. Sedimentation and erosion rates/fluxes are mainly driven by hydrodynamics, particles/sediment properties, bedforms and sediment supply. Few high-frequency field-investigation studies compared tidal scale processes simultaneously in the water column and on the mudflat surface. The aim of this paper is to determine the thresholds values (bottom shear stress and SSC) that control the morphological evolution of estuarine intertidal mudflats (< 10% of sand) on semi-diurnal tidal scale. This field-based study combines high-resolution and high-frequency measurements of turbulence and SSC in the water column (using ADV) and bed height (using altimeter) on intertidal mudflat surface in three macrotidal estuaries. Such approach on semi-diurnal scale permitted to accurately understand relationships between hydrodynamics in the boundary layer and sedimentary processes above intertidal mudflats. Results emphasize the role of waves, sediment supply and consolidation state of surface sediments on sedimentary processes over intertidal mudflats. Bottom shear stresses on studied intertidal mudflats were recorded always sufficiently low (<1N.m-2) to permit settling of fine particles during flood tide and/or high-water slack. Sedimentation occurrence and rate on studied intertidal mudflat was found to be driven by (i) the SSC near the bed (if > 0.1g.l-1) and (ii) the absence of significant waves. Wind-generated waves can prevent sedimentation or induce erosion if the bottom shear stress exceeds 1N.m-2. Further inspections demonstrate that the occurrence and the amplitude of erosion are also governed by consolidation state of the surface sediment and water level on the mudflat.

Deloffre, Julien; Verney, Romaric; Lafite, Robert

2014-05-01

236

Hydraulic fracturing in situ stress measurements to 2.1 km depth at Cajon Pass, California  

USGS Publications Warehouse

Stress measurements to 2.1 km reveal stress changes with depth that cannot be explained by an elastic response to uniform crustal strain. The data at about 1 km depth suggest that the stress is limited by the frictional strength of rock and is perturbed at greater depths by faults which intersect the borehole. The stress data indicate that there is little or no right-lateral shear stress acting on planes parallel to the San Andreas Fault. -Authors

Healy, J.H.; Zoback, M.D.

1988-01-01

237

Sensor for Viscosity and Shear Strength Measurement  

SciTech Connect

Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation.

Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.

1998-10-20

238

Rac1 and Cdc42 GTPases regulate shear stress-driven ?-catenin signaling in osteoblasts  

SciTech Connect

Highlights: •Shear stress increased TCF/LEF activity and stimulated ?-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm{sup 2}) increased TCF/LEF activity and stimulated translocation of ?-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in ?-catenin in cancer cells, the involvement of Cdc42 in ?-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate that both Rac1 and Cdc42 GTPases are critical regulators in shear stress-driven ?-catenin signaling in osteoblasts.

Wan, Qiaoqiao; Cho, Eunhye [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States)] [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Yokota, Hiroki [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States) [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Na, Sungsoo, E-mail: sungna@iupui.edu [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States)] [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States)

2013-04-19

239

Experimental and analytical acoustic technique to measure wall shear  

NASA Astrophysics Data System (ADS)

A technique that considers aeroacoustic technology that measures fluctuating pressure in turbulent boundary layers is proposed as a means of determining wall shear characteristics on smooth and rough surfaces. The methodology considers the classic work of Lilley (1964) where the normalized power magnitude with wall shear for a smooth wall, incompressible flow is between 1.7 and 3. The methodology considers a transformation function for extending boundary layer properties from the incompressible plane to the compressible plane. As such, the equations reduce compressible data into the incompressible plane where direct comparison can be made to the classic works of Bull et al. The methodology so developed allows for a technique to predict wall shear (drag) using measured fluctuating pressure for smooth and rough surface. An experimental program was conducted in the Wright Patterson Air Force Base, AFWAL/FIMG Mach 3 facility to validate the concept for smooth wall attached turbulent boundary layer flow. Data consisted of sound pressure level, power, and power spectra as well as wall shear measurements (Preston tube). Wall temperature and pressure were also recorded in the Reynolds number range of 4 x 10 to the 7th to 1.2 x 10 to the 10th together with boundary layer profiles using conventional pitot and LDV measurements.

Laganelli, A. L.; Christoph, G. H.; Fiore, A. W.

1984-01-01

240

Surface figure measurements of radio telescopes with a shearing interferometer  

Microsoft Academic Search

A new technique for determining the surface figure of large submillimeter wavelength telescopes is presented, which is based on measuring the telescope's focal plane diffraction pattern with a shearing interferometer. In addition to the instrumental theory, results obtained using such an interferometer on the 10.4-m diam telescope of the Caltech Submillimeter Observatory are discussed. Using wavelengths near 1 mm, a

E. Serabyn; T. G. Phillips; C. R. Masson

1991-01-01

241

Shear Strength Measurement Benchmarking Tests for K Basin Sludge Simulants  

SciTech Connect

Equipment development and demonstration testing for sludge retrieval is being conducted by the K Basin Sludge Treatment Project (STP) at the MASF (Maintenance and Storage Facility) using sludge simulants. In testing performed at the Pacific Northwest National Laboratory (under contract with the CH2M Hill Plateau Remediation Company), the performance of the Geovane instrument was successfully benchmarked against the M5 Haake rheometer using a series of simulants with shear strengths (?) ranging from about 700 to 22,000 Pa (shaft corrected). Operating steps for obtaining consistent shear strength measurements with the Geovane instrument during the benchmark testing were refined and documented.

Burns, Carolyn A.; Daniel, Richard C.; Enderlin, Carl W.; Luna, Maria; Schmidt, Andrew J.

2009-06-10

242

Hydrostatic and shear consolidation tests with permeability measurements on Waste Isolation Pilot Plant crushed salt  

SciTech Connect

Crushed natural rock salt is a primary candidate for use as backfill and barrier material at the Waste Isolation Pilot Plant (WIPP) and therefore Sandia National Laboratories (SNL) has been pursuing a laboratory program designed to quantify its consolidation properties and permeability. Variables that influence consolidation rate that have been examined include stress state and moisture content. The experimental results presented in this report complement existing studies and work in progress conducted by SNL. The experiments described in this report were designed to (1) measure permeabilities of consolidated specimens of crushed salt, (2) determine the influence of brine saturation on consolidation under hydrostatic loads, and 3) measure the effects of small applied shear stresses on consolidation properties. The laboratory effort consisted of 18 individual tests: three permeability tests conducted on specimens that had been consolidated at Sandia, six hydrostatic consolidation and permeability tests conducted on specimens of brine-saturated crushed WIPP salt, and nine shear consolidation and permeability tests performed on crushed WIPP salt specimens containing 3 percent brine by weight. For hydrostatic consolidation tests, pressures ranged from 1.72 MPa to 6.90 MPa. For the shear consolidation tests, confining pressures were between 3.45 MPa and 6.90 MPa and applied axial stress differences were between 0.69 and 4.14 MPa. All tests were run under drained conditions at 25{degrees}C.

Brodsky, N.S. [RE/SPEC, Inc., Rapid City, SD (United States)

1994-03-01

243

Shear and transverse stress in a thin superconducting layer in simplified coated conductor architecture with a pre-existing detachment  

NASA Astrophysics Data System (ADS)

The thermal-electro-mechanical behavior of second generation YBa2Cu3O7-? coated conductors subjected to thermal cooling and electric charging is investigated in this paper. Shear stress at the interface and transverse normal stress in the film are analyzed through the elasticity theory. The plane strain approach is assumed, and a singular integral equation governing the problem is derived in terms of the interfacial shear stress, thermal strain, and the electromagnetic force. After that, we evaluate the shear and transverse stress distribution in the conductor during cool down and electric charging, respectively. The results show that large residual compressive stress (about 150 MPa) and interfacial shear stress (about 400 MPa) remain in the conductor during cool down. In the electric charging process while small compared to the thermal one destructive tensile stress present near the edges of the conductor. Effects of the stiffness of substrate on the stress distribution in the conductor are investigated also.

Jing, Ze; Yong, Huadong; Zhou, Youhe

2013-07-01

244

Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes  

PubMed Central

Atrial myocytes are continuously exposed to mechanical forces including shear stress. However, in atrial myocytes, the effects of shear stress are poorly understood, particularly with respect to its effect on ion channel function. Here, we report that shear stress activated a large outward current from rat atrial myocytes, with a parallel decrease in action potential duration. The main ion channel underlying the increase in current was found to be Kv1.5, the recruitment of which could be directly observed by total internal reflection fluorescence microscopy, in response to shear stress. The effect was primarily attributable to recruitment of intracellular pools of Kv1.5 to the sarcolemma, as the response was prevented by the SNARE protein inhibitor N-ethylmaleimide and the calcium chelator BAPTA. The process required integrin signaling through focal adhesion kinase and relied on an intact microtubule system. Furthermore, in a rat model of chronic hemodynamic overload, myocytes showed an increase in basal current despite a decrease in Kv1.5 protein expression, with a reduced response to shear stress. Additionally, integrin beta1d expression and focal adhesion kinase activation were increased in this model. This data suggests that, under conditions of chronically increased mechanical stress, the integrin signaling pathway is overactivated, leading to increased functional Kv1.5 at the membrane and reducing the capacity of cells to further respond to mechanical challenge. Thus, pools of Kv1.5 may comprise an inducible reservoir that can facilitate the repolarization of the atrium under conditions of excessive mechanical stress. PMID:24065831

Boycott, Hannah E.; Barbier, Camille S. M.; Eichel, Catherine A.; Costa, Kevin D.; Martins, Raphael P.; Louault, Florent; Dilanian, Gilles; Coulombe, Alain; Hatem, Stéphane N.; Balse, Elise

2013-01-01

245

Wall shear stress oscillation and its gradient in the normal left coronary artery tree bifurcations  

PubMed Central

Background: It is known that blood flow properties such as low/ oscillatory wall shear stress (WSS), high blood viscosity, low blood velocity and high concentration of low density lipoprotein (LDL) macromolecules, are some of the main flow parameters causing atherosclerosis. Limited research has been undertaken on the pulsatile WSS and WSS gradient (WSSG) analysis focusing in the differentiation between the bifurcation itself and the lateral to it walls in a normal left coronary artery (LCA). The results obtained show the flow characteristics and qualify the spatial and temporal distribution of WSS ant its gradient in regions close to the LCA tree flow dividers and in opposite to them areas. Methods: A 3D computer generated model of the LCA tree based on averaged human data extracted from angiographies was developed for computational fluid dynamics analysis. Physiological phasic flow velocity is incorporated as entrance boundary condition. Results: The instantaneous min wall shear stress oscillates from 0.45 to 2.84 N/m2 at the flow divider and from 0.25 to 1.28 N/m2 at the lateral walls of the main bifurcation. However, for the D1-S1 bifurcation (first diagonal-first septal), the instantaneous min wall shear stress oscillates from 0.6 to 3.85 N/m2 at the flow divider and from 0.6 to 2.65 N/m2 at the lateral walls. Mean wall shear stress, from max systole to max diastole, experiences a 129.0 % increase at the main bifurcation flow divider. The difference between max and min wall shear stress for the flow divider of the main bifurcation, as it is compared with the max wall shear stress over the entire cardiac pulse, attains a maximum value of 81.1 % for the lateral walls and 60.0 % at the peak of diastole. At the D1-S1 bifurcation, the corresponding difference values are 69.0% and 57.0 % for the lateral walls and flow divider, respectively. The mean wall shear stress gradient experiences a 123.0 % increase from max systole to max diastole at the main bifurcation flow divider and 153.0 % at main bifurcation lateral walls. Conclusions: Proximal LCA bifurcation exhibit lower spatial wall shear stress and lower wall shear stress gradient values compared to distal bifurcations. The lateral walls compared to the bifurcation itself are exposed to low WSS and WSSG. With regards to the temporal variation, wall shear stress and its gradient exhibited lower values throughout systole as compared to diastole, suggesting a possible atherogenic effect of both the systolic phase by itself as well as the phasic oscillation of wall shear stress and its gradient from systole to diastole. PMID:25125945

Soulis, JV; Fytanidis, DK; Seralidou, KV; Giannoglou, GD

2014-01-01

246

Theory and Practice of Shear/Stress Strain Gage Hygrometry  

NASA Technical Reports Server (NTRS)

Mechanical hygrometry has progressed during the last several decades from crude hygroscopes to state-of-the art strain-gage sensors. The strain-gage devices vary from different metallic beams to strain-gage sensors using cellulose crystallite elements, held in full shear restraint. This old technique is still in use but several companies are now actively pursuing development of MEMS miniaturized humidity sensors. These new sensors use polyimide thin film for water vapor adsorption and desorption. This paper will provide overview about modern humidity sensors.

Shams, Qamar A.; Fenner, Ralph L.

2006-01-01

247

Trabecular shear stress in human vertebral cancellous bone: intra- and inter-individual variations.  

PubMed

Correlation of the mean and standard deviation of trabecular stresses has been proposed as a mechanism by which a strong relationship between the apparent strength and stiffness of cancellous bone can be achieved. The current study examined whether the relationship between the mean and standard deviation of trabecular von Mises stresses can be generalized for any group of cancellous bone. Cylindrical human vertebral cancellous bone specimens were cut in the infero-superior direction from T12 of 23 individuals (inter-individual group). Thirty nine additional specimens were prepared similarly from the T4-T12 and L2-L5 vertebrae of a 63 year old male (intra-individual group). The specimens were scanned by micro-computed tomography (microCT) and trabecular von Mises stresses were calculated using finite element modeling. The expected value, standard deviation and coefficient of variation of the von Mises stress were calculated form a three-parameter Weibull function fitted to von Mises stress data from each specimen. It was found that the average and standard deviation of trabecular von Mises shear stress were: (i) correlated with each other, supporting the idea that high correlation between the apparent strength and stiffness of cancellous bone can be achieved through controlling the trabecular level shear stress variations, (ii) dependent on anatomical site and sample group, suggesting that the variation of stresses are correlated to the mean stress to different degrees between vertebrae and individuals, and (iii) dependent on bone volume fraction, consistent with the idea that shear stress is less well controlled in bones with low BV/TV. The conversion of infero-superior loading into trabecular von Mises stresses was maximum for the tissue at the junction of the thoracic and lumbar spine (T12-L1) consistent with this junction being a common site of vertebral fracture. PMID:11522314

Yeni, Y N; Hou, F J; Vashishth, D; Fyhrie, D P

2001-10-01

248

Proteomic analysis of Staphylococcus aureus biofilm cells grown under physiologically relevant fluid shear stress conditions  

PubMed Central

Background The biofilm forming bacterium Staphylococcus aureus is responsible for maladies ranging from severe skin infection to major diseases such as bacteremia, endocarditis and osteomyelitis. A flow displacement system was used to grow S. aureus biofilms in four physiologically relevant fluid shear rates (50, 100, 500 and 1000 s-1) to identify proteins that are associated with biofilm. Results Global protein expressions from the membrane and cytosolic fractions of S. aureus biofilm cells grown under the above shear rate conditions are reported. Sixteen proteins in the membrane-enriched fraction and eight proteins in the cytosolic fraction showed significantly altered expression (p?shear. These 24 proteins were identified using nano-LC-ESI-MS/MS. They were found to be associated with various metabolic functions such as glycolysis / TCA pathways, protein synthesis and stress tolerance. Increased fluid shear stress did not influence the expression of two important surface binding proteins: fibronectin-binding and collagen-binding proteins. Conclusions The reported data suggest that while the general metabolic function of the sessile bacteria is minimal under high fluid shear stress conditions, they seem to retain the binding capacity to initiate new infections. PMID:24855455

2014-01-01

249

Sensor for viscosity and shear strength measurement  

SciTech Connect

Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. Two different viscometer techniques are being investigated in this study, based on: magnetostrictive pulse generated acoustic waves; and an oscillating cylinder. Prototype sensors have been built and tested which are based on both techniques. A base capability instrumentation system has been designed, constructed, and tested which incorporates both of these sensors. It requires manual data acquisition and off-line calculation. A broad range of viscous media has been tested using this system. Extensive test results appear in this report. The concept for each technique has been validated by these test results. This base capability system will need to be refined further before it is appropriate for field tests. The mass of the oscillating system structure will need to be reduced. A robust acoustic probe assembly will need to be developed. In addition, in March 1997 it was made known for the first time that the requirement was for a deliverable automated viscosity instrumentation system. Since then such a system has been designed, and the hardware has been constructed so that the automated concept can be proved. The rest of the hardware, which interfaced to a computer, has also been constructed and tested as far as possible. However, for both techniques the computer software for automated data acquisition, calculation, and logging had not been completed before funding and time ran out.

Ebadian, M.A.; Dillion, J.; Moore, J.; Jones, K.

1998-01-01

250

Development of a shear measurement sensor for measuring forces at human-machine interfaces.  

PubMed

Measuring shear force is crucial for investigating the pathology and treatment of pressure ulcers. In this study, we introduced a bi-axial shear transducer based on strain gauges as a new shear sensor. The sensor consisted of aluminum and polyvinyl chloride plates placed between quadrangular aluminum plates. On the middle plate, two strain gauges were placed orthogonal to one another. The shear sensor (54 mm × 54 mm × 4.1 mm), which was validated by using standard weights, displayed high accuracy and precision (measurement range, -50 to 50 N; sensitivity, 0.3N; linear relationship, R(2)=0.9625; crosstalk error, 0.635% ± 0.031%; equipment variation, 4.183). The shear force on the interface between the human body and a stand-up wheelchair was measured during sitting or standing movements, using two mats (44.8 cm × 44.8 cm per mat) that consisted of 24 shear sensors. Shear forces on the sacrum and ischium were almost five times higher (15.5 N at last posture) than those on other sites (3.5 N on average) during experiments periods. In conclusion, the proposed shear sensor may be reliable and useful for measuring the shear force on human-machine interfaces. PMID:25445984

Cho, Young Kuen; Kim, Seong Guk; Kim, Donghyun; Kim, Hyung Joo; Ryu, Jeicheong; Lim, Dohyung; Ko, Chang-Yong; Kim, Han Sung

2014-12-01

251

Tertiary flow relations for compression and shear components in combined stress tests on ice  

Microsoft Academic Search

The attainment of tertiary flow in ice involves the nonlinear response to the combination of applied stresses and the alteration\\u000a of both the ice crystals and the polycrystalline aggregate. Tertiary flow rates for individual component strain rates from\\u000a a series of ice deformation experiments under combined shear and compression stresses are presented, and the departure from\\u000a the predictions of isotropic

Roland C. Warner; T. Jacka; Li Jun; W. Budd

252

Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation  

Microsoft Academic Search

Rates of coronary restenosis after stent implantation vary with stent design. Recent evidence suggests that alterations in wall shear stress associated with different stent types and changes in local vessel geometry after implantation may account for this disparity. We tested the hypothesis that wall shear stress is altered in a three-dimensional computational fluid dynamics (CFD) model after coronary implantation of

Ismail Guler; Lars E. Olson; Douglas A. Hettrick; Judy R. Kersten; David C. Warltier; Paul S. Pagel

2003-01-01

253

Relationship of shear stress with in-stent restenosis: Bare metal stenting and the effect of brachytherapy  

E-print Network

Relationship of shear stress with in-stent restenosis: Bare metal stenting and the effect Background: The association of shear stress (SS) with in-stent restenosis after bare metal stenting) in humans and the effect of vascular brachytherapy (VBT) following coronary artery stenting

Theodorakis, Panagiotis E.

254

Perturbation of the yield-stress rheology of polymer thin films by nonlinear shear ultrasound  

NASA Astrophysics Data System (ADS)

We investigate the nonlinear response of macromolecular thin films subjected to high-amplitude ultrasonic shear oscillation using a sphere-plane contact geometry. At a film thickness comparable to the radius of gyration, we observe the rheological properties intermediate between bulk and boundary nonlinear regimes. As the driving amplitude is increased, these films progressively exhibit oscillatory linear, microslip, and full slip regimes, which can be explained by the modified Coulomb friction law. At highest oscillation amplitudes, the interfacial adhesive failure takes place, being accompanied by a dewettinglike pattern. Moreover, the steady state sliding is investigated in thicker films with imposed shear stresses beyond the yield point. We find that applying high-amplitude shear ultrasound affects not only the yielding threshold but also the sliding velocity at a given shear load. A possible mechanism for the latter effect is discussed.

Léopoldès, J.; Conrad, G.; Jia, X.

2015-01-01

255

THE SDSS CO-ADD: COSMIC SHEAR MEASUREMENT  

SciTech Connect

Stripe 82 in the Sloan Digital Sky Survey was observed multiple times, allowing deeper images to be constructed by co-adding the data. Here, we analyze the ellipticities of background galaxies in this 275 deg{sup 2} region, searching for evidence of distortions due to cosmic shear. We do so using measurements of both the shear-shear correlation function and power spectrum, with the latter determined using both ''quadratic'' and ''pseudo'' estimation techniques. We show how we verified these methods using mock catalogs. We also describe our methods for modeling and correcting for the effects of the point-spread function (PSF) in our shape measurements, and we also describe our prescription for estimating photometric redshifts (photo-z's) for our galaxy sample. In particular, we assess the impact of potential systematic effects due to the PSF and to photo-z's, and show that these are under control in our analysis. We find consistent correlation function and power spectrum results, where the E-mode cosmic shear signal is detected in both real and Fourier space with >5{sigma} significance on degree scales, while the B-mode is consistent with zero as expected. The amplitude of the signal constrains the combination of the matter density {Omega}{sub m} and fluctuation amplitude {sigma}{sub 8} to be {Omega}{sup 0.7}{sub m}{sigma}{sub 8} = 0.252{sup +0.032}{sub -{sub 0.052}}.

Lin Huan; Dodelson, Scott; Soares-Santos, Marcelle; Annis, James; Hao Jiangang; Johnston, David; Kubo, Jeffrey M.; Reis, Ribamar R. R. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Seo, Hee-Jong [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Simet, Melanie [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

2012-12-10

256

Evaluation of Transverse Thermal Stresses in Composite Plates Based on First-Order Shear Deformation Theory  

NASA Technical Reports Server (NTRS)

A postprocessing procedure is presented for the evaluation of the transverse thermal stresses in laminated plates. The analytical formulation is based on the first-order shear deformation theory and the plate is discretized by using a single-field displacement finite element model. The procedure is based on neglecting the derivatives of the in-plane forces and the twisting moments, as well as the mixed derivatives of the bending moments, with respect to the in-plane coordinates. The calculated transverse shear stiffnesses reflect the actual stacking sequence of the composite plate. The distributions of the transverse stresses through-the-thickness are evaluated by using only the transverse shear forces and the thermal effects resulting from the finite element analysis. The procedure is implemented into a postprocessing routine which can be easily incorporated into existing commercial finite element codes. Numerical results are presented for four- and ten-layer cross-ply laminates subjected to mechanical and thermal loads.

Rolfes, R.; Noor, A. K.; Sparr, H.

1998-01-01

257

Measuring stress: Uses and limitations  

SciTech Connect

The topic of the uses and limitations of measuring stress in the oceans is addressed. The use of the term stress in this context is ambiguous. Rather than assuming that stress is an actual measurable property of oceans, one may assume that the term refers to the complex of harmful things that is going on in the oceans. that is, it is a cover term for a complex of processes and states, many of which are unknown or undefined. The appeal of the term stress used in that way is very tempting. Considerable complexity results from the fact that the ocean consists of numerous and diverse species and ecosystems each of which have various properties that have some claim to protection. Another source of complexity is the diversity of factors which constitute threats to the environment. In evaluating the concepts of ecological risk assessment, there are sources of hazardous agents, there are receptors that are affected, and there is a process by which these interact termed exposure. As a result of exposure there is some probability that the actions of the sources have caused or will cause some effect on the receptor, the risk. Assessments may be source driven; they may attempt to determine the risks associated with a waste outfall. Assessments may also be effects driven; they may attempt to determine the cause of a die-off of marine mammals or determine the likelihood of a particular rise in sea-level. Finally, they may be exposure driven. Each of these components of the causal chain might serve as measures of stress.

Suter, G.W. II [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

1994-12-31

258

Shear Stress Induced Reorganization of the Keratin Intermediate Filament Network Requires Phosphorylation by Protein Kinase C ?  

PubMed Central

Keratin intermediate filaments (KIFs) form a fibrous polymer network that helps epithelial cells withstand external mechanical forces. Recently, we established a correlation between the structure of the KIF network and its local mechanical properties in alveolar epithelial cells. Shear stress applied across the cell surface resulted in the structural remodeling of KIF and a substantial increase in the elastic modulus of the network. This study examines the mechanosignaling that regulates the structural remodeling of the KIF network. We report that the shear stress–mediated remodeling of the KIF network is facilitated by a twofold increase in the dynamic exchange rate of KIF subunits, which is regulated in a PKC ? and 14-3-3–dependent manner. PKC ? phosphorylates K18pSer33, and this is required for the structural reorganization because the KIF network in A549 cells transfected with a dominant negative PKC ?, or expressing the K18Ser33Ala mutation, is unchanged. Blocking the shear stress–mediated reorganization results in reduced cellular viability and increased apoptotic levels. These data suggest that shear stress mediates the phosphorylation of K18pSer33, which is required for the reorganization of the KIF network, resulting in changes in mechanical properties of the cell that help maintain the integrity of alveolar epithelial cells. PMID:19357195

Sivaramakrishnan, Sivaraj; Schneider, Jaime L.; Sitikov, Albert; Goldman, Robert D.

2009-01-01

259

A biomedical engineering approach to investigating flow and wall shear stress in contracting lymphatics  

E-print Network

information regarding lymphocyte velocity (-4 to 10 mm/sec), vessel diameter (25 to 165 um), and particle location. Fluid modeling was performed to obtain reasonable estimates of wall shear stress (-8 to 17 dynes/cm2). One of the difficulties encountered...

Dixon, James Brandon

2006-08-16

260

Static-geometric duality and stress concentration in twisted and sheared shallow spherical shells  

E-print Network

Static-geometric duality and stress concentration in twisted and sheared shallow spherical shells E), the present note has two main objectives. The ®rst of these is a simpli®cation in the use of the static conditions for v without involving the interior portion of the solution en- capsulated in the potential

Wan, Frederic Yui-Ming

261

A constant shear stress core flow model of the bidirectional vortex  

Microsoft Academic Search

In this paper, we discuss the merits of two models for the swirl velocity in the core of a confined bidirectional vortex. The first is piecewise, Rankine-like, based on a combined- vortex representation. It stems from the notion that a uniform shear stress distribution may be assumed in the inner vortex region of a cyclone, especially at high Reynolds numbers.

Brian A. Maicke; Joseph Majdalani

2009-01-01

262

Dynamic Adhesion of Umbilical Cord Blood Endothelial Progenitor Cells under Laminar Shear Stress  

PubMed Central

Late outgrowth endothelial progenitor cells (EPCs) represent a promising cell source for rapid reendothelialization of damaged vasculature after expansion ex vivo and injection into the bloodstream. We characterized the dynamic adhesion of umbilical-cord-blood-derived EPCs (CB-EPCs) to surfaces coated with fibronectin. CB-EPC solution density affected the number of adherent cells and larger cells preferentially adhered at lower cell densities. The number of adherent cells varied with shear stress, with the maximum number of adherent cells and the shear stress at maximum adhesion depending upon fluid viscosity. CB-EPCs underwent limited rolling, transiently tethering for short distances before firm arrest. Immediately before arrest, the instantaneous velocity decreased independent of shear stress. A dimensional analysis indicated that adhesion was a function of the net force on the cells, the ratio of cell diffusion to sliding speed, and molecular diffusivity. Adhesion was not limited by the settling rate and was highly specific to ?5?1 integrin. Total internal reflection fluorescence microscopy showed that CB-EPCs produced multiple contacts of ?5?1 with the surface and the contact area grew during the first 20 min of attachment. These results demonstrate that CB-EPC adhesion from blood can occur under physiological levels of shear stress. PMID:21112278

Angelos, Mathew G.; Brown, Melissa A.; Satterwhite, Lisa L.; Levering, Vrad W.; Shaked, Natan T.; Truskey, George A.

2010-01-01

263

CRITICAL SHEAR STRESSES FOR EROSION AND DEPOSITION OF FINE SUSPENDED SEDIMENTS IN THE FRASER RIVER  

E-print Network

in Burlington, Ontario, Canada. Tests on cohesive sediment suspensions, from the Fraser River and its tributary the Nechako River near their confluence, were conducted using this rotating flume. Sediment concentration#12;CRITICAL SHEAR STRESSES FOR EROSION AND DEPOSITION OF FINE SUSPENDED SEDIMENTS IN THE FRASER

264

The effect of roughness elements on wind erosion: The importance of surface shear stress distribution  

Technology Transfer Automated Retrieval System (TEKTRAN)

Representation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Drag partitioning schemes are used to account for roughness by scaling the soil entrainment threshold by the ratio of shear stress on roughness elements to that on the veg...

265

Prediction of boundary layer sound radiation from wall shear stresses using DNS data  

Microsoft Academic Search

Sound radiation from a plane turbulent boundary layer is investigated using databases from direct numerical simulations (DNS) of plane turbulent Poiseuille flow up to Reynolds number Re = 1440. Correlation areas for fluctuating wall shear stresses are found to collapse on viscous scaling over the current Reynolds number range. The power spectral density of radiated pressure and the spectrum of

Zhiwei Hu; Christopher L. Morfey; Neil D. Sandham

266

Development of a general method for designing microvascular networks using distribution of wall shear stress.  

PubMed

In the present study, theoretical formulations for calculation of optimal bifurcation angle and relationship between the diameters of mother and daughter vessels using the power law model for non-Newtonian fluids are developed. The method is based on the distribution of wall shear stress in the mother and daughter vessels. Also, the effect of distribution of wall shear stress on the minimization of energy loss and flow resistance is considered. It is shown that constant wall shear stress in the mother and daughter vessels provides the minimum flow resistance and energy loss of biological flows. Moreover, the effects of different wall shear stresses in the mother and daughter branches, different lengths of daughter branches in the asymmetric bifurcations and non-Newtonian effect of biological fluid flows on the bifurcation angle and the relationship between the diameters of mother and daughter branches are considered. Using numerical simulations for non-Newtonian models such as power law and Carreau models, the effects of optimal bifurcation angle on the pressure drop and flow resistance of blood flow in the symmetric bifurcation are investigated. Numerical simulations show that optimal bifurcation angle decreases the pressure drop and flow resistance especially for bifurcations at large Reynolds number. PMID:23891174

Sayed Razavi, Mohammad; Shirani, Ebrahim

2013-09-01

267

Cell-matrix adhesion characterization using multiple shear stress zones in single stepwise microchannel  

NASA Astrophysics Data System (ADS)

This paper presents a cell chip capable to characterize cell-matrix adhesion by monitoring cell detachment rate. The proposed cell chip can supply multiple levels of shear stress in single stepwise microchannel. As epithelial-mesenchymal transition (EMT), one of hallmarks of cancer metastasis is closely associated to the interaction with extracelluar matrix (ECM), we took advantage of two lung cancer cell models with different adhesion properties to ECM depending their epithelial or mesenchymal properties, including the pair of lung cancer cells with (A549sh) or without E-cadherin expression (A549sh-Ecad), which would be optimal model to examine the alteration of adhesion properties after EMT induction. The cell-matrix adhesion resisting to shear stress appeared to be remarkably differed between lung cancer cells. The detachment rate of epithelial-like H358 and mesenchymal-like H460 cells was 53%-80% and 25%-66% in the shear stress range of 34-60 dyn/cm2, respectively. A549sh-Ecad cells exhibits lower detachment rate (5%-9%) compared to A549sh cells (14%-40%). By direct comparison of adhesion between A549sh and A549sh-Ecad, we demonstrated that A549shE-cad to mimic EMT were more favorable to the ECM attachment under the various levels of shear stress. The present method can be applied to quantitative analysis of tumor cell-ECM adhesion.

Kim, Min-Ji; Doh, Il; Bae, Gab-Yong; Cha, Hyuk-Jin; Cho, Young-Ho

2014-08-01

268

On the effects of stenting on wall shear stress Nicoud Franck1  

E-print Network

On the effects of stenting on wall shear stress Nicoud Franck1 , Vernhet Hélène2 1 University arteries. The use of intravascular stents tends to lower the complication rate, although restenosis rates mismatch induced by stenting. Methodology The 2D pulsatile axisymetric blood flow (Navier- Stokes

Nicoud, Franck

269

Methods for Determining Streambank Critical Shear Stress and Erodibility: Implications for Erosion Rate Predictions  

Microsoft Academic Search

According to the US EPA, excess sediment is a significant cause of water quality impairment for rivers. The goal of this study was to compare different methods of determining two parameters used to estimate streambank erosion, soil critical shear stress (?c) and erodibility (kd), and to determine the impact of those differences on streambank erosion predictions. At twenty-five field sites,

L. A. Clark; T. M. Wynn

2006-01-01

270

Resveratrol attenuates apoptosis of pulmonary microvascular endothelial cells induced by high shear stress and proinflammatory factors.  

PubMed

Endothelial injury usually underlies the initial pathologic step of cardiovascular diseases. Primary endothelial cell (EC) apoptosis and secondary hyperproliferation both contribute to the development of atherosclerosis and luminal occlusion. In order to investigate the effects of resveratrol (RSV) on EC apoptosis, we applied high shear stress (HSS) with proinflammatory factors [tumor necrosis factor alpha (TNF-?) plus cycloheximide] to human pulmonary microvascular ECs (PMVECs) through an artificial capillary system. Intracellular reactive oxygen species (ROS) was measured by spectrofluorometry using dihydrorhodamine 123 fluorescent probe. Apoptosis and proliferation was determined by flow cytometric analysis. Protein expression was examined by Western blot. HSS plus inflammation significantly raised the ROS and the apoptosis level of PMVECs, which could be diminished by RSV pretreatment. In a 7-days incubation assay, RSV effectively inhibited the initial increase in apoptosis and thereby prevented subsequent PMVEC hyperproliferation induced by HSS plus inflammation. Mercaptosuccinate, a glutathione peroxidase (GPx-1) inhibitor or nicotinamide, a silent information regulator 2/sirtuin 1 (SIRT1) inhibitor could attenuate the antiapoptotic action of RSV on PMVECs; and RSV treatment upregulated GPx-1 and SIRT1 expression in PMVECs. In conclusion, RSV, probably by activating SIRT1 signaling pathway, inhibits the oxidative-stress-dependent phenotypical shift of ECs induced by HSS and proinflammatory factors in vitro. PMID:21892612

Xia, Liang; Ding, Fang; Zhu, Jun-Hui; Fu, Guo-Sheng

2011-09-01

271

A Wafer-Bonded, Floating Element Shear-Stress Sensor Using a Geometric Moire Optical Transduction Technique  

NASA Technical Reports Server (NTRS)

This paper presents a geometric Moir optical-based floating-element shear stress sensor for wind tunnel turbulence measurements. The sensor was fabricated using an aligned wafer-bond/thin-back process producing optical gratings on the backside of a floating element and on the top surface of the support wafer. Measured results indicate a static sensitivity of 0.26 microns/Pa, a resonant frequency of 1.7 kHz, and a noise floor of 6.2 mPa/(square root)Hz.

Horowitz, Stephen; Chen, Tai-An; Chandrasekaran, Venkataraman; Tedjojuwono, Ken; Cattafesta, Louis; Nishida, Toshikazu; Sheplak, Mark

2004-01-01

272

A mathematical model of the cytosolic-free calcium response in endothelial cells to fluid shear?stress  

PubMed Central

Important among the responses of endothelial cells to flow stimuli are cytosolic-free calcium transients. These transients are mediated by several factors, including blood-borne agonists, extracellular calcium, and fluid-imposed shear forces. A mathematical model has been developed describing the recognition and transduction of shear stress to the second messenger cytosolic calcium. Shear stress modulates the calcium response via at least two modalities. First, mass transfer of agonist to the cell surface is enhanced by perfusion and is thus related to shear stress. Second, the permeability of the cell membrane to extracellular calcium increases upon exposure to shear stress. A mass balance for agonist in the perfusate is coupled to a previously published calcium dynamics model. Computations indicate a flow region where the transient moves from transport limited to kinetically limited. Parametric studies indicate distinct contributions to the time course by each step in the process. These steps include the time to develop the concentration boundary layer of agonist, receptor activation, and the mobilization of calcium from intracellular stores. Exogenous calcium is presumed to enter the cell via shear stress-gated ion channels. The model predicts a sigmoidal dependence of calcium influx upon shear stress. The peak value of the transient is determined largely by the agonist pathway, whereas the plateau level is governed by calcium influx. The model predicts the modulation of the calcium transient in the physiologically relevant range of flow and the associated shear stress. This implies that hemodynamics is important in regulating endothelial biology. PMID:9108045

Wiesner, Theodore F.; Berk, Bradford C.; Nerem, Robert M.

1997-01-01

273

Rac1 and Cdc42 GTPases regulate shear stress-driven ?-catenin signaling in osteoblasts.  

PubMed

Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1Hz) shear stress (10 dynes/cm2) increased TCF/LEF activity and stimulated translocation of ?-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in ?-catenin in cancer cells, the involvement of Cdc42 in ?-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate that both Rac1 and Cdc42 GTPases are critical regulators in shear stress-driven ?-catenin signaling in osteoblasts. PMID:23524265

Wan, Qiaoqiao; Cho, Eunhye; Yokota, Hiroki; Na, Sungsoo

2013-04-19

274

The Role of Pre-stress in Shear Wave Generation from Explosions  

NASA Astrophysics Data System (ADS)

Seismic waves propagating within the Earth are small perturbations in stress and strain superimposed on an existing three-dimensional (3D) stress field. This ambient stress state, commonly referred to as "tectonic stress" or "pre-stress", may be significant in or near zones of active tectonic deformation, such as the Nevada Test Site. The effect of pre-stress on seismic waveforms generated by and propagated from an underground explosion (chemical or nuclear) is poorly understood at present. However, seismologists reasonably speculate that pre-stress may contribute to the anomalously large amount of shear wave energy often observed from such sources. In order to quantitatively investigate the effects of pre-stress, we are developing an explicit, time-domain, finite-difference (FD) algorithm for simulating 3D seismic wave propagation within an isotropic elastic medium subject to an existing static stress state. The usual stress-strain constitutive relations are augmented with additional terms involving both the ambient stress tensor and its gradient. The elastic medium is represented by nine 3D fields (i.e., mass density, two Lamé parameters, and six independent pre-stress tensor components). The numerical algorithm is implemented on a conventional 3D staggered grid using centered FD operators that are second-order accurate in time and fourth-order accurate in space. We are also developing mathematical dispersion relations, for both continuous and discrete space-time, characterizing seismic wave propagation within a 3D isotropic elastic medium under pre-stress. In the continuous case, the phase speed(s) of a plane wave propagating within a homogeneous and isotropic elastic body are obtained by extracting the appropriate roots of a cubic polynomial. Although the phase speed is independent of frequency (as in the usual zero-pre-stress situation), it depends on propagation direction, analogous to an anisotropic elastic medium. In the discrete case, phase speed depends on both frequency and direction. Important questions regarding the level of pre-stress required to produce noticeable effects on seismic waveforms need to be investigated. Of particular interest is quantification of the coupling between pure pressure and shear to understand how an ambient stress field generates shear waves from explosions. Although this effect is expected to be small, given the location of many test sites in tectonically active regions, it may be significant. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Preston, L. A.; Aldridge, D. F.

2011-12-01

275

X-ray Scattering Measurements of Particle Orientation in a Sheared Polymer/Clay Dispersion  

SciTech Connect

We report steady and transient measurements of particle orientation in a clay dispersion subjected to shear flow. An organically modified clay is dispersed in a Newtonian polymer matrix at a volume fraction of 0.02, using methods previously reported by Mobuchon et al. (Rheol Acta 46: 1045, 2007). In accord with prior studies, mechanical rheometry shows yield stress-like behavior in steady shear, while time dependent growth of modulus is observed following flow cessation. Measurements of flow-induced orientation in the flow-gradient plane of simple shear flow using small-angle and wide-angle X-ray scattering (SAXS and WAXS) are reported. Both SAXS and WAXS reveal increasing particle orientation as shear rate is increased. Partial relaxation of nanoparticle orientation upon flow cessation is well correlated with time-dependent changes in complex modulus. SAXS and WAXS data provide qualitatively similar results; however, some quantitative differences are attributed to differences in the length scales probed by these techniques.

Pujari, Saswati; Dougherty, Leah; Mobuchon, Christoph; Carreau, Pierre J.; Heuzey, Marie-Claude; Burghardt, Wesley R. (Ecole); (NWU); (Ecole)

2012-01-20

276

SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY  

SciTech Connect

Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

MEACHAM JE

2009-09-09

277

Thin-cap fibroatheroma rupture is associated with a fine interplay of shear and wall stress.  

PubMed

In this review, we summarized the effect of mechanical factors (shear and wall stress) on thin-cap fibroatheroma formation and rupture. To make this review understandable for a biology-oriented audience, we start with detailed definitions of relevant mechanical metrics. We then describe how biomechanics has supported histopathologic efforts to understand the basis of plaque rupture. In addition to plaque rupture, biomechanics also contributes toward the progression of thin-cap fibroatheroma through a multitude of reported mechanobiological mechanisms. We thus propose a new mechanism whereby both shear stress and wall stress interact to create thin-cap fibroatheromas. Specifically, when regions of certain blood flow and wall mechanical stimuli coincide, they synergistically create inflammation within the cellular environment that can lead to thin-cap fibroatheroma rupture. A consequence of this postulate is that local shear stress is not sufficient to cause rupture, but it must coincide with regions of local tissue stiffening and stress concentrations that can occur during plaque progression. Because such changes to the wall mechanics occur over a micrometer scale, high spatial resolution imaging techniques will be necessary to evaluate this hypothesis and ultimately predict plaque rupture in a clinical environment. PMID:25060797

Pedrigi, Ryan M; de Silva, Ranil; Bovens, Sandra M; Mehta, Vikram V; Petretto, Enrico; Krams, Rob

2014-10-01

278

Deep heterogeneity of the stress state in the horizontal shear zones  

NASA Astrophysics Data System (ADS)

The formation structures of brittle destruction in a rock layer above an active strike-slip fault in the crystalline basement is studied. The problem is analyzed from the standpoint of loading history, when after the stage of pure gravitational loading, an additional strain state of uniform horizontal shear of both the layer and underlying basement develops, which is further followed by a vertically nonuniform shear caused by the activation of the deep fault. For the studied object, irreversible fracture deformations on macro- and microlevels arise as early as the initial stage of loading under the action of gravitational stresses. These deformations continue evolving on the megascopic level in the course of horizontal shearing that is quasi-uniform both along the depth and laterally. The final formation of the structural ensemble occurs after a long stage of horizontal displacement of the blocks of the crystalline basement—the stage of localized shear. The theoretical analysis of the evolution of the stress state and morphology of the failure structures established the presence of numerous fractures with the normal dip-slip components in the intermediate-depth part of the rock mass, which are formed at the stages of uniform and localized horizontal shearing. The fractures with a strike-slip component mainly arise in the upper and near-axial deep parts of the section.

Rebetsky, Yu. L.; Mikhailova, A. V.

2014-11-01

279

Separating Fluid Shear Stress from Acceleration during Vibrations in Vitro: Identification of Mechanical Signals Modulating the Cellular Response  

PubMed Central

The identification of the physical mechanism(s) by which cells can sense vibrations requires the determination of the cellular mechanical environment. Here, we quantified vibration-induced fluid shear stresses in vitro and tested whether this system allows for the separation of two mechanical parameters previously proposed to drive the cellular response to vibration – fluid shear and peak accelerations. When peak accelerations of the oscillatory horizontal motions were set at 1g and 60Hz, peak fluid shear stresses acting on the cell layer reached 0.5Pa. A 3.5-fold increase in fluid viscosity increased peak fluid shear stresses 2.6-fold while doubling fluid volume in the well caused a 2-fold decrease in fluid shear. Fluid shear was positively related to peak acceleration magnitude and inversely related to vibration frequency. These data demonstrated that peak shear stress can be effectively separated from peak acceleration by controlling specific levels of vibration frequency, acceleration, and/or fluid viscosity. As an example for exploiting these relations, we tested the relevance of shear stress in promoting COX-2 expression in osteoblast like cells. Across different vibration frequencies and fluid viscosities, neither the level of generated fluid shear nor the frequency of the signal were able to consistently account for differences in the relative increase in COX-2 expression between groups, emphasizing that the eventual identification of the physical mechanism(s) requires a detailed quantification of the cellular mechanical environment. PMID:23074384

Uzer, Gunes; Manske, Sarah L; Chan, M Ete; Chiang, Fu-Pen; Rubin, Clinton T; Frame, Mary D; Judex, Stefan

2012-01-01

280

GPIb?-vWF Rolling under Shear Stress Shows Differences between Type 2B and 2M von Willebrand Disease  

PubMed Central

Both type 2B and type 2M von Willebrand disease result in bleeding disorders; however, whereas type 2B has increased binding affinity between platelet glycoprotein Ib? and von Willebrand factor (vWF), type 2M has decreased binding affinity between these two molecules. We used R687E type 2B and G561S type 2M vWF-A1 mutations to study binding between flowing platelets and insolubilized vWF mutants. We measured rolling velocities, mean stop times, and mean go times at 37°C using high-speed video microscopy. The rolling velocities for wt-wt interactions first decrease, reach a minimum, and then increase with increasing shear stress, indicating a catch-slip transition. By changing the viscosity, we were able to quantify the effects of force versus shear rate for rolling velocities and mean stop times. Platelet interactions with loss-of-function vWF-A1 retain the catch-slip bond transition seen in wt-wt interactions, but at a higher shear stress compared with the wt-wt transition. The mean stop time for all vWF-A1 molecules reveals catch-slip transitions at different shear stresses (gain-of-function vWF-A1 < wt vWF-A1< loss-of-function vWF-A1). The shift in the catch-slip transition may indicate changes in how the different mutants become conformationally active, indicating different mechanisms leading to similar bleeding characteristics. PMID:21244826

Coburn, L.A.; Damaraju, V.S.; Dozic, S.; Eskin, S.G.; Cruz, M.A.; McIntire, L.V.

2011-01-01

281

Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency  

PubMed Central

Local shear stress sensed by arterial endothelial cells is occasionally altered by changes in global hemodynamic parameters, e.g., heart rate and blood flow rate, as a result of normal physiological events, such as exercise. In a recently study (41), we demonstrated that during the adaptive response to increased shear magnitude, porcine endothelial cells exhibited an unique phenotype featuring a transient increase in permeability and the upregulation of a set of anti-inflammatory and antioxidative genes. In the present study, we characterize the adaptive response of these cells to an increase in shear frequency, another important hemodynamic parameter with implications in atherogenesis. Endothelial cells were preconditioned by a basal-level sinusoidal shear stress of 15 ± 15 dyn/cm2 at 1 Hz, and the frequency was then elevated to 2 Hz. Endothelial permeability increased slowly after the frequency step-up, but the increase was relatively small. Using microarrays, we identified 37 genes that are sensitive to the frequency step-up. The acute increase in shear frequency upregulates a set of cell-cycle regulation and angiogenesis-related genes. The overall adaptive response to the increased frequency is distinctly different from that to a magnitude step-up. However, consistent with the previous study, our data support the notion that endothelial function during an adaptive response is different than that of fully adapted endothelial cells. Our studies may also provide insights into the beneficial effects of exercise on vascular health: transient increases in frequency may facilitate endothelial repair, whereas similar increases in shear magnitude may keep excessive inflammation and oxidative stress at bay. PMID:23851277

Zhang, Ji

2013-01-01

282

A new method for measuring the yield stress in thin layers of sedimenting blood.  

PubMed Central

A new method is presented to describe the low shear rate behavior of blood. We observed the response of a thin layer of sedimenting blood to a graded shear stress in a wedge-shaped chamber. The method allows quantitation of the degree of phase separation between red cells and plasma, and extracts the yield stress of the cell phase as a function of hematocrit. Our studies showed that the behavior of normal human blood underwent a transition from a solid-like gel to a Casson fluid. This transition began at the Casson predicted yield stress. The viscoelastic properties of blood were examined at shear stresses below the yield stress. The measured Young's elastic moduli were in good agreement with published data. The yield stress of blood showed a linear dependence on hematocrit up to 60%, and increased more rapidly at higher hematocrit. PMID:3663830

Morris, C L; Smith, C M; Blackshear, P L

1987-01-01

283

Direct Experimental Measurement of the Speed-Stress Relation for Dislocations in a Plasma Crystal  

SciTech Connect

The speed-stress relation for gliding edge dislocations was experimentally measured for the first time. The experimental system used, a two-dimensional plasma crystal, allowed observation of individual dislocations at the ''atomistic'' level and in real time. At low applied stress dislocations moved subsonically, at higher stress their speed abruptly increased to 1.9 times the speed of shear waves, then slowly grew with stress. There is evidence that immediately after nucleation dislocations can move faster than pressure waves.

Nosenko, V.; Morfill, G. E.; Rosakis, P. [Max-Planck-Institut fuer extraterrestrische Physik, D-85741 Garching (Germany); Department of Applied Mathematics, University of Crete, Heraklion 71409 (Greece)

2011-04-15

284

Fluid shear stress induces the clustering of heparan sulfate via mobility of glypican-1 in lipid rafts  

PubMed Central

The endothelial glycocalyx plays important roles in mechanotransduction. We recently investigated the distribution and interaction of glycocalyx components on statically cultured endothelial cells. In the present study, we further explored the unknown organization of the glycocalyx during early exposure (first 30 min) to shear stress and tested the hypothesis that proteoglycans with glycosaminoglycans, which are localized in different lipid microdomains, respond distinctly to shear stress. During the initial 30 min of exposure to shear stress, the very early responses of the glycocalyx and membrane rafts were detected using confocal microscopy. We observed that heparan sulfate (HS) and glypican-1 clustered in the cell junctions. In contrast, chondroitin sulfate (CS), bound albumin, and syndecan-1 did not move. The caveolae marker caveolin-1 did not move, indicating that caveolae are anchored sufficiently to resist shear stress during the 30 min of exposure. Shear stress induced significant changes in the distribution of ganglioside GM1 (a marker for membrane rafts labeled with cholera toxin B subunit). These data suggest that fluid shear stress induced the cell junctional clustering of lipid rafts with their anchored glypican-1 and associated HS. In contrast, the mobility of CS, transmembrane bound syndecan-1, and caveolae were constrained during exposure to shear stress. This study illuminates the role of changes in glycocalyx organization that underlie mechanisms of mechanotransduction. PMID:23851278

Zeng, Ye; Waters, Michele; Andrews, Allison; Honarmandi, Peyman; Ebong, Eno E.; Rizzo, Victor

2013-01-01

285

Study on Stress-Strain Relationship of Loess Based on Twin Shear Unified Damage Constitutive Model  

NASA Astrophysics Data System (ADS)

To investigate the change of loess stress state, a series of triaxial shear tests were performed on normal consolidation and over consolidation loess. From the test results, the stress-strain relationships of loess were obtained and discussed. Based on unified strength theory, the statistical damage constitutive equation was obtained under triaxial stress state assuming distribution statistical probability of micro-units strength. Then the proposed formulation was adopted to study on stress-strain constitutive relationships of loess and to simulate consolidation undrained triaxial test and consolidation drained triaxial test for normal consolidated and over-consolidated specimens. Compared between experimental and theoretical results, it was shown that the proposed constitutive model can well describe stress-strain relationship of loess, whatever the characteristic of strain softening or stain hardening.

Han, Bo; Li, Hangzhou; Liao, Hong-Jian; Xiao, Zhenghua

286

Characterizing Wave- and Current-Induced Bottom Shear Stress: U.S. Middle Atlantic Bight  

NASA Astrophysics Data System (ADS)

The combined action of waves and currents at the seabed creates bottom shear stress, impacting local geology, habitat, and anthropogenic use. In this study, a methodology is developed to characterize the magnitude of benthic disturbance based on spatially and seasonally-resolved statistics (mean, standard deviation, 95th percentile) of wave-current bottom shear stress. The frequency of stress forcing is used to distinguish regions dominated by storms (return interval longer than 33 hours) from those dominated by the tides (periods shorter than 33 hours). In addition, the relative magnitude of the contribution to stress from waves, tides, and storm-driven currents is investigated by comparing wave stress, tidal current stress, and stress from the residual current (currents with tides removed), as well as through cross-correlation of wave and current stress. The methodology is applied to numerical model time-series data for the Middle Atlantic Bight (MAB) off the U.S. East Coast for April 2010 to April 2011; currents are provided from the Integrated Ocean Observing System (IOOS) operational hydrodynamic forecast Experimental System for Predicting Shelf and Slope Optics (ESPreSSO) and waves are provided from a Simulating WAves Nearshore (SWAN) hindcast developed for this project. Spatial resolution of the model is about 5 km and time-series wave and current data are at 1 and 2-hours respectively. Regions of the MAB delineated by stress characteristics include a tidally-dominated shallow region with relative high stress southeast of Massachusetts over Nantucket Shoals; a coastal band extending offshore to about 30 m water depth dominated by waves; a region dominated by waves and wind-driven currents offshore of the Outer Banks of North Carolina; and a low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the "Mud Patch". Comparison of the stress distribution with surface sediment texture data shows that coarser sediments are typically found in regions of higher stress forcing and finer sediments in regions of weaker stress, consistent with the conceptual model of finer sediments being winnowed away in areas of stronger stress. Estimates of sea floor mobility across the MAB are attained using the observed sediment texture data to establish critical stress thresholds for initiation of sediment movement. Relatively high mobility (critical stress exceeded 30-40% of the year) is observed over Nantucket Shoals and in a band along the coast out to a depth of 30-40 m. These results may have application for placement or design of offshore structures such as wind turbines, and assist in habitat delineation for benthic species.

Dalyander, S.; Butman, B.

2011-12-01

287

Bone morphogenetic protein 4: Potential regulator of shear stress-induced graft neointimal atrophy  

PubMed Central

Objective Placement in baboons of a distal femoral arteriovenous fistula increases shear stress through aortoiliac polytetrafluoroethylene (PTFE) grafts and induces regression of a preformed neointima. Atrophy of the neointima might be controlled by shear stress-induced genes, including the bone morphogenetic proteins (BMPs). We have investigated the expression and function of BMPs 2, 4, and 5 in the graft neointima and in cultured baboon smooth muscle cells (SMCs). Methods Baboons received bilateral aortoiliac PTFE grafts and 8 weeks later, a unilateral femoral arteriovenous fistula. Results Quantitative polymerase chain reaction showed that high shear stress increased BMP2, 4, and 5 messenger RNA (mRNA) in graft intima between 1 and 7 days, while noggin (a BMP inhibitor) mRNA was decreased. BMP4 most potently (60% inhibition) inhibited platelet-derived growth factor-stimulated SMC proliferation compared with BMP2 and BMP5 (31% and 26%, respectively). BMP4 also increased SMC death by 190% ±10%. Noggin reversed the antiproliferative and proapoptotic effects of BMP4. Finally, Western blotting confirmed BMP4 protein upregulation by high shear stress at 4 days. BMP4 expression demonstrated by in situ hybridization was confined to endothelial cells. Conclusions Increased BMPs (particularly BMP4) coupled with decreased noggin may promote high shear stress-mediated graft neointimal atrophy by inhibiting SMC proliferation and increasing SMC death. Clinical Relevance Pharmacologic therapy to prevent luminal stenosis or restenosis after vascular reconstruction is directed at inhibiting intimal hyperplasia and smooth muscle cell growth. An alternative approach might be to induce intimal atrophy after luminal narrowing has developed. This approach would be particularly useful for treating stenosis in stented vessels or synthetic bypass grafts because intimal hyperplasia is the only mechanism for luminal narrowing. Furthermore, it would permit the physician to treat the population of patients (about 30%) who actually develop a problem with stenosis or restenosis. We have previously provided proof of principle that an established neointima can be induced to atrophy in baboon polytetrafluoroethylene grafts, but not in normal artery, by simply switching from normal to high blood flow and shear stress. In this study, we provide evidence that members of the bone morphogenetic protein family may play a role in this neointimal atrophy. PMID:16414402

Hsieh, Patrick C. H.; Kenagy, Richard D.; Mulvihill, Eileen R.; Jeanette, Joseph P.; Wang, Xi; Chang, Cindy M. C.; Yao, Zizhen; Ruzzo, Walter L.; Justice, Suzanne; Hudkins, Kelly L.; Alpers, Charles E.; Berceli, Scott; Clowes, Alexander W.

2006-01-01

288

Resolved shear stress intensity coefficient and fatigue crack growth in large crystals  

NASA Technical Reports Server (NTRS)

Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.

Chen, QI; Liu, Hao-Wen

1988-01-01

289

Nature of stress accommodation in sheared granular material: Insights from 3D numerical modeling  

NASA Astrophysics Data System (ADS)

Active faults often contain distinct accumulations of granular wear material. During shear, this granular material accommodates stress and strain in a heterogeneous manner that may influence fault stability. We present new work to visualize the nature of contact force distributions during 3D granular shear. Our 3D discrete numerical models consist of granular layers subjected to normal loading and direct shear, where gouge particles are simulated by individual spheres interacting at points of contact according to simple laws. During shear, we observe the transient microscopic processes and resulting macroscopic mechanical behavior that emerge from interactions of thousands of particles. We track particle translations and contact forces to determine the nature of internal stress accommodation with accumulated slip for different initial configurations. We view model outputs using novel 3D visualization techniques. Our results highlight the prevalence of transient directed contact force networks that preferentially transmit enhanced stresses across our granular layers. We demonstrate that particle size distribution (psd) controls the nature of the force networks. Models having a narrow (i.e. relatively uniform) psd exhibit discrete pipe-like force clusters with a dominant and focussed orientation oblique to but in the plane of shear. Wider psd models (e.g. power law size distributions D = 2.6) also show a directed contact force network oblique to shear but enjoy a wider range of orientations and show more out-of-plane linkages perpendicular to shear. Macroscopic friction level, is insensitive to these distinct force network morphologies, however, force network evolution appears to be linked to fluctuations in macroscopic friction. Our results are consistent with predictions, based on recent laboratory observations, that force network morphologies are sensitive to grain characteristics such as particle size distribution of a sheared granular layer. Our numerical approach offers the potential to investigate correlations between contact force geometry, evolution and resulting macroscopic friction, thus allowing us to explore ideas that heterogeneous force distributions in gouge material may exert an important control on fault stability and hence the seismic potential of active faults.

Mair, Karen; Hazzard, James F.

2007-07-01

290

Exploring German Bight coastal morphodynamics based on modelled bed shear stress  

NASA Astrophysics Data System (ADS)

The prediction of large-scale coastal and estuarine morphodynamics requires a sound understanding of the relevant driving processes and forcing factors. Data- and process-based methods and models suffer from limitations when applied individually to investigate these systems and, therefore, a combined approach is needed. The morphodynamics of coastal environments can be assessed in terms of a mean bed elevation range (BER), which is the difference of the lowest to highest seabed elevation occurring within a defined time interval. In this study of the coastal sector of the German Bight, North Sea, the highly variable distribution of observed BER for the period 1984-2006 is correlated to local bed shear stresses based on hindcast simulations with a well-validated high-resolution (typically 1,000 m in coastal settings) process-based numerical model of the North Sea. A significant correlation of the 95th percentile of bed shear stress and BER was found, explaining between 49 % and 60 % of the observed variance of the BER under realistic forcing conditions. The model then was applied to differentiate the effects of three main hydrodynamic drivers, i.e. tides, wind-induced currents, and waves. Large-scale mapping of these model results quantify previous qualitative suggestions: tides act as main drivers of the East Frisian coast, whereas waves are more relevant for the morphodynamics of the German west coast. Tidal currents are the main driver of the very high morphological activity of the tidal channels of the Ems, Weser and Elbe estuaries, the Jade Bay, and tidal inlets between the islands. This also holds for the backbarrier tidal flats of the North Frisian Wadden Sea. The morphodynamics of the foreshore areas of the barrier island systems are mainly wave-driven; in the deeper areas tides, waves and wind-driven currents have a combined effect. The open tidal flats (outer Ems, Neuwerker Watt, Dithmarschen Bight) are affected by a combination of tides, wind-driven currents and waves. Model performance should be measurably improved by integrating the roles of other key drivers, notably sediment dynamics and salt marsh stabilisation.

Kösters, Frank; Winter, Christian

2014-02-01

291

Propose a Wall Shear Stress Divergence to Estimate the Risks of Intracranial Aneurysm Rupture  

PubMed Central

Although wall shear stress (WSS) has long been considered a critical indicator of intracranial aneurysm rupture, there is still no definite conclusion as to whether a high or a low WSS results in aneurysm rupture. The reason may be that the effect of WSS direction has not been fully considered. The objectives of this study are to investigate the magnitude of WSS (|WSS|) and its divergence on the aneurysm surface and to test the significance of both in relation to the aneurysm rupture. Patient-specific computational fluid dynamics (CFD) was used to compute WSS and wall shear stress divergence (WSSD) on the aneurysm surface for nineteen patients. Our results revealed that if high |WSS| is stretching aneurysm luminal surface, and the stretching region is concentrated, the aneurysm is under a high risk of rupture. It seems that, by considering both direction and magnitude of WSS, WSSD may be a better indicator for the risk estimation of aneurysm rupture (154). PMID:24191140

Zhang, Y.; Takao, H.; Murayama, Y.; Qian, Y.

2013-01-01

292

Normal and shear impact of layered composite with a crack - Dynamic stress intensification  

NASA Technical Reports Server (NTRS)

The dynamic response of a layered composite under normal and shear impact is analyzed by assuming that the composite contains an initial flaw in the matrix material. One of the objectives was to develop an analytical method for determining dynamic stress solutions which should lead to a numerical method which utilizes Fourier transform for the space variable and Laplace transform for the time variable. The time-dependent angle loading is separated into two parts: a symmetric and a skew-symmetric with reference to the crack plane. By superposition, the transient boundary conditions consist of applying normal and shear tractions to a crack embedded in a layered composite; one phase of the composite could represent the fiber while the other could be the matrix. Mathematically, these conditions reduce the problem to a system of dual integral equations solved in the transform plane for the transform of the dynamic stress-intensity factor.

Sih, G. C.; Chen, E. P.

1980-01-01

293

On the use of bioluminescence for estimating shear stresses over a rippled seabed  

Microsoft Academic Search

The bioluminescence emitted by micro-planktonic organisms has been adopted to detect shear stresses within oscillating flows\\u000a over small scale bedforms. To this aim, an experimental campaign has been planned in order to optimize optical detectors and\\u000a to address peculiar needs of biological organisms.\\u000a \\u000a \\u000a Oscillating flow over ripples has been simulated in an annular cell, an apparatus that permits one to

Enrico Foti; Carla Faraci; Romano Foti; Giovanni Bonanno

2010-01-01

294

In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation  

PubMed Central

This study instituted a unique approach to bone tissue engineering by combining effects of mechanical stimulation in the form of fluid shear stresses and the presence of bone-like extracellular matrix (ECM) on osteodifferentiation. Rat marrow stromal cells (MSCs) harvested from bone marrow were cultured on titanium (Ti) fiber mesh discs for 12 days in a flow perfusion system to generate constructs containing bone-like ECM. To observe osteodifferentiation and bone-like matrix deposition, these decellularized constructs and plain Ti fiber meshes were seeded with MSCs (Ti/ECM and Ti, respectively) and cultured in the presence of fluid shear stresses either with or without the osteogenic culture supplement dexamethasone. The calcium content, alkaline phosphatase activity, and osteopontin secretion were monitored as indicators of MSC differentiation. Ti/ECM constructs demonstrated a 75-fold increase in calcium content compared with their Ti counterparts after 16 days of culture. After 16 days, the presence of dexamethasone enhanced the effects of fluid shear stress and the bone-like ECM by increasing mineralization 50-fold for Ti/ECM constructs; even in the absence of dexamethasone, the Ti/ECM constructs exhibited approximately a 40-fold increase in mineralization compared with their Ti counterparts. Additionally, denatured Ti/ECM* constructs demonstrated a 60-fold decrease in calcium content compared with Ti/ECM constructs after 4 days of culture. These results indicate that the inherent osteoinductive potential of bone-like ECM along with fluid shear stresses synergistically enhance the osteodifferentiation of MSCs with profound implications on bone-tissue-engineering applications. PMID:16477044

Datta, Néha; P. Pham, Quynh; Sharma, Upma; Sikavitsas, Vassilios I.; Jansen, John A.; Mikos, Antonios G.

2006-01-01

295

LIF measurements of scalar mixing in turbulent shear layers  

NASA Astrophysics Data System (ADS)

The structure of shear layer flows at high Reynolds numbers remains a very interesting problem. Straight mixing layers have been studied and yielded information on the probability density function (pdf) of a passive scalar across the layer. Konrad and Koochesfahani & Dimotakis measured the pdf of the mixture fraction for mixing layers of moderate Reynolds numbers, each about 25,000 (Re based on velocity difference and visual thickness). Their measurements showed a 'non-marching' pdf (central hump which is invariant from edge to edge across the layer), a result which is linked to the visualizations of the spanwise Kelvin-Helmholtz (K-H) instability mode, which is the primary instability for plane shear layer flows. A secondary instability mode, the Taylor-Gortler (T-G) instability, which is associated with streamwise vortical structures, has also been observed in shear layers. Image reconstruction by Jimenez et al. and volume renderings by Karasso & Mungal at low Re numbers have demonstrated that the K-H and the T-G instability modes occur simultaneously in a non-mutually destructive way, evidence that supports the quasi two-dimensional aspect of these flows and the non-marching character of the pdf at low Reynolds numbers. At higher Re numbers though, the interaction of these two instability modes is still unclear and may affect the mixing process. In this study, we perform measurements of the concentration pdf of plane mixing layers for different operating conditions. At a speed ratio of r = U(sub 1)/U(sub 2) = 4:1, we examine three Reynolds number cases: Re = 14,000, Re = 31,000, and Re = 62,000. Some other Re number cases' results, not presented in detail, are invoked to explain the behavior of the pdf of the concentration field. A case of r = 2.6:1 at Re = 20,000 is also considered. The planar laser-induced fluorescence technique is used to yield quantitative measurements. The different Re are obtained by changing the velocity magnitudes of the two streams. The question of resolution of these measurements is addressed. In order to investigate the effects of the initial conditions on the development and the structure of the mixing layer, the boundary layer on the high-speed side of the splitter plate is tripped. The average concentration and the average mixed fluid concentration are also calculated to further understand the changes in the shear layer for the different cases examined.

Karasso, Paris S.; Mungal, M. G.

1993-01-01

296

Visualization of Simulated Endothelial Shear Stress and Blood Flow in Coronary Arteries  

NASA Astrophysics Data System (ADS)

Low endothelial shear stress (ESS) identifies areas of atherosclerotic disease lesion formation in the coronary arteries. However, it is impossible to directly measure ESS in vivo for an entire arterial tree. As part of the Multiscale Hemodynamics Project, computed tomography angiography (CTA) data is being used to obtain patient specific heart and coronary system geometries and then MUPHY, a multi-physics and multi-scale simulation code combining microscopic Molecular Dynamics (MD) with a hydro-kinetic Lattice Boltzmann (LB) method, is applied in order to simulate blood flow through the coronary arteries. Having effective visualizations of the simulation's multidimensional output, including ESS, is vital for the quick and thorough non-invasive evaluation of the patient. To this end, we have developed new visualization tools and techniques to make the simulation's output useful in a clinical diagnostic setting, examined the effectiveness of 2D versus 3D representations, and explored blood flow representations. The visualization methods developed are also applicable to other areas of fluid dynamics.

Borkin, Michelle; Feldman, Charles L.; Pfister, Hanspeter; Melchionna, Simone; Kaxiras, Efthimios

2010-11-01

297

Stress intensity factors in bonded half planes containing inclined cracks and subjected to antiplane shear loading  

NASA Technical Reports Server (NTRS)

The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks is considered. For the semi-infinite crack the problem is solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses are calculated. For finite cracks the problem is reduced to a pair of integral equations. Numerical results are obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.

Bassani, J. L.; Erdogan, F.

1979-01-01

298

Stress intensity factors in bonded half planes containing inclined cracks and subjected to antiplane shear loading  

NASA Technical Reports Server (NTRS)

The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks was considered. For the semi-infinite crack the problem was solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses were calculated. For finite cracks the problem was reduced to a pair of integral equations. Numerical results were obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.

Bassani, J. L.; Erdogan, F.

1978-01-01

299

Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways  

NASA Technical Reports Server (NTRS)

Fluid flow has been shown to be a potent stimulus in osteoblasts and osteocytes and may therefore play an important role in load-induced bone remodeling. The objective of this study was to investigate the characteristics of flow-activated pathways. Previously we reported that fluid flow stimulates rapid and continuous release of nitric oxide (NO) in primary rat calvarial osteoblasts. Here we demonstrate that flow-induced NO release is mediated by shear stress and that this response is distinctly biphasic. Transients in shear stress associated with the onset of flow stimulated a burst in NO production (8.2 nmol/mg of protein/h), while steady flow stimulated sustained NO production (2.2 nmol/mg of protein/h). Both G-protein inhibition and calcium chelation abolished the burst phase but had no effect on sustained production. Activation of G-proteins stimulated dose-dependent NO release in static cultures of both calvarial osteoblasts and UMR-106 osteoblast-like cells. Pertussis toxin had no effect on NO release. Calcium ionophore stimulated low levels of NO production within 15 minutes but had no effect on sustained production. Taken together, these data suggest that fluid shear stress stimulates NO release by two distinct pathways: a G-protein and calcium-dependent phase sensitive to flow transients, and a G-protein and calcium-independent pathway stimulated by sustained flow.

McAllister, T. N.; Frangos, J. A.

1999-01-01

300

Fluid-flow induced wall shear stress and epithelial ovarian cancer peritoneal spreading.  

PubMed

Epithelial ovarian cancer (EOC) is usually discovered after extensive metastasis have developed in the peritoneal cavity. The ovarian surface is exposed to peritoneal fluid pressures and shear forces due to the continuous peristaltic motions of the gastro-intestinal system, creating a mechanical micro-environment for the cells. An in vitro experimental model was developed to expose EOC cells to steady fluid flow induced wall shear stresses (WSS). The EOC cells were cultured from OVCAR-3 cell line on denuded amniotic membranes in special wells. Wall shear stresses of 0.5, 1.0 and 1.5 dyne/cm(2) were applied on the surface of the cells under conditions that mimic the physiological environment, followed by fluorescent stains of actin and ?-tubulin fibers. The cytoskeleton response to WSS included cell elongation, stress fibers formation and generation of microtubules. More cytoskeletal components were produced by the cells and arranged in a denser and more organized structure within the cytoplasm. This suggests that WSS may have a significant role in the mechanical regulation of EOC peritoneal spreading. PMID:23593358

Avraham-Chakim, Liron; Elad, David; Zaretsky, Uri; Kloog, Yoel; Jaffa, Ariel; Grisaru, Dan

2013-01-01

301

Computational models for wall shear stress estimation in scaffolds: a comparative study of two complete geometries.  

PubMed

Fluid mechanical stimuli are known to upregulate cell differentiation and matrix formation. Since wall shear stress plays an important role various studies tried to estimate the scaffold fluid dynamic environment. However, because of the geometrical complexity, nearly all studies created their CFD model based on a submodel of the entire scaffold assuming that the model covers heterogeneity sufficiently. However to the authors' knowledge no study exist providing guidelines in this matter. In a previous study we demonstrated that submodels are influenced by the boundary conditions, inevitable when flow channels are chopped off. For the current study we therefore developed ?CT based models of two complete scaffold geometries (one titanium and one hydroxyapatite). Imposing a 0.04 ml/min flow rate resulted in a surface area averaged wall shear stress of 1.41 mPa for titanium and 1.09 mPa for hydroxyapatite. In order to get insight in required model size we subdivided the domain in regions of different size. From our results we propose a model size between 6 and 10 times the average pore size. The wall shears stress should be calculated on a region at least one pore size away from the boundaries. These guidelines could be of use for computationally more costly simulations where it is not possible to simulate the complete scaffold domain. PMID:22541942

Maes, F; Claessens, T; Moesen, M; Van Oosterwyck, H; Van Ransbeeck, P; Verdonck, P

2012-06-01

302

Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells.  

PubMed

In this paper, a simple theoretical model is developed to describe the transmission of force from interstitial fluid flow to the surface of a cell covered by a proteoglycan / glycoprotein layer (glycocalyx) and embedded in an extracellular matrix. Brinkman equations are used to describe flow through the extracellular matrix and glycocalyx layers and the solid mechanical stress developed in the glycocalyx by the fluid flow loading is determined. Using reasonable values for the Darcy permeability of extracellular matrix and glycocalyx layers and interstitial flow velocity, we are able to estimate the fluid and solid shear stresses imposed on the surface of embedded vascular, cartilage and tumor cells in vivo and in vitro. The principal finding is that the surface solid stress is typically one to two orders of magnitude larger than the surface fluid stress. This indicates that interstitial flow shear stress can be sensed by the cell surface glycocalyx, supporting numerous recent observations that interstitial flow can induce mechanotransduction in embedded cells. This study may contribute to understanding of interstitial flow-related mechanobiology in embryogenesis, tumorigenesis, tissue physiology and diseases and has implications in tissue engineering. PMID:22411016

Tarbell, John M; Shi, Zhong-Dong

2013-01-01

303

Nonlinear stresses and temperatures in transient adiabatic and shear flows via nonequilibrium molecular dynamics: Three definitions of temperature  

Microsoft Academic Search

We compare nonlinear stresses and temperatures for adiabatic-shear flows, using up to 262 144 particles, with those from corresponding homogeneous and inhomogeneous flows. Two varieties of kinetic temperature tensors are compared to the configurational temperatures. This comparison of temperatures led us to two findings beyond our original goal of analyzing shear algorithms. First, we found an improved form for local

Wm. G. Hoover; C. G. Hoover

2009-01-01

304

Reference: Bid. Bull. 188: 46-56. (February/March, 1995) The Effects of Hydrodynamic Shear Stress on  

E-print Network

, the intense turbulence of the surf zone or the benthic boundary layer may interfere with fertilization through (Strongylocentrotus purpuratus). Although low shear stressesimproved fertil- ization success (presumably by increasing, eggs fertilized at high shear stresses often showed abnormal development and low survival

Denny, Mark

305

Additional shear resistance from fault roughness and stress levels on geometrically complex faults  

NASA Astrophysics Data System (ADS)

The majority of crustal faults host earthquakes when the ratio of average background shear stress ?b to effective normal stress ?eff is ?b/?eff?0.6. In contrast, mature plate-boundary faults like the San Andreas Fault (SAF) operate at ?b/?eff?0.2. Dynamic weakening, the dramatic reduction in frictional resistance at coseismic slip velocities that is commonly observed in laboratory experiments, provides a leading explanation for low stress levels on mature faults. Strongly velocity-weakening friction laws permit rupture propagation on flat faults above a critical stress level ?pulse/?eff?0.25. Provided that dynamic weakening is not restricted to mature faults, the higher stress levels on most faults are puzzling. In this work, we present a self-consistent explanation for the relatively high stress levels on immature faults that is compatible with low coseismic frictional resistance, from dynamic weakening, for all faults. We appeal to differences in structural complexity with the premise that geometric irregularities introduce resistance to slip in addition to frictional resistance. This general idea is quantified for the special case of self-similar fractal roughness of the fault surface. Natural faults have roughness characterized by amplitude-to-wavelength ratios ? between 10-3 and 10-2. Through a second-order boundary perturbation analysis of quasi-static frictionless sliding across a band-limited self-similar interface in an ideally elastic solid, we demonstrate that roughness induces an additional shear resistance to slip, or roughness drag, given by ?drag=8?3?2G??/?min, for G?=G/(1-?) with shear modulus Gand Poisson's ratio ?, slip ?, and minimum roughness wavelength ?min. The influence of roughness drag on fault mechanics is verified through an extensive set of dynamic rupture simulations of earthquakes on strongly rate-weakening fractal faults with elastic-plastic off-fault response. The simulations suggest that fault rupture, in the form of self-healing slip pulses, becomes probable above a background stress level ?b??pulse+?drag. For the smoothest faults (?˜10-3), ?drag is negligible compared to frictional resistance, so that ?b??pulse?0.25?eff. However, on rougher faults (?˜10-2), roughness drag can exceed frictional resistance. We expect that ?drag ultimately departs from the predicted scaling when roughness-induced stress perturbations activate pervasive off-fault inelastic deformation, such that background stress saturates at a limit (?b?0.6?eff) determined by the finite strength of the off-fault material. We speculate that this strength, and not the much smaller dynamically weakened frictional strength, determines the stress levels at which the majority of faults operate.

Fang, Zijun; Dunham, Eric M.

2013-07-01

306

Flux-pinning-induced interfacial shearing and transverse normal stress in a superconducting coated conductor long strip  

NASA Astrophysics Data System (ADS)

In this paper, a theoretical model is proposed to analyze the transverse normal stress and interfacial shearing stress induced by the electromagnetic force in the superconducting coated conductor. The plane strain approach is used and a singular integral equation is derived. By assuming that the critical current density is magnetic field independent and the superconducting film is infinitely thin, the interfacial shearing stress and normal stress in the film are evaluated for the coated conductor during the increasing and decreasing in the transport current, respectively. The calculation results are discussed and compared for the conductor with different substrate and geometry. The results indicate that the coated conductor with stiffer substrate and larger width experiences larger interfacial shearing stress and less normal stress in the film.

Jing, Ze; Yong, Huadong; Zhou, Youhe

2012-08-01

307

Fatigue surviving, fracture resistance, shear stress and finite element analysis of glass fiber posts with different diameters.  

PubMed

This study evaluated the shear stress presented in glass fiber posts with parallel fiber (0°) and different coronal diameters under fatigue, fracture resistance and FEA. 160 glass-fiber posts (N=160) with eight different coronal diameters were used (DT=double tapered, number of the post=coronal diameter and W=Wider - fiber post with coronal diameter wider than the conventional): DT1.4; DT1.8W; DT1.6; DT2W; DT1.8; DT2.2W; DT2; DT2.2. Eighty posts were submitted to mechanical cycling (3×10(6) cycles; inclination: 45°; load: 50N; frequency: 4Hz; temperature: 37°C) to assess the surviving under intermittent loading and other eighty posts were submitted to fracture resistance testing (resistance [N] and shear-stress [MPa] values were obtained). The eight posts types were 3D modeled (Rhinoceros 4.0) and the shear-stress (MPa) evaluated using FEA (Ansys 13.0). One-way ANOVA showed statistically differences to fracture resistance (DT2.2W and DT2.2 showed higher values) and shear stress values (DT1.4 showed lower values). Only the DT1.4 fiber posts failed after mechanical cycling. FEA showed similar values of shear stress between the groups and these values were similar to those obtained by shear stress testing. The failure analysis showed that 95% of specimens failed by shear. Posts with parallel fiber (0°) may suffer fractures when an oblique shear load is applied on the structure; except the thinner group, greater coronal diameters promoted the same shear stresses. PMID:25553557

Wandscher, Vinícius Felipe; Bergoli, César Dalmolin; de Oliveira, Ariele Freitas; Kaizer, Osvaldo Bazzan; Souto Borges, Alexandre Luiz; Limberguer, Inácio da Fontoura; Valandro, Luiz Felipe

2015-03-01

308

Effect of surface shear stress on the attachment of Pseudomonas fluorescens to stainless steel under defined flow conditions.  

PubMed

The application of the radial-flow growth chamber to the study of the initial stages of bacterial adhesion to surfaces under flowing conditions is reported. The adhesive properties of the bacterium Pseudomonas fluorescens (NCIB 9046) to stainless steel (type AISI 316) were found to be highly dependent on surface shear stress and the time and concentration of cells used in the incubation procedure. Maximum levels of adhesion occurred in zones of lowest surface shear stress, particularly less than 6-8 Nm(-2). Adhesion was still noticeable at shear stresses even up to 130 Nm(-2). Significant detachment of cells from a monolayer attached under static conditions was found to occur at surface shear stresses in excess of 10-12 Nm(-2). PMID:18546107

Duddridge, J E; Kent, C A; Laws, J F

1982-01-01

309

Characterizaton of the Vessel Geometry, Flow Mechanics and Wall Shear Stress in the Great Arteries of Wildtype Prenatal Mouse  

PubMed Central

Introduction Abnormal fluid mechanical environment in the pre-natal cardiovascular system is hypothesized to play a significant role in causing structural heart malformations. It is thus important to improve our understanding of the prenatal cardiovascular fluid mechanical environment at multiple developmental time-points and vascular morphologies. We present such a study on fetal great arteries on the wildtype mouse from embryonic day 14.5 (E14.5) to near-term (E18.5). Methods Ultrasound bio-microscopy (UBM) was used to measure blood velocity of the great arteries. Subsequently, specimens were cryo-embedded and sectioned using episcopic fluorescent image capture (EFIC) to obtain high-resolution 2D serial image stacks, which were used for 3D reconstructions and quantitative measurement of great artery and aortic arch dimensions. EFIC and UBM data were input into subject-specific computational fluid dynamics (CFD) for modeling hemodynamics. Results In normal mouse fetuses between E14.5–18.5, ultrasound imaging showed gradual but statistically significant increase in blood velocity in the aorta, pulmonary trunk (with the ductus arteriosus), and descending aorta. Measurement by EFIC imaging displayed a similar increase in cross sectional area of these vessels. However, CFD modeling showed great artery average wall shear stress and wall shear rate remain relatively constant with age and with vessel size, indicating that hemodynamic shear had a relative constancy over gestational period considered here. Conclusion Our EFIC-UBM-CFD method allowed reasonably detailed characterization of fetal mouse vascular geometry and fluid mechanics. Our results suggest that a homeostatic mechanism for restoring vascular wall shear magnitudes may exist during normal embryonic development. We speculate that this mechanism regulates the growth of the great vessels. PMID:24475188

Yap, Choon Hwai; Liu, Xiaoqin; Pekkan, Kerem

2014-01-01

310

Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress  

PubMed Central

The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6. PMID:22297325

Lane, Whitney O.; Jantzen, Alexandra E.; Carlon, Tim A.; Jamiolkowski, Ryan M.; Grenet, Justin E.; Ley, Melissa M.; Haseltine, Justin M.; Galinat, Lauren J.; Lin, Fu-Hsiung; Allen, Jason D.; Truskey, George A.; Achneck, Hardean E.

2012-01-01

311

Shear-wave velocity variation in jointed rock: an attempt to measure tide-induced variations  

SciTech Connect

The use of the perturbation of seismic wave velocities by solid earth tides as a possible method of exploration for fractured media is discussed. Velocity of compressional seismic waves in fractured homogeneous rock has been observed to vary through solid earth tide cycles by a significant 0.5-0.9%. This variation of seismic velocities may be attributed to the opening and closing of joints by tidal stresses. In an attempt to see if shear-wave velocities show a similar velocity variation, a pneumatic shear-wave generator was used for the source. The 5 receivers, 3-component, 2.0 Hz, moving-coil geophones, were connected to a GEOS digital recorder. The two receivers located 120 m and 110 m from the source showed large shear-to-compression amplitude ratio and a high signal-to-noise ratio. A glaciated valley was chosen for the experiment site, since topography is flat and the granodiorite is jointed by a set of nearly orthogonal vertical joints, with superimposed horizontal sheeting joints. A slight velocity variation was noted in the first 200 consecutive firings; after which, the amplitude of the shear-wave begun to increase. This increase has been attributed to the compacting of the soil beneath the shear-wave generator (SWG). In the future, the soil will be compacted prior to placing the SWG or the SWG will be coupled directly to the rock to alleviate the amplitude fluctuation problem. This research may have application in exploration for fracture permeability in the rock mass between existing wells, by measuring seismic velocities from well to well through the tidal cycle.

Beem, L.I.

1987-08-01

312

Normalization of flow-mediated dilation to shear stress area under the curve eliminates the impact of variable hyperemic stimulus  

Microsoft Academic Search

BACKGROUND: Normalization of brachial artery flow-mediated dilation (FMD) to individual shear stress area under the curve (peak FMD:SSAUC ratio) has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of

Jaume Padilla; Blair D Johnson; Sean C Newcomer; Daniel P Wilhite; Timothy D Mickleborough; Alyce D Fly; Kieren J Mather; Janet P Wallace

2008-01-01

313

Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells  

NASA Technical Reports Server (NTRS)

Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

1998-01-01

314

Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells.  

PubMed Central

Hemodynamic shear stress alters the architecture and functions of vascular endothelial cells. We have previously shown that the synthesis of endothelin-1 (ET-1) in endothelial cells is increased by exposure to shear stress. Here we examined whether shear stress-induced alterations in cytoskeletal structures are responsible for increases in ET-1 synthesis in cultured porcine aortic endothelial cells. Exposure of endothelial cells to 5 dyn/cm2 of low shear stress rapidly increased monomeric G-actin contents within 5 min without changing total actin contents. The ratio of G- to total actin, 54 +/- 0.8% in quiescent endothelial cells, increased to 87 +/- 4.2% at 6 h and then decreased. Following the disruption of filamentous (F)-actin into G-actin, ET-1 mRNA levels in endothelial cells also increased within 30 min and reached a peak at 6 h. The F-actin stabilizer, phalloidin, abolished shear stress-induced increases in ET-1 mRNA; however, it failed to inhibit increases in ET-1 mRNA secondary to other stimulants. This indicates that shear stress-induced increases in ET-1 mRNA levels may be mediated by the disruption of actin fibers. Furthermore, increases in ET-1 gene expression can be induced by actin-disrupting agents, cytochalasin B and D. Another cytoskeleton-disrupting agent, colchicine, which inhibits dimerization of tubulin, did not affect the basal level of ET-1 mRNA. However, colchicine completely inhibited shear stress- and cytochalasin B-induced increases in ET-1 mRNA levels. These results suggest that shear stress-induced ET-1 gene expression in endothelial cells is mediated by the disruption of actin cytoskeleton and this induction is dependent on the integrity of microtubules. Images PMID:8408624

Morita, T; Kurihara, H; Maemura, K; Yoshizumi, M; Yazaki, Y

1993-01-01

315

Laboratory measurements of the temporal and cross-shore variation of the wave-induced bed stress  

E-print Network

Detailed laboratory measurements of horizontal velocity above a rough, fixed, impermeable slope were made to determine the effect of varying wave conditions on the shear stress in the swash zone. The research involved the design, construction...

Sukumaran, Ashok

2000-01-01

316

Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase  

NASA Technical Reports Server (NTRS)

Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.

Park, H.; Go, Y. M.; Darji, R.; Choi, J. W.; Lisanti, M. P.; Maland, M. C.; Jo, H.

2000-01-01

317

In situ monitoring of localized shear stress and fluid flow within developing tissue constructs by Doppler optical coherence tomography  

NASA Astrophysics Data System (ADS)

Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 ?m in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.

Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.

2008-02-01

318

An in vitro comparative study of intracanal fluid motion and wall shear stress induced by ultrasonic and polymer rotary finishing files in a simulated root canal model.  

PubMed

Objective. This in vitro study compared the flow pattern and shear stress of an irrigant induced by ultrasonic and polymer rotary finishing file activation in an acrylic root canal model. Flow visualization analysis was performed using an acrylic canal filled with a mixture of distilled water and rheoscopic fluid. The ultrasonic and polymer rotary finishing file were separately tested in the canal and activated in a static position and in a cyclical axial motion (up and down). Particle movement in the fluid was captured using a high-speed digital camera and DaVis 7.1 software. The fluid shear stress analysis was performed using hot film anemometry. A hot-wire was placed in an acrylic root canal and the canal was filled with distilled water. The ultrasonic and polymer rotary finishing files were separately tested in a static position and in a cyclical axial motion. Positive needle irrigation was also tested separately for fluid shear stress. The induced wall shear stress was measured using LabVIEW 8.0 software. PMID:22461994

Koch, Jon; Borg, John; Mattson, Abby; Olsen, Kris; Bahcall, James

2012-01-01

319

Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow  

NASA Technical Reports Server (NTRS)

Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.

Abid, R.; Speziale, C. G.

1992-01-01

320

Impact of blood rheology on wall shear stress in a model of the middle cerebral artery  

PubMed Central

Perturbations to the homeostatic distribution of mechanical forces exerted by blood on the endothelial layer have been correlated with vascular pathologies, including intracranial aneurysms and atherosclerosis. Recent computational work suggests that, in order to correctly characterize such forces, the shear-thinning properties of blood must be taken into account. To the best of our knowledge, these findings have never been compared against experimentally observed pathological thresholds. In this work, we apply the three-band diagram (TBD) analysis due to Gizzi et al. (Gizzi et al. 2011 Three-band decomposition analysis of wall shear stress in pulsatile flows. Phys. Rev. E 83, 031902. (doi:10.1103/PhysRevE.83.031902)) to assess the impact of the choice of blood rheology model on a computational model of the right middle cerebral artery. Our results show that, in the model under study, the differences between the wall shear stress predicted by a Newtonian model and the well-known Carreau–Yasuda generalized Newtonian model are only significant if the vascular pathology under study is associated with a pathological threshold in the range 0.94–1.56 Pa, where the results of the TBD analysis of the rheology models considered differs. Otherwise, we observe no significant differences. PMID:24427534

Bernabeu, Miguel O.; Nash, Rupert W.; Groen, Derek; Carver, Hywel B.; Hetherington, James; Krüger, Timm; Coveney, Peter V.

2013-01-01

321

The Measurement of Stress among College Students.  

ERIC Educational Resources Information Center

This paper reports on a study to develop a scale of stress measurement and its use with undergraduate students (N=269) at a large land grant mid-Atlantic university. Students, within the classroom setting, were given a questionnaire containing 52 potentially stressful hypothetical situations and were asked to indicate the degree of stress they…

Hensley, Wayne E.

322

Effect of mesh distortion on the accuracy of transverse shear stresses and their sensitivity coefficients in multilayered composites  

NASA Technical Reports Server (NTRS)

A study is made of the effect of mesh distortion on the accuracy of transverse shear stresses and their first-order and second-order sensitivity coefficients in multilayered composite panels subjected to mechanical and thermal loads. The panels are discretized by using a two-field degenerate solid element, with the fundamental unknowns consisting of both displacement and strain components, and the displacement components having a linear variation throughout the thickness of the laminate. A two-step computational procedure is used for evaluating the transverse shear stresses. In the first step, the in-plane stresses in the different layers are calculated at the numerical quadrature points for each element. In the second step, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of transverse shear stresses. Numerical results are presented showing no noticeable degradation in the accuracy of the in-plane stresses and their sensitivity coefficients with mesh distortion. However, such degradation is observed for the transverse shear stresses and their sensitivity coefficients. The standard of comparison is taken to be the exact solution of the three-dimensional thermoelasticity equations of the panel.

Noor, Ahmed K.; Kim, Yong H.

1995-01-01

323

Biological effects of dynamic shear stress in cardiovascular pathologies and devices  

PubMed Central

Altered and highly dynamic shear stress conditions have been implicated in endothelial dysfunction leading to cardiovascular disease, and in thromboembolic complications in prosthetic cardiovascular devices. In addition to vascular damage, the pathological flow patterns characterizing cardiovascular pathologies and blood flow in prosthetic devices induce shear activation and damage to blood constituents. Investigation of the specific and accentuated effects of such flow-induced perturbations on individual cell-types in vitro is critical for the optimization of device design, whereby specific design modifications can be made to minimize such perturbations. Such effects are also critical in understanding the development of cardiovascular disease. This review addresses limitations to replicate such dynamic flow conditions in vitro and also introduces the idea of modified in vitro devices, one of which is developed in the authors' laboratory, with dynamic capabilities to investigate the aforementioned effects in greater detail. PMID:18331179

Girdhar, Gaurav; Bluestein, Danny

2010-01-01

324

Three-band decomposition analysis of wall shear stress in pulsatile flows  

NASA Astrophysics Data System (ADS)

Space-time patterns of wall shear stress (WSS) resulting from the numerical simulation of pulsating hemodynamic flows in semicoronal domains are analyzed, in the case of both regular semicoronal domains and semicoronal domains with bumpy insertions, mimicking aneurysm-like geometries. A new family of cardiovascular risk indicators, which we name three-band diagrams (TBDs), are introduced, as a sensible generalization of the two standard indicators, i.e., the time-averaged WSS and the oscillatory shear index. TBDs provide a handy access to additional information contained in the dynamic structure of the WSS signal as a function of the physiological risk threshold, thereby allowing a quick visual assessment of the risk sensitivity to individual fluctuations of the physiological risk thresholds. Due to its generality, TBD analysis is expected to prove useful for a wide host of applications in science, engineering, and medicine, where risk assessment plays a central role.

Gizzi, A.; Bernaschi, M.; Bini, D.; Cherubini, C.; Filippi, S.; Melchionna, S.; Succi, S.

2011-03-01

325

Behavior of Three Metallic Alloys under Combined Axial-Shear Stresses at Elevated Temperature  

NASA Technical Reports Server (NTRS)

Type 316 stainless steel, Haynes 188, and Inconel 718 samples were subjected to an axial-shear strain controlled loading history while the specimen temperature was held at 650 C to quantify the evolution of material state under a complex biaxial load path when the material is in the viscoplastic domain. Yield surfaces were constructed in the axial-shear stress plane using a sensitive, 30 x 10(exp -6)m/m, equivalent offset strain definition for the yield strain. Subsequent yield surfaces were constructed at various points along the strain path to define the material evolution. These subsequent yield surface translated, expanded, and distorted relative to the initial yield surface. Each of these very different materials exhibited components of isotropic, kinematic and distortional hardening. Furthermore, subsequent yield surfaces for each material have a very well defined front face and a poorly defined, flattened, back side.

Colaiuta, J. F.; Lissenden, C. J.; Lerch, B. A.

2003-01-01

326

Purinergic Signaling is Required for Fluid Shear Stress-Induced NF-kB Translocation in Osteoblasts  

SciTech Connect

Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-kB. We examined whether this process was under control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-kB inhibitory protein IkB alpha and exhibited cytosolic localization of NF-kB. Under fluid shear stress, I?B? levels decreased, and concomitant nuclear localization of NF-kB was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I?B?, and NF-kB remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X7 receptor antagonists, indicating that the P2X7 receptor is responsible for fluid shear-stress-induced I?B? degradation and nuclear accumulation of NF-kB. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced IkB alpha degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X7-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-kB activity through the P2Y6 and P2X7 receptor.

Genetos, Damian C.; Karin, Norman J.; Geist, Derik J.; Donahue, Henry J.; Duncan, Randall L.

2011-04-01

327

Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts  

SciTech Connect

Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that the P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.

Genetos, Damian C., E-mail: dgenetos@ucdavis.edu [Department of Anatomy, Cell Biology, and Physiology, School of Veterinary Medicine, University of California, Davis, CA (United States); Karin, Norman J. [Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland, WA (United States)] [Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland, WA (United States); Geist, Derik J. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States)] [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States); Donahue, Henry J. [Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Pennsylvania State College of Medicine, Hershey, PA (United States)] [Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Pennsylvania State College of Medicine, Hershey, PA (United States); Duncan, Randall L. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States)] [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States)

2011-04-01

328

An Experimental Study of Shear Damage Using In-Situ Single Shear Test  

Microsoft Academic Search

An experimental study has been performed to investigate the shear damage mechanism of aluminium alloy 2024T3 by an in-situ single shear test using scanning electron microscope (SEM). The observation of microstructural change and measurement of shear strain in mesoscale have been undertaken simultaneously. Hence, the shear damage mechanism and the shear stress–strain curve have been obtained. By measuring the deformed

C. Y. Tang; T. C. Lee; B. Rao; C. L. Chow

2002-01-01

329

Networklike Propagation of Cell-Level Stress in Sheared Random Foams  

NASA Astrophysics Data System (ADS)

Quasistatic simple shearing flow of random monodisperse soap froth is investigated by analyzing surface evolver simulations of spatially periodic foams. Elastic-plastic behavior is caused by irreversible topological rearrangements (T1s) that occur when Plateau’s laws are violated; the first T1 determines the elastic limit and frequent T1 avalanches sustain the yield-stress plateau at large strains. The stress and shape anisotropy of individual cells is quantified by Q, a scalar derived from an interface tensor that gauges the cell’s contribution to the global stress. During each T1 avalanche, the connected set of cells with decreasing Q, called the stress release domain, is networklike and nonlocal. Geometrically, the networklike nature of the stress release domains is corroborated through morphological analysis using the Euler characteristic. The stress release domain is distinctly different from the set of cells that change topology during a T1 avalanche. Our results highlight the connection between the unique rheological behavior of foams and the complex large-scale cooperative rearrangements of foam cells that accompany distinctly local topological transitions.

Evans, Myfanwy E.; Kraynik, Andrew M.; Reinelt, Douglas A.; Mecke, Klaus; Schröder-Turk, Gerd E.

2013-09-01

330

Networklike propagation of cell-level stress in sheared random foams.  

PubMed

Quasistatic simple shearing flow of random monodisperse soap froth is investigated by analyzing surface evolver simulations of spatially periodic foams. Elastic-plastic behavior is caused by irreversible topological rearrangements (T1s) that occur when Plateau's laws are violated; the first T1 determines the elastic limit and frequent T1 avalanches sustain the yield-stress plateau at large strains. The stress and shape anisotropy of individual cells is quantified by Q, a scalar derived from an interface tensor that gauges the cell's contribution to the global stress. During each T1 avalanche, the connected set of cells with decreasing Q, called the stress release domain, is networklike and nonlocal. Geometrically, the networklike nature of the stress release domains is corroborated through morphological analysis using the Euler characteristic. The stress release domain is distinctly different from the set of cells that change topology during a T1 avalanche. Our results highlight the connection between the unique rheological behavior of foams and the complex large-scale cooperative rearrangements of foam cells that accompany distinctly local topological transitions. PMID:24116819

Evans, Myfanwy E; Kraynik, Andrew M; Reinelt, Douglas A; Mecke, Klaus; Schröder-Turk, Gerd E

2013-09-27

331

Correlation of predicted and measured thermal stresses on an advanced aircraft structure with similar materials  

NASA Technical Reports Server (NTRS)

A laboratory heating test simulating hypersonic heating was conducted on a heat-sink type structure to provide basic thermal stress measurements. Six NASTRAN models utilizing various combinations of bar, shear panel, membrane, and plate elements were used to develop calculated thermal stresses. Thermal stresses were also calculated using a beam model. For a given temperature distribution there was very little variation in NASTRAN calculated thermal stresses when element types were interchanged for a given grid system. Thermal stresses calculated for the beam model compared similarly to the values obtained for the NASTRAN models. Calculated thermal stresses compared generally well to laboratory measured thermal stresses. A discrepancy of signifiance occurred between the measured and predicted thermal stresses in the skin areas. A minor anomaly in the laboratory skin heating uniformity resulted in inadequate temperature input data for the structural models.

Jenkins, J. M.

1979-01-01

332

Ultrasonic measurement of stress in pin and hanger connections  

NASA Astrophysics Data System (ADS)

Pin and hanger connections can sometimes lock up due to corrosion. As the stresses in the connection are cycled due to thermal expansion and contraction of the bridge, fatigue cracking and failure may occur. We constructed an apparatus to simulate a locked-up pin and hanger connection. It consists of a 12 tooth spline bolted to the base of a mechanical testing machine. Hangers were mounted on the spline, which constrains their ends against rotation. The free ends of the hangers were loaded by the test machine's piston. We performed proof of concept tests of a method to detect stresses in pin and hanger connections prior to cracking. The method uses the fact that stress causes change in sound velocity. We propagated shear waves polarized parallel and perpendicular to the hanger axis. The normalized difference in shear wave velocities is called the birefringence. We measured the birefringence near the outer fibers of the hangers, at midsection. We simulated 3 scenarios: continuous monitoring of hanger status; intermittent monitoring from a known initial state; measurement with no a priori knowledge of hanger status. Good agreement with strain gauge data was obtained for all three scenarios.

Clark, Al V.; Hehman, C. S.; Gallagher, D.; Lozev, Margarit G.; Fuchs, P. A.

1998-03-01

333

Errors in the estimation of wall shear stress by maximum Doppler velocity  

PubMed Central

Objective Wall shear stress (WSS) is an important parameter with links to vascular (dys)function. Difficult to measure directly, WSS is often inferred from maximum spectral Doppler velocity (Vmax) by assuming fully-developed flow, which is valid only if the vessel is long and straight. Motivated by evidence that even slight/local curvatures in the nominally straight common carotid artery (CCA) prevent flow from fully developing, we investigated the effects of velocity profile skewing on Vmax-derived WSS. Methods Velocity profiles, representing different degrees of skewing, were extracted from the CCA of image-based computational fluid dynamics (CFD) simulations carried out as part of the VALIDATE study. Maximum velocities were calculated from idealized sample volumes and used to estimate WSS via fully-developed (Poiseuille or Womersley) velocity profiles, for comparison with the actual (i.e. CFD-derived) WSS. Results For cycle-averaged WSS, mild velocity profile skewing caused ±25% errors by assuming Poiseuille or Womersley profiles, while severe skewing caused a median error of 30% (maximum 55%). Peak systolic WSS was underestimated by ~50% irrespective of skewing with Poiseuille; using a Womersley profile removed this bias, but ±30% errors remained. Errors were greatest in late systole, when skewing was most pronounced. Skewing also introduced large circumferential WSS variations: ±60%, and up to ±100%, of the circumferentially averaged value. Conclusion Vmax-derived WSS may be prone to substantial variable errors related to velocity profile skewing, and cannot detect possibly large circumferential WSS variations. Caution should be exercised when making assumptions about velocity profile shape to calculate WSS, even in vessels usually considered long and straight. PMID:23398945

Mynard, Jonathan P.; Wasserman, Bruce A.; Steinman, David A.

2015-01-01

334

A review of techniques for measuring shear-wave splitting above small earthquakes  

Microsoft Academic Search

Seismic shear-wave splitting is difficult to measure accurately because of the complexity of the shear-wave signal. A variety of techniques have been developed for measuring time-delays and polarisations of shear-wave splitting above small earthquakes. These range from ‘display’ techniques, where measurements depend on visual examination of rotated seismograms and polarisation diagrams, through a range of increasingly automatic techniques, to what

Stuart Crampin; Yuan Gao

2006-01-01

335

Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 2: Wall shear stress  

NASA Technical Reports Server (NTRS)

An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.

Liou, M. S.; Adamson, T. C., Jr.

1979-01-01

336

Use of Axisymmetric Shearing as Technological Test Method to gather Flow Stress Data for Metals  

Microsoft Academic Search

Cutting by shearing creates heavy shear deformation in a layer extending between the two applied shearing edges. Prediction of FEM-simulation is that effective strain and strain rates in the shear zone would reach very high levels even at mode rate shearing velocity. In this article experiments coupled with FEM-analysis are used to evaluate the potential of using a xisymmetric shearing

Janis Kandis; Henry Valberg; Wu Wenbin

2011-01-01

337

Critical combinations of shear and transverse direct stress for an infinitely long flat plate with edges elastically restrained against rotation  

NASA Technical Reports Server (NTRS)

An exact solution and a closely concurring approximate energy solution are given for the buckling of an infinitely long flat plate under combined shear and transverse direct stress with edges elastically restrained against rotation. It was found that an appreciable fraction of the critical stress in pure shear may be applied to the plate without any reduction in the transverse compressive stress necessary to produce buckling. An interaction formula in general use was shown to be decidedly conservative for the range in which it is supposed to apply.

Batdorf, S B; Houbolt, John C

1946-01-01

338

Shear-stress-mediated refolding of proteins from aggregates and inclusion bodies.  

PubMed

Recombinant protein overexpression of large proteins in bacteria often results in insoluble and misfolded proteins directed to inclusion bodies. We report the application of shear stress in micrometer-wide, thin fluid films to refold boiled hen egg white lysozyme, recombinant hen egg white lysozyme, and recombinant caveolin-1. Furthermore, the approach allowed refolding of a much larger protein, cAMP-dependent protein kinase A (PKA). The reported methods require only minutes, which is more than 100 times faster than conventional overnight dialysis. This rapid refolding technique could significantly shorten times, lower costs, and reduce waste streams associated with protein expression for a wide range of industrial and research applications. PMID:25620679

Yuan, Tom Z; Ormonde, Callum F G; Kudlacek, Stephan T; Kunche, Sameeran; Smith, Joshua N; Brown, William A; Pugliese, Kaitlin M; Olsen, Tivoli J; Iftikhar, Mariam; Raston, Colin L; Weiss, Gregory A

2015-02-01

339

Method of determining shear stress employing a monomer-polymer laminate structure  

NASA Technical Reports Server (NTRS)

A laminate structure attached to the test surface of an article is presented. The laminate structure is comprised of a liquid crystal polymer substrate. A light absorbing coating is applied to the substrate and is thin enough to permit bonding steric interaction between the liquid crystal polymer substrate and an overlying liquid crystal monomer thin film. Light is directed through and reflected by the liquid crystal monomer thin film and unreflected light is absorbed by the underlying coating. The wavelength of the reflected light is indicative of the shear stress experienced by the test surface.

Singh, Jag J. (inventor); Eftekhari, Abe (inventor); Parmar, Devendra S. (inventor)

1993-01-01

340

Real-Time Intravascular Shear Stress in the Rabbit Abdominal Aorta  

PubMed Central

Fluid shear stress is intimately linked with the biological activities of vascular cells. A flexible microelectromechanical system (MEMS) sensor was developed to assess spatial- and temporal-varying components of intravascular shear stress (ISS) in the abdominal aorta of adult New Zealand white (NZW) rabbits. Real-time ISS (ISSreal-time) was analyzed in comparison with computational fluid dynamics (CFD) simulations for wall shear stress (WSS). Three-dimensional abdominal arterial geometry and mesh were created using the GAMBIT software. Simulation of arterial flow profiles was established by FLUENT. The Navier–Stokes equations were solved for non-Newtonian blood flow. The coaxial-wire-based MEMS sensor was deployed into the abdominal arteries of rabbits via a femoral artery cutdown. Based on the CFD analysis, the entrance length of the sensor on the coaxial wire (0.4 mm in diameter) was less than 10 mm. Three-dimensional fluoroscope and contrast dye allowed for visualization of the positions of the sensor and ratios of vessel to coaxial wire diameters. Doppler ultrasound provided the velocity profiles for the CFD boundary conditions. If the coaxial wire were positioned at the center of vessel, the CFD analysis revealed a mean ISS value of 31.1 with a systolic peak at 102.8 dyn · cm?2. The mean WSS was computed to be 10.1 dyn · cm?2 with a systolic peak at 33.2 dyn · cm?2, and the introduction of coaxial wire increased the mean WSS by 5.4 dyn · cm?2 and systolic peak by 18.0 dyn · cm?2. Experimentally, the mean ISS was 11.9 dyn · cm?2 with a systolic peak at 47.0 dyn · cm?2. The waveform of experimental ISS was similar to that of CFD solution with a 30.2% difference in mean and 8.9% in peak systolic shear stress. Despite the difference between CD and experimental results, the flexible coaxial-wire-based MEMS sensors provided a possibility to assess real-time ISS in the abdominal aorta of NZW rabbits. PMID:19527952

Ai, Lisong; Yu, Hongyu; Dai, Wangde; Hale, Sharon L.; Kloner, Robert A.

2012-01-01

341

Brain microvascular endothelial cells resist elongation due to curvature and shear stress  

PubMed Central

The highly specialized endothelial cells in brain capillaries are a key component of the blood-brain barrier, forming a network of tight junctions that almost completely block paracellular transport. In contrast to vascular endothelial cells in other organs, we show that brain microvascular endothelial cells resist elongation in response to curvature and shear stress. Since the tight junction network is defined by endothelial cell morphology, these results suggest that there may be an evolutionary advantage to resisting elongation by minimizing the total length of cell-cell junctions per unit length of vessel. PMID:24732421

Ye, Mao; Sanchez, Henry M.; Hultz, Margot; Yang, Zhen; Bogorad, Max; Wong, Andrew D.; Searson, Peter C.

2014-01-01

342

Homework Stress: Construct Validation of a Measure  

ERIC Educational Resources Information Center

This article presents 2 studies aimed at validating a measure of stress experienced by children and parents around the issue of homework, applying Benson's program of validation (Benson, 1998). Study 1 provides external validity of the measure by supporting hypothesized relations between stress around homework and students' and parents' positive…

Katz, Idit; Buzukashvili, Tamara; Feingold, Liat

2012-01-01

343

Pressure measurements of nonplanar stress waves  

Microsoft Academic Search

Measuring the pressure of non-planar stress waves using thin piezo-resistive gages requires correcting for induced strain parallel to the sensing elements. A technique has been developed that permits such measurements, making use of a dual element gage. One element, Manganin, is sensitive to stress both parallel and perpendicular to the sensing element; the other element, Constantan, is primarily sensitive to

G. H. Carlson; J. A. Charest

1981-01-01

344

Deformation in the Rutford ice stream, West Antarctica: measuring shear-wave anisotropy from icequakes  

NASA Astrophysics Data System (ADS)

Ice streams provide major drainage pathways for the Antarctic ice sheet. The stress distribution and style of flow in such ice streams produces elastic and rheological anisotropy, which informs ice flow modelling as to how ice masses respond to external changes such as global warming. Here we analyse elastic anisotropy in the Rutford ice stream, West Antarctica, using observations of shear wave splitting from three-component icequake seismograms to characterise ice deformation via crystal preferred orientation. Over 110 high quality measurements are made on 41 events recorded at five stations temporarily deployed near the ice stream grounding line. To the best of our knowledge this is the first well-documented observation of shear wave splitting from Antarctic icequakes. The magnitude of the splitting ranges from 2ms to 80ms and suggest a maximum of 6% shear wave splitting. The fast shear wave polarisation direction is roughly perpendicular to ice flow direction. We consider three mechanisms for ice anisotropy: a cluster model (VTI model); a girdle model (and HTI model); and crack-induced anisotropy (an HTI model). Based on the data we can rule out a VTI mechanism as the sole cause of anisotropy - an HTI component is needed, which may be due to ice crystal a-axis alignment in the direction of flow or the alignment of cracks or ice-films in the plane perpendicular to the flow direction. The results may suggest a combination of mechanisms are at play, which represent vertical variations in the symmetry of ice-crystal anisotropy in an ice stream, as predicted by ice fabric models.

Kendall, Michael; Harland, Sophie; Stuart, Graham; Baird, Alan; Lloyd, Geoff; Smith, Andy; Pritchard, Hamish; Brisbourne, Alex

2013-04-01

345

Biases in, and corrections to, KSB shear measurements  

Microsoft Academic Search

We analyse the Kaiser-Squires-Broadhurst (KSB) method to estimate gravitational shear from surface-brightness moments of small and noisy galaxy images. We identify three potentially problematic assumptions. These are as follows. (1) While gravitational shear must be estimated from averaged galaxy images, KSB derives a shear estimate from each individual image and then takes the average. Since the two operations do not

M. Viola; P. Melchior; M. Bartelmann

2011-01-01

346

Pressure measurements of nonplanar stress waves  

SciTech Connect

A useful gage has been developed for measuring pressure of nonplanar or obliquely incident stress waves. The measurements made with these gages are not as precise as direct strain gage measurements, but are very good considering the conditions under which these gages are used. We feel a need to further develop our ability to measure nonplanar stress waves in the 0 to 10 kbar range. Carbon or ytterbium will probably be chosen for the sensing element.

Carlson, G.H.; Charest, J.A.

1981-02-27

347

Dynamic measurement of stress optical behavior of three amorphous polymers  

NASA Astrophysics Data System (ADS)

In the present study, rheo-optical and mechanical properties of three amorphous polymers, i.e., PS (polystyrene), PC(polycarbonate) and COC(cyclo olefin copolymer), widely used for optical products have been investigated. Accurate measurement of stress optical coefficients and elastic modulus data across the glass transition region are essential for predicting optical anisotropy in many injection molded optical products like pickup lenses and waveguide in LCD module since the final products have both flow and thermal history from the melt to glass. To obtain stress optical behavior in wide range of frequency and temperature including rubbery, glassy and glass transition regime, frequency sweep tests with extensional bar and shear sandwich tools were undertaken. As a result, glassy and melt extreme values of stress optical coefficient of PS and PC were evaluated as well as master plots in wide frequency region. The sign change of stress optical coefficient was shown clearly for PS as the frequency increased. On the other hand, the sign of stress optical coefficient over the whole frequency region is always positive for PC. For COC's of different composition, even though the glass transition temperature can vary, the stress optical coefficient of COC's with different composition stays almost constant at two extremes.

Min, Inki; Yoon, Kyunghwan

2012-03-01

348

Measurement of shear strength for HOPG with scanning tunneling microscopy by thermal excitation method.  

PubMed

An experimental observation of force interactions in scanning tunneling microscopy (STM) is presented. A technique for measuring force interactions between a conventional STM probe and a sample by spectra analysis of its thermal fluctuations from tunneling current in STM is developed theoretically and experimentally. Thermally excited fluctuation of the STM probe is exactly discerned in air and then force gradient is determined from its corresponding eigen-frequency with a formula similar to that for a small-amplitude atomic force microscopy (AFM). The observed force interactions are consistent with forces in dynamic AFM. Shear strength of 7 GPa for highly oriented pyrolytic graphite (HOPG) under compressive stress is obtained from the experiment and using the elastic theory. We believe that this technique is of scientific significance as it enables accurate measurement of short-range force interactions at atomic scale under true STM conditions. PMID:22446198

Ding, X D; Wang, Y Z; Xiong, X M; Du, X S; Zhang, J X

2012-04-01

349

Shear Stress Induced by an Interstitial Level of Slow Flow Increases the Osteogenic Differentiation of Mesenchymal Stem Cells through TAZ Activation  

PubMed Central

Shear stress activates cellular signaling involved in cellular proliferation, differentiation, and migration. However, the mechanisms of mesenchymal stem cell (MSC) differentiation under interstitial flow are not fully understood. Here, we show the increased osteogenic differentiation of MSCs under exposure to constant, extremely low shear stress created by osmotic pressure-induced flow in a microfluidic chip. The interstitial level of shear stress in the proposed microfluidic system stimulated nuclear localization of TAZ (transcriptional coactivator with PDZ-binding motif), a transcriptional modulator of MSCs, activated TAZ target genes such as CTGF and Cyr61, and induced osteogenic differentiation. TAZ-depleted cells showed defects in shear stress-induced osteogenic differentiation. In shear stress induced cellular signaling, Rho signaling pathway was important forthe nuclear localization of TAZ. Taken together, these results suggest that TAZ is an important mediator of interstitial flow-driven shear stress signaling in osteoblast differentiation of MSCs. PMID:24658423

Kim, Kyung Min; Choi, Yoon Jung; Hwang, Jun-Ha; Kim, A. Rum; Cho, Hang Jun; Hwang, Eun Sook; Park, Joong Yull; Lee, Sang-Hoon; Hong, Jeong-Ho

2014-01-01

350

Cantilever measurements of surface stress, surface reconstruction, film stress and magnetoelastic stress of monolayers  

PubMed Central

We review the application of cantilever-based stress measurements in surface science and magnetism. The application of thin (thickness appr. 0.1 mm) single crystalline substrates as cantilevers has been used successfully to measure adsorbate-induced surface stress changes, lattice misfit induced film stress, and magneto-elastic stress of ferromagnetic monolayers. Surface stress changes as small as 0.01 N/m can be readily measured, and this translates into a sensitivity for adsorbate-coverage well below 0.01 of one layer. Stress as large as several GPa, beyond the elasticity limits of high strength materials, is measured, and it is ascribed to the lattice misfit between film and substrate. Our results point at the intimate relation between surface stress and surface reconstruction, stress-induced structural changes in epitaxially strained films, and strain-induced modifications of the magneto-elastic coupling in ferromagnetic monolayers.

Sander, Dirk; Tian, Zhen; Kirschner, Jürgen

2008-01-01

351

Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element.  

PubMed Central

The endothelial lining of blood vessels is constantly exposed to fluid mechanical forces generated by flowing blood. In vitro application of fluid shear stresses to cultured endothelial cells influences the expression of multiple genes, as reflected by changes in their steady-state mRNA levels. We have utilized the B chain of platelet-derived growth factor (PDGF-B) as a model to investigate the mechanisms of shear-stress-induced gene regulation in cultured bovine aortic endothelial cells (BAECs). Northern blot analysis revealed elevated endogenous PDGF-B transcript levels in BAECs, after exposure to a physiological level of laminar shear stress (10 dynes/cm2; 1 dyne = 100 mN) for 4 h. A transfected reporter gene, consisting of a 1.3-kb fragment of the human PDGF-B promoter coupled to chloramphenicol acetyltransferase (CAT), indicated a direct effect on transcriptional activity. Transfection of a series of PDGF-B-CAT deletion mutants led to the characterization of a cis-acting component within the PDGF-B promoter that was necessary for shear-stress responsiveness. In gel-shift assays, overlapping oligonucleotide probes of this region formed several protein-DNA complexes with nuclear extracts prepared from both static and shear-stressed BAECs. A 12-bp component (CTCTCAGAGACC) was identified that formed a distinct pattern of complexes with nuclear proteins extracted from shear-stressed BAECs. This shear-stress-responsive element does not encode binding sites for any known transcription factor but does contain a core binding sequence (GAGACC), as defined by deletion mutation in gel-shift assays. Interestingly, this putative transcription factor binding site is also present in the promoters of certain other endothelial genes, including tissue plasminogen activator, intercellular adhesion molecule 1, and transforming growth factor beta 1, that also are induced by shear stress. Thus, the expression of PDGF-B and other pathophysiologically relevant genes in vascular endothelium appears to be regulated, in part, by shear-stress-induced transcription factors interacting with a common promoter element. Images Fig. 1 Fig. 4 PMID:8506304

Resnick, N; Collins, T; Atkinson, W; Bonthron, D T; Dewey, C F; Gimbrone, M A

1993-01-01

352

Fine-tuning of DDES and IDDES formulations to the k-? shear stress transport model  

NASA Astrophysics Data System (ADS)

Modifications are proposed of two recently developed hybrid CFD (computational fluid dynamics) strategies, Delayed Detached Eddy Simulation (DDES), and DDES with Improved wall-modeling capability (IDDES). The modifications are aimed at fine-tuning of these approaches to the k-? SST (shear stress transport) background RANS (Reynolds-averaged Navier-Stokes) model. The first one includes recalibrated empirical constants in the shielding function of the Spalart-Allmaras (SA) based DDES which are shown to be suboptimal (not providing a needed level of elimination of the Model Stress Depletion (MSD)) for the SST-based DDES model. For the SST-IDDES variant, in addition to that, a simplification of the original SA-based formulation is proposed, which does not cause any visible degradation of the model performance. Both modifications are extensively tested on a range of attached and separated flows (developed channel, backward-facing step, periodic hills, wall-mounted hump, and hydrofoil with trailing edge separation).

Gritskevich, M. S.; Garbaruk, A. V.; Menter, F. R.

2013-06-01

353

Evaluation of aneurysm-associated wall shear stress related to morphological variations of circle of Willis using a microfluidic device.  

PubMed

Although microfluidic systems have been important tools in analytical chemistry, life sciences, and medical research, their application was rather limited for drug-screening and biosensors. Here, we described a microfluidic device consisting of a multilayer micro-channel system that represented the hemodynamic cerebral vascular system. We analyzed wall shear stresses related to aneurysm formation in the circle of Willis (CoW) and their morphological variations using this system. This device was controlled by pneumatic valves, which occluded various major arteries by closing the associated channels. The hemodynamic analysis indicated that higher degrees of shear stress occurred in an anterior communicating artery (ACoA), particularly in the hypoplastic region of the posterior communicating artery (PCoA) and the P1 segment. Furthermore, occlusion of a common carotid artery (CCA) or a middle cerebral artery (MCA) increased the shear stress, whereas occlusion of a vertebral artery (VA) decreased the shear stress. These results indicate that the morphological variation of the CoW may affect aneurysm formation resulting from increased wall shear stress. Therefore, the technique described in this paper provides a novel method to investigate the hemodynamics of complex cerebral vascular systems not accessible from previous clinical studies. PMID:25497378

Nam, Seong-Won; Choi, Samjin; Cheong, Youjin; Kim, Yeon-Hee; Park, Hun-Kuk

2015-01-21

354

On Measuring the Third Dimension of Cultured Endothelial Cells in Shear Flow  

NASA Astrophysics Data System (ADS)

The stress in the endothelial cells induced by blood flow depends on the waviness of the blood-endothelium interface and the slopes at the junctions of neighboring cells in the direction of flow. The height and slope in the third dimension of the living endothelial cells cannot be measured by ordinary optical and electron microscopy. Here we show that interference microscopy meets the challenge. We measured the geometry of cultured confluent human vascular endothelial cells in a flow, and we found that in a normal section parallel to the flow, the absolute values of the surface slopes at the cell junctions were 0.70 ± 0.02 (SE) and 0.80 ± 0.02 (SE) at the leading and trailing edges of the cells, respectively, in a culture medium of osmolarity 310 mosM with a shear stress of approximately 1 N/m^2. A reversal of the flow direction led to a reversal of the slope pattern. An increase in medium osmolarity above 310 mosM induced an initial decrease in the slopes followed by a return to normal, whereas a decrease in the osmolarity had a reversed effect. These results, in light of our previous theoretical analyses, show that tensile stress exists in the endothelial cell membrane, and that the mechanism of tension accumulation is a reality. The accumulation is not 100% because the membranes are not smooth at the cell junctions.

Liu, S. Q.; Yen, Morris; Fung, Y. C.

1994-09-01

355

Thrombomodulin regulation in human brain microvascular endothelial cells in vitro: Role of cytokines and shear stress.  

PubMed

Thrombomodulin (TM), an important determinant of blood vessel homeostasis, is expressed on the luminal vascular endothelial cell surface and is released into serum in response to circulatory signals. This includes the cerebrovascular endothelium, where the anti-coagulant and anti-inflammatory properties of TM are thought to be critical to the brain microcirculation and blood-brain barrier (BBB) integrity. Much is still unknown however about how circulatory stimuli may regulate TM activity within the brain microvasculature. To address this, the current short paper investigated the effects of opposing regulatory signals, namely cytokines (TNF-?, IL-6) and laminar shear stress, on the cellular levels and release of TM in cultured human brain microvascular endothelial cells (HBMvECs). Treatment of confluent HBMvECs with either TNF-? or IL-6 (100ng/ml, 18h) reduced TM protein levels by up to 70%, whilst inducing TM release into media by up to 4.4 and 5.5 fold, respectively. The effects of either cytokine (0-100ng/ml) on TM protein levels (6 or 18h) and release (0-18h) were also found to be concentration- and time-dependent. Either cytokine (100ng/ml, 24-72h) also reduced TM mRNA levels by >50%. When exposed to laminar shear stress for 24h at 8dyn/cm(2) (SI unit equivalent=0.8Pa), TM protein levels were upregulated by 65% in parallel with a 2-fold increase in TM mRNA levels. Shear stress also proved to be a much more potent stimulus for TM release from HBMvECs, yielding media TM levels of 1000pg/10(5) cells, when compared to 175 and 210pg/10(5) cells for TNF-? and IL-6, respectively, after parallel 18h treatments. Finally, shear-conditioned media was found to completely block thrombin-induced permeabilization of HBMvECs, confirming the functional efficacy of released TM. In summary, our data indicate that TM is differentially regulated within cultured HBMvECs by humoral and biomechanical signals. PMID:25250518

Rochfort, Keith D; Cummins, Philip M

2015-01-01

356

Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties  

PubMed Central

Increase of trabecular stress variability with loss of bone mass has been implicated as a mechanism for increased cancellous bone fragility with age and disease. In the current study, a previous observation that trabecular shear stress estimates vary along the human spine such that the cancellous tissue from the thoracic 12 (T12)-lumbar 1 (L1) junction experiences the highest trabecular stresses for a given load was tested as a formal hypothesis using multiple human spines. Thoracic 4, T5, T7, T9, T10, T12, L1, L2, L4 and L5 vertebrae from 10 human cadaver spines were examined. One specimen in the central anterior region was cored in the supero-inferior (SI) direction and another in the postero-lateral region was cored in the transverse (TR) direction from each vertebra. Micro-CT-based large-scale finite element models were constructed for each specimen and compression in the long axis of the cylindrical specimens was simulated. Cancellous bone modulus and the mean, the standard deviation, variability and amplification of trabecular von Mises stresses were computed. Bone volume fraction, trabecular number, trabecular thickness, trabecular separation, connectivity density and degree of anisotropy were calculated using 3D stereology. The results were analyzed using a mixed model in which spine level was modeled using a quadratic polynomial. The maximum of trabecular shear stress amplification and minimum of bone volume fraction were found in the cancellous tissue from the T12-L1 location when results from the samples of the same vertebra were averaged. When groups were separated, microstructure and trabecular stresses varied with spine level, extrema being at the T12-L1 levels, for the TR specimens only. SI/TR ratio of measured parameters also had quadratic relationships with spine level, the extrema being located at T12-L1 levels for most parameters. For microstructural parameters, these ratios approached to a value of one at the T12-L1 level, suggesting that T12-L1 vertebrae have more uniform cancellous tissue properties than other levels. The mean intercept length in the secondary principal direction of trabecular orientation could account for the variation of all mechanical parameters with spine level. Our results support that cancellous tissue from T12-L1 levels is unique and may explain, in part, the higher incidence of vertebral fractures at these levels. PMID:18848654

Yeni, Yener N.; Kim, Do-Gyoon; Divine, George W.; Johnson, Evan M.; Cody, Dianna D.

2009-01-01

357

The effects of surface properties on Escherichia coli adhesion are modulated by shear stress.  

PubMed

The adhesion of Escherichia coli to glass and polydimethylsiloxane (PDMS) at different flow rates (between 1 and 10mls(-1)) was monitored in a parallel plate flow chamber in order to understand the effect of surface properties and hydrodynamic conditions on adhesion. Computational fluid dynamics was used to assess the applicability of this flow chamber in the simulation of the hydrodynamics of relevant biomedical systems. Wall shear stresses between 0.005 and 0.07Pa were obtained and these are similar to those found in the circulatory, reproductive and urinary systems. Results demonstrate that E. coli adhesion to hydrophobic PDMS and hydrophilic glass surfaces is modulated by shear stress with surface properties having a stronger effect at the lower and highest flow rates tested and with negligible effects at intermediate flow rates. These findings suggest that when expensive materials or coatings are selected to produce biomedical devices, this choice should take into account the physiological hydrodynamic conditions that will occur during the utilization of those devices. PMID:25218513

Moreira, J M R; Araújo, J D P; Miranda, J M; Simões, M; Melo, L F; Mergulhão, F J

2014-11-01

358

Flow patterns and shear stress waveforms in intracranial aneurysms: The effect of pulsatility  

NASA Astrophysics Data System (ADS)

The wall shear stress on the dome of intracranial aneurysms has been hypothesized to be an important factor in aneurysm pathology and depends strongly on the hemodynamics inside the dome. The importance of patient-specific geometry on the hemodynamics of aneurysms has long been established but the significance of patient-specific inflow waveform is largely unexplored. In this work we seek to systematically investigate and quantify the effects of inflow waveform on aneurysm hemodynamics. We carry out high resolution numerical simulations for an anatomic intracranial aneurysm obtained from 3D rotational angiography (3DRA) data for various inflow waveforms. We show that both the vortex formation process and wall-shear stress dynamics on the aneurysm dome depend strongly on the characteristics of the inflow waveform. We also present preliminary evidence suggesting that a simple non-dimensional number (named the Aneurysm number), incorporating both geometry and inflow waveform effects, could be a good qualitative predictor of the general hemodynamic patterns that will arise in a given aneurysm geometry for a particular waveform.

Sotiropoulos, Fotis; Le, Trung; Borazjani, Iman

2009-11-01

359

Microstreaming velocity field and shear stress created by an oscillating encapsulated microbubble near a cell membrane  

NASA Astrophysics Data System (ADS)

Sonoporation mediated by microbubbles is being extensively studied as a promising technology to facilitate gene/drug delivery to cells. However, the theoretical study regarding the mechanisms involved in sonoporation is still in its infancy. Microstreaming generated by pulsating microbubble near the cell membrane is regarded as one of the most important mechanisms in the sonoporation process. Here, based on an encapsulated microbubble dynamic model with considering nonlinear rheological effects of both shell elasticity and viscosity, the microstreaming velocity field and shear stress generated by an oscillating microbubble near the cell membrane are theoretically simulated. Some factors that might affect the behaviors of microstreaming are thoroughly investigated, including the distance between the bubble center and cell membrane (d), shell elasticity (?), and shell viscosity (?). The results show that (i) the presence of cell membrane can result in asymmetric microstreaming velocity field, while the constrained effect of the membrane wall decays with increasing the bubble-cell distance; (ii) the bubble resonance frequency increases with the increase in d and ?, and the decrease in ?, although it is more dominated by the variation of shell elasticity; and (iii) the maximal microstreaming shear stress on the cell membrane increases rapidly with reducing the d, ?, and ?. The results suggest that microbubbles with softer and less viscous shell materials might be preferred to achieve more efficient sonoporation outcomes, and it is better to have bubbles located in the immediate vicinity of the cell membrane.

Wang, Li; Tu, Juan; Guo, Xia-Sheng; Xu, Di; Zhang, Dong

2014-12-01

360

Shear Stress Regulates Adhesion and Rolling of CD44+ Leukemic and Hematopoietic Progenitor Cells on Hyaluronan  

PubMed Central

Leukemic cells and human hematopoietic progenitor cells expressing CD44 receptors have the ability to attach and roll on hyaluronan. We investigated quantitatively the adhesion behavior of leukemic cell lines and hematopoietic progenitor cells on thin films of the polysaccharides hyaluronan and alginate in a microfluidic system. An applied flow enhances the interaction between CD44-positive cells and hyaluronan if a threshold shear stress of 0.2 dyn/cm2 is exceeded. At shear stress ?1 dyn/cm2, the cell rolling speed reaches a maximum of 15 ?m/s. Leukemic Jurkat and Kasumi-1 cells lacking CD44-expression showed no adhesion or rolling on the polysaccharides whereas the CD44-expressing leukemic cells KG-1a, HL-60, K-562, and hematopoietic progenitor cells attached and rolled on hyaluronan. Interestingly, the observations of flow-induced cell rolling are related to those found in the recruitment of leukocytes to inflammatory sites and the mechanisms of stem-cell homing into the bone marrow. PMID:21806926

Christophis, Christof; Taubert, Isabel; Meseck, Georg R.; Schubert, Mario; Grunze, Michael; Ho, Anthony D.; Rosenhahn, Axel

2011-01-01

361

Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts  

PubMed Central

Bone turnover in vivo is regulated by mechanical forces such as shear stress originating from interstitial oscillatory fluid flow (OFF), and bone cells in vitro respond to mechanical loading. However, the mechanisms by which bone cells sense mechanical forces, resulting in increased mineral deposition, are not well understood. The aim of this study was to investigate the role of the primary cilium in mechanosensing by osteoblasts. MLO-A5 murine osteoblasts were cultured in monolayer and subjected to two different OFF regimens: 5 short (2 h daily) bouts of OFF followed by morphological analysis of primary cilia; or exposure to chloral hydrate to damage or remove primary cilia and 2 short bouts (2 h on consecutive days) of OFF. Primary cilia were shorter and there were fewer cilia per cell after exposure to periods of OFF compared with static controls. Damage or removal of primary cilia inhibited OFF-induced PGE2 release into the medium and mineral deposition, assayed by Alizarin red staining. We conclude that primary cilia are important mediators of OFF-induced mineral deposition, which has relevance for the design of bone tissue engineering strategies and may inform clinical treatments of bone disorders causes by load-deficiency.—Delaine-Smith, R. M., Sittichokechaiwut, A., Reilly, G. C. Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. PMID:24097311

Delaine-Smith, Robin M.; Sittichokechaiwut, Anuphan; Reilly, Gwendolen C.

2014-01-01

362

Surface morphology of platelet adhesion influenced by activators, inhibitors and shear stress  

NASA Astrophysics Data System (ADS)

Platelet activation involves multiple events, one of which is the generation and release of nitric oxide (NO), a platelet aggregation inhibitor. Platelets simultaneously send and receive various agents that promote a positive and negative feedback control system during hemostasis. Although the purpose of platelet-derived NO is not fully understood, NO is known to inhibit platelet recruitment. NO's relatively large diffusion coefficient allows it to diffuse more rapidly than platelet agonists. It may thus be able to inhibit recruitment of platelets near the periphery of a growing thrombus before agonists have substantially accumulated in those regions. Results from two studies in our laboratory differed in the extent to which platelet-derived NO decreased platelet adhesion. Frilot studied the effect of L-arginine (L-A) and NG-Methyl-L-arginine acetate salt (L-NMMA) on platelet adhesion to collagen under static conditions in a Petri dish. Eshaq examined the percent coverage on collagen-coated and fibrinogen-coated microchannels under shear conditions with different levels of L-A and Adenosine Diphosphate (ADP). Frilot's results showed no effect of either L-A or L-NMMA on surface coverage, thrombus size or serotonin release, while Eshaq's results showed a decrease in surface coverage with increased levels of L-A. A possible explanation for these contrasting results is that platelet-derived NO may be more important under flow conditions than under static conditions. For this project, the effects of L-A. ADP and L-NMMA on platelet adhesion were studied at varying shear stresses on protein-coated glass slides. The surface exposed to platelet-rich-plasma in combination with each chemical solution was observed under AFM, FE-SEM and fluorescence microscopy. Quantitative and qualitative comparisons of images obtained with these techniques confirmed the presence of platelets on the protein coatings. AFM images of fibrinogen and collagen-coated slides presented characteristic differences. Adhered platelets were identified, particularly with the AFM. The effects of chemical additives were examined under the same microscopy techniques. The resulting fluorescent microscopy data suggests statistical differences between the percent surface coverage of different shear regions on the glass slides. No statistically significant change in surface coverage was found with the addition of ADP on fibrinogen-coated slides, but showed differences on collagen with all chemicals. However, in high shear regions. L-A produced a significant decrease in platelet adhesion and L-NMMA produced a statistically significant increase in platelet adhesion on fibrinogen and collagen-coated slides. The AFM images of the chemical additives provided no differences between one another except with ADP. The no shear and low shear conditions provided no variations between AFM images via visual confirmation and statistical significance. The only AFM image shear region differences were obtained from low to high shear regions and static to high shear regions comparisons. The objective of this project was to determine whether the static conditions used by Frilot and the dynamic conditions used by Eshaq could explain the different effects of L-A observed in those studies. In addition, the ability of the fluorescent imaging technique to quantify platelet adhesion was examined by comparison of fluorescent imaging to AFM and FE-SEM. The results of this study were consistent with both the lack of an effect of chemical additives under static conditions reported by Frilot and the reduction of platelet adhesion in response to L-A reported by Eshaq.

Watson, Melanie Groan

363

The role of shear stress in Blood-Brain Barrier endothelial physiology  

PubMed Central

Background One of the most important and often neglected physiological stimuli contributing to the differentiation of vascular endothelial cells (ECs) into a blood-brain barrier (BBB) phenotype is shear stress (SS). With the use of a well established humanized dynamic in vitro BBB model and cDNA microarrays, we have profiled the effect of SS in the induction/suppression of ECs genes and related functions. Results Specifically, we found a significant upregulation of tight and adherens junctions proteins and genes. Trans-endothelial electrical resistance (TEER) and permeability measurements to know substances have shown that SS promoted the formation of a tight and highly selective BBB. SS also increased the RNA level of multidrug resistance transporters, ion channels, and several p450 enzymes. The RNA level of a number of specialized carrier-mediated transport systems (e.g., glucose, monocarboxylic acid, etc.) was also upregulated. RNA levels of modulatory enzymes of the glycolytic pathway (e.g., lactate dehydrogenase) were downregulated by SS while those involved in the Krebs cycle (e.g., lactate and other dehydrogenases) were upregulated. Measurements of glucose consumption versus lactate production showed that SS negatively modulated the glycolytic bioenergetic pathways of glucose metabolism in favor of the more efficient aerobic respiration. BBB ECs are responsive to inflammatory stimuli. Our data showed that SS increased the RNA levels of integrins and vascular adhesion molecules. SS also inhibited endothelial cell cycle via regulation of BTG family proteins encoding genes. This was paralleled by significant increase in the cytoskeletal protein content while that of membrane, cytosol, and nuclear sub-cellular fractions decreased. Furthermore, analysis of 2D gel electrophoresis (which allows identifying a large number of proteins per sample) of EC proteins extracted from membrane sub-cellular endothelial fractions showed that SS increased the expression levels of tight junction proteins. In addition, regulatory enzymes of the Krebb's cycle (aerobic glucose metabolism) were also upregulated. Furthermore, the expression pattern of key protein regulators of the cell cycle and parallel gene array data supported a cell proliferation inhibitory role for SS. Conclusions Genomic and proteomic analyses are currently used to examine BBB function in healthy and diseased brain and characterize this dynamic interface. In this study we showed that SS plays a key role in promoting the differentiation of vascular endothelial cells into a truly BBB phenotype. SS affected multiple aspect of the endothelial physiology spanning from tight junctions formation to cell division as well as the expression of multidrug resistance transporters. BBB dysfunction has been observed in many neurological diseases, but the causes are generally unknown. Our study provides essential insights to understand the role played by SS in the BBB formation and maintenance. PMID:21569296

2011-01-01

364

Stress Measurements in Shock-Loaded PBX 9501 with Embedded Longitudinal and Lateral Piezoresistive Ytterbium Gauges  

SciTech Connect

A series of light gas gun impact experiments were performed with piezoresistive ytterbium (Yb) gauges in longitudinal and lateral orientations embedded in the plastic bonded explosive PBX 9501. These experiments were performed to evaluate the feasibility of using this method to measure lateral stresses and shear strength dynamically in PBX 9501. Ytterbium was chosen as a gauge material based on its high piezoresistance changes at low stress levels. Experiments were performed at longitudinal impact stresses of approximately 0.6 GPa, which is above the yield point of Yb, near the dynamic yield point of PBX 9501, at a level that is comparable with other impact data, and relevant to several multidimensional safety tests. Results show that PBX 9501 does maintain strength throughout compression. Because of poor reproducibility observed in the experiments presented, it appears unlikely that stress extraction from these gauge results would yield an estimate of shear strength at this impact stress with acceptable error.

D.E. Hooks

2004-12-15

365

Shearing of frictional sphere packings J-F. Metayer1  

E-print Network

measure shear response in packings of glass beads by pulling a thin, rough, metal plate vertically through response to shear stress. We examine here the response to shear of beds of glass beads of diameter 200 µm of the bed to shear by pulling a thin, rough, metal plate embedded in the material. We find a transition

Texas at Austin. University of

366

Finite element stress analysis of a notched coupon specimen for in-plane shear behaviour of composites  

NASA Technical Reports Server (NTRS)

The results of a linear elastic, plane stress finite element investigation of the stress distribution in a double V-notched coupon specimen are presented for an isotropic material (steel) and five graphite/polyimide laminates: (0), (90), (0/90)s, (plus or minus 45)s and (0/90/plus or minus 45)s. Stress contours, stress profiles, and stress concentration factors are presented for specimens loaded through rigid fixtures. It is shown that the finite element analysis predicts a region of essentially uniform pure shear in the central portion of the specimen for all laminates considered. Stress concentrations vary considerably with laminate configuration. The influences of elastic fixtures and thermal stresses on the stress distribution in (0) laminates are also investigated. The (0) laminate is predicted to exhibit maximum pure shear in the center of the test section for both rigid and elastic fixtures. It is concluded that the specimen is a practicable candidate for use as a composite shear specimen.

Herakovich, C. T.; Bergner, H. W., Jr.

1980-01-01

367

Measurement of Shear Modulus of NIPA Gel Particles in Salt Solution  

NASA Astrophysics Data System (ADS)

The shear modulus of N-isopropylacrylamide gel (NIPA) in the salt solution with various concentrations has been measured by mechanical vibration in acoustic frequencies range (10Hz 1kHz) at room temperature. In this frequency range, the volume of gel remains the same during the measurement. The shear modulus can be obtained by measuring the phase velocity of gel. The sample is prepared by piling up NIPA gel particles into disk shape with proper thickness and diameter. The results of shear moduli of the NIPA gel as a function of salt concentration show that there is a sharp increase of the shear modulus above 1 M salt concentration. This is due to the volume phase transition of the NIPA gel in the salt solution. This measurement opens a new way to measure the shear modulus of particle gels.

Hassan, Tarek; Wang, Changjie; Hu, Zhibing; Li, Yong

1998-10-01

368

Measuring the Shear-Tension Coupling of Engineering Fabrics  

SciTech Connect

Modelling the forming process of engineering fabrics and textile composites using a mechanical approach, such as FEM, requires characterisation of material behaviour. Using Picture Frame (PF) tests, several previous studies have reported a coupling between in-plane tension and fabric shear compliance. However, characterising this behaviour accurately has proven problematic due to the sensitivity of the PF test to small fabric misalignments in the test rig, prompting innovative solutions such as the use of load-cells mounted on the side bars of the PF rig to measure in-plane tension during testing. This paper focuses on an alternative testing technique, the Biaxial Bias Extension test, as a means to investigate this coupling. The approach has several benefits including simple equipment requirements, the ability to vary sample dimensions and boundary conditions. The main difficulty lies in extracting the material contribution to the recorded signal. To do this, an experimental method is demonstrated using two very different textiles; glass fabric and self-reinforced polypropylene both plain weaves. The latter is challenging to characterise and was chosen due to its high propensity to wrinkle at room temperature.

Abdiwi, F.; Harrison, P. [Department of Mechanical Engineering, James Watt Building (South) University of Glasgow, Glasgow G12 8QQ (United Kingdom); Guo, Z. [School of Civil Engineering and Geosciences Newcastle University, Newcastle upon Tyne, NE1 7RU UK (United Kingdom); Yu, W. R. [Department of Materials Science and Engineering, Seoul National University, San 56-1, Shillim-dong, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Potluri, P.

2011-05-04

369

Forced Convection in a Stratified Rotating Medium Under the Influence of Vortex Shearing Stress on the Surface  

NASA Astrophysics Data System (ADS)

The response of a semi-infinite stratified rotating medium to the action of an inhomogeneous vortex shearing stress on a horizontal surface is investigated analytically in a linear approximation. The previously unexplored region of the values of governing parameters is considered. It has been established that in the first approximation the indicated response represents a geostrophic vortex penetrating into a stably stratified medium to depths of the order of the horizontal scale of the shearing stress inhomogeneity and that the amplitude of the originating thermal perturbation is proportional to this scale and to the angular rotational velocity of the medium and inversely proportional to the coefficient of its viscosity.

Ingel?, L. Kh.

2014-09-01

370

Tracer Measurements of Atomic Diffusion inside Shear Bands of a Bulk Metallic Glass  

NASA Astrophysics Data System (ADS)

Atomic diffusion in deformed Pd40Ni40P20 bulk metallic glass containing a single family of deformation-induced shear bands was measured by the radiotracer technique. The significant, by orders of magnitude, enhancement of the diffusion rate with respect to that in the untransformed matrix suggests that the shear bands represent short-circuit diffusion paths. Correlations between diffusivity, viscosity, and the excess free volume distribution inside of shear bands are discussed.

Bokeloh, Joachim; Divinski, Sergiy V.; Reglitz, Gerrit; Wilde, Gerhard

2011-12-01

371

High shear microfluidics and its application in rheological measurement  

Microsoft Academic Search

High shear rheology was explored experimentally in microchannels (150×150 ?m). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney’s analysis. Shear rates as high as 10 6 s ?1 were obtained in the pressure-driven microchannel flow, allowing a smooth extension of

Kai Kang; L. James Lee; Kurt W. Koelling

2005-01-01

372

Inhibition of c-Jun N-Terminal Kinase Attenuates Low Shear Stress–Induced Atherogenesis in Apolipoprotein E–Deficient Mice  

PubMed Central

Atherosclerosis begins as local inflammation of arterial walls at sites of disturbed flow, such as vessel curvatures and bifurcations with low shear stress. c-Jun NH2-terminal kinase (JNK) is a major regulator of flow-dependent gene expression in endothelial cells in atherosclerosis. However, little is known about the in vivo role of JNK in low shear stress in atherosclerosis. We aimed to observe the effect of JNK on low shear stress–induced atherogenesis in apolipoprotein E-deficient (ApoE?/?) mice and investigate the potential mechanism in human umbilical vein endothelial cells (HUVECs). We divided 84 male ApoE?/? mice into two groups for treatment with normal saline (NS) (n = 42) and JNK inhibitor SP600125 (JNK-I) (n = 42). Perivascular shear stress modifiers were placed around the right carotid arteries, and plaque formation was studied at low shear stress regions. The left carotid arteries without modifiers represented undisturbed shear stress as a control. The NS group showed atherosclerotic lesions in arterial regions with low shear stress, whereas the JNK-I group showed almost no atherosclerotic lesions. Corresponding to the expression of proatherogenic vascular cell adhesion molecule 1 (VCAM-1), phospho-JNK (p-JNK) level was higher in low shear stress regions with NS than with JNK-I inhibitor. In HUVECs under low shear stress, siRNA knockdown and SP600125 inhibition of JNK attenuated nuclear factor (NF)-?B activity and VCAM-1 expression. Furthermore, siRNA knockdown of platelet endothelial cell adhesion molecule 1 (PECAM-1) (CD31) reduced p-JNK and VCAM-1 levels after low shear stress stimulation. JNK may play a critical role in low shear stress–induced atherogenesis by a PECAM-1–dependent mechanosensory pathway and modulating NF-?B activity and VCAM-1 expression. PMID:21629969

Wang, Juan; An, Feng Shuang; Zhang, Wei; Gong, Lei; Wei, Shu Jian; Qin, Wei Dong; Wang, Xu Ping; Zhao, Yu Xia; Zhang, Yun; Zhang, Cheng; Zhang, Ming-Xiang

2011-01-01

373

Fiber Creep Evaluation by Stress Relaxation Measurements  

NASA Technical Reports Server (NTRS)

A simple bend stress relaxation (BSR) test has been used to measure the creep related properties of a chemically vapor-deposited SiC fiber. Time, temperature, and strain dependent BSR data were analyzed to ascertain the ability of the stress relaxation results to predict tensile creep as a function of the same parameters. The predictions compared very well to actual creep data obtained by axial measurements, indicating that the BSR test could be used for determining both creep and stress relaxation of polycrystalline ceramic fibers under tensile loading.

Morscher, Gregory N.; Dicarlo, James A.; Wagner, Timothy

1991-01-01

374

Fiber creep evaluation by stress relaxation measurements  

SciTech Connect

A simple bend stress relaxation (BSR) test has been used to measure the creep related properties of a chemically vapor-deposited SiC fiber. Time, temperature, and strain dependent BSR data were analyzed to ascertain the ability of the stress relaxation results to predict tensile creep as a function of the same parameters. The predictions compared very well to actual creep data obtained by axial measurements, indicating that the BSR test could be used for determining both creep and stress relaxation of polycrystalline ceramic fibers under tensile loading. 10 refs.

Morscher, G.N.; Dicarlo, J.A.; Wagner, T.

1991-08-01

375

A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses  

NASA Technical Reports Server (NTRS)

The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.

Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

2013-01-01

376

Streamwise Vortices and Reynolds Stresses of Wall-Bounded Turbulent Shear Flows  

NASA Astrophysics Data System (ADS)

Reynolds Equation is the most commonly used governing equation in turbulence. However, its application in wall-bounded turbulent shear flows may involve a defect. In general, Reynolds averaging should be ensemble averaging and Reynolds stresses are supposed to express all the actions of turbulence on the mean field. In statistically steady three-dimensional flows, Reynolds stresses are usually defined as correlations of temporal velocity fluctuations so that they cannot contain the influences of steady components of streamwise vortices. This is believed to be one of the reasons why many closure models in RANS meet problems in flows where streamwise vortices play significant roles. In this paper, Spatial-Temporal (S-T) averaged Reynolds stresses were defined, which separates the turbulence actions caused by temporal or spatial velocity fluctuations. DNS data for a fully developed channel flow were then used to check balancing of equations. Comparison showed that the balancing errors in the S-T averaged Reynolds equations were obviously smaller than those in the temporal averaged one, in particular, in the near wall region where the streamwise vortices located. Thus, a combination of traditional model with a supplemental model expressing influences of streamwise vortices might be a way out to improve the turbulence modeling.

Zhou, Ming-De; Zhu, Hong-Yu; Chen, Kai; She, Zhen-Su

377

Dynamic shear-stress-enhanced rates of nutrient consumption in gas-liquid semi-continuous-flow suspensions  

NASA Astrophysics Data System (ADS)

The primary objective of this investigation is to establish guidelines for generating significant mammalian cell density in suspension bioreactors when stress-sensitive kinetics enhance the rate of nutrient consumption. Ultra-low-frequency dynamic modulations of the impeller (i.e., 35104 Hz) introduce time-dependent oscillatory shear into this transient analysis of cell proliferation under semi-continuous creeping flow conditions. Greater nutrient consumption is predicted when the amplitude A of modulated impeller rotation increases, and stress-kinetic contributions to nutrient consumption rates increase linearly at higher modulation frequency via an application of fluctuation-dissipation response. Interphase mass transfer is required to replace dissolved oxygen as it is consumed by aerobic nutrient consumption in the liquid phase. The theory and predictions described herein could be important at small length scales in the creeping flow regime where viscous shear is significant at the interface between the nutrient medium and isolated cells in suspension. Two-dimensional flow around spherically shaped mammalian cells, suspended in a Newtonian culture medium, is analyzed to calculate the surface-averaged magnitude of the velocity gradient tensor and modify homogeneous rates of nutrient consumption that are stimulated by viscous shear, via the formalism of stress-kinetic reciprocal relations that obey Curie's theorem in non-equilibrium thermodynamics. Time constants for stress-free free and stress-sensitive stress nutrient consumption are defined and quantified to identify the threshold (i.e., stress,threshold) below which the effect of stress cannot be neglected in accurate predictions of bioreactor performance. Parametric studies reveal that the threshold time constant for stress-sensitive nutrient consumption stress,threshold decreases when the time constant for stress-free nutrient consumption free is shorter. Hence, stress,threshold depends directly on free. In other words, the threshold rate of stress-sensitive nutrient consumption is higher when the stress-free rate of nutrient consumption increases. Modulated rotation of the impeller, superimposed on steady shear, increases stress,threshold when free is constant, and stress,threshold depends directly on the amplitude A of these angular velocity modulations.

Belfiore, Laurence A.; Volpato, Fabio Z.; Paulino, Alexandre T.; Belfiore, Carol J.

2011-12-01

378

Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response  

NASA Technical Reports Server (NTRS)

Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas.

Sorescu, George P.; Sykes, Michelle; Weiss, Daiana; Platt, Manu O.; Saha, Aniket; Hwang, Jinah; Boyd, Nolan; Boo, Yong C.; Vega, J. David; Taylor, W. Robert; Jo, Hanjoong

2003-01-01

379

Stress analysis of the cracked-lap-shear specimen - An ASTM round-robin  

NASA Technical Reports Server (NTRS)

This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

Johnson, W. S.

1987-01-01

380

Helical flows of second grade fluid due to constantly accelerated shear stresses  

NASA Astrophysics Data System (ADS)

The helical flows of second grade fluid between two infinite coaxial circular cylinders is considered. The motion is produced by the inner cylinder that at the initial moment applies torsional and longitudinal constantly accelerated shear stresses to the fluid. The exact analytic solutions, obtained by employing the Laplace and finite Hankel transforms and presented in series form in term of usual Bessel functions of first and second kind, satisfy both the governing equations and all imposed initial and boundary conditions. In the limiting case when ? ? 0, the solutions for Newtonian fluid are obtained for the same motion. The large-time solutions and transient solutions for second grade fluid are also obtained, and effect of material parameter ? and kinematic viscosity ? is discussed. In the last, the effects of various parameters of interest on fluid motion as well as the comparison between second grade and Newtonian fluids are analyzed by graphical illustrations.

Jamil, M.; Rauf, A.; Fetecau, C.; Khan, N. A.

2011-04-01

381

Wall Shear Stress Characteristics for the Progression of the Disease, Atherosclerosis  

NASA Astrophysics Data System (ADS)

Wall shear stress (WSS) characteristics of a stenosed artery which are the important physiological parameters for the progression of the arterial diseases atherosclerosis, are studied and compared for different Reynolds numbers and different Womersley numbers. Numerical simulations of physiological pulsatile flow through a model stenotic artery are performed by finite volume method. From this study, it is revealed that the chance of formation of atherosclerosis increases with increase in Reynolds number and decreases with increase in Womersley number. The phenomenon of mass transportation across arterial wall is more in case of increase in Womersley number rather than Reynolds number. The chance of formation of atheromatous plaque will be high with higher Reynolds number and Womersley number. In the low WSS region, high magnitude of Womersley number indicates high chance of progression of the disease atherosclerosis. High magnitude of Womersley number with low Reynolds number is more dangerous for the progression of the disease in the low WSS region.

Goswami, P.; Mandal, D. K.; Manna, N. K.; Chakrabarti, S.

2014-12-01

382

Rock Joint Surfaces Measurement and Analysis of Aperture Distribution under Different Normal and Shear Loading Using GIS  

E-print Network

Geometry of the rock joint is a governing factor for joint mechanical and hydraulic behavior. A new method of evaluating aperture distribution based on measurement of joint surfaces and three dimensional characteristics of each surface is developed. Artificial joint of granite surfaces are measured,processed, analyzed and three dimensional approaches are carried out for surface characterization. Parameters such as asperity's heights, slope angles, and aspects distribution at micro scale,local concentration of elements and their spatial localization at local scale are determined by Geographic Information System (GIS). Changes of aperture distribution at different normal stresses and various shear displacements are visualized and interpreted. Increasing normal load causes negative changes in aperture frequency distribution which indicates high joint matching. However, increasing shear displacement causes a rapid increase in the aperture and positive changes in the aperture frequency distribution which could be ...

Sharifzadeh, Mostafa; Esaki, Tetsuro

2009-01-01

383

Predicting bed shear stress and its role in sediment dynamics and restoration potential of the Everglades and other vegetated flow systems  

USGS Publications Warehouse

Entrainment of sediment by flowing water affects topography, habitat suitability, and nutrient cycling in vegetated floodplains and wetlands, impacting ecosystem evolution and the success of restoration projects. Nonetheless, restoration managers lack simple decision-support tools for predicting shear stresses and sediment redistribution potential in different vegetation communities. Using a field-validated numerical model, we developed state-space diagrams that provide these predictions over a range of water-surface slopes, depths, and associated velocities in Everglades ridge and slough vegetation communities. Diminished bed shear stresses and a consequent decrease in bed sediment redistribution are hypothesized causes of a recent reduction in the topographic and vegetation heterogeneity of this ecosystem. Results confirmed the inability of present-day flows to entrain bed sediment. Further, our diagrams showed bed shear stresses to be highly sensitive to emergent vegetation density and water-surface slope but less sensitive to water depth and periphyton or floating vegetation abundance. These findings suggested that instituting a pulsing flow regime could be the most effective means to restore sediment redistribution to the Everglades. However, pulsing flows will not be sufficient to erode sediment from sloughs with abundant spikerush, unless spikerush density first decreases by natural or managed processes. Our methods provide a novel tool for identifying restoration parameters and performance measures in many types of vegetated aquatic environments where sediment erosion and deposition are involved.

Larsen, L.G.; Harvey, J.W.; Crimaldi, J.P.

2009-01-01

384

Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms  

PubMed Central

In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a 20 MHz piezoelectric transducer (circular element 8.5 mm diameter) transmitting sine-wave bursts of 400 ?s, synchronized with the OCT swept source wavelength sweep. The acoustic radiation force (ARF) was applied to two gelatin phantoms (differing in gelatin concentration by weight, 8% vs. 14%). Differential OCT phase maps, measured with and without the ARF, demonstrate microscopic displacement generated by shear wave propagation in these phantoms of different stiffness. We present preliminary results of OCT derived shear wave propagation velocity and modulus, and compare these results to rheometer measurements. The results demonstrate the feasibility of shear wave OCE (SW-OCE) for high-resolution microscopic homogeneous tissue mechanical property characterization. PMID:22567590

Razani, Marjan; Mariampillai, Adrian; Sun, Cuiru; Luk, Timothy W. H.; Yang, Victor X. D.; Kolios, Michael C.

2012-01-01

385

Correction of open jet wind tunnel measurements for shear layer refraction  

Microsoft Academic Search

The problem of sound refraction by a planar, zero-thickness shear layer is treated by combining a previous solution by Ribner and Miles with geometrical acoustics. Analytical expressions are given that allow one to correct far-field measurement angle and acoustic amplitude for the effects of shear layer refraction. The correction is independent of source type, and the results represent the sound

R. K. Amiet

1975-01-01

386

Measurement of residual stresses using fracture mechanics weight functions  

Microsoft Academic Search

A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In

Fan

2000-01-01

387

The equivalence of enthalpy and shear stress relaxation in rhyolitic obsidians and quantification of the liquid-glass transition in volcanic processes  

Microsoft Academic Search

The relaxation of enthalpy and shear stress has been investigated for six silicic volcanic obsidians (calc-alkaline rhyolitic obsidians from Ben Lomond dome, New Zealand, Erevan Dry Fountain, Armenia and Little Glass Butte, USA; peralkaline obsidians from Mayor Island, New Zealand and Eburru, Kenya and a macusanite obsidian from SE Peru). The temperature-dependences of enthalpy and shear stress relaxation are obtained

R. J. Stevenson; D. B. Dingwell; S. L. Webb; N. S. Bagdassarov

1995-01-01

388

Flow (shear stress)-mediated remodeling of resistance arteries in diabetes Emilie Vessires, Lamine M. Freidja, Laurent Loufrani, Cline Fassot, Daniel Henrion.  

E-print Network

Flow (shear stress)-mediated remodeling of resistance arteries in diabetes Emilie Vessières, Lamine hypertrophy and improvement of arterial contractility and endothelium-mediated dilation. Shear stress occlusion of a large artery. In diabetes, an excessive ROS production is associated with the formation

Boyer, Edmond

389

Ultrasound velocimetry in a shear-thickening wormlike micellar solution: Evidence for the coexistence of radial and vorticity shear bands  

NASA Astrophysics Data System (ADS)

We carried out pointwise local velocity measurements on 40mM cetylpyridinium chloride-sodium salicylate (CPyCl-NaSal) wormlike micellar solution using high-frequency ultrasound velocimetry in a Couette shear cell. The studied wormlike solution exhibits Newtonian, shear-thinning and shear-thickening rheological behavior in a stress-controlled environment. Previous rheology, flow visualization and small-angle light/neutron scattering experiments in the shear-thickening regime of this system showed the presence of stress-driven alternating transparent and turbid rings or vorticity bands along the axis of the Couette geometry. Through local velocity measurements we observe a homogeneous flow inside the 1mm gap of the Couette cell in the shear-thinning (stress-plateau) region. Only when the solution is sheared beyond the critical shear stress (shear-thickening regime) in a stress-controlled experiment, we observe inhomogeneous flow characterized by radial or velocity gradient shear bands with a highly sheared band near the rotor and a weakly sheared band near the stator of the Couette geometry. Furthermore, fast measurements performed in the shear-thickening regime to capture the temporal evolution of local velocities indicate coexistence of both radial and vorticity shear bands. However the same measurements carried out in shear rate controlled mode of the rheometer do not show such rheological complexity.

Herle, V.; Manneville, S.; Fischer, P.

2008-05-01

390

Mechanical interaction between cells and fluid for bone tissue engineering scaffold: Modulation of the interfacial shear stress  

E-print Network

Mechanical interaction between cells and fluid for bone tissue engineering scaffold: Modulation Analytical solution Bone tissue engineering a b s t r a c t An analytical model of the fluid/cell mechanical n f o Article history: Accepted 1 November 2009 Keywords: Cell fluid interaction Shear stress

Guerraoui, Rachid

391

Risk assessment of erosion from concentrated flow on rangelands using overland flow distribution and shear stress partitioning  

Technology Transfer Automated Retrieval System (TEKTRAN)

Erosion rates of overland flow on rangelands tend to be relatively low, but under certain conditions where flow is concentrated, soil loss can be significant. Therefore, a rangeland site can be highly vulnerable to soil erosion where overland flow is likely to concentrate and exert high shear stress...

392

Wall shear stress determination from near-wall mean velocity data in turbulent pipe and channel flows  

Microsoft Academic Search

A novel method is proposed that allows accurate estimates of the local wall shear s